GeneNetFinder2: Improved Inference of Dynamic Gene Regulatory Relations with Multiple Regulators.
Han, Kyungsook; Lee, Jeonghoon
2016-01-01
A gene involved in complex regulatory interactions may have multiple regulators since gene expression in such interactions is often controlled by more than one gene. Another thing that makes gene regulatory interactions complicated is that regulatory interactions are not static, but change over time during the cell cycle. Most research so far has focused on identifying gene regulatory relations between individual genes in a particular stage of the cell cycle. In this study we developed a method for identifying dynamic gene regulations of several types from the time-series gene expression data. The method can find gene regulations with multiple regulators that work in combination or individually as well as those with single regulators. The method has been implemented as the second version of GeneNetFinder (hereafter called GeneNetFinder2) and tested on several gene expression datasets. Experimental results with gene expression data revealed the existence of genes that are not regulated by individual genes but rather by a combination of several genes. Such gene regulatory relations cannot be found by conventional methods. Our method finds such regulatory relations as well as those with multiple, independent regulators or single regulators, and represents gene regulatory relations as a dynamic network in which different gene regulatory relations are shown in different stages of the cell cycle. GeneNetFinder2 is available at http://bclab.inha.ac.kr/GeneNetFinder and will be useful for modeling dynamic gene regulations with multiple regulators.
Nwagbara, Belinda U.; Faris, Anna E.; Bearce, Elizabeth A.; Erdogan, Burcu; Ebbert, Patrick T.; Evans, Matthew F.; Rutherford, Erin L.; Enzenbacher, Tiffany B.; Lowery, Laura Anne
2014-01-01
Microtubule plus end dynamics are regulated by a conserved family of proteins called plus end–tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics. However, TACC3 has not been shown to function as a +TIP in vertebrates. Here we show that TACC3 promotes axon outgrowth and regulates microtubule dynamics by increasing microtubule plus end velocities in vivo. We also demonstrate that TACC3 acts as a +TIP in multiple embryonic cell types and that this requires the conserved C-terminal TACC domain. Using high-resolution live-imaging data on tagged +TIPs, we show that TACC3 localizes to the extreme microtubule plus end, where it lies distal to the microtubule polymerization marker EB1 and directly overlaps with the microtubule polymerase XMAP215. TACC3 also plays a role in regulating XMAP215 stability and localizing XMAP215 to microtubule plus ends. Taken together, our results implicate TACC3 as a +TIP that functions with XMAP215 to regulate microtubule plus end dynamics. PMID:25187649
Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.
He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai
2014-03-01
Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.
Actin filaments-A target for redox regulation.
Wilson, Carlos; Terman, Jonathan R; González-Billault, Christian; Ahmed, Giasuddin
2016-10-01
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Actin filaments – a target for redox regulation
Wilson, Carlos; Terman, Jonathan R.; González-Billault, Christian; Ahmed, Giasuddin
2016-01-01
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through non-covalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates – the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL – and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. PMID:27309342
Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.
Fontana, Jason; Voje, William E; Zalatan, Jesse G; Carothers, James M
2018-05-08
Dynamic control of gene expression is emerging as an important strategy for controlling flux in metabolic pathways and improving bioproduction of valuable compounds. Integrating dynamic genetic control tools with CRISPR-Cas transcriptional regulation could significantly improve our ability to fine-tune the expression of multiple endogenous and heterologous genes according to the state of the cell. In this mini-review, we combine an analysis of recent literature with examples from our own work to discuss the prospects and challenges of developing dynamically regulated CRISPR-Cas transcriptional control systems for applications in synthetic biology and metabolic engineering.
Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction.
Micevych, Paul E; Mermelstein, Paul G; Sinchak, Kevin
2017-11-01
Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors*
Smith, Jeffrey S.; Rajagopal, Sudarshan
2016-01-01
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. PMID:26984408
The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.
Smith, Jeffrey S; Rajagopal, Sudarshan
2016-04-22
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization.
Dickinson, Daniel J; Schwager, Francoise; Pintard, Lionel; Gotta, Monica; Goldstein, Bob
2017-08-21
Regulated protein-protein interactions are critical for cell signaling, differentiation, and development. For the study of dynamic regulation of protein interactions in vivo, there is a need for techniques that can yield time-resolved information and probe multiple protein binding partners simultaneously, using small amounts of starting material. Here we describe a single-cell protein interaction assay. Single-cell lysates are generated at defined time points and analyzed using single-molecule pull-down, yielding information about dynamic protein complex regulation in vivo. We established the utility of this approach by studying PAR polarity proteins, which mediate polarization of many animal cell types. We uncovered striking regulation of PAR complex composition and stoichiometry during Caenorhabditis elegans zygote polarization, which takes place in less than 20 min. PAR complex dynamics are linked to the cell cycle by Polo-like kinase 1 and govern the movement of PAR proteins to establish polarity. Our results demonstrate an approach to study dynamic biochemical events in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
Single-Molecule Studies of Actin Assembly and Disassembly Factors
Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.
2014-01-01
The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103
Coyle, Scott M; Lim, Wendell A
2016-01-14
The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.
NASA Astrophysics Data System (ADS)
Allen, M. F.; Taggart, M. C.; Hernandez, R. R.; Harmon, T. C.; Rundel, P.
2017-12-01
Observation is essential for organizing outputs from sensor data to describe dynamic phenomena regulating core processes. The rhizosphere is that region of the soil layer that regulates soil carbon acquisition, turnover, and sequestration and that is most sensitive to rapid changes in soil moisture, temperature, and gases. Virtually every process regulating carbon and nutrient immobilization and mineralization occur here at the maximum rates. However, the observation of root, microbial, and animal growth, movement, and mortality are rarely undertaken at time scales of crucial events. While multiple cores or observations can be taken in space, replications in time are rarely undertaken. We coupled automated (AMR) and manual minirhizotrons (MMR) with soil and aboveground sensors for temperature (T), water content (q), CO2, and O2 to measure short-term dynamics that regulate carbon cycling. AMRs imaged rhizospheres, multiple times daily. From these images, we observed timing of root and hyphal growth and mortality in response to changes in photosynthesis, diurnal temperature fluctuations, and precipitation and drought events. Replicate manual minirhizotron tubes describe the spatial structure of those events, and replicate core samples provide measurements of standing crop at known times. We present four examples showing how observation led to understanding unusual C flux patterns in mixed-conifer forest (belowground photosynthate allocation), hot desert (CaCO3 formation and weathering), grassland (root grazing), and tropical rainforest (soil gas flux patterns).
cDREM: inferring dynamic combinatorial gene regulation.
Wise, Aaron; Bar-Joseph, Ziv
2015-04-01
Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.
Nair, Nidhi; Shoaib, Muhammad
2017-01-01
Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage. PMID:28698521
Hochrein, James M.; Lerner, Edwina C.; Schiavone, Anthony P.; Smithgall, Thomas E.; Engen, John R.
2006-01-01
The ability of proteins to regulate their own enzymatic activity can be facilitated by changes in structure or protein dynamics in response to external regulators. Because many proteins contain SH2 and SH3 domains, transmission of information between the domains is a potential method of allosteric regulation. To determine if ligand binding to one modular domain may alter structural dynamics in an adjacent domain, allowing potential transmission of information through the protein, we used hydrogen exchange and mass spectrometry to measure changes in protein dynamics in the SH3 and SH2 domains of hematopoietic cell kinase (Hck). Ligand binding to either domain had little or no effect on hydrogen exchange in the adjacent domain, suggesting that changes in protein structure or dynamics are not a means of SH2/SH3 crosstalk. Furthermore, ligands of varying affinity covalently attached to SH3/SH2 altered dynamics only in the domain to which they bind. Such results demonstrate that ligand binding may not structurally alter adjacent SH3/SH2 domains and implies that other aspects of protein architecture contribute to the multiple levels of regulation in proteins containing SH3 and SH2 domains. PMID:16322569
Initiation of DNA replication requires actin dynamics and formin activity.
Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel
2017-11-02
Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.
Kim, Yongsoo; Kim, Taek-Kyun; Kim, Yungu; Yoo, Jiho; You, Sungyong; Lee, Inyoul; Carlson, George; Hood, Leroy; Choi, Seungjin; Hwang, Daehee
2011-01-01
Motivation: Systems biology attempts to describe complex systems behaviors in terms of dynamic operations of biological networks. However, there is lack of tools that can effectively decode complex network dynamics over multiple conditions. Results: We present principal network analysis (PNA) that can automatically capture major dynamic activation patterns over multiple conditions and then generate protein and metabolic subnetworks for the captured patterns. We first demonstrated the utility of this method by applying it to a synthetic dataset. The results showed that PNA correctly captured the subnetworks representing dynamics in the data. We further applied PNA to two time-course gene expression profiles collected from (i) MCF7 cells after treatments of HRG at multiple doses and (ii) brain samples of four strains of mice infected with two prion strains. The resulting subnetworks and their interactions revealed network dynamics associated with HRG dose-dependent regulation of cell proliferation and differentiation and early PrPSc accumulation during prion infection. Availability: The web-based software is available at: http://sbm.postech.ac.kr/pna. Contact: dhhwang@postech.ac.kr; seungjin@postech.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21193522
Coyle, Scott M; Lim, Wendell A
2016-01-01
The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565
NASA Astrophysics Data System (ADS)
Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.
2017-12-01
Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.
Tropomyosins as discriminators of myosin function.
Ostap, E Michael
2008-01-01
Vertebrate nonmuscle cells express multiple tropomyosin isoforms that are sorted to subcellular compartments that have distinct morphological and dynamic properties. The creation of these compartments has a role in controlling cell morphology, cell migration and polarization of cellular components. There is increasing evidence that nonmuscle myosins are regulated by tropomyosin in these compartments via the regulation of actin attachment, ATPase kinetics, or by stabilization of cytoskeletal tracks for myosin-based transport. In this chapter, I review the literature describing the regulation of various myosins by tropomyosins and consider the mechanisms for this regulation.
Jamin, Augusta; Wicklund, April; Wiebe, Matthew S
2014-05-01
Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways, the best characterized of which are as a host defense against cytoplasmic DNA and as a regulator of mitotic nuclear reassembly. Although dynamic phosphorylation involving both viral and cellular enzymes is likely a key regulator of multiple BAF functions, the precise mechanisms involved are poorly understood. Here we demonstrate that phosphorylation coordinately regulates BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity. Overall, our findings provide new insights into how phosphoregulation of BAF modulates this protein at multiple levels and governs its effectiveness as an antiviral factor against foreign DNA.
Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors.
Starostina, Natalia G; Kipreos, Edward T
2012-01-01
The mammalian CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors (CKIs) comprises three proteins--p21(Cip1/WAF1), p27(Kip1), and p57(Kip2)--that bind and inhibit cyclin-CDK complexes, which are key regulators of the cell cycle. CIP/KIP CKIs have additional independent functions in regulating transcription, apoptosis and actin cytoskeletal dynamics. These divergent functions are performed in distinct cellular compartments and contribute to the seemingly contradictory observation that the CKIs can both suppress and promote cancer. Multiple ubiquitin ligases (E3s) direct the proteasome-mediated degradation of p21, p27 and p57. This review analyzes recent data highlighting our current understanding of how distinct E3 pathways regulate subpopulations of the CKIs to control their diverse functions. Copyright © 2011 Elsevier Ltd. All rights reserved.
MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.
Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun
2016-01-01
The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.
Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks
NASA Astrophysics Data System (ADS)
White, Forest M.; Wolf-Yadlin, Alejandro
2016-06-01
Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.
Harkness, Robert W; Mittermaier, Anthony K
2017-11-01
G-quadruplexes (GQs) are four-stranded nucleic acid secondary structures formed by guanosine (G)-rich DNA and RNA sequences. It is becoming increasingly clear that cellular processes including gene expression and mRNA translation are regulated by GQs. GQ structures have been extensively characterized, however little attention to date has been paid to their conformational dynamics, despite the fact that many biological GQ sequences populate multiple structures of similar free energies, leading to an ensemble of exchanging conformations. The impact of these dynamics on biological function is currently not well understood. Recently, structural dynamics have been demonstrated to entropically stabilize GQ ensembles, potentially modulating gene expression. Transient, low-populated states in GQ ensembles may additionally regulate nucleic acid interactions and function. This review will underscore the interplay of GQ dynamics and biological function, focusing on several dynamic processes for biological GQs and the characterization of GQ dynamics by nuclear magnetic resonance (NMR) spectroscopy in conjunction with other biophysical techniques. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang
2017-02-16
Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.
SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.
Chen, Ye; Kim, Jae Kyoung; Hirning, Andrew J; Josić, Krešimir; Bennett, Matthew R
2015-08-28
A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types—an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types. Copyright © 2015, American Association for the Advancement of Science.
Dynamics of H3K27me3 methylation and demethylation in plant development
Gan, Eng-Seng; Xu, Yifeng; Ito, Toshiro
2015-01-01
Epigenetic regulation controls multiple aspects of the plant development. The N-terminal tail of histone can be differently modified to regulate various chromatin activities. One of them, the trimethylation of histone H3 lysine 27 (H3K27me3) confers a repressive chromatin state with gene silencing. H3K27me3 is dynamically deposited and removed throughout development. While components of the H3K27me3 writer, Polycomb repressive complex 2 (PRC2), have been reported for almost 2 decades, it is only recently that JUMONJI (JMJ) proteins are reported as H3K27me3 demethylases, affirming the dynamic nature of histone modifications. This review highlights recent progress in plant epigenetic research, focusing on the H3K27me3 demethylases. PMID:26313233
Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator
Miguel-Romero, Laura; Huesa, Juanjo; García, Pablo; García-del Portillo, Francisco
2018-01-01
Abstract The RcsCDB phosphorelay system controls an extremely large regulon in Enterobacteriaceae that involves processes such as biofilm formation, flagella production, synthesis of extracellular capsules and cell division. Therefore, fine-tuning of this system is essential for virulence in pathogenic microorganisms of this group. The final master effector of the RcsCDB system is the response regulator (RR) RcsB, which activates or represses multiple genes by binding to different promoter regions. This regulatory activity of RcsB can be done alone or in combination with additional transcriptional factors in phosphorylated or dephosphorylated states. The capacity of RcsB to interact with multiple promoters and partners, either dephosphorylated or phosphorylated, suggests an extremely conformational dynamism for this RR. To shed light on the activation mechanism of RcsB and its implication on promoter recognition, we solved the crystal structure of full-length RcsB from Salmonella enterica serovar Typhimurium in the presence and absence of a phosphomimetic molecule BeF3−. These two novel structures have guided an extensive site-directed mutagenesis study at the structural and functional level that confirms RcsB conformational plasticity and dynamism. Our data allowed us to propose a β5-T switch mechanism where phosphorylation is coupled to alternative DNA binding ways and which highlights the conformational dynamism of RcsB to be so pleiotropic. PMID:29186528
The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation*
Davis, Ryan; Shi, Yongsheng
2014-01-01
The majority of eukaryotic genes produce multiple mRNA isoforms with distinct 3′ ends through a process called mRNA alternative polyadenylation (APA). Recent studies have demonstrated that APA is dynamically regulated during development and in response to environmental stimuli. A number of mechanisms have been described for APA regulation. In this review, we attempt to integrate all the known mechanisms into a unified model. This model not only explains most of previous results, but also provides testable predictions that will improve our understanding of the mechanistic details of APA regulation. Finally, we briefly discuss the known and putative functions of APA regulation. PMID:24793760
Pattern Transitions in Bacterial Oscillating System under Nanofluidic Confinement
NASA Astrophysics Data System (ADS)
Shen, Jie-Pan; Chou, Chia-Fu
2011-03-01
Successful binary fission in E. coli relies on remarkable oscillatory behavior of the MinCDE protein system to determine the exact division site. The most favorable models to explain this fascinating spatiotemporal regulation on dynamic MinDE pattern formation in cells are based on reaction-diffusion scenario. Although not fully understood, geometric factors caused by bacterial morphology play a crucial role in MinDE dynamics. In the present study, bacteria were cultured, confined and reshaped in various micro/nanofluidic devices, to mimic either curvature changes of cell peripherals. Fluorescence imaging was utilized to detail the mode transitions in multiple MinDE patterns. The understanding of the physics in multiple pattern formations is further complemented via in silico modeling. The study synergizes the join merits of in vivo, in vitro and in silico approaches, to grasp the insight of stochastic dynamics inherited from the noisy mesoscopic biophysics. We acknowledge support from the Foresight Project, Academia Sinica.
Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel
2015-10-01
Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.
2015-10-01
The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.
Kargovsky, A V; Chichigina, O A; Anashkina, E I; Valenti, D; Spagnolo, B
2015-10-01
The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.
Hyporheic Zone Residence Time Distributions in Regulated River Corridors
NASA Astrophysics Data System (ADS)
Song, X.; Chen, X.; Shuai, P.; Gomez-Velez, J. D.; Ren, H.; Hammond, G. E.
2017-12-01
Regulated rivers exhibit stage fluctuations at multiple frequencies due to both natural processes (e.g., seasonal cycle) and anthropogenic activities (e.g., dam operation). The interaction between the dynamic river flow conditions and the heterogeneous aquifer properties results in complex hydrologic exchange pathways that are ubiquitous in free-flowing and regulated river corridors. The dynamic nature of the exchange flow is reflected in the residence time distribution (RTD) of river water within the groundwater system, which is a key metric that links river corridor biogeochemical processes with the hydrologic exchange. Understanding the dynamics of RTDs is critical to gain the mechanistic understanding of hydrologic exchange fluxes and propose new parsimonious models for river corridors, yet it is understudied primarily due to the high computational demands. In this study, we developed parallel particle tracking algorithms to reveal how river flow variations affect the RTD of river water in the alluvial aquifer. Particle tracking was conducted using the velocity outputs generated by three-dimensional groundwater flow simulations of PFLOTRAN in a 1600 x 800 x 20m model domain within the DOE Hanford Site. Long-term monitoring data of inland well water levels and river stage were used for eight years of flow simulation. Nearly a half million particles were continually released along the river boundary to calculate the RTDs. Spectral analysis of the river stage data revealed high-frequency (sub-daily to weekly) river stage fluctuations caused by dam operations. The higher frequencies of stage variation were progressively filtered to generate multiple sets of flow boundary conditions. A series of flow simulations were performed by using the filtered flow boundary conditions and various degrees of subsurface heterogeneity to study the relative contribution of flow dynamics and physical heterogeneity on river water RTD. Our results revealed multimodal RTDs of river water as a result of the highly variable exchange pathways driven by interactions between dynamic flow and aquifer heterogeneity. A relationship between the RTD and frequency of flow variation was built for each heterogeneity structure, which can be used to assess the potential ecological consequences of dam operations in regulated rivers.
Mediator phosphorylation prevents stress response transcription during non-stress conditions.
Miller, Christian; Matic, Ivan; Maier, Kerstin C; Schwalb, Björn; Roether, Susanne; Strässer, Katja; Tresch, Achim; Mann, Matthias; Cramer, Patrick
2012-12-28
The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an end point of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here, we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast Saccharomyces cerevisiae is phosphorylated at multiple sites of 17 of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells.
Duan, Xing; Zhang, Hao-Lin; Pan, Meng-Hao; Zhang, Yu; Sun, Shao-Chen
2018-02-01
Arf6 (ADP-ribosylation factor 6) is known to play important roles in membrane dynamics through the regulation of actin filament reorganization for multiple cellular processes such as cytokinesis, phagocytosis, cell migration and tumor cell invasion. However, the functions of Arf6 in mammalian oocyte meiosis have not been clarified. In present study we showed that Arf6 expressed in mouse oocytes and was mainly distributed around the spindle during meiosis. Depletion of Arf6 by morpholino microinjection caused oocytes failing to extrude first polar body. Further analysis indicated that Arf6 knock down caused the aberrant actin distribution, which further induced the failure of meiotic spindle movement. And the loss of oocyte polarity also confirmed this. The regulation of Arf6 on actin filaments in mouse oocytes might be due to its effects on the phosphorylation level of cofilin and the expression of Arp2/3 complex. Moreover, we found that the decrease of Arf6 caused the disruption of spindle formation, indicating the multiple roles of Arf6 on cytoskeleton dynamics in meiosis. In summary, our results indicated that Arf6 was involved in mouse oocyte meiosis through its functional roles in actin-mediated spindle movement and spindle organization. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo
2017-04-01
The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.
Lukman, Suryani; Lane, David P.; Verma, Chandra S.
2013-01-01
The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site. PMID:24324553
Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA.
Lai, Wei; Ren, Lei; Tang, Qian; Qu, Xiangmeng; Li, Jiang; Wang, Lihua; Li, Li; Fan, Chunhai; Pei, Hao
2018-06-22
The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.
Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator.
Casino, Patricia; Miguel-Romero, Laura; Huesa, Juanjo; García, Pablo; García-Del Portillo, Francisco; Marina, Alberto
2018-01-09
The RcsCDB phosphorelay system controls an extremely large regulon in Enterobacteriaceae that involves processes such as biofilm formation, flagella production, synthesis of extracellular capsules and cell division. Therefore, fine-tuning of this system is essential for virulence in pathogenic microorganisms of this group. The final master effector of the RcsCDB system is the response regulator (RR) RcsB, which activates or represses multiple genes by binding to different promoter regions. This regulatory activity of RcsB can be done alone or in combination with additional transcriptional factors in phosphorylated or dephosphorylated states. The capacity of RcsB to interact with multiple promoters and partners, either dephosphorylated or phosphorylated, suggests an extremely conformational dynamism for this RR. To shed light on the activation mechanism of RcsB and its implication on promoter recognition, we solved the crystal structure of full-length RcsB from Salmonella enterica serovar Typhimurium in the presence and absence of a phosphomimetic molecule BeF3-. These two novel structures have guided an extensive site-directed mutagenesis study at the structural and functional level that confirms RcsB conformational plasticity and dynamism. Our data allowed us to propose a β5-T switch mechanism where phosphorylation is coupled to alternative DNA binding ways and which highlights the conformational dynamism of RcsB to be so pleiotropic. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Extending the dynamic range of transcription factor action by translational regulation
NASA Astrophysics Data System (ADS)
Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper
2016-02-01
A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.
Climate-mediated changes in marine ecosystem regulation during El Niño.
Lindegren, Martin; Checkley, David M; Koslow, Julian A; Goericke, Ralf; Ohman, Mark D
2018-02-01
The degree to which ecosystems are regulated through bottom-up, top-down, or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown to vary over spatio-temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom-up regulated. However, it remains unknown to what extent top-down regulation occurs, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long-term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom-up and top-down forcing, analogous to wasp-waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom-up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño. © 2017 John Wiley & Sons Ltd.
Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.
Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E
2018-03-20
Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald
2016-01-01
Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Ma, Ning; Lv, Chengwei
2016-08-01
Efficient water transfer and allocation are critical for disaster mitigation in drought emergencies. This is especially important when the different interests of the multiple decision makers and the fluctuating water resource supply and demand simultaneously cause space and time conflicts. To achieve more effective and efficient water transfers and allocations, this paper proposes a novel optimization method with an integrated bi-level structure and a dynamic strategy, in which the bi-level structure works to deal with space dimension conflicts in drought emergencies, and the dynamic strategy is used to deal with time dimension conflicts. Combining these two optimization methods, however, makes calculation complex, so an integrated interactive fuzzy program and a PSO-POA are combined to develop a hybrid-heuristic algorithm. The successful application of the proposed model in a real world case region demonstrates its practicality and efficiency. Dynamic cooperation between multiple reservoirs under the coordination of a global regulator reflects the model's efficiency and effectiveness in drought emergency water transfer and allocation, especially in a fluctuating environment. On this basis, some corresponding management recommendations are proposed to improve practical operations.
The Biogenesis of Lysosomes and Lysosome-Related Organelles
Luzio, J. Paul; Hackmann, Yvonne; Dieckmann, Nele M.G.; Griffiths, Gillian M.
2014-01-01
Lysosomes were once considered the end point of endocytosis, simply used for macromolecule degradation. They are now recognized to be dynamic organelles, able to fuse with a variety of targets and to be re-formed after fusion events. They are also now known to be the site of nutrient sensing and signaling to the cell nucleus. In addition, lysosomes are secretory organelles, with specialized machinery for regulated secretion of proteins in some cell types. The biogenesis of lysosomes and lysosome-related organelles is discussed, taking into account their dynamic nature and multiple roles. PMID:25183830
Mitochondrial Dynamics in Diabetes
Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng
2011-01-01
Abstract Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emerging evidence suggests that mitochondrial dynamics plays an important role in metabolism–secretion coupling in pancreatic β-cells as well as complications of diabetes. This review describes an overview of mechanistic and functional aspects of mitochondrial fission and fusion, and comments on the recent advances connecting mitochondrial dynamics with diabetes and diabetic complications. Antioxid. Redox Signal. 14, 439–457. PMID:20518704
3D Protein Dynamics in the Cell Nucleus.
Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E
2017-01-10
The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome
Gunewardena, Sumedha S.; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D.; Cui, Julia Yue
2015-01-01
During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome. PMID:26496202
Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.
Gunewardena, Sumedha S; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D; Cui, Julia Yue
2015-01-01
During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.
Lee, Suho; Jung, Kyung Jin; Jung, Hyun Suk; Chang, Sunghoe
2012-01-01
Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity. PMID:22666444
Dynamic ubiquitin signaling in cell cycle regulation
Gilberto, Samuel
2017-01-01
The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. PMID:28684425
Dynamic ubiquitin signaling in cell cycle regulation.
Gilberto, Samuel; Peter, Matthias
2017-08-07
The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.
Phosphoproteomics analyses show subnetwork systems in T-cell receptor signaling.
Hatano, Atsushi; Matsumoto, Masaki; Nakayama, Keiichi I
2016-10-01
A key issue in the study of signal transduction is how multiple signaling pathways are systematically integrated into the cell. We have now performed multiple phosphoproteomics analyses focused on the dynamics of the T-cell receptor (TCR) signaling network and its subsystem mediated by the Ca 2+ signaling pathway. Integration of these phosphoproteomics data sets and extraction of components of the TCR signaling network dependent on Ca 2+ signaling showed unexpected phosphorylation kinetics for candidate substrates of the Ca 2+ -dependent phosphatase calcineurin (CN) during TCR stimulation. Detailed characterization of the TCR-induced phosphorylation of a novel CN substrate, Itpkb, showed that phosphorylation of this protein is regulated by both CN and the mitogen-activated protein kinase Erk in a competitive manner. Phosphorylation of additional CN substrates was also found to be regulated by Erk and CN in a similar manner. The combination of multiple phosphoproteomics approaches thus showed two major subsystems mediated by Erk and CN in the TCR signaling network, with these subsystems regulating the phosphorylation of a group of proteins in a competitive manner. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E.; Dagnino, Lina
2012-01-01
Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function. PMID:22574216
Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina
2012-01-01
Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.
Community assembly rules affect the diversity of expanding communities.
Peng, Zechen; Zhou, Shurong
2014-11-01
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two-species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity-survival trade-offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.
A dynamic cellular vertex model of growing epithelial tissues
NASA Astrophysics Data System (ADS)
Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao
2017-04-01
Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.
Environmental-stress-induced Chromatin Regulation and its Heritability
Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K
2014-01-01
Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581
Regulation of alternative mRNA splicing: old players and new perspectives.
Dvinge, Heidi
2018-06-01
Nearly all human multi-exon genes are subject to alternative splicing in one or more cell types. The splicing machinery, therefore, has to select between multiple splice sites in a context-dependent manner, relying on sequence features in cis and trans-acting splicing regulators that either promote or repress splice site recognition and spliceosome assembly. However, the functional coupling between multiple gene regulatory layers signifies that splicing can also be modulated by transcriptional or epigenetic characteristics. Other, less obvious, aspects of alternative splicing have come to light in recent years, often involving core components of the spliceosome previously thought to perform a basal rather than a regulatory role in splicing. Together this paints a highly dynamic picture of splicing regulation, where the final splice site choice is governed by the entire transcriptional environment of a gene and its cellular context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Reversible RNA adenosine methylation in biological regulation
Jia, Guifang; Fu, Ye; He, Chuan
2012-01-01
N6-methyladenosine (m6A) is a ubiquitous modification in messenger RNA (mRNA) and other RNAs across most eukaryotes. For many years, however, the exact functions of m6A were not clearly understood. The discovery that the fat mass and obesity associated protein (FTO) is an m6A demethylase indicates that this modification is reversible and dynamically regulated, suggesting it has regulatory roles. In addition, it has been shown that m6A affects cell fate decisions in yeast and plant development. Recent affinity-based m6A profiling in mouse and human cells further showed that this modification is a widespread mark in coding and non-coding RNA transcripts and is likely dynamically regulated throughout developmental processes. Therefore, reversible RNA methylation, analogous to reversible DNA and histone modifications, may affect gene expression and cell fate decisions by modulating multiple RNA-related cellular pathways, which potentially provides rapid responses to various cellular and environmental signals, including energy and nutrient availability in mammals. PMID:23218460
Multivalency regulates activity in an intrinsically disordered transcription factor
Clark, Sarah; Myers, Janette B; King, Ashleigh; Fiala, Radovan; Novacek, Jiri; Pearce, Grant; Heierhorst, Jörg; Reichow, Steve L
2018-01-01
The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation. PMID:29714690
Co-transcriptional nuclear actin dynamics
Percipalle, Piergiorgio
2013-01-01
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified. PMID:23138849
Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.
Ramirez-Villegas, Juan F; Logothetis, Nikos K; Besserve, Michel
2015-11-17
Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.
Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events
Ramirez-Villegas, Juan F.; Logothetis, Nikos K.; Besserve, Michel
2015-01-01
Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729
Jointly characterizing epigenetic dynamics across multiple human cell types
An, Lin; Yue, Feng; Hardison, Ross C
2016-01-01
Advanced sequencing technologies have generated a plethora of data for many chromatin marks in multiple tissues and cell types, yet there is lack of a generalized tool for optimal utility of those data. A major challenge is to quantitatively model the epigenetic dynamics across both the genome and many cell types for understanding their impacts on differential gene regulation and disease. We introduce IDEAS, an integrative and discriminative epigenome annotation system, for jointly characterizing epigenetic landscapes in many cell types and detecting differential regulatory regions. A key distinction between our method and existing state-of-the-art algorithms is that IDEAS integrates epigenomes of many cell types simultaneously in a way that preserves the position-dependent and cell type-specific information at fine scales, thereby greatly improving segmentation accuracy and producing comparable annotations across cell types. PMID:27095202
USDA-ARS?s Scientific Manuscript database
To investigate the natural enemies of the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), and their role in regulating the pest population dynamics, we conducted field surveys at multiple forest sites with variable host densities in the pest’s native range (north an...
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...
2016-02-29
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.
2016-01-01
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338
Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics
Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.
2014-01-01
Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643
Tools for assessing mitochondrial dynamics in mouse tissues and neurodegenerative models
NASA Astrophysics Data System (ADS)
Pham, Anh H.
Mitochondria are dynamic organelles that undergo membrane fusion and fission and transport. The dynamic properties of mitochondria are important for regulating mitochondrial function. Defects in mitochondrial dynamics are linked neurodegenerative diseases and affect the development of many tissues. To investigate the role of mitochondrial dynamics in diseases, versatile tools are needed to explore the physiology of these dynamic organelles in multiple tissues. Current tools for monitoring mitochondrial dynamics have been limited to studies in cell culture, which may be inadequate model systems for exploring the network of tissues. Here, we have generated mouse models for monitoring mitochondrial dynamics in a broad spectrum of tissues and cell types. The Photo-Activatable Mitochondrial (PhAM floxed) line enables Cre-inducible expression of a mitochondrial targeted photoconvertible protein, Dendra2 (mito-Dendra2). In the PhAMexcised line, mito-Dendra2 is ubiquitously expressed to facilitate broad analysis of mitochondria at various developmental processes. We have utilized these models to study mitochondrial dynamics in the nigrostriatal circuit of Parkinson's disease (PD) and in the development of skeletal muscles. Increasing evidences implicate aberrant regulation of mitochondrial fusion and fission in models of PD. To assess the function of mitochondrial dynamics in the nigrostriatal circuit, we utilized transgenic techniques to abrogate mitochondrial fusion. We show that deletion of the Mfn2 leads to the degeneration of dopaminergic neurons and Parkinson's-like features in mice. To elucidate the dynamic properties of mitochondria during muscle development, we established a platform for examining mitochondrial compartmentalization in skeletal muscles. This model system may yield clues to the role of mitochondrial dynamics in mitochondrial myopathies.
Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics
Ammer, Amanda Gatesman; Weed, Scott A.
2008-01-01
Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630
Distributed and dynamic intracellular organization of extracellular information.
Granados, Alejandro A; Pietsch, Julian M J; Cepeda-Humerez, Sarah A; Farquhar, Iseabail L; Tkačik, Gašper; Swain, Peter S
2018-06-05
Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.
Linear regulator design for stochastic systems by a multiple time scales method
NASA Technical Reports Server (NTRS)
Teneketzis, D.; Sandell, N. R., Jr.
1976-01-01
A hierarchically-structured, suboptimal controller for a linear stochastic system composed of fast and slow subsystems is considered. The controller is optimal in the limit as the separation of time scales of the subsystems becomes infinite. The methodology is illustrated by design of a controller to suppress the phugoid and short period modes of the longitudinal dynamics of the F-8 aircraft.
Massive quantum regions for simulations on bio-nanomaterials: synthetic ferritin nanocages.
Torras, Juan; Alemán, Carlos
2018-02-22
QM/MM molecular dynamics simulations on the 4His-ΔC* protein cage have been performed using multiple active zones (up to 86 quantum regions). The regulation and nanocage stability exerted by the divalent transition metal ions in the monomer-to-cage conversion have been understood by comparing high level quantum trajectories obtained using Cu 2+ and Ni 2+ coordination ions.
Dynamics modeling and periodic control of horizontal-axis wind turbines
NASA Astrophysics Data System (ADS)
Stol, Karl Alexander
2001-07-01
The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that periodic control is capable of reducing cyclic blade bending moments while regulating speed but that optimal performance requires additional sensor information. Periodic control is also the only design found that could successfully control the yaw alignment although blade loads are increased as a consequence. When speed regulation is the only performance objective then a time-invariant state-space design or PID is appropriate.
A multiplexed system for quantitative comparisons of chromatin landscapes
van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.
2015-01-01
Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680
Murillo, Blanca; Sousa, Mónica Mendes
2018-05-08
In the adult vertebrate central nervous system, axons generally fail to regenerate. In contrast, peripheral nervous system axons are able to form a growth cone and regenerate upon lesion. Among the multiple intrinsic mechanisms leading to the formation of a new growth cone and to successful axon regrowth, cytoskeleton organization and dynamics is central. Here we discuss how multiple pathways that define the regenerative capacity converge into the regulation of the axonal microtubule cytoskeleton and transport. We further explore the use of dorsal root ganglion neurons as a model to study the neuronal regenerative ability. Finally, we address some of the unanswered questions in the field, including the mechanisms by which axonal transport might be modulated by injury, and the relationship between microtubule organization, dynamics, and axonal transport. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.
The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.
Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter
2011-10-13
A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.
Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense.
Yu, Agnès; Lepère, Gersende; Jay, Florence; Wang, Jingyu; Bapaume, Laure; Wang, Yu; Abraham, Anne-Laure; Penterman, Jon; Fischer, Robert L; Voinnet, Olivier; Navarro, Lionel
2013-02-05
DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known about their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is correlated with the down-regulation of key transcriptional gene silencing factors and is partly dependent on an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoter regions, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to TEs/repeats.
Myosin II dynamics are regulated by tension in intercalating cells.
Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A
2009-11-01
Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.
Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A; Lien, Evan C; Albeck, John G; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R; Tolan, Dean R; Grant, Aaron K; Needleman, Daniel J; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M
2016-01-28
The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.
Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A.; Lien, Evan C.; Albeck, John G.; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R.; Tolan, Dean R.; Grant, Aaron K.; Needleman, Daniel J.; Asara, John M.; Cantley, Lewis C.
2016-01-01
Summary The Phosphoinositide 3-Kinase (PI3K) pathway regulates multiple steps in glucose metabolism but also cytoskeletal functions, such as cell movement and attachment. Here we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A and an increase in aldolase activity. Consistently, PI3K-, but not AKT-, SGK- or mTOR-inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point towards a master regulatory function of PI3K that integrates an epithelial cell’s metabolism and its form, shape and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. PMID:26824656
Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.
Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T
2014-07-04
Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.
Childhood self-regulatory skills predict adolescent smoking behavior.
deBlois, Madeleine E; Kubzansky, Laura D
2016-01-01
Cigarette smoking is the primary preventable cause of premature death. Better self-regulatory capacity is a key psychosocial factor that has been linked with reduced likelihood of tobacco use. Studies point to the importance of multiple forms of self-regulation, in the domains of emotion, attention, behavior, and social regulation, although no work has evaluated all of these domains in a single prospective study. Considering those four self-regulation domains separately and in combination, this study prospectively investigated whether greater self-regulation in childhood is associated with reduced likelihood of either trying cigarettes or becoming a regular smoker. Hypotheses were tested using longitudinal data from a cohort of 1709 US children participating in the Panel Study of Income Dynamics--Child Development Supplement. Self-regulation was assessed at study baseline when children ranged in age from 6 to 14 years, using parent-reported measures derived from the Behavior Problems Index and Positive Behavior Scale. Children ages 12-19 self-reported their cigarette smoking, defined in two ways: (1) trying and (2) regular use. Separate multiple logistic regression models were used to evaluate odds of trying or regularly using cigarettes, taking account of various potential confounders. Over an average of five years of follow-up, 34.5% of children ever tried cigarettes and 10.6% smoked regularly. Higher behavioral self-regulation was the only domain associated with reduced odds of trying cigarettes (odds ratio (OR) = .85, 95% confidence interval (CI) = .73-.99). Effective regulation in each of the domains was associated with reduced likelihood of regular smoking, although the association with social regulation was not statistically significant (ORs range .70-.85). For each additional domain in which a child was able to regulate successfully, the odds of becoming a regular smoker dropped by 18% (95% CI = .70-.97). These findings suggest that effective childhood self-regulatory skills across multiple domains may reduce future health risk behaviors.
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
Dendritic Glutamate Receptor mRNAs Show Contingent Local Hotspot-Dependent Translational Dynamics
Kim, Tae Kyung; Sul, Jai-Yoon; Helmfors, Henrik; Langel, Ulo; Kim, Junhyong; Eberwine, James
2014-01-01
SUMMARY Protein synthesis in neuronal dendrites underlies long-term memory formation in the brain. Local translation of reporter mRNAs has demonstrated translation in dendrites at focal points called translational hotspots. Various reports have shown that hundreds to thousands of mRNAs are localized to dendrites, yet the dynamics of translation of multiple dendritic mRNAs has remained elusive. Here, we show that the protein translational activities of two dendritically localized mRNAs are spatiotemporally complex but constrained by the translational hotspots in which they are colocalized. Cotransfection of glutamate receptor 2 (GluR2) and GluR4 mRNAs (engineered to encode different fluorescent proteins) into rat hippocampal neurons demonstrates a heterogeneous distribution of translational hotspots for the two mRNAs along dendrites. Stimulation with s-3,5-dihydroxy-phenylglycine modifies the translational dynamics of both of these RNAs in a complex saturable manner. These results suggest that the translational hotspot is a primary structural regulator of the simultaneous yet differential translation of multiple mRNAs in the neuronal dendrite. PMID:24075992
Genetic diversity affects the strength of population regulation in a marine fish.
Johnson, D W; Freiwald, J; Bernardi, G
2016-03-01
Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these characteristics was significantly related to the strength of population regulation. In contrast, an endogenous characteristic of the population (genetic diversity) explained 77% of the variation in the strength of population regulation (95% CI: 27-94%). Our results suggest that the genetic and phenotypic composition of populations can play a major role in their dynamics.
Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN
2017-01-01
Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269
Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.
Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei
2017-07-01
Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Pfeuty, B.; Kaneko, K.
2016-04-01
The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.
Calcium Signaling in Taste Cells
Medler, Kathryn F.
2014-01-01
The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977
Ecosystem service bundles for analyzing tradeoffs in diverse landscapes
Raudsepp-Hearne, C.; Peterson, G. D.; Bennett, E. M.
2010-01-01
A key challenge of ecosystem management is determining how to manage multiple ecosystem services across landscapes. Enhancing important provisioning ecosystem services, such as food and timber, often leads to tradeoffs between regulating and cultural ecosystem services, such as nutrient cycling, flood protection, and tourism. We developed a framework for analyzing the provision of multiple ecosystem services across landscapes and present an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly. Ecosystem service bundles were identified by analyzing the spatial patterns of 12 ecosystem services in a mixed-use landscape consisting of 137 municipalities in Quebec, Canada. We identified six types of ecosystem service bundles and were able to link these bundles to areas on the landscape characterized by distinct social–ecological dynamics. Our results show landscape-scale tradeoffs between provisioning and almost all regulating and cultural ecosystem services, and they show that a greater diversity of ecosystem services is positively correlated with the provision of regulating ecosystem services. Ecosystem service-bundle analysis can identify areas on a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services. PMID:20194739
Thermal regulation in multiple-source arc welding involving material transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doumanidis, C.C.
1995-06-01
This article addresses regulation of the thermal field generated during arc welding, as the cause of solidification, heat-affected zone and cooling rate related metallurgical transformations affecting the final microstructure and mechanical properties of various welded materials. This temperature field is described by a dynamic real-time process model, consisting of an analytical composite conduction expression for the solid region, and a lumped-state, double-stream circulation model in the weld pool, integrated with a Gaussian heat input and calibrated experimentally through butt joint GMAW tests on plain steel plates. This model serves as the basis of an in-process thermal control system employing feedbackmore » of part surface temperatures measured by infrared pyrometry; and real-time identification of the model parameters with a multivariable adaptive control strategy. Multiple heat inputs and continuous power distributions are implemented by a single time-multiplexed torch, scanning the weld surface to ensure independent, decoupled control of several thermal characteristics. Their regulation is experimentally obtained in longitudinal GTAW of stainless steel pipes, despite the presence of several geometrical, thermal and process condition disturbances of arc welding.« less
Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi
2016-01-01
Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.
Gary D. Grossman; Robert E. Ratajczak; C. Michael Wagner; J. Todd Petty
2010-01-01
1. We used information theoretic statistics [Akaikeâs Information Criterion (AIC)] and regression analysis in a multiple hypothesis testing approach to assess the processes capable of explaining long-term demographic variation in a lightly exploited brook trout population in Ball Creek, NC. We sampled a 100-m-long second-order site during both spring and autumn 1991â...
PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2015-11-03
Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.
Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice.
Stilling, Roman M; Moloney, Gerard M; Ryan, Feargal J; Hoban, Alan E; Bastiaanssen, Thomaz Fs; Shanahan, Fergus; Clarke, Gerard; Claesson, Marcus J; Dinan, Timothy G; Cryan, John F
2018-05-29
Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs). © 2018, Stilling et al.
Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira
2018-03-01
Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.
Dynamic landscape of the local translation at activated synapses.
Khlebodarova, T M; Kogai, V V; Trifonova, E A; Likhoshvai, V A
2018-01-01
The mammalian target of rapamycin (mTOR) signaling pathway is the central regulator of cap-dependent translation at the synapse. Disturbances in mTOR pathway have been associated with several neurological diseases, such as autism and epilepsy. RNA-binding protein FMRP, a negative regulator of translation initiation, is one of the key components of the local translation system. Activation and inactivation of FMRP occurs via phosphorylation by S6 kinase and dephosphorylation by PP2A phosphatase, respectively. S6 kinase and PP2A phosphatase are activated in response to mGluR receptor stimulation through different signaling pathways and at different rates. The dynamic aspects of this system are poorly understood. We developed a mathematical model of FMRP-dependent regulation of postsynaptic density (PSD) protein synthesis in response to mGluR receptor stimulation and conducted in silico experiments to study the regulatory circuit functioning. The modeling results revealed the possibility of generating oscillatory (cyclic and quasi-cyclic), chaotic and even hyperchaotic dynamics of postsynaptic protein synthesis as well as the presence of multiple attractors in a wide range of parameters of the local translation system. The results suggest that autistic disorders associated with mTOR pathway hyperactivation may be due to impaired proteome stability associated with the formation of complex dynamic regimes of PSD protein synthesis in response to stimulation of mGluR receptors on the postsynaptic membrane of excitatory synapses on pyramidal hippocampal cells.
Epigenetics: a lasting impression?
Biddie, Simon C; Lightman, Stafford L
2011-02-01
Epigenetics is the term that has been classically used to describe inheritable nongenetic factors that regulate genes. Although these factors were originally thought to act in a long time domain only, it is now clear that they can also be highly dynamic, changing over minutes. Transcription factors, including the glucocorticoid, oestrogen and androgen receptors, interact with these epigenetic mechanisms in a very dynamic manner to modify transcription of genes and consequently contribute to physiological processes, health and disease. Modern usage of the term epigenetics encompasses both longer-term and transient changes and is relevant to multiple biological systems. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.
Fundamental limits on dynamic inference from single-cell snapshots
Weinreb, Caleb; Tusi, Betsabeh K.; Socolovsky, Merav
2018-01-01
Single-cell expression profiling reveals the molecular states of individual cells with unprecedented detail. Because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. However, some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single-cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, we describe the aspects of gene expression dynamics that cannot be inferred from a static snapshot alone and identify assumptions necessary to constrain a unique solution for cell dynamics from static snapshots. We translate these constraints into a practical algorithmic approach, population balance analysis (PBA), which makes use of a method from spectral graph theory to solve a class of high-dimensional differential equations. We use simulations to show the strengths and limitations of PBA, and then apply it to single-cell profiles of hematopoietic progenitor cells (HPCs). Cell state predictions from this analysis agree with HPC fate assays reported in several papers over the past two decades. By highlighting the fundamental limits on dynamic inference faced by any method, our framework provides a rigorous basis for dynamic interpretation of a gene expression continuum and clarifies best experimental designs for trajectory reconstruction from static snapshot measurements. PMID:29463712
Dynamical analysis of uterine cell electrical activity model.
Rihana, S; Santos, J; Mondie, S; Marque, C
2006-01-01
The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.
Sakaris, Peter C; Irwin, Elise R
2010-03-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotic fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes.
Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.
Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N
2017-01-01
The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.
Nahas, John V; Iosue, Christine L; Shaik, Noor F; Selhorst, Kathleen; He, Bin Z; Wykoff, Dennis D
2018-05-10
Convergent evolution is often due to selective pressures generating a similar phenotype. We observe relatively recent duplications in a spectrum of Saccharomycetaceae yeast species resulting in multiple phosphatases that are regulated by different nutrient conditions - thiamine and phosphate starvation. This specialization is both transcriptional and at the level of phosphatase substrate specificity. In Candida glabrata , loss of the ancestral phosphatase family was compensated by the co-option of a different histidine phosphatase family with three paralogs. Using RNA-seq and functional assays, we identify one of these paralogs, CgPMU3 , as a thiamine phosphatase. We further determine that the 81% identical paralog CgPMU2 does not encode thiamine phosphatase activity; however, both are capable of cleaving the phosphatase substrate, 1-napthyl-phosphate. We functionally demonstrate that members of this family evolved novel enzymatic functions for phosphate and thiamine starvation, and are regulated transcriptionally by either nutrient condition, and observe similar trends in other yeast species. This independent, parallel evolution involving two different families of histidine phosphatases suggests that there were likely similar selective pressures on multiple yeast species to recycle thiamine and phosphate. In this work, we focused on duplication and specialization, but there is also repeated loss of phosphatases, indicating that the expansion and contraction of the phosphatase family is dynamic in many Ascomycetes. The dynamic evolution of the phosphatase gene families is perhaps just one example of how gene duplication, co-option, and transcriptional and functional specialization together allow species to adapt to their environment with existing genetic resources. Copyright © 2018, G3: Genes, Genomes, Genetics.
Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves
2011-01-01
Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less
Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
Choudhury, D; Saini, S
2018-02-01
Bacteria frequently encounter multiple sugars in their natural surroundings. While the dynamics of utilization of glucose-containing sugar mixtures have been well investigated, there are few reports addressing regulation of utilization of glucose-free mixtures particularly pentoses. These sugars comprise a considerable fraction in hemicellulose which can be converted by suitable biocatalysts to biofuels and other value-added products. Hence, understanding of transcriptional cross-regulation among different pentose sugar utilization systems is essential for successful development of industrial strains. In this work, we study mixed-sugar utilization with respect to three secondary carbon sources - arabinose, xylose and rhamnose at single-cell resolution in Escherichia coli. Our results reveal that hierarchical utilization among these systems is not strict but rather can be eliminated or reversed by altering the relative ratios of the preferred and nonpreferred sugars. Since transcriptional cross-regulation among pentose sugar systems operates through competitive binding of noncognate sugar-regulator complex, altering sugar concentrations is thought to eliminate nonspecific binding by affecting concentration of the regulator - sugar complexes. Plant biomass comprises of hexose and pentose sugar mixtures. These sugars are processed by micro-organisms to form products like biofuels, polymers etc. One of the major challenges with mixed-sugar processing by micro-organisms is hierarchical utilization of sugars due to cross-regulation among sugar systems. In this work, we discuss cross-regulation among three secondary carbon sources - arabinose, xylose and rhamnose. Our results show that cross-regulation between pentose sugars is complex with multiple layers of regulation. These aspects need to be addressed for effective design of processes to extract energy from biomass. © 2017 The Society for Applied Microbiology.
Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding.
Goricanec, David; Stehle, Ralf; Egloff, Pascal; Grigoriu, Simina; Plückthun, Andreas; Wagner, Gerhard; Hagn, Franz
2016-06-28
Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein-coupled receptor (GPCR) activation. Agonist-receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape.
Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding
Goricanec, David; Stehle, Ralf; Egloff, Pascal; Grigoriu, Simina; Wagner, Gerhard; Hagn, Franz
2016-01-01
Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein–coupled receptor (GPCR) activation. Agonist–receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape. PMID:27298341
Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis
Zaccardi, Margot J; O'Rourke, Kathleen F; Yezdimer, Eric M; Loggia, Laura J; Woldt, Svenja; Boehr, David D
2014-01-01
Substrate binding, product release, and likely chemical catalysis in the tryptophan biosynthetic enzyme indole-3-glycerol phosphate synthase (IGPS) are dependent on the structural dynamics of the β1α1 active-site loop. Statistical coupling analysis and molecular dynamic simulations had previously indicated that covarying residues in the β1α1 and β2α2 loops, corresponding to Arg54 and Asn90, respectively, in the Sulfolobus sulfataricus enzyme (ssIGPS), are likely important for coordinating functional motions of these loops. To test this hypothesis, we characterized site mutants at these positions for changes in catalytic function, protein stability and structural dynamics for the thermophilic ssIGPS enzyme. Although there were only modest changes in the overall steady-state kinetic parameters, solvent viscosity and solvent deuterium kinetic isotope effects indicated that these amino acid substitutions change the identity of the rate-determining step across multiple temperatures. Surprisingly, the N90A substitution had a dramatic effect on the general acid/base catalysis of the dehydration step, as indicated by the loss of the descending limb in the pH rate profile, which we had previously assigned to Lys53 on the β1α1 loop. These changes in enzyme function are accompanied with a quenching of ps-ns and µs-ms timescale motions in the β1α1 loop as measured by nuclear magnetic resonance studies. Altogether, our studies provide structural, dynamic and functional rationales for the coevolution of residues on the β1α1 and β2α2 loops, and highlight the multiple roles that the β1α1 loop plays in IGPS catalysis. Thus, substitution of covarying residues in the active-site β1α1 and β2α2 loops of indole-3-glycerol phosphate synthase results in functional, structural, and dynamic changes, highlighting the multiple roles that the β1α1 loop plays in enzyme catalysis and the importance of regulating the structural dynamics of this loop through noncovalent interactions with nearby structural elements. PMID:24403092
Chen, He; Ma, Lekuan; Guo, Wei; Yang, Ying; Guo, Tong; Feng, Cheng
2013-01-01
Most rivers worldwide are highly regulated by anthropogenic activities through flow regulation and water pollution. Environmental flow regulation is used to reduce the effects of anthropogenic activities on aquatic ecosystems. Formulating flow alteration-ecological response relationships is a key factor in environmental flow assessment. Traditional environmental flow models are characterized by natural relationships between flow regimes and ecosystem factors. However, food webs are often altered from natural states, which disturb environmental flow assessment in such ecosystems. In ecosystems deteriorated by heavy anthropogenic activities, the effects of environmental flow regulation on species are difficult to assess with current modeling approaches. Environmental flow management compels the development of tools that link flow regimes and food webs in an ecosystem. Food web approaches are more suitable for the task because they are more adaptive for disordered multiple species in a food web deteriorated by anthropogenic activities. This paper presents a global method of environmental flow assessment in deteriorated aquatic ecosystems. Linkages between flow regimes and food web dynamics are modeled by incorporating multiple species into an ecosystem to explore ecosystem-based environmental flow management. The approach allows scientists and water resources managers to analyze environmental flows in deteriorated ecosystems in an ecosystem-based way.
Muñoz-Culla, Maider; Irizar, Haritz; Sáenz-Cuesta, Matías; Castillo-Triviño, Tamara; Osorio-Querejeta, Iñaki; Sepúlveda, Lucía; López de Munain, Adolfo; Olascoaga, Javier; Otaegui, David
2016-01-01
Multiple sclerosis (MS) is a common inflammatory and degenerative disease that causes neurological disability. It affects young adults and its prevalence is higher in women. The most common form is manifested as a series of acute episodes of neurological disability (relapses) followed by a recovery phase (remission). Recently, non-coding RNAs have emerged as new players in transcriptome regulation, and in turn, they could have a significant role in MS pathogenesis. In this context, our aim was to investigate the involvement of microRNAs and snoRNAs in the relapse-remission dynamics of MS in peripheral blood leucocytes, to shed light on the molecular and regulatory mechanisms that underlie this complex process. With this approach, we found that a subset of small non-coding RNAs (sncRNA) is altered in relapse and remission, revealing unexpected opposite changes that are sex dependent. Furthermore, we found that a relapse-related miRNA signature regulated general metabolism processes in leucocytes, and miRNA altered in remission are involved in the regulation of innate immunity. We observed that sncRNA dysregulation is different in relapse and remission leading to differences in transcriptome regulation, and that this process is sex dependent. In conclusion, relapse and remission have a different molecular background in men and women. PMID:26831009
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network.
Li, Bing; Balasubramanian, Karthika; Krakow, Deborah; Cohn, Daniel H
2017-12-20
Chondrogenesis is the earliest stage of skeletal development and is a highly dynamic process, integrating the activities and functions of transcription factors, cell signaling molecules and extracellular matrix proteins. The molecular mechanisms underlying chondrogenesis have been extensively studied and multiple key regulators of this process have been identified. However, a genome-wide overview of the gene regulatory network in chondrogenesis has not been achieved. In this study, employing RNA sequencing, we identified 332 protein coding genes and 34 long non-coding RNA (lncRNA) genes that are highly selectively expressed in human fetal growth plate chondrocytes. Among the protein coding genes, 32 genes were associated with 62 distinct human skeletal disorders and 153 genes were associated with skeletal defects in knockout mice, confirming their essential roles in skeletal formation. These gene products formed a comprehensive physical interaction network and participated in multiple cellular processes regulating skeletal development. The data also revealed 34 transcription factors and 11,334 distal enhancers that were uniquely active in chondrocytes, functioning as transcriptional regulators for the cartilage-selective genes. Our findings revealed a complex gene regulatory network controlling skeletal development whereby transcription factors, enhancers and lncRNAs participate in chondrogenesis by transcriptional regulation of key genes. Additionally, the cartilage-selective genes represent candidate genes for unsolved human skeletal disorders.
Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem
Dale, B.W.; Adams, Layne G.; Bowyer, R.T.
1994-01-01
1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.
Smet, Dajo; Žádníková, Petra; Vandenbussche, Filip; Benková, Eva; Van Der Straeten, Dominique
2014-06-01
Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Markov State Models of gene regulatory networks.
Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L
2017-02-06
Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.
A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.
Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G
2004-04-29
Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-01-01
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-06-06
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
A parametric LQ approach to multiobjective control system design
NASA Technical Reports Server (NTRS)
Kyr, Douglas E.; Buchner, Marc
1988-01-01
The synthesis of a constant parameter output feedback control law of constrained structure is set in a multiple objective linear quadratic regulator (MOLQR) framework. The use of intuitive objective functions such as model-following ability and closed-loop trajectory sensitivity, allow multiple objective decision making techniques, such as the surrogate worth tradeoff method, to be applied. For the continuous-time deterministic problem with an infinite time horizon, dynamic compensators as well as static output feedback controllers can be synthesized using a descent Anderson-Moore algorithm modified to impose linear equality constraints on the feedback gains by moving in feasible directions. Results of three different examples are presented, including a unique reformulation of the sensitivity reduction problem.
Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D
2009-01-01
The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1–MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity. PMID:19644446
Calcium dynamics regulating the timing of decision-making in C. elegans.
Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D
2017-05-23
Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans . We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca 2+ ] i ), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca 2+ ] i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making.
Egr-5 is a post-mitotic regulator of planarian epidermal differentiation
Tu, Kimberly C; Cheng, Li-Chun; TK Vu, Hanh; Lange, Jeffrey J; McKinney, Sean A; Seidel, Chris W; Sánchez Alvarado, Alejandro
2015-01-01
Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo. DOI: http://dx.doi.org/10.7554/eLife.10501.001 PMID:26457503
Calcium dynamics regulating the timing of decision-making in C. elegans
Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D
2017-01-01
Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans. We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca2+]i), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca2+]i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making. DOI: http://dx.doi.org/10.7554/eLife.21629.001 PMID:28532547
2014-01-01
Background Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. Results Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. Conclusions We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing. PMID:24946810
van den Brink, Joost; Daran-Lapujade, Pascale; Pronk, Jack T; de Winde, Johannes H
2008-01-01
Background The capacity of respiring cultures of Saccharomyces cerevisiae to immediately switch to fast alcoholic fermentation upon a transfer to anaerobic sugar-excess conditions is a key characteristic of Saccharomyces cerevisiae in many of its industrial applications. This transition was studied by exposing aerobic glucose-limited chemostat cultures grown at a low specific growth rate to two simultaneous perturbations: oxygen depletion and relief of glucose limitation. Results The shift towards fully fermentative conditions caused a massive transcriptional reprogramming, where one third of all genes within the genome were transcribed differentially. The changes in transcript levels were mostly driven by relief from glucose-limitation. After an initial strong response to the addition of glucose, the expression profile of most transcriptionally regulated genes displayed a clear switch at 30 minutes. In this respect, a striking difference was observed between the transcript profiles of genes encoding ribosomal proteins and those encoding ribosomal biogenesis components. Not all regulated genes responded with this binary profile. A group of 87 genes showed a delayed and steady increase in expression that specifically responded to anaerobiosis. Conclusion Our study demonstrated that, despite the complexity of this multiple-input perturbation, the transcriptional responses could be categorized and biologically interpreted. By comparing this study with public datasets representing dynamic and steady conditions, 14 up-regulated and 11 down-regulated genes were determined to be anaerobic specific. Therefore, these can be seen as true "signature" transcripts for anaerobicity under dynamic as well as under steady state conditions. PMID:18304306
Xia, Zheng; Donehower, Lawrence A; Cooper, Thomas A.; Neilson, Joel R.; Wheeler, David A.; Wagner, Eric J.; Li, Wei
2015-01-01
Alternative polyadenylation (APA) is a pervasive mechanism in the regulation of most human genes, and its implication in diseases including cancer is only beginning to be appreciated. Since conventional APA profiling has not been widely adopted, global cancer APA studies are very limited. Here we develop a novel bioinformatics algorithm (DaPars) for the de novo identification of dynamic APAs from standard RNA-seq. When applied to 358 TCGA Pan-Cancer tumor/normal pairs across 7 tumor types, DaPars reveals 1,346 genes with recurrent and tumor-specific APAs. Most APA genes (91%) have shorter 3′ UTRs in tumors that can avoid miRNA-mediated repression, including glutaminase (GLS), a key metabolic enzyme for tumor proliferation. Interestingly, selected APA events add strong prognostic power beyond common clinical and molecular variables, suggesting their potential as novel prognostic biomarkers. Finally, our results implicate CstF64, an essential polyadenylation factor, as a master regulator of 3′ UTR shortening across multiple tumor types. PMID:25409906
Kryczek, Ilona; Wei, Shuang; Zou, Linhua; Altuwaijri, Saleh; Szeliga, Wojciech; Kolls, Jay; Chang, Alfred; Zou, Weiping
2007-06-01
Th17 cells play an active role in inflammation and autoimmune diseases. However, the nature and regulation of Th17 in the context of tumor immunity remain unknown. In this study, we show that parallel to regulatory T (Treg) cells, IL-17(+) CD4(+) and CD8(+) T cells are kinetically induced in multiple tumor microenvironments in mice and humans. Treg cells play a crucial role in tumor immune pathogenesis and temper immune therapeutic efficacy. IL-2 is crucial for the production and function of Treg cells. We now show that IL-2 reduces IL-17(+) T cell differentiation in the tumor microenvironment accompanied with an enhanced Treg cell compartment in vitro and in vivo. Altogether, our work demonstrates a dynamic differentiation of IL-17(+) T cells in the tumor microenvironment, reveals a novel role for IL-2 in controlling the balance between IL-17(+) and Treg cells, and provides new insight of IL-17(+) T cells in tumor immune pathology and therapy.
What governs governance, and how does it evolve? The sociology of governance-in-action.
Fox, Nick J; Ward, Katie J
2008-09-01
Governance addresses a wide range of issues including social, economic and political continuity, security and integrity, individual and collective safety and the liberty and rights to self-actualization of citizens. Questions to be answered include how governance can be achieved and sustained within a social context imbued with cultural values and in which power is distributed unevenly and dynamically, and how governance impacts on individuals and institutions. Drawing on Gramscian notions of hegemony and consent, and recent political science literatures on regulation and meta-regulation, this paper develops a sociological model of governance that emphasizes a dynamic and responsive governance in action. Empirical data from a study of pharmaceutical governance is used to show how multiple institutions and actors are involved in sustaining effective governance. The model addresses issues of how governance is sustained in the face of change, why governance of practices varies from setting to setting, and how governance is achieved without legislation.
A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons.
Vidaki, Marina; Drees, Frauke; Saxena, Tanvi; Lanslots, Erwin; Taliaferro, Matthew J; Tatarakis, Antonios; Burge, Christopher B; Wang, Eric T; Gertler, Frank B
2017-08-02
During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation. Copyright © 2017 Elsevier Inc. All rights reserved.
Institutional Ethics Committee Regulations and Current Updates in India.
Mahuli, Amit V; Mahuli, Simpy A; Patil, Shankargouda; Bhandi, Shilpa
2017-08-01
The aim of the review is to provide current updates on regulations for ethics committees and researchers in India. Ethical dilemmas in research since time immemorial have been a major concern for researchers worldwide. The question "what makes clinical research ethical" is significant and difficult to answer as multiple factors are involved. The research involving human participants in clinical trials should follow the required rules, regulations, and guidelines in one's own country. It is a dynamic process, and updates have to be learned by researcher and committee members. The review highlights the ethical regulation from the Drug Controller General of India, Clinical Trial Registry of India, and Indian Council of Medical Research guidelines. In this article, the updates on Indian scenario of the Ethical Committee and guidelines are compiled. The review comes handy for clinical researchers and ethics committee members in academic institutions to check on the current updates and keep abreast with the knowledge on regulations of ethics in India.
Interconnected network motifs control podocyte morphology and kidney function.
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi
2014-02-04
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Interconnected Network Motifs Control Podocyte Morphology and Kidney Function
Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi
2014-01-01
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609
History-Based Response Threshold Model for Division of Labor in Multi-Agent Systems
Lee, Wonki; Kim, DaeEun
2017-01-01
Dynamic task allocation is a necessity in a group of robots. Each member should decide its own task such that it is most commensurate with its current state in the overall system. In this work, the response threshold model is applied to a dynamic foraging task. Each robot employs a task switching function based on the local task demand obtained from the surrounding environment, and no communication occurs between the robots. Each individual member has a constant-sized task demand history that reflects the global demand. In addition, it has response threshold values for all of the tasks and manages the task switching process depending on the stimuli of the task demands. The robot then determines the task to be executed to regulate the overall division of labor. This task selection induces a specialized tendency for performing a specific task and regulates the division of labor. In particular, maintaining a history of the task demands is very effective for the dynamic foraging task. Various experiments are performed using a simulation with multiple robots, and the results show that the proposed algorithm is more effective as compared to the conventional model. PMID:28555031
Proline isomerization in the C-terminal region of HSP27.
Alderson, T Reid; Benesch, Justin L P; Baldwin, Andrew J
2017-07-01
In mammals, small heat-shock proteins (sHSPs) typically assemble into interconverting, polydisperse oligomers. The dynamic exchange of sHSP oligomers is regulated, at least in part, by molecular interactions between the α-crystallin domain and the C-terminal region (CTR). Here we report solution-state nuclear magnetic resonance (NMR) spectroscopy investigations of the conformation and dynamics of the disordered and flexible CTR of human HSP27, a systemically expressed sHSP. We observed multiple NMR signals for residues in the vicinity of proline 194, and we determined that, while all observed forms are highly disordered, the extra resonances arise from cis-trans peptidyl-prolyl isomerization about the G193-P194 peptide bond. The cis-P194 state is populated to near 15% at physiological temperatures, and, although both cis- and trans-P194 forms of the CTR are flexible and dynamic, both states show a residual but differing tendency to adopt β-strand conformations. In NMR spectra of an isolated CTR peptide, we observed similar evidence for isomerization involving proline 182, found within the IPI/V motif. Collectively, these data indicate a potential role for cis-trans proline isomerization in regulating the oligomerization of sHSPs.
Circadian clock and cardiac vulnerability: A time stamp on multi-scale neuroautonomic regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.
2005-03-01
Cardiovascular vulnerability displays a 24-hour pattern with a peak between 9AM and 11AM. This daily pattern in cardiac risk is traditionally attributed to external factors including activity levels and sleep-wake cycles. However,influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle,enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics over multiple time scales does exhibit a significant circadian rhythm with a sharp peak at the circadian phase corresponding to the period 9-11AM, and that this rhythm is independent from scheduled behaviors and mean heart rate. Our findings of strong circadian rhythms in the multi-scale heartbeat dynamics of healthy young subjects indicate that the underlying mechanism of cardiac regulation is strongly influenced by the endogenous circadian pacemaker. A similar circadian effect in vulnerable individuals with underlying cardiovascular disease would contribute to the morning peak of adverse cardiac events observed in epidemiological studies.
Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi
2016-01-01
Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS. PMID:27924253
Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes
Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph
2016-01-01
Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatio-temporal control. Here, we present a novel and generalizable approach, referred to as ‘Chemo-Optical Modulation of Epigenetically-regulated Transcription’ (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may translate into novel therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814
Smith, Elizabeth A; McDaniel, Patricia A; Hiilamo, Heikki; Malone, Ruth E
2017-08-01
Multiple factors, including marijuana decriminalization/legalization, tobacco endgame discourse, and alcohol industry pressures, suggest that the retail regulatory environment for psychoactive or addictive substances is a dynamic one in which new options may be considered. In most countries, the regulation of tobacco, marijuana, and alcohol is neither coherent, nor integrated, nor proportional to the potential harms caused by these substances. We review the possible consequences of restricting tobacco sales to outlets run by government-operated alcohol retail monopolies, as well as the likely obstacles to such a policy. Such a move would allow governments more options for regulating tobacco sales, and increase coherence, integration, and proportionality of substance regulation. It might also serve as an incremental step toward an endgame goal of eliminating sales of commercial combustible tobacco.
Reed, Benjamin J.; Locke, Melissa N.; Gardner, Richard G.
2015-01-01
In the canonical view of protein function, it is generally accepted that the three-dimensional structure of a protein determines its function. However, the past decade has seen a dramatic growth in the identification of proteins with extensive intrinsically disordered regions (IDRs), which are conformationally plastic and do not appear to adopt single three-dimensional structures. One current paradigm for IDR function is that disorder enables IDRs to adopt multiple conformations, expanding the ability of a protein to interact with a wide variety of disparate proteins. The capacity for many interactions is an important feature of proteins that occupy the hubs of protein networks, in particular protein-modifying enzymes that usually have a broad spectrum of substrates. One such protein modification is ubiquitination, where ubiquitin is attached to proteins through ubiquitin ligases (E3s) and removed through deubiquitinating enzymes. Numerous proteomic studies have found that thousands of proteins are dynamically regulated by cycles of ubiquitination and deubiquitination. Thus, how these enzymes target their wide array of substrates is of considerable importance for understanding the function of the cell's diverse ubiquitination networks. Here, we characterize a yeast deubiquitinating enzyme, Ubp10, that possesses IDRs flanking its catalytic protease domain. We show that Ubp10 possesses multiple, distinct binding modules within its IDRs that are necessary and sufficient for directing protein interactions important for Ubp10's known roles in gene silencing and ribosome biogenesis. The human homolog of Ubp10, USP36, also has IDRs flanking its catalytic domain, and these IDRs similarly contain binding modules important for protein interactions. This work highlights the significant protein interaction scaffolding abilities of IDRs in the regulation of dynamic protein ubiquitination. PMID:26149687
Dynamic evolution and biogenesis of small RNAs during sex reversal.
Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia
2015-05-06
Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal.
Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.
Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J
2017-04-01
Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.
Specificity of interactions among the DNA-packaging machine components of T4-related bacteriophages.
Gao, Song; Rao, Venigalla B
2011-02-04
Tailed bacteriophages use powerful molecular motors to package the viral genome into a preformed capsid. Packaging at a rate of up to ∼2000 bp/s and generating a power density twice that of an automobile engine, the phage T4 motor is the fastest and most powerful reported to date. Central to DNA packaging are dynamic interactions among the packaging components, capsid (gp23), portal (gp20), motor (gp17, large "terminase"), and regulator (gp16, small terminase), leading to precise orchestration of the packaging process, but the mechanisms are poorly understood. Here we analyzed the interactions between small and large terminases of T4-related phages. Our results show that the gp17 packaging ATPase is maximally stimulated by homologous, but not heterologous, gp16. Multiple interaction sites are identified in both gp16 and gp17. The specificity determinants in gp16 are clustered in the diverged N- and C-terminal domains (regions I-III). Swapping of diverged region(s), such as replacing C-terminal RB49 region III with that of T4, switched ATPase stimulation specificity. Two specificity regions, amino acids 37-52 and 290-315, are identified in or near the gp17-ATPase "transmission" subdomain II. gp16 binding at these sites might cause a conformational change positioning the ATPase-coupling residues into the catalytic pocket, triggering ATP hydrolysis. These results lead to a model in which multiple weak interactions between motor and regulator allow dynamic assembly and disassembly of various packaging complexes, depending on the functional state of the packaging machine. This might be a general mechanism for regulation of the phage packaging machine and other complex molecular machines.
Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling.
Krishnamurthy, Srinath; Tulsian, Nikhil Kumar; Chandramohan, Arun; Anand, Ganesh S
2015-09-15
The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Regulation of the Hippo signaling pathway by ubiquitin modification.
Kim, Youngeun; Jho, Eek-Hoon
2018-03-01
The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. β-TrCP is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway. [BMB Reports 2018; 51(3): 143-150].
Kramer, David M.
2018-01-01
We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (Arabidopsis thaliana). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO2, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO2, high light intensity, or combined high CO2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. PMID:28924017
Ram, Nilam; Gerstorf, Denis
2009-01-01
The study of intraindividual variability is the study of fluctuations, oscillations, adaptations, and “noise” in behavioral outcomes that manifest on micro-time scales. This paper provides a descriptive frame for the combined study of intraindividual variability and aging/development. At the conceptual level, we highlight that the study of intraindividual variability provides access to dynamic characteristics – construct-level descriptions of individuals' capacities for change (e.g., lability), and dynamic processes – the systematic changes individuals' exhibit in response to endogenous and exogenous influences (e.g., regulation). At the methodological level, we review how quantifications of net intraindividual variability (e.g., iSD) and models of time-structured intraindividual variability (e.g., time-series) are being used to measure and describe dynamic characteristics and processes. At the research design level, we point to the benefits of measurement burst study designs, wherein data are obtained across multiple time scales, for the study of development. PMID:20025395
Time-resolved observation of protein allosteric communication
Buchenberg, Sebastian; Sittel, Florian; Stock, Gerhard
2017-01-01
Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response (≲0.1 ns), inelastic reorganization (∼100 ns), and structural relaxation (≳1μs). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed. PMID:28760989
Qing, Xiao-Yu; Steenackers, Hans; Venken, Tom; De Maeyer, Marc; Voet, Arnout
2017-11-01
The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei
Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels playedmore » a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.« less
Differentially-dimensioned furrow formation by zygotic gene expression and the MBT
Xie, Yi
2018-01-01
Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis. PMID:29337989
Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael
2015-11-26
Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field.
Ni, Cailing; Zha, Daijun; Ye, Hebo; Hai, Yu; Zhou, Yuntao; Anslyn, Eric V; You, Lei
2018-01-26
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central-to-axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toutounji, Hazem; Pasemann, Frank
2014-01-01
The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot.
Sato-Carlton, Aya; Li, Xuan; Crawley, Oliver; Testori, Sarah; Martinez-Perez, Enrique; Sugimoto, Asako; Carlton, Peter M.
2014-01-01
Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4's high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics. PMID:25340746
Toutounji, Hazem; Pasemann, Frank
2014-01-01
The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403
Sakaris, P.C.; Irwin, E.R.
2010-01-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes. ?? 2010 by the Ecological Society of America.
Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics
Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng
2014-01-01
Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9. PMID:25080486
Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.
Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H
2014-10-01
Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9. Copyright © 2014 the American Physiological Society.
Mori, Koichiro
2009-02-01
The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.
Lopez, Richard B; Stillman, Paul E; Heatherton, Todd F; Freeman, Jonathan B
2018-01-01
In this review, we present the case for using computer mouse-tracking techniques to examine psychological processes that support (and hinder) self-regulation of eating. We first argue that computer mouse-tracking is suitable for studying the simultaneous engagement of-and dynamic interactions between-multiple perceptual and cognitive processes as they unfold and interact over a fine temporal scale (i.e., hundreds of milliseconds). Next, we review recent work that implemented mouse-tracking techniques by measuring mouse movements as participants chose between various food items (of varying nutritional content). Lastly, we propose next steps for future investigations to link behavioral features from mouse-tracking paradigms, corresponding neural correlates, and downstream eating behaviors.
A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.
Dodsworth, Steven
2009-12-01
At the shoot apex of plants is a small region known as the shoot apical meristem (SAM) that maintains a population of undifferentiated (stem) cells whilst providing cells for developing lateral organs and the stem. All aerial structures of the plant develop from the SAM post-embryogenesis, enabling plants to grow in a characteristic modular fashion with great phenotypic and developmental plasticity throughout their lifetime. The maintenance of the stem cell population is intimately balanced with cell recruitment into differentiating tissues through intercellular communication involving a complex signalling network. Recent studies have shown that diverse regulators function in SAM maintenance, many of which converge on the WUSCHEL (WUS) gene. In this review the diverse regulatory modules that function in SAM maintenance are discussed: transcriptional and epigenetic control, hormonal regulation, and the balance with organogenesis. The central role of WUS as an integrator of multiple signals is highlighted; in addition, accessory feedback loops emerge as a feature enabling dynamic regulation of the stem cell niche.
Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales
Boker, Steven M.
2015-01-01
An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197
Regulation of expression, activity and localization of fungal chitin synthases
Rogg, Luise E.; Fortwendel, Jarrod R.; Juvvadi, Praveen R.; Steinbach, William J.
2013-01-01
The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets. PMID:21526913
Multiple roles of the Rho GEF ephexin1 in synapse remodeling
Shi, Lei; Fu, Amy KY
2010-01-01
Synapse remodeling, which involves changes in the synaptic structure and their molecular composition, is required for the maturation and refinement of neural circuits. Although synapse remodeling is known to be tightly dependent on the assembly of local actin cytoskeleton, how actin directs the structural changes of synapse and targeting of synaptic proteins are not fully understood. Recently, we identified ephexin1, a Rho guanine nucleotide exchange factor (GEF) that regulates actin dynamics, to play an essential role in the maturation and functioning of the mammalian neuromuscular junction (NMJ). We showed that ephexin1 regulates the synaptic organization of the neurotransmitter receptor acetylcholine receptor (AChR) clusters through RhoA-dependent actin reorganization. Interestingly, ephexin1 has been implicated in the regulation of postsynaptic structure as well as the presynaptic vesicle release at various types of synapses. Our findings thus establish a novel function of ephexin1 in synapse remodeling through regulating the synaptic targeting of neurotransmitter receptors, revealing a versatile role of ephexin1 at synapses. PMID:21331259
Multivariable control of vapor compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.D.; Liu, S.; Asada, H.H.
1999-07-01
This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less
Regulators of spindle microtubules and their mechanisms: Living together matters.
Lakshmi, R Bhagya; Nair, Vishnu M; Manna, Tapas K
2018-02-01
Development and survival of all eukaryotic organisms depend on equal partitioning of their chromosomes between the two newly formed daughter cells during mitosis. The mitotic spindle performs the task of physically segregating the chromosomes through multiple stages of mitosis. During this process, kinetochore-microtubule attachment requires to be selectively stabilized to hold the chromosomes, but at the same time, it has to be flexible enough to allow kinetochore microtubule dynamicity and chromosome movements. Research during the last decade or so has identified a number of proteins associated with the spindle microtubule plus ends that regulate these processes and orchestrate forces to spatially organize and separate the chromosomes. In this review, we describe the molecular details of those regulators and their mechanisms of action at the kinetochore-microtubule interface. © 2018 IUBMB Life, 70(2):101-111, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
Sugar and Glycerol Transport in Saccharomyces cerevisiae.
Bisson, Linda F; Fan, Qingwen; Walker, Gordon A
2016-01-01
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Djakovic, Stevan N.; Schwarz, Lindsay A.; Barylko, Barbara; DeMartino, George N.; Patrick, Gentry N.
2009-01-01
Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation. PMID:19638347
Djakovic, Stevan N; Schwarz, Lindsay A; Barylko, Barbara; DeMartino, George N; Patrick, Gentry N
2009-09-25
Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.
Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion.
Orlicky, David J; Monks, Jenifer; Stefanski, Adrianne L; McManaman, James L
2013-01-01
Perilipin-1 (Plin1), a prominent cytoplasmic lipid droplet (CLD) binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT) induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps.
Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks
Xu, Jianfeng; Lan, Yueheng
2015-01-01
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347
Nucleolar Trafficking of Nucleostemin Family Proteins: Common versus Protein-Specific Mechanisms▿ §
Meng, Lingjun; Zhu, Qubo; Tsai, Robert Y. L.
2007-01-01
The nucleolus has begun to emerge as a subnuclear organelle capable of modulating the activities of nuclear proteins in a dynamic and cell type-dependent manner. It remains unclear whether one can extrapolate a rule that predicts the nucleolar localization of multiple proteins based on protein sequence. Here, we address this issue by determining the shared and unique mechanisms that regulate the static and dynamic distributions of a family of nucleolar GTP-binding proteins, consisting of nucleostemin (NS), guanine nucleotide binding protein-like 3 (GNL3L), and Ngp1. The nucleolar residence of GNL3L is short and primarily controlled by its basic-coiled-coil domain, whereas the nucleolar residence of NS and Ngp1 is long and requires the basic and the GTP-binding domains, the latter of which functions as a retention signal. All three proteins contain a nucleoplasmic localization signal (NpLS) that prevents their nucleolar accumulation. Unlike that of the basic domain, the activity of NpLS is dynamically controlled by the GTP-binding domain. The nucleolar retention and the NpLS-regulating functions of the G domain involve specific residues that cannot be predicted by overall protein homology. This work reveals common and protein-specific mechanisms underlying the nucleolar movement of NS family proteins. PMID:17923687
Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.
Bachmann, Julie; Raue, Andreas; Schilling, Marcel; Böhm, Martin E; Kreutz, Clemens; Kaschek, Daniel; Busch, Hauke; Gretz, Norbert; Lehmann, Wolf D; Timmer, Jens; Klingmüller, Ursula
2011-07-19
Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.
Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A.; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M.; Maitra, Sushmit; Thomas, Stephen G.; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F.; Olszewski, Neil E.; Sun, Tai-ping
2016-01-01
The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein–protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors—PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)—that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development. PMID:26773002
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.
Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M; Maitra, Sushmit; Thomas, Stephen G; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F; Olszewski, Neil E; Sun, Tai-Ping
2016-01-15
The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development. © 2016 Zentella et al.; Published by Cold Spring Harbor Laboratory Press.
Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation
Micali, Gabriele; Aquino, Gerardo; Richards, David M.; Endres, Robert G.
2015-01-01
Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms. PMID:26030820
Cordeiro, Tiago N.; Chen, Po-chia; De Biasio, Alfredo; Sibille, Nathalie; Blanco, Francisco J.; Hub, Jochen S.; Crehuet, Ramon
2017-01-01
Abstract The intrinsically disordered p15PAF regulates DNA replication and repair when interacting with the Proliferating Cell Nuclear Antigen (PCNA) sliding clamp. As many interactions between disordered proteins and globular partners involved in signaling and regulation, the complex between p15PAF and trimeric PCNA is of low affinity, forming a transient complex that is difficult to characterize at a structural level due to its inherent polydispersity. We have determined the structure, conformational fluctuations, and relative population of the five species that coexist in solution by combining small-angle X-ray scattering (SAXS) with molecular modelling. By using explicit ensemble descriptions for the individual species, built using integrative approaches and molecular dynamics (MD) simulations, we collectively interpreted multiple SAXS profiles as population-weighted thermodynamic mixtures. The analysis demonstrates that the N-terminus of p15PAF penetrates the PCNA ring and emerges on the back face. This observation substantiates the role of p15PAF as a drag regulating PCNA processivity during DNA repair. Our study reveals the power of ensemble-based approaches to decode structural, dynamic, and thermodynamic information from SAXS data. This strategy paves the way for deciphering the structural bases of flexible, transient and multivalent macromolecular assemblies involved in pivotal biological processes. PMID:28180305
The head-regeneration transcriptome of the planarian Schmidtea mediterranea.
Sandmann, Thomas; Vogg, Matthias C; Owlarn, Suthira; Boutros, Michael; Bartscherer, Kerstin
2011-08-16
Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown. To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning. Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians.
The head-regeneration transcriptome of the planarian Schmidtea mediterranea
2011-01-01
Background Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown. Results To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning. Conclusions Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians. PMID:21846378
Edeline, Jean-Marc
2003-12-01
The goal of this review is twofold. First, it aims to describe the dynamic regulation that constantly shapes the receptive fields (RFs) and maps in the thalamo-cortical sensory systems of undrugged animals. Second, it aims to discuss several important issues that remain unresolved at the intersection between behavioral neurosciences and sensory physiology. A first section presents the RF modulations observed when an undrugged animal spontaneously shifts from waking to slow-wave sleep or to paradoxical sleep (also called REM sleep). A second section shows that, in contrast with the general changes described in the first section, behavioral training can induce selective effects which favor the stimulus that has acquired significance during learning. A third section reviews the effects triggered by two major neuromodulators of the thalamo-cortical system--acetylcholine and noradrenaline--which are traditionally involved both in the switch of vigilance states and in learning experiences. The conclusion argues that because the receptive fields and maps of an awake animal are continuously modulated from minute to minute, learning-induced sensory plasticity can be viewed as a "crystallization" of the receptive fields and maps in one of the multiple possible states. Studying the interplays between neuromodulators can help understanding the neurobiological foundations of this dynamic regulation.
A Bir1p–Sli15p Kinetochore Passenger Complex Regulates Septin Organization during Anaphase
Thomas, Scott
2007-01-01
Kinetochore–passenger complexes in metazoans have been proposed to coordinate the segregation of chromosomes in anaphase with the induction of cytokinesis. Passenger protein homologues in the budding yeast Saccharomyces cerevisiae play a critical role early in mitosis, ensuring proper biorientation of kinetochore–microtubule attachments. Our recent work has implicated the passenger protein Bir1p (Survivin) and the inner kinetochore complex centromere binding factor 3 (CBF3) in the regulation of septin dynamics during anaphase. Here, we present data that is consistent with there being multiple passenger protein complexes. Our data show that Bir1p links together a large passenger complex containing Ndc10p, Sli15p (INCENP), and Ipl1p (Aurora B) and that the interaction between Bir1p and Sli15p is specifically involved in regulating septin dynamics during anaphase. Neither conditional alleles nor mutants of BIR1 that disrupt the interaction between Bir1p and Sli15p resulted in mono-attached kinetochores, suggesting that the Bir1p–Sli15p complex functions in anaphase and independently from Sli15p–Ipl1p complexes. We present a model for how discrete passenger complexes coordinate distinct aspects of mitosis. PMID:17652458
Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira
2017-01-01
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation. PMID:28332566
Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira
2017-03-23
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-01-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
NASA Astrophysics Data System (ADS)
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-02-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.
Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo
Yokota, Yasuhiro; Nakajima, Hiroyuki; Wakayama, Yuki; Muto, Akira; Kawakami, Koichi; Fukuhara, Shigetomo; Mochizuki, Naoki
2015-01-01
Sprouting angiogenesis is a well-coordinated process controlled by multiple extracellular inputs, including vascular endothelial growth factor (VEGF). However, little is known about when and how individual endothelial cell (EC) responds to angiogenic inputs in vivo. Here, we visualized endothelial Ca2+ dynamics in zebrafish and found that intracellular Ca2+ oscillations occurred in ECs exhibiting angiogenic behavior. Ca2+ oscillations depended upon VEGF receptor-2 (Vegfr2) and Vegfr3 in ECs budding from the dorsal aorta (DA) and posterior cardinal vein, respectively. Thus, visualizing Ca2+ oscillations allowed us to monitor EC responses to angiogenic cues. Vegfr-dependent Ca2+ oscillations occurred in migrating tip cells as well as stalk cells budding from the DA. We investigated how Dll4/Notch signaling regulates endothelial Ca2+ oscillations and found that it was required for the selection of single stalk cell as well as tip cell. Thus, we captured spatio-temporal Ca2+ dynamics during sprouting angiogenesis, as a result of cellular responses to angiogenic inputs. DOI: http://dx.doi.org/10.7554/eLife.08817.001 PMID:26588168
NASA Astrophysics Data System (ADS)
Thomas, Michael A.; Quinodoz, Sofia; Schötz, Eva-Maria
2012-09-01
Asexual reproduction by division in higher organisms is rare, because a prerequisite is the ability to regenerate an entire organism from a piece of the original body. Freshwater planarians are one of the few animals that can reproduce this way, but little is known about the regulation of their reproduction cycles or strategies. We have previously shown that a planarian's reproduction strategy is randomized to include fragmentations, producing multiple offspring, as well as binary fissions, and can be partially explained by a maximum relative entropy principle. In this study we attempt to decompose the factors controlling their reproduction cycle. Based on recent studies on the cell cycle of budding yeast, which suggest that molecular noise in gene expression and cell size at birth together control cell cycle variability, we investigated whether the variability in planarian reproduction waiting times could be similarly regulated. We find that such a model can indeed explain the observed distribution of waiting times between birth and next reproductive event, suggesting that birth size and a stochastic noise term govern the reproduction dynamics of asexual planarians.
Spacecraft Formation Flying Maneuvers Using Linear-Quadratic Regulation with No Radial Axis Inputs
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)
2001-01-01
Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame ' propulsion system simplifications and weight reduction may be accomplished. Several linear-quadratic regulators (LQR) are explored and compared based on performance measures likely to be important to many missions, but not directly optimized in the LQR designs. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. This work focusses on formations in which the controlled satellite has a relative trajectory which projects onto the local horizon of the uncontrolled satellite as a circle. This formation has potential uses for distributed remote sensing systems.
Momin, Mohamed; Xin, Yao; Hamelberg, Donald
2017-06-29
Although the regulation of function of proteins by allosteric interactions has been identified in many subcellular processes, molecular switches are also known to induce long-range conformational changes in proteins. A less well understood molecular switch involving cis-trans isomerization of a peptidyl-prolyl bond could induce a conformational change directly to the backbone that is propagated to other parts of the protein. However, these switches are elusive and hard to identify because they are intrinsic to biomolecules that are inherently dynamic. Here, we explore the conformational dynamics and free energy landscape of the SH2 domain of interleukin-2-inducible T-cell or tyrosine kinase (ITK) to fully understand the conformational coupling between the distal cis-trans molecular switch and its binding pocket of the phosphotyrosine motif. We use multiple microsecond-long all-atom molecular dynamics simulations in explicit water for over a total of 60 μs. We show that cis-trans isomerization of the Asn286-Pro287 peptidyl-prolyl bond is directly coupled to the dynamics of the binding pocket of the phosphotyrosine motif, in agreement with previous NMR experiments. Unlike the cis state that is localized and less dynamic in a single free energy basin, the trans state samples two distinct conformations of the binding pocket-one that recognizes the phosphotyrosine motif and the other that is somewhat similar to that of the cis state. The results provide an atomic-level description of a less well understood allosteric regulation by a peptidyl-prolyl cis-trans molecular switch that could aid in the understanding of normal and aberrant subcellular processes and the identification of these elusive molecular switches in other proteins.
Naegle, Kristen M.; White, Forest M.; Lauffenburger, Douglas A.; Yaffe, Michael B.
2012-01-01
Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein–protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein–protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein–protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein–protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein–protein interactions in a dynamic context- and phosphorylation site-specific manner. PMID:22851037
Presynaptic Filament Dynamics in Homologous Recombination and DNA Repair
Liu, Jie; Ehmsen, Kirk T.; Heyer, Wolf-Dietrich; Morrical, Scott W.
2014-01-01
Homologous Recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA. Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we review the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments: some intrinsic such as recombinase ATP binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examine dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examine the biochemical properties of recombination proteins from four model systems (T4 phage, E. coli, S. cerevisiae, and H. sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We propose that the presynaptic filament has evolved to rely on multiple external factors for increased multi-level regulation of HR processes in genomes with greater structural and sequence complexity. PMID:21599536
In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants.
Morales, Alejandro; Yin, Xinyou; Harbinson, Jeremy; Driever, Steven M; Molenaar, Jaap; Kramer, David M; Struik, Paul C
2018-02-01
We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis ( Arabidopsis thaliana ). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO 2 , to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO 2 , high light intensity, or combined high CO 2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. © 2018 American Society of Plant Biologists. All Rights Reserved.
Expression of Glycosaminoglycan Epitopes During Zebrafish Skeletogenesis
Hayes, Anthony J; Mitchell, Ruth E; Bashford, Andrew; Reynolds, Scott; Caterson, Bruce; Hammond, Chrissy L
2013-01-01
Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics 242:778–789, 2013. © 2013 Wiley Periodicals, Inc. Key Findings The developing zebrafish skeleton expresses many different glycosaminoglycan modifications. Multiple different glycosaminoglycan epitopes are dynamically expressed in the craniofacial skeleton. Expression of chondroitin sulfate moieties are dynamically expressed in the vertebral column and precede mineralisation. PMID:23576310
Hmga2 regulates self-renewal of retinal progenitors.
Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal
2014-11-01
In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.
Like a slippery fish, a little slime is a good thing: the glycocalyx revealed.
Biddle, Chuck
2013-12-01
The glycocalyx is a dynamic network of multiple membrane-bound complexes lining the vascular endothelium. Its role in maintaining vascular homeostasis includes regulating vascular permeability as well as a range of vital functions, such as mechanotransduction, hemostasis, modulation of inflammatory processes, and serving as an antiatherogenic. Revisionist thinking about the Starling principle is discussed in terms of the major influence of the glycocalyx on capillary and tissue fluid homeostasis. The clinical and pathophysiologic threats to the glycocalyx are reviewed as well as strategies to maintain its integrity.
Endoplasmic Reticulum-Plasma Membrane Contact Sites.
Saheki, Yasunori; De Camilli, Pietro
2017-06-20
The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca 2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.
Fremier, Alexander K.; Girvetz, Evan H.; Greco, Steven E.; Larsen, Eric W.
2014-01-01
Environmental legislation in the US (i.e. NEPA) requires defining baseline conditions on current rather than historical ecosystem conditions. For ecosystems with long histories of multiple environmental impacts, this baseline method can subsequently lead to a significantly altered environment; this has been termed a ‘sliding baseline’. In river systems, cumulative effects caused by flow regulation, channel revetment and riparian vegetation removal significantly impact floodplain ecosystems by altering channel dynamics and precluding subsequent ecosystem processes, such as primary succession. To quantify these impacts on floodplain development processes, we used a model of river channel meander migration to illustrate the degree to which flow regulation and riprap impact migration rates, independently and synergistically, on the Sacramento River in California, USA. From pre-dam conditions, the cumulative effect of flow regulation alone on channel migration is a reduction by 38%, and 42–44% with four proposed water diversion project scenarios. In terms of depositional area, the proposed water project would reduce channel migration 51–71 ha in 130 years without current riprap in place, and 17–25 ha with riprap. Our results illustrate the utility of a modeling approach for quantifying cumulative impacts. Model-based quantification of environmental impacts allow scientists to separate cumulative and synergistic effects to analytically define mitigation measures. Additionally, by selecting an ecosystem process that is affected by multiple impacts, it is possible to consider process-based mitigation scenarios, such as the removal of riprap, to allow meander migration and create new floodplains and allow for riparian vegetation recruitment. PMID:24964145
NASA Astrophysics Data System (ADS)
Thorslund, Josefin; Jarsjö, Jerker; Destouni, Georgia
2017-04-01
Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. The services may include recreation, greenhouse gas sequestration, contaminant retention, coastal protection, groundwater level and soil moisture regulation, flood regulation and biodiversity support. Changes in land-use, water use and climate can all impact wetland functions and occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, management decisions usually regard and focus on individual wetland sites and local conditions. To understand the potential usefulness and services of wetlands as larger-scale nature-based solutions, e.g. for mitigating negative impacts from large-scale change pressures, one needs to understand the combined function multiple wetlands at the relevant large scales. We here systematically investigate if and to what extent research so far has addressed the large-scale dynamics of landscape systems with multiple wetlands, which are likely to be relevant for understanding impacts of regional to global change. Our investigation regards key changes and impacts of relevance for nature-based solutions, such as large-scale nutrient and pollution retention, flow regulation and coastal protection. Although such large-scale knowledge is still limited, evidence suggests that the aggregated functions and effects of multiple wetlands in the landscape can differ considerably from those observed at individual wetlands. Such scale differences may have important implications for wetland function-effect predictability and management under large-scale change pressures and impacts, such as those of climate change.
Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea
2010-01-01
Background The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression. Results The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals. Conclusion The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation. PMID:20067625
Paraspeckles: Where Long Noncoding RNA Meets Phase Separation.
Fox, Archa H; Nakagawa, Shinichi; Hirose, Tetsuro; Bond, Charles S
2018-02-01
Long noncoding RNA (lncRNA) molecules are some of the newest and least understood players in gene regulation. Hence, we need good model systems with well-defined RNA and protein components. One such system is paraspeckles - protein-rich nuclear organelles built around a specific lncRNA scaffold. New discoveries show how paraspeckles are formed through multiple RNA-protein and protein-protein interactions, some of which involve extensive polymerization, and others with multivalent interactions driving phase separation. Once formed, paraspeckles influence gene regulation through sequestration of component proteins and RNAs, with subsequent depletion in other compartments. Here we focus on the dual aspects of paraspeckle structure and function, revealing an emerging role for these dynamic bodies in a multitude of cellular settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamical modelling of coordinated multiple robot systems
NASA Technical Reports Server (NTRS)
Hayati, Samad
1987-01-01
The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.
EB-Family Proteins: Functions and Microtubule Interaction Mechanisms.
Mustyatsa, V V; Boyakhchyan, A V; Ataullakhanov, F I; Gudimchuk, N B
2017-07-01
Microtubules are polymers of tubulin protein, one of the key components of cytoskeleton. They are polar filaments whose plus-ends usually oriented toward the cell periphery are more dynamic than their minus-ends, which face the center of the cell. In cells, microtubules are organized into a network that is being constantly rebuilt and renovated due to stochastic switching of its individual filaments from growth to shrinkage and back. Because of these dynamics and their mechanical properties, microtubules take part in various essential processes, from intracellular transport to search and capture of chromosomes during mitosis. Microtubule dynamics are regulated by many proteins that are located on the plus-ends of these filaments. One of the most important and abundant groups of plus-end-interacting proteins are EB-family proteins, which autonomously recognize structures of the microtubule growing plus-ends, modulate their dynamics, and recruit multiple partner proteins with diverse functions onto the microtubule plus-ends. In this review, we summarize the published data about the properties and functions of EB-proteins, focusing on analysis of their mechanism of interaction with the microtubule growing ends.
Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator
Du, Zhe; Mei, Xue-Song; Xu, Mu-Xun
2012-01-01
In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation. PMID:23202182
Gigante, Guido; Deco, Gustavo; Marom, Shimon; Del Giudice, Paolo
2015-01-01
Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural) is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed ‘quasi-orbits’, which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network’s firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms. PMID:26558616
NASA Astrophysics Data System (ADS)
Bastrakova, I.; Car, N.
2017-12-01
Geoscience Australia (GA) is recognised and respected as the National Repository and steward of multiple nationally significance data collections that provides geoscience information, services and capability to the Australian Government, industry and stakeholders. Internally, this brings a challenge of managing large volume (11 PB) of diverse and highly complex data distributed through a significant number of catalogues, applications, portals, virtual laboratories, and direct downloads from multiple locations. Externally, GA is facing constant changer in the Government regulations (e.g. open data and archival laws), growing stakeholder demands for high quality and near real-time delivery of data and products, and rapid technological advances enabling dynamic data access. Traditional approach to citing static data and products cannot satisfy increasing demands for the results from scientific workflows, or items within the workflows to be open, discoverable, thrusted and reproducible. Thus, citation of data, products, codes and applications through the implementation of provenance records is being implemented. This approach involves capturing the provenance of many GA processes according to a standardised data model and storing it, as well as metadata for the elements it references, in a searchable set of systems. This provides GA with ability to cite workflows unambiguously as well as each item within each workflow, including inputs and outputs and many other registered components. Dynamic objects can therefore be referenced flexibly in relation to their generation process - a dataset's metadata indicates where to obtain its provenance from - meaning the relevant facts of its dynamism need not be crammed into a single citation object with a single set of attributes. This allows for simple citations, similar to traditional static document citations such as references in journals, to be used for complex dynamic data and other objects such as software code.
Dynamics of a intraguild predation model with generalist or specialist predator.
Kang, Yun; Wedekin, Lauren
2013-11-01
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.
Dynamics and Molecular Determinants of Cytoplasmic Lipid Droplet Clustering and Dispersion
Stefanski, Adrianne L.; McManaman, James L.
2013-01-01
Perilipin-1 (Plin1), a prominent cytoplasmic lipid droplet (CLD) binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT) induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps. PMID:23825572
Synaptic control of local translation: the plot thickens with new characters.
Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia
2014-06-01
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael
2015-01-01
Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814
Yeo, Giselle C; Tarakanova, Anna; Baldock, Clair; Wise, Steven G; Buehler, Markus J; Weiss, Anthony S
2016-02-01
The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule's assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly.
Freeman, Spencer A; McLeod, Sarah J; Dukowski, Janet; Austin, Pamela; Lee, Crystal C Y; Millen-Martin, Brandie; Kubes, Paul; McCafferty, Donna-Marie; Gold, Michael R; Roskelley, Calvin D
2010-06-01
The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM. Copyright 2010 AACR.
An integrated modelling framework for neural circuits with multiple neuromodulators.
Joshi, Alok; Youssofzadeh, Vahab; Vemana, Vinith; McGinnity, T M; Prasad, Girijesh; Wong-Lin, KongFatt
2017-01-01
Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies. © 2017 The Authors.
An integrated modelling framework for neural circuits with multiple neuromodulators
Vemana, Vinith
2017-01-01
Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies. PMID:28100828
Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.
Lubin, Farah D
2011-07-01
Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. Copyright © 2011 Elsevier Inc. All rights reserved.
Endo, Akinori; Kitamura, Naomi; Komada, Masayuki
2009-10-09
The nucleolus is a subnuclear compartment with multiple cellular functions, including ribosome biogenesis. USP36 is a deubiquitylating enzyme that localizes to nucleoli and plays an essential role in regulating the structure and function of the organelle. However, how the localization of USP36 is regulated remains unknown. Here, we identified a short stretch of basic amino acids (RGKEKKIKKFKREKRR) that resides in the C-terminal region of USP36 and serves as a nucleolar localization signal for the protein. We found that this motif interacts with a central acidic region of nucleophosmin/B23, a major nucleolar protein involved in various nucleolar functions. Knockdown of nucleophosmin/B23 resulted in a significant reduction in the amount of USP36 in nucleoli, without affecting the cellular USP36 level. This was associated with elevated ubiquitylation levels of fibrillarin, a USP36 substrate protein in nucleoli. We conclude that nucleophosmin/B23 recruits USP36 to nucleoli, thereby serving as a platform for the regulation of nucleolar protein functions through ubiquitylation/deubiquitylation.
Peyre, Elise; Silva, Carla G; Nguyen, Laurent
2015-01-01
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
Rajendran, Ramkumar; Garva, Richa; Krstic-Demonacos, Marija; Demonacos, Constantinos
2011-01-01
Transcription is regulated by acetylation/deacetylation reactions of histone and nonhistone proteins mediated by enzymes called KATs and HDACs, respectively. As a major mechanism of transcriptional regulation, protein acetylation is a key controller of physiological processes such as cell cycle, DNA damage response, metabolism, apoptosis, and autophagy. The deacetylase activity of class III histone deacetylases or sirtuins depends on the presence of NAD(+) (nicotinamide adenine dinucleotide), and therefore, their function is closely linked to cellular energy consumption. This activity of sirtuins connects the modulation of chromatin dynamics and transcriptional regulation under oxidative stress to cellular lifespan, glucose homeostasis, inflammation, and multiple aging-related diseases including cancer. Here we provide an overview of the recent developments in relation to the diverse biological activities associated with sirtuin enzymes and stress responsive transcription factors, DNA damage, and oxidative stress and relate the involvement of sirtuins in the regulation of these processes to oncogenesis. Since the majority of the molecular mechanisms implicated in these pathways have been described for Sirt1, this sirtuin family member is more extensively presented in this paper.
Mondal, Arindam; Potts, Gregory K.; Dawson, Anthony R.; Coon, Joshua J.; Mehle, Andrew
2015-01-01
Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle. PMID:25867750
Rehan, R; Knight, M A; Haas, C T; Unger, A J A
2011-10-15
Recently enacted regulations in Canada and elsewhere require water utilities to be financially self-sustaining over the long-term. This implies full cost recovery for providing water and wastewater services to users. This study proposes a new approach to help water utilities plan to meet the requirements of the new regulations. A causal loop diagram is developed for a financially self-sustaining water utility which frames water and wastewater network management as a complex system with multiple interconnections and feedback loops. The novel System Dynamics approach is used to develop a demonstration model for water and wastewater network management. This is the first known application of System Dynamics to water and wastewater network management. The network simulated is that of a typical Canadian water utility that has under invested in maintenance. Model results show that with no proactive rehabilitation strategy the utility will need to substantially increase its user fees to achieve financial sustainability. This increase is further exacerbated when price elasticity of water demand is considered. When the utility pursues proactive rehabilitation, financial sustainability is achieved with lower user fees. Having demonstrated the significance of feedback loops for financial management of water and wastewater networks, the paper makes the case for a more complete utility model that considers the complexity of the system by incorporating all feedback loops. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Liu, Jun; McConnell, Kristopher; Dixon, Michael; Calvi, Brian R.
2012-01-01
Epigenetic regulation exerts a major influence on origins of DNA replication during development. The mechanisms for this regulation, however, are poorly defined. We showed previously that acetylation of nucleosomes regulates the origins that mediate developmental gene amplification during Drosophila oogenesis. Here we show that developmental activation of these origins is associated with acetylation of multiple histone lysines. Although these modifications are not unique to origin loci, we find that the level of acetylation is higher at the active origins and quantitatively correlated with the number of times these origins initiate replication. All of these acetylation marks were developmentally dynamic, rapidly increasing with origin activation and rapidly declining when the origins shut off and neighboring promoters turn on. Fine-scale analysis of the origins revealed that both hyperacetylation of nucleosomes and binding of the origin recognition complex (ORC) occur in a broad domain and that acetylation is highest on nucleosomes adjacent to one side of the major site of replication initiation. It was surprising to find that acetylation of some lysines depends on binding of ORC to the origin, suggesting that multiple histone acetyltransferases may be recruited during origin licensing. Our results reveal new insights into the origin epigenetic landscape and lead us to propose a chromatin switch model to explain the coordination of origin and promoter activity during development. PMID:22049023
Mitochondria: more than just a powerhouse.
McBride, Heidi M; Neuspiel, Margaret; Wasiak, Sylwia
2006-07-25
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.
Walker, Ryan G; Poggioli, Tommaso; Katsimpardi, Lida; Buchanan, Sean M; Oh, Juhyun; Wattrus, Sam; Heidecker, Bettina; Fong, Yick W; Rubin, Lee L; Ganz, Peter; Thompson, Thomas B; Wagers, Amy J; Lee, Richard T
2016-04-01
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging. © 2016 American Heart Association, Inc.
Endocytosis-dependent coordination of multiple actin regulators is required for wound healing
Matsubayashi, Yutaka; Coulson-Gilmer, Camilla
2015-01-01
The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form “signaling centers” along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing. PMID:26216900
MYOCARDIAL AKT: THE OMNIPRESENT NEXUS
Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael
2013-01-01
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795
Russell, Alyce; Adua, Eric; Ugrina, Ivo; Laws, Simon; Wang, Wei
2018-01-29
Multiple factors influence immunoglobulin G glycosylation, which in turn affect the glycoproteins' function on eliciting an anti-inflammatory or pro-inflammatory response. It is prudent to underscore these processes when considering the use of immunoglobulin G N -glycan moieties as an indication of disease presence, progress, or response to therapeutics. It has been demonstrated that the altered expression of genes that encode enzymes involved in the biosynthesis of immunoglobulin G N -glycans, receptors, or complement factors may significantly modify immunoglobulin G effector response, which is important for regulating the immune system. The immunoglobulin G N -glycome is highly heterogenous; however, it is considered an interphenotype of disease (a link between genetic predisposition and environmental exposure) and so has the potential to be used as a dynamic biomarker from the perspective of predictive, preventive, and personalised medicine. Undoubtedly, a deeper understanding of how the multiple factors interact with each other to alter immunoglobulin G glycosylation is crucial. Herein we review the current literature on immunoglobulin G glycoprotein structure, immunoglobulin G Fc glycosylation, associated receptors, and complement factors, the downstream effector functions, and the factors associated with the heterogeneity of immunoglobulin G glycosylation.
Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics.
Miao, Yinglong; Nichols, Sara E; McCammon, J Andrew
2014-04-14
G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).
Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype
Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M.; Gagneur, Julien; Sinha, Himanshu
2015-01-01
Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants’ effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression. PMID:26039065
Actin Out: Regulation of the Synaptic Cytoskeleton
Spence, Erin F.; Soderling, Scott H.
2015-01-01
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304
Eberl, Gérard
2016-08-01
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Histone chaperones: an escort network regulating histone traffic.
De Koning, Leanne; Corpet, Armelle; Haber, James E; Almouzni, Geneviève
2007-11-01
In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.
Novak, Vera; Yang, Albert C C; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang
2004-10-25
This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 +/- 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.
Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali
2013-04-01
The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.
Antiqueira, Lucas; Janga, Sarath Chandra; Costa, Luciano da Fontoura
2012-11-01
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.
Robust linear parameter-varying control of blood pressure using vasoactive drugs
NASA Astrophysics Data System (ADS)
Luspay, Tamas; Grigoriadis, Karolos
2015-10-01
Resuscitation of emergency care patients requires fast restoration of blood pressure to a target value to achieve hemodynamic stability and vital organ perfusion. A robust control design methodology is presented in this paper for regulating the blood pressure of hypotensive patients by means of the closed-loop administration of vasoactive drugs. To this end, a dynamic first-order delay model is utilised to describe the vasoactive drug response with varying parameters that represent intra-patient and inter-patient variability. The proposed framework consists of two components: first, an online model parameter estimation is carried out using a multiple-model extended Kalman-filter. Second, the estimated model parameters are used for continuously scheduling a robust linear parameter-varying (LPV) controller. The closed-loop behaviour is characterised by parameter-varying dynamic weights designed to regulate the mean arterial pressure to a target value. Experimental data of blood pressure response of anesthetised pigs to phenylephrine injection are used for validating the LPV blood pressure models. Simulation studies are provided to validate the online model estimation and the LPV blood pressure control using phenylephrine drug injection models representing patients showing sensitive, nominal and insensitive response to the drug.
Architecture and dynamics of overlapped RNA regulatory networks.
Lapointe, Christopher P; Preston, Melanie A; Wilinski, Daniel; Saunders, Harriet A J; Campbell, Zachary T; Wickens, Marvin
2017-11-01
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution. © 2017 Lapointe et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Feng, Lihui; Rutherford, Steven T; Papenfort, Kai; Bagert, John D; van Kessel, Julia C; Tirrell, David A; Wingreen, Ned S; Bassler, Bonnie L
2015-01-15
Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO, luxM, and aphA. We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: the Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics, and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response. Copyright © 2015 Elsevier Inc. All rights reserved.
Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis
Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin
2012-01-01
The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960
Chevalier, Adrien S; Chaumont, François
2015-05-01
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kurata, Hiroyuki; Sugimoto, Yurie
2018-02-01
Many kinetic models of Escherichia coli central metabolism have been built, but few models accurately reproduced the dynamic behaviors of wild type and multiple genetic mutants. In 2016, our latest kinetic model improved problems of existing models to reproduce the cell growth and glucose uptake of wild type, ΔpykA:pykF and Δpgi in a batch culture, while it overestimated the glucose uptake and cell growth rates of Δppc and hardly captured the typical characteristics of the glyoxylate and TCA cycle fluxes for Δpgi and Δppc. Such discrepancies between the simulated and experimental data suggested biological complexity. In this study, we overcame these problems by assuming critical mechanisms regarding the OAA-regulated isocitrate dehydrogenase activity, aceBAK gene regulation and growth suppression. The present model accurately predicts the extracellular and intracellular dynamics of wild type and many gene knockout mutants in batch and continuous cultures. It is now the most accurate, detailed kinetic model of E. coli central carbon metabolism and will contribute to advances in mathematical modeling of cell factories. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology
Wells, Lance
2016-01-01
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620
Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tian; Bao, Jie; Huang, Maoyi
Hydrologic exchange flux (HEF) is an important hydrologic component in river corridors that includes both bidirectional (hyporheic) and unidirectional (gaining/losing) surface water – groundwater exchanges. Quantifying HEF rates in a large regulated river is difficult due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great stage variations created by dam operations at multiple time scales. In this study, we developed a method that combined numerical modeling and field measurements for estimating HEF rates across the river bed in a 7‐km long reach of the highly regulated Columbia River. A high‐resolution computational fluid dynamics (CFD)more » modeling framework was developed and validated by field measurements and other modeling results to characterize the HEF dynamics across the river bed. We found that about 85% of the time from 2008‐2014 the river was losing water with an annual average net HEF rates across the river bed (Qz) of ‐2.3 m3 s−1 (negative indicating downwelling). June was the only month that the river gained water, with monthly averaged Qz of 0.8 m3 s−1. We also found that the daily dam operations increased the hourly gross gaining and losing rate over an average year of 8% and 2%, respectively. By investigating the HEF feedbacks at various time scales, we suggest that the dam operations could reduce the HEF at seasonal time scale by decreasing the seasonal flow variations, while also enhance the HEF at sub‐daily time scale by generating high frequency discharge variations. These changes could generate significant impacts on biogeochemical processes in the hyporheic zone.« less
Murabito, Ettore; Verma, Malkhey; Bekker, Martijn; Bellomo, Domenico; Westerhoff, Hans V.; Teusink, Bas; Steuer, Ralf
2014-01-01
Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models. PMID:25268481
Information processing in the primate visual system - An integrated systems perspective
NASA Technical Reports Server (NTRS)
Van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.
1992-01-01
The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.
Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism.
Yang, Ying; Hsu, Phillip J; Chen, Yu-Sheng; Yang, Yun-Gui
2018-05-22
N 6 -methyladenosine (m 6 A) is a chemical modification present in multiple RNA species, being most abundant in mRNAs. Studies on enzymes or factors that catalyze, recognize, and remove m 6 A have revealed its comprehensive roles in almost every aspect of mRNA metabolism, as well as in a variety of physiological processes. This review describes the current understanding of the m 6 A modification, particularly the functions of its writers, erasers, readers in RNA metabolism, with an emphasis on its role in regulating the isoform dosage of mRNAs.
Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.
Windoffer, Reinhard; Beil, Michael; Magin, Thomas M; Leube, Rudolf E
2011-09-05
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis-independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.
Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia
Windoffer, Reinhard; Beil, Michael; Magin, Thomas M.
2011-01-01
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function. PMID:21893596
Nigam, Deepti; Sawant, Samir V
2013-01-01
Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725
Zhang, Wensheng; Edwards, Andrea; Fan, Wei; Flemington, Erik K; Zhang, Kun
2016-08-01
Ovarian carcinoma is the fifth-leading cause of cancer death among women in the United States. Major reasons for this persistent mortality include the poor understanding of the underlying biology and a lack of reliable biomarkers. Previous studies have shown that aberrantly expressed MicroRNAs (miRNAs) are involved in carcinogenesis and tumor progression by post-transcriptionally regulating gene expression. However, the interference of miRNAs in tumorigenesis is quite complicated and far from being fully understood. In this work, by an integrative analysis of mRNA expression, miRNA expression and clinical data published by The Cancer Genome Atlas (TCGA), we studied the modularity and dynamicity of miRNA-mRNA interactions and the prognostic implications in high-grade serous ovarian carcinomas. With the top transcriptional correlations (Bonferroni-adjusted p-value<0.01) as inputs, we identified five miRNA-mRNA module pairs (MPs), each of which included one positive-connection (correlation) module and one negative-connection (correlation) module. The number of miRNAs or mRNAs in each module varied from 3 to 7 or from 2 to 873. Among the four major negative-connection modules, three fit well with the widely accepted miRNA-mediated post-transcriptional regulation theory. These modules were enriched with the genes relevant to cell cycle and immune response. Moreover, we proposed two novel algorithms to reveal the group or sample specific dynamic regulations between these two RNA classes. The obtained miRNA-mRNA dynamic network contains 3350 interactions captured across different cancer progression stages or tumor grades. We found that those dynamic interactions tended to concentrate on a few miRNAs (e.g. miRNA-936), and were more likely present on the miRNA-mRNA pairs outside the discovered modules. In addition, we also pinpointed a robust prognostic signature consisting of 56 modular protein-coding genes, whose co-expression patterns were predictive for the survival time of ovarian cancer patients in multiple independent cohorts. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lee, Hyunjoo
2012-01-01
The purpose of this study was to investigate the effects of goal relations on self-regulation in the pursuit of multiple goals, focusing on self-regulated performance, the self-regulatory process, and task enjoyment. The effect of multiple goal relations on self-regulation was explored in a set of three studies. Goal relations were divided into…
Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.
Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E
2015-01-01
This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.
Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis
Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.
2015-01-01
This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878
Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.
Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K
2013-10-01
Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.
NASA Astrophysics Data System (ADS)
Ashenafi, Emeshaw
Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip regulator design very unattractive for SOC integration and multi-/many-core environments. To circumvent the challenges, three alternative techniques based on active circuit elements to replace the passive LC filter of the buck convertor are developed. The first inductorless on-chip switching voltage regulator architecture is based on a cascaded 2nd order multiple feedback (MFB) low-pass filter (LPF). This design has the ability to modulate to multiple voltage settings via pulse-with modulation (PWM). The second approach is a supplementary design utilizing a hybrid low drop-out scheme to lower the output ripple of the switching regulator over a wider frequency range. The third design approach allows the integration of an entire power management system within a single chipset by combining a highly efficient switching regulator with an intermittently efficient linear regulator (area efficient), for robust and highly efficient on-chip regulation. The static power (Pstatic) or subthreshold leakage power (Pleak) increases with technology scaling. To mitigate static power dissipation, power gating techniques are implemented. Power gating is one of the popular methods to manage leakage power during standby periods in low-power high-speed IC design. It works by using transistor based switches to shut down part of the circuit block and put them in the idle mode. The efficiency of a power gating scheme involves minimum Ioff and high Ion for the sleep transistor. A conventional sleep transistor circuit design requires an additional header, footer, or both switches to turn off the logic block. This additional transistor causes signal delay and increases the chip area. We propose two innovative designs for next generation sleep transistor designs. For an above threshold operation, we present a sleep transistor design based on fully depleted silicon-on-insulator (FDSOI) device. For a subthreshold circuit operation, we implement a sleep transistor utilizing the newly developed silicon-on-ferroelectric-insulator field effect transistor (SOFFET). In both of the designs, the ability to control the threshold voltage via bias voltage at the back gate makes both devices more flexible for sleep transistors design than a bulk MOSFET. The proposed approaches simplify the design complexity, reduce the chip area, eliminate the voltage drop by sleep transistor, and improve power dissipation. In addition, the design provides a dynamically controlled Vt for times when the circuit needs to be in a sleep or switching mode.
Goryunov, Dmitry; Liem, Ronald K H
2016-01-01
The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues. © 2016 Elsevier Inc. All rights reserved.
Genomic analysis of regulatory network dynamics reveals large topological changes
NASA Astrophysics Data System (ADS)
Luscombe, Nicholas M.; Madan Babu, M.; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A.; Gerstein, Mark
2004-09-01
Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here-particularly the large-scale topological changes and hub transience-will apply to other biological networks, including complex sub-systems in higher eukaryotes.
Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain
de la Torre-Ubieta, Luis; Bonni, Azad
2012-01-01
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems. PMID:21982366
On optimal control of linear systems in the presence of multiplicative noise
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1976-01-01
This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.
Fathi, Ali; Eisa-Beygi, Shahram; Baharvand, Hossein
2017-01-01
Signaling in pluripotent stem cells is a complex and dynamic process involving multiple mediators, finely tuned to balancing pluripotency and differentiation states. Characterizing and modifying the necessary signaling pathways to attain desired cell types is required for stem-cell applications in various fields of regenerative medicine. These signals may help enhance the differentiation potential of pluripotent cells towards each of the embryonic lineages and enable us to achieve pure in vitro cultures of various cell types. This review provides a timely synthesis of recent advances into how maintenance of pluripotency in hPSCs is regulated by extrinsic cues, such as the fibroblast growth factor (FGF) and ACTIVIN signaling pathways, their interplay with other signaling pathways, namely, wingless- type MMTV integration site family (WNT) and mammalian target of rapamycin (mTOR), and the pathways governing the determination of multiple lineages. PMID:28670512
Complex regulation of HSC emergence by the Notch signaling pathway
Butko, Emerald; Pouget, Claire; Traver, David
2016-01-01
Hematopoietic stem cells are formed during embryonic development, and serve as the foundation of the definitive blood program for life. Notch signaling has been well established as an essential direct contributor to HSC specification. However, several recent studies have indicated that the contribution of Notch signaling is complex. HSC specification requires multiple Notch signaling inputs, some received directly by hematopoietic precursors, and others that occur indirectly within neighboring somites. Of note, proinflammatory signals provided by primitive myeloid cells are needed for HSC specification via upregulation of the Notch pathway in hemogenic endothelium. In addition to multiple requirements for Notch activation, recent studies indicate that Notch signaling must subsequently be repressed to permit HSC emergence. Finally, Notch must then be reactivated to maintain HSC fate. In this review, we discuss the growing understanding of the dynamic contributions of Notch signaling to the establishment of hematopoiesis during development. PMID:26586199
TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling.
Berson, Amit; Sartoris, Ashley; Nativio, Raffaella; Van Deerlin, Vivianna; Toledo, Jon B; Porta, Sílvia; Liu, Shichong; Chung, Chia-Yu; Garcia, Benjamin A; Lee, Virginia M-Y; Trojanowski, John Q; Johnson, F Brad; Berger, Shelley L; Bonini, Nancy M
2017-12-04
Regulation of chromatin structure is critical for brain development and function. However, the involvement of chromatin dynamics in neurodegeneration is less well understood. Here we find, launching from Drosophila models of amyotrophic lateral sclerosis and frontotemporal dementia, that TDP-43 impairs the induction of multiple key stress genes required to protect from disease by reducing the recruitment of the chromatin remodeler Chd1 to chromatin. Chd1 depletion robustly enhances TDP-43-mediated neurodegeneration and promotes the formation of stress granules. Conversely, upregulation of Chd1 restores nucleosomal dynamics, promotes normal induction of protective stress genes, and rescues stress sensitivity of TDP-43-expressing animals. TDP-43-mediated impairments are conserved in mammalian cells, and, importantly, the human ortholog CHD2 physically interacts with TDP-43 and is strikingly reduced in level in temporal cortex of human patient tissue. These findings indicate that TDP-43-mediated neurodegeneration causes impaired chromatin dynamics that prevents appropriate expression of protective genes through compromised function of the chromatin remodeler Chd1/CHD2. Enhancing chromatin dynamics may be a treatment approach to amyotrophic lateral scleorosis (ALS)/frontotemporal dementia (FTD). Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal coefficients of the methyl groups within ubiquitin
Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan
2012-01-01
Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336
Prediction of regulatory gene pairs using dynamic time warping and gene ontology.
Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K
2014-01-01
Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.
A corticothalamic switch: controlling the thalamus with dynamic synapses
Crandall, Shane R.; Cruikshank, Scott J.; Connors, Barry W.
2015-01-01
SUMMARY Corticothalamic neurons provide massive input to the thalamus. This top-down projection may allow cortex to regulate sensory processing by modulating the excitability of thalamic cells. Layer 6 corticothalamic neurons monosynaptically excite thalamocortical cells, but also indirectly inhibit them by driving inhibitory cells of the thalamic reticular nucleus. Whether corticothalamic activity generally suppresses or excites the thalamus remains unclear. Here we show that the corticothalamic influence is dynamic, with the excitatory-inhibitory balance shifting in an activity-dependent fashion. During low-frequency activity corticothalamic effects are mainly suppressive, whereas higher frequency activity (even a short bout of gamma frequency oscillations) converts the corticothalamic influence to enhancement. The mechanism of this switching depends upon distinct forms of short-term synaptic plasticity across multiple corticothalamic circuit components. Our results reveal an activity-dependent mechanism by which corticothalamic neurons can bidirectionally switch the excitability and sensory throughput of the thalamus, possibly to meet changing behavioral demands. PMID:25913856
Cancer initiation and progression: an unsimplifiable complexity
Grizzi, Fabio; Di Ieva, Antonio; Russo, Carlo; Frezza, Eldo E; Cobos, Everardo; Muzzio, Pier Carlo; Chiriva-Internati, Maurizio
2006-01-01
Background Cancer remains one of the most complex diseases affecting humans and, despite the impressive advances that have been made in molecular and cell biology, how cancer cells progress through carcinogenesis and acquire their metastatic ability is still widely debated. Conclusion There is no doubt that human carcinogenesis is a dynamic process that depends on a large number of variables and is regulated at multiple spatial and temporal scales. Viewing cancer as a system that is dynamically complex in time and space will, however, probably reveal more about its underlying behavioural characteristics. It is encouraging that mathematicians, biologists and clinicians continue to contribute together towards a common quantitative understanding of cancer complexity. This way of thinking may further help to clarify concepts, interpret new and old experimental data, indicate alternative experiments and categorize the acquired knowledge on the basis of the similarities and/or shared behaviours of very different tumours. PMID:17044918
IVF policy and global/local politics: the making of multiple-embryo transfer regulation in Taiwan.
Wu, Chia-Ling
2012-08-01
This paper analyzes the regulatory trajectory of multiple-embryo transfer in in-vitro fertilization (IVF) in Taiwan. Taking a latecomer to policy-making as the case, it argues the importance of conceptualizing the global/local dynamics in policy-making for assisted reproductive technology (ART). The conceptual framework is built upon recent literature on standardization, science policy, and global assemblage. I propose three interrelated features that reveal the "global in the local": (1) the power relationships among stakeholders, (2) the selected global form that involved actors drew upon, and (3) the re-contextualized assemblage made of local networks. Data included archives, interviews, and participant observation. In different historical periods the specific stakeholders selected different preferred global forms for Taiwan, such as Britain's code of ethics in the 1990s, the American guideline in the early 2000s, and the European trend in the mid-2000s. The global is heterogeneous. The failure to transfer the British regulation, the revision of the American guideline by adding one more embryo than it specified, and the gap between the cited European trend and the "no more than four" in Taiwan's 2007 Human Reproduction Law all show that the local network further transforms the selected global form, confining it to rhetoric only or tailoring it to local needs. Overall, Taiwanese practitioners successfully maintained their medical autonomy to build a 'flexible standardization'. Multiple pregnancy remains the most common health risk of IVF in Taiwan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo.
Zhang, Wei; Mulieri, Philip J; Gaio, Ursula; Bae, Gyu-Un; Krauss, Robert S; Kang, Jong-Sun
2009-10-01
Vertebrate eye development requires a series of complex morphogenetic and inductive events to produce a lens vesicle centered within the bilayered optic cup and a posteriorly positioned optic stalk. Multiple congenital eye defects, including microphthalmia and coloboma, result from defects in early eye morphogenesis. Cdo is a multifunctional cell surface immunoglobulin superfamily member that interacts with and mediates signaling by cadherins and netrins to regulate myogenesis. In addition, Cdo plays an essential role in early forebrain development by functioning as coreceptor for sonic hedgehog. It is reported here that Cdo is expressed in a dynamic, but dorsally restricted, fashion during early eye development, and that mice lacking Cdo display multiple eye defects. Anomalies seen in Cdo(-/-) mice include coloboma (failure to close the optic fissure); failure to form a proper boundary between the retinal pigmented epithelium and optic stalk; defective lens formation, including failure to separate from the surface ectoderm; and microphthalmia. Consistent with this wide array of defects, developing eyes of Cdo(-/-) mice show altered expression of several regulators of dorsoventral eye patterning, including Pax6, Pax2, and Tbx5. Taken together, these findings show that Cdo is required for normal eye development and is required for normal expression of patterning genes in both the ventral and dorsal domains. The multiple eye development defects seen in Cdo(-/-) mice suggest that mutations in human Cdo could contribute to congenital eye anomalies, such as Jacobsen syndrome, which is frequently associated with ocular defects, including coloboma and Peters' anomaly.
Rodriguez-Ward, Dawn; Larson, Anne M; Ruesta, Harold Gordillo
2018-01-03
This study examines the role multilevel governance plays in the adoption of sustainable landscape management initiatives in emerging arrangements aimed at reducing emissions from deforestation and forest degradation (REDD+). It sheds light on the challenges these multiple layers of actors and interests encounter around such alternatives in a subnational jurisdiction. Through transcript analysis of 93 interviews with institutional actors in the region of Madre de Dios, Peru, particularly with regard to five sites of land-use change, we identified the multiple actors who are included and excluded in the decision-making process and uncovered their complex interactions in forest and landscape governance and REDD+ arrangements. Madre de Dios is a useful case for studying complex land-use dynamics, as it is home to multiple natural resources, a large mix of actors and interests, and a regional government that has recently experienced the reverberations of decentralization. Findings indicate that multiple actors shaped REDD+ to some extent, but REDD+ and its advocates were unable to shape land-use dynamics or landscape governance, at least in the short term. In the absence of strong and effective regional regulation for sustainable land use alternatives and the high value of gold on the international market, illegal gold mining proved to be a more profitable land-use choice. Although REDD+ created a new space for multilevel actor interaction and communication and new alliances to emerge, the study questions the prevailing REDD+ discourse suggesting that better coordination and cooperation will lead to integrated landscape solutions. For REDD+ to be able to play a role in integrated landscape governance, greater attention needs to be paid to grassroots actors, power and authority over territory and underlying interests and incentives for land-use change.
Emotion Regulation and the Dynamics of Feelings: A Conceptual and Methodological Framework
ERIC Educational Resources Information Center
Hoeksma, Jan B.; Oosterlaan, Jaap; Schipper, Eline M.
2004-01-01
The emotional system is defined as a dynamical system that has neurological and biochemical structures that force the system to change in a regular and consistent way. This dynamic view allows for an alternative definition of emotion regulation, which describes when emotion regulation is needed, identifies its goal, and illustrates how regulation…
Spacecraft Formation Flying Maneuvers Using Linear Quadratic Regulation With No Radial Axis Inputs
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)
2001-01-01
Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame, propulsion system simplifications and weight reduction may be accomplished. This work focuses on the validation of this control system on its own merits, and in comparison to a related system which does provide thrust along the radial axis of the relative frame. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. Control algorithm performance is evaluated based on measures such as the fuel required to complete a maneuver and the maximum acceleration required by the controller. Based on this evaluation, the exclusion of the radial axis of control still allows enough control authority to use Linear Quadratic Regulator (LQR) techniques to design a gain matrix of adequate performance over finite maneuvers. Additional simulations are conducted including perturbations and using no radial control inputs. A major conclusion presented is that control inputs along the three axes have significantly different relationships to the governing orbital dynamics that may be exploited using LQR.
Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA
Muniyappa, Kalappa; Yan, Jie
2013-01-01
The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. PMID:23825559
Tunable protease-activatable virus nanonodes.
Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae
2014-05-27
We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.
Tunable Protease-Activatable Virus Nanonodes
2015-01-01
We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery. PMID:24796495
Multiple functions of BCL-2 family proteins.
Hardwick, J Marie; Soane, Lucian
2013-02-01
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
Deconstructing transcriptional heterogeneity in pluripotent stem cells
Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.
2014-01-01
SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879
Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass
Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; ...
2017-01-03
The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.
Schroeder, Elizabeth A; Shadel, Gerald S
2014-01-01
Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Multipulsed dynamic moire interferometer
Deason, Vance A.
1991-01-01
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
A mathematical model of the mevalonate cholesterol biosynthesis pathway.
Pool, Frances; Currie, Richard; Sweby, Peter K; Salazar, José Domingo; Tindall, Marcus J
2018-04-14
We formulate, parameterise and analyse a mathematical model of the mevalonate pathway, a key pathway in the synthesis of cholesterol. Of high clinical importance, the pathway incorporates rate limiting enzymatic reactions with multiple negative feedbacks. In this work we investigate the pathway dynamics and demonstrate that rate limiting steps and negative feedbacks within it act in concert to tightly regulate intracellular cholesterol levels. Formulated using the theory of nonlinear ordinary differential equations and parameterised in the context of a hepatocyte, the governing equations are analysed numerically and analytically. Sensitivity and mathematical analysis demonstrate the importance of the two rate limiting enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and squalene synthase in controlling the concentration of substrates within the pathway as well as that of cholesterol. The role of individual feedbacks, both global (between that of cholesterol and sterol regulatory element-binding protein 2; SREBP-2) and local internal (between substrates in the pathway) are investigated. We find that whilst the cholesterol SREBP-2 feedback regulates the overall system dynamics, local feedbacks activate within the pathway to tightly regulate the overall cellular cholesterol concentration. The network stability is analysed by constructing a reduced model of the full pathway and is shown to exhibit one real, stable steady-state. We close by addressing the biological question as to how farnesyl-PP levels are affected by CYP51 inhibition, and demonstrate that the regulatory mechanisms within the network work in unison to ensure they remain bounded. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-01-01
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-10-06
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.
Peyre, Elise; Silva, Carla G.; Nguyen, Laurent
2015-01-01
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex. PMID:25926769
Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity.
Huang, Yunpeng; Wu, Zhihao; Zhou, Bing
2016-01-01
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P.
2003-01-01
Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching. PMID:12569124
Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P
2003-02-01
Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System 48 CFR Part 207 RIN 0750-AH12 Defense Federal Acquisition Regulation Supplement; Definition of Multiple-Award Contract (DFARS Case 2011-D016) AGENCY: Defense Acquisition Regulations System, Department of Defense (DoD). ACTION: Final rule. SUMMARY...
Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan
2015-11-27
Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics.
Dynamic regulation of hepatic lipid droplet properties by diet.
Crunk, Amanda E; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; Maclean, Paul S; Ladinsky, Mark; Bales, Elise S; Cain, Shannon; Orlicky, David J; McManaman, James L
2013-01-01
Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.
Dynamic Regulation of Hepatic Lipid Droplet Properties by Diet
Crunk, Amanda E.; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; MacLean, Paul S.; Ladinsky, Mark; Bales, Elise S.; Cain, Shannon; Orlicky, David J.; McManaman, James L.
2013-01-01
Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands. PMID:23874434
Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A.; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan
2015-01-01
Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics. PMID:26611125
Chudasama, Vaishali L.; Ovacik, Meric A.; Abernethy, Darrell R.
2015-01-01
Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens. PMID:26163548
Novak, Vera; Yang, Albert CC; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang
2004-01-01
Background This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. Methods We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. Results A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. Conclusion In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure. PMID:15504235
Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields
White, Olivier; Thonnard, Jean-Louis; Lefèvre, Philippe; Hermsdörfer, Joachim
2018-01-01
Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5, and 1 g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity). Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. This result was underlined by good correlations between grip and load forces in the first trial. Participants predictively applied larger grip forces when they expected increasing gravity steps. They also decreased grip force when they expected decreasing gravity steps, but not as much as they could, indicating imperfect anticipation in that condition. The participants' performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions. PMID:29527176
Effects of Different PER Translational Kinetics on the Dynamics of a Core Circadian Clock Model
Nieto, Paula S.; Revelli, Jorge A.; Garbarino-Pico, Eduardo; Condat, Carlos A.; Guido, Mario E.; Tamarit, Francisco A.
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis. PMID:25607544
Effects of different per translational kinetics on the dynamics of a core circadian clock model.
Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.
Hardoüin, Jérôme; Sagués, Francesc
2018-01-01
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)–like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component. PMID:29740605
Guillamat, Pau; Kos, Žiga; Hardoüin, Jérôme; Ignés-Mullol, Jordi; Ravnik, Miha; Sagués, Francesc
2018-04-01
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.
NASA Astrophysics Data System (ADS)
Liu, Suyu; Wang, Qingyun
2017-11-01
Presently, we improve a computational framework of thalamocortical circuits related to the Taylor's model to investigate the relationship between thalamic reticular nucleus (RE) excitability and epilepsy. By using bifurcation analysis, we explore the RE's excitability dynamics mechanism in the processes of seizure generation, development and transition. Results show that the seizure-free state, absence seizures, clonic seizures and tonic seizures can be formed as the RE excitability is changed in this established model. Importantly, it is verified that physiological changing GABAA inhibition in RE can elicit absence seizures and clonic seizures and the pathological transitions between these two seizures. Furthermore, when the level of AMPA connection is decreased or increased, this proposed model embraces absence seizures and clonic seizures, and tonic seizures, respectively. Except that, bifurcation mechanisms of dynamical transition of different seizures are analyzed in detail. In addition, hybrid regulations of the reticular nucleus excitability for epileptic seizures are proven to be valid within the suitable levels of AMPA and GABAA connection. Hopefully, the obtained results could be helpful for effective control of epileptic activities with additional pharmacological interference.
NASA Astrophysics Data System (ADS)
Cherubin, S.; Agosta, G.
2018-01-01
We present LIBVERSIONINGCOMPILER, a C++ library designed to support the dynamic generation of multiple versions of the same compute kernel in a HPC scenario. It can be used to provide continuous optimization, code specialization based on the input data or on workload changes, or otherwise to dynamically adjust the application, without the burden of a full dynamic compiler. The library supports multiple underlying compilers but specifically targets the LLVM framework. We also provide examples of use, showing the overhead of the library, and providing guidelines for its efficient use.
Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response.
Cazzalini, Ornella; Scovassi, A Ivana; Savio, Monica; Stivala, Lucia A; Prosperi, Ennio
2010-01-01
Among cell cycle regulatory proteins that are activated following DNA damage, the cyclin-dependent kinase inhibitor p21(CDKN1A) plays essential roles in the DNA damage response, by inducing cell cycle arrest, direct inhibition of DNA replication, as well as by regulating fundamental processes, like apoptosis and transcription. These functions are performed through the ability of p21 to interact with a number of proteins involved in these processes. Despite an initial controversy, during the last years several lines of evidence have also indicated that p21 may be directly involved in DNA repair. In particular, the participation of p21 in nucleotide excision repair (NER), base excision repair (BER), and DNA translesion synthesis (TLS), has been suggested to occur thanks to its interaction with proliferating cell nuclear antigen (PCNA), a crucial protein involved in several aspects of DNA metabolism, and cell-cycle regulation. In this review, the multiple roles of p21 in the DNA damage response, including regulation of cell cycle, apoptosis and gene transcription, are discussed together with the most recent findings supporting the direct participation of p21 protein in DNA repair processes. In particular, spatio-temporal dynamics of p21 recruitment to sites of DNA damage will be considered together with several lines of evidence indicating a regulatory role for p21. In addition, the relevance of post-translational regulation in the fate (e.g. degradation) of p21 protein after cell exposure to DNA damaging agents will be analyzed. Both sets of evidence will be discussed in terms of the overall DNA damage response. 2010 Elsevier B.V. All rights reserved.
Hubber, Andree; Arasaki, Kohei; Nakatsu, Fubito; Hardiman, Camille; Lambright, David; De Camilli, Pietro; Nagai, Hiroki; Roy, Craig R
2014-07-01
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.
Illumination-based synchronization of high-speed vision sensors.
Hou, Lei; Kagami, Shingo; Hashimoto, Koichi
2010-01-01
To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.
Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.
Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A
2016-01-01
Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.
Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles
NASA Technical Reports Server (NTRS)
Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.
2014-01-01
The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.
INSECT FAT BODY: ENERGY, METABOLISM, AND REGULATION
Arrese, Estela L.; Soulages, Jose L.
2010-01-01
The fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects. PMID:19725772
Accelerating the Conformational Sampling of Intrinsically Disordered Proteins.
Do, Trang Nhu; Choy, Wing-Yiu; Karttunen, Mikko
2014-11-11
Intrinsically disordered proteins (IDPs) are a class of proteins lacking a well-defined secondary structure. Instead, they are able to attain multiple conformations, bind to multiple targets, and respond to changes in their surroundings. Functionally, IDPs have been associated with molecular recognition, cell regulation, and signal transduction. The dynamic conformational ensemble of IDPs is highly environmental and binding partner dependent, rendering the characterization of IDPs extremely challenging. Here, we compare the sampling efficiencies of conventional molecular dynamics (MD), well-tempered metadynamics (WT-META), and bias-exchange metadynamics (BE-META). The total simulation time was over 10 μs, and a 20-mer peptide derived from the Neh2 domain of the Nuclear factor erythroid 2-related factor 2 (Nrf2) protein was simulated. BE-META, with a neutral replica and seven biased replicas employing a set of seven relevant collective variables (CVs), provided the most reliable and efficient sampling. Finally, we propose a free-energy reconstruction method based on the probability distribution of the secondary structure contents. This postprocessing analysis confirms the presence of not only the β-hairpin conformation of the free Neh2 peptide but also its rare bound-state-like conformation, both of that have been experimentally observed. In addition, our simulations also predict other possible conformations to be verified with future experiments.
Anandhakumar, Jayamani; Moustafa, Yara W.; Chowdhary, Surabhi; Kainth, Amoldeep S.
2016-01-01
Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the “anchor away” (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. PMID:27185874
Khanna, M M; Badura-Brack, A S; McDermott, T J; Embury, C M; Wiesman, A I; Shepherd, A; Ryan, T J; Heinrichs-Graham, E; Wilson, T W
2017-08-01
Post-traumatic stress disorder (PTSD) is often associated with attention allocation and emotional regulation difficulties, but the brain dynamics underlying these deficits are unknown. The emotional Stroop task (EST) is an ideal means to monitor these difficulties, because participants are asked to attend to non-emotional aspects of the stimuli. In this study, we used magnetoencephalography (MEG) and the EST to monitor attention allocation and emotional regulation during the processing of emotionally charged stimuli in combat veterans with and without PTSD. A total of 31 veterans with PTSD and 20 without PTSD performed the EST during MEG. Three categories of stimuli were used, including combat-related, generally threatening and neutral words. MEG data were imaged in the time-frequency domain and the network dynamics were probed for differences in processing threatening and non-threatening words. Behaviorally, veterans with PTSD were significantly slower in responding to combat-related relative to neutral and generally threatening words. Veterans without PTSD exhibited no significant differences in responding to the three different word types. Neurophysiologically, we found a significant three-way interaction between group, word type and time period across multiple brain regions. Follow-up testing indicated stronger theta-frequency (4-8 Hz) responses in the right ventral prefrontal (0.4-0.8 s) and superior temporal cortices (0.6-0.8 s) of veterans without PTSD compared with those with PTSD during the processing of combat-related words. Our data indicated that veterans with PTSD exhibited deficits in attention allocation and emotional regulation when processing trauma cues, while those without PTSD were able to regulate emotion by directing attention away from threat.
Zimmermann, Kerstin; Eells, Rebecca; Heinrich, Frank; Rintoul, Stefanie; Josey, Brian; Shekhar, Prabhanshu; Lösche, Mathias; Stern, Lawrence J
2017-10-27
Interactions between lipid bilayers and the membrane-proximal regions of membrane-associated proteins play important roles in regulating membrane protein structure and function. The T-cell antigen receptor is an assembly of eight single-pass membrane-spanning subunits on the surface of T lymphocytes that initiates cytosolic signaling cascades upon binding antigens presented by MHC-family proteins on antigen-presenting cells. Its ζ-subunit contains multiple cytosolic immunoreceptor tyrosine-based activation motifs involved in signal transduction, and this subunit by itself is sufficient to couple extracellular stimuli to intracellular signaling events. Interactions of the cytosolic domain of ζ (ζ cyt ) with acidic lipids have been implicated in the initiation and regulation of transmembrane signaling. ζ cyt is unstructured in solution. Interaction with acidic phospholipids induces structure, but its disposition when bound to lipid bilayers is controversial. Here, using surface plasmon resonance and neutron reflection, we characterized the interaction of ζ cyt with planar lipid bilayers containing mixtures of acidic and neutral lipids. We observed two binding modes of ζ cyt to the bilayers in dynamic equilibrium: one in which ζ cyt is peripherally associated with lipid headgroups and one in which it penetrates deeply into the bilayer. Such an equilibrium between the peripherally bound and embedded forms of ζ cyt apparently controls accessibility of the immunoreceptor tyrosine-based activation signal transduction pathway. Our results reconcile conflicting findings of the ζ structure reported in previous studies and provide a framework for understanding how lipid interactions regulate motifs to tyrosine kinases and may regulate the T-cell antigen receptor biological activities for this cell-surface receptor system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Policy. 22.503 Section 22.503 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS... require multiple construction contractors and/or subcontractors employing workers in multiple crafts or...
Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
Hui, YU; Ramkrishna, MITRA; Jing, YANG; YuanYuan, LI; ZhongMing, ZHAO
2016-01-01
Identification of differential regulators is critical to understand the dynamics of cellular systems and molecular mechanisms of diseases. Several computational algorithms have recently been developed for this purpose by using transcriptome and network data. However, it remains largely unclear which algorithm performs better under a specific condition. Such knowledge is important for both appropriate application and future enhancement of these algorithms. Here, we systematically evaluated seven main algorithms (TED, TDD, TFactS, RIF1, RIF2, dCSA_t2t, and dCSA_r2t), using both simulated and real datasets. In our simulation evaluation, we artificially inactivated either a single regulator or multiple regulators and examined how well each algorithm detected known gold standard regulators. We found that all these algorithms could effectively discern signals arising from regulatory network differences, indicating the validity of our simulation schema. Among the seven tested algorithms, TED and TFactS were placed first and second when both discrimination accuracy and robustness against data variation were considered. When applied to two independent lung cancer datasets, both TED and TFactS replicated a substantial fraction of their respective differential regulators. Since TED and TFactS rely on two distinct features of transcriptome data, namely differential co-expression and differential expression, both may be applied as mutual references during practical application. PMID:25326829
Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivation
Yue, Minghui; Richard, John Lalith Charles
2015-01-01
There is increasing evidence for the emergence of long noncoding RNAs (IncRNAs) as important components, especially in the regulation of gene expression. In the event of X chromosome inactivation, robust epigenetic marks are established in a long noncoding Xist RNA-dependent manner, giving rise to a distinct epigenetic landscape on the inactive X chromosome (Xi). The X inactivation center (Xic is essential for induction of X chromosome inactivation and harbors two topologically associated domains (TADs) to regulate monoallelic Xist expression: one at the noncoding Xist gene and its upstream region, and the other at the antisense Tsix and its upstream region. The monoallelic expression of Xist is tightly regulated by these two functionally distinct TADs as well as their constituting IncRNAs and proteins. In this review, we summarize recent updates in our knowledge of IncRNAs found at the Xic and discuss their overall mechanisms of action. We also discuss our current understanding of the molecular mechanism behind Xist RNA-mediated induction of the repressive epigenetic landscape at the Xi. PMID:26260844
Fusion pores and their control of neurotransmitter and hormone release
Chang, Che-Wei; Chiang, Chung-Wei
2017-01-01
Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release. PMID:28167663
Strand swapping regulates the iron-sulfur cluster in the diabetes drug target mitoNEET
Baxter, Elizabeth Leigh; Jennings, Patricia A.; Onuchic, José N.
2012-01-01
MitoNEET is a recently identified diabetes drug target that coordinates a transferable 2Fe-2S cluster, and additionally contains an unusual strand swap. In this manuscript, we use a dual basin structure-based model to predict and characterize the folding and functionality of strand swapping in mitoNEET. We demonstrate that a strand unswapped conformation is kinetically accessible and that multiple levels of control are employed to regulate the conformational dynamics of the system. Environmental factors such as temperature can shift route preference toward the unswapped pathway. Additionally we see that a region recently identified as contributing to frustration in folding acts as a regulatory hinge loop that modulates conformational balance. Interestingly, strand unswapping transfers strain specifically to cluster-coordinating residues, opening the cluster-coordinating pocket. Strengthening contacts within the cluster-coordinating pocket opens a new pathway between the swapped and unswapped conformation that utilizes cracking to bypass the unfolded basin. These results suggest that local control within distinct regions affect motions important in regulating mitoNEET’s 2Fe-2S clusters. PMID:22308404
Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana.
Zádníková, Petra; Petrásek, Jan; Marhavy, Peter; Raz, Vered; Vandenbussche, Filip; Ding, Zhaojun; Schwarzerová, Katerina; Morita, Miyo T; Tasaka, Masao; Hejátko, Jan; Van Der Straeten, Dominique; Friml, Jirí; Benková, Eva
2010-02-01
The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.
Mechanisms Underlying CD4+ Treg Immune Regulation in the Adult: From Experiments to Models
Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.
2013-11-18
To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less
Regulators of alternative polyadenylation operate at the transition from mitosis to meiosis.
Shan, Lingjuan; Wu, Chan; Chen, Di; Hou, Lei; Li, Xin; Wang, Lixia; Chu, Xiao; Hou, Yifeng; Wang, Zhaohui
2017-02-20
In the sexually reproductive organisms, gametes are produced by meiosis following a limited mitotic amplification. However, the intrinsic program switching cells from mitotic to meiotic cycle is unclear. Alternative polyadenylation (APA) is a highly conserved means of gene regulation and is achieved by the RNA 3'-processing machinery to generate diverse 3'UTR profiles. In Drosophila spermatogenesis, we observed distinct profiles of transcriptome-wide 3'UTR between mitotic and meiotic cells. In mutant germ cells stuck in mitosis, 3'UTRs of hundreds of genes were consistently shifted. Remarkably, altering the levels of multiple 3'-processing factors disrupted germline's progression to meiosis, indicative of APA's active role in this transition. An RNA-binding protein (RBP) Tut could directly bind 3'UTRs of 3'-processing factors whose expressions were repressed in the presence of Tut-containing complex. Further, we demonstrated that this RBP complex could execute the repression post-transcriptionally by recruiting CCR4/Twin of deadenylation complex. Thus, we propose that an RBP complex regulates the dynamic APA profile to promote the mitosis-to-meiosis transition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Reciprocal and activity-dependent regulation of surface AMPA and NMDA receptors in cultured neurons
Li, Guo Hua; Jackson, Michael F; Orser, Beverley A; MacDonald, John F
2010-01-01
Activation of NMDA receptors (NMDARs) can modulate excitatory synaptic transmission in the central nervous system by dynamically altering the number of synaptic AMPA receptors (AMPARs). The surface expression of NMDARs themselves is also subject to modulation in an activity-dependent manner. In addition to NMDAR-induced changes in AMPAR expression, AMPARs have also been found to regulate their own surface expression, independently of NMDARs. However, whether or not AMPARs and NMDARs might reciprocally regulate their surface expression has not previously been systematically explored. We utilized surface biotinylation assays and stimulation protocols intended to selectively stimulate various glutamate receptor subpopulations (e.g. AMPARs vs NMDARs; synaptic vs extrasynaptic). We reveal that activation of synaptic NMDARs increases the surface expression of both NMDAR and AMPAR subunits, while activation of extrasynaptic NMDAR produces the opposite effect. Surprisingly, we find that selective activation of AMPARs reduces the surface expression of not only AMPARs but also of NMDARs. These results suggest that both AMPARs and NMDARs at synaptic sites are subject to modulation by multiple signalling pathways in an activity-dependent way. PMID:21383896
Ribonuclease E modulation of the bacterial SOS response.
Manasherob, Robert; Miller, Christine; Kim, Kwang-sun; Cohen, Stanley N
2012-01-01
Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes-leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed.
Ribonuclease E Modulation of the Bacterial SOS Response
Manasherob, Robert; Miller, Christine; Kim, Kwang-sun; Cohen, Stanley N.
2012-01-01
Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes–leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed. PMID:22719885
2009-11-01
dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics
Normanno, Davide; Vanzi, Francesco; Pavone, Francesco Saverio
2008-01-01
Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between −0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI–DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes. PMID:18310101
Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian
2018-01-01
A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.
Dynamics of TBP binding to the TATA box
NASA Astrophysics Data System (ADS)
Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.
2008-02-01
Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.
Molecular Dynamics of the Proline Switch and Its Role in Crk Signaling
2015-01-01
The Crk adaptor proteins play a central role as a molecular timer for the formation of protein complexes including various growth and differentiation factors. The loss of regulation of Crk results in many kinds of cancers. A self-regulatory mechanism for Crk was recently proposed, which involves domain–domain rearrangement. It is initiated by a cis–trans isomerization of a specific proline residue (Pro238 in chicken Crk II) and can be accelerated by Cyclophilin A. To understand how the proline switch controls the autoinhibition at the molecular level, we performed large-scale molecular dynamics and metadynamics simulations in the context of short peptides and multidomain constructs of chicken Crk II. We found that the equilibrium and kinetic properties of the macrostates are regulated not only by the local environments of specified prolines but also by the global organization of multiple domains. We observe the two macrostates (cis closed/autoinhibited and trans open/uninhibited) consistent with NMR experiments and predict barriers. We also propose an intermediate state, the trans closed state, which interestingly was reported to be a prevalent state in human Crk II. The existence of this macrostate suggests that the rate of switching off the autoinhibition by Cyp A may be limited by the relaxation rate of this intermediate state. PMID:24702481
Muñoz-Cobo, Juan Pablo; Sánchez-Hernández, Noemí; Gutiérrez, Sara; El Yousfi, Younes; Montes, Marta; Gallego, Carme; Hernández-Munain, Cristina; Suñé, Carlos
2017-12-01
TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.
Molecular dynamics of the proline switch and its role in Crk signaling.
Xia, Junchao; Levy, Ronald M
2014-05-01
The Crk adaptor proteins play a central role as a molecular timer for the formation of protein complexes including various growth and differentiation factors. The loss of regulation of Crk results in many kinds of cancers. A self-regulatory mechanism for Crk was recently proposed, which involves domain-domain rearrangement. It is initiated by a cis-trans isomerization of a specific proline residue (Pro238 in chicken Crk II) and can be accelerated by Cyclophilin A. To understand how the proline switch controls the autoinhibition at the molecular level, we performed large-scale molecular dynamics and metadynamics simulations in the context of short peptides and multidomain constructs of chicken Crk II. We found that the equilibrium and kinetic properties of the macrostates are regulated not only by the local environments of specified prolines but also by the global organization of multiple domains. We observe the two macrostates (cis closed/autoinhibited and trans open/uninhibited) consistent with NMR experiments and predict barriers. We also propose an intermediate state, the trans closed state, which interestingly was reported to be a prevalent state in human Crk II. The existence of this macrostate suggests that the rate of switching off the autoinhibition by Cyp A may be limited by the relaxation rate of this intermediate state.
Renault, L
2016-01-01
β-Thymosins are a family of heat-stable multifunctional polypeptides that are expressed as small proteins of about 5kDa (~45 amino acids) almost exclusively in multicellular animals. They were first isolated from the thymus. As full-length or truncated polypeptides, they appear to stimulate a broad range of extracellular activities in various signaling pathways, including tissue repair and regeneration, inflammation, cell migration, and immune defense. However, their cell surface receptors and structural mechanisms of regulations in these multiple pathways remain still poorly understood. Besides their extracellular activities, they belong to a larger family of small, intrinsically disordered actin-binding domains called WH2/β-thymosin domains that have been identified in more than 1800 multidomain proteins found in different taxonomic domains of life and involved in various actin-based motile processes including cell morphogenesis, motility, adhesions, tissue development, intracellular trafficking, or pathogen infections. This review briefly surveys the main recent findings to understand how these small, intrinsically disordered but functional domains can interact with many unrelated partners and can thus integrate and coordinate various intracellular activities in actin self-assembly dynamics and cell signaling pathways linked to their cytoskeleton remodeling. © 2016 Elsevier Inc. All rights reserved.
A minimal titration model of the mammalian dynamical heat shock response
NASA Astrophysics Data System (ADS)
Sivéry, Aude; Courtade, Emmanuel; Thommen, Quentin
2016-12-01
Environmental stress, such as oxidative or heat stress, induces the activation of the heat shock response (HSR) and leads to an increase in the heat shock proteins (HSPs) level. These HSPs act as molecular chaperones to maintain cellular proteostasis. Controlled by highly intricate regulatory mechanisms, having stress-induced activation and feedback regulations with multiple partners, the HSR is still incompletely understood. In this context, we propose a minimal molecular model for the gene regulatory network of the HSR that reproduces quantitatively different heat shock experiments both on heat shock factor 1 (HSF1) and HSPs activities. This model, which is based on chemical kinetics laws, is kept with a low dimensionality without altering the biological interpretation of the model dynamics. This simplistic model highlights the titration of HSF1 by chaperones as the guiding line of the network. Moreover, by a steady states analysis of the network, three different temperature stress regimes appear: normal, acute, and chronic, where normal stress corresponds to pseudo thermal adaption. The protein triage that governs the fate of damaged proteins or the different stress regimes are consequences of the titration mechanism. The simplicity of the present model is of interest in order to study detailed modelling of cross regulation between the HSR and other major genetic networks like the cell cycle or the circadian clock.
Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H
2001-04-01
The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.
Multi-Objective Lake Superior Regulation
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Razavi, S.; Tolson, B.
2011-12-01
At the direction of the International Joint Commission (IJC) the International Upper Great Lakes Study (IUGLS) Board is investigating possible changes to the present method of regulating the outflows of Lake Superior (SUP) to better meet the contemporary needs of the stakeholders. In this study, a new plan in the form of a rule curve that is directly interpretable for regulation of SUP is proposed. The proposed rule curve has 18 parameters that should be optimized. The IUGLS Board is also interested in a regulation strategy that considers potential effects of climate uncertainty. Therefore, the quality of the rule curve is assessed simultaneously for multiple supply sequences that represent various future climate scenarios. The rule curve parameters are obtained by solving a computationally intensive bi-objective simulation-optimization problem that maximizes the total increase in navigation and hydropower benefits of the new regulation plan and minimizes the sum of all normalized constraint violations. The objective and constraint values are obtained from a Microsoft Excel based Shared Vision Model (SVM) that compares any new SUP regulation plan with the current regulation policy. The underlying optimization problem is solved by a recently developed, highly efficient multi-objective optimization algorithm called Pareto Archived Dynamically Dimensioned Search (PA-DDS). To further improve the computational efficiency of the simulation-optimization problem, the model pre-emption strategy is used in a novel way to avoid the complete evaluation of regulation plans with low quality in both objectives. Results show that the generated rule curve is robust and typically more reliable when facing unpredictable climate conditions compared to other SUP regulation plans.
A walk through the approximations of ab initio multiple spawning
NASA Astrophysics Data System (ADS)
Mignolet, Benoit; Curchod, Basile F. E.
2018-04-01
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
A walk through the approximations of ab initio multiple spawning.
Mignolet, Benoit; Curchod, Basile F E
2018-04-07
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Dynamic Measurement: The Crossroad of Area and Multiplication
ERIC Educational Resources Information Center
Panorkou, Nicole
2017-01-01
In this exploratory study, our goal was to engage students in dynamic experiences of area as a continuous quantity that can be measured by multiplicatively composing two linear measures (lengths), an approach we refer to as 'dynamic measurement,' or DYME. In this paper, we present the learning trajectory constructed from two cycles of teaching…
Emotion regulation and the dynamics of feelings: a conceptual and methodological framework.
Hoeksma, Jan B; Oosterlaan, Jaap; Schipper, Eline M
2004-01-01
The emotional system is defined as a dynamical system that has neurological and biochemical structures that force the system to change in a regular and consistent way. This dynamic view allows for an alternative definition of emotion regulation, which describes when emotion regulation is needed, identifies its goal, and illustrates how regulation is achieved. The thesis developed here is that feelings-the private mental experience of emotion-play a crucial role in emotion regulation. Specifics of regulation are discussed and a parallel with parent-child interaction is drawn. It is shown that emotion regulation can be studied by looking at the variability of feelings. An illustrative application (N=30, age 10-13 years) shows that variability of anger is associated with the core executive function response inhibition.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
...-0001; Sequence 21] General Services Administration Acquisition Regulation: Modifications (Multiple... Modifications (Multiple Award Schedule). DATES: Submit comments on or before: February 15, 2013. FOR FURTHER INFORMATION CONTACT: Ms. Dana Munson, General Services Acquisition Policy Division, GSA, (202) 357-9652 or...
Endedijk, Maaike D; Brekelmans, Mieke; Sleegers, Peter; Vermunt, Jan D
Self-regulated learning has benefits for students' academic performance in school, but also for expertise development during their professional career. This study examined the validity of an instrument to measure student teachers' regulation of their learning to teach across multiple and different kinds of learning events in the context of a postgraduate professional teacher education programme. Based on an analysis of the literature, we developed a log with structured questions that could be used as a multiple-event instrument to determine the quality of student teachers' regulation of learning by combining data from multiple learning experiences. The findings showed that this structured version of the instrument measured student teachers' regulation of their learning in a valid and reliable way. Furthermore, with the aid of the Structured Learning Report individual differences in student teachers' regulation of learning could be discerned. Together the findings indicate that a multiple-event instrument can be used to measure regulation of learning in multiple contexts for various learning experiences at the same time, without the necessity of relying on students' ability to rate themselves across all these different experiences. In this way, this instrument can make an important contribution to bridging the gap between two dominant approaches to measure SRL, the traditional aptitude and event measurement approach.
Lewis, Michele D.; Park, Hyun Woo; Brand, Randall E.; Gelrud, Andres; Anderson, Michelle A.; Banks, Peter A.; Conwell, Darwin; Lawrence, Christopher; Romagnuolo, Joseph; Baillie, John; Alkaade, Samer; Cote, Gregory; Gardner, Timothy B.; Amann, Stephen T.; Slivka, Adam; Sandhu, Bimaljit; Aloe, Amy; Kienholz, Michelle L.; Yadav, Dhiraj; Barmada, M. Michael; Bahar, Ivet; Lee, Min Goo; Whitcomb, David C.
2014-01-01
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system. PMID:25033378
LaRusch, Jessica; Jung, Jinsei; General, Ignacio J; Lewis, Michele D; Park, Hyun Woo; Brand, Randall E; Gelrud, Andres; Anderson, Michelle A; Banks, Peter A; Conwell, Darwin; Lawrence, Christopher; Romagnuolo, Joseph; Baillie, John; Alkaade, Samer; Cote, Gregory; Gardner, Timothy B; Amann, Stephen T; Slivka, Adam; Sandhu, Bimaljit; Aloe, Amy; Kienholz, Michelle L; Yadav, Dhiraj; Barmada, M Michael; Bahar, Ivet; Lee, Min Goo; Whitcomb, David C
2014-07-01
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.
HIV dynamics with multiple infections of target cells.
Dixit, Narendra M; Perelson, Alan S
2005-06-07
The high incidence of multiple infections of cells by HIV sets the stage for rapid HIV evolution by means of recombination. Yet how HIV dynamics proceeds with multiple infections remains poorly understood. Here, we present a mathematical model that describes the dynamics of viral, target cell, and multiply infected cell subpopulations during HIV infection. Model calculations reproduce several experimental observations and provide key insights into the influence of multiple infections on HIV dynamics. We find that the experimentally observed scaling law, that the number of cells coinfected with two distinctly labeled viruses is proportional to the square of the total number of infected cells, can be generalized so that the number of triply infected cells is proportional to the cube of the number of infected cells, etc. Despite the expectation from Poisson statistics, we find that this scaling relationship only holds under certain conditions, which we predict. We also find that multiple infections do not influence viral dynamics when the rate of viral production from infected cells is independent of the number of times the cells are infected, a regime expected when viral production is limited by cellular rather than viral factors. This result may explain why extant models, which ignore multiple infections, successfully describe viral dynamics in HIV patients. Inhibiting CD4 down-modulation increases the average number of infections per cell. Consequently, altering CD4 down-modulation may allow for an experimental determination of whether viral or cellular factors limit viral production.
HIV dynamics with multiple infections of target cells
Dixit, Narendra M.; Perelson, Alan S.
2005-01-01
The high incidence of multiple infections of cells by HIV sets the stage for rapid HIV evolution by means of recombination. Yet how HIV dynamics proceeds with multiple infections remains poorly understood. Here, we present a mathematical model that describes the dynamics of viral, target cell, and multiply infected cell subpopulations during HIV infection. Model calculations reproduce several experimental observations and provide key insights into the influence of multiple infections on HIV dynamics. We find that the experimentally observed scaling law, that the number of cells coinfected with two distinctly labeled viruses is proportional to the square of the total number of infected cells, can be generalized so that the number of triply infected cells is proportional to the cube of the number of infected cells, etc. Despite the expectation from Poisson statistics, we find that this scaling relationship only holds under certain conditions, which we predict. We also find that multiple infections do not influence viral dynamics when the rate of viral production from infected cells is independent of the number of times the cells are infected, a regime expected when viral production is limited by cellular rather than viral factors. This result may explain why extant models, which ignore multiple infections, successfully describe viral dynamics in HIV patients. Inhibiting CD4 down-modulation increases the average number of infections per cell. Consequently, altering CD4 down-modulation may allow for an experimental determination of whether viral or cellular factors limit viral production. PMID:15928092
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.
Dynamic Modeling of Systemic Risk in Financial Networks
NASA Astrophysics Data System (ADS)
Avakian, Adam
Modern financial networks are complicated structures that can contain multiple types of nodes and connections between those nodes. Banks, governments and even individual people weave into an intricate network of debt, risk correlations and many other forms of interconnectedness. We explore multiple types of financial network models with a focus on understanding the dynamics and causes of cascading failures in such systems. In particular, we apply real-world data from multiple sources to these models to better understand real-world financial networks. We use the results of the Federal Reserve "Banking Organization Systemic Risk Report" (FR Y-15), which surveys the largest US banks on their level of interconnectedness, to find relationships between various measures of network connectivity and systemic risk in the US financial sector. This network model is then stress-tested under a number of scenarios to determine systemic risks inherent in the various network structures. We also use detailed historical balance sheet data from the Venezuelan banking system to build a bipartite network model and find relationships between the changing network structure over time and the response of the system to various shocks. We find that the relationship between interconnectedness and systemic risk is highly dependent on the system and model but that it is always a significant one. These models are useful tools that add value to regulators in creating new measurements of systemic risk in financial networks. These models could be used as macroprudential tools for monitoring the health of the entire banking system as a whole rather than only of individual banks.
2018-01-01
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the properties of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Last, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site. PMID:29386401
Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-01-01
We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.
αE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion
Benjamin, Jacqueline M.; Kwiatkowski, Adam V.; Yang, Changsong; Korobova, Farida; Pokutta, Sabine; Svitkina, Tatyana
2010-01-01
αE-catenin binds the cell–cell adhesion complex of E-cadherin and β-catenin (β-cat) and regulates filamentous actin (F-actin) dynamics. In vitro, binding of αE-catenin to the E-cadherin–β-cat complex lowers αE-catenin affinity for F-actin, and αE-catenin alone can bind F-actin and inhibit Arp2/3 complex–mediated actin polymerization. In cells, to test whether αE-catenin regulates actin dynamics independently of the cadherin complex, the cytosolic αE-catenin pool was sequestered to mitochondria without affecting overall levels of αE-catenin or the cadherin–catenin complex. Sequestering cytosolic αE-catenin to mitochondria alters lamellipodia architecture and increases membrane dynamics and cell migration without affecting cell–cell adhesion. In contrast, sequestration of cytosolic αE-catenin to the plasma membrane reduces membrane dynamics. These results demonstrate that the cytosolic pool of αE-catenin regulates actin dynamics independently of cell–cell adhesion. PMID:20404114
Multiple acousto-optic q-switch
Deason, Vance A.
1993-01-01
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
Multiple acousto-optic q-switch
Deason, Vance A.
1993-12-07
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
Conjugate-Gradient Algorithms For Dynamics Of Manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Scheid, Robert E.
1993-01-01
Algorithms for serial and parallel computation of forward dynamics of multiple-link robotic manipulators by conjugate-gradient method developed. Parallel algorithms have potential for speedup of computations on multiple linked, specialized processors implemented in very-large-scale integrated circuits. Such processors used to stimulate dynamics, possibly faster than in real time, for purposes of planning and control.
Winkelmann, Stefanie; Schütte, Christof
2017-09-21
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Rosenberg, Alex; Sinai, Lior; Smith, Yoav; Ben-Yehuda, Sigal
2012-01-01
The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis) as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition. PMID:22848659
NASA Astrophysics Data System (ADS)
Winkelmann, Stefanie; Schütte, Christof
2017-09-01
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
The Complexity of Dynamics in Small Neural Circuits
Panzeri, Stefano
2016-01-01
Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing. PMID:27494737
Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells
Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W.; Wiseman, Paul W.
2015-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705
Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators.
Min, Byung Eun; Hwang, Hyun Gyu; Lim, Hyun Gyu; Jung, Gyoo Yeol
2017-01-01
Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.
Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A
2017-04-01
Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo
2018-04-27
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Dynamical configurations of celestial systems comprised of multiple irregular bodies
NASA Astrophysics Data System (ADS)
Jiang, Yu; Zhang, Yun; Baoyin, Hexi; Li, Junfeng
2016-09-01
This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n - 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple-asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and analyzed.
Wetland dynamics influence mid-continent duck recruitment
Anteau, Michael J.; Pearse, Aaron T.; Szymankski, Michael L.
2013-01-01
Recruitment is a key factor influencing duck population dynamics. Understanding what regulates recruitment of ducks is a prerequisite to informed habitat and harvest management. Quantity of May ponds (MP) has been linked to recruitment and population size (Kaminski and Gluesing 1987, Raveling and Heitmeyer 1989). However, wetland productivity (quality) is driven by inter-annual hydrological fluctuations. Periodic drying of wetlands due to wet-dry climate cycles releases nutrients and increases invertebrate populations when wet conditions return (Euliss et al. 1999). Wetlands may also become wet or dry within a breeding season. Accordingly, inter-annual and intra-seasonal hydrologic variation potentially influence duck recruitment. Here, we examined influences of wetland quantity, quality, and intra-seasonal dynamics on recruitment of ducks. We indexed duck recruitment by vulnerability-corrected age ratios (juveniles/adult females) for mid-continent Gadwall (Anas strepera). We chose Gadwall because the majority of the continental population breeds in the Prairie Pothole Region (PPR), where annual estimates of MP exist since 1974. We indexed wetland quality by calculating change in MP (?MP) over the past two years (?MP = 0.6[MPt – MPt-1] + 0.4[MPt – MPt-2]). We indexed intra-seasonal change in number of ponds by dividing the PPR mean standardized precipitation index for July by MP (hereafter summer index). MP and ?MP were positively correlated (r = 0.65); therefore, we calculated residual ?MP (?MPr) with a simple linear regression using MP, creating orthogonal variables. Finally, we conducted a multiple regression to examine how MP, ?MPr, and summer index explained variation in recruitment of Gadwall from 1976–2010. Our model explained 67% of the variation in mid-continent Gadwall recruitment and all three hydrologic indices were positively correlated with recruitment (Figure 1). Type II semi-partial R2 estimates indicated that MP accounted for 41%, ?MPr accounted for an additional 22%, and summer index accounted for the remaining 4% of the variation in recruitment. Our results are consistent with previous findings that quantity of MP was important for explaining variation in recruitment of ducks. However, our results also indicated that considering hydrologic dynamics was important for explaining recruitment. Additionally, the index for retention of MP within breeding year also was important, despite its coarse resolution as an average of precipitation events that can vary greatly spatially and in intensity within the PPR. Our results support the idea that wetland ecosystems in the PPR are ultimately regulated through bottom-up process driven by inter- and intra-annual hydrological dynamics. However from the ducks' perspective, hydrological dynamics could influence recruitment proximately through both bottom-up and top-down processes. Specifically, hydrological fluctuations may influence predator populations, prey switching by predators, or duckling vulnerability to predators (Cox et al. 1998). We will propose a conceptual model for understanding the potential role of bottom-up and top-down regulation of duck recruitment based on different hydrological contexts. Clearly, a better understanding of ultimate and proximate factors regulating duck recruitment would improve the effectiveness and efficiency of habitat conservation for ducks. Lastly, our findings could be used to improve models that predict fall flights for the purposes of informing harvest regulations.
Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L
2016-10-01
As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
The evolution of transcriptional regulation in eukaryotes
NASA Technical Reports Server (NTRS)
Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.
2003-01-01
Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.
Multiple roles for the actin cytoskeleton during regulated exocytosis
Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto
2014-01-01
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507
Kim, Eun Sung; Park, So Jung; Goh, Myeong-Jin; Na, Yong-Joo; Jo, Doo Sin; Jo, Yoon Kyung; Shin, Ji Hyun; Choi, Eun Sun; Lee, Hae-Kwang; Kim, Ju-Yeon; Jeon, Hong Bae; Kim, Jin Cheon; Cho, Dong-Hyung
2014-11-01
Mitochondrial dynamics control mitochondrial functions as well as their morphology. However, the role of mitochondrial dynamics in melanogenesis is largely unknown. Here, we show that mitochondrial dynamics regulate melanogenesis by modulating the ROS-ERK signaling pathway. Genetic and chemical inhibition of Drp1, a mitochondrial fission protein, increased melanin production and mitochondrial elongation in melanocytes and melanoma cells. In contrast, down-regulation of OPA1, a mitochondria fusion regulator, suppressed melanogensis but induced massive mitochondrial fragmentation in hyperpigmented cells. Consistently, treatment with CCCP, a mitochondrial fission chemical inducer, also efficiently repressed melanogenesis. Furthermore, we found that ROS production and ERK phosphorylation were increased in cells with fragmented mitochondria. And inhibition of ROS or ERK suppressed the antimelanogenic effect of mitochondrial fission in α-MSH-treated cells. In addition, the activation of ROS-ERK pathway by mitochondrial fission induced phosphorylation of serine73 on MITF accelerating its proteasomal degradation. In conclusion, mitochondrial dynamics may regulate melanogenesis by modulating ROS-ERK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation
Li, Peng -Cheng; Sheu, Yae -Lin; Jooya, Hossein Z.; ...
2016-09-06
Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories aremore » dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. As a result, it also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.« less
Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation
Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z.; Zhou, Xiao-Xin; Chu, Shih-I
2016-01-01
Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse. PMID:27596056
Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation.
Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z; Zhou, Xiao-Xin; Chu, Shih-I
2016-09-06
Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.
Multiple Scenarios of Transition to Chaos in the Alternative Splicing Model
NASA Astrophysics Data System (ADS)
Kogai, Vladislav V.; Likhoshvai, Vitaly A.; Fadeev, Stanislav I.; Khlebodarova, Tamara M.
We have investigated the scenarios of transition to chaos in the mathematical model of a genetic system constituted by a single transcription factor-encoding gene, the expression of which is self-regulated by a feedback loop that involves protein isoforms. Alternative splicing results in the synthesis of protein isoforms providing opposite regulatory outcomes — activation or repression. The model is represented by a differential equation with two delayed arguments. The possibility of transition to chaos dynamics via all classical scenarios: a cascade of period-doubling bifurcations, quasiperiodicity and type-I, type-II and type-III intermittencies, has been numerically demonstrated. The parametric features of each type of transition to chaos have been described.
Dissecting the bulge in hair regeneration
Ito, Mayumi; Myung, Peggy
2012-01-01
The adult hair follicle houses stem cells that govern the cyclical growth and differentiation of multiple cell types that collectively produce a pigmented hair. Recent studies have revealed that hair follicle stem cells are heterogeneous and dynamic throughout the hair cycle. Moreover, interactions between heterologous stem cells, including both epithelial and melanocyte stem cells, within the hair follicle are just now being explored. This review will describe how recent findings have expanded our understanding of the development, organization, and regeneration of hair follicle stem cells. At a basic level, this review is intended to help construct a reference point to integrate the surge of studies on the molecular mechanisms that regulate these cells. PMID:22293183
Abscisic acid and other plant hormones: Methods to visualize distribution and signaling
Waadt, Rainer; Hsu, Po-Kai; Schroeder, Julian I.
2015-01-01
The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporters) for the analysis of the distribution and signaling of various plant hormones. Furthermore, we provide examples of their utility for gaining novel insights into plant hormone action with a deeper focus on the drought hormone abscisic acid. PMID:26577078
Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel
2017-03-01
Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.
Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing
2016-12-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1
Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing
2016-01-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880
Tögel, Lars; Nightingale, Rebecca; Wu, Rui; Chüeh, Anderly C; Al-Obaidi, Sheren; Luk, Ian; Dávalos-Salas, Mercedes; Chionh, Fiona; Murone, Carmel; Buchanan, Daniel D; Chatterton, Zac; Sieber, Oliver M; Arango, Diego; Tebbutt, Niall C; Williams, David; Dhillon, Amardeep S; Mariadason, John M
2018-01-29
The ERK signalling pathway regulates key cell fate decisions in the intestinal epithelium and is frequently dysregulated in colorectal cancers (CRCs). Variations in the dynamics of ERK activation can induce different biological outcomes and are regulated by multiple mechanisms, including activation of negative feedback loops involving transcriptional induction of dual-specificity phosphatases (DUSPs). We have found that the nuclear ERK-selective phosphatase DUSP5 is downregulated in colorectal tumours and cell lines, as previously observed in gastric and prostate cancer. The DUSP5 promoter is methylated in a subset of CRC cell lines and primary tumours, particularly those with a CpG island methylator phenotype (CIMP). However, this epigenetic change alone could not account for reduced DUSP5 expression in CRC cells. Functionally, DUSP5 depletion failed to alter ERK signalling or proliferation in CRC cell lines, and its transgenic overexpression in the mouse intestine had minimal impact on normal intestinal homeostasis or tumour development. Our results suggest that DUSP5 plays a limited role in regulating ERK signalling associated with the growth of colorectal tumours, but that methylation the DUSP5 gene promoter can serve as an additional means of identifying CIMP-high colorectal cancers.
Origins of extrinsic variability in eukaryotic gene expression
NASA Astrophysics Data System (ADS)
Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff
2006-02-01
Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes simultaneously, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modelling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous lower limit for expression variability. A second source, which is modelled as originating from a common upstream transcription factor, exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.
Origins of extrinsic variability in eukaryotic gene expression
NASA Astrophysics Data System (ADS)
Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff
2006-03-01
Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes in concert, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modeling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous noise floor in expression variability. A second source which is modeled as originating from a common upstream transcription factor exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.
Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E.; Balázsi, Gábor; Gennaro, Maria Laura
2016-01-01
Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. PMID:27029515
Gaze Stabilization During Locomotion Requires Full Body Coordination
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Miller, C. A.; Houser, J.; Richards, J. T.; Bloomberg, J. J.
2001-01-01
Maintaining gaze stabilization during locomotion places substantial demands on multiple sensorimotor subsystems for precise coordination. Gaze stabilization during locomotion requires eye-head-trunk coordination (Bloomberg, et al., 1997) as well as the regulation of energy flow or shock-wave transmission through the body at high impact phases with the support surface (McDonald, et al., 1997). Allowing these excessive transmissions of energy to reach the head may compromise gaze stability. Impairments in these mechanisms may lead to the oscillopsia and decreased dynamic visual acuity seen in crewmembers returning from short and long duration spaceflight, as well as in patients with vestibular disorders (Hillman, et al., 1999). Thus, we hypothesize that stabilized gaze during locomotion results from full-body coordination of the eye-head-trunk system combined with the lower limb apparatus. The goal of this study was to determine how multiple, interdependent full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated, and how they adaptively respond to spaceffight.
Adaptive management for soil ecosystem services
Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.
2016-01-01
Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.
Calçada, Dulce; Vianello, Dario; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; de Graaf, Albert; Kremer, Bas; van Ommen, Ben; Feskens, Edith; Santoro, Aurelia; Franceschi, Claudio; Bouwman, Jildau
2014-01-01
Aging is a biological process characterized by the progressive functional decline of many interrelated physiological systems. In particular, aging is associated with the development of a systemic state of low-grade chronic inflammation (inflammaging), and with progressive deterioration of metabolic function. Systems biology has helped in identifying the mediators and pathways involved in these phenomena, mainly through the application of high-throughput screening methods, valued for their molecular comprehensiveness. Nevertheless, inflammation and metabolic regulation are dynamical processes whose behavior must be understood at multiple levels of biological organization (molecular, cellular, organ, and system levels) and on multiple time scales. Mathematical modeling of such behavior, with incorporation of mechanistic knowledge on interactions between inflammatory and metabolic mediators, may help in devising nutritional interventions capable of preventing, or ameliorating, the age-associated functional decline of the corresponding systems. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.
Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J
2016-08-18
Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. Copyright © 2016 Elsevier Inc. All rights reserved.
Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin
2017-06-16
Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC 50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.
CD24 tracks divergent pluripotent states in mouse and human cells
Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W
2015-01-01
Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835
Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald
2017-01-01
Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478
NASA Astrophysics Data System (ADS)
Labrecque, S.; Sylvestre, J.-P.; Marcet, S.; Mangiarini, F.; Verhaegen, M.; De Koninck, P.; Blais-Ouellette, S.
2015-03-01
In the past decade, the efficacy of existing therapies and the discovery of innovative treatments for Central Nervous System (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. In order to better understand the fundamental mechanisms that regulate diseases of the CNS, a fast fluorescence hyperspectral imaging platform was designed to track simultaneously various neurotransmitter receptors trafficking in and out of synapses. With this hyperspectral imaging platform, it was possible to image simultaneously five different synaptic proteins, including subtypes of glutamate receptors (mGluR, NMDAR, AMPAR), postsynaptic density proteins, and signaling proteins. This new imaging platform allows fast simultaneous acquisitions of at least five fluorescent markers in living neurons with a high spatial resolution. This technique provides an effective method to observe several synaptic proteins at the same time, thus study how drugs for CNS impact the spatial dynamics of these proteins.
Visualizing Dynamic Bitcoin Transaction Patterns.
McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J
2016-06-01
This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.
Visualizing Dynamic Bitcoin Transaction Patterns
McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.
2016-01-01
Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Er-Wen; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou; Xue, Sheng-Jiang
Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation,more » facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.« less
ERIC Educational Resources Information Center
Chandler, Terrell N.
1996-01-01
The System for Training of Aviation Regulations (STAR) provides comprehensive training in understanding and applying Federal aviation regulations. STAR gives multiple vantage points with multimedia presentations and storytelling within four categories of learning environments: overviews, scenarios, challenges, and resources. Discusses the…
NASA Technical Reports Server (NTRS)
Hoadley, Sherwood T.; Mcgraw, Sandra M.
1992-01-01
A real time multiple-function digital controller system was developed for the Active Flexible Wing (AFW) Program. The digital controller system (DCS) allowed simultaneous execution of two control laws: flutter suppression and either roll trim or a rolling maneuver load control. The DCS operated within, but independently of, a slower host operating system environment, at regulated speeds up to 200 Hz. It also coordinated the acquisition, storage, and transfer of data for near real time controller performance evaluation and both open- and closed-loop plant estimation. It synchronized the operation of four different processing units, allowing flexibility in the number, form, functionality, and order of control laws, and variability in the selection of the sensors and actuators employed. Most importantly, the DCS allowed for the successful demonstration of active flutter suppression to conditions approximately 26 percent (in dynamic pressure) above the open-loop boundary in cases when the model was fixed in roll and up to 23 percent when it was free to roll. Aggressive roll maneuvers with load control were achieved above the flutter boundary. The purpose here is to present the development, validation, and wind tunnel testing of this multiple-function digital controller system.
Low-frequency dynamics of autonomic regulation of circulatory system in healthy subjects
NASA Astrophysics Data System (ADS)
Skazkina, V. V.; Borovkova, E. I.; Galushko, T. A.; Khorev, V. S.; Kiselev, A. R.
2018-04-01
The paper is devoted to the analysis of dynamic of interactions between signals of autonomic circulatory regulation. We investigated two-hour experimental records of 30 healthy people. Phase synchronization was studied using the signals of the electrocardiogram and the photoplethysmogram of vessels. We found the presence of long synchronous intervals in some subjects. For analysis of the dynamic we calculated autocorrelation functions. The analysis made it possible to reveal indirect signs of the influence of the humoral regulation system.
NASA Astrophysics Data System (ADS)
Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying
2017-09-01
A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.
Oscillations and Multiple Equilibria in Microvascular Blood Flow.
Karst, Nathaniel J; Storey, Brian D; Geddes, John B
2015-07-01
We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.
Greenwood, Daniel; Davids, Keith; Renshaw, Ian
2014-01-01
Coordination of dynamic interceptive movements is predicated on cyclical relations between an individual's actions and information sources from the performance environment. To identify dynamic informational constraints, which are interwoven with individual and task constraints, coaches' experiential knowledge provides a complementary source to support empirical understanding of performance in sport. In this study, 15 expert coaches from 3 sports (track and field, gymnastics and cricket) participated in a semi-structured interview process to identify potential informational constraints which they perceived to regulate action during run-up performance. Expert coaches' experiential knowledge revealed multiple information sources which may constrain performance adaptations in such locomotor pointing tasks. In addition to the locomotor pointing target, coaches' knowledge highlighted two other key informational constraints: vertical reference points located near the locomotor pointing target and a check mark located prior to the locomotor pointing target. This study highlights opportunities for broadening the understanding of perception and action coupling processes, and the identified information sources warrant further empirical investigation as potential constraints on athletic performance. Integration of experiential knowledge of expert coaches with theoretically driven empirical knowledge represents a promising avenue to drive future applied science research and pedagogical practice.
Martinand-Mari, Camille; Vacelet, Jean; Nickel, Michael; Wörheide, Gert; Mangeat, Paul; Baghdiguian, Stephen
2012-11-15
The sponge Asbestopluma hypogea is unusual among sponges due to its peculiar carnivorous feeding habit. During various stages of its nutrition cycle, the sponge is subjected to spectacular morphological modifications. Starved animals are characterized by many elongated filaments, which are crucial for the capture of prey. After capture, and during the digestion process, these filaments actively regress before being regenerated during a subsequent period of starvation. Here, we demonstrate that these morphological events rely on a highly dynamic cellular turnover, implying a coordinated sequence of programmed cell death (apoptosis and autophagy), cell proliferation and cell migration. A candidate niche for cell renewal by stem cell proliferation and differentiation was identified at the base of the sponge peduncle, characterized by higher levels of BrdU/EdU incorporation. Therefore, BrdU/EdU-positive cells of the peduncle base are candidate motile cells responsible for the regeneration of the prey-capturing main sponge body, i.e. the dynamic filaments. Altogether, our results demonstrate that dynamics of cell renewal in sponge appear to be regulated by cellular mechanisms as multiple and complex as those already identified in bilaterian metazoans.
Wade, John J.; McDaid, Liam J.; Harkin, Jim; Crunelli, Vincenzo; Kelso, J. A. Scott
2011-01-01
In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model) which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a “learning signal” to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy may be extended to coordination among remote neuron clusters. PMID:22242121
The neural component-process architecture of endogenously generated emotion
Kanske, Philipp; Singer, Tania
2017-01-01
Abstract Despite the ubiquity of endogenous emotions and their role in both resilience and pathology, the processes supporting their generation are largely unknown. We propose a neural component process model of endogenous generation of emotion (EGE) and test it in two functional magnetic resonance imaging (fMRI) experiments (N = 32/293) where participants generated and regulated positive and negative emotions based on internal representations, usin self-chosen generation methods. EGE activated nodes of salience (SN), default mode (DMN) and frontoparietal control (FPCN) networks. Component processes implemented by these networks were established by investigating their functional associations, activation dynamics and integration. SN activation correlated with subjective affect, with midbrain nodes exclusively distinguishing between positive and negative affect intensity, showing dynamics consistent generation of core affect. Dorsomedial DMN, together with ventral anterior insula, formed a pathway supporting multiple generation methods, with activation dynamics suggesting it is involved in the generation of elaborated experiential representations. SN and DMN both coupled to left frontal FPCN which in turn was associated with both subjective affect and representation formation, consistent with FPCN supporting the executive coordination of the generation process. These results provide a foundation for research into endogenous emotion in normal, pathological and optimal function. PMID:27522089
Diffusional correlations among multiple active sites in a single enzyme.
Echeverria, Carlos; Kapral, Raymond
2014-04-07
Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.
Near real-time traffic routing
NASA Technical Reports Server (NTRS)
Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)
2012-01-01
A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.
Powathil, Gibin G.; Adamson, Douglas J. A.; Chaplain, Mark A. J.
2013-01-01
In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules. PMID:23874170
Anandhakumar, Jayamani; Moustafa, Yara W; Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S
2016-07-15
Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Dynamic effective connectivity in cortically embedded systems of recurrently coupled synfire chains.
Trengove, Chris; Diesmann, Markus; van Leeuwen, Cees
2016-02-01
As a candidate mechanism of neural representation, large numbers of synfire chains can efficiently be embedded in a balanced recurrent cortical network model. Here we study a model in which multiple synfire chains of variable strength are randomly coupled together to form a recurrent system. The system can be implemented both as a large-scale network of integrate-and-fire neurons and as a reduced model. The latter has binary-state pools as basic units but is otherwise isomorphic to the large-scale model, and provides an efficient tool for studying its behavior. Both the large-scale system and its reduced counterpart are able to sustain ongoing endogenous activity in the form of synfire waves, the proliferation of which is regulated by negative feedback caused by collateral noise. Within this equilibrium, diverse repertoires of ongoing activity are observed, including meta-stability and multiple steady states. These states arise in concert with an effective connectivity structure (ECS). The ECS admits a family of effective connectivity graphs (ECGs), parametrized by the mean global activity level. Of these graphs, the strongly connected components and their associated out-components account to a large extent for the observed steady states of the system. These results imply a notion of dynamic effective connectivity as governing neural computation with synfire chains, and related forms of cortical circuitry with complex topologies.
The prediction of palmitoylation site locations using a multiple feature extraction method.
Shi, Shao-Ping; Sun, Xing-Yu; Qiu, Jian-Ding; Suo, Sheng-Bao; Chen, Xiang; Huang, Shu-Yun; Liang, Ru-Ping
2013-03-01
As an extremely important and ubiquitous post-translational lipid modification, palmitoylation plays a significant role in a variety of biological and physiological processes. Unlike other lipid modifications, protein palmitoylation and depalmitoylation are highly dynamic and can regulate both protein function and localization. The dynamic nature of palmitoylation is poorly understood because of the limitations in current assay methods. The in vivo or in vitro experimental identification of palmitoylation sites is both time consuming and expensive. Due to the large volume of protein sequences generated in the post-genomic era, it is extraordinarily important in both basic research and drug discovery to rapidly identify the attributes of a new protein's palmitoylation sites. In this work, a new computational method, WAP-Palm, combining multiple feature extraction, has been developed to predict the palmitoylation sites of proteins. The performance of the WAP-Palm model is measured herein and was found to have a sensitivity of 81.53%, a specificity of 90.45%, an accuracy of 85.99% and a Matthews correlation coefficient of 72.26% in 10-fold cross-validation test. The results obtained from both the cross-validation and independent tests suggest that the WAP-Palm model might facilitate the identification and annotation of protein palmitoylation locations. The online service is available at http://bioinfo.ncu.edu.cn/WAP-Palm.aspx. Copyright © 2013 Elsevier Inc. All rights reserved.
Lv, Xiaomei; Wang, Fan; Zhou, Pingping; Ye, Lidan; Xie, Wenping; Xu, Haoming; Yu, Hongwei
2016-09-21
Microbial production of isoprene from renewable feedstock is a promising alternative to traditional petroleum-based processes. Currently, efforts to improve isoprenoid production in Saccharomyces cerevisiae mainly focus on cytoplasmic engineering, whereas comprehensive engineering of multiple subcellular compartments is rarely reported. Here, we propose dual metabolic engineering of cytoplasmic and mitochondrial acetyl-CoA utilization to boost isoprene synthesis in S. cerevisiae. This strategy increases isoprene production by 2.1-fold and 1.6-fold relative to the recombinant strains with solely mitochondrial or cytoplasmic engineering, respectively. By combining a modified reiterative recombination system for rapid pathway assembly, a two-phase culture process for dynamic metabolic regulation, and aerobic fed-batch fermentation for sufficient supply of acetyl-coA and carbon, we achieve 2527, mg l(-1) of isoprene, which is the highest ever reported in engineered eukaryotes. We propose this strategy as an efficient approach to enhancing isoprene production in yeast, which might open new possibilities for bioproduction of other value-added chemicals.
Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan
2015-12-01
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.
Burger, Gerhard A.; Danen, Erik H. J.; Beltman, Joost B.
2017-01-01
Epithelial–mesenchymal transition (EMT), the process by which epithelial cells can convert into motile mesenchymal cells, plays an important role in development and wound healing but is also involved in cancer progression. It is increasingly recognized that EMT is a dynamic process involving multiple intermediate or “hybrid” phenotypes rather than an “all-or-none” process. However, the role of EMT in various cancer hallmarks, including metastasis, is debated. Given the complexity of EMT regulation, computational modeling has proven to be an invaluable tool for cancer research, i.e., to resolve apparent conflicts in experimental data and to guide experiments by generating testable hypotheses. In this review, we provide an overview of computational modeling efforts that have been applied to regulation of EMT in the context of cancer progression and its associated tumor characteristics. Moreover, we identify possibilities to bridge different modeling approaches and point out outstanding questions in which computational modeling can contribute to advance our understanding of pathological EMT. PMID:28824874
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.
To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less
Dcode.org anthology of comparative genomic tools.
Loots, Gabriela G; Ovcharenko, Ivan
2005-07-01
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.
Giudice, Jimena; Loehr, James A; Rodney, George G; Cooper, Thomas A
2016-11-15
During development, transcriptional and post-transcriptional networks are coordinately regulated to drive organ maturation. Alternative splicing contributes by producing temporal-specific protein isoforms. We previously found that genes undergoing splicing transitions during mouse postnatal heart development are enriched for vesicular trafficking and membrane dynamics functions. Here, we show that adult trafficking isoforms are also expressed in adult skeletal muscle and hypothesize that striated muscle utilizes alternative splicing to generate specific isoforms required for function of adult tissue. We deliver morpholinos into flexor digitorum brevis muscles in adult mice to redirect splicing of four trafficking genes to the fetal isoforms. The splicing switch results in multiple structural and functional defects, including transverse tubule (T-tubule) disruption and dihydropyridine receptor alpha (DHPR) and Ryr1 mislocalization, impairing excitation-contraction coupling, calcium handling, and force generation. The results demonstrate a previously unrecognized role for trafficking functions in adult muscle tissue homeostasis and a specific requirement for the adult splice variants. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
Fan, Yun; Bergmann, Andreas
2014-01-01
Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility towards apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hours. Mitotic cells are extremely susceptible to apoptotic signals, while post-mitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1 resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independently of EGFR or Diap1. These examples illustrate how complex cellular susceptibility towards apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development and tumor cells may take advantage of it. PMID:24981611
Posttranslational modification of autophagy-related proteins in macroautophagy
Xie, Yangchun; Kang, Rui; Sun, Xiaofang; Zhong, Meizuo; Huang, Jin; Klionsky, Daniel J.; Tang, Daolin
2014-01-01
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases. PMID:25484070
Peng, Lirong; Yuan, Zhigang; Li, Yixuan; Ling, Hongbo; Izumi, Victoria; Fang, Bin; Fukasawa, Kenji; Koomen, John; Chen, Jiandong; Seto, Edward
2015-01-01
Downstream signaling of physiological and pathological cell responses depends on post-translational modification such as ubiquitination. The mechanisms regulating downstream DNA damage response (DDR) signaling are not completely elucidated. Sirtuin 1 (SIRT1), the founding member of Class III histone deacetylases, regulates multiple steps in DDR and is closely associated with many physiological and pathological processes. However, the role of post-translational modification or ubiquitination of SIRT1 during DDR is unclear. We show that SIRT1 is dynamically and distinctly ubiquitinated in response to DNA damage. SIRT1 was ubiquitinated by the MDM2 E3 ligase in vitro and in vivo. SIRT1 ubiquitination under normal conditions had no effect on its enzymatic activity or rate of degradation; hypo-ubiquitination, however, reduced SIRT1 nuclear localization. Ubiquitination of SIRT1 affected its function in cell death and survival in response to DNA damage. Our results suggest that ubiquitination is required for SIRT1 function during DDR. PMID:25670865
Chemo-mechanical modeling of tumor growth in elastic epithelial tissue
NASA Astrophysics Data System (ADS)
Bratsun, Dmitry A.; Zakharov, Andrey P.; Pismen, Len
2016-08-01
We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The model allows the simulation of the evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm includes the division and intercalation of cells as well as the transformation of normal cells into a cancerous state triggered by a local failure of the spatial synchronization of the cellular rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for chemical signaling. The transformation of cells means the modification of their respective parameters responsible for chemo-mechanical interactions. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is designed in such a way that it can be readily modified to take account of any newly understood gene regulation processes and feedback mechanisms affecting chemo-mechanical properties of cells.
Wnt-regulated dynamics of positional information in zebrafish somitogenesis
Bajard, Lola; Morelli, Luis G.; Ares, Saúl; Pécréaux, Jacques; Jülicher, Frank; Oates, Andrew C.
2014-01-01
How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells during somitogenesis. Using time-controlled perturbations of Wnt signaling in the zebrafish embryo, we changed segment length without altering the rate of somite formation or embryonic elongation. This result implies specific Wnt regulation of the wavefront velocity. The observed Wnt signaling gradient dynamics and timing of downstream events support a model for wavefront regulation in which cell flow plays a dominant role in transporting positional information. PMID:24595291
Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L
2014-01-01
A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics. PMID:25598549
Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L
2014-04-01
A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics.We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape.We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications . BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics.
Regulation of microtubule dynamic instability by the carboxy-terminal tail of β-tubulin
Fees, Colby P; Moore, Jeffrey K
2018-01-01
Dynamic instability is an intrinsic property of microtubules; however, we do not understand what domains of αβ-tubulins regulate this activity or how these regulate microtubule networks in cells. Here, we define a role for the negatively charged carboxy-terminal tail (CTT) domain of β-tubulin in regulating dynamic instability. By combining in vitro studies with purified mammalian tubulin and in vivo studies with tubulin mutants in budding yeast, we demonstrate that β-tubulin CTT inhibits microtubule stability and regulates the structure and stability of microtubule plus ends. Tubulin that lacks β-tubulin CTT polymerizes faster and depolymerizes slower in vitro and forms microtubules that are more prone to catastrophe. The ends of these microtubules exhibit a more blunted morphology and rapidly switch to disassembly after tubulin depletion. In addition, we show that β-tubulin CTT is required for magnesium cations to promote depolymerization. We propose that β-tubulin CTT regulates the assembly of stable microtubule ends and provides a tunable mechanism to coordinate dynamic instability with ionic strength in the cell.
Stability and Evolution of Multiple Planet and Satellite Systems
NASA Astrophysics Data System (ADS)
Quillen, Alice
Numerous multiple planet systems have recently been discovered with the Kepler Mission, suggesting that multiple planet systems are common. Multiple- body nearly coplanar satellite systems are also found in the Solar system. Multiple planet and satellite systems exhibit rich dynamics as they are affected by three-body and secular resonances affecting short timescale behavior and long timescale stability. Interactions with debris disks and planetesimal belts and tidal interactions can both reduce and induce instability. Using both numerical and analytical studies, we propose to develop a broadly applicable framework to estimate diffusion rates and stability regimes both in resonant and non- resonant configurations. Understanding of resonant dynamics is needed to understand each of these systems and a broader general theory would cover scenarios and mechanisms that are relevant for all of them. Architectures and dynamical mechanisms will be used to test scenarios for formation and evolution of multiple body systems and constrain poorly known quantities such as masses, eccentricities, inclinations, radii, and the existence of undetected bodies.
4D multiple-cathode ultrafast electron microscopy
Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.
2014-01-01
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261
4D multiple-cathode ultrafast electron microscopy.
Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H
2014-07-22
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.
ERIC Educational Resources Information Center
Schuengel, C.; Sterkenburg, P. S.; Jeczynski, P.; Janssen, C. G. C.; Jongbloed, G.
2009-01-01
In a controlled multiple case design study, the development of a therapeutic relationship and its role in affect regulation were studied in 6 children with visual disabilities, severe intellectual disabilities, severe challenging behavior, and prolonged social deprivation. In the 1st phase, children had sessions with an experimental therapist…
Bertacchi, Michele; Parisot, Josephine; Studer, Michèle
2018-04-27
Transcription factors are expressed in a dynamic fashion both in time and space during brain development, and exert their roles by activating a cascade of multiple target genes. This implies that understanding the precise function of a transcription factor becomes a challenging task. In this review, we will focus on COUP-TFI (or NR2F1), a nuclear receptor belonging to the superfamily of the steroid/thyroid hormone receptors, and considered to be one of the major transcriptional regulators orchestrating cortical arealization, cell-type specification and maturation. Recent data have unraveled the multi-faceted functions of COUP-TFI in the development of several mouse brain structures, including the neocortex, hippocampus and ganglionic eminences. Despite NR2F1 mutations and deletions in humans have been linked to a complex neurodevelopmental disease mainly associated to optic atrophy and intellectual disability, its role during the formation of the retina and optic nerve remains unclear. In light of its major influence in cortical development, we predict that its haploinsufficiency might be the cause of other cognitive diseases, not identified so far. Mouse models offer a unique opportunity of dissecting COUP-TFI function in different regions during brain assembly; hence, the importance of comparing and discussing common points linking mouse models to human patients' symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.
Tian, Xiaoxu; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen
2013-01-14
Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress. Copyright © 2012 Elsevier B.V. All rights reserved.
The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.
Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime
2014-12-16
RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fujihashi, Yuta; Wang, Lu; Zhao, Yang
2017-12-21
Recent advances in quantum optics allow for exploration of boson dynamics in dissipative many-body systems. However, the traditional descriptions of quantum dissipation using reduced density matrices are unable to capture explicit information of bath dynamics. In this work, efficient evaluation of boson dynamics is demonstrated by combining the multiple Davydov Ansatz with finite-temperature time-dependent variation, going beyond what state-of-the-art density matrix approaches are capable to offer for coupled electron-boson systems. To this end, applications are made to excitation energy transfer in photosynthetic systems, singlet fission in organic thin films, and circuit quantum electrodynamics in superconducting devices. Thanks to the multiple Davydov Ansatz, our analysis of boson dynamics leads to clear revelation of boson modes strongly coupled to electronic states, as well as in-depth description of polaron creation and destruction in the presence of thermal fluctuations.
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Kulkarni, Rahul; Sen, Shamik
2016-06-01
Tumors consist of multiple cell sub-populations including cancer stem cells (CSCs), transiently amplifying cells and terminally differentiated cells (TDCs), with the CSC fraction dictating the aggressiveness of the tumor and drug sensitivity. In epithelial cancers, tumor growth is influenced greatly by properties of the extracellular matrix (ECM), with cancer progression associated with an increase in ECM density. However, the extent to which increased ECM confinement induced by an increase in ECM density influences tumor growth and post treatment relapse dynamics remains incompletely understood. In this study, we use a cellular automata-based discrete modeling approach to study the collective influence of ECM density, cell motility and ECM proteolysis on tumor growth, tumor heterogeneity, and tumor relapse after drug treatment. We show that while increased confinement suppresses tumor growth and the spatial scattering of CSCs, this effect can be reversed when cells become more motile and proteolytically active. Our results further suggest that, in addition to the absolute number of CSCs, their spatial positioning also plays an important role in driving tumor growth. In a nutshell, our study suggests that, in confined environments, cell motility and ECM proteolysis are two key factors that regulate tumor growth and tumor relapse dynamics by altering the number and spatial distribution of CSCs.
MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling
Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang
2014-01-01
Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. PMID:25224226
MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling.
Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang
2014-11-01
Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Zárský, Viktor; Potocký, Martin
2010-04-01
The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a 'recycling domain' (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase-effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.
Aginam, Obijiofor
2006-12-01
The transnational spread of communicable and non-communicable diseases has opened new vistas in the discourse of global health security. Emerging and re-emerging pathogens, according to exponents of globalization of public health, disrespect the geo-political boundaries of nation-states. Despite the global ramifications of health insecurity in a globalizing world, contemporary international law still operates as a classic inter-state law within an international system exclusively founded on a coalition of nation-states. This article argues that the dynamic process of globalization has created an opportunity for the World Health Organization to develop effective synergy with a multiplicity of actors in the exercise of its legal powers. WHO's legal and regulatory strategies must transform from traditional international legal approaches to disease governance to a "post-Westphalian public health governance": the use of formal and informal sources from state and non-state actors, hard law (treaties and regulations) and soft law (recommendations and travel advisories) in global health governance. This article assesses the potential promise and problems of WHO's new International Health Regulations (IHR) as a regulatory strategy for global health governance and global health security.
Dynamics of ARF regulation that control senescence and cancer.
Ko, Aram; Han, Su Yeon; Song, Jaewhan
2016-11-01
ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer. [BMB Reports 2016; 49(11): 598-606].
A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought
NASA Astrophysics Data System (ADS)
Lu, Z.
2013-12-01
In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in other words, make best use of limited water resource.
ERIC Educational Resources Information Center
Ozdemir, S.; Reis, Z. Ayvaz
2013-01-01
Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…
Kaplan, Ulas; Tivnan, Terrence
2014-01-01
Intrapersonal variability and multiplicity in the complexity of moral motivation were examined from Dynamic Systems and Self-Determination Theory perspectives. L. Kohlberg's (1969) stages of moral development are reconceptualized as soft-assembled and dynamically transformable process structures of motivation that may operate simultaneously within person in different degrees. Moral motivation is conceptualized as the real-time process of self-organization of cognitive and emotional dynamics out of which moral judgment and action emerge. A detailed inquiry into intrapersonal variation in moral motivation is carried out based on the differential operation of multiple motivational structures. A total of 74 high school students and 97 college students participated in the study by completing a new questionnaire, involving 3 different hypothetical moral judgments. As hypothesized, findings revealed significant multiplicity in the within-person operation of developmental stage structures, and intrapersonal variability in the degrees to which stages were used. Developmental patterns were found in terms of different distributions of multiple stages between high school and college samples, as well as the association between age and overall motivation scores. Differential relations of specific emotions to moral motivation revealed and confirmed the value of differentiating multiple emotions. Implications of the present theoretical perspective and the findings for understanding the complexity of moral judgment and motivation are discussed.
Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh Kumar, K., E-mail: suresh@math.iitb.ac.in; Pal, Chandan, E-mail: cpal@math.iitb.ac.in
2013-12-15
In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition.
Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J.; Wolf, Stephanie; Mueller, Nikola S.; D'Alessandro, Lorenza A.; Mueller-Bohl, Stephanie; Boehm, Martin E.; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D.; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J.; Ehlting, Christian; Bode, Johannes G.; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula
2017-01-01
IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines. PMID:29062282
Dynamics Sampling in Transition Pathway Space.
Zhou, Hongyu; Tao, Peng
2018-01-09
The minimum energy pathway contains important information describing the transition between two states on a potential energy surface (PES). Chain-of-states methods were developed to efficiently calculate minimum energy pathways connecting two stable states. In the chain-of-states framework, a series of structures are generated and optimized to represent the minimum energy pathway connecting two states. However, multiple pathways may exist connecting two existing states and should be identified to obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area important for reactions on the PES.
Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J; Wolf, Stephanie; Mueller, Nikola S; D'Alessandro, Lorenza A; Mueller-Bohl, Stephanie; Boehm, Martin E; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J; Ehlting, Christian; Bode, Johannes G; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula
2017-01-01
IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.
Harnessing Proteasome Dynamics and Allostery in Drug Design
Osmulski, Pawel A.
2014-01-01
Abstract Significance: The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. Recent Advances: Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. Critical Issues: Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. Future Directions: New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases. Antioxid. Redox Signal. 21, 2286–2301. PMID:24410482
A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.
Davière, Jean-Michel; Achard, Patrick
2016-01-04
Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Dispersion of Response Times Reveals Cognitive Dynamics
ERIC Educational Resources Information Center
Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.
2009-01-01
Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and…
Interactions Dominate the Dynamics of Visual Cognition
ERIC Educational Resources Information Center
Stephen, Damian G.; Mirman, Daniel
2010-01-01
Many cognitive theories have described behavior as the summation of independent contributions from separate components. Contrasting views have emphasized the importance of multiplicative interactions and emergent structure. We describe a statistical approach to distinguishing additive and multiplicative processes and apply it to the dynamics of…
NASA Astrophysics Data System (ADS)
Jagadeesh, B.; Prabhakar, A.; Demco, D. E.; Buda, A.; Blümich, B.
2005-03-01
The dynamics and molecular order of thin lipid (lecithin) films confined to 200, 100 and 20 nm cylindrical pores with varying surface coverage, were investigated by 1H multiple-quantum NMR. The results show that the molecular dynamics in the surface controlled layers are less hindered compared to those in the bulk. Dynamic heterogeneity among terminal CH 3 groups is evident. Enhanced dynamic freedom is observed for films with area per molecule, ˜ 128 Å 2. The results are discussed in terms of changes in the lipid molecular organization with respect to surface concentration, its plausible motional modes and dynamic heterogeneity.
ERIC Educational Resources Information Center
Kliewer, Wendy; Reid-Quinones, Kathryn; Shields, Brian J.; Foutz, Lauren
2009-01-01
Associations between multiple risks, emotion regulation skill, and basal cortisol levels were examined in a community sample of 69 African American youth (mean age = 11.30 years; 49% male) living in an urban setting. Multiple risks were assessed at Time 1 and consisted of 10 demographic and psychosocial risk factors including parent, child, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yen Ting; Buchler, Nicolas E.
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less
Dynamical Consequences of Bandpass Feedback Loops in a Bacterial Phosphorelay
Sen, Shaunak; Garcia-Ojalvo, Jordi; Elowitz, Michael B.
2011-01-01
Under conditions of nutrient limitation, Bacillus subtilis cells terminally differentiate into a dormant spore state. Progression to sporulation is controlled by a genetic circuit consisting of a phosphorelay embedded in multiple transcriptional feedback loops, which is used to activate the master regulator Spo0A by phosphorylation. These transcriptional regulatory interactions are “bandpass”-like, in the sense that activation occurs within a limited band of Spo0A∼P concentrations. Additionally, recent results show that the phosphorelay activation occurs in pulses, in a cell-cycle dependent fashion. However, the impact of these pulsed bandpass interactions on the circuit dynamics preceding sporulation remains unclear. In order to address this question, we measured key features of the bandpass interactions at the single-cell level and analyzed them in the context of a simple mathematical model. The model predicted the emergence of a delayed phase shift between the pulsing activity of the different sporulation genes, as well as the existence of a stable state, with elevated Spo0A activity but no sporulation, embedded within the dynamical structure of the system. To test the model, we used time-lapse fluorescence microscopy to measure dynamics of single cells initiating sporulation. We observed the delayed phase shift emerging during the progression to sporulation, while a re-engineering of the sporulation circuit revealed behavior resembling the predicted additional state. These results show that periodically-driven bandpass feedback loops can give rise to complex dynamics in the progression towards sporulation. PMID:21980382
Lin, Yen Ting; Buchler, Nicolas E.
2018-01-31
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less
Analysis of dynamic multiplicity fluctuations at PHOBOS
NASA Astrophysics Data System (ADS)
Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.
2005-01-01
This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.
Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain
Kim, Christina K; Yang, Samuel J; Pichamoorthy, Nandini; Young, Noah P; Kauvar, Isaac; Jennings, Joshua H; Lerner, Talia N; Berndt, Andre; Lee, Soo Yeun; Ramakrishnan, Charu; Davidson, Thomas J; Inoue, Masatoshi; Bito, Haruhiko; Deisseroth, Karl
2017-01-01
Real-time activity measurements from multiple specific cell populations and projections are likely to be important for understanding the brain as a dynamical system. Here we developed frame-projected independent-fiber photometry (FIP), which we used to record fluorescence activity signals from many brain regions simultaneously in freely behaving mice. We explored the versatility of the FIP microscope by quantifying real-time activity relationships among many brain regions during social behavior, simultaneously recording activity along multiple axonal pathways during sensory experience, performing simultaneous two-color activity recording, and applying optical perturbation tuned to elicit dynamics that match naturally occurring patterns observed during behavior. PMID:26878381
Shi, Xingjie; Zhao, Qing; Huang, Jian; Xie, Yang; Ma, Shuangge
2015-01-01
Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have important biological implications. GEs are partly regulated by CNAs, and much effort has been devoted to understanding their relations. The regulation analysis is challenging with one gene expression possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of multiple genes. The correlations among GEs and among CNAs make the analysis even more complicated. The existing methods have limitations and cannot comprehensively describe the regulation. Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regulation relationships. Network adjacency is computed to describe the interconnections among GEs and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network adjacency measures. Simulation shows that the proposed method outperforms the competing alternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed to further demonstrate advantages of the proposed method. Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/ Contact: shuangge.ma@yale.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26342102
Wood, Julie; Oravecz, Zita; Vogel, Nina; Benson, Lizbeth; Chow, Sy-Miin; Cole, Pamela; Conroy, David E; Pincus, Aaron L; Ram, Nilam
2017-12-15
Life-span theories of aging suggest improvements and decrements in individuals' ability to regulate affect. Dynamic process models, with intensive longitudinal data, provide new opportunities to articulate specific theories about individual differences in intraindividual dynamics. This paper illustrates a method for operationalizing affect dynamics using a multilevel stochastic differential equation (SDE) model, and examines how those dynamics differ with age and trait-level tendencies to deploy emotion regulation strategies (reappraisal and suppression). Univariate multilevel SDE models, estimated in a Bayesian framework, were fit to 21 days of ecological momentary assessments of affect valence and arousal (average 6.93/day, SD = 1.89) obtained from 150 adults (age 18-89 years)-specifically capturing temporal dynamics of individuals' core affect in terms of attractor point, reactivity to biopsychosocial (BPS) inputs, and attractor strength. Older age was associated with higher arousal attractor point and less BPS-related reactivity. Greater use of reappraisal was associated with lower valence attractor point. Intraindividual variability in regulation strategy use was associated with greater BPS-related reactivity and attractor strength, but in different ways for valence and arousal. The results highlight the utility of SDE models for studying affect dynamics and informing theoretical predictions about how intraindividual dynamics change over the life course. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.
Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W
2015-07-07
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Dynamic and Widespread lncRNA Expression in a Sponge and the Origin of Animal Complexity
Gaiti, Federico; Fernandez-Valverde, Selene L.; Nakanishi, Nagayasu; Calcino, Andrew D.; Yanai, Itai; Tanurdzic, Milos; Degnan, Bernard M.
2015-01-01
Long noncoding RNAs (lncRNAs) are important developmental regulators in bilaterian animals. A correlation has been claimed between the lncRNA repertoire expansion and morphological complexity in vertebrate evolution. However, this claim has not been tested by examining morphologically simple animals. Here, we undertake a systematic investigation of lncRNAs in the demosponge Amphimedon queenslandica, a morphologically simple, early-branching metazoan. We combine RNA-Seq data across multiple developmental stages of Amphimedon with a filtering pipeline to conservatively predict 2,935 lncRNAs. These include intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, long intergenic nonprotein coding RNAs, and precursors for small RNAs. Sponge lncRNAs are remarkably similar to their bilaterian counterparts in being relatively short with few exons and having low primary sequence conservation relative to protein-coding genes. As in bilaterians, a majority of sponge lncRNAs exhibit typical hallmarks of regulatory molecules, including high temporal specificity and dynamic developmental expression. Specific lncRNA expression profiles correlate tightly with conserved protein-coding genes likely involved in a range of developmental and physiological processes, such as the Wnt signaling pathway. Although the majority of Amphimedon lncRNAs appears to be taxonomically restricted with no identifiable orthologs, we find a few cases of conservation between demosponges in lncRNAs that are antisense to coding sequences. Based on the high similarity in the structure, organization, and dynamic expression of sponge lncRNAs to their bilaterian counterparts, we propose that these noncoding RNAs are an ancient feature of the metazoan genome. These results are consistent with lncRNAs regulating the development of animals, regardless of their level of morphological complexity. PMID:25976353
Kircher, Stefan; Kirchenbauer, Daniel; Timmer, Jens; Nagy, Ferenc; Schäfer, Eberhard; Fleck, Christian
2010-01-01
Background Plants have evolved various sophisticated mechanisms to respond and adapt to changes of abiotic factors in their natural environment. Light is one of the most important abiotic environmental factors and it regulates plant growth and development throughout their entire life cycle. To monitor the intensity and spectral composition of the ambient light environment, plants have evolved multiple photoreceptors, including the red/far-red light-sensing phytochromes. Methodology/Principal Findings We have developed an integrative mathematical model that describes how phytochrome B (phyB), an essential receptor in Arabidopsis thaliana, controls growth. Our model is based on a multiscale approach and connects the mesoscopic intracellular phyB protein dynamics to the macroscopic growth phenotype. To establish reliable and relevant parameters for the model phyB regulated growth we measured: accumulation and degradation, dark reversion kinetics and the dynamic behavior of different nuclear phyB pools using in vivo spectroscopy, western blotting and Fluorescence Recovery After Photobleaching (FRAP) technique, respectively. Conclusions/Significance The newly developed model predicts that the phyB-containing nuclear bodies (NBs) (i) serve as storage sites for phyB and (ii) control prolonged dark reversion kinetics as well as partial reversibility of phyB Pfr in extended darkness. The predictive power of this mathematical model is further validated by the fact that we are able to formalize a basic photobiological observation, namely that in light-grown seedlings hypocotyl length depends on the total amount of phyB. In addition, we demonstrate that our theoretical predictions are in excellent agreement with quantitative data concerning phyB levels and the corresponding hypocotyl lengths. Hence, we conclude that the integrative model suggested in this study captures the main features of phyB-mediated photomorphogenesis in Arabidopsis. PMID:20502669
Development and evaluation of a self-regulating alternating pressure air cushion.
Nakagami, Gojiro; Sanada, Hiromi; Sugama, Junko
2015-03-01
To investigate the effect of alternating air cells of a newly developed dynamic cushion on interface pressure and tissue oxygenation levels. This cross-over experimental study included 19 healthy volunteers. The dynamic cushion used has an automatic self-regulating alternating pressure air-cell system with 35 small and four large air cells for maintaining posture while seated. This cushion also has 17 bottoming-out detectors that automatically inflate the air cells to release a high interface pressure. To assess the effect of this alternating system, participants sat on the new cushion with an alternating system or static system for 30 min and then performed push-ups. The interface pressure was monitored by pressure-sensitive and conductive ink film sensors and tissue oxygenation levels were monitored by near-infrared spectroscopy. A reactive hyperaemia indicator was calculated using tissue oxygenation levels as an outcome measure. The peak interface pressure was not significantly different between the groups. The reactive hyperaemia indicator was significantly higher in the static group than in the alternating group. An alternating system has beneficial effects on blood oxygenation levels without increasing interface pressure. Therefore, our new cushion is promising for preventing pressure ulcers with patients with limited ability to perform push-ups. Implications for Rehabilitation A dynamic cushion was developed, which consists of a uniquely-designed air-cell layout, detectors for bottoming out, and an alternating system with multiple air-cell lines. The alternating system did not increase interface pressure and it significantly reduced reactive hyperaemia after 30 min of sitting in healthy volunteers. This cushion is a new option for individuals who require stable posture but have limitations in performing scheduled push-ups for prevention of pressure ulcers.
Using stable isotopes and models to explore estuarine linkages at multiple scales
Estuarine managers need tools to respond to dynamic stressors that occur in three linked environments – coastal ocean, estuaries and watersheds. Models have been the tool of choice for examining these dynamic systems because they simplify processes and integrate over multiple sc...
NASA Astrophysics Data System (ADS)
Su, Qi; Li, Aming; Wang, Long
2017-02-01
Spatial reciprocity is generally regarded as a positive rule facilitating the evolution of cooperation. However, a few recent studies show that, in the snowdrift game, spatial structure still could be detrimental to cooperation. Here we propose a model of multiple interactive dynamics, where each individual can cooperate and defect simultaneously against different neighbors. We realize individuals' multiple interactions simply by endowing them with strategies relevant to probabilities, and every one decides to cooperate or defect with a probability. With multiple interactive dynamics, the cooperation level in square lattices is higher than that in the well-mixed case for a wide range of cost-to-benefit ratio r, implying that spatial structure favors cooperative behavior in the snowdrift game. Moreover, in square lattices, the most favorable strategy follows a simple relation of r, which confers theoretically the average evolutionary frequency of cooperative behavior. We further extend our study to various homogeneous and heterogeneous networks, which demonstrates the robustness of our results. Here multiple interactive dynamics stabilizes the positive role of spatial structure on the evolution of cooperation and individuals' distinct reactions to different neighbors can be a new line in understanding the emergence of cooperation.
Hamby, Mary E.; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H.; Khakh, Baljit S.; Sofroniew, Michael V.
2012-01-01
Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2y1, Gnao1, Gng7), but some up (for example, P2y14, P2y6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs. PMID:23077035
Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans
NASA Technical Reports Server (NTRS)
Crandall, C. G.; Zhang, R.; Levine, B. D.
2000-01-01
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.
Patterns, drivers and implications of dissolved oxygen dynamics in tropical mangrove forests
NASA Astrophysics Data System (ADS)
Mattone, Carlo; Sheaves, Marcus
2017-10-01
Estuarine mangrove forests regulate and facilitate many ecological processes, and provide nursery ground for many commercially important species. However, mangroves grow in sediments with high carbon loading and high respiration rates which can potentially influencing the dissolved oxygen (DO) dynamics of tidal water flowing into mangrove forests, as bacteria strip DO from the incoming water to carry out metabolic functions. In turn this is likely to influence the way nekton and other aquatic organisms utilize mangrove forests. Despite these possibilities, previous work has focused on looking at DO dynamics within mangrove creeks, with little research focusing on understanding DO dynamics within the mangrove forests themselves during tidal inundation or of DO levels of pools within the forest remaining once the tide has ebbed. The present study investigates the pattern in DO at various distances within an estuarine Rhizophora stylosa forest in tropical north Queensland. DO levels were recorded at 5 min interval over 2 days and multiple tidal cycles, data were collected between 2013 and 2014 for a total of 32 tidal cycles encompassing multiples seasons and tidal amplitudes. There were substantial fluctuations in DO, often varying from normoxic to hypoxic within the same tidal cycle. A range of factors influenced DO dynamics, in particular: tidal height, amount of sunlight, tidal phase, and distance from the outer edge of the mangrove forest. In fact, spring tides tend to have high DO saturation, particularly during the flooding phase, however as the tide starts ebbing, DO depletes rapidly especially in areas further inside the forest. Moreover during tidal disconnection the remnant pools within the forest quickly became anoxic. These variations in DO suggest that the use of mangrove forests by animals is likely to be constrained by their ability to withstand low DO levels, and provides a plausible explanation for the apparent paucity of benthic organism observed inside similar mangrove forest in previous studies of South Pacific mangroves. Low DO levels coupled with low densities of benthic prey also provides a likely explanation for the limited utilisation of landwards areas of these forests by fish and other nekton.
Kooijman, S A L M; Troost, T A
2007-02-01
The Dynamic Energy Budget (DEB) theory quantifies the metabolic organisation of organisms on the basis of mechanistically inspired assumptions. We here sketch a scenario for how its various modules, such as maintenance, storage dynamics, development, differentiation and life stages could have evolved since the beginning of life. We argue that the combination of homeostasis and maintenance induced the development of reserves and that subsequent increases in the maintenance costs came with increases of the reserve capacity. Life evolved from a multiple reserves - single structure system (prokaryotes, many protoctists) to systems with multiple reserves and two structures (plants) or single reserve and single structure (animals). This had profound consequences for the possible effects of temperature on rates. We present an alternative explanation for what became known as the down-regulation of maintenance at high growth rates in microorganisms; the density of the limiting reserve increases with the growth rate, and reserves do not require maintenance while structure-specific maintenance costs are independent of the growth rate. This is also the mechanism behind the variation of the respiration rate with body size among species. The DEB theory specifies reserve dynamics on the basis of the requirements of weak homeostasis and partitionability. We here present a new and simple mechanism for this dynamics which accounts for the rejection of mobilised reserve by busy maintenance/growth machinery. This module, like quite a few other modules of DEB theory, uses the theory of Synthesising Units; we review recent progress in this field. The plasticity of membranes that evolved in early eukaryotes is a major step forward in metabolic evolution; we discuss quantitative aspects of the efficiency of phagocytosis relative to the excretion of digestive enzymes to illustrate its importance. Some processes of adaptation and gene expression can be understood in terms of allocation linked to the relative workload of metabolic modules in (unicellular) prokaryotes and organs in (multicellular) eukaryotes. We argue that the evolution of demand systems can only be understood in the light of that of supply systems. We illustrate some important points with data from the literature.
Comparison of Virtual Oscillator and Droop Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit
Virtual oscillator control (VOC) and droop control are distinct methods to ensure synchronization and power sharing of parallel inverters in islanded systems. VOC is a control strategy where the dynamics of a nonlinear oscillator are used to derive control states to modulate the switch terminals of an inverter. Since VOC is a time-domain controller that reacts to instantaneous measurements with no additional filters or computations, it provides a rapid response during transients and stabilizes volatile dynamics. In contrast, droop control regulates the inverter voltage in response to the measured average real and reactive power output. Given that real and reactivemore » power are phasor quantities that are not well-defined in real time, droop controllers typically use multiplicative operations in conjunction with low-pass filters on the current and voltage measurements to calculate such quantities. Since these filters must suppress low frequency ac harmonics, they typically have low cutoff frequencies that ultimately impede droop controller bandwidth. Although VOC and droop control can be engineered to produce similar steady-state characteristics, their dynamic performance can differ markedly. This paper presents an analytical framework to characterize and compare the dynamic response of VOC and droop control. The analysis is experimentally validated with three 120 V inverters rated at 1kW, demonstrating that for the same design specifications VOC is roughly 8 times faster and presents almost no overshoot after a transient.« less
NASA Astrophysics Data System (ADS)
Huang, Lu; Jiang, Yuyang; Chen, Yuzong
2017-01-01
Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.
Live-cell CRISPR imaging in plants reveals dynamic telomere movements.
Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas
2017-08-01
Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Pandini, Alessandro; Fraccalvieri, Domenico; Bonati, Laura
2013-01-01
The biological function of proteins is strictly related to their molecular flexibility and dynamics: enzymatic activity, protein-protein interactions, ligand binding and allosteric regulation are important mechanisms involving protein motions. Computational approaches, such as Molecular Dynamics (MD) simulations, are now routinely used to study the intrinsic dynamics of target proteins as well as to complement molecular docking approaches. These methods have also successfully supported the process of rational design and discovery of new drugs. Identification of functionally relevant conformations is a key step in these studies. This is generally done by cluster analysis of the ensemble of structures in the MD trajectory. Recently Artificial Neural Network (ANN) approaches, in particular methods based on Self-Organising Maps (SOMs), have been reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data-mining problems. In the specific case of conformational analysis, SOMs have been successfully used to compare multiple ensembles of protein conformations demonstrating a potential in efficiently detecting the dynamic signatures central to biological function. Moreover, examples of the use of SOMs to address problems relevant to other stages of the drug-design process, including clustering of docking poses, have been reported. In this contribution we review recent applications of ANN algorithms in analysing conformational and structural ensembles and we discuss their potential in computer-based approaches for medicinal chemistry.
Dynamics of gene expression with positive feedback to histone modifications at bivalent domains
NASA Astrophysics Data System (ADS)
Huang, Rongsheng; Lei, Jinzhi
2018-03-01
Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.
Brehm, Maria A.; Wundenberg, Torsten; Williams, Jason; Mayr, Georg W.; Shears, Stephen B.
2013-01-01
Summary Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K ‘moonlights’ as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number. PMID:23203802
Brehm, Maria A; Wundenberg, Torsten; Williams, Jason; Mayr, Georg W; Shears, Stephen B
2013-01-15
Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.
Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle*
Vogan, Jacob M.; Collins, Kathleen
2015-01-01
Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells. PMID:26170453
Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway.
Krishnamoorthy, Veena; Carr, Tiffany; de Pooter, Renee F; Emanuelle, Akinola Olumide; Akinola, Emanuelle Olumide; Gounari, Fotini; Kee, Barbara L
2015-04-01
The chemokine receptor CCR9 controls the immigration of multipotent hematopoietic progenitor cells into the thymus to sustain T cell development. Postimmigration, thymocytes downregulate CCR9 and migrate toward the subcapsular zone where they recombine their TCR β-chain and γ-chain gene loci. CCR9 is subsequently upregulated and participates in the localization of thymocytes during their selection for self-tolerant receptor specificities. Although the dynamic regulation of CCR9 is essential for early T cell development, the mechanisms controlling CCR9 expression have not been determined. In this article, we show that key regulators of T cell development, Notch1 and the E protein transcription factors E2A and HEB, coordinately control the expression of Ccr9. E2A and HEB bind at two putative enhancers upstream of Ccr9 and positively regulate CCR9 expression at multiple stages of T cell development. In contrast, the canonical Notch signaling pathway prevents the recruitment of p300 to the putative Ccr9 enhancers, resulting in decreased acetylation of histone H3 and a failure to recruit RNA polymerase II to the Ccr9 promoter. Although Notch signaling modestly modulates the binding of E proteins to one of the two Ccr9 enhancers, we found that Notch signaling represses Ccr9 in T cell lymphoma lines in which Ccr9 transcription is independent of E protein function. Our data support the hypothesis that activation of Notch1 has a dominant-negative effect on Ccr9 transcription and that Notch1 and E proteins control the dynamic expression of Ccr9 during T cell development. Copyright © 2015 by The American Association of Immunologists, Inc.
The dynamic landscape of gene regulation during Bombyx mori oogenesis.
Zhang, Qiang; Sun, Wei; Sun, Bang-Yong; Xiao, Yang; Zhang, Ze
2017-09-11
Oogenesis in the domestic silkworm (Bombyx mori) is a complex process involving previtellogenesis, vitellogenesis and choriogenesis. During this process, follicles show drastic morphological and physiological changes. However, the genome-wide regulatory profiles of gene expression during oogenesis remain to be determined. In this study, we obtained time-series transcriptome data and used these data to reveal the dynamic landscape of gene regulation during oogenesis. A total of 1932 genes were identified to be differentially expressed among different stages, most of which occurred during the transition from late vitellogenesis to early choriogenesis. Using weighted gene co-expression network analysis, we identified six stage-specific gene modules that correspond to multiple regulatory pathways. Strikingly, the biosynthesis pathway of the molting hormone 20-hydroxyecdysone (20E) was enriched in one of the modules. Further analysis showed that the ecdysteroid 20-hydroxylase gene (CYP314A1) of steroidgenesis genes was mainly expressed in previtellogenesis and early vitellogenesis. However, the 20E-inactivated genes, particularly the ecdysteroid 26-hydroxylase encoding gene (Cyp18a1), were highly expressed in late vitellogenesis. These distinct expression patterns between 20E synthesis and catabolism-related genes might ensure the rapid decline of the hormone titer at the transition point from vitellogenesis to choriogenesis. In addition, we compared landscapes of gene regulation between silkworm (Lepidoptera) and fruit fly (Diptera) oogeneses. Our results show that there is some consensus in the modules of gene co-expression during oogenesis in these insects. The data presented in this study provide new insights into the regulatory mechanisms underlying oogenesis in insects with polytrophic meroistic ovaries. The results also provide clues for further investigating the roles of epigenetic reconfiguration and circadian rhythm in insect oogenesis.
Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.
Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D
2013-09-03
The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.
Zhu, Q.; Riley, W. J.; Tang, J.; ...
2016-01-18
Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Q.; Riley, W. J.; Tang, J.
Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less
NASA Astrophysics Data System (ADS)
Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.
2016-01-01
Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.
The primary goal was to asess Hg cycling within a small coastal plain watershed (McTier Creek) using multiple watershed models with distinct mathematical frameworks that emphasize different system dynamics; a secondary goal was to identify current needs in watershed-scale Hg mode...
Frodo proteins: modulators of Wnt signaling in vertebrate development.
Brott, Barbara K; Sokol, Sergei Y
2005-09-01
The Frodo/dapper (Frd) proteins are recently discovered signaling adaptors, which functionally and physically interact with Wnt and Nodal signaling pathways during vertebrate development. The Frd1 and Frd2 genes are expressed in dynamic patterns in early embryos, frequently in cells undergoing epithelial-mesenchymal transition. The Frd proteins function in multiple developmental processes, including mesoderm and neural tissue specification, early morphogenetic cell movements, and organogenesis. Loss-of-function studies using morpholino antisense oligonucleotides demonstrate that the Frd proteins regulate Wnt signal transduction in a context-dependent manner and may be involved in Nodal signaling. The identification of Frd-associated factors and cellular targets of the Frd proteins should shed light on the molecular mechanisms underlying Frd functions in embryonic development and in cancer.
Valency-Controlled Framework Nucleic Acid Signal Amplifiers.
Liu, Qi; Ge, Zhilei; Mao, Xiuhai; Zhou, Guobao; Zuo, Xiaolei; Shen, Juwen; Shi, Jiye; Li, Jiang; Wang, Lihua; Chen, Xiaoqing; Fan, Chunhai
2018-06-11
Weak ligand-receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)-programmed strategy to develop valence-controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA-programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence-controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor-relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3-5 orders of magnitude and improved dynamic range. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An accurate reactive power control study in virtual flux droop control
NASA Astrophysics Data System (ADS)
Wang, Aimeng; Zhang, Jia
2017-12-01
This paper investigates the problem of reactive power sharing based on virtual flux droop method. Firstly, flux droop control method is derived, where complicated multiple feedback loops and parameter regulation are avoided. Then, the reasons for inaccurate reactive power sharing are theoretically analyzed. Further, a novel reactive power control scheme is proposed which consists of three parts: compensation control, voltage recovery control and flux droop control. Finally, the proposed reactive power control strategy is verified in a simplified microgrid model with two parallel DGs. The simulation results show that the proposed control scheme can achieve accurate reactive power sharing and zero deviation of voltage. Meanwhile, it has some advantages of simple control and excellent dynamic and static performance.
Learning from regeneration research organisms: The circuitous road to scar free wound healing
Erickson, Jami R.; Echeverri, Karen
2018-01-01
The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans. PMID:29179946
Functional implications of neurotransmitter co-release: glutamate and GABA share the load.
Seal, Rebecca P; Edwards, Robert H
2006-02-01
For decades it has been thought that a neuron releases only one classical neurotransmitter from all of its processes. However, recent work has shown that most neuronal populations release more than one classical transmitter, and indeed that the transmitters can be segregated into different processes of the same neuron. Glutamate and gamma-aminobutyric acid, the major excitatory and inhibitory neurotransmitters in the mammalian central nervous system, appear to be co-released with most other transmitters, as well as with each other. The release of multiple transmitters by the same neuron enhances the spatial and temporal control of synaptic transmission. Moreover, dynamic regulation of neurotransmitter phenotypes increases the plasticity of neurotransmission, indicating potential avenues for therapeutic intervention.
Ji, S C; Pan, Y T; Lu, Q Y; Sun, Z Y; Liu, Y Z
2014-03-17
The purpose of this study was to identify critical genes associated with septic multiple trauma by comparing peripheral whole blood samples from multiple trauma patients with and without sepsis. A microarray data set was downloaded from the Gene Expression Omnibus (GEO) database. This data set included 70 samples, 36 from multiple trauma patients with sepsis and 34 from multiple trauma patients without sepsis (as a control set). The data were preprocessed, and differentially expressed genes (DEGs) were then screened for using packages of the R language. Functional analysis of DEGs was performed with DAVID. Interaction networks were then established for the most up- and down-regulated genes using HitPredict. Pathway-enrichment analysis was conducted for genes in the networks using WebGestalt. Fifty-eight DEGs were identified. The expression levels of PLAU (down-regulated) and MMP8 (up-regulated) presented the largest fold-changes, and interaction networks were established for these genes. Further analysis revealed that PLAT (plasminogen activator, tissue) and SERPINF2 (serpin peptidase inhibitor, clade F, member 2), which interact with PLAU, play important roles in the pathway of the component and coagulation cascade. We hypothesize that PLAU is a major regulator of the component and coagulation cascade, and down-regulation of PLAU results in dysfunction of the pathway, causing sepsis.
The Central Nervous System and Bone Metabolism: An Evolving Story.
Dimitri, Paul; Rosen, Cliff
2017-05-01
Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.
NASA Astrophysics Data System (ADS)
Wang, J.; Baerenklau, K.
2012-12-01
Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being, policies targeting intermediate pollution and final pollution create incentives for the operator to examine the effects of other management practices to reduce pollution in addition to controlling the polluting inputs. Incentive-based mechanisms are slightly more cost-effective than quantity controls when seasonal emissions fluctuate. Our approach demonstrates the importance of taking into account the spatial & temporal dynamics in the rootzone and the integrated effects of water, nitrogen, and salinity on crop yield and nitrate emissions. It also highlights the significant role the environment can play in pollution control and the potential benefits from designing policies that acknowledge this role.oss of Total Net Farm Income Under Alternative Policies
Distributed finite-time containment control for double-integrator multiagent systems.
Wang, Xiangyu; Li, Shihua; Shi, Peng
2014-09-01
In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.
Impact of doping on the carrier dynamics in graphene
Kadi, Faris; Winzer, Torben; Knorr, Andreas; Malic, Ermin
2015-01-01
We present a microscopic study on the impact of doping on the carrier dynamics in graphene, in particular focusing on its influence on the technologically relevant carrier multiplication in realistic, doped graphene samples. Treating the time- and momentum-resolved carrier-light, carrier-carrier, and carrier-phonon interactions on the same microscopic footing, the appearance of Auger-induced carrier multiplication up to a Fermi level of 300 meV is revealed. Furthermore, we show that doping favors the so-called hot carrier multiplication occurring within one band. Our results are directly compared to recent time-resolved ARPES measurements and exhibit an excellent agreement on the temporal evolution of the hot carrier multiplication for n- and p-doped graphene. The gained insights shed light on the ultrafast carrier dynamics in realistic, doped graphene samples. PMID:26577536
Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.
Wang, Jungang; Wang, Yong; Huo, Zhipu
2014-01-01
A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.
Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator
Wang, Jungang; Wang, Yong; Huo, Zhipu
2014-01-01
A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295
Regulation of Corneal Stroma Extracellular Matrix Assembly
Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.
2014-01-01
The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456