Science.gov

Sample records for dynamics simulations reveal

  1. Peptide crystal simulations reveal hidden dynamics

    PubMed Central

    Janowski, Pawel A.; Cerutti, David S.; Holton, James; Case, David A.

    2013-01-01

    Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in the X-ray diffraction data. We present here 9.6 microseconds of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom rmsd; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom rmsd. The R-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The B-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but B-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 310 helical propensity and a gauche(−) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data, as well as to validate computational chemistry methods. PMID:23631449

  2. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation

    SciTech Connect

    Petridis, Loukas; Pingali, Sai Venkatesh; Urban, Volker; Heller, William T; O'Neill, Hugh Michael; Foston, Marcus B; Ragauskas, Arthur J; Smith, Jeremy C

    2011-01-01

    Lignin, a major polymeric component of plant cell walls, forms aggregates in vivo and poses a barrier to cellulosic ethanol production. Here, neutron scattering experiments and molecular dynamics simulations reveal that lignin aggregates are characterized by a surface fractal dimension that is invariant under change of scale from 1 1000 A. The simulations also reveal extensive water penetration of the aggregates and heterogeneous chain dynamics corresponding to a rigid core with a fluid surface.

  3. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations

    PubMed Central

    Hertig, Samuel

    2016-01-01

    Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein’s constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery—the fact that the two sites involved influence one another in a symmetrical manner—can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest. PMID:27285999

  4. Nanomechanical Behavior of Single Crystalline SiC Nanotubes Revealed by Molecular Dynamics Simulations

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2008-11-01

    Molecular dynamics simulations with Tersoff potentials were used to study the response of single crystalline SiC nanotubes under tensile, compressive, torsional, combined tension-torsional and combined compression-torsional strains. The simulation results reveal that the nanotubes deform through bond-stretching and breaking and exhibit brittle properties under uniaxial tensile strain, except for the thinnest nanotube at high temperatures, which fails in a ductile manner. Under uniaxial compressive strain, the SiC nanotubes buckle with two modes, i.e. shell buckling and column buckling, depending on the length of the nanotubes. Under torsional strain, the nanotubes buckle either collapse in the middle region into a dumbbell-like structure for thinner wall thicknesses or fail by bond breakage for the largest wall thickness. Both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading.

  5. Structural signatures of DRD4 mutants revealed using molecular dynamics simulations: Implications for drug targeting.

    PubMed

    Jatana, Nidhi; Thukral, Lipi; Latha, N

    2016-01-01

    Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.

  6. Function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations

    SciTech Connect

    Nutt, David; Smith, Jeremy C

    2008-10-01

    Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.

  7. Quantum Dynamics Simulations Reveal Vibronic Effects on the Optical Properties of [n]Cycloparaphenylenes.

    PubMed

    Reddy, V Sivaranjana; Camacho, Cristopher; Xia, Jianlong; Jasti, Ramesh; Irle, Stephan

    2014-09-09

    The size-dependent ultraviolet/visible photophysical property trends of [n]cycloparaphenylenes ([n]CPPs, n = 6, 8, and 10) are theoretically investigated using quantum dynamics simulations. For geometry optimizations on the ground- and excited-state Born-Oppenheimer potential energy surfaces (PESs), we employ density functional theory (DFT) and time-dependent DFT calculations. Harmonic normal-mode analyses are carried out for the electronic ground state at Franck-Condon geometries. A diabatic Hamiltonian, comprising four low-lying singlet excited electronic states and 26 vibrational degrees of freedom of CPP, is constructed within the linear vibronic coupling (VC) model to elucidate the absorption spectral features in the range of 300-500 nm. Quantum nuclear dynamics is simulated within the multiconfiguration time-dependent Hartree approach to calculate the vibronic structure of the excited electronic states. The symmetry-forbidden S0 → S1 transition appears in the longer wavelength region of the spectrum with weak intensity due to VC. It is found that the Jahn-Teller and pseudo-Jahn-Teller effects in the doubly degenerate S2 and S3 electronic states are essential in the quantitative interpretation of the experimental observation of a broad absorption peak around 340 nm. The vibronic mixing of the S1 state with higher electronic states is responsible for the efficient photoluminescence from the S1 state. The fluorescence properties are characterized on the basis of the stationary points of the excited-state PESs. The findings reveal that vibronic effects become important in determining the photophysical properties of CPPs with increased ring size.

  8. Molecular Dynamic Simulations Reveal the Structural Determinants of Fatty Acid Binding to Oxy-Myoglobin

    PubMed Central

    Chintapalli, Sree V.; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L.; van Rossum, Damian B.; Anishkin, Andriy; Adams, Sean H.

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  9. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    PubMed Central

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-01-01

    Thrombin-binding aptamer (TBA) with the sequence 5′GGTTGGTGTGGTTGG3′ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation. PMID:27045335

  10. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-01

    Thrombin-binding aptamer (TBA) with the sequence 5‧GGTTGGTGTGGTTGG3‧ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  11. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.

    PubMed

    Lin, Jong-Chin; Yoon, Jeseong; Hyeon, Changbong; Thirumalai, D

    2015-01-01

    Riboswitches, RNA elements found in the untranslated region, regulate gene expression by binding to target metaboloites with exquisite specificity. Binding of metabolites to the conserved aptamer domain allosterically alters the conformation in the downstream expression platform. The fate of gene expression is determined by the changes in the downstream RNA sequence. As the metabolite-dependent cotranscriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate both the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolite. Single molecule force experiments that decipher the free energy landscape of riboswitches from their mechanical responses, theoretical and computational studies have recently shed light on the distinct mechanism of folding dynamics in different classes of riboswitches. Here, we first discuss the dynamics of water around riboswitch, highlighting that water dynamics can enhance the fluctuation of nucleic acid structure. To go beyond native state fluctuations, we used the Self-Organized Polymer model to predict the dynamics of add adenine riboswitch under mechanical forces. In addition to quantitatively predicting the folding landscape of add-riboswitch, our simulations also explain the difference in the dynamics between pbuE adenine- and add adenine-riboswitches. In order to probe the function in vivo, we use the folding landscape to propose a system level kinetic network model to quantitatively predict how gene expression is regulated for riboswitches that are under kinetic control.

  12. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution.

  13. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    NASA Astrophysics Data System (ADS)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  14. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    PubMed Central

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-01-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators. PMID:27032695

  15. Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations.

    PubMed

    Oroguchi, Tomotaka; Ikeguchi, Mitsunori

    2011-01-14

    The combination of small-angle X-ray solution scattering (SAXS) experiments and molecular dynamics (MD) simulations is now becoming a powerful tool to study protein conformations in solution at an atomic resolution. In this study, we investigated effects of ionic strength on SAXS data theoretically by using MD simulations of hen egg white lysozyme at various NaCl concentrations from 0 to 1 M. The calculated SAXS excess intensities showed a significant dependence on ion concentration, which originates from the different solvent density distributions in the presence and absence of ions. The addition of ions induced a slow convergence of the SAXS data, and a ∼20 ns simulation is required to obtain convergence of the SAXS data with the presence of ions whereas only a 0.2 ns simulation is sufficient in the absence of ions. To circumvent the problem of the slow convergence in the presence of ions, we developed a novel method that reproduces the SAXS excess intensities with the presence of ions from short MD trajectories in pure water. By applying this method to SAXS data for the open and closed forms of transferrin at 1 M ion concentration, the correct form could be identified by simply using short MD simulations of the protein in pure water for 0.2 ns.

  16. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    SciTech Connect

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  17. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    DOE PAGES

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; ...

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less

  18. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    SciTech Connect

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-07

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of C{sub α} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  19. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  20. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations.

    PubMed

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K; Lua, Linda H L; Chuan, Yap P; Middelberg, Anton P J; Sun, Yan

    2013-05-09

    Virus-like particles (VLPs) are highly organized nanoparticles that have great potential in vaccinology, gene therapy, drug delivery, and materials science. However, the application of VLPs is hindered by obstacles in their design and production due to low efficiency of self-assembly. In the present study, all-atom (AA) molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method are utilized to examine the molecular interactions in the capsomere of a murine polyomavirus (MPV) VLP. It is found that both low ionic strength and the intracapsomere disulfide bonds are favorable for maintaining a stable capsomere. Simulation results examining the effects of solution conditions on the stabilization of a capsomere were verified by calorimetry experiments. Simulation results of free energy decomposition indicate that hydrophobic interaction is favorable for the formation of a capsomere, whereas electrostatic interaction is unfavorable. With increasing ionic strength, the dominant interaction for the stabilization of a capsomere changes from hydrophobic to electrostatic. By comprehensive analyses, the key amino acid residues (hot spots) in VP1 protein aiding formation of a capsomere in different solution conditions have been identified. These results provide molecular insights into the stabilization of building blocks for VLP and are expected to have implications in their partitioning between the correct and off-pathway reactions in VLP assembly.

  1. ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin

    PubMed Central

    Lawrimore, Josh; Aicher, Joseph K.; Hahn, Patrick; Fulp, Alyona; Kompa, Ben; Vicci, Leandra; Falvo, Michael; Taylor, Russell M.; Bloom, Kerry

    2016-01-01

    ChromoShake is a three-dimensional simulator designed to find the thermodynamically favored states for given chromosome geometries. The simulator has been applied to a geometric model based on experimentally determined positions and fluctuations of DNA and the distribution of cohesin and condensin in the budding yeast centromere. Simulations of chromatin in differing initial configurations reveal novel principles for understanding the structure and function of a eukaryotic centromere. The entropic position of DNA loops mirrors their experimental position, consistent with their radial displacement from the spindle axis. The barrel-like distribution of cohesin complexes surrounding the central spindle in metaphase is a consequence of the size of the DNA loops within the pericentromere to which cohesin is bound. Linkage between DNA loops of different centromeres is requisite to recapitulate experimentally determined correlations in DNA motion. The consequences of radial loops and cohesin and condensin binding are to stiffen the DNA along the spindle axis, imparting an active function to the centromere in mitosis. PMID:26538024

  2. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    SciTech Connect

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  3. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  4. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE PAGES

    Zhang, Meng; Charles, River; Tong, Huimin; ...

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  5. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  6. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations.

    PubMed

    Feliciano, G T; Steidl, R J; Reguera, G

    2015-09-14

    Geobacter sulfurreducens (GS) electronically connects with extracellular electron acceptors using conductive protein filaments or pili. To gain insights into their role as biological nanowires, we investigated the structural dynamics of the GS pilus in solution via molecular dynamics simulations. In the model, all of the pilin's aromatics clustered as a right-handed helical band along the pilus, maintaining inter-aromatic distances and dimer configurations optimal for multistep hopping. The aromatics were interspersed within the regions of highest negative potential, which influenced the type and configuration of the aromatic contacts and the rates of electron transfer. Small foci of positive potential were also present but were neutralized within uncharged regions, thus minimizing charge trapping. Consistent with the model predictions, mutant strains with reduced aromatic contacts or negative potentials had defects in pili functions such as the reduction of Fe(III) oxides and electrodes. The results therefore support the notion of a pilus fiber evolved to function as an electronic conduit between the cell and extracellular electron acceptors.

  7. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow

    PubMed Central

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-01-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step. PMID:27388562

  8. Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow

    SciTech Connect

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-07-08

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of a molecular dynamics simulation study of water intercalated between GO layers that have a C/O ratio of 4. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 14% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. As a result, slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.

  9. Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow

    DOE PAGES

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; ...

    2016-07-08

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of a molecular dynamics simulation study of water intercalated between GO layers that have a C/O ratio of 4. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in spacing from about 0.7 nm to 0.8 nm and an increase in mass ofmore » about 14% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. As a result, slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.« less

  10. The biophysical properties of ethanolamine plasmalogens revealed by atomistic molecular dynamics simulations

    PubMed Central

    Rog, Tomasz; Koivuniemi, Artturi

    2016-01-01

    Given the importance of plasmalogens in cellular membranes and neurodegenerative diseases, a better understanding of how plasmalogens affect the lipid membrane properties is needed. Here we carried out molecular dynamics simulations to study a lipid membrane comprised of ethanolamine plasmalogens (PE–plasmalogens). We compared the results to the PE–diacyl counterpart and palmitoyl-oleyl-phosphatidylcholine (POPC) bilayers. Results show that PE–plasmalogens form more compressed, thicker, and rigid lipid bilayers in comparison with the PE–diacyl and POPC membranes. The results also point out that the vinyl–ether linkage increases the ordering of sn-1 chain substantially and the ordering of the sn-2 chain to a minor extent. Further, the vinyl–ether linkage changes the orientation of the lipid head group, but it does not cause changes in the head group and glycerol backbone tilt angles with respect to the bilayer normal. The vinyl–ether linkage also packs the proximal regions of the sn-1 and sn-2 chains more closely together which also decreases the distance between the rest of the sn-1 and sn-2 chains. PMID:26522077

  11. Gating motions in voltage-gated potassium channels revealed by coarse-grained molecular dynamics simulations.

    PubMed

    Treptow, Werner; Marrink, Siewert-J; Tarek, Mounir

    2008-03-20

    Voltage-gated potassium (Kv) channels are ubiquitous transmembrane proteins involved in electric signaling of excitable tissues. A fundamental property of these channels is the ability to open or close in response to changes in the membrane potential. To date, their structure-based activation mechanism remains unclear, and there is a large controversy on how these gates function at the molecular level, in particular, how movements of the voltage sensor domain are coupled to channel gating. So far, all mechanisms proposed for this coupling are based on the crystal structure of the open voltage-gated Kv1.2 channel and structural models of the closed form based on electrophysiology experiments. Here, we use coarse-grain (CG) molecular dynamics simulations that allow conformational changes from the open to the closed form of the channel (embedded in its membrane environment) to be followed. Despite the low specificity of the CG force field, the obtained closed structure satisfies several experimental constraints. The overall results suggest a gating mechanism in which a lateral displacement the S4-S5 linker leads to a closing of the gate. Only a small up-down movement of the S4 helices is noticed. Additionally, the study suggests a peculiar upward motion of the intracellular tetramerization domain of the channel, hence providing a molecular view on how this domain may further regulate conduction in Kv channels.

  12. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  13. The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations.

    PubMed

    Bellucci, Luca; Corni, Stefano; Di Felice, Rosa; Paci, Emanuele

    2013-01-01

    Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.

  14. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations.

    PubMed

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-14

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 A), and polyol molecules cluster around the protein at a distance of about 4 A. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  15. Mechanisms of triggering H1 helix in prion proteins unfolding revealed by molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yuan; Lee, H. C.

    2006-03-01

    In template-assistance model, normal Prion protein (PrP^C), the pathogen to cause several prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrP^Sc) through a transient interaction with PrP^Sc. Furthermore, conventional studies showed S1-H1-S2 region in PrP^C to be the template of S1-S2 β-sheet in PrP^Sc, and Prion protein's conformational conversion may involve an unfolding of H1 and refolding into β-sheet. Here we prepare several mouse prion peptides that contain S1-H1-S2 region with specific different structures, which are corresponding to specific interactions, to investigate possible mechanisms to trigger H1 α-helix unfolding process via molecular dynamic simulation. Three properties, conformational transition, salt-bridge in H1, and hydrophobic solvent accessible surface (SAS) are analyzed. From these studies, we found the interaction that triggers H1 unfolding to be the one that causes dihedral angle at residue Asn^143 changes. Whereas interactions that cause S1 segment's conformational changes play a minor in this process. These studies offers an additional evidence for template-assistance model.

  16. Mechanisms of crazing in glassy polymers revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj K.; Hartmaier, Alexander

    2012-08-01

    Mechanisms leading to initiation of crazing type failure in a glassy polymer are not clearly understood. This is mainly due to the difficulty in characterizing the stress state and polymer configuration sufficiently locally at the craze initiation site. Using molecular dynamics simulations, we have now been able to access this information and have shown that the local heterogeneous deformation leads to craze initiation in glassy polymers. We found that zones of high plastic activity are constrained by their neighborhood and become unstable, initiating crazing from these sites. Furthermore, based on the constant flow stresses observed in the unstable zones, we conclude that microcavitation is the essential local deformation mode to trigger crazing in glassy polymers. Our results demonstrate the basic difference in the local deformation mode as well as the conditions that lead to either shear-yielding or crazing type failures in glassy polymers. We anticipate our paper to help in devising a new criterion for craze initiation that not only considers the stress state, but also considers local deformation heterogeneities that form the necessary condition for crazing in glassy polymers.

  17. Bending Vibration-Governed Solvation Dynamics of an Excess Electron in Liquid Acetonitrile Revealed by Ab Initio Molecular Dynamics Simulation.

    PubMed

    Liu, Jinxiang; Cukier, Robert I; Bu, Yuxiang

    2013-11-12

    We report an ab initio molecular dynamics simulation study of the solvation and dynamics of an excess electron in liquid acetonitrile (ACN). Four families of states are observed: a diffusely solvated state and three ACN core-localized states with monomer core, quasi-dimer (π*-Rydberg mode) core, and dual-core/dimer core (a coupled dual-core). These core localized states cannot be simply described as the corresponding anions because only a part of the excess electron resides in the core molecule(s). The quasi-dimer core state actually is a mixture that features cooperative excess electron capture by the π* and Rydberg orbitals of two ACNs. Well-defined dimer anion and solvated electron cavity were not observed in the 5-10 ps simulations, which may be attributed to slow dynamics of the formation of the dimer anion and difficulty of the formation of a cavity in such a fluxional medium. All of the above observed states have near-IR absorptions and thus can be regarded as the solvated electron states but with different structures, which can interpret the experimentally observed IR band. These states undergo continuous conversions via a combination of long-lasting breathing oscillation and core switching, characterized by highly cooperative oscillations of the electron cloud volume and vertical detachment energy. The quasi-dimer core and diffusely solvated states dominate the time evolution, with the monomer core and dual-core/dimer core states occurring occasionally during the breathing and core switching processes, respectively. All these oscillations and core switchings are governed by a combination of the electron-impacted bending vibration of the core ACN molecule(s) and thermal fluctuations.

  18. Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Shen, Jianxiang; Zheng, Zijian; Wu, Youping; Zhang, Liqun

    2015-07-01

    By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction {\\varepsilon }np, volume fraction of graphene φ , thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as {{{C}}}60, CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of {\\varepsilon }np and φ , and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment. The thermodynamics of the polymer matrix (below and above Tg) seems to have a significant effect on the toughening efficiency of graphene sheets. In the case of the same dispersion state, stronger interfacial interaction always induces long and highly orientated polymer fibrils along the deformation direction, with graphene sheets being encapsulated in these fiber-like bundles. By characterizing the interaction energy between polymer-polymer and polymer-graphene as a function of the strain, we find that the separation of polymer chains from the graphene sheets cease immediately after the yield point, followed by the continuous propagation of the cavities by excluding surrounded polymer chains and graphene sheets together. We also find that at the same attractive interfacial interaction and same loading, the toughening efficiency exhibits the following order: graphene > CNT > {{{C}}}60. Generally, the toughening mechanism of graphene sheets results from the formation of long and highly orientated polymer fibrils to prevent the occurrence of the rupture, which

  19. Beta-hairpin conformation of fibrillogenic peptides: structure and alpha-beta transition mechanism revealed by molecular dynamics simulations.

    PubMed

    Daidone, Isabella; Simona, Fabio; Roccatano, Danilo; Broglia, Ricardo A; Tiana, Guido; Colombo, Giorgio; Di Nola, Alfredo

    2004-10-01

    Understanding the conformational transitions that trigger the aggregation and amyloidogenesis of otherwise soluble peptides at atomic resolution is of fundamental relevance for the design of effective therapeutic agents against amyloid-related disorders. In the present study the transition from ideal alpha-helical to beta-hairpin conformations is revealed by long timescale molecular dynamics simulations in explicit water solvent, for two well-known amyloidogenic peptides: the H1 peptide from prion protein and the Abeta(12-28) fragment from the Abeta(1-42) peptide responsible for Alzheimer's disease. The simulations highlight the unfolding of alpha-helices, followed by the formation of bent conformations and a final convergence to ordered in register beta-hairpin conformations. The beta-hairpins observed, despite different sequences, exhibit a common dynamic behavior and the presence of a peculiar pattern of the hydrophobic side-chains, in particular in the region of the turns. These observations hint at a possible common aggregation mechanism for the onset of different amyloid diseases and a common mechanism in the transition to the beta-hairpin structures. Furthermore the simulations presented herein evidence the stabilization of the alpha-helical conformations induced by the presence of an organic fluorinated cosolvent. The results of MD simulation in 2,2,2-trifluoroethanol (TFE)/water mixture provide further evidence that the peptide coating effect of TFE molecules is responsible for the stabilization of the soluble helical conformation.

  20. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations.

    PubMed

    Tang, Dai-Ming; Ren, Cui-Lan; Wang, Ming-Sheng; Wei, Xianlong; Kawamoto, Naoyuki; Liu, Chang; Bando, Yoshio; Mitome, Masanori; Fukata, Naoki; Golberg, Dmitri

    2012-04-11

    Deformation and fracture mechanisms of ultrathin Si nanowires (NWs), with diameters of down to ~9 nm, under uniaxial tension and bending were investigated by using in situ transmission electron microscopy and molecular dynamics simulations. It was revealed that the mechanical behavior of Si NWs had been closely related to the wire diameter, loading conditions, and stress states. Under tension, Si NWs deformed elastically until abrupt brittle fracture. The tensile strength showed a clear size dependence, and the greatest strength was up to 11.3 GPa. In contrast, under bending, the Si NWs demonstrated considerable plasticity. Under a bending strain of <14%, they could repeatedly be bent without cracking along with a crystalline-to-amorphous phase transition. Under a larger strain of >20%, the cracks nucleated on the tensed side and propagated from the wire surface, whereas on the compressed side a plastic deformation took place because of dislocation activities and an amorphous transition.

  1. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    SciTech Connect

    Yu, Hang; Ma, Wen; Han, Wei; Schulten, Klaus

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  2. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Wei; Ma, Wen; Schulten, Klaus

    2015-12-01

    Parkinson's disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and 3J(HNHCα)-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  3. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations.

    PubMed

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K; Lua, Linda H L; Chuan, Yap P; Middelberg, Anton P J; Sun, Yan

    2014-01-01

    The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines.

  4. Energetic Changes Caused by Antigenic Module Insertion in a Virus-Like Particle Revealed by Experiment and Molecular Dynamics Simulations

    PubMed Central

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K.; Lua, Linda H. L.; Chuan, Yap P.; Middelberg, Anton P. J.; Sun, Yan

    2014-01-01

    The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines. PMID:25215874

  5. Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Lu, Yan; Wei, Guanghong; Derreumaux, Philippe

    2009-03-01

    The human islet amyloid polypeptide (hIAPP) or amylin is a 37-residue hormone found as amyloid deposits in pancreatic extracts of nearly all type 2 diabetes patients. The fragment 20-29 of sequence SNNFGAILSS (hIAPP20-29) has been shown to be responsible for the amyloidogenic propensities of the full length protein. Various polymorphic forms of hIAPP20-29 fibrils were described by using Fourier transform infrared (FTIR) and solid-state NMR experiments: unseeded hIAPP20-29 fibril with out-of-register antiparallel β-strands, and two forms of seeded hIAPP20-29 fibril, with in-register antiparallel or in-register parallel β-strands. As a first step toward understanding this polymorphism, we explore the equilibrium structures of the soluble hIAPP20-29 trimer, using multiple molecular dynamics (MD) simulations with the Optimized Potential for Efficient structure Prediction (OPEP) coarse-grained implicit solvent force field for a total length of 3.2 μs. Although, the trimer is found mainly random coil, consistent with the signal measured experimentally during the lag phase of hIAPP20-29 fibril formation, the central FGAIL residues have a relative high propensity to form interpeptide β-sheets and antiparallel β-strands are more probable than parallel β-strands. One MD-predicted out-of-register antiparallel three-stranded β-sheet matches exactly the FTIR-derived unseeded hIAPP20-29 fibril model. Our simulations, however, do not reveal any evidence of in-register parallel or in-register antiparallel β-sheets as reported for seeded hIAPP20-29 fibrils. All these results indicate that fibril polymorphism is partially encoded in a trimer.

  6. Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations.

    PubMed

    Mo, Yuxiang; Lu, Yan; Wei, Guanghong; Derreumaux, Philippe

    2009-03-28

    The human islet amyloid polypeptide (hIAPP) or amylin is a 37-residue hormone found as amyloid deposits in pancreatic extracts of nearly all type 2 diabetes patients. The fragment 20-29 of sequence SNNFGAILSS (hIAPP20-29) has been shown to be responsible for the amyloidogenic propensities of the full length protein. Various polymorphic forms of hIAPP20-29 fibrils were described by using Fourier transform infrared (FTIR) and solid-state NMR experiments: unseeded hIAPP20-29 fibril with out-of-register antiparallel beta-strands, and two forms of seeded hIAPP20-29 fibril, with in-register antiparallel or in-register parallel beta-strands. As a first step toward understanding this polymorphism, we explore the equilibrium structures of the soluble hIAPP20-29 trimer, using multiple molecular dynamics (MD) simulations with the Optimized Potential for Efficient structure Prediction (OPEP) coarse-grained implicit solvent force field for a total length of 3.2 micros. Although, the trimer is found mainly random coil, consistent with the signal measured experimentally during the lag phase of hIAPP20-29 fibril formation, the central FGAIL residues have a relative high propensity to form interpeptide beta-sheets and antiparallel beta-strands are more probable than parallel beta-strands. One MD-predicted out-of-register antiparallel three-stranded beta-sheet matches exactly the FTIR-derived unseeded hIAPP20-29 fibril model. Our simulations, however, do not reveal any evidence of in-register parallel or in-register antiparallel beta-sheets as reported for seeded hIAPP20-29 fibrils. All these results indicate that fibril polymorphism is partially encoded in a trimer.

  7. ``Cooperativity blockage'' in the mixed alkali effect as revealed by molecular-dynamics simulations of alkali metasilicate glass

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko; Ngai, K. L.; Hiwatari, Yasuaki

    2004-07-01

    The relaxation dynamics of a complex interacting system can be drastically changed when mixing with another component having different dynamics. In this work, we elucidate the effect of the less mobile guest ions on the dynamics of the more mobile host ions in mixed alkali glasses by molecular-dynamics (MD) simulations. One MD simulation was carried out on lithium metasilicate glass with the guest ions created by freezing some randomly chosen lithium ions at their initial locations at 700 K. A remarkable slowing down of the dynamics of the majority mobile Li ions was observed both in the self-part of the density-density correlation function, Fs(k,t), and in the mean-squared displacements. On the other hand, there is no significant change in the structure. The motion of the Li ions in the unadulterated Li metasilicate glass is dynamically heterogeneous. In the present work, the fast and slow ions were divided into two groups. The number of fast ions, which shows faster dynamics (Lévy flight) facilitated by cooperative jumps, decreases considerably when small amount of Li ions are frozen. Consequently there is a large overall reduction of the mobility of the Li ions. The result is also in accordance with the experimental finding in mixed alkali silicate glasses that the most dramatic reduction of ionic conductivity occurs in the dilute foreign alkali limit. Similar suppression of the cooperative jumps is observed in the MD simulation data of mixed alkali system, LiKSiO3. Naturally, the effect found here is appropriately described as "cooperativity blockage." Slowing down of the motion of Li ions also was observed when a small number of oxygen atoms chosen at random were frozen. The effect is smaller than the case of freezing some the Li ions, but it is not negligible. The cooperativity blockage is also implemented by confining the Li metasilicate glass inside two parallel walls formed by freezing Li ions in the same metasilicate glass. Molecular-dynamics simulations

  8. Ab initio simulations reveal that reaction dynamics strongly affect product selectivity for the cracking of alkanes over H-MFI.

    PubMed

    Zimmerman, Paul M; Tranca, Diana C; Gomes, Joseph; Lambrecht, Daniel S; Head-Gordon, Martin; Bell, Alexis T

    2012-11-28

    Product selectivity of alkane cracking catalysis in the H-MFI zeolite is investigated using both static and dynamic first-principles quantum mechanics/molecular mechanics simulations. These simulations account for the electrostatic- and shape-selective interactions in the zeolite and provide enthalpic barriers that are closely comparable to experiment. Cracking transition states for n-pentane lead to a metastable intermediate (a local minimum with relatively small barriers to escape to deeper minima) where the proton is shared between two hydrocarbon fragments. The zeolite strongly stabilizes these carbocations compared to the gas phase, and the conversion of this intermediate to more stable species determines the product selectivity. Static reaction pathways on the potential energy surface starting from the metastable intermediate include a variety of possible conversions into more stable products. One-picosecond quasiclassical trajectory simulations performed at 773 K indicate that dynamic paths are substantially more diverse than the potential energy paths. Vibrational motion that is dynamically sampled after the cracking transition state causes spilling of the metastable intermediate into a variety of different products. A nearly 10-fold change in the branching ratio between C2/C3 cracking channels is found upon inclusion of post-transition-state dynamics, relative to static electronic structure calculations. Agreement with experiment is improved by the same factor. Because dynamical effects occur soon after passing through the rate-limiting transition state, it is the dynamics, and not only the potential energy barriers, that determine the catalytic selectivity. This study suggests that selectivity in zeolite catalysis is determined by high temperature pathways that differ significantly from 0 K potential surfaces.

  9. Unique Aspects of the Structure and Dynamics of Elementary Iβ Cellulose Microfibrils Revealed by Computational Simulations1[OPEN

    PubMed Central

    Oehme, Daniel P.; Downton, Matthew T.; Doblin, Monika S.; Wagner, John; Gidley, Michael J.; Bacic, Antony

    2015-01-01

    The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains. PMID:25786828

  10. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO2-H2O systems.

    PubMed

    Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang

    2014-01-28

    In view of the important implications of excess electrons (EEs) interacting with CO2-H2O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO2-H2O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO2 molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO2, an EE can stably reside in the empty, low-lying π(*) orbital of a CO2 molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO2 (-) oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO2-bound solvated EE in [CO2(H2O)n](-) systems. Interestingly, hydration occurs not only on the O atoms of the core CO2 (-) through formation of O⋯H-O H-bond(s), but also on the C atom, through formation of a C⋯H-O H-bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H-O H-bonds, and vice versa. The number of water molecules associated with the CO2 (-) anion in the first hydration shell is about 4∼7. No dimer-core (C2O4 (-)) and core-switching were observed in the double CO2 aqueous media. This work provides molecular dynamics insights into the localization and time evolution dynamics of an EE in heterogeneous CO2-H2O media.

  11. Dynamic Structure of Bombolitin II Bound to Lipid Bilayers as Revealed by Solid-state NMR and Molecular-Dynamics Simulation

    PubMed Central

    Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2010-01-01

    Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076

  12. Influence of Temperature and Stress on Near-Surface Cascades in Alpha-Zirconium Revealed by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Tian-Yu; Peng, Meng-Meng; Luo, Xiao-Feng; Lai, Wen-Sheng

    2013-09-01

    Molecular dynamics simulations are used to study cascades near the surface in hcp Zr. The influences of several factors, namely the primary knock-on atom (PKA) in different layers, angle of incidence, temperature and stress, on the number and type of defects are considered. Compared to bulk cascades, near-surface cascades show different characteristics in defect type and quantity when the PKA is in different layers. Low angle incidences create surface sputtering while the effects of high angle incidences are similar to those of bulk cascades. The effect of temperature is mainly focused on the number of sputtered atoms, with little influence on the total number of surviving defects. Stress helps to create more defects and the influence of compressive stress is more prominent than tensile stress.

  13. Multiple conformational states and gate opening of outer membrane protein TolC revealed by molecular dynamics simulations.

    PubMed

    Wang, Beibei; Weng, Jingwei; Wang, Wenning

    2014-09-01

    Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt-bridge R367-D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate.

  14. The complex folding behavior of HIV-1-protease monomer revealed by optical-tweezer single-molecule experiments and molecular dynamics simulations.

    PubMed

    Caldarini, M; Sonar, P; Valpapuram, I; Tavella, D; Volonté, C; Pandini, V; Vanoni, M A; Aliverti, A; Broglia, R A; Tiana, G; Cecconi, C

    2014-12-01

    We have used optical tweezers and molecular dynamics simulations to investigate the unfolding and refolding process of a stable monomeric form of HIV-1-protease (PR). We have characterized the behavior under tension of the native state (N), and that of the ensemble of partially folded (PF) conformations the protein visits en route to N, which collectively act as a long-lived state controlling the slow kinetic phase of the folding process. Our results reveal a rich network of unfolding events, where the native state unfolds either in a two-state manner or by populating an intermediate state I, while the PF state unravels through a multitude of pathways, underscoring its structural heterogeneity. Refolding of mechanically denatured HIV-1-PR monomers is also a multiple-pathway process. Molecular dynamics simulations allowed us to gain insight into possible conformations the protein adopts along the unfolding pathways, and provide information regarding possible structural features of the PF state.

  15. NMR spectroscopy and molecular dynamics simulation of r(CCGCUGCGG)₂ reveal a dynamic UU internal loop found in myotonic dystrophy type 1.

    PubMed

    Parkesh, Raman; Fountain, Matthew; Disney, Matthew D

    2011-02-08

    The NMR structure of an RNA with a copy of the 5'CUG/3'GUC motif found in the triplet repeating disorder myotonic dystrophy type 1 (DM1) is disclosed. The lowest energy conformation of the UU pair is a single-hydrogen bond structure; however, the UU protons undergo exchange indicating structural dynamics. Molecular dynamics simulations show that the single hydrogen bond structure is the most populated one but the UU pair interconverts among zero, one, and two hydrogen bond pairs. These studies have implications for the recognition of the DM1 RNA by small molecules and proteins.

  16. A Wrench in the Works of Human Acetylcholinesterase: Soman Induced Conformational Changes Revealed by Molecular Dynamics Simulations

    PubMed Central

    Fattebert, Jean-Luc; Emigh, Aiyana

    2015-01-01

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures. PMID:25874456

  17. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE PAGES

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; ...

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  18. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    SciTech Connect

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; Fattebert, Jean -Luc; Emigh, Aiyana; Lightstone, Felice C.; Salsbury , Jr, Freddie

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.

  19. Molecular basis for the Cu2+ binding-induced destabilization of beta2-microglobulin revealed by molecular dynamics simulation.

    PubMed

    Deng, Nan-Jie; Yan, Lisa; Singh, Deepak; Cieplak, Piotr

    2006-06-01

    According to experimental data, binding of the Cu(2+) ions destabilizes the native state of beta2-microglobulin (beta2m). The partial unfolding of the protein was generally considered an early step toward fibril formation in dialysis-related amyloidosis. Recent NMR studies have suggested that the destabilization of the protein might be achieved through increased flexibility upon Cu(2+) binding. However, the molecular mechanism of destabilization due to Cu(2+), its role in amyloid formation, and the relative contributions of different potential copper-binding sites remain unclear. To elucidate the effect of ion ligation at atomic detail, a series of molecular dynamics simulations were carried out on apo- and Cu(2+)-beta2m systems in explicit aqueous solutions, with varying numbers of bound ions. Simulations at elevated temperatures (360 K) provide detailed pictures for the process of Cu(2+)-binding-induced destabilization of the native structure at the nanosecond timescale, which are in agreement with experiments. Conformational transitions toward partially unfolded states were observed in protein solutions containing bound copper ions at His-31 and His-51, which is marked by an increase in the protein vibrational entropy, with TDeltaS(vibr) ranging from 30 to 69 kcal/mol. The binding of Cu(2+) perturbs the secondary structure and the hydrogen bonding pattern disrupts the native hydrophobic contacts in the neighboring segments, which include the beta-strand D2 and part of the beta-strand E, B, and C and results in greater exposure of the D-E loop and the B-C loop to the water environment. Analysis of the MD trajectories suggests that the changes in the hydrophobic environment near the copper-binding sites lower the barrier of conformational transition and stabilize the more disordered conformation. The results also indicate that the binding of Cu(2+) at His-13 has little effect on the conformational stability, whereas the copper-binding site His-31, and to a lesser

  20. Multi-step formation of a hemifusion diaphragm for vesicle fusion revealed by all-atom molecular dynamics simulations.

    PubMed

    Tsai, Hui-Hsu Gavin; Chang, Che-Ming; Lee, Jian-Bin

    2014-06-01

    Membrane fusion is essential for intracellular trafficking and virus infection, but the molecular mechanisms underlying the fusion process remain poorly understood. In this study, we employed all-atom molecular dynamics simulations to investigate the membrane fusion mechanism using vesicle models which were pre-bound by inter-vesicle Ca(2+)-lipid clusters to approximate Ca(2+)-catalyzed fusion. Our results show that the formation of the hemifusion diaphragm for vesicle fusion is a multi-step event. This result contrasts with the assumptions made in most continuum models. The neighboring hemifused states are separated by an energy barrier on the energy landscape. The hemifusion diaphragm is much thinner than the planar lipid bilayers. The thinning of the hemifusion diaphragm during its formation results in the opening of a fusion pore for vesicle fusion. This work provides new insights into the formation of the hemifusion diaphragm and thus increases understanding of the molecular mechanism of membrane fusion. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  1. Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport.

    PubMed

    Sugitani, Ryogo; Stuchebrukhov, Alexei A

    2009-09-01

    We have examined the network of connected internal cavities in cytochrome c oxidase along which water produced at the catalytic center is removed from the enzyme. Using combination of structural analysis, molecular dynamics simulations, and free energy calculations we have identified two exit pathways that connect the Mg2+ ion cavity to the outside of the enzyme. Each pathway has a well-defined bottleneck, which determines the overall rate of water traffic along the exit pathway, and a specific cooperative mechanism of passing it. One of the pathways is going via Arg438/439 (in bovine numbering) toward the CuA center, approaching closely its His204B ligand and Lys171B residue; and the other is going toward Asp364 and Thr294. Comparison of the pathways among different aa3-type enzymes shows that they are well conserved. Possible connections of the finding to redox-coupled proton pumping mechanism are discussed. We propose specific mutations near the bottlenecks of the exit pathways that can test some of our hypotheses.

  2. Structural Instability of the Prion Protein upon M205S/R Mutations Revealed by Molecular Dynamics Simulations

    PubMed Central

    Hirschberger, Thomas; Stork, Martina; Schropp, Bernhard; Winklhofer, Konstanze F.; Tatzelt, Jörg; Tavan, Paul

    2006-01-01

    The point mutations M205S and M205R have been demonstrated to severely disturb the folding and maturation process of the cellular prion protein (PrPC). These disturbances have been interpreted as consequences of mutation-induced structural changes in PrP, which are suggested to involve helix 1 and its attachment to helix 3, because the mutated residue M205 of helix 3 is located at the interface of these two helices. Furthermore, current models of the prion protein scrapie (PrPSc), which is the pathogenic isoform of PrPC in prion diseases, imply that helix 1 disappears during refolding of PrPC into PrPSc. Based on molecular-dynamics simulations of wild-type and mutant PrPC in aqueous solution, we show here that the native PrPC structure becomes strongly distorted within a few nanoseconds, once the point mutations M205S and M205R have been applied. In the case of M205R, this distortion is characterized by a motion of helix 1 away from the hydrophobic core into the aqueous environment and a subsequent structural decay. Together with experimental evidence on model peptides, this decay suggests that the hydrophobic attachment of helix 1 to helix 3 at M205 is required for its correct folding into its stable native structure. PMID:16513786

  3. Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gui-Jun, Cheng; Bao-Qin, Fu; Qing, Hou; Xiao-Song, Zhou; Jun, Wang

    2016-07-01

    The microstructures of titanium (Ti), an attractive tritium (T) storage material, will affect the evolution process of the retained helium (He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics (MD) simulation for the bulk hcp-Ti system and the system with grain boundary (GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic (the diffusion coefficient of the [0001] direction is higher than that of the basal plane), as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary (TB) can serve as an effective trapped region for He. The TB accelerates diffusion of He in the direction perpendicular to the twinning direction (TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region. Project supported by the National Natural Science Foundation of China (Grant No. 51501119), the Scientific Research Starting Foundation for Younger Teachers of Sichuan University, China (Grant No. 2015SCU11058), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109002), and the Cooperative Research Project “Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium”, China.

  4. Coarse-Grained Models Reveal Functional Dynamics – II. Molecular Dynamics Simulation at the Coarse-Grained Level – Theories and Biological Applications

    PubMed Central

    Chng, Choon-Peng; Yang, Lee-Wei

    2008-01-01

    Molecular dynamics (MD) simulation has remained the most indispensable tool in studying equilibrium/non-equilibrium conformational dynamics since its advent 30 years ago. With advances in spectroscopy accompanying solved biocomplexes in growing sizes, sampling their dynamics that occur at biologically interesting spatial/temporal scales becomes computationally intractable; this motivated the use of coarse-grained (CG) approaches. CG-MD models are used to study folding and conformational transitions in reduced resolution and can employ enlarged time steps due to the absence of some of the fastest motions in the system. The Boltzmann-Inversion technique, heavily used in parameterizing these models, provides a smoothed-out effective potential on which molecular conformation evolves at a faster pace thus stretching simulations into tens of microseconds. As a result, a complete catalytic cycle of HIV-1 protease or the assembly of lipid-protein mixtures could be investigated by CG-MD to gain biological insights. In this review, we survey the theories developed in recent years, which are categorized into Folding-based and Molecular-Mechanics-based. In addition, physical bases in the selection of CG beads/time-step, the choice of effective potentials, representation of solvent, and restoration of molecular representations back to their atomic details are systematically discussed. PMID:19812774

  5. Structural dynamics and cation interactions of DNA quadruplex molecules containing mixed guanine/cytosine quartets revealed by large-scale MD simulations.

    PubMed

    Spacková, N; Berger, I; Sponer, J

    2001-04-11

    Large-scale molecular dynamics (MD) simulations have been utilized to study G-DNA quadruplex molecules containing mixed GCGC and all-guanine GGGG quartet layers. Incorporation of mixed GCGC quartets into G-DNA stems substantially enhances their sequence variability. The mixed quadruplexes form rigid assemblies that require integral monovalent cations for their stabilization. The interaction of cations with the all-guanine quartets is the leading contribution for the stability of the four-stranded assemblies, while the mixed quartets are rather tolerated within the structure. The simulations predict that two cations are preferred to stabilize a four-layer quadruplex stem composed of two GCGC and two all-guanine quartets. The distribution of cations in the structure is influenced by the position of the GCGC quartets within the quadruplex, the presence and arrangement of thymidine loops connecting the guanine/cytosine stretches forming the stems, and the cation type present (Na(+) or K(+)). The simulations identify multiple nanosecond-scale stable arrangements of the thymidine loops present in the molecules investigated. In these thymidine loops, several structured pockets are identified capable of temporarily coordinating cations. However, no stable association of cations to a loop has been observed. The simulations reveal several paths through the thymidine loop regions that can be followed by the cations when exchanging between the central ion channel in the quadruplex stem and the surrounding solvent. We have carried out 20 independent simulations while the length of simulations reaches a total of 90 ns, rendering this study one of the most extensive MD investigations carried out on nucleic acids so far. The trajectories provide a largely converged characterization of the structural dynamics of these four-stranded G-DNA molecules.

  6. The atomistic mechanism of hcp-to-bcc martensitic transformation in the Ti-Nb system revealed by molecular dynamics simulations.

    PubMed

    Li, Yang; Li, JiaHao; Liu, BaiXin

    2015-02-14

    Applying the constructed Ti-Nb potentials, molecular dynamics simulations were conducted to investigate the martensitic transformation of Ti100-xNbx alloys (x = 5, 10…25) from the α' phase (hcp) to the β phase (bcc). It is found that the transformation involved four phases, i.e. α', α'', fco (face-centered orthorhombic), and β phases. The structures of the obtained phases exhibit consistency with experimental data, verifying the validity of atomic simulations. The simulations not only revealed the processes of atomic displacements during the transformation, but also elucidated the underlying mechanism of the martensitic transformation at the atomic level. The martensitic transformation incorporates three types of coinstantaneous deformations i.e. slide, shear as well as extension, and the subsequent lattice constant relaxation. Furthermore, according to the proposed mechanism, the crystallographic correlation between the initial α' phase and the final β phase has been deduced. The simulation results provide a clear landscape on the martensitic transformation mechanism, facilitating our comprehensive understanding on the phase transition in the Ti-Nb system.

  7. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane.

    PubMed

    Witzke, Sarah; Petersen, Michael; Carpenter, Timothy S; Khalid, Syma

    2016-06-14

    Lipid II is critical for peptidoglycan synthesis, which is the main component of the bacterial cell wall. Lipid II is a relatively conserved and important part of the cell wall biosynthesis pathway and is targeted by antibiotics such as the lantibiotics, which achieve their function by disrupting the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes.

  8. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.

    PubMed

    Tong, Lei; Xie, Yang; Yu, Hongbo

    2016-12-17

    Experiments on the adult visual cortex of cats, ferrets and monkeys have revealed organized spatial relationships between multiple feature maps which can also be reproduced by the Kohonen and elastic net self-organization models. However, attempts to apply these models to simulate the temporal kinetics of monocular deprivation (MD) during the critical period, and their effects on the spatial arrangement of feature maps, have led to conflicting results. In this study, we performed MD and chronic imaging in the ferret visual cortex during the critical period of ocular dominance (OD) plasticity. We also used the Kohonen model to simulate the effects of MD on OD and orientation map development. Both the experiments and simulations demonstrated two general parameter-insensitive findings. Specifically, our first finding demonstrated that the OD index shift resulting from MD, and its subsequent recovery during binocular vision (BV), were both nonlinear, with a significantly stronger shift occurring during the initial period. Meanwhile, spatial reorganization of feature maps led to globally unchanged but locally shifted map patterns. In detail, we found that the periodicity of OD and orientation maps remained unchanged during, and after, deprivation. Relationships between OD and orientation maps remained similar but were significantly weakened due to OD border shifts. These results indicate that orthogonal gradient relationships between maps may be preset and are only mildly modifiable during the critical period. The Kohonen model was able to reproduce these experimental results, hence its role is further extended to the description of cortical feature map dynamics during development.

  9. Dynamical Mechanisms of Ozone Anomalies Formation as Revealed by Global-Scale and Regional Simulations with PlanetWRF and CAM modelling systems

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Krasouski, Alexander; Svetashev, Alexander; Turishev, Leonid; Zhuchkevich, Veronika

    2013-04-01

    parameterization scheme should allow for the possible radiative feedback on ozone dynamics. We perform global simulations with the PlanetWRF - WRFChem system and compare results with those obtained with the CAM system. Furthermore, to perform regional simulations on finer grids resolving mesoscale processes we use nested domains following spatial region of local ozone anomalies of interest. We perform studies of several cases of both negative (miniholes) and positive local ozone anomalies over the territory of Europe. Furthermore, we investigate the connection between ozone anomalies dynamics in the stratosphere and tropospheric weather phenomena. For that purpose we introduce perturbations to the initial conditions. First, we modify the variable fields on stratospheric model levels to see its possible impact on tropospheric phenomena. Independently, in a subsequent numerical experiment we introduce disturbances in surface and tropospheric variable fields in order to trace its influence on the stratospheric ozone dynamics. Intercomparison of modelling results is given, revealing interactions of the synoptic pressure formations with features of the stratospheric circulation. Apart from that, we analyze the role of vertical motions and ozone radiative heating on local anomalies formation. [1] Mangold A. et al - A model study of the January 2006 low total ozone episode over Western Europe and comparison with ozone sonde data // Atmospheric Chemistry and Physics, 9. - 2009. - pp. 6429-6451. [2] Semane N. et al - A very deep ozone minihole in the Northern Hemisphere stratosphere at mid-latitudes during the winter of 2000 // Tellus, 54A. - 2002. - pp. 382-389. [3] Liu C. et al - Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987-2001 // Journal of Geophysical Research, Vol. 115, D18311. - 2010.

  10. Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulations Reveal a Rotationally Fluid Adsorption State of α-Pinene on Silica

    SciTech Connect

    Ho, Junming; Psciuk, Brian T.; Chase, Hilary M.; Rudshteyn, Benjamin; Upshur, Mary Alice; Fu, Li; Thomson, Regan J.; Wang, Hong-Fei; Geiger, Franz M.; Batista, Victor S.

    2016-06-16

    A rotationally fluid state of α-pinene at fused silica/vapor interfaces is revealed by computational and experimental vibrational sum frequency generation (SFG) studies. We report the first assignment of the vibrational modes in the notoriously congested C-H stretching region of α-pinene and identify its bridge methylene group on the four-membered ring ("βCH2") as the origin of its dominant spectral feature. We find that the spectra are perfused with Fermi resonances that need to be accounted for explicitly in the computation of vibrational spectra of strained hydrocarbons such α-pinene. The preferred orientations of α-pinene are consistent with optimization of van der Waals contacts with the silica surface that results in a bimodal distribution of highly fluxional orientations in which the βCH2 group points "towards" or "away from” the surface. The reported findings are particularly relevant to the exposure of α-pinene to primary oxidants in heterogeneous catalytic pathways that exploit α-pinene as a sustainable feedstock for fine chemicals and polymers.

  11. Factors affecting the interactions between beta-lactoglobulin and fatty acids as revealed in molecular dynamics simulations.

    PubMed

    Yi, Changhong; Wambo, Thierry O

    2015-09-21

    Beta-lactoglobulin (BLG), a bovine dairy protein, is a promiscuously interacting protein that can bind multiple hydrophobic ligands. Fatty acids (FAs), common hydrophobic molecules bound to BLG, are important sources of fuel for life because they yield large quantities of ATP when metabolized. The binding affinity increases with the length of the ligands, indicating the importance of the van der Waals (vdW) interactions between the hydrocarbon tail and the hydrophobic calyx of BLG. An exception to this rule is caprylic acid (OCA) which is two-carbon shorter but has a stronger binding affinity than capric acid. Theoretical calculations in the current literature are not accurate enough to shed light on the underlying physics of this exception. The computed affinity values are greater for longer fatty acids without respect for the caprylic exception and those values are generally several orders of magnitude away from the experimental data. In this work, we used hybrid steered molecular dynamics to accurately compute the binding free energies between BLG and the five saturated FAs of 8 to 16 carbon atoms. The computed binding free energies agree well with experimental data not only in rank but also in absolute values. We gained insights into the exceptional behavior of caprylic acid in the computed values of entropy and electrostatic interactions. We found that the electrostatic interaction between the carboxyl group of caprylic acid and the two amino groups of K60/69 in BLG is much stronger than the vdW force between the OCA's hydrophobic tail and the BLG calyx. This pulls OCA to the top of the beta barrel where it is easier to fluctuate, giving rise to greater entropy of OCA at the binding site.

  12. Molecular dynamics simulations on pars intercerebralis major peptide-C (PMP-C) reveal the role of glycosylation and disulfide bonds in its enhanced structural stability and function.

    PubMed

    Kaushik, Sandeep; Mohanty, Debasisa; Surolia, Avadhesha

    2012-01-01

    Fucosylation of Thr 9 in pars intercerebralis major peptide-C (PMP-C) enhances its structural stability and functional ability as a serine protease inhibitor. In order to understand the role of disulfide bonds and glycosylation on the structure and function of PMP-C, we have carried out multiple explicit solvent molecular dynamics (MD) simulations on fucosylated and non-fucosylated forms of PMP-C, both in the presence and absence of the disulfide bonds. Our simulations revealed that there were no significant structural changes in the native disulfide bonded forms of PMP-C due to fucosylation. On the other hand, the non-fucosylated form of PMP-C without disulfide bonds showed larger deviations from the starting structure than the fucosylated form. However, the structural deviations were restricted to the terminal regions while core β-sheet retained its hydrogen bonded structure even in absence of disulfide bonds as well as fucosylation. Interestingly, fucosylation of disulfide bonded native PMP-C led to a decreased thermal flexibility in the residue stretch 29-32 which is known to interact with the active site of the target proteases. Our analysis revealed that disulfide bonds covalently connect the residue stretch 29-32 to the central β-sheet of PMP-C and using a novel network of side chain interactions and disulfide bonds fucosylation at Thr 9 is altering the flexibility of the stretch 29-32 located at a distal site. Thus, our simulations explain for the first time, how presence of disulfide bonds between conserved cysteines and fucosylation enhance the function of PMP-C as a protease inhibitor.

  13. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.

    PubMed

    Zhao, Yunjie; Zeng, Chen; Massiah, Michael A

    2015-01-01

    The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β) and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD) simulation for the A130V mutant (>6 Å) and after 30 ns for A130T mutant (>6 Å). Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.

  14. Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The proceedings of the conference are presented. The objective was to provide a forum for the discussion of the structure and status of existing computer programs which are used to simulate the dynamics of a variety of tether applications in space. A major topic was different simulation models and the process of validating them. Guidance on future work in these areas was obtained from a panel discussion; the panel was composed of resource and technical managers and dynamic analysts in the tether field. The conclusions of this panel are also presented.

  15. Dynamical Simulation of Probabilities

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices(such as random number generators). Self-orgainizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed. Special attention was focused upon coupled stochastic processes, defined in terms of conditional probabilities, for which joint probability does not exist. Simulations of quantum probabilities are also discussed.

  16. Molecular dynamics simulation of human serum paraoxonase 1 in DPPC bilayer reveals a critical role of transmembrane helix H1 for HDL association.

    PubMed

    Patra, Mahesh Chandra; Rath, Surya Narayan; Pradhan, Sukanta Kumar; Maharana, Jitendra; De, Sachinandan

    2014-01-01

    Serum paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-bound mammalian enzyme exhibiting antiatherosclerotic activity. Despite years of research, an accurate model for the binding interaction between PON1 and HDL has not been established. However, it is reported that anchoring of PON1 to HDL is mainly governed by an N-terminal alpha helix H1 and another short helix H2. Here, we studied the molecular association of full-length human PON1 (huPON1) with a HDL-mimetic dipalmitoylphosphatidylcholine (DPPC) bilayer using homology modeling and molecular dynamics simulations. Our results indicate that H1 is the highly dynamic part of huPON1, showing clockwise rotation of up to 30° within the DPPC bilayer. However, without phospholipid molecules, H1 experiences helical distortions, illustrating an incompatible HDL-anchoring conformation. Snorkeling interactions of K3, R18, and R27 together with aromatic locks formed by Y187, Y190, W194, and W202 are highly essential for anchoring of huPON1 to HDL's surface. Molecular mechanics/Poisson-Boltzmann solvent-accessible surface area (MM/PBSA) binding free energy calculation revealed that H1 displays greater binding affinity towards lipid molecules compared with H2 and H3, suggesting that H1 is the most probable HDL-binding domain of PON1. Binding free energy decomposition showed that K3, R18, and R27 interact with polar headgroups of DPPC membrane through electrostatic interaction. Moreover, Y187, Y190, W194, and W202 interact with DPPC lipids mainly through van der Waals interaction. Taken together, these results show that the transmembrane helix H1 along with the interfacial positively charged and aromatic resides were crucial for PON1's association with HDL particle. The current study will be useful towards understanding the antiatherosclerotic and bioscavenging properties of this promiscuous enzyme.

  17. Sawfishes stealth revealed using computational fluid dynamics.

    PubMed

    Bradney, D R; Davidson, A; Evans, S P; Wueringer, B E; Morgan, D L; Clausen, P D

    2017-02-27

    Detailed computational fluid dynamics simulations for the rostrum of three species of sawfish (Pristidae) revealed that negligible turbulent flow is generated from all rostra during lateral swipe prey manipulation and swimming. These results suggest that sawfishes are effective stealth hunters that may not be detected by their teleost prey's lateral line sensory system during pursuits. Moreover, during lateral swipes, the rostra were found to induce little velocity into the surrounding fluid. Consistent with previous data of sawfish feeding behaviour, these data indicate that the rostrum is therefore unlikely to be used to stir up the bottom to uncover benthic prey. Whilst swimming with the rostrum inclined at a small angle to the horizontal, the coefficient of drag of the rostrum is relatively low and the coefficient of lift is zero.

  18. Data Systems Dynamic Simulator

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Clark, Melana; Davenport, Bill; Message, Philip

    1993-01-01

    The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique.

  19. Steered molecular dynamics simulations of a bacterial type IV pilus reveal characteristics of an experimentally-observed, force-induced conformational transition

    NASA Astrophysics Data System (ADS)

    Baker, Joseph; Biais, Nicolas; Tama, Florence

    2011-10-01

    Type IV pili (T4P) are long, filamentous structures that emanate from the cellular surface of many infectious bacteria. They are built from a 158 amino acid long subunit called pilin. T4P can grow to many micrometers in length, and can withstand large tension forces. During the infection process, pili attach themselves to host cells, and therefore naturally find themselves under tension. We investigated the response of a T4 pilus to a pulling force using the method of steered molecular dynamics (SMD) simulation. Our simulations expose to the external environment an amino acid sequence initially hidden in the native filament, in agreement with experimental data. Therefore, our simulations might be probing the initial stage of the transition to a force-induced conformation of the T4 pilus. Additional exposed amino acid sequences that might be useful targets for drugs designed to mitigate bacterial infection were also predicted.

  20. Look-ahead Dynamic Simulation

    SciTech Connect

    2015-10-20

    Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.

  1. Eye Movements Reveal Dynamics of Task Control

    ERIC Educational Resources Information Center

    Mayr, Ulrich; Kuhns, David; Rieter, Miranda

    2013-01-01

    With the goal to determine the cognitive architecture that underlies flexible changes of control settings, we assessed within-trial and across-trial dynamics of attentional selection by tracking of eye movements in the context of a cued task-switching paradigm. Within-trial dynamics revealed a switch-induced, discrete delay in onset of…

  2. Dispersion of Response Times Reveals Cognitive Dynamics

    PubMed Central

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2013-01-01

    Trial to trial variation in word pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes – interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and interdependence. Individual participant distributions of ≈1100 word pronunciation times are successfully mimicked for each participant in combinations of lognormal and power law behavior. Successful hazard function simulations generalize these results to establish interaction dominant dynamics, in contrast with component dominant dynamics, as a likely mechanism for cognitive activity. PMID:19348544

  3. A dissociative quantum mechanical/molecular mechanical molecular dynamics simulation and infrared experiments reveal characteristics of the strongly hydrolytic arsenic(III).

    PubMed

    Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S

    2014-11-17

    This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect.

  4. Functional conformations of the L11–ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations

    PubMed Central

    Li, Wen; Sengupta, Jayati; Rath, Bimal K.; Frank, Joachim

    2006-01-01

    The interaction between the GTPase-associated center (GAC) and the aminoacyl-tRNA·EF-Tu·GTP ternary complex is of crucial importance in the dynamic process of decoding and tRNA accommodation. The GAC includes protein L11 and helices 43–44 of 23S rRNA (referred to as L11–rRNA complex). In this study, a method of fitting based on a systematic comparison between cryo-electron microscopy (cryo-EM) density maps and structures obtained by molecular dynamics simulations has been developed. This method has led to the finding of atomic models of the GAC that fit the EM maps with much improved cross-correlation coefficients compared with the fitting of the X-ray structure. Two types of conformations of the L11–rRNA complex, produced by the simulations, match the cryo-EM maps representing the states either bound or unbound to the aa-tRNA·EF-Tu·GTP ternary complex. In the bound state, the N-terminal domain of L11 is extended from its position in the crystal structure, and the base of nucleotide A1067 in the 23S ribosomal RNA is flipped out. This position of the base allows the RNA to reach the elbow region of the aminoacyl-tRNA when the latter is bound in the A/T site. In the unbound state, the N-terminal domain of L11 is rotated only slightly, and A1067 of the RNA is flipped back into the less-solvent-exposed position, as in the crystal structure. By matching our experimental cryo-EM maps with much improved cross-correlation coefficients compared to the crystal structure, these two conformations prove to be strong candidates of the two functional states. PMID:16682558

  5. Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Liang, Zhiqiang; Wang, Wei; Yi, Changhong; Zhang, Shaolong; Zhang, Qinggang

    2014-11-01

    Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.

  6. Computational diagnosis of protein conformational diseases: short molecular dynamics simulations reveal a fast unfolding of r-LDL mutants that cause familial hypercholesterolemia.

    PubMed

    Cuesta-López, S; Falo, F; Sancho, J

    2007-01-01

    The molecular basis of conformational diseases frequently resides in mutant proteins constituting a subset of the vast mutational space. While the subtleties of protein structure point to molecular dynamics (MD) techniques as promising tools for an efficient exploration of such a space, the average size of proteins and the time scale of unfolding events make this goal difficult with present computational capabilities. We show here, nevertheless, that an efficient approach is already feasible for modular proteins. Familial hypercholesterolemia (FH) is a conformational disease linked to mutations in the gene encoding the low density lipoprotein receptor. A high percentage of these mutations has been found in the seven small modular binding repeats of the receptor. Taking advantage of its small size, we have performed an in depth MD study of the fifth binding repeat. Fast unfolding dynamics have been observed in the absence of a structural bound calcium ion, which agrees with its reported essential role in the stability of the module. In addition, several mutations detected in FH patients have been analyzed, starting from the native conformation. Our results indicate that in contrast with the wild type protein and an innocuous control mutant, disease-related mutants experience, in short simulation times (2-8 ns), gross departures from the native state that lead to unfolded conformations and, in some cases, to binding site desorganization deriving in calcium release. Computational diagnosis of mutations leading to conformational diseases seems thus feasible, at least for small or modular pathogenic proteins.

  7. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    PubMed

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  8. Dispersion of Response Times Reveals Cognitive Dynamics

    ERIC Educational Resources Information Center

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2009-01-01

    Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and…

  9. Remote manipulator dynamic simulation

    NASA Technical Reports Server (NTRS)

    Wild, E. C.; Donges, P. K.; Garand, W. A.

    1972-01-01

    A simulator to generate the real time visual scenes required to perform man in the loop investigations of remote manipulator application and design concepts for the space shuttle is described. The simulated remote manipulator consists of a computed display system that uses a digital computer, the electronic scene generator, an operator's station, and associated interface hardware. A description of the capabilities of the implemented simulation is presented. The mathematical models and programs developed for the simulation are included.

  10. Membrane negative curvature induced by a hybrid peptide from pediocin PA-1 and plantaricin 149 as revealed by atomistic molecular dynamics simulations.

    PubMed

    da Hora, G C A; Archilha, N L; Lopes, J L S; Müller, D M; Coutinho, K; Itri, R; Soares, T A

    2016-11-04

    Antimicrobial peptides (AMPs) are cationic peptides that kill bacteria with a broad spectrum of action, low toxicity to mammalian cells and exceptionally low rates of bacterial resistance. These features have led to considerable efforts in developing AMPs as an alternative antibacterial therapy. In vitro studies have shown that AMPs interfere with membrane bilayer integrity via several possible mechanisms, which are not entirely understood. We have performed the synthesis, membrane lysis measurements, and biophysical characterization of a novel hybrid peptide. These measurements show that PA-Pln149 does not form nanopores, but instead promotes membrane rupture. It causes fast rupture of the bacterial model membrane (POPG-rich) at concentrations 100-fold lower than that required for the disruption of mammalian model membranes (POPC-rich). Atomistic molecular dynamics (MD) simulations were performed for single and multiple copies of PA-Pln149 in the presence of mixed and pure POPC/POPG bilayers to investigate the concentration-dependent membrane disruption by the hybrid peptide. These simulations reproduced the experimental trend and provided a potential mechanism of action for PA-Pln149. It shows that the PA-Pln149 does not form nanopores, but instead promotes membrane destabilization through peptide aggregation and induction of membrane negative curvature with the collapse of the lamellar arrangement. The sequence of events depicted for PA-Pln149 may offer insights into the mechanism of action of AMPs previously shown to induce negative deformation of membrane curvature and often associated with peptide translocation via non-bilayer intermediate structures.

  11. Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang

    2016-11-01

    More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens.

  12. Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis

    PubMed Central

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang

    2016-01-01

    More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens. PMID:27830740

  13. Dynamic Power Grid Simulation

    SciTech Connect

    Top, Philip; Woodward, Carol; Smith, Steve; Banks, Lawrence; Kelley, Brian

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  14. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated.

  15. Structural basis for the temperature-induced transition of D-amino acid oxidase from pig kidney revealed by molecular dynamic simulation and photo-induced electron transfer.

    PubMed

    Nueangaudom, Arthit; Lugsanangarm, Kiattisak; Pianwanit, Somsak; Kokpol, Sirirat; Nunthaboot, Nadtanet; Tanaka, Fumio

    2012-02-28

    The structural basis for the temperature-induced transition in the D-amino acid oxidase (DAAO) monomer from pig kidney was studied by means of molecular dynamic simulations (MDS). The center to center (Rc) distances between the isoalloxazine ring (Iso) and all aromatic amino acids (Trp and Tyr) were calculated at 10 °C and 30 °C. Rc was shortest in Tyr224 (0.82 and 0.88 nm at 10 and 30 °C, respectively), and then in Tyr228. Hydrogen bonding (H-bond) formed between the Iso N1 and Gly315 N (peptide), between the Iso N3H and Leu51 O (peptide) and between the Iso N5 and Ala49 N (peptide) at 10 °C, whilst no H-bond was formed at the Iso N1 and Iso N3H at 30 °C. The H-bond of Iso O4 with Leu51 N (peptide) at 10 °C switched to that with Ala49 N (peptide) at 30 °C. The reported fluorescence lifetimes (228 and 182 ps at 10 and 30 °C, respectively) of DAAO were analyzed with Kakitani and Mataga (KM) ET theory. The calculated fluorescence lifetimes displayed an excellent agreement with the observed lifetimes. The ET rate was fastest from Tyr224 to the excited Iso (Iso*) at 10 °C and from Tyr314 at 30 °C, despite the fact that the Rc was shortest between Iso and Tyr224 at both temperatures. This was explained by the electrostatic energy in the protein. The differences in the observed fluorescence lifetimes at 10 and 30 °C were ascribed to the differences in electron affinity of the Iso* at both temperatures, in which the free energies of the electron affinity of Iso* at 10 and 30 °C were -8.69 eV and -8.51 eV respectively. The other physical quantities related to ET did not differ appreciably at both temperatures. The electron affinities at both temperatures were calculated with a semi-empirical molecular orbital method (MO) of PM6. Mean calculated electron affinities over 100 snapshots with 0.1 ps intervals were -7.69 eV at 10 °C and -7.59 eV at 30 °C. The difference in the calculated electron affinities, -0.11 eV, was close to the observed difference in the

  16. Molecular dynamics simulations of nanostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Zaoshi

    This dissertation is focused on multimillion-atom molecular dynamics (MD) simulations of nanoscale materials. In the past decade, nanoscale materials have made significant commercial impacts, which will potentially lead to the next industrial revolution. The interest lies in the novel and promising features nanoscale materials exhibit due to their confined sizes. However, not all novel behaviors are understood or controllable. Many uncontrollable parameters, e.g. defects and dangling bonds, are known to hinder the performance of nanodevices. Solutions to these problems rely on our understanding of fundamental elements in nanoscience: isolated individual nanostructures and their assemblies. In this dissertation, we will address atomistic foundations of several problems of technological importance in nanoscience. Specifically, three basic problems are discussed: (1) embrittlement of nanocrystalline metal; (2) novel thermo-mechanical behaviors of nanowires (NWs); and (3) planar defect generation in NWs. With a scalable algorithm implemented on massively parallel computing platforms and various data mining methods, MD simulations can provide valuable insights into these problems. An essential role of sulfur segregation-induced amorphization of crystalline nickel was recently discovered experimentally, but the atomistic mechanism of the amorphization remains unexplained. Our MD simulations reveal that the large steric size of sulfur impurity causes strong sulfur-sulfur interaction mediated by lattice distortion, which leads to amorphization near the percolation threshold at the sulfur-sulfur network in nickel crystal. The generality of the mechanism due to the percolation of an impurity network is further confirmed by a model binary system. In our study of novel behaviors of semiconductor NWs, MD simulations construct a rich size-temperature `phase diagram' for the mechanical response of a zinc-oxide NW under tension. For smaller diameters and higher temperatures, novel

  17. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations

    PubMed Central

    Verma, Sharad; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Grover, Abhinav

    2016-01-01

    p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy. PMID:26863418

  18. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    SciTech Connect

    Warren, Jeffrey; Bilheux, Hassina Z; Kang, Misun; Voisin, Sophie; Cheng, Chu-Lin; Horita, Jusuke; Perfect, Edmund

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  19. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA

    PubMed Central

    Kogut, Mateusz; Kleist, Cyprian; Czub, Jacek

    2016-01-01

    G-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs form in vivo and are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully understood at the molecular level. Here, we used all-atom molecular dynamics to probe the microscopic origin of the G4 motif stability. By computing the free energy profiles governing the dissociation of the 3′-terminal G-tetrad in the telomeric parallel-stranded G4, we examined the thermodynamic and kinetic stability of a single G-tetrad, as a common structural unit of G4 DNA. Our results indicate that the energetics of guanine association alone does not explain the overall stability of the G-tetrad and that interactions involving sugar–phosphate backbone, in particular, the constrained minimization of the phosphate–phosphate repulsion energy, are crucial in providing the observed enthalpic stabilization. This enthalpic gain is largely compensated by the unfavorable entropy change due to guanine association and optimization of the backbone topology. PMID:26980278

  20. Dynamical simulation of gravothermal catastrophe.

    PubMed

    Klinko, Peter; Miller, Bruce N

    2004-01-16

    We investigate the dynamical evolution of gravothermal catastrophe in a model of a spherical cluster where, besides the energy and angular momentum, an additional integral of motion is also taken into account. Using dynamical simulation, we study a system of concentric, rotating, spherical shells employing a precise, event-driven, algorithm that permits the controlled exchange of internal angular momentum. Initially the system starts to relax to a locally stable state that is in good agreement with mean field predictions. This is followed by core collapse with the development of a core-halo structure and gravothermal oscillation.

  1. Accelerated dynamics simulations of nanotubes.

    SciTech Connect

    Uberuaga, B. P.; Stuart, S. J.; Voter, A. F.

    2002-01-01

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  2. Structural Adaptation of Cold-Active RTX Lipase from Pseudomonas sp. Strain AMS8 Revealed via Homology and Molecular Dynamics Simulation Approaches

    PubMed Central

    Mohamad Ali, Mohd. Shukuri; Mohd Fuzi, Siti Farhanie; Ganasen, Menega; Abdul Rahman, Raja Noor Zaliha Raja; Basri, Mahiran; Salleh, Abu Bakar

    2013-01-01

    The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8) (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil) are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus) maintained its stability more than the noncatalytic domain (C-terminus), but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future. PMID:23738333

  3. Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches.

    PubMed

    Mohamad Ali, Mohd Shukuri; Mohd Fuzi, Siti Farhanie; Ganasen, Menega; Abdul Rahman, Raja Noor Zaliha Raja; Basri, Mahiran; Salleh, Abu Bakar

    2013-01-01

    The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8) (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil) are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus) maintained its stability more than the noncatalytic domain (C-terminus), but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.

  4. Molecular dynamics simulation of pyridine

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił

    2015-04-01

    Molecular Dynamics (MD) simulations are used for the investigation of molecular motions in pyridine in the temperature range 20-480 K under normal pressure. The results obtained are analyzed within the frame of the Mori Zwanzig memory function formalism. An analytical approximation of the first memory function K(t) is applied to predict some dependences on temperature. Experimental results of the Rayleigh scattering of depolarized light from liquid pyridine are used as the main base for the comparison.

  5. Dynamic simulations of tissue welding

    SciTech Connect

    Maitland, D.J.; Eder, D.C.; London, R.A.; Glinsky, M.E.

    1996-02-01

    The exposure of human skin to near-infrared radiation is numerically simulated using coupled laser, thermal transport and mass transport numerical models. The computer model LATIS is applied in both one-dimensional and two-dimensional geometries. Zones within the skin model are comprised of a topical solder, epidermis, dermis, and fatty tissue. Each skin zone is assigned initial optical, thermal and water density properties consistent with values listed in the literature. The optical properties of each zone (i.e. scattering, absorption and anisotropy coefficients) are modeled as a kinetic function of the temperature. Finally, the water content in each zone is computed from water diffusion where water losses are accounted for by evaporative losses at the air-solder interface. The simulation results show that the inclusion of water transport and evaporative losses in the model are necessary to match experimental observations. Dynamic temperature and damage distributions are presented for the skin simulations.

  6. Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies

    DTIC Science & Technology

    2008-08-21

    REPORT Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this project is to...Std. Z39.18 - 31-May-2008 Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies Report Title ABSTRACT The goal of this project is to...Total Number: Sub Contractors (DD882) Inventions (DD882) Final Progress Report Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies

  7. Rotational Brownian dynamics simulations of clathrin cage formation.

    PubMed

    Ilie, Ioana M; den Otter, Wouter K; Briels, Wim J

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  8. Rotational Brownian Dynamics simulations of clathrin cage formation

    SciTech Connect

    Ilie, Ioana M.; Briels, Wim J.; Otter, Wouter K. den

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  9. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2011-12-01

    In situ quantification of soil-plant water fluxes have not been fully successful due to a lack of non-destructive techniques capable of revealing roots or water fluxes at relevant spatial scales. Neutron imaging is a unique non-invasive tool that can assess sub-millimeter scale material properties and transport in situ, and which has been successfully applied to characterize soil and plant water status. Here, we have applied neutron radiography and tomography to quantify water transport through individual maize roots in response to internal plant demand. Zea mays seedlings were grown for 10 days in Flint silica sand within 2.6 cm diameter Al chambers. Using a reactor-based neutron source at Oak Ridge National Laboratory (HFIR), water fluxes were tracked through the maize soil-root systems by collecting consecutive neutron radiographs over a 12 h period following irrigation with D2O. D has a much lower neutron attenuation than H, thus D2O displacement of existing H2O within the plant vascular system, or influx of D2O into previously dry tissue or soil is readily tracked by changes in image intensity through time. Plant water release and uptake was regulated by periodically cycling on a high-intensity grow light. From each maize replicate, selected regions of interest (ROI) were delineated around individual roots, root free soil, stem and leaf segments. Changes in ROI were tracked through time to reveal patterns of water flux. The hydration of root and stem tissue cycled in response to illumination; root water content often increased during darkness, then decreased with illumination as water was transported from the root into the stem. Relative root-shoot hydration through time illustrates the balance between demand, storage capacity and uptake, which varies depending on root characteristics and its localized soil environment. The dynamic transport of water between soil, individual roots, stems and leaves was readily visualized and quantified illustrating the value

  10. Stochastic heart-rate model can reveal pathologic cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kuusela, Tom

    2004-03-01

    A simple one-dimensional Langevin-type stochastic difference equation can simulate the heart-rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical of Gaussian noise, and both parts can be directly determined from measured heart-rate data. Data from healthy subjects typically exhibit the deterministic part with two or more stable fixed points. Studies of 15 congestive heart-failure subjects reveal that the deterministic part of pathologic heart dynamics has no clear stable fixed points. Direct simulations of the stochastic model for normal and pathologic cases can produce statistical parameters similar to those of real subjects. Results directly indicate that pathologic situations simplify the heart-rate control system.

  11. Planetary Interior Structure Revealed by Spin Dynamics

    NASA Astrophysics Data System (ADS)

    Margot, J.; Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V.

    2002-12-01

    The spin state of a planet depends on the distribution of mass within the interior, gradual and discrete changes in its moments of inertia, dissipation mechanisms at the surface and below, and external torques. Detailed measurements of the spin dynamics can therefore reveal much about planetary interior structure, interactions at the core-mantle and atmosphere-surface boundaries, and mass redistribution events. Studies of the spin precession, polar wobble, and length of day variations have been used to determine Earth's moments of inertia and rigidity and to study the effects of atmospheric angular momentum changes, post-glacial rebound, and large earthquakes. In planetary investigations the spin measurements are particularly important because other means of constraining interior properties require in-situ or orbiting sensors (e.g. seismometers, magnetometers, and Doppler tracking of spacecraft). Here we describe the successful implementation of a new Earth-based radar technique (Holin, 1992) that provides spin state measurements with unprecedented accuracy. Our first observations were designed to characterize Mercury's core. Peale (1976) showed that the measurement of four quantities (the obliquity of the planet, the amplitude of its longitude librations, and the second-degree gravitational harmonics) are sufficient to determine the size and state of Mercury's core. The existence of a molten core would place strong constraints on the thermal and rotational histories of the planet, with profound implications for the composition and rotation state of the planet at the time of formation. A solid core would have a fundamental impact on theories of planetary magnetic field generation. We observed Mercury with the Goldstone radar and the Green Bank Telescope in May-June 2002. We illuminated the planet with a monochromatic signal, recorded the scattered power at the two antennas, and cross-correlated the echoes in the time domain. We obtained strong correlations which

  12. Molecular dynamics simulation in virus research

    PubMed Central

    Ode, Hirotaka; Nakashima, Masaaki; Kitamura, Shingo; Sugiura, Wataru; Sato, Hironori

    2012-01-01

    Virus replication in the host proceeds by chains of interactions between viral and host proteins. The interactions are deeply influenced by host immune molecules and anti-viral compounds, as well as by mutations in viral proteins. To understand how these interactions proceed mechanically and how they are influenced by mutations, one needs to know the structures and dynamics of the proteins. Molecular dynamics (MD) simulation is a powerful computational method for delineating motions of proteins at an atomic-scale via theoretical and empirical principles in physical chemistry. Recent advances in the hardware and software for biomolecular simulation have rapidly improved the precision and performance of this technique. Consequently, MD simulation is quickly extending the range of applications in biology, helping to reveal unique features of protein structures that would be hard to obtain by experimental methods alone. In this review, we summarize the recent advances in MD simulations in the study of virus–host interactions and evolution, and present future perspectives on this technique. PMID:22833741

  13. Revealing networks from dynamics: an introduction

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Casadiego, Jose

    2014-08-01

    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

  14. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  15. Dynamical simulations of sedimenting spheres

    SciTech Connect

    Ladd, A.J.C. )

    1993-02-01

    The sedimentation of monodisperse suspensions of rigid spheres has been studied by dynamical simulation; computational techniques are described and numerical results are reported. It has been found that there is a slow relaxation of the suspension microstructure during sedimentation, so that compared with the initial equilibrium distribution, there is an increased number of pairs of particles near contact; this leads to a 5%--10% increase in the average sedimentation velocity. Individual particle velocities fluctuate about the mean fall speed; these fluctuations are large and persist for long times. The resulting hydrodynamically induced dispersion of the particles can be characterized by strongly anisotropic diffusion coefficients; however, the dispersion process is non-Fickian at high solids concentrations.

  16. Deuterium reveals the dynamics of notch activation.

    PubMed

    Raphael, Kopan

    2011-04-13

    Notch activation requires unfolding of a juxtamembrane negative regulatory domain (NRR). Tiyanont et al. (2011) analyzed the dynamics of NRR unfolding in the presence of EGTA. As predicted from the crystal structure and deletion analyses, the lin-Notch repeats unfold first, facilitating access by ADAM proteases. Surprisingly, the heterodimerization domain remains stable.

  17. Using Dynamic Graphs to Reveal Student Reasoning

    ERIC Educational Resources Information Center

    Lassak, Marshall

    2009-01-01

    Using dynamic graphs, future secondary mathematics teachers were able to represent and communicate their understanding of a brief mathematical investigation in a way that a symbolic proof of the problem could not. Four different student work samples are discussed. (Contains 6 figures.)

  18. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  19. AVHRR imagery reveals Antarctic ice dynamics

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Vornberger, Patricia L.

    1990-01-01

    A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of ice sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the ice sheets, while its wide swath allows coverage of areas beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the area of ice streams that drain the interior of the West Antarctic ice sheet into the Ross Ice Shelf.

  20. AVHRR imagery reveals Antarctic ice dynamics

    SciTech Connect

    Bindschadler, R.A.; Vornberger, P.L. STX Corp., Lanham, MD )

    1990-06-01

    A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of ice sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the ice sheets, while its wide swath allows coverage of areas beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the area of ice streams that drain the interior of the West Antarctic ice sheet into the Ross Ice Shelf. 21 refs.

  1. Human dynamics revealed through Web analytics

    NASA Astrophysics Data System (ADS)

    Gonçalves, Bruno; Ramasco, José J.

    2008-08-01

    The increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University’s Web site. Emory is a medium-sized university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we find that linear preferential linking, priority-based queuing, and the decay of interest for the contents of the pages are the essential ingredients to understand the way users navigate the Web.

  2. Modeling Nanocomposites for Molecular Dynamics (MD) Simulations

    DTIC Science & Technology

    2015-01-01

    Maximum 200 Words) The minimum energy configuration for Molecular Dynamics (MD) simulations is found for a carbon nanotube (CNT)/polymer...Carbon Nanotubes (CNTs), Molecular Dynamics Simulations 15. NUMBER OF PAGES 18 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...fiber composites have shown success in improving mechanical properties. Carbon nanotube (CNT)-based nanocomposites have been studied for

  3. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  4. Molecular Dynamics Simulation of Supercritical Spray Phenomena

    DTIC Science & Technology

    2008-09-26

    Dynamics of the Rheological and Structural Properties of Linear and Branched Molecules. Simple Shear and Poiseuille Flows ; Instabilities and Slip...Michael Barrucco Publications: "Comparison of Wall Models for the Molecular Dynamics Simulation of Micro flows ," R. D. Branam and M. M...Performance 3. DATES COVERED (From - To) 1 Dec. 2003 - 31 May 2008 4. TITLE AND SUBTITLE Molecular Dynamics Simulation of Supercritical

  5. Novel methods for molecular dynamics simulations.

    PubMed

    Elber, R

    1996-04-01

    In the past year, significant progress was made in the development of molecular dynamics methods for the liquid phase and for biological macromolecules. Specifically, faster algorithms to pursue molecular dynamics simulations were introduced and advances were made in the design of new optimization algorithms guided by molecular dynamics protocols. A technique to calculate the quantum spectra of protein vibrations was introduced.

  6. Metrics for comparing dynamic earthquake rupture simulations

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  7. Mapping conformational dynamics of proteins using torsional dynamics simulations.

    PubMed

    Gangupomu, Vamshi K; Wagner, Jeffrey R; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-05-07

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein's experimentally established conformational substates. Conformational transition of calmodulin from the Ca(2+)-bound to the Ca(2+)-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  8. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations

    PubMed Central

    Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  9. Revealing physical interaction networks from statistics of collective dynamics.

    PubMed

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-02-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system's model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems.

  10. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  11. Simulating protein dynamics: Novel methods and applications

    NASA Astrophysics Data System (ADS)

    Vishal, V.

    This Ph.D dissertation describes several methodological advances in molecular dynamics (MD) simulations. Methods like Markov State Models can be used effectively in combination with distributed computing to obtain long time scale behavior from an ensemble of short simulations. Advanced computing architectures like Graphics Processors can be used to greatly extend the scope of MD. Applications of MD techniques to problems like Alzheimer's Disease and fundamental questions in protein dynamics are described.

  12. Substrate Channel in Nitrogenase Revealed by a Molecular Dynamics Approach

    SciTech Connect

    Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C.

    2014-03-22

    Mo-dependent nitrogenase catalyzes the biological reduction of N2 to 2NH3 at the FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized sub-microsecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel not previously reported. The viability of the proposed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, with discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment that approaches a face of FeMo-cofactor earlier implicated in substrate binding.

  13. Visualizing Structure and Dynamics of Disaccharide Simulations

    SciTech Connect

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  14. Strong Analog Classical Simulation of Coherent Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng

    2017-02-01

    A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods. Funding support from NSERC of Canada and a research fellowship at Department of Physics and Astronomy, University of British Columbia are acknowledged

  15. Simulating Flexible-Spacecraft Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph

    1987-01-01

    Versatile program applies to many types of spacecraft and dynamical problems. Flexible Spacecraft Dynamics and Control program (FSD) developed to aid in simulation of large class of flexible and rigid spacecraft. Extremely versatile and used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. Applicable to inertially oriented spinning, Earth-oriented, or gravity-gradient-stabilized spacecraft. Written in FORTRAN 77.

  16. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  17. Observing dynamical SUSY breaking with lattice simulation

    SciTech Connect

    Kanamori, Issaku

    2008-11-23

    On the basis of the recently developed lattice formulation of supersymmetric theories which keeps a part of the supersymmetry, we propose a method of observing dynamical SUSY breaking with lattice simulation. We use Hamiltonian as an order parameter and measure the ground state energy as a zero temperature limit of the finite temperature simulation. Our method provides a way of obtaining a physical result from the lattice simulation for supersymmetric theories.

  18. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  19. Simulation of wetlands forest vegetation dynamics

    USGS Publications Warehouse

    Phipps, R.L.

    1979-01-01

    A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.

  20. Computational plasticity algorithm for particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2017-03-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  1. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  2. Dynamic simulation of particle sedimentation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongzhen; Prosperetti, Andrea

    2004-11-01

    The sedimentation of 1024 spheres has been simulated via a recently developed method:Physalis Method. Particles are initially randomly distributed and periodic boundary conditions are assumed. The time evolution of the particle spatial distribution is studied by meassuering the structure factor. Properties of particles velocity distribution, e.g. variance, time autocorrelation, have been studied. The effects of particle rotation and collision are discussed.

  3. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    spatial instrumental scales, understanding experimental results involves extensive and difficult data analysis based on liquid theory and condensed matter physics. Therefore, a model that successfully describes the inter- and intra-dendrimer correlations is crucial in obtaining and delivering reliable information. On the other hand, making meaningful comparisons between molecular dynamics and neutron scattering is a fundamental challenge to link simulations and experiments at the nano-scale. This challenge stems from our approach to utilize MD simulation to explain the underlying mechanism of experimental observation. The SANS measurements were conducted on a series of SANS spectrometers including the Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) and the General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) at the Oak Ridge National Laboratory (ORNL), and NG7 Small Angle Neutron Scattering Spectrometer at National Institute of Standards (NIST) and Technology in U.S.A., large dynamic range small-angle diffractometer D22 at Institut Laue-Langevin (ILL) in France, and 40m-SANS Spectrometer at Korea Atomic Energy Research Institute (KAERI) in Korea. On the other hand, the Amber molecular dynamics simulation package is utilized to carry out the computational study. In this dissertation, the following observations have been revealed. The previously developed theoretical model for polyelectrolyte dendrimers are adopted to analyze SANS measurements and superb model fitting quality is found. Coupling with advanced contrast variation small angle neutron scattering (CVSANS) data analysis scheme reported recently, the intra-dendrimer hydration and hydrocarbon components distributions are revealed experimentally. The results indeed indicate that the maximum density is located in the molecular center rather than periphery, which is consistent to previous SANS studies and the back-folding picture of PAMAM dendrimers. According to this picture

  4. Multibody dynamic simulation of knee contact mechanics

    PubMed Central

    Bei, Yanhong; Fregly, Benjamin J.

    2006-01-01

    Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multi-body knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer’s CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously. PMID:15564115

  5. Revealing the Effects of Cognitive Education Programmes through Dynamic Assessment

    ERIC Educational Resources Information Center

    Tzuriel, David

    2011-01-01

    The major objective of this paper is to demonstrate the effectiveness of dynamic assessment (DA) in revealing outcomes of cognitive education programmes. Three programmes based on "mediated learning experience" theory are reviewed: "Feuerstein's Instrumental Enrichment", "Bright Start", and "Peer Mediation with…

  6. Perspective: chemical dynamics simulations of non-statistical reaction dynamics.

    PubMed

    Ma, Xinyou; Hase, William L

    2017-04-28

    Non-statistical chemical dynamics are exemplified by disagreements with the transition state (TS), RRKM and phase space theories of chemical kinetics and dynamics. The intrinsic reaction coordinate (IRC) is often used for the former two theories, and non-statistical dynamics arising from non-IRC dynamics are often important. In this perspective, non-statistical dynamics are discussed for chemical reactions, with results primarily obtained from chemical dynamics simulations and to a lesser extent from experiment. The non-statistical dynamical properties discussed are: post-TS dynamics, including potential energy surface bifurcations, product energy partitioning in unimolecular dissociation and avoiding exit-channel potential energy minima; non-RRKM unimolecular decomposition; non-IRC dynamics; direct mechanisms for bimolecular reactions with pre- and/or post-reaction potential energy minima; non-TS theory barrier recrossings; and roaming dynamics.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  7. Molecular dynamics simulations of substitutional diffusion

    SciTech Connect

    Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob

    2016-12-18

    In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.

  8. Molecular dynamics simulations of substitutional diffusion

    DOE PAGES

    Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob

    2016-12-18

    In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example,more » we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.« less

  9. Dynamic procedure for filtered gyrokinetic simulations

    SciTech Connect

    Morel, P.; Banon Navarro, A.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2012-01-15

    Large eddy simulations (LES) of gyrokinetic plasma turbulence are investigated as interesting candidates to decrease the computational cost. A dynamic procedure is implemented in the gene code, allowing for dynamic optimization of the free parameters of the LES models (setting the amplitudes of dissipative terms). Employing such LES methods, one recovers the free energy and heat flux spectra obtained from highly resolved direct numerical simulations. Systematic comparisons are performed for different values of the temperature gradient and magnetic shear, parameters which are of prime importance in ion temperature gradient driven turbulence. Moreover, the degree of anisotropy of the problem, which can vary with parameters, can be adapted dynamically by the method that shows gyrokinetic large eddy simulation to be a serious candidate to reduce numerical cost of gyrokinetic solvers.

  10. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    SciTech Connect

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  11. Massively-Parallel Dislocation Dynamics Simulations

    SciTech Connect

    Cai, W; Bulatov, V V; Pierce, T G; Hiratani, M; Rhee, M; Bartelt, M; Tang, M

    2003-06-18

    Prediction of the plastic strength of single crystals based on the collective dynamics of dislocations has been a challenge for computational materials science for a number of years. The difficulty lies in the inability of the existing dislocation dynamics (DD) codes to handle a sufficiently large number of dislocation lines, in order to be statistically representative and to reproduce experimentally observed microstructures. A new massively-parallel DD code is developed that is capable of modeling million-dislocation systems by employing thousands of processors. We discuss the general aspects of this code that make such large scale simulations possible, as well as a few initial simulation results.

  12. Choice of timestep in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fincham, David

    1986-06-01

    In molecular dynamics computer simulation of liquids it is important to use as large a timestep as possible in order to sample phase space rapidly and save on computer expense. The effect of the resulting algorithm errors in the trajectories of the molecules is not well understood. An empirical investigation into this question is reported. Several simulations differing only in the timestep used are compared. It is found that much larger timesteps than usual can be employed without producing significant errors in observed thermodynamic, structural or dynamic properties.

  13. Distortion and flow of nematics simulated by dissipative particle dynamics.

    PubMed

    Zhao, Tongyang; Wang, Xiaogong

    2014-05-14

    In this study, we simulated distortion and flow of nematics by dissipative particle dynamics (DPD). The nematics were modeled by a binary mixture that contained rigid rods composed of DPD particles as mesogenic units and normal DPD particles as solvent. Elastic distortions were investigated by monitoring director orientation in space under influences of boundary anchoring and external fields. Static distortion demonstrated by the simulation is consistent with the prediction of Frank elastic theory. Spatial distortion profile of the director was examined to obtain static elastic constants. Rotational motions of the director under influence of the external field were simulated to understand the dynamic process. The rules revealed by the simulation are in a good agreement with those obtained from dynamical experiments and classical theories for nematics. Three Miesowicz viscosities were obtained by using external fields to hold the orientation of the rods in shear flows. The simulation showed that the Miesowicz viscosities have the order of ηc > ηa > ηb and the rotational viscosity γ1 is about two orders larger than the Miesowicz viscosity ηb. The DPD simulation correctly reproduced the non-monotonic concentration dependence of viscosity, which is a unique property of lyotropic nematic fluids. By comparing simulation results with classical theories for nematics and experiments, the DPD nematic fluids are proved to be a valid model to investigate the distortion and flow of lyotropic nematics.

  14. Insights from molecular dynamics simulations for computational protein design.

    PubMed

    Childers, Matthew Carter; Daggett, Valerie

    2017-02-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.

  15. Dynamic simulation recalls condensate piping event

    SciTech Connect

    Farrell, R.J.; Reneberg, K.O. ); Moy, H.C. )

    1994-05-01

    This article describes how experience gained from simulating and reconstructing a condensate piping event will be used by Consolidated Edison to analyze control system problems. A cooperative effort by Con Edison and the Chemical Engineering Department at Polytechnic University used modular modeling system to investigate the probable cause of a Con Edison condensate piping event. Con Edison commissioned the work to serve as a case study for the more general problem of control systems analysis using dynamic simulation and MMS.

  16. Numerical simulation of interplanetary dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun

    This dissertation discusses investigations into the physics of the propagation of solar generated disturbances in the interplanetary medium. The motivation to initiate this study was two-fold: (1) understanding the fundamental physics of the nonlinear interactions of solar generated MHD shocks and non-homogeneous interplanetary medium, and (2) understanding the physics of solar generated disturbance effects on the Earth's environment, (i.e. the solar connection to the geomagnetic storm). In order to achieve these goals, the authors employed two numerical models to encompass these studies. In the first part, a one-dimensional MHD code with adaptive grids is used to study the evolution of interplanetary slow shocks (ISS), the interaction of a forward slow shock with a reverse slow shock, and the interaction of a fast shock with a slow shock. Results show that the slow shocks can be generated by a decreasing density, velocity or temperature perturbation or by a pressure pulse by following a forward fast shock and that slow shocks can propagate over 1 AU; results also show that the ISS never evolves into fast shocks. Interestingly, it is also found that an ISS could be 'eaten up' by an interplanetary fast shock (IFS) catching up from behind. This could be a reason that the slow shock has been difficult to observe near 1 AU. In addition, a forward slow shock could be dissipated by following a strong forward fast shock (Mach number greater than 1.7). In the second part, a fully three-dimensional (3D), time-dependent, MHD interplanetary global model (3D IGM) is used to study the relationship between different forms of solar activity and transient variations of the north-south component, Bx, of the interplanetary magnetic field, IMF, at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of Btheta (= -Bx) at 1 AU. Results show that, for a given pressure

  17. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.

    PubMed

    Tong, Yan; Ji, Chang G; Mei, Ye; Zhang, John Z H

    2009-06-24

    Molecular dynamics simulations of NMR backbone relaxation order parameters have been carried out to investigate the polarization effect on the protein's local structure and dynamics for five benchmark proteins (bovine pancreatic trypsin inhibitor, immunoglobulin-binding domain (B1) of streptococcal protein G, bovine apo-calbindin D9K, human interleukin-4 R88Q mutant, and hen egg white lysozyme). In order to isolate the polarization effect from other interaction effects, our study employed both the standard AMBER force field (AMBER03) and polarized protein-specific charges (PPCs) in the MD simulations. The simulated order parameters, employing both the standard nonpolarizable and polarized force fields, are directly compared with experimental data. Our results show that residue-specific order parameters at some specific loop and turn regions are significantly underestimated by the MD simulations using the standard AMBER force field, indicating hyperflexibility of these local structures. Detailed analysis of the structures and dynamic motions of individual residues reveals that the hyperflexibility of these local structures is largely related to the breaking or weakening of relevant hydrogen bonds. In contrast, the agreement with the experimental results is significantly improved and more stable local structures are observed in the MD simulations using the polarized force field. The comparison between theory and experiment provides convincing evidence that intraprotein hydrogen bonds in these regions are stabilized by electronic polarization, which is critical to the dynamical stability of these local structures in proteins.

  18. Simulations reveal increased fluctuations in estrogen receptor-alpha conformation upon antagonist binding.

    PubMed

    Ng, Ho Leung

    2016-09-01

    Molecular dynamics (MD) simulations have been used to model dynamic fluctuations in the structure of estrogen receptor-alpha (ER-α) upon binding to the natural agonist 17β-estradiol (E2) and to the active metabolite of the breast cancer drug and antagonist, 4-hydroxytamoxifen (OHT). We present the most extensive MD simulations to date of ER-α, with over 1μs of combined simulations for the monomer and dimer forms. Simulations reveal that the antagonist-bound complex includes significant fluctuations while the agonist-bound complex is tightly restrained. OHT increases dynamic disorder in the loops located to either side of the tail H12 helix; H12 has been associated with the activation status of ER-α. We also report that fluctuations near H12 lead to greater conformational variation in the binding mode of the ethylamine tail of OHT. Both the agonist and antagonist conformations are stable throughout the 240ns simulations, supporting the hypothesis that there are no transitions between these two states or into intermediate states. The stable position of H12 in the OHT-bound conformation suggests that OHT stabilizes a well-defined antagonist conformational ensemble rather than merely blocking the agonist-driven activation of ER-α. Simultaneously, the increased dynamic properties of the OHT-bound complex is a potential source of binding entropy.

  19. Quantum Simulation for Open-System Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry

    2013-03-01

    Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.

  20. Molecular dynamic simulations of ocular tablet dissolution.

    PubMed

    Ru, Qian; Fadda, Hala M; Li, Chung; Paul, Daniel; Khaw, Peng T; Brocchini, Steve; Zloh, Mire

    2013-11-25

    Small tablets for implantation into the subconjunctival space in the eye are being developed to inhibit scarring after glaucoma filtration surgery (GFS). There is a need to evaluate drug dissolution at the molecular level to determine how the chemical structure of the active may correlate with dissolution in the nonsink conditions of the conjunctival space. We conducted molecular dynamics simulations to study the dissolution process of tablets derived from two drugs that can inhibit fibrosis after GFS, 5-fluorouracil (5-FU) and the matrix metalloprotease inhibitor (MMPi), ilomastat. The dissolution was simulated in the presence of simple point charge (SPC) water molecules, and the liquid turnover of the aqueous humor in the subconjunctival space was simulated by removal of the dissolved drug molecules at regular intervals and replacement by new water molecules. At the end of the simulation, the total molecular solvent accessible surface area of 5-FU tablets increased by 60 times more than that of ilomastat as a result of tablet swelling and release of molecules into solution. The tablet dissolution pattern shown in our molecular dynamic simulations tends to correlate with experimental release profiles. This work indicates that a series of molecular dynamic simulations can be used to predict the influence of the molecular properties of a drug on its dissolution profile and could be useful during preformulation where sufficient amounts of the drug are not always available to perform dissolution studies.

  1. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.

    2015-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.

  2. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2014-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.

  3. Multiscale model approach for magnetization dynamics simulations

    NASA Astrophysics Data System (ADS)

    De Lucia, Andrea; Krüger, Benjamin; Tretiakov, Oleg A.; Kläui, Mathias

    2016-11-01

    Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated with the two different models and different discretizations. We find that the interface between the regions is fully transparent for spin waves with frequency lower than a certain threshold set by the coarse scale micromagnetic model with no noticeable attenuation due to the interface between the models. As a comparison to exact analytical theory, we show that in a system with a Dzyaloshinskii-Moriya interaction leading to spin spirals, the simulated multiscale result is in good quantitative agreement with the analytical calculation.

  4. Dynamic simulation of a reverse Brayton refrigerator

    SciTech Connect

    Peng, N.; Xiong, L. Y.; Dong, B.; Liu, L. Q.; Lei, L. L.; Tang, J. C.

    2014-01-29

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  5. Simulating Dynamic Equilibria: A Class Experiment

    NASA Astrophysics Data System (ADS)

    Harrison, John A.; Buckley, Paul D.

    2000-08-01

    A first-order reversible reaction is simulated on an overhead projector using small coins or discs. A simulation is carried out in which initially there are 24 discs representing reactant A and none representing reactant B. At the end of each minute half of the reactant A discs get converted to reactant B, and one quarter of the reactant B discs get converted to reactant A discs. Equilibrium is established with 8 A discs and 16 B discs, and no further net change is observed as the simulation continues. Another simulation beginning with 48 A discs and 0 B discs leads at equilibrium to 16 A discs and 32 B discs. These results illustrate how dynamic equilibria are established and allow the introduction of the concept of an equilibrium constant. Le Châtelier's principle is illustrated by further simulations.

  6. Dynamics Simulation of Langmuir-Blodgett Films

    DTIC Science & Technology

    1990-04-01

    of water. During the dynamics simulation, theposition of the water molecules are frozen. A 1515 edge effect as shown in Fig. 4: the tilts for...temperature, I.e. 300K, by gradually assigning random understand. The strong edge effect makes it necessary to iintroduce periodic boundaries In future

  7. Digital simulation of stiff linear dynamic systems.

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Kerr, J. H.

    1972-01-01

    A method is derived for digital computer simulation of linear time-invariant systems when the insignificant eigenvalues involved in such systems are eliminated by an ALSAP root removal technique. The method is applied to a thirteenth-order dynamic system representing a passive RLC network.

  8. Molecular dynamics simulations of magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  9. Test of a flexible spacecraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald; Sedlak, Joseph

    1998-01-01

    There are a number of approaches one can take to modeling the dynamics of a flexible body. While one can attempt to capture the full dynamical behavior subject to disturbances from actuators and environmental torques, such a detailed description often is unnecessary. Simplification is possible either by limiting the amplitude of motion to permit linearization of the dynamics equations or by restricting the types of allowed motion. In this work, we study the nonlinear dynamics of bending deformations of wire booms on spinning spacecraft. The theory allows for large amplitude excursions from equilibrium while enforcing constraints on the dynamics to prohibit those modes that are physically less relevant or are expected to damp out fast. These constraints explicitly remove the acoustic modes (i.e., longitudinal sound waves and shear waves) while allowing for arbitrary bending and twisting, motions which typically are of lower frequency. As a test case, a spin axis reorientation maneuver by the Polar Plasma Laboratory (POLAR) spacecraft has been simulated. POLAR was chosen as a representative spacecraft because it has flexible wire antennas that extend to a length of 65 meters. Bending deformations in these antennas could be quite large and have a significant effect on the attitude dynamics of the spacecraft body. Summary results from the simulation are presented along, with a comparison with POLAR flight data.

  10. Fluctuation power spectra reveal dynamical heterogeneity of peptides

    NASA Astrophysics Data System (ADS)

    Khatri, Bhavin; Yew, Zu Thur; Krivov, Sergei; McLeish, Tom; Paci, Emanuele

    2010-07-01

    Characterizing the conformational properties and dynamics of biopolymers and their relation to biological activity and function is an ongoing challenge. Single molecule techniques have provided a rich experimental window on these properties, yet they have often relied on simple one-dimensional projections of a multidimensional free energy landscape for a practical interpretation of the results. Here, we study three short peptides with different structural propensity (α helical, β hairpin, and random coil) in the presence (or absence) of a force applied to their ends using Langevin dynamics simulation and an all-atom model with implicit solvation. Each peptide produces fluctuation power spectra with a characteristic dynamic fingerprint consistent with persistent structural motifs of helices, hairpins, and random coils. The spectra for helix formation shows two well-defined relaxation modes, corresponding to local relaxation and cooperative coil to uncoil interconversion. In contrast, both the hairpin and random coil are polymerlike, showing a broad and continuous range of relaxation modes giving characteristic power laws of ω-5/4 and ω-3/2, respectively; the -5/4 power law for hairpins is robust and has not been previously observed. Langevin dynamics simulations of diffusers on a potential of mean force derived from the atomistic simulations fail to reproduce the fingerprints of each peptide motif in the power spectral density, demonstrating explicitly that such information is lacking in such one-dimensional projections. Our results demonstrate the yet unexploited potential of single molecule fluctuation spectroscopy to probe more fine scaled properties of proteins and biological macromolecules and how low dimensional projections may cause the loss of relevant information.

  11. Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers

    PubMed Central

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S. P.

    2014-01-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. PMID:25340788

  12. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    PubMed

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S P

    2014-10-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  13. NMR reveals a dynamic allosteric pathway in thrombin

    PubMed Central

    Handley, Lindsey D.; Fuglestad, Brian; Stearns, Kyle; Tonelli, Marco; Fenwick, R. Bryn; Markwick, Phineus R. L.; Komives, Elizabeth A.

    2017-01-01

    Although serine proteases are found ubiquitously in both eukaryotes and prokaryotes, and they comprise the largest of all of the peptidase families, their dynamic motions remain obscure. The backbone dynamics of the coagulation serine protease, apo-thrombin (S195M-thrombin), were compared to the substrate-bound form (PPACK-thrombin). R1, R2, 15N-{1H}NOEs, and relaxation dispersion NMR experiments were measured to capture motions across the ps to ms timescale. The ps-ns motions were not significantly altered upon substrate binding. The relaxation dispersion data revealed that apo-thrombin is highly dynamic, with μs-ms motions throughout the molecule. The region around the N-terminus of the heavy chain, the Na+-binding loop, and the 170 s loop, all of which are implicated in allosteric coupling between effector binding sites and the active site, were dynamic primarily in the apo-form. Most of the loops surrounding the active site become more ordered upon PPACK-binding, but residues in the N-terminal part of the heavy chain, the γ-loop, and anion-binding exosite 1, the main allosteric binding site, retain μs-ms motions. These residues form a dynamic allosteric pathway connecting the active site to the main allosteric site that remains in the substrate-bound form. PMID:28059082

  14. Mesoscopic Simulation Methods for Polymer Dynamics

    NASA Astrophysics Data System (ADS)

    Larson, Ronald

    2015-03-01

    We assess the accuracy and efficiency of mesoscopic simulation methods, namely Brownian Dynamics (BD), Stochastic Rotation Dynamics (SRD) and Dissipative Particle Dynamics (DPD), for polymers in solution at equilibrium and in flows in microfluidic geometries. Both SRD and DPD use solvent ``particles'' to carry momentum, and so account automatically for hydrodynamic interactions both within isolated polymer coils, and with other polymer molecules and with nearby solid boundaries. We assess quantitatively the effects of artificial particle inertia and fluid compressibility and show that they can be made small with appropriate choice of simulation parameters. We then use these methods to study flow-induced migration of polymer chains produced by: 1) hydrodynamic interactions, 2) streamline curvature or stress-gradients, and 3) convection of wall depletion zones. We show that huge concentration gradients can be produced by these mechanisms in microfluidic geometries that can be exploited for separation of polymers by size in periodic contraction-expansion geometries. We also assess the range of conditions for which BD, SRD or DPD is preferable for mesoscopic simulations. Finally, we show how such methods can be used to simulate quantitatively the swimming of micro-organisms such as E. coli. In collaboration with Lei Jiang and Tongyang Zhao, University of Michigan, Ann Arbor, MI.

  15. The fractional-nonlinear robotic manipulator: Modeling and dynamic simulations

    NASA Astrophysics Data System (ADS)

    David, S. A.; Balthazar, J. M.; Julio, B. H. S.; Oliveira, C.

    2012-11-01

    In this paper, we applied the Riemann-Liouville approach and the fractional Euler-Lagrange equations in order to obtain the fractional-order nonlinear dynamics equations of a two link robotic manipulator. The aformentioned equations have been simulated for several cases involving: integer and non-integer order analysis, with and without external forcing acting and some different initial conditions. The fractional nonlinear governing equations of motion are coupled and the time evolution of the angular positions and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the dynamics equations of a two link robotic manipulator have been modeled with the fractional Euler-Lagrange dynamics approach. The results reveal that the fractional-nonlinear robotic manipulator can exhibit different and curious behavior from those obtained with the standard dynamical system and can be useful for a better understanding and control of such nonlinear systems.

  16. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments

    SciTech Connect

    Noe, F; Diadone, Isabella; Lollmann, Marc; Sauer, Marcus; Chondera, John D; Smith, Jeremy C

    2011-01-01

    There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is dynamical fingerprints which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observed relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.

  17. Program For Simulating Dynamics Of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Berning, M. J.; Sagis, K. D.

    1995-01-01

    SORT (Simulation and Optimization of Rocket Trajectories) is general-purpose three-degree-of-freedom with three axis static moment balance simulation of flight dynamics of arbitrary aerospace vehicle. Modular structure facilitates application to variety of trajectory-analysis problems. Contains math model of aerodynamics completely generalized. Computes both longitudinal and lateral forces and moments. In addition to fore-body coefficients, computes longitudinal base effect aerodynamic forces and moments. Simplified ballistic-coefficient model also available for analysis of ballistic entry. Written using ANSI FORTRAN 77.

  18. Dynamic Multicore Processing for Pandemic Influenza Simulation

    PubMed Central

    Eriksson, Henrik; Timpka, Toomas; Spreco, Armin; Dahlström, Örjan; Strömgren, Magnus; Holm, Einar

    2016-01-01

    Pandemic simulation is a useful tool for analyzing outbreaks and exploring the impact of variations in disease, population, and intervention models. Unfortunately, this type of simulation can be quite time-consuming especially for large models and significant outbreaks, which makes it difficult to run the simulations interactively and to use simulation for decision support during ongoing outbreaks. Improved run-time performance enables new applications of pandemic simulations, and can potentially allow decision makers to explore different scenarios and intervention effects. Parallelization of infection-probability calculations and multicore architectures can take advantage of modern processors to achieve significant run-time performance improvements. However, because of the varying computational load during each simulation run, which originates from the changing number of infectious persons during the outbreak, it is not useful to us the same multicore setup during the simulation run. The best performance can be achieved by dynamically changing the use of the available processor cores to balance the overhead of multithreading with the performance gains of parallelization. PMID:28269849

  19. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions.

    PubMed

    Nédélec, François

    2002-09-16

    An aster of microtubules is a set of flexible polar filaments with dynamic plus ends that irradiate from a common location at which the minus ends of the filaments are found. Processive soluble oligomeric motor complexes can bind simultaneously to two microtubules, and thus exert forces between two asters. Using computer simulations, I have explored systematically the possible steady-state regimes reached by two asters under the action of various kinds of oligomeric motors. As expected, motor complexes can induce the asters to fuse, for example when the complexes consist only of minus end-directed motors, or to fully separate, when the motors are plus end directed. More surprisingly, complexes made of two motors of opposite directionalities can also lead to antiparallel interactions between overlapping microtubules that are stable and sustained, like those seen in mitotic spindle structures. This suggests that such heterocomplexes could have a significant biological role, if they exist in the cell.

  20. Brownian dynamics simulations of amelogenin microribbons formation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Perez Lopez, Anthony; Liu, Ya; Chakrabarti, Amit; Gunton, James

    2011-03-01

    Recent advances in chemical particle synthesis have emphasized the fundamental role of surface colloidal heterogeneities and their detailed chemical composition, which is particularly significant for an important subclass of colloidal systems, namely, proteins. Recently, the process of self-assembly of amelogenin monomers with a hydrophobic/hydrophilic bipolar nature into ordered ribbon structures has been studied experimentally. In this work, we study this dynamical process by means of a Brownian dynamic simulation of a simple model which represents the bipolar character of the globular amelogenin molecule and the hydrophilic C-terminal tail. We monitor the kinetics of self-assembly through a study of the structure factor. We also calculate the phase diagram of the model using Gibbs ensemble Monte Carlo simulation and thermodynamic perturbation theory. This work is supported by grants from the NSF and Mathers Foundation.

  1. Simulation of counterflow pedestrian dynamics using spheropolygons.

    PubMed

    Alonso-Marroquín, Fernando; Busch, Jonathan; Chiew, Coraline; Lozano, Celia; Ramírez-Gómez, Álvaro

    2014-12-01

    Pedestrian dynamic models are typically designed for comfortable walking or slightly congested conditions and typically use a single disk or combination of three disks for the shape of a pedestrian. Under crowd conditions, a more accurate pedestrian shape has advantages over the traditional single or three-disks model. We developed a method for simulating pedestrian dynamics in a large dense crowd of spheropolygons adapted to the cross section of the chest and arms of a pedestrian. Our numerical model calculates pedestrian motion from Newton's second law, taking into account viscoelastic contact forces, contact friction, and ground-reaction forces. Ground-reaction torque was taken to arise solely from the pedestrians' orientation toward their preferred destination. Simulations of counterflow pedestrians dynamics in corridors were used to gain insight into a tragic incident at the Madrid Arena pavilion in Spain, where five girls were crushed to death. The incident took place at a Halloween Celebration in 2012, in a long, densely crowded hallway used as entrance and exit at the same time. Our simulations reconstruct the mechanism of clogging in the hallway. The hypothetical case of a total evacuation order was also investigated. The results highlights the importance of the pedestrians' density and the effect of counterflow in the onset of avalanches and clogging and provides an estimation of the number of injuries based on a calculation of the contact-force network between the pedestrians.

  2. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  3. Adaptive wavelet simulation of global ocean dynamics

    NASA Astrophysics Data System (ADS)

    Kevlahan, N. K.-R.; Dubos, T.; Aechtner, M.

    2015-07-01

    In order to easily enforce solid-wall boundary conditions in the presence of complex coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating shallow water equations. This penalization does not lead to higher wave speeds in the solid region. The error estimates for the penalization are derived analytically and verified numerically for linearized one dimensional equations. The penalization is implemented in a conservative dynamically adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry and coastline data from NOAA's ETOPO1 database. This code could form the dynamical core for a future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.

  4. Brownian dynamics simulation of electrostatically interacting proteins

    NASA Astrophysics Data System (ADS)

    Ermakova, E.; Krushelnitsky, A. G.; Fedotov, V. D.

    Brownian dynamics simulation software has been developed to study the dynamics of proteins as a whole in solution. The proteins were modelled as spheres with point dipoles embedded in the centre of sphere. A set of Brownian dynamics simulations at different values of the dipole moments, protein concentration and translational diffusion coefficient was performed to investigate the influence of interprotein electrostatic interactions on dynamic protein behaviour in solution. It was shown that these interactions led to the slowing down of protein rotation and a complex non-exponential shape of the rotational correlation function. Analysis of the correlation functions was performed within the frame of the model of electrostatic interprotein interactions advanced earlier on the basis of NMR and dielectric spectroscopy data. This model assumes that, due to electrostatic interactions, protein Brownian rotation becomes anisotropic. The lifetime of this anisotropy is controlled mainly by translational diffusion of proteins. Thus, the correlation function can be decomposed into two components corresponding to anisotropic Brownian rotation and an isotropic motion of an external electric field vector produced by the surrounding proteins.

  5. Molecular Dynamics Simulations of Network Glasses

    NASA Astrophysics Data System (ADS)

    Drabold, David A.

    The following sections are included: * Introduction and Background * History and use of MD * The role of the potential * Scope of the method * Use of a priori information * Appraising a model * MD Method * Equations of motion * Energy minimization and equilibration * Deeper or global minima * Simulated annealing * Genetic algorithms * Activation-relaxation technique * Alternate dynamics * Modeling infinite systems: Periodic boundary conditions * The Interatomic Interactions * Overview * Empirical classical potentials * Potentials from electronic structure * The tight-binding method * Approximate methods based on tight-binding * First principles * Local basis: "ab initio tight binding" * Plane-waves: Car-Parrinello methods * Efficient ab initio methods for large systems * The need for locality of electron states in real space * Avoiding explicit orthogonalization * Connecting Simulation to Experiment * Structure * Network dynamics * Computing the harmonic modes * Dynamical autocorrelation functions * Dynamical structure factor * Electronic structure * Density of states * Thermal modulation of the electron states * Transport * Applications * g-GeSe2 * g-GexSe1-x glasses * Amorphous carbon surface * Where to Get Codes to Get Started * Acknowledgments * References

  6. Dynamic regulation of phenylalanine hydroxylase by simulated redox manipulation.

    PubMed

    Fuchs, Julian E; Huber, Roland G; von Grafenstein, Susanne; Wallnoefer, Hannes G; Spitzer, Gudrun M; Fuchs, Dietmar; Liedl, Klaus R

    2012-01-01

    Recent clinical studies revealed increased phenylalanine levels and phenylalanine to tyrosine ratios in patients suffering from infection, inflammation and general immune activity. These data implicated down-regulation of activity of phenylalanine hydroxylase by oxidative stress upon in vivo immune activation. Though the structural damage of oxidative stress is expected to be comparably small, a structural rationale for this experimental finding was lacking. Hence, we investigated the impact of side chain oxidation at two vicinal cysteine residues on local conformational flexibility in the protein by comparative molecular dynamics simulations. Analysis of backbone dynamics revealed a highly flexible loop region (Tyr138-loop) in proximity to the active center of phenylalanine hydroxylase. We observed elevated loop dynamics in connection with a loop movement towards the active site in the oxidized state, thereby partially blocking access for the substrate phenylalanine. These findings were confirmed by extensive replica exchange molecular dynamics simulations and serve as a first structural explanation for decreased enzyme turnover in situations of oxidative stress.

  7. MDLab: a molecular dynamics simulation prototyping environment.

    PubMed

    Cickovski, Trevor; Chatterjee, Santanu; Wenger, Jacob; Sweet, Christopher R; Izaguirre, Jesús A

    2010-05-01

    Molecular dynamics (MD) simulation involves solving Newton's equations of motion for a system of atoms, by calculating forces and updating atomic positions and velocities over a timestep Deltat. Despite the large amount of computing power currently available, the timescale of MD simulations is limited by both the small timestep required for propagation, and the expensive algorithm for computing pairwise forces. These issues are currently addressed through the development of efficient simulation methods, some of which make acceptable approximations and as a result can afford larger timesteps. We present MDLab, a development environment for MD simulations built with Python which facilitates prototyping, testing, and debugging of these methods. MDLab provides constructs which allow the development of propagators, force calculators, and high level sampling protocols that run several instances of molecular dynamics. For computationally demanding sampling protocols which require testing on large biomolecules, MDL includes an interface to the OpenMM libraries of Friedrichs et al. which execute on graphical processing units (GPUs) and achieve considerable speedup over execution on the CPU. As an example of an interesting high level method developed in MDLab, we present a parallel implementation of the On-The-Fly string method of Maragliano and Vanden-Eijnden. MDLab is available at http://mdlab.sourceforge.net.

  8. Molecular-dynamics simulations of lead clusters

    NASA Astrophysics Data System (ADS)

    Hendy, S. C.; Hall, B. D.

    2001-08-01

    Molecular-dynamics simulations of nanometer-sized lead clusters have been performed using the Lim-Ong-Ercolessi glue potential [Surf. Sci. 269/270, 1109 (1992)]. The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favored of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of surface-reconstructed ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favored for 600-4000 atom clusters. Larger clusters favor crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.

  9. Dynamic simulator for PEFC propulsion plant

    SciTech Connect

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  10. Nanodrop contact angles from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim

    2016-11-01

    The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.

  11. Classical Molecular Dynamics Simulation of Nuclear Fuel

    SciTech Connect

    Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie

    2015-10-10

    Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.

  12. Dynamic simulation of regulatory networks using SQUAD

    PubMed Central

    Di Cara, Alessandro; Garg, Abhishek; De Micheli, Giovanni; Xenarios, Ioannis; Mendoza, Luis

    2007-01-01

    Background The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. Results We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. Conclusion The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or

  13. Molecular dynamics simulation of radiation damage cascades in diamond

    SciTech Connect

    Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  14. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field

    PubMed Central

    2015-01-01

    Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron–sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of protein–water interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance. PMID:24955078

  15. A review of the analytical simulation of aircraft crash dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.

    1990-01-01

    A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.

  16. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect

    Steven R Prescott; Curtis Smith

    2011-07-01

    provide superior results and insights. We also couple the state model with the dynamic 3D simulation analysis representing events (such as flooding) to determine which (if any) components fail. Not only does the simulation take into account any failed items from the state model, but any failures caused by the simulation are incorporated back into the state model and factored into the overall results. Using this method we incorporate accurate 3D simulation results, eliminate static-based PRA issues, and have time ordered failure information.

  17. Memory in motion: movement dynamics reveal memory strength.

    PubMed

    Papesh, Megan H; Goldinger, Stephen D

    2012-10-01

    Recognition memory is typically examined as a discrete end-state, describable by static variables, such as accuracy, response time, and confidence. In the present study, we combined real-time mouse-tracking with subsequent, overt confidence estimates to examine the dynamic nature of memory decisions. By examining participants' streaming x-, y- mouse coordinates during recognition decisions, we observed that movement trajectories revealed underlying response confidence. More confident decisions were associated with shorter decision times and more linear response trajectories. Less confident decisions were made slowly, with increased trajectory curvature. Statistical indices of curvature and decision times, including area-under-the-curve and time to maximum deviation, suggested that memory strength relates to response dynamics. Whether participants were correct or incorrect, old responses showed a stronger correspondence between mouse trajectories and confidence, relative to new responses. We suggest that people subjectively experience a correspondence between feelings of memory and feelings of confidence; that subjective experience reveals itself in real-time decision processes, as suggested by sequential sampling models of recognition decisions.

  18. The Fermi-Pasta-Ulam problem: Simulation and modern dynamics

    SciTech Connect

    Weissert, T.P.

    1992-01-01

    In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation.

  19. Molecular dynamics simulation of fractal aggregate diffusion

    NASA Astrophysics Data System (ADS)

    Pranami, Gaurav; Lamm, Monica H.; Vigil, R. Dennis

    2010-11-01

    The diffusion of fractal aggregates constructed with the method by Thouy and Jullien [J. Phys. A 27, 2953 (1994)10.1088/0305-4470/27/9/012] comprised of Np spherical primary particles was studied as a function of the aggregate mass and fractal dimension using molecular dynamics simulations. It is shown that finite-size effects have a strong impact on the apparent value of the diffusion coefficient (D) , but these can be corrected by carrying out simulations using different simulation box sizes. Specifically, the diffusion coefficient is inversely proportional to the length of a cubic simulation box, and the constant of proportionality appears to be independent of the aggregate mass and fractal dimension. Using this result, it is possible to compute infinite dilution diffusion coefficients (Do) for aggregates of arbitrary size and fractal dimension, and it was found that Do∝Np-1/df , as is often assumed by investigators simulating Brownian aggregation of fractal aggregates. The ratio of hydrodynamic radius to radius of gyration is computed and shown to be independent of mass for aggregates of fixed fractal dimension, thus enabling an estimate of the diffusion coefficient for a fractal aggregate based on its radius of gyration.

  20. Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties

    PubMed Central

    Mereghetti, Paolo; Gabdoulline, Razif R.; Wade, Rebecca C.

    2010-01-01

    The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments. PMID:21112303

  1. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  2. Molecular Dynamics Simulation of Iron — A Review

    NASA Astrophysics Data System (ADS)

    Chui, C. P.; Liu, Wenqing; Xu, Yongbing; Zhou, Yan

    2015-12-01

    Molecular dynamics (MD) is a technique of atomistic simulation which has facilitated scientific discovery of interactions among particles since its advent in the late 1950s. Its merit lies in incorporating statistical mechanics to allow for examination of varying atomic configurations at finite temperatures. Its contributions to materials science from modeling pure metal properties to designing nanowires is also remarkable. This review paper focuses on the progress of MD in understanding the behavior of iron — in pure metal form, in alloys, and in composite nanomaterials. It also discusses the interatomic potentials and the integration algorithms used for simulating iron in the literature. Furthermore, it reveals the current progress of MD in simulating iron by exhibiting some results in the literature. Finally, the review paper briefly mentions the development of the hardware and software tools for such large-scale computations.

  3. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  4. Dynamic transitions in molecular dynamics simulations of supercooled silicon

    NASA Astrophysics Data System (ADS)

    Mei, Xiaojun; Eapen, Jacob

    2013-04-01

    Two dynamic transitions or crossovers, one at a low temperature (T* ≈ 1006 K) and the other at a high temperature (T0 ≈ 1384 K), are shown to emerge in supercooled liquid silicon using molecular dynamics simulations. The high-temperature transition (T0) marks the decoupling of stress, density, and energy relaxation mechanisms. At the low-temperature transition (T*), depending on the cooling rate, supercooled silicon can either undergo a high-density-liquid to low-density-liquid (HDL-LDL) phase transition or experience an HDL-HDL crossover. Dynamically heterogeneous domains that emerge with supercooling become prominent across the HDL-HDL transition at 1006 K, with well-separated mobile and immobile regions. Interestingly, across the HDL-LDL transition, the most mobile atoms form large prominent aggregates while the least mobile atoms get spatially dispersed akin to that in a crystalline state. The attendant partial return to spatial uniformity with the HDL-LDL phase transition indicates a dynamic mechanism for relieving the frustration in supercooled states.

  5. Dynamical simulation of dipolar Janus colloids: Dynamical properties

    NASA Astrophysics Data System (ADS)

    Hagy, Matthew C.; Hernandez, Rigoberto

    2013-05-01

    The dynamical properties of dipolar Janus particles are studied through simulation using our previously-developed detailed pointwise (PW) model and an isotropically coarse-grained (CG) model [M. C. Hagy and R. Hernandez, J. Chem. Phys. 137, 044505 (2012), 10.1063/1.4737432]. The CG model is found to have accelerated dynamics relative to the PW model over a range of conditions for which both models have near identical static equilibrium properties. Physically, this suggests dipolar Janus particles have slower transport properties (such as diffusion) in comparison to isotropically attractive particles. Time rescaling and damping with Langevin friction are explored to map the dynamics of the CG model to that of the PW model. Both methods map the diffusion constant successfully and improve the velocity autocorrelation function and the mean squared displacement of the CG model. Neither method improves the distribution of reversible bond durations f(tb) observed in the CG model, which is found to lack the longer duration reversible bonds observed in the PW model. We attribute these differences in f(tb) to changes in the energetics of multiple rearrangement mechanisms. This suggests a need for new methods that map the coarse-grained dynamics of such systems to the true time scale.

  6. Molecular Dynamics Simulations of Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Owens, Eli T.; Bachlechner, Martina E.

    2007-03-01

    Outer space silicon solar cells are exposed to impacts with micro meteors that can destroy the surface leading to device failure. A protective coating of silicon nitride will protect against such failure. Large-scale molecular dynamics simulations are used to study how silicon/silicon nitride fails due to hypervelocity impacts. Three impactors made of silicon nitride are studied. Their cross-sectional areas, relative to the target, are as follows: the same as the target, half of the target, and a quarter of the target. Impactor speeds from 5 to 11 km/second yield several modes of failure, such as deformation of the target by the impactor and delimitation of the silicon nitride from the silicon at the interface. These simulations will give a much clearer picture of how solar cells composed of a silicon/silicon nitride interface will respond to impacts in outer space. This will ultimately lead to improved devices with longer life spans.

  7. Isotropic MD simulations of dynamic brittle fracture

    SciTech Connect

    Espanol, P.; Rubio, M.A.; Zuniga, I.

    1996-12-01

    The authors present results obtained by molecular dynamics simulations on the propagation of fast cracks in triangular 2D lattices. Their aim is to simulate Mode 1 fracture of brittle isotropic materials. They propose a force law that respects the isotropy of the material. The code yields the correct imposed sound c{sub {parallel}}, shear c{sub {perpendicular}} and surface V{sub R} wave speeds. Different notch lengths are systematically studied. They observed that initially the cracks are linear and always branch at a particular critical velocity c* {approx} 0.8V{sub R} and that this occurs when the crack tip reaches the position of a front emitted from the initial crack tip and propagating at a speed c = 0.68V{sub R}.

  8. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  9. Molecular Dynamics Simulations of Interface Failure

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Cao, Deng; Leonard, Robert H.; Owens, Eli T.; Swan, Wm. Trevor, III; Ducatman, Samuel C.

    2007-03-01

    The mechanical integrity of silicon/silicon nitride interfaces is of great importance in their applications in micro electronics and solar cells. Large-scale molecular dynamics simulations are an excellent tool to study mechanical and structural failure of interfaces subjected to externally applied stresses and strains. When pulling the system parallel to the interface, cracks in silicon nitride and slip and pit formation in silicon are typical failure mechanisms. Hypervelocity impact perpendicular to the interface plane leads to structural transformation and delamination at the interface. Influence of system temperature, strain rate, impact velocity, and system size on type and characteristics of failure will be discussed.

  10. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  11. Molecular dynamics simulations of dense plasmas

    SciTech Connect

    Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  12. Parallel beam dynamics simulation of linear accelerators

    SciTech Connect

    Qiang, Ji; Ryne, Robert D.

    2002-01-31

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies.

  13. Genomic analysis of regulatory network dynamics reveals large topological changes

    NASA Astrophysics Data System (ADS)

    Luscombe, Nicholas M.; Madan Babu, M.; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A.; Gerstein, Mark

    2004-09-01

    Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here-particularly the large-scale topological changes and hub transience-will apply to other biological networks, including complex sub-systems in higher eukaryotes.

  14. Genomic analysis of regulatory network dynamics reveals large topological changes.

    PubMed

    Luscombe, Nicholas M; Babu, M Madan; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A; Gerstein, Mark

    2004-09-16

    Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here--particularly the large-scale topological changes and hub transience--will apply to other biological networks, including complex sub-systems in higher eukaryotes.

  15. Indole Localization in an Explicit Bilayer Revealed via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Norman, Kristen

    2005-11-01

    It is well known that the amino-acid tryptophan is particularly stable in the interfacial region of biological membranes, and this preference is a property of the tryptophan side-chain. Analogues of this side-chain, such as indole, strongly localize in the interfacial region, especially near the glycerol moiety of the lipids in the bilayer. Using molecular dynamics calculations, we determine the potential of mean force (PMF) for indoles in the bilayer. We compare the calculated PMF for indole with that of benzene to show that exclusion from the center of the lipid bilayer does not occur in all aromatics, but is strong in indoles. We find three minima in the PMF. Indole is most stabilized near the glycerol moiety. A weaker binding location is found near the choline groups of the lipid molecules. An even weaker binding side is found near the center of the lipid hydrocarbon core. Comparisions between uncharged, weakly charged, and highly charged indoles demonstrate that the exclusion is caused by the charge distribution on the indole rather than the ``lipo-phobic'' effect. High temperature simulations are used to determine the relative contribution of enthalpy and entropy to indole localization. The orientation of indole is found to be largely charge independent and is a strong function of depth within the bilayer. We find good agreement between simulated SCD order parameters for indole and experimentally determined order parameters.

  16. REVEAL: An Extensible Reduced Order Model Builder for Simulation and Modeling

    SciTech Connect

    Agarwal, Khushbu; Sharma, Poorva; Ma, Jinliang; Lo, Chaomei; Gorton, Ian; Liu, Yan

    2013-04-30

    Many science domains need to build computationally efficient and accurate representations of high fidelity, computationally expensive simulations. These computationally efficient versions are known as reduced-order models. This paper presents the design and implementation of a novel reduced-order model (ROM) builder, the REVEAL toolset. This toolset generates ROMs based on science- and engineering-domain specific simulations executed on high performance computing (HPC) platforms. The toolset encompasses a range of sampling and regression methods that can be used to generate a ROM, automatically quantifies the ROM accuracy, and provides support for an iterative approach to improve ROM accuracy. REVEAL is designed to be extensible in order to utilize the core functionality with any simulator that has published input and output formats. It also defines programmatic interfaces to include new sampling and regression techniques so that users can ‘mix and match’ mathematical techniques to best suit the characteristics of their model. In this paper, we describe the architecture of REVEAL and demonstrate its usage with a computational fluid dynamics model used in carbon capture.

  17. Molecular dynamics simulation of bicrystalline metal surface treatment

    SciTech Connect

    Nikonov, A. Yu.

    2015-10-27

    The paper reports the molecular dynamics simulation results on the behavior of a copper crystallite in local frictional contact. The crystallite has a perfect defect-free structure and contains a high-angle grain boundary of type Σ5. The influence of the initial structure on the specimen behavior under loading was analyzed. It is shown that nanoblocks are formed in the subsurface layer. The atomic mechanism of nanofragmentation was studied. A detailed analysis of atomic displacements in the blocks showed that the displacements are rotational. Calculations revealed that the misorientation angle of formed nanoblocks along different directions does not exceed 2 degrees.

  18. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  19. Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations.

    PubMed

    Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong

    2016-08-21

    Herein we have used combined static electronic structure calculations and "on-the-fly" global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the (1)ππ(∗), (1)nπ(∗), and S0 states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated (1)ππ(∗) system. The first is the diabatic ESIPT process along the (1)ππ(∗) potential energy profile. The generated (1)ππ(∗) keto species then decays to the S0 state via the keto (1)ππ(∗)/gs conical intersection. The second is internal conversion to the dark (1)nπ(∗) state near the (1)ππ(∗) /(1)nπ(∗) crossing point in the course of the diabatic (1)ππ(∗) ESIPT process. Our following dynamics simulations have shown that the ESIPT and (1)ππ(∗) → S0 internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the (1)ππ(∗) → S0 internal conversion in the keto region, the (1)ππ(∗) → (1)nπ(∗) internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.

  20. Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong

    2016-08-01

    Herein we have used combined static electronic structure calculations and "on-the-fly" global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the 1ππ∗, 1nπ∗, and S0 states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated 1ππ∗ system. The first is the diabatic ESIPT process along the 1ππ∗ potential energy profile. The generated 1ππ∗ keto species then decays to the S0 state via the keto 1ππ∗/gs conical intersection. The second is internal conversion to the dark 1nπ∗ state near the 1ππ∗ /1nπ∗ crossing point in the course of the diabatic 1ππ∗ ESIPT process. Our following dynamics simulations have shown that the ESIPT and 1ππ∗ → S0 internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the 1ππ∗ → S0 internal conversion in the keto region, the 1ππ∗ → 1nπ∗ internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.

  1. The Dynamics of Miscible Interfaces: Simulations

    NASA Technical Reports Server (NTRS)

    Meiburg, Eckart

    2005-01-01

    This research project focuses on the dynamics of interfacial regions between miscible fluids. While much attention has focused on immiscible interfaces in the past, miscible interfaces have been explored to a much lesser degree, so that there are many open questions regarding their dynamics at this time. Among the more pressing issues is the role that nonconventional stresses can play in such interfacial regions. Such stresses are typically not accounted for in efforts to model the dynamics of miscible flows. Our research aims to clarify under which circumstances these stresses do have to be taken into account, and what quantitative approaches are most suitable in this regard. In order to address these issues, we have focused on conducting linear stability analyses and nonlinear simulations for capillary tube and Hele-Shaw flows, and to compare the results with corresponding experiments performed in the labs of our co-investigators Prof. Maxworthy at USC, and Dr. Balasubramaniam at NASA. Over the duration of the project we have, among other things, focused on the effects of variable diffusion coefficients in such flows, and specifically on their influence in the growth of instabilities. Furthermore, our three-dimensional spectral element simulations have made good progress, so that we have come to a point where we can conduct more detailed comparisons with experimental observations. We are currently focusing our efforts on reproducing the tip-splitting instability observed by Maxworthy. Finally, we have discovered a new core-annular flow instability in the Stokes flow regime during the last year. This represents a significant finding, as this instability does not have an immiscible counterpart.

  2. Dynamical simulations of vesicle growth and division

    NASA Astrophysics Data System (ADS)

    Ruiz-Herrero, Teresa; Mahadevan, L.

    2015-03-01

    Prebiotic cells constitute a beautiful and intriguing example of self-replicating vesicles. How these cells managed to grow and divide without sophisticated machinery is still an open question. The properties of these primitive vesicles can shed light on the ways modern cells have evolved by exploiting those characteristics to develop their replication mechanisms. The equilibrium configurations of elastic shells are well understood, however the dynamical behavior during growth still lacks of a deep theoretical understanding. To study vesicle growth from a general perspective, we have developed a minimal generic model where vesicles are represented by a 2D spring network and characterized by a minimum set of magnitudes: growth rate, permeability, bending stiffness, viscosity and temperature. We have performed hybrid molecuar dynamic simulations as a function of a reduced set of dimensionless parameters. Three main outcomes were observed: vesicles that grow without division, vesicles that divide symmetrically, and vesicles that act as generators of daughter vesicles. The type of outcome depends on the system parameters and specifically on its dynamics via two timescales. Furthermore, we found sets of parameters where the system shows size homeostasis. TRH was supported by Ramon Areces Foundation.

  3. Molecular Dynamics Simulation of a RNA Aptasensor.

    PubMed

    Ruan, Min; Seydou, Mahamadou; Noel, Vincent; Piro, Benoit; Maurel, François; Barbault, Florent

    2017-04-14

    Single-stranded RNA aptamers have emerged as novel biosensor tools. However, the immobilization procedure of the aptamer onto a surface generally induces a loss of affinity. To understand this molecular process, we conducted a complete simulation study for the Flavin mononucleotide aptamer for which experimental data are available. Several molecular dynamics simulations (MD) of the Flavin in complex with its RNA aptamer were conducted in solution, linked with six thymidines (T6) and, finally, immobilized on an hexanol-thiol-functionalized gold surface. First, we demonstrated that our MD computations were able to reproduce the experimental solution structure and to provide a meaningful estimation of the Flavin free energy of binding. We also demonstrated that the T6 linkage, by itself, does not generate a perturbation of the Flavin recognition process. From the simulation of the complete biosensor system, we observed that the aptamer stays oriented parallel to the surface at a distance around 36 Å avoiding, this way, interaction with the surface. We evidenced a structural reorganization of the Flavin aptamer binding mode related to the loss of affinity and induced by an anisotropic distribution of sodium cationic densities. This means that ionic diffusion is different between the surface and the aptamer than above this last one. We suggest that these findings might be extrapolated to other nucleic acids systems for the future design of biosensors with higher efficiency and selectivity.

  4. Quantum molecular dynamics simulations of dense matter

    SciTech Connect

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  5. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  6. Brownian dynamics simulation of DNA condensation.

    PubMed Central

    Sottas, P E; Larquet, E; Stasiak, A; Dubochet, J

    1999-01-01

    DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical geometry with some experimental results allows a quantitative evaluation of the one-parameter attractive potential. We show afterward that with a sufficient concentration of divalent salt (typically approximately 20 mM MgCl(2)), supercoiled DNA adopts a collapsed form where opposing segments of interwound regions present zones of lateral contact. However, under the same conditions the same plasmid without torsional stress does not collapse. The condensed molecules present coexisting open and collapsed plectonemic regions. Furthermore, simulations show that circular DNA in 50% methanol solutions with 20 mM MgCl(2) aggregates without the requirement of torsional energy. This confirms known experimental results. Finally, a simulated DNA molecule confined in a box of variable size also presents some local collapsed zones in 20 mM MgCl(2) above a critical concentration of the DNA. Conformational entropy reduction obtained either by supercoiling or by confinement seems thus to play a crucial role in all forms of condensation of DNA. PMID:10512808

  7. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations.

    PubMed

    Spacková, Nad'a; Réblová, Kamila; Sponer, Jirí

    2010-08-19

    Kink-turns (K-turns) are recurrent elbow-like RNA motifs that participate in protein-assisted RNA folding and contribute to RNA dynamics. We carried out a set of molecular dynamics (MD) simulations using parm99 and parmbsc0 force fields to investigate structural dynamics of the box C/D RNA and its complexes with two proteins: native archaeal L7ae protein and human 15.5 kDa protein, originally bound to very similar structure of U4 snRNA. The box C/D RNA forms K-turn with A-minor 0 tertiary interaction between its canonical (C) and noncanonical (NC) stems. The local K-turn architecture is thus different from the previously studied ribosomal K-turns 38 and 42 having A-minor I interaction. The simulations reveal visible structural dynamics of this tertiary interaction involving altogether six substates which substantially contribute to the elbow-like flexibility of the K-turn. The interaction can even temporarily shift to the A-minor I type pattern; however, this is associated with distortion of the G/A base pair in the NC-stem of the K-turn. The simulations show reduction of the K-turn flexibility upon protein binding. The protein interacts with the apex of the K-turn and with the NC-stem. The protein-RNA interface includes long-residency hydration sites. We have also found long-residency hydration sites and major ion-binding sites associated with the K-turn itself. The overall topology of the K-turn remains stable in all simulations. However, in simulations of free K-turn, we observed instability of the key C16(O2')-A7(N1) H-bond, which is a signature interaction of K-turns and which was visibly more stable in simulations of K-turns possessing A-minor I interaction. It may reflect either some imbalance of the force field or it may be a correct indication of early stages of unfolding since this K-turn requires protein binding for its stabilization. Interestingly, the 16(O2')-7(N1) H- bond is usually not fully lost since it is replaced by a water bridge with a tightly

  8. Dynamics simulations for engineering macromolecular interactions

    NASA Astrophysics Data System (ADS)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could

  9. Dynamics simulations for engineering macromolecular interactions.

    PubMed

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20,000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could

  10. Molecular Simulations of Shear-Induced Dynamics in Nitromethane

    DTIC Science & Technology

    2016-09-01

    the shear response of single-crystal and bicrystal nitromethane (NM) are simulated using molecular dynamics simulations. The atomic interactions are...compressed to 28 GPa and then sheared, Raman studies show that the decomposition is sudden and explosive.5 In addition, structural modifications are...Molecular dynamics simulations are performed using the LAMMPS (Large-scale Atomic /Molecular Massively Parallel Simulator) simulation package.9 The

  11. On sequential dynamical systems and simulation

    SciTech Connect

    Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.

  12. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    PubMed

    Kalescky, Robert; Zhou, Hongyu; Liu, Jin; Tao, Peng

    2016-04-01

    Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  13. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery

    PubMed Central

    Liu, Jin

    2016-01-01

    Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier’s principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery. PMID:27115535

  14. Molecular Dynamics Simulations of Homogeneous Crystallization in Polymer Melt

    NASA Astrophysics Data System (ADS)

    Kong, Bin

    2015-03-01

    Molecular mechanisms of homogeneous nucleation and crystal growth from the melt of polyethylene-like polymer were investigated by molecular dynamics simulations. The crystallinity was determined by using the site order parameter method (SOP), which described local order degree around an atom. Snapshots of the simulations showed evolution of the nucleation and the crystal growth through SOP images clearly. The isothermal crystallization kinetics was determined at different temperatures. The rate of crystallization, Kc, and the Avrami exponents, n, were determined as a function of temperature. The forming of nucleis was traced to reveal that the nucleis were formed with more ordered cores and less ordered shells. A detailed statistical analysis of the MD snapshots and trajectories suggested conformations of the polymer chains changed smoothly from random coil to chain folded lamella in the crystallization processes.

  15. Euclidean lattice simulation for dynamical supersymmetry breaking

    SciTech Connect

    Kanamori, Issaku; Suzuki, Hiroshi; Sugino, Fumihiko

    2008-05-01

    The global supersymmetry is spontaneously broken if and only if the ground-state energy is strictly positive. We propose to use this fact to observe the spontaneous supersymmetry breaking in Euclidean lattice simulations. For lattice formulations that possess a manifest fermionic symmetry, there exists a natural choice of a Hamiltonian operator that is consistent with a topological property of the Witten index. We confirm validity of our idea in models of the supersymmetric quantum mechanics. We then examine a possibility of a dynamical supersymmetry breaking in the two-dimensional N=(2,2) super Yang-Mills theory with the gauge group SU(2), for which the Witten index is unknown. Differently from a recent conjectural claim, our numerical result tempts us to conclude that supersymmetry is not spontaneously broken in this system.

  16. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  17. CADS:Cantera Aerosol Dynamics Simulator.

    SciTech Connect

    Moffat, Harry K.

    2007-07-01

    This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol Dynamics Simulator), which employs a section-based approach for describing the particle size distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas phase species transport and reactions. The method uses a discontinuous Galerkin formulation to represent the particle distributions within each section and to solve for changes to the aerosol particle distributions due to condensation, coagulation, and nucleation processes. CADS conserves particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations. Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application) have been developed with CADS, with the initial emphasis on developing fundamental mechanisms for soot formation within fires. This report also describes the 0-D application, TDcads, which models a time-dependent perfectly stirred reactor.

  18. Simulating dynamical features of escape panic

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Farkas, Illés; Vicsek, Tamás

    2000-09-01

    One of the most disastrous forms of collective human behaviour is the kind of crowd stampede induced by panic, often leading to fatalities as people are crushed or trampled. Sometimes this behaviour is triggered in life-threatening situations such as fires in crowded buildings; at other times, stampedes can arise during the rush for seats or seemingly without cause. Although engineers are finding ways to alleviate the scale of such disasters, their frequency seems to be increasing with the number and size of mass events. But systematic studies of panic behaviour and quantitative theories capable of predicting such crowd dynamics are rare. Here we use a model of pedestrian behaviour to investigate the mechanisms of (and preconditions for) panic and jamming by uncoordinated motion in crowds. Our simulations suggest practical ways to prevent dangerous crowd pressures. Moreover, we find an optimal strategy for escape from a smoke-filled room, involving a mixture of individualistic behaviour and collective `herding' instinct.

  19. Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility.

    PubMed

    Stylianidou, Stella; Kuwada, Nathan J; Wiggins, Paul A

    2014-12-02

    It has been proposed that forces resulting from the physical exclusion of macromolecules from the bacterial nucleoid play a central role in organizing the bacterial cell, yet this proposal has not been quantitatively tested. To investigate this hypothesis, we mapped the generic motion of large protein complexes in the bacterial cytoplasm through quantitative analysis of thousands of complete cell-cycle trajectories of fluorescently tagged ectopic MS2-mRNA complexes. We find the motion of these complexes in the cytoplasm is strongly dependent on their spatial position along the long axis of the cell, and that their dynamics are consistent with a quantitative model that requires only nucleoid exclusion and membrane confinement. This analysis also reveals that the nucleoid increases the mobility of MS2-mRNA complexes, resulting in a fourfold increase in diffusion coefficients between regions of the lowest and highest nucleoid density. These data provide strong quantitative support for two modes of nucleoid action: the widely accepted mechanism of nucleoid exclusion in organizing the cell and a newly proposed mode, in which the nucleoid facilitates rapid motion throughout the cytoplasm.

  20. Temporal dynamics of reward processing revealed by magnetoencephalography.

    PubMed

    Doñamayor, Nuria; Marco-Pallarés, Josep; Heldmann, Marcus; Schoenfeld, M Ariel; Münte, Thomas F

    2011-12-01

    Monetary gains and losses in gambling situations are associated with a distinct electroencephalographic signature: in the event-related potentials (ERPs), a mediofrontal feedback-related negativity (FRN) is seen for losses, whereas oscillatory activity shows a burst of in the θ-range for losses and in the β-range for gains. We used whole-head magnetoencephalography to pinpoint the magnetic counterparts of these effects in young healthy adults and explore their evolution over time. On each trial, participants bet on one of two visually presented numbers (25 or 5) by button-press. Both numbers changed color: if the chosen number turned green (red), it indicated a gain (loss) of the corresponding sum in Euro cent. For losses, we found the magnetic correlate of the FRN extending between 230 and 465 ms. Source localization with low-resolution electromagnetic tomography indicated a first generator in posterior cingulate cortex with subsequent activity in the anterior cingulate cortex. Importantly, this effect was sensitive to the magnitude of the monetary loss (25 cent > 5 cent). Later activation was also found in the right insula. Time-frequency analysis revealed a number of oscillatory components in the theta, alpha, and high-beta/low-gamma bands associated to gains, and in the high-beta band, associated to the magnitude of the loss. All together, these effects provide a more fine-grained picture of the temporal dynamics of the processing of monetary rewards and losses in the brain.

  1. High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating

    PubMed Central

    2017-01-01

    The mechanosensitive channels of large conductance (MscL) are bacterial membrane proteins that serve as last resort emergency release valves in case of severe osmotic downshock. Sensing bilayer tension, MscL channels are sensitive to changes in the bilayer environment and are, therefore, an ideal test case for exploring membrane protein coupling. Here, we use high-throughput coarse-grained molecular dynamics simulations to characterize MscL gating kinetics in different bilayer environments under the influence of alcohols. We performed over five hundred simulations to obtain sufficient statistics to reveal the subtle effects of changes in the membrane environment on MscL gating. MscL opening times were found to increase with the addition of the straight-chain alcohols ethanol, octanol, and to some extent dodecanol but not with hexadecanol. Increasing concentration of octanol increased the impeding effect, but only up to 10–20 mol %. Our in silico predictions were experimentally confirmed using reconstituted MscL in a liposomal fluorescent efflux assay. Our combined data reveal that the effect of alcohols on MscL gating arises not through specific binding sites but through a combination of the alcohol-induced changes to a number of bilayer properties and their alteration of the MscL–bilayer interface. Our work provides a key example of how extensive molecular simulations can be used to predict the functional modification of membrane proteins by subtle changes in their bilayer environment. PMID:28122455

  2. High-throughput simulations reveal membrane-mediated effects of alcohols on MscL gating

    DOE PAGES

    Melo, Manuel N.; Arnarez, Clement; Sikkema, Hendrik; ...

    2017-01-26

    The mechanosensitive channels of large conductance (MscL) are bacterial membrane proteins that serve as last resort emergency release valves in case of severe osmotic downshock. Sensing bilayer tension, MscL channels are sensitive to changes in the bilayer environment and are, therefore, an ideal test case for exploring membrane protein coupling. Here, we use high-throughput coarse-grained molecular dynamics simulations to characterize MscL gating kinetics in different bilayer environments under the influence of alcohols. We performed over five hundred simulations to obtain sufficient statistics to reveal the subtle effects of changes in the membrane environment on MscL gating. MscL opening times weremore » found to increase with the addition of the straight-chain alcohols ethanol, octanol, and to some extent dodecanol but not with hexadecanol. Increasing concentration of octanol increased the impeding effect, but only up to 10–20 mol %. Our in silico predictions were experimentally confirmed using reconstituted MscL in a liposomal fluorescent efflux assay. Our combined data reveal that the effect of alcohols on MscL gating arises not through specific binding sites but through a combination of the alcohol-induced changes to a number of bilayer properties and their alteration of the MscL–bilayer interface. Finally, our work provides a key example of how extensive molecular simulations can be used to predict the functional modification of membrane proteins by subtle changes in their bilayer environment.« less

  3. Fiber lubrication: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi

    Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence

  4. In silico FRET from simulated dye dynamics

    NASA Astrophysics Data System (ADS)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language

  5. Coarse-grained protein molecular dynamics simulations.

    PubMed

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-14

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  6. Coarse-grained protein molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-01

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Aβ16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50ns time scale. Based on two 220ns trajectories starting from disordered chains, we find that four Aβ16-22 peptides can form a three-stranded β sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  7. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  8. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  9. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  10. Molecular Dynamics Simulations of Ferroelectric Phase Transitions

    NASA Astrophysics Data System (ADS)

    Yu, Rici; Krakauer, Henry

    1997-03-01

    Based on an analysis of the wavevector dependence of the lattice instabilities in KNbO_3, we proposed a real-space chain-like instability and a scenario of sequential freezing out or onset of coherence of these instabilities, which qualitatively explains the sequence of observed temperature-dependent ferroelectric phases.(R. Yu and H. Krakauer, Phys. Rev. Lett. 74), 4067 (1995). We suggested that this chain-like instability should also be found in BaTiO_3, and this has been subsequently confirmed by Ghosez et al.(P. Ghosez et al.), Proc. 4th Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, to be published We will present molecular dynamics simulations on BaTiO_3, using effective Hamiltonians constructed from first-principles calculations,(W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. Lett. 73), 1861 (1994). that reproduce the essential features of diffuse x-ray scattering measurements in the cubic, tetragonal, orthorhombic, and rhombohedral phases. The good agreement supports the interpretation of real-space chain-formation. Simulations for KNbO3 may also be reported.

  11. Thermostat for nonequilibrium multiparticle-collision-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Varghese, Anoop; Gompper, Gerhard; Winkler, Roland G.

    2015-01-01

    Multiparticle collision dynamics (MPC), a particle-based mesoscale simulation technique for complex fluid, is widely employed in nonequilibrium simulations of soft matter systems. To maintain a defined thermodynamic state, thermalization of the fluid is often required for certain MPC variants. We investigate the influence of three thermostats on the nonequilibrium properties of a MPC fluid under shear or in Poiseuille flow. In all cases, the local velocities are scaled by a factor, which is either determined via a local simple scaling approach (LSS), a Monte Carlo-like procedure (MCS), or by the Maxwell-Boltzmann distribution of kinetic energy (MBS). We find that the various scaling schemes leave the flow profile unchanged and maintain the local temperature well. The fluid viscosities extracted from the various simulations are in close agreement. Moreover, the numerically determined viscosities are in remarkably good agreement with the respective theoretically predicted values. At equilibrium, the calculation of the dynamic structure factor reveals that the MBS method closely resembles an isothermal ensemble, whereas the MCS procedure exhibits signatures of an adiabatic system at larger collision-time steps. Since the velocity distribution of the LSS approach is non-Gaussian, we recommend to apply the MBS thermostat, which has been shown to produce the correct velocity distribution even under nonequilibrium conditions.

  12. Thermostat for nonequilibrium multiparticle-collision-dynamics simulations.

    PubMed

    Huang, Chien-Cheng; Varghese, Anoop; Gompper, Gerhard; Winkler, Roland G

    2015-01-01

    Multiparticle collision dynamics (MPC), a particle-based mesoscale simulation technique for complex fluid, is widely employed in nonequilibrium simulations of soft matter systems. To maintain a defined thermodynamic state, thermalization of the fluid is often required for certain MPC variants. We investigate the influence of three thermostats on the nonequilibrium properties of a MPC fluid under shear or in Poiseuille flow. In all cases, the local velocities are scaled by a factor, which is either determined via a local simple scaling approach (LSS), a Monte Carlo-like procedure (MCS), or by the Maxwell-Boltzmann distribution of kinetic energy (MBS). We find that the various scaling schemes leave the flow profile unchanged and maintain the local temperature well. The fluid viscosities extracted from the various simulations are in close agreement. Moreover, the numerically determined viscosities are in remarkably good agreement with the respective theoretically predicted values. At equilibrium, the calculation of the dynamic structure factor reveals that the MBS method closely resembles an isothermal ensemble, whereas the MCS procedure exhibits signatures of an adiabatic system at larger collision-time steps. Since the velocity distribution of the LSS approach is non-Gaussian, we recommend to apply the MBS thermostat, which has been shown to produce the correct velocity distribution even under nonequilibrium conditions.

  13. The Dynamics of Miscible Interfaces: Simulations

    NASA Technical Reports Server (NTRS)

    Meiburg, Eckart

    2002-01-01

    The goal of this experimental/computational investigation (joint with Prof Maxworthy at USC) has been to study the dynamics of miscible interfaces, both from a scientific and a practical point of view, and to prepare a related experiment to be flown on the International Space Station. In order to address these effects, we have focused experimental and computational investigations on miscible displacements in cylindrical capillary tubes, as well as in Hele-Shaw cells. Regarding the flow in a capillary tube, the question was addressed as to whether Korteweg stresses and/or divergence effects can potentially account for discrepancies observed between conventional Stokes flow simulations and experiments for miscible flows in capillary tubes. An estimate of the vorticity and streamfunction fields induced by the Kortewegs stresses was derived, which shows these stresses to result in the formation of a vortex ring structure near the tip of the concentration front. Through this mechanism the propagation velocity of the concentration front is reduced, in agreement with the experimental observations. Divergence effects, on the other hand, were seen to be very small, and they have a negligible influence on the tip velocity. As a result, it can be concluded that they are not responsible for the discrepancies between experiments and conventional Stokes simulations. A further part of our investigation focussed on the development of high-accuracy three-dimensional spectral element simulation techniques for miscible flows in capillary tubes, including the effects of variable density and viscosity. Towards this end, the conservation equations are treated in cylindrical coordinates.

  14. Consequence modeling using the fire dynamics simulator.

    PubMed

    Ryder, Noah L; Sutula, Jason A; Schemel, Christopher F; Hamer, Andrew J; Van Brunt, Vincent

    2004-11-11

    The use of Computational Fluid Dynamics (CFD) and in particular Large Eddy Simulation (LES) codes to model fires provides an efficient tool for the prediction of large-scale effects that include plume characteristics, combustion product dispersion, and heat effects to adjacent objects. This paper illustrates the strengths of the Fire Dynamics Simulator (FDS), an LES code developed by the National Institute of Standards and Technology (NIST), through several small and large-scale validation runs and process safety applications. The paper presents two fire experiments--a small room fire and a large (15 m diameter) pool fire. The model results are compared to experimental data and demonstrate good agreement between the models and data. The validation work is then extended to demonstrate applicability to process safety concerns by detailing a model of a tank farm fire and a model of the ignition of a gaseous fuel in a confined space. In this simulation, a room was filled with propane, given time to disperse, and was then ignited. The model yields accurate results of the dispersion of the gas throughout the space. This information can be used to determine flammability and explosive limits in a space and can be used in subsequent models to determine the pressure and temperature waves that would result from an explosion. The model dispersion results were compared to an experiment performed by Factory Mutual. Using the above examples, this paper will demonstrate that FDS is ideally suited to build realistic models of process geometries in which large scale explosion and fire failure risks can be evaluated with several distinct advantages over more traditional CFD codes. Namely transient solutions to fire and explosion growth can be produced with less sophisticated hardware (lower cost) than needed for traditional CFD codes (PC type computer verses UNIX workstation) and can be solved for longer time histories (on the order of hundreds of seconds of computed time) with

  15. Dynamic Shade and Irradiance Simulation of Aquatic Landscapes and Watersheds

    EPA Science Inventory

    Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulate...

  16. Revealing the morphological architecture of a shape memory polyurethane by simulation

    PubMed Central

    Hu, Jinlian; Zhang, Cuili; Ji, Fenglong; Li, Xun; Han, Jianping; Wu, You

    2016-01-01

    The lack of specific knowledge of the network structure in shape memory polymers (SMPs) has prevented us from gaining an in-depth understanding of their mechanisms and limited the potential for materials innovation. This paper firstly reveals the unit-cell nanoscale morphological architecture of SMPs by simulation. The phase separated architecture of a segmented shape memory polyurethane (SMPU) with a 30 wt% hard segment content (HSC, 4,4’-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO)) showing good shape memory properties was investigated by dissipative particle dynamics (DPD) simulations. A linked-spherical netpoint-frame phase of MDI, a matrix-switch phase of polycaprolactone (PCL) and a connected-spider-like interphase for BDO were obtained for this SMPU. The BDO interphase can reinforce the MDI network. Based on these simulation results, a three-dimensional (3D) overall morphological architectural model of the SMPU can be established. This theoretical study has verified, enriched and integrated two existing schematic models: one being the morphological model deduced from experiments and the other the frame model for SMPs reported before. It can serve as a theoretical guide for smart polymeric materials design. This method for the simulation of polymer structure at the nanoscale can be extended to many areas such as photonic crystals where nanoscale self-assembly plays a vital role. PMID:27373495

  17. Revealing the morphological architecture of a shape memory polyurethane by simulation

    NASA Astrophysics Data System (ADS)

    Hu, Jinlian; Zhang, Cuili; Ji, Fenglong; Li, Xun; Han, Jianping; Wu, You

    2016-07-01

    The lack of specific knowledge of the network structure in shape memory polymers (SMPs) has prevented us from gaining an in-depth understanding of their mechanisms and limited the potential for materials innovation. This paper firstly reveals the unit-cell nanoscale morphological architecture of SMPs by simulation. The phase separated architecture of a segmented shape memory polyurethane (SMPU) with a 30 wt% hard segment content (HSC, 4,4’-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO)) showing good shape memory properties was investigated by dissipative particle dynamics (DPD) simulations. A linked-spherical netpoint-frame phase of MDI, a matrix-switch phase of polycaprolactone (PCL) and a connected-spider-like interphase for BDO were obtained for this SMPU. The BDO interphase can reinforce the MDI network. Based on these simulation results, a three-dimensional (3D) overall morphological architectural model of the SMPU can be established. This theoretical study has verified, enriched and integrated two existing schematic models: one being the morphological model deduced from experiments and the other the frame model for SMPs reported before. It can serve as a theoretical guide for smart polymeric materials design. This method for the simulation of polymer structure at the nanoscale can be extended to many areas such as photonic crystals where nanoscale self-assembly plays a vital role.

  18. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  19. Accurate Langevin approaches to simulate Markovian channel dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yandong; Rüdiger, Sten; Shuai, Jianwei

    2015-12-01

    The stochasticity of ion-channels dynamic is significant for physiological processes on neuronal cell membranes. Microscopic simulations of the ion-channel gating with Markov chains can be considered to be an accurate standard. However, such Markovian simulations are computationally demanding for membrane areas of physiologically relevant sizes, which makes the noise-approximating or Langevin equation methods advantageous in many cases. In this review, we discuss the Langevin-like approaches, including the channel-based and simplified subunit-based stochastic differential equations proposed by Fox and Lu, and the effective Langevin approaches in which colored noise is added to deterministic differential equations. In the framework of Fox and Lu’s classical models, several variants of numerical algorithms, which have been recently developed to improve accuracy as well as efficiency, are also discussed. Through the comparison of different simulation algorithms of ion-channel noise with the standard Markovian simulation, we aim to reveal the extent to which the existing Langevin-like methods approximate results using Markovian methods. Open questions for future studies are also discussed.

  20. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  1. Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Ruixue; Chen, Hongwei; Gong, Jiangbin; Peng, Xinhua; Du, Jiangfeng

    2011-07-08

    Quantum simulation can beat current classical computers with minimally a few tens of qubits. Here we report an experimental demonstration that a small nuclear-magnetic-resonance quantum simulator is already able to simulate the dynamics of a prototype laser-driven isomerization reaction using engineered quantum control pulses. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future.

  2. Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations.

    PubMed

    Bond, Peter J; Sansom, Mark S P

    2007-02-20

    Coarse-grained molecular dynamics simulations are used to explore the interaction with a phospholipid bilayer of the voltage sensor (VS) domain and the S4 helix from the archaebacterial voltage-gated potassium (Kv) channel KvAP. Multiple 2-mus self-assembly simulations reveal that the isolated S4 helix may adopt either interfacial or transmembrane (TM) locations with approximately equal probability. In the TM state, the insertion of the voltage-sensing region of S4 is facilitated via local bilayer deformation that, combined with side chain "snorkeling," enables its Arg side chains to interact with lipid headgroups and water. Multiple 0.2-mus self-assembly simulations of the VS domain are also performed, along with simulations of MscL and KcsA, to permit comparison with more "canonical" integral membrane protein structures. All three stably adopt a TM orientation within a bilayer. For MscL and KcsA, there is no significant bilayer deformation. In contrast, for the VS, there is considerable local deformation, which is again primarily due to the lipid-exposed S4. It is shown that for both the VS and isolated S4 helix, the positively charged side chains of S4 are accommodated within the membrane through a combination of stabilizing interactions with lipid glycerol and headgroup regions, water, and anionic side chains. Our results support the possibility that bilayer deformation around key gating charge residues in Kv channels may result in "focusing" of the electrostatic field, and indicate that, when considering competing models of voltage-sensing, it is essential to consider the dynamics and structure of not only the protein but also of the local lipid environment.

  3. Nonlinear Resonance Artifacts in Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar; Mandziuk, Margaret; Skeel, Robert D.; Srinivas, K.

    1998-02-01

    The intriguing phenomenon of resonance, a pronounced integrator-induced corruption of a system's dynamics, is examined for simple molecular systems subject to the classical equations of motion. This source of timestep limitation is not well appreciated in general, and certainly analyses of resonance patterns have been few in connection to biomolecular dynamics. Yet resonances are present in the commonly used Verlet integrator, in symplectic implicit schemes, and also limit the scope of current multiple-timestep methods that are formulated as symplectic and reversible. The only general remedy to date has been to reduce the timestep. For this purpose, we derive method-dependent timestep thresholds (e.g., Tables 1 and 2) that serve as useful guidelines in practice for biomolecular simulations. We also devise closely related symplectic implicit schemes for which the limitation on the discretization stepsize is much less severe. Specifically, we design methods to remove third-order, or both the third- and fourth-order, resonances. These severe low-order resonances can lead to instability or very large energies. Our tests on two simple molecular problems (Morse and Lennard-Jones potentials), as well as a 22-atom molecule, N-acetylalanyl-N '-methylamide, confirm this prediction; our methods can delay resonances so that they occur only at larger timesteps (EW method) or are essentially removed (LIM2 method). Although stable for large timesteps by this approach, trajectories show large energy fluctuations, perhaps due to the coupling with other factors that induce instability in complex nonlinear systems. Thus, the methods developed here may be more useful for conformational sampling of biomolecular structures. The analysis presented here for the blocked alanine model emphasizes that one-dimensional analysis of resonances can be applied to a more complex, multimode system to analyze resonance behavior, but that resonance due to frequency coupling is more complex to pinpoint

  4. Nanoscale deicing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-07-01

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice

  5. Molecular Dynamics Simulation of Disordered Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2004-02-27

    The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.

  6. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?

    PubMed

    Hub, Jochen S; Grubmüller, Helmut; de Groot, Bert L

    2009-01-01

    Aquaporins (AQPs) are a family of integral membrane proteins, which facilitate the rapid and yet highly selective flux of water and other small solutes across biological membranes. Molecular dynamics (MD) simulations contributed substantially to the understanding of the molecular mechanisms that underlie this remarkable efficiency and selectivity of aquaporin channels. This chapter reviews the current state of MD simulations of aquaporins and related aquaglyceroporins as well as the insights these simulations have provided. The mechanism of water permeation through AQPs and methods to determine channel permeabilities from simulations are described. Protons are strictly excluded from AQPs by a large electrostatic barrier and not by an interruption of the Grotthuss mechanism inside the pore. Both the protein's electric field and desolvation effects contribute to this barrier. Permeation of apolar gas molecules such as CO(2) through AQPs is accompanied by a large energetic barrier and thus can only be expected in membranes with a low intrinsic gas permeability. Additionally, the insights from simulations into the mechanism of glycerol permeation through the glycerol facilitator GlpF from E. coli are summarized. Finally, MD simulations are discussed that revealed that the aro-matic/arginine constriction region is generally the filter for uncharged solutes, and that AQP selectivity is controlled by a hydrophobic effect and steric restraints.

  7. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    SciTech Connect

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki

    2015-08-17

    The dynamic properties of liquid B{sub 2}O{sub 3} under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B{sub 2}O{sub 3} shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)

  8. Dynamics of the EAG1 K(+) channel selectivity filter assessed by molecular dynamics simulations.

    PubMed

    Bernsteiner, Harald; Bründl, Michael; Stary-Weinzinger, Anna

    2017-02-26

    EAG1 channels belong to the KCNH family of voltage gated potassium channels. They are expressed in several brain regions and increased expression is linked to certain cancer types. Recent cryo-EM structure determination finally revealed the structure of these channels in atomic detail, allowing computational investigations. In this study, we performed molecular dynamics simulations to investigate the ion binding sites and the dynamical behavior of the selectivity filter. Our simulations suggest that sites S2 and S4 form stable ion binding sites, while ions placed at sites S1 and S3 rapidly switched to sites S2 and S4. Further, ions tended to dissociate away from S0 within less than 20 ns, due to increased filter flexibility. This was followed by water influx from the extracellular side, leading to a widening of the filter in this region, and likely non-conductive filter configurations. Simulations with the inactivation-enhancing mutant Y464A or Na(+) ions lead to trapped water molecules behind the SF, suggesting that these simulations captured early conformational changes linked to C-type inactivation.

  9. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Shimojo, Fuyuki; Yao, Makoto

    2015-08-01

    The dynamic properties of liquid B2O3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B2O3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8).

  10. Dynamics of the Wulong landslide revealed by broadband seismic records

    NASA Astrophysics Data System (ADS)

    Li, Zhengyuan; Huang, Xinghui; Xu, Qiang; Yu, Dan; Fan, Junyi; Qiao, Xuejun

    2017-02-01

    The catastrophic Wulong landslide occurred at 14:51 (Beijing time, UTC+8) on 5 June 2009, in Wulong Prefecture, Southwest China. This rockslide occurred in a complex topographic environment. Seismic signals generated by this event were recorded by the seismic network deployed in the surrounding area, and long-period signals were extracted from 8 broadband seismic stations within 250 km to obtain source time functions by inversion. The location of this event was simultaneously acquired using a stepwise refined grid search approach, with an error of 2.2 km. The estimated source time functions reveal that, according to the movement parameters, this landslide could be divided into three stages with different movement directions, velocities, and increasing inertial forces. The sliding mass moved northward, northeastward and northward in the three stages, with average velocities of 6.5, 20.3, and 13.8 m/s, respectively. The maximum movement velocity of the mass reached 35 m/s before the end of the second stage. The basal friction coefficients were relatively small in the first stage and gradually increasing; large in the second stage, accompanied by the largest variability; and oscillating and gradually decreasing to a stable value, in the third stage. Analysis shows that the movement characteristics of these three stages are consistent with the topography of the sliding zone, corresponding to the northward initiation, eastward sliding after being stopped by the west wall, and northward debris flowing after collision with the east slope of the Tiejianggou valley. The maximum movement velocity of the sliding mass results from the largest height difference of the west slope of the Tiejianggou valley. The basal friction coefficients of the three stages represent the thin weak layer in the source zone, the dramatically varying topography of the west slope of the Tiejianggou valley, and characteristics of the debris flow along the Tiejianggou valley. Based on the above

  11. Expansion techniques for collisionless stellar dynamical simulations

    SciTech Connect

    Meiron, Yohai; Li, Baile; Holley-Bockelmann, Kelly; Spurzem, Rainer

    2014-09-10

    We present graphics processing unit (GPU) implementations of two fast force calculation methods based on series expansions of the Poisson equation. One method is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other method is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a 'pure' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms. We show that despite the expansion bias, these methods are more accurate than direct techniques for the same number of particles. The performance of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested GPU hardware, a full force calculation for one million particles took ∼0.1 s (depending on expansion cutoff), making simulations with as many as 10{sup 8} particles fast for a comparatively small number of nodes.

  12. Dynamical simulation of an abrasive wear process

    NASA Astrophysics Data System (ADS)

    Elalem, Khaled; Li, D. Y.

    1999-05-01

    A dynamic computer model was developed to simulate wear behavior of materials on micro-scales. In this model, a material system is discretized and mapped onto a lattice or grid. Each lattice site represents a small volume of the material. During a wear process, a lattice site may move under the influence of external force and the interaction between the site and its adjacent sites. The site-site interaction is a function of mechanical properties of the material such as the elastic modulus, yield strength, work hardening and the fracture strain. Newton's law of motion is used to determine the movement of lattice sites during a wear process. The strain between a pair of sites is recoverable if it is within the elastic deformation range; otherwise plastic deformation takes place. A bond between two adjacent sites is broken when its strain exceeds a critical value. A site or a cluster of sites is worn away if all bonds connecting the site or the cluster to its nearest neighbors are broken. The model well describes the strain distribution in a contact region, in consistence with a finite element analysis. This model was applied to several metallic materials abraded under the ASTM G65 abrasion condition, and the results were compared to experimental observations. Good agreement between the modeling and the experiment was found.

  13. Annual Report 1999 Environmental Dynamics and Simulation

    SciTech Connect

    NS Foster-Mills

    2000-06-28

    This annual report describes selected 1999 research accomplishments for the Environmental Dynamics and Simulation (ED and S) directorate, one of six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). These accomplishments are representative of the different lines of research underway in the ED and S directorate. EMSL is one of US Department of Energy's (DOE) national scientific user facilities and is the centerpiece of DOE's commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems. Capabilities in the EMSL include over 100 major instrument systems for use by the resident research staff, their collaborators, and users of the EMSL. These capabilities are used to address the fundamental science that will be the basis for finding solutions to national environmental issues such as cleaning up contamianted areas at DOE sites across the country and developing green technologies that will reduce or eliminate future pollution production. The capabilities are also used to further the understanding of global climate change and environmental issues relevant to energy production and use and health effects resulting from exposure to contaminated environments.

  14. Eye Movements Reveal the Dynamic Simulation of Speed in Language

    ERIC Educational Resources Information Center

    Speed, Laura J.; Vigliocco, Gabriella

    2014-01-01

    This study investigates how speed of motion is processed in language. In three eye-tracking experiments, participants were presented with visual scenes and spoken sentences describing fast or slow events (e.g., "The lion ambled/dashed to the balloon"). Results showed that looking time to relevant objects in the visual scene was affected…

  15. Dynamic Simulation over Long Time Periods with 100% Solar Generation.

    SciTech Connect

    Concepcion, Ricky James; Elliott, Ryan Thomas

    2015-12-01

    This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.

  16. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  17. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    PubMed

    Tian, Kun Viviana; Chass, Gregory A; Di Tommaso, Devis

    2016-01-14

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form.

  18. Photodissociation dynamics of phenol: multistate trajectory simulations including tunneling.

    PubMed

    Xu, Xuefei; Zheng, Jingjing; Yang, Ke R; Truhlar, Donald G

    2014-11-19

    We report multistate trajectory simulations, including coherence, decoherence, and multidimensional tunneling, of phenol photodissociation dynamics. The calculations are based on full-dimensional anchor-points reactive potential surfaces and state couplings fit to electronic structure calculations including dynamical correlation with an augmented correlation-consistent polarized valence double-ζ basis set. The calculations successfully reproduce the experimentally observed bimodal character of the total kinetic energy release spectra and confirm the interpretation of the most recent experiments that the photodissociation process is dominated by tunneling. Analysis of the trajectories uncovers an unexpected dissociation pathway for one quantum excitation of the O-H stretching mode of the S1 state, namely, tunneling in a coherent mixture of states starting in a smaller ROH (∼0.9-1.0 Å) region than has previously been invoked. The simulations also show that most trajectories do not pass close to the S1-S2 conical intersection (they have a minimum gap greater than 0.6 eV), they provide statistics on the out-of-plane angles at the locations of the minimum energy adiabatic gap, and they reveal information about which vibrational modes are most highly activated in the products.

  19. Cape buffalo mitogenomics reveals a Holocene shift in the African human-megafauna dynamics.

    PubMed

    Heller, Rasmus; Brüniche-Olsen, Anna; Siegismund, Hans R

    2012-08-01

    Africa is unique among the continents in having maintained an extraordinarily diverse and prolific megafauna spanning the Pleistocene-Holocene epochs. Little is known about the historical dynamics of this community and even less about the reasons for its unique persistence to modern times. We sequenced complete mitochondrial genomes from 43 Cape buffalo (Syncerus caffer caffer) to infer the demographic history of this large mammal. A combination of Bayesian skyline plots, simulations and Approximate Bayesian Computation (ABC) were used to distinguish population size dynamics from the confounding effect of population structure and identify the most probable demographic scenario. Our analyses revealed a late Pleistocene expansion phase concurrent with the human expansion between 80 000 and 10 000 years ago, refuting an adverse ecological effect of Palaeolithic humans on this quarry species, but also showed that the buffalo subsequently declined during the Holocene. The distinct two-phased dynamic inferred here suggests that a major ecological transition occurred in the Holocene. The timing of this transition coincides with the onset of drier conditions throughout tropical Africa following the Holocene Optimum (∼9000-5000 years ago), but also with the explosive growth in human population size associated with the transition from the Palaeolithic to the Neolithic cultural stage. We evaluate each of these possible causal factors and their potential impact on the African megafauna, providing the first systematic assessment of megafauna dynamics on the only continent where large mammals remain abundant.

  20. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  1. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics.

    PubMed

    Csatho, Beata M; Schenk, Anton F; van der Veen, Cornelis J; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R; Simonsen, Sebastian B; Nagarajan, Sudhagar; van Angelen, Jan H

    2014-12-30

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers.

  2. Controlled multibody dynamics simulation for large space structures

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Wu, S. C.; Chang, C. W.

    1989-01-01

    Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described.

  3. Swimming patterns and dynamics of simulated Escherichia coli bacteria

    PubMed Central

    Zonia, Laura; Bray, Dennis

    2009-01-01

    A spatially and temporally realistic simulation of Escherichia coli chemotaxis was used to investigate the swimming patterns of wild-type and mutant bacteria within a rectangular arena in response to chemoattractant gradients. Swimming dynamics were analysed during long time series with phase-space trajectories, power spectra and estimations of fractal dimensions (FDs). Cell movement displayed complex trajectories in the phase space owing to interaction of multiple attractors that captured runs and tumbles. Deletion of enzymes responsible for adaptation (CheR and CheB) restricted the pattern of bacterial swimming in the absence of a gradient. In the presence of a gradient, there was a strong increase in trajectories arising from runs and attenuation of those arising from tumbles. Similar dynamics were observed for mutants lacking CheY, which are unable to tumble. The deletion of CheR, CheB and CheY also caused significant shifts in chemotaxis spectral frequencies. Rescaled range analysis and estimation of FD suggest that wild-type bacteria display characteristics of fractional Brownian motion with positive correlation between past and future events. These results reveal an underlying order in bacterial swimming dynamics, which enables a chemotactic search strategy conforming to a fractal walk. PMID:19324687

  4. Swimming patterns and dynamics of simulated Escherichia coli bacteria.

    PubMed

    Zonia, Laura; Bray, Dennis

    2009-11-06

    A spatially and temporally realistic simulation of Escherichia coli chemotaxis was used to investigate the swimming patterns of wild-type and mutant bacteria within a rectangular arena in response to chemoattractant gradients. Swimming dynamics were analysed during long time series with phase-space trajectories, power spectra and estimations of fractal dimensions (FDs). Cell movement displayed complex trajectories in the phase space owing to interaction of multiple attractors that captured runs and tumbles. Deletion of enzymes responsible for adaptation (CheR and CheB) restricted the pattern of bacterial swimming in the absence of a gradient. In the presence of a gradient, there was a strong increase in trajectories arising from runs and attenuation of those arising from tumbles. Similar dynamics were observed for mutants lacking CheY, which are unable to tumble. The deletion of CheR, CheB and CheY also caused significant shifts in chemotaxis spectral frequencies. Rescaled range analysis and estimation of FD suggest that wild-type bacteria display characteristics of fractional Brownian motion with positive correlation between past and future events. These results reveal an underlying order in bacterial swimming dynamics, which enables a chemotactic search strategy conforming to a fractal walk.

  5. Cold-active enzymes studied by comparative molecular dynamics simulation.

    PubMed

    Spiwok, Vojtech; Lipovová, Petra; Skálová, Tereza; Dusková, Jarmila; Dohnálek, Jan; Hasek, Jindrich; Russell, Nicholas J; Králová, Blanka

    2007-04-01

    Enzymes from cold-adapted species are significantly more active at low temperatures, even those close to zero Celsius, but the rationale of this adaptation is complex and relatively poorly understood. It is commonly stated that there is a relationship between the flexibility of an enzyme and its catalytic activity at low temperature. This paper gives the results of a study using molecular dynamics simulations performed for five pairs of enzymes, each pair comprising a cold-active enzyme plus its mesophilic or thermophilic counterpart. The enzyme pairs included alpha-amylase, citrate synthase, malate dehydrogenase, alkaline protease and xylanase. Numerous sites with elevated flexibility were observed in all enzymes; however, differences in flexibilities were not striking. Nevertheless, amino acid residues common in both enzymes of a pair (not present in insertions of a structure alignment) are generally more flexible in the cold-active enzymes. The further application of principle component analysis to the protein dynamics revealed that there are differences in the rate and/or extent of opening and closing of the active sites. The results indicate that protein dynamics play an important role in catalytic processes where structural rearrangements, such as those required for active site access by substrate, are involved. They also support the notion that cold adaptation may have evolved by selective changes in regions of enzyme structure rather than in global change to the whole protein.

  6. Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Theisen, Kelly E.; Desai, Neha J.; Volski, Allison M.; Dima, Ruxandra I.

    2013-09-01

    We investigate the mechanical behavior of microtubule (MT) protofilaments under the action of bending forces, ramped up linearly in time, to provide insight into the severing of MTs by microtubule associated proteins (MAPs). We used the self-organized polymer model which employs a coarse-grained description of the protein chain and ran Brownian dynamics simulations accelerated on graphics processing units that allow us to follow the dynamics of a MT system on experimental timescales. Our study focused on the role played in the MT depolymerization dynamics by the inter-tubulin contacts a protofilament experiences when embedded in the MT lattice, and the number of binding sites of MAPs on MTs. We found that proteins inducing breaking of MTs must have at least three attachment points on any tubulin dimer from an isolated protofilament. In contrast, two points of contact would suffice when dimers are located in an intact MT lattice, in accord with experimental findings on MT severing proteins. Our results show that confinement of a protofilament in the MT lattice leads to a drastic reduction in the energy required for the removal of tubulin dimers, due to the drastic reduction in entropy. We further showed that there are differences in the energetic requirements based on the location of the dimer to be removed by severing. Comparing the energy of tubulin dimers removal revealed by our simulations with the amount of energy resulting from one ATP hydrolysis, which is the source of energy for all MAPs, we provided strong evidence for the experimental finding that severing proteins do not bind uniformly along the MT wall.

  7. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation

    SciTech Connect

    Keblinski, P.; Phillpot, S.R.; Wolf, D.; Gleiter, H.

    1996-08-01

    A recent molecular dynamics simulation method for growth of fully dense nanocrystalline materials crystallized from melt was used with the Stillinger-Weber three-body potential to synthesize nanocrystalline Si with a grain size up to 75{Angstrom}. Structures of the highly constrained grain boundaries (GBs), triple lines, and point grain junctions were found to be highly disordered and similar to the structure of amorphous Si. These and earlier results for fcc metals suggest that a nanocrystalline microstructure may be viewed as a two-phase system, namely an ordered crystalline phase in the grain interiors connected by an amorphous, intergranular, glue-like phase. Analysis of the structures of bicrystalline GBs in the same materials reveals the presence of an amorphous intergranular equilibrium phase only in the high-energy but not the low-energy GBs, suggesting that only high-energy boundaries are present in nanocrystalline microstructures.

  8. Diffusion and structure in silica liquid: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hung, P. K.; Hong, N. V.; Vinh, L. T.

    2007-11-01

    Diffusion and structure in liquid silica under pressure have been investigated by a molecular dynamics model of 999 atoms with the inter-atomic potentials of van Beest, Kramer and van Santen. The simulation reveals that silica liquid is composed of the species SiO4, SiO5 and SiO6 with a fraction dependent on pressure. The density as well as volume of voids can be expressed as a linear function of the fraction of those species. Low-density liquid is mainly constructed of SiO4 and has a large number of O- and Si-voids and a large void tube. This tube contains most O-voids and is spread over the whole system. The anomalous diffusion behavior is observed and discussed.

  9. Molecular dynamics simulations of oxidized and reduced Clostridium beijerinckii flavodoxin.

    PubMed Central

    Leenders, R; van Gunsteren, W F; Berendsen, H J; Visser, A J

    1994-01-01

    Molecular dynamics simulations of oxidized and reduced Clostridium beijerinckii flavodoxin in water have been performed in a sphere of 1.4-nm radius surrounded by a restrained shell of 0.8 nm. The flavin binding site, comprising the active site of the flavodoxin, was in the center of the sphere. No explicit information about protein-bound water molecules was included. An analysis is made of the motional characteristics of residues located in the active site. Positional fluctuations, hydrogen bonding patterns, dihedral angle transitions, solvent behavior, and time-dependent correlations are examined. The 375-ps trajectories show that both oxidized and reduced protein-bound flavins are immobilized within the protein matrix, in agreement with earlier obtained time-resolved fluorescence anisotropy data. The calculated time-correlated behavior of the tryptophan residues reveals significant picosecond mobility of the tryptophan side chain located close to the reduced isoalloxazine part of the flavin. PMID:8011895

  10. Simulating fiction: individual differences in literature comprehension revealed with FMRI.

    PubMed

    Nijhof, Annabel D; Willems, Roel M

    2015-01-01

    When we read literary fiction, we are transported to fictional places, and we feel and think along with the characters. Despite the importance of narrative in adult life and during development, the neurocognitive mechanisms underlying fiction comprehension are unclear. We used functional magnetic resonance imaging (fMRI) to investigate how individuals differently employ neural networks important for understanding others' beliefs and intentions (mentalizing), and for sensori-motor simulation while listening to excerpts from literary novels. Localizer tasks were used to localize both the cortical motor network and the mentalizing network in participants after they listened to excerpts from literary novels. Results show that participants who had high activation in anterior medial prefrontal cortex (aMPFC; part of the mentalizing network) when listening to mentalizing content of literary fiction, had lower motor cortex activity when they listened to action-related content of the story, and vice versa. This qualifies how people differ in their engagement with fiction: some people are mostly drawn into a story by mentalizing about the thoughts and beliefs of others, whereas others engage in literature by simulating more concrete events such as actions. This study provides on-line neural evidence for the existence of qualitatively different styles of moving into literary worlds, and adds to a growing body of literature showing the potential to study narrative comprehension with neuroimaging methods.

  11. Dynamic Evaluation of Two Decades of CMAQ Simulations ...

    EPA Pesticide Factsheets

    This presentation focuses on the dynamic evaluation of the CMAQ model over the continental United States using multi-decadal simulations for the period from 1990 to 2010 to examine how well the changes in observed ozone air quality induced by variations in meteorology and/or emissions are simulated by the model. We applied spectral decomposition of the ozone time-series using the KZ filter to assess the variations in the strengths of synoptic (weather-induced variations) and baseline (long-term variation) forcings, embedded in the simulated and observed concentrations. The results reveal that CMAQ captured the year-to-year variability (more so in the later years than the earlier years) and the synoptic forcing in accordance with what the observations are showing. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  12. Dynamical diffraction simulations in FePt--I.

    PubMed

    Torres, Karen L; Vanfleet, Richard R; Thompson, Gregory B

    2011-06-01

    A series of multislice simulations to quantify the effect of various degrees of order, composition, and thickness on the electron diffracted intensities were performed using the L1₀ FePt system as the case study. The dynamical diffraction studies were done in both a convergent electron beam diffraction and selected area electron diffraction condition. The L1₀ symmetry demonstrated some peculiar challenges in the simulation, in particular between the {111} plane normal and the <111> direction, which are not equivalent because of tetragonality. A hybrid weighting function atom of Fe-Pt was constructed to account for S < 1 or nonequiatomic compositions. This statistical approach reduced the complexity of constructing a crystal with the probability that a particular atom was at a particular lattice site for a given order parameter and composition. Considerations of accelerating voltage, convergent angle, and thermal effects are discussed. The simulations revealed significant differences in intensity ratios between films of various compositions but equivalent unit cell numbers and degree of order.

  13. Molecular dynamics simulation of graphene bombardment with Si ion

    NASA Astrophysics Data System (ADS)

    Qin, Xin-Mao; Gao, Ting-Hong; Yan, Wan-Jun; Guo, Xiao-Tian; Xie, Quan

    2014-03-01

    Molecular dynamics simulations with Tersoff-Ziegler-Biersack-Littmark (Tersoff-ZBL) potential and adaptive intermolecular reactive empirical bond order (AIREBO) potential are performed to study the effect of irradiated graphene with silicon ion at several positions and energy levels of 0.1-1000 eV. The simulations reveal four processes: absorption, replacement, transmission and damage. At energies below 110 eV, the dominant process is absorption. For atom in group (a), the process that takes place is replacement, in which the silicon ion removes one carbon atom and occupies the place of the eliminated atom at the incident energy of 72-370 eV. Transmission is present at energies above 100 eV for atom in group (d). Damage is a very important process in current bombardment, and there are four types of defects: single vacancy, replacement-single vacancy, double vacancy and nanopore. The simulations provide a fundamental understanding of the silicon bombardment of graphene, and the parameters required to develop graphene-based devices by controlling defect formation.

  14. A Simulation Program for Dynamic Infrared (IR) Spectra

    ERIC Educational Resources Information Center

    Zoerb, Matthew C.; Harris, Charles B.

    2013-01-01

    A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…

  15. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    PubMed Central

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R.; Simonsen, Sebastian B.; Nagarajan, Sudhagar; van Angelen, Jan H.

    2014-01-01

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993–2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt⋅y−1, equivalent to 0.68 mm⋅y−1 sea level rise (SLR) for 2003–2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004–2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland’s outlet glaciers. PMID:25512537

  16. Molecular dynamics simulation of liquid water confined inside graphite channels: dielectric and dynamical properties.

    PubMed

    Martí, J; Nagy, G; Guàrdia, E; Gordillo, M C

    2006-11-30

    Electric and dielectric properties and microscopic dynamics of liquid water confined between graphite slabs are analyzed by means of molecular dynamics simulations for several graphite-graphite separations at ambient conditions. The electric potential across the interface shows oscillations due to water layering, and the overall potential drop is about -0.28 V. The total dielectric constant is larger than the corresponding value for the bulklike internal region of the system. This is mainly due to the preferential orientations of water nearest the graphite walls. Estimation of the capacitance of the system is reported, indicating large variations for the different adsorption layers. The main trend observed concerning water diffusion is 2-fold: on one hand, the overall diffusion of water is markedly smaller for the closest graphite-graphite separations, and on the other hand, water molecules diffuse in interfaces slightly slower than those in the bulklike internal areas. Molecular reorientational times are generally larger than those corresponding to those of unconstrained bulk water. The analysis of spectral densities revealed significant spectral shifts, compared to the bands in unconstrained water, in different frequency regions, and associated to confinement effects. These findings are important because of the scarce information available from experimental, theoretical, and computer simulation research into the dielectric and dynamical properties of confined water.

  17. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. chromatin modeling | irregular 3D zig-zag | Discrete Surface Charge Optimization model

  18. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    PubMed Central

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-01-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended “beads-on-a-string” conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA–nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. PMID:15919827

  19. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in

  20. Structure and Dynamics of Four-way DNA Junctions Dynamics Revealed by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Lyubchenko, Yuri

    2004-03-01

    For-way DNA junctions (Holliday junctions) are critical intermediates for homologous, site-specific recombination, DNA repair and replication. A wealth of structural information is available for immobile four-way junctions. However, these data cannot give the answer on the mechanism of branch migration, the major property of the Holliday junction. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal, exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration. Note that it was the first time when the dynamics of the four-way DNA junction capable of branch migration had been analyzed. We applied time-lapse atomic force microscopy (single molecule dynamics AFM) to image directly loosely bound DNA at liquid-surface interface. These experiments show that mobile Holliday junctions adopt an unfolded conformation during branch migration. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction. The analysis of the Holliday junctions dynamics at conditions limiting branch migration revealed a broad movement of the arms suggesting that the range of mobility of these junctions is much wider than detected before. Further applications of the time-lapse AFM approach in attempt to resolve the subpopulations of the junctions conformers and the prospects for analyses of dynamics of complex biological systems will be discussed.

  1. Rhodopsin Photoactivation Dynamics Revealed by Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchhithranga M. C. D.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael; Chu, Xiang-Qiang

    2015-03-01

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision. During photoactivation, the chromophore retinal dissociates from protein yielding the opsin apoprotein. What are the changes in protein dynamics that occur during the photoactivation process? Here, we studied the microscopic dynamics of dark-state rhodopsin and the ligand-free opsin using quasielastic neutron scattering (QENS). The QENS technique tracks individual hydrogen atom motion because of the much higher neutron scattering cross-section of hydrogen than other atoms. We used protein with CHAPS detergent hydrated with heavy water. The activation of proteins is confirmed at low temperatures up to 300 K by mean-square displacement (MSD) analysis. The QENS experiments at temperatures ranging from 220 K to 300 K clearly indicate an increase in protein dynamic behavior with temperature. The relaxation time for the ligand-bound protein rhodopsin is faster compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which unlike protein, manifests localized motions.

  2. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  3. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    SciTech Connect

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPS detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.

  4. Multimillion atom molecular dynamics simulations of glasses and ceramic materials

    NASA Astrophysics Data System (ADS)

    Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro

    1999-11-01

    Molecular dynamics simulations are a powerful tool for studying physical and chemical phenomena in materials. In these lectures we shall review the molecular dynamics method and its implementation on parallel computer architectures. Using the molecular dynamics method we will study a number of materials in different ranges of density, temperature, and uniaxial strain. These include structural correlations in silica glass under pressure, crack propagation in silicon nitride films, sintering of silicon nitride nanoclusters, consolidation of nanophase materials, and dynamic fracture. Multimillion atom simulations of oxidation of aluminum nanoclusters and nanoindentation in silicon nitride will also be discussed.

  5. Optogenetic perturbations reveal the dynamics of an oculomotor integrator

    PubMed Central

    Gonçalves, Pedro J.; Arrenberg, Aristides B.; Hablitzel, Bastian; Baier, Herwig; Machens, Christian K.

    2014-01-01

    Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI) for which the so-called “line attractor” network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax toward the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state—the null position of the eyes—which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity. PMID:24616666

  6. Protein dynamics and enzyme catalysis: insights from simulations.

    PubMed

    McGeagh, John D; Ranaghan, Kara E; Mulholland, Adrian J

    2011-08-01

    The role of protein dynamics in enzyme catalysis is one of the most active and controversial areas in enzymology today. Some researchers claim that protein dynamics are at the heart of enzyme catalytic efficiency, while others state that dynamics make no significant contribution to catalysis. What is the biochemist - or student - to make of the ferocious arguments in this area? Protein dynamics are complex and fascinating, as molecular dynamics simulations and experiments have shown. The essential question is: do these complex motions have functional significance? In particular, how do they affect or relate to chemical reactions within enzymes, and how are chemical and conformational changes coupled together? Biomolecular simulations can analyse enzyme reactions and dynamics in atomic detail, beyond that achievable in experiments: accurate atomistic modelling has an essential part to play in clarifying these issues. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.

  7. Dynamics modeling and simulation of autonomous underwater vehicles with appendages

    NASA Astrophysics Data System (ADS)

    Su, Yumin; Zhao, Jinxin; Cao, Jian; Zhang, Guocheng

    2013-03-01

    To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.

  8. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures

    PubMed Central

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  9. Comparisons of Kinematics and Dynamics Simulation Software Tools

    NASA Technical Reports Server (NTRS)

    Shiue, Yeu-Sheng Paul

    2002-01-01

    Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.

  10. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  11. Polaron dynamics in two types of long oligothiophenes revealed by Q - and X -band ESR measurements

    NASA Astrophysics Data System (ADS)

    Kanemoto, Katsuichi; Furukawa, Ko; Negishi, Nobukazu; Aso, Yoshio; Otsubo, Tetsuo

    2007-10-01

    The polaron dynamics has been investigated through the X - and Q -band ESR measurements for two types of iodine-doped long oligothiophenes, the 20-mer with octyl substituents (o-20T) and the 16-mer with hexyl substituents (h-16T) . o-20T , used as a model compound of conjugated polymers with crystalline grains, gives anisotropic ESR spectra attributed to g anisotropy at low temperatures. The anisotropic spectra are found to be brought by polarons moving within the crystalline grains consisting of parallel chains. The anisotropy is shown to decrease with increasing temperature. This provides definite evidence that the polarons transfer among some grains by the assist of temperature. In contrast, h-16T , used as a model of the polymers with amorphous morphology, gives almost isotropic ESR spectra even in the Q -band measurement. This feature of h-16T is explained to be caused by a rapid interchain transfer of polarons. Spectral simulations performed for obtained spectra reveal that the ESR linewidth in the Q -band measurement is larger than that in the X band for both oligothiophenes. The difference of the linewidth is analyzed by a simplified motional narrowing model in order to draw the information of polaron dynamics. Analyses for o-20T show that the intergrain motion almost follows the variable range hopping model. The interchain motion in h-16T is found to have a much weaker temperature dependence than the intergrain motion in o-20T . This result suggests that the interchain dynamics of h-16T revealed by the ESR technique includes a variety of processes of motion.

  12. The collapsing bubble in a liquid by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Heyes, D. M.; Powles, J. G.

    Molecular dynamics simulations have been made of a collapsing bubble or cavity in a simple liquid. Simulations of a Lennard-Jones liquid reveal that the collapsing process takes place in a series of stages. First, the 'hottest' molecules from the high kinetic energy tail in the Maxwell-Boltzmann distribution diffuse into the empty cavity. This is followed by a gradual filling in of the cavity until the density in the centre is a little lower than that of the bulk liquid. The system eventually reaches a final new equilibrium liquid state through a subsequent slower equilibration phase. The bubble fills in an oscillatory manner, by partly filling in, and then partially emptying, and so on, with ever decreasing amplitude towards the final uniform liquid state. These density oscillations are more obvious in systems with a larger bubble. Similar oscillations are observed in the kinetic energy of the molecules at selected radii from the centre of the initial bubble. The maximum temperature occurs typically at the end of the initial fillingin stage during which the density of the core undergoes a vapour-to-liquid phase transition, the released latent heat probably contributing to the temperatures achieved in this region. The average maximum temperature found in the smallest system examined is about nine times the critical temperature, which is about 6000K for water, thus suggesting a simple mechanism for producing molecules with the sorts of kinetic energies and lifetimes required for sonoluminescence.

  13. Energy dynamics in a simulation of LAPD turbulence

    SciTech Connect

    Friedman, B.; Carter, T. A.; Schaffner, D.; Umansky, M. V.; Dudson, B.

    2012-10-15

    Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k{sub Parallel-To }=0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k{sub Parallel-To }{ne}0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k{sub Parallel-To }=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data. This indicates the importance of the nonlinear instability in producing experimentally consistent turbulence.

  14. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor.

    PubMed

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-28

    The properties of water under confinement are of practical and fundamental interest. In this work, we study the properties of water in the self-assembled lyotropic phases of Gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments, the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D(T), and rotational relaxation time, τ(R). We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the de-coupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D(T) and τ(R) can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale.

  15. Simulating Hamiltonian Dynamics with a Truncated Taylor Series

    NASA Astrophysics Data System (ADS)

    Somma, Rolando

    2015-03-01

    One of the main motivations for quantum computers is their ability to efficiently simulate the dynamics of quantum systems. Since the mid-1990s, many algorithms have been developed to simulate Hamiltonian dynamics on a quantum computer, with applications to problems such as simulating spin models and quantum chemistry. While it is now well known that quantum computers can efficiently simulate Hamiltonian dynamics, ongoing work has improved the performance and expanded the scope of such simulations. In this talk, I will describe a very simple and efficient algorithm for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. This algorithm can simulate the time evolution of a wide variety of physical systems. The cost of this algorithm depends only logarithmically on the inverse of the desired precision, and can be shown to be optimal. Such a cost also represents an exponential improvement over known methods for Hamiltonian simulation based on, e.g., Trotter-Suzuki approximations. Roughly speaking, doubling the number of digits of accuracy of the simulation only doubles the complexity. The new algorithm and its analysis are highly simplified due to a technique for implementing linear combinations of unitary operations to directly apply the truncated Taylor series. This is joint work with Dominic Berry, Andrew Childs, Richard Cleve, and Robin Kothari.

  16. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  17. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    DOE PAGES

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; ...

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolutionmore » inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. We find our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. Lastly, these observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.« less

  18. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    SciTech Connect

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Urban, Volker S.; Ohl, Michael

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. We find our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. Lastly, these observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  19. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    NASA Astrophysics Data System (ADS)

    Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.

    2009-06-01

    Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.

  20. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  1. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  2. Perspective: Computer simulations of long time dynamics

    SciTech Connect

    Elber, Ron

    2016-02-14

    Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances.

  3. Perspective: Computer simulations of long time dynamics

    PubMed Central

    Elber, Ron

    2016-01-01

    Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances. PMID:26874473

  4. Large-Scale Hybrid Dynamic Simulation Employing Field Measurements

    SciTech Connect

    Huang, Zhenyu; Guttromson, Ross T.; Hauer, John F.

    2004-06-30

    Simulation and measurements are two primary ways for power engineers to gain understanding of system behaviors and thus accomplish tasks in system planning and operation. Many well-developed simulation tools are available in today's market. On the other hand, large amount of measured data can be obtained from traditional SCADA systems and currently fast growing phasor networks. However, simulation and measurement are still two separate worlds. There is a need to combine the advantages of simulation and measurements. In view of this, this paper proposes the concept of hybrid dynamic simulation which opens up traditional simulation by providing entries for measurements. A method is presented to implement hybrid simulation with PSLF/PSDS. Test studies show the validity of the proposed hybrid simulation method. Applications of such hybrid simulation include system event playback, model validation, and software validation.

  5. Climate dynamics experiments using a GCM simulations

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, Dan; Robertson, Franklin R.; Christy, John R.; Lu, H.-I.; Sohn, B.; Srikishen, J.

    1991-01-01

    The study of surface-atmosphere interactions has begun with studies of the effect of altering the ocean and land boundaries. A ten year simulation of global climate using observed sea surface temperature anomalies has begun using the NCAR Community Climate Model (CCM1). The results for low resolution (R15) were computed for the first 8 years of the simulation and compared with the observed surface temperatures and the MSU (Microwave Sounding Unit) observations of tropospheric temperature. A simulation at higher resolution (T42) was done to ascertain the effect of interactive soil hydrology on the system response to an El Nino sea surface temperature perturbation. Initial analysis of this simulations was completed.

  6. Simulating food web dynamics along a gradient: quantifying human influence.

    PubMed

    Jordán, Ferenc; Gjata, Nerta; Mei, Shu; Yule, Catherine M

    2012-01-01

    Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics

  7. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    SciTech Connect

    Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid

    2015-09-15

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  8. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes

    PubMed Central

    Buck, Moritz; Nilsson, Louise K. J.; Brunius, Carl; Dabiré, Roch K.; Hopkins, Richard; Terenius, Olle

    2016-01-01

    The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21st century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world. PMID:26960555

  9. Temperature dependence of protein hydration hydrodynamics by molecular dynamics simulations.

    SciTech Connect

    Lau, E Y; Krishnan, V V

    2007-07-18

    The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.

  10. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  11. Studies of climate dynamics with innovative global-model simulations

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoming

    Climate simulations with different degrees of idealization are essential for the development of our understanding of the climate system. Studies in this dissertation employ carefully designed global-model simulations for the goal of gaining theoretical and conceptual insights into some problems of climate dynamics. Firstly, global warming-induced changes in extreme precipitation are investigated using a global climate model with idealized geography. The precipitation changes over an idealized north-south mid-latitude mountain barrier at the western margin of an otherwise flat continent are studied. The intensity of the 40 most intense events on the western slopes increases by about ~4°C of surface warming. In contrast, the intensity of the top 40 events on the eastern mountain slopes increases at about ~6°C. This higher sensitivity is due to enhanced ascent during the eastern-slope events, which can be explained in terms of linear mountain-wave theory relating to global warming-induced changes in the upper-tropospheric static stability and the tropopause level. Dominated by different dynamical factors, changes in the intensity of extreme precipitation events over plains and oceans might differ from changes over mountains. So the response of extreme precipitation over mountains and flat areas are further compared using larger data sets of simulated extreme events over the two types of surfaces. It is found that the sensitivity of extreme precipitation to increases in global mean surface temperature is 3% per °C lower over mountains than over the oceans or the plains. The difference in sensitivity among these regions is not due to thermodynamic effects, but rather to differences between the gravity-wave dynamics governing vertical velocities over the mountains and the cyclone dynamics governing vertical motions over the oceans and plains. The strengthening of latent heating in the storms over oceans and plains leads to stronger ascent in the warming climate

  12. Student Diagnostic Strategies in a Dynamic Simulation Environment.

    ERIC Educational Resources Information Center

    Recker, Mimi M.; Govindaraj, T.; Vasandani, Vijay

    1998-01-01

    Demonstrates the use of simulation systems for studying diagnostic problem solving and presents results from two empirical studies in which undergraduates diagnosed faults that occurred in a computer-based, dynamic simulation. Discusses dual problem space search that includes generating and testing hypotheses; suggests implications for designing…

  13. Dynamics of nitrogen dissociation from direct molecular simulation

    NASA Astrophysics Data System (ADS)

    Valentini, Paolo; Schwartzentruber, Thomas E.; Bender, Jason D.; Candler, Graham V.

    2016-08-01

    dissociating nitrogen systems involving both atomic and molecular nitrogen. Such direct comparisons also illustrate how the DMS method is able to reveal all relevant nonequilibrium physics without the need to compute large numbers of state-transition probabilities. In this manner, DMS presents an accurate and tractable approach to construct models for direct-simulation Monte Carlo and computational fluid dynamics simulations from first principles.

  14. Dynamics Simulation Model for Space Tethers

    NASA Technical Reports Server (NTRS)

    Levin, E. M.; Pearson, J.; Oldson, J. C.

    2006-01-01

    This document describes the development of an accurate model for the dynamics of the Momentum Exchange Electrodynamic Reboost (MXER) system. The MXER is a rotating tether about 100-km long in elliptical Earth orbit designed to catch payloads in low Earth orbit and throw them to geosynchronous orbit or to Earth escape. To ensure successful rendezvous between the MXER tip catcher and a payload, a high-fidelity model of the system dynamics is required. The model developed here quantifies the major environmental perturbations, and can predict the MXER tip position to within meters over one orbit.

  15. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations.

    PubMed

    Grouleff, Julie; Irudayam, Sheeba Jem; Skeby, Katrine K; Schiøtt, Birgit

    2015-09-01

    The plasma membrane, which encapsulates human cells, is composed of a complex mixture of lipids and embedded proteins. Emerging knowledge points towards the lipids as having a regulating role in protein function. Furthermore, insight from protein crystallography has revealed several different types of lipids intimately bound to membrane proteins and peptides, hereby possibly pointing to a site of action for the observed regulation. Cholesterol is among the lipid membrane constituents most often observed to be co-crystallized with membrane proteins, and the cholesterol levels in cell membranes have been found to play an essential role in health and disease. Remarkably little is known about the mechanism of lipid regulation of membrane protein function in health as well as in disease. Herein, we review molecular dynamics simulation studies aimed at investigating the effect of cholesterol on membrane protein and peptide properties. This article is part of a Special Issue entitled: Lipid-protein interactions.

  16. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  17. Semiconductor nanostructure properties. Molecular Dynamic Simulations

    NASA Astrophysics Data System (ADS)

    Podolska, N. I.; Zhmakin, A. I.

    2013-08-01

    The need for research is based on the fact that development of non-planar semiconductor nanosystems and nanomaterials with controlled properties is an important scientific and industrial problem. So, final scientific and technological problem is the creation of adequate modern methods and software for growth and properties simulation and optimization of various III-V (GaAs, InAs, InP, InGaAs etc.) nanostructures (e.g. nanowires) with controlled surface morphology, crystal structure, optical, transport properties etc. Accordingly, now we are developing a specialized computer code for atomistic simulation of structural (distribution of atoms and impurities, elastic and force constants, strain distribution etc.) and thermodynamic (mixing energy, interaction energy, surface energy etc.) properties of the nanostructures. Some simulation results are shown too.

  18. Movement Characteristics Analysis and Dynamic Simulation of Collaborative Measuring Robot

    NASA Astrophysics Data System (ADS)

    guoqing, MA; li, LIU; zhenglin, YU; guohua, CAO; yanbin, ZHENG

    2017-03-01

    Human-machine collaboration is becoming increasingly more necessary, and so collaborative robot applications are also in high demand. We selected a UR10 robot as our research subject for this study. First, we applied D-H coordinate transformation of the robot to establish a link system, and we then used inverse transformation to solve the robot’s inverse kinematics and find all the joints. Use Lagrange method to analysis UR robot dynamics; use ADAMS multibody dynamics simulation software to dynamic simulation; verifying the correctness of the derived kinetic models.

  19. Gamma ray observatory dynamics simulator in Ada (GRODY)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This experiment involved the parallel development of dynamics simulators for the Gamma Ray Observatory in both FORTRAN and Ada for the purpose of evaluating the applicability of Ada to the NASA/Goddard Space Flight Center's flight dynamics environment. The experiment successfully demonstrated that Ada is a viable, valuable technology for use in this environment. In addition to building a simulator, the Ada team evaluated training approaches, developed an Ada methodology appropriate to the flight dynamics environment, and established a baseline for evaluating future Ada projects.

  20. Gamma ray observatory dynamics simulator in Ada (GRODY)

    SciTech Connect

    Not Available

    1990-09-01

    This experiment involved the parallel development of dynamics simulators for the Gamma Ray Observatory in both FORTRAN and Ada for the purpose of evaluating the applicability of Ada to the NASA/Goddard Space Flight Center's flight dynamics environment. The experiment successfully demonstrated that Ada is a viable, valuable technology for use in this environment. In addition to building a simulator, the Ada team evaluated training approaches, developed an Ada methodology appropriate to the flight dynamics environment, and established a baseline for evaluating future Ada projects.

  1. Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex.

    PubMed

    Reboul, Cyril F; Meyer, Grischa R; Porebski, Benjamin T; Borg, Natalie A; Buckle, Ashley M

    2012-01-01

    The crystal structures of unliganded and liganded pMHC molecules provide a structural basis for TCR recognition yet they represent 'snapshots' and offer limited insight into dynamics that may be important for interaction and T cell activation. MHC molecules HLA-B*3501 and HLA-B*3508 both bind a 13 mer viral peptide (LPEP) yet only HLA-B*3508-LPEP induces a CTL response characterised by the dominant TCR clonetype SB27. HLA-B*3508-LPEP forms a tight and long-lived complex with SB27, but the relatively weak interaction between HLA-B*3501-LPEP and SB27 fails to trigger an immune response. HLA-B*3501 and HLA-B*3508 differ by only one amino acid (L/R156) located on α2-helix, but this does not alter the MHC or peptide structure nor does this polymorphic residue interact with the peptide or SB27. In the absence of a structural rationalisation for the differences in TCR engagement we performed a molecular dynamics study of both pMHC complexes and HLA-B*3508-LPEP in complex with SB27. This reveals that the high flexibility of the peptide in HLA-B*3501 compared to HLA-B*3508, which was not apparent in the crystal structure alone, may have an under-appreciated role in SB27 recognition. The TCR pivots atop peptide residues 6-9 and makes transient MHC contacts that extend those observed in the crystal structure. Thus MD offers an insight into 'scanning' mechanism of SB27 that extends the role of the germline encoded CDR2α and CDR2β loops. Our data are consistent with the vast body of experimental observations for the pMHC-LPEP-SB27 interaction and provide additional insights not accessible using crystallography.

  2. Epitope Flexibility and Dynamic Footprint Revealed by Molecular Dynamics of a pMHC-TCR Complex

    PubMed Central

    Porebski, Benjamin T.; Borg, Natalie A.; Buckle, Ashley M.

    2012-01-01

    The crystal structures of unliganded and liganded pMHC molecules provide a structural basis for TCR recognition yet they represent ‘snapshots’ and offer limited insight into dynamics that may be important for interaction and T cell activation. MHC molecules HLA-B*3501 and HLA-B*3508 both bind a 13 mer viral peptide (LPEP) yet only HLA-B*3508-LPEP induces a CTL response characterised by the dominant TCR clonetype SB27. HLA-B*3508-LPEP forms a tight and long-lived complex with SB27, but the relatively weak interaction between HLA-B*3501-LPEP and SB27 fails to trigger an immune response. HLA-B*3501 and HLA-B*3508 differ by only one amino acid (L/R156) located on α2-helix, but this does not alter the MHC or peptide structure nor does this polymorphic residue interact with the peptide or SB27. In the absence of a structural rationalisation for the differences in TCR engagement we performed a molecular dynamics study of both pMHC complexes and HLA-B*3508-LPEP in complex with SB27. This reveals that the high flexibility of the peptide in HLA-B*3501 compared to HLA-B*3508, which was not apparent in the crystal structure alone, may have an under-appreciated role in SB27 recognition. The TCR pivots atop peptide residues 6–9 and makes transient MHC contacts that extend those observed in the crystal structure. Thus MD offers an insight into ‘scanning’ mechanism of SB27 that extends the role of the germline encoded CDR2α and CDR2β loops. Our data are consistent with the vast body of experimental observations for the pMHC-LPEP-SB27 interaction and provide additional insights not accessible using crystallography. PMID:22412359

  3. Multifractal analysis of Barkhausen noise reveals the dynamic nature of criticality at hysteresis loop

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2016-06-01

    The field-driven magnetisation reversal processes in disordered systems exhibit a collective behaviour that is manifested in the scale-invariance of avalanches, closely related to underlying dynamical mechanisms. Using the multifractal time series analysis, we study the structure of fluctuations at different scales in the accompanying Barkhausen noise. The stochastic signal represents the magnetisation discontinuities along the hysteresis loop of a three-dimensional random field Ising model simulated for varied disorder strength and driving rates. The analysis of the spectrum of the generalised Hurst exponents reveals that the dominant segments of the signal with large fluctuations represent two distinct classes of stochastic processes in weak and strong pinning regimes. Furthermore, in the weak pinning regime, the part of the signal originating from the beginning of the hysteresis loop has a different multifractal spectrum than the signal near the coercive field. The enhanced fluctuations (primarily in the central part of the hysteresis loop) for increased driving rate and larger system size, lead to a further broadening of the spectrum. The analysed Barkhausen signals are also shown to exhibit temporal correlations and power-law distributions of the magnetisation discontinuity and avalanche sizes, in agreement with previous studies. The multifractal properties of Barkhausen noise describe the dynamical state of domains and precisely discriminate the weak pinning, permitting the motion of individual walls, from the mechanisms occurring in strongly disordered systems.

  4. Computer simulation of multigrid body dynamics and control

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Moon, Young I.; Venkayya, V. B.

    1990-01-01

    The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.

  5. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  6. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  7. Destination state screening of active spaces in spin dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya

    2011-06-01

    We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).

  8. Test and validation for robot arm control dynamics simulation

    NASA Technical Reports Server (NTRS)

    Yae, K. Harold; Kim, Sung-Soo; Haug, Edward J.; Seering, Warren; Sundaram, Kamala; Thompson, Bruce; Turner, James; Chun, Hon; Frisch, Harold P.; Schnurr, Richard

    1989-01-01

    The Flight Telerobotic Servicer (FTS) program will require an ability to develop, in a cost effective manner, many simulation models for design, analysis, performance evaluation, and crew training. Computational speed and the degree of modeling fidelity associated with each simulation must be commensurate with problem objectives. To demonstrate evolving state-of-the-art general purpose multibody modeling capabilities, to validate these by laboratory testing, and to expose their modeling shortcomings, two focus problems at the opposite ends of the simulation spectrum are defined: (1) Coarse Acquisition Control Dynamics. Create a real time man-in-the-control-loop simulator. Provide animated graphical display of robot arm dynamics and tactile feedback sufficient for cueing the operator. Interface simulator software with human operated tactile feedback controller; i.e., the Kraft mini-master. (2) Fine, Precision Mode Control Dynamics. Create a high speed, high fidelity simulation model for the design, analysis, and performance evaluation of autonomous 7 degree-of-freedom (DOF) trajectory control algorithms. This model must contain detail dynamic models for all significant dynamics elements within the robot arm, such as joint drive mechanisms.

  9. Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Hussein, M.; Shalchi, A.

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.

  10. SIMULATIONS OF ENERGETIC PARTICLES INTERACTING WITH DYNAMICAL MAGNETIC TURBULENCE

    SciTech Connect

    Hussein, M.; Shalchi, A. E-mail: husseinm@myumanitoba.ca

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B{sub 0} = 0.5.

  11. SSME-HAS dynamic load simulators

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The space shuttle main engine propellant valve actuators (SSME) were designed to simulate the loads reflected into the SSME by the chamber coolant valve, the fuel preburner, and the oxidizer. The design, and functional description are included along with a list of the drawings. The load fixture control transform, friction torque, and flow calculations are reported.

  12. SIMULATING FISH ASSEMBLAGE DYNAMICS IN RIVER NETWORKS

    EPA Science Inventory

    My recently retired colleague, Joan Baker, and I have developed a prototype computer simulation model for studying the effects of human and non-human alterations of habitats and species availability on fish assemblage populations. The fish assemblage model, written in R, is a sp...

  13. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors.

    PubMed

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-19

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  14. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  15. Oman metamorphic sole formation reveals early subduction dynamics

    NASA Astrophysics Data System (ADS)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down

  16. Classical trajectory simulations of post-transition state dynamics

    NASA Astrophysics Data System (ADS)

    Lourderaj, Upakarasamy; Park, Kyoyeon; Hase, William L.

    Classical chemical dynamics simulations of post-transition state dynamics are reviewed. Most of the simulations involve direct dynamics for which the potential energy and gradient are obtained directly from an electronic structure theory. The chemical reaction attributes and chemical systems presented are product energy partitioning for Cl- ··· CH3Br → ClCH3 + Br- and C2H5F → C2H4 + HF dissociation, non-RRKM dynamics for cyclopropane stereomutation and the Cl- ··· CH3Cl complexes mediating the Cl- + CH3Cl SN2 nucleophilic substitution reaction, and non-IRC dynamics for the OH- + CH3F and F- + CH3OOH chemical reactions. These studies illustrate the important role of chemical dynamics simulations in understanding atomic-level reaction dynamics and interpreting experiments. They also show that widely used paradigms and model theories for interpreting reaction kinetics and dynamics are often inaccurate and are not applicable.

  17. Simulating the dynamic response of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Lloyd, Jeffrey; Becker, Richard

    Unlike several conventional metals, the mechanical response of magnesium is severely anisotropic for quasistatic and dynamic loading conditions. In this work we present a crystal-based strength model that is the same order of magnitude in computational cost as rate-dependent isotropic strength models, yet is able to capture essential features exhibited by textured magnesium polycrystals. The model demarcates plastic deformation into contributions from basal slip, extension twinning, and non-basal slip mechanisms. Comparisons are made between model predictions and experiments for two magnesium alloys with differing processing histories. The model is then used to explore and quantify the dependence of metallurgical and processing variations for several dynamic experiments that probe propensity for localization and failure under complex loading conditions.

  18. HUBBLE IMAGES REVEAL A YOUNG STAR'S DYNAMIC DISK AND JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images of HH 30 show changes over only a five-year period in the disk and jets of this newborn star, which is about half a million years old. The pictures were taken between 1995 and 2000 with the Wide Field and Planetary Camera 2 aboard NASA's Hubble Space Telescope. Astronomers are interested in the disk because it is probably similar to the one from which the Sun and the planets in our solar system formed. Hubble reveals an edge-on disk (located at the bottom of the images), which appears as a flattened cloud of dust split into two halves by a dark lane. The disk blocks light from the central star. All that is visible is the reflection of the star's light by dust above and below the plane of the disk. The disk's diameter is 450 astronomical units (one astronomical unit equals the Earth-Sun distance). Shadows billions of miles in size can be seen moving across the disk. In 1995 and 2000, the left and right sides of the disk were about the same brightness, but in 1998 the right side was brighter. These patterns may be caused by bright spots on the star or variations in the disk near the star. The dust cloud near the top of these frames is illuminated by the star and reflects changes in its brightness. The star's magnetic field plays a major role in forming the jets (located above and below the disk), which look like streams of water from a fire hose. The powerful magnetic field creates the jets by channeling gas from the disk along the magnetic poles above and below the star. The gaps between the compact knots of gas seen in the jet above the disk indicate that this is a sporadic process. By tracking the motion of these knots over time, astronomers have measured the jet's speed at between 200,000 to 600,000 miles per hour (160,000 and 960,000 kilometers per hour). Oddly, the jet below the disk is moving twice as fast as the one above it. Credits: NASA, Alan Watson (Universidad Nacional Autonoma de Mexico), Karl Stapelfeldt (Jet Propulsion Laboratory), John

  19. Hybrid Dynamics Simulation Engine for Metalloproteins

    PubMed Central

    Sparta, Manuel; Shirvanyants, David; Ding, Feng; Dokholyan, Nikolay V.; Alexandrova, Anastassia N.

    2012-01-01

    Quality computational description of metalloproteins is a great challenge due to the vast span of time- and lengthscales characteristic of their existence. We present an efficient new method that allows for robust characterization of metalloproteins. It combines quantum mechanical (QM) description of the metal-containing active site, and extensive dynamics of the protein captured by discrete molecular dynamics (DMD) (QM/DMD). DMD samples the entire protein, including the backbone, and most of the active site, except for the immediate coordination region of the metal. QM operates on the part of the protein of electronic and chemical significance, which may include tens to hundreds of atoms. The breathing quantum-classical boundary provides a continuous mutual feedback between the two machineries. We test QM/DMD using the Fe-containing electron transporter protein, rubredoxin, and its three mutants as a model. QM/DMD can provide a reliable balanced description of metalloproteins’ structure, dynamics, and electronic structure in a reasonable amount of time. As an illustration of QM/DMD capabilities, we then predict the structure of the Ca2+ form of the enzyme catechol O-methyl transferase, which, unlike the native Mg2+ form, is catalytically inactive. The Mg2+ site is ochtahedral, but the Ca2+ is 7-coordinate and features the misalignment of the reacting parts of the system. The change is facilitated by the backbone adjustment. QM/DMD is ideal and fast for providing this level of structural insight. PMID:22947938

  20. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures

    PubMed Central

    šponer, Jiří; Cang, Xiaohui; Cheatham, Thomas E.

    2013-01-01

    The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids. PMID:22525788

  1. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    DOE PAGES

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the valuesmore » to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.« less

  2. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    SciTech Connect

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.

  3. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  4. Improvement of surgical simulation using dynamic volume rendering.

    PubMed

    Radetzky, A; Schröcker, F; Auer, L M

    2000-01-01

    In the last years high efforts have been taken to develop surgical simulators for computer assisted training. However, most of these simulators use simple models of the human's anatomy, which are manually created using modeling software. Nevertheless, medical experts need to perform the training directly with the patient's complex anatomy, which can be received, for example, from digital imaging datasets (CT, MR). A common technique to display these datasets is volume rendering. However, even with high-end hardware only static models can be handled interactively. In surgical simulators a dynamic component is also needed because tissues must be deformed and partially removed. With the combination of springmass models, which are improved by neuro-fuzzy systems, and the recently developed OpenGL Volumizer, surgical simulation using real-time deformable (or dynamic) volume rendering became possible. As an application example the simulator ROBOSIM for minimally invasive neurosurgery is presented.

  5. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon W.; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  6. Gas dynamics for accretion disk simulations

    NASA Technical Reports Server (NTRS)

    Whitehurst, R.

    1994-01-01

    The behavior of accretion disks can largely be understood in terms of the basic physical processes of mass, energy, and momentum conservation. Despite this, detailed modeling of these systems using modern computational techniques is challenging and controversial. Disturbing differences exist between methods used widely in astrophysics, namely Eulerian finite-difference techniques and particle codes such as SPH. Therefore neither technique is fully satisfactory for accretion disk simulations. This paper describes a new fully Lagrangian method designed to resolve these difficulties.

  7. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  8. Potential Role of the Last Half Repeat in TAL Effectors Revealed by a Molecular Simulation Study

    PubMed Central

    Wan, Hua; Chang, Shan; Hu, Jian-ping; Tian, Xu-hong

    2016-01-01

    TAL effectors (TALEs) contain a modular DNA-binding domain that is composed of tandem repeats. In all naturally occurring TALEs, the end of tandem repeats is invariantly a truncated half repeat. To investigate the potential role of the last half repeat in TALEs, we performed comparative molecular dynamics simulations for the crystal structure of DNA-bound TALE AvrBs3 lacking the last half repeat and its modeled structure having the last half repeat. The structural stability analysis indicates that the modeled system is more stable than the nonmodeled system. Based on the principle component analysis, it is found that the AvrBs3 increases its structural compactness in the presence of the last half repeat. The comparison of DNA groove parameters of the two systems implies that the last half repeat also causes the change of DNA major groove binding efficiency. The following calculation of hydrogen bond reveals that, by stabilizing the phosphate binding with DNA at the C-terminus, the last half repeat helps to adopt a compact conformation at the protein-DNA interface. It further mediates more contacts between TAL repeats and DNA nucleotide bases. Finally, we suggest that the last half repeat is required for the high-efficient recognition of DNA by TALE. PMID:27803930

  9. The role of hydrogen bonds in an aqueous solution of acetylsalicylic acid: a molecular dynamics simulation study.

    PubMed

    Donnamaria, Maria Cristina; de Xammar Oro, Juan Roberto

    2011-10-01

    This work focuses on the role of the dynamic hydrogen bonds (HB) formed in an aqueous solution of aspirin using molecular dynamics simulation. The statistics reveal the existence of internal HB that inhibit the rotational movements of the acetyl and the carboxylic acid groups, forcing the molecule to adopt a closed conformer structure in water, and playing an important role in stabilizing this conformation.

  10. Seeking new mutation clues from Bacillus licheniformis amylase by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Tao

    2009-07-01

    Amylase is one of the most important industrial enzymes in the world. Researchers have been searching for a highly thermal stable mutant for many years, but most focus on point mutations of one or few nitrogenous bases. According to this molecular dynamic simulation of amylase from Bacillus licheniformis (BLA), the deletion of some nitrogenous bases would be more efficacious than point mutations. The simulation reveals strong fluctuation of the BLA structure at optimum temperature. The fluctuation of the outer domains of BLA is stronger than that of the core domain. Molecular simulation provides a clue to design thermal stable amylases through deletion mutations in the outer domain.

  11. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    SciTech Connect

    Cawkwell, M. J. Niklasson, Anders M. N.; Dattelbaum, Dana M.

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  12. GRODY - GAMMA RAY OBSERVATORY DYNAMICS SIMULATOR IN ADA

    NASA Technical Reports Server (NTRS)

    Stark, M.

    1994-01-01

    Analysts use a dynamics simulator to test the attitude control system algorithms used by a satellite. The simulator must simulate the hardware, dynamics, and environment of the particular spacecraft and provide user services which enable the analyst to conduct experiments. Researchers at Goddard's Flight Dynamics Division developed GRODY alongside GROSS (GSC-13147), a FORTRAN simulator which performs the same functions, in a case study to assess the feasibility and effectiveness of the Ada programming language for flight dynamics software development. They used popular object-oriented design techniques to link the simulator's design with its function. GRODY is designed for analysts familiar with spacecraft attitude analysis. The program supports maneuver planning as well as analytical testing and evaluation of the attitude determination and control system used on board the Gamma Ray Observatory (GRO) satellite. GRODY simulates the GRO on-board computer and Control Processor Electronics. The analyst/user sets up and controls the simulation. GRODY allows the analyst to check and update parameter values and ground commands, obtain simulation status displays, interrupt the simulation, analyze previous runs, and obtain printed output of simulation runs. The video terminal screen display allows visibility of command sequences, full-screen display and modification of parameters using input fields, and verification of all input data. Data input available for modification includes alignment and performance parameters for all attitude hardware, simulation control parameters which determine simulation scheduling and simulator output, initial conditions, and on-board computer commands. GRODY generates eight types of output: simulation results data set, analysis report, parameter report, simulation report, status display, plots, diagnostic output (which helps the user trace any problems that have occurred during a simulation), and a permanent log of all runs and errors. The

  13. Dynamic computer simulations of electrophoresis: three decades of active research.

    PubMed

    Thormann, Wolfgang; Caslavska, Jitka; Breadmore, Michael C; Mosher, Richard A

    2009-06-01

    Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.

  14. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-06-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  15. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  16. Multiscale simulation of microbe structure and dynamics.

    PubMed

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V; Cheluvaraja, Srinath C; Ortoleva, Peter J

    2011-10-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin.

  17. Dynamic Simulation of Airborne High Power Systems.

    DTIC Science & Technology

    1982-11-01

    42, 43 and 44. These curves give the secondary current of phase A, IL11, the primary K current of phase A, IL22 , and the magnetizing current of phase...A, due to ILll I" and IL22 , PIX. The simulation was for wye-wye connection of three single phase trans- formers. The data used was not for any...plot of a single variable, the statement "PLOT" is used IL11, IL22 , IL33, PLOT K 185 This statement will provide a separate plot of each variable

  18. Numerical simulations of blobs with ion dynamics

    NASA Astrophysics Data System (ADS)

    Nielsen, A. H.; Rasmussen, J. Juul; Madsen, J.; Xu, G. S.; Naulin, V.; Olsen, J. M. B.; Løiten, M.; Hansen, S. K.; Yan, N.; Tophøj, L.; Wan, B. N.

    2017-02-01

    The transport of particles and energy into the scrape-off layer (SOL) region at the outboard midplane of medium-sized tokamaks, operating in low confinement mode, is investigated by applying the first-principle HESEL (hot edge-sol-electrostatic) model. HESEL is a four-field drift-fluid model including finite electron and ion temperature effects, drift wave dynamics on closed field lines, and sheath dynamics on open field lines. Particles and energy are mainly transported by intermittent blobs. Therefore, blobs have a significant influence on the corresponding profiles. The formation of a ‘shoulder’ in the SOL density profile can be obtained by increasing the collisionality or connection length, thus decreasing the efficiency of the SOL’s ability to remove plasma. As the ion pressure has a larger perpendicular but smaller parallel dissipation rate compared to the electron pressure, ion energy is transported far into the SOL. This implies that the ion temperature in the SOL exceeds the electron temperature by a factor of 2-4 and significantly broadens the power deposition profile.

  19. A molecular dynamics simulation study of dynamic process and mesoscopic structure in liquid mixture systems

    NASA Astrophysics Data System (ADS)

    Yang, Peng

    The focus of this dissertation is the Molecular Dynamics (MD) simulation study of two different systems. In thefirst system, we study the dynamic process of graphene exfoliation, particularly graphene dispersion using ionic surfactants (Chapter 2). In the second system, we investigate the mesoscopic structure of binary solute/ionic liquid (IL) mixtures through the comparison between simulations and corresponding experiments (Chapter 3 and 4). In the graphene exfoliation study, we consider two separation mechanisms: changing the interlayer distance and sliding away the relative distance of two single-layer graphene sheets. By calculating the energy barrier as a function of separation (interlayer or sliding-away) distance and performing sodium dodecyl sulfate (SDS) structure analysis around graphene surface in SDS surfactant/water + bilayer graphene mixture systems, we find that the sliding-away mechanism is the dominant, feasible separation process. In this process, the SDS-graphene interaction gradually replaces the graphene-graphene Van der Waals (VdW) interaction, and decreases the energy barrier until almost zero at critical SDS concentration. In solute/IL study, we investigate nonpolar (CS2) and dipolar (CH 3CN) solute/IL mixture systems. MD simulation shows that at low concentrations, IL is nanosegregated into an ionic network and nonpolar domain. It is also found that CS2 molecules tend to be localized into the nonpolar domain, while CH3CN interacts with nonpolar domain as well as with the charged head groups in the ionic network because of its amphiphilicity. At high concentrations, CH3CN molecules eventually disrupt the nanostructural organization. This dissertation is organized in four chapters: (1) introduction to graphene, ionic liquids and the methodology of MD; (2) MD simulation of graphene exfoliation; (3) Nanostructural organization in acetonitrile/IL mixtures; (4) Nanostructural organization in carbon disulfide/IL mixtures; (5) Conclusions. Results

  20. Numerical simulation of global hydro-dynamics in a pulsatile bioreactor for cardiovascular tissue engineering.

    PubMed

    Shi, Yubing

    2008-01-01

    Previous numerical simulations of the hydro-dynamic response in the various bioreactor designs were mostly concentrated on the local flow field analysis using computational fluid dynamics, which cannot provide the global hydro-dynamics information to assist the bioreactor design. In this research, a mathematical model is developed to simulate the global hydro-dynamic changes in a pulsatile bioreactor design by considering the flow resistance, the elasticity of the vessel and the inertial effect of the media fluid in different parts of the system. The developed model is used to study the system dynamic response in a typical pulsatile bioreactor design for the culturing of cardiovascular tissues. Simulation results reveal the detailed pressure and flow-rate changes in the different positions of the bioreactor, which are very useful for the evaluation of hydro-dynamic performance in the bioreactor designed. Typical pressure and flow-rate changes simulated agree well with the published experimental data, thus validates the mathematical model developed. The proposed mathematical model can be used for design optimization of other pulsatile bioreactors that work under different experimental conditions and have different system configurations.

  1. Dielectric Properties of Poly(ethylene oxide) from Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.

    1994-01-01

    The order, conformations and dynamics of poly(oxyethylene) (POE) melts have been investigated through molecular dynamics simulations. The potential energy functions were determined from detailed ab initio electronic structure calculations of the conformational energies of the model molecules 1,2-dimethoxyethane (DME) and diethylether. The x-ray structure factor for POE from simulation will be compared to experiment. In terms of conformation, simulations reveal that chains are extended in the melt relative to isolated chains due to the presence of strong intermolecular O...H interactions, which occur at the expense of intramolecular O...H interactions. Conformational dynamics about the C-C bond were found to be significantly faster than in polymethylene, while conformational dynamics about the C-O bond even faster than the C-C dynamics. The faster local dynamics in POE relative to polymethylene is consistent with C-13 NMR spin-lattice relaxation experiments. Conformational transitions showed significant second-neighbor correlation, as was found for polymethylene. This correlation of transitions with C-C neighbors was found to be reduced relative to C-O neighbors. Dielectric relaxation from simulation will also be compared with experiment.

  2. Homology model and molecular dynamics simulation of carp ovum cystatin.

    PubMed

    Su, Yuan-Chen; Lin, Jin-Chung; Liu, Hsuan-Liang

    2005-01-01

    In this study, a homology model of carp ovum cystatin was constructed based on the crystal structure of chicken egg white cystatin. The results of amino acid sequence alignment indicate that these two proteins exhibit 36.11% of sequence identity. The resultant homology model reveals that carp ovum cystatin shares similar folds as chicken egg white cystatin, particularly in the conserved regions of Q48-V49-G52 and P98-W99 and the locations of two disulfide bonds, C67-C76 and C90-C110. However, the results of 1 ns molecular dynamics simulations show that carp ovum cystatin exhibits less structural integrity than chicken egg white cystatin in explicit water at 300 K. The relatively hydrophilic Met62 of carp ovum cystatin, corresponding to the hydrophobic Leu68 of human cystatin C and Ile66 of chicken egg white cystatin, may destabilize the hydrophobic core and form a dimeric structure more easily through domain swapping. A total of 16 positively charged residues are equally distributed on the surface of carp ovum cystatin, resulting in agglutination with the negatively charged spermatozoa via electrostatic interaction. Thus, carp ovum cystatin is considered to be important in preventing carp eggs from polyspermy.

  3. Gas dynamic simulations of galaxy formation

    NASA Technical Reports Server (NTRS)

    Evrard, August E.

    1993-01-01

    Results are presented from a simulation modeling the formation of a group of galaxies in a 'standard' cold, dark matter universe with delta = 1, h sub 0 = 50 km/(s(Mpc)), baryon fraction omega sub b = 0.1 and spectrum normalization sigma sub 8 = 0.6 (bias parameter b = 1.7). Initial conditions are generated within a periodic box with comoving length 16 Mpc in a manner constrained to produce a small cluster of total mass approximately 10 exp 14 solar mass. Two sets of 643 particles are used to model the dark matter and baryon fluids. Each gas particle represents 1.08 x 10 exp -8 solar mass, implying an L* galaxy is resolved by approximately 1000 particles. The system is evolved self-consistently in three dimensions using the combined N-body/hydrodynamic scheme P3MSPH up to a final redshift z = 1. Evolving to the present is prohibited by the fact that the mean density in the simulated volume is above critical and the entire volume would be going nonlinear beyond this point, We are currently analyzing another run with somewhat poorer mass resolution which was evolved to the present.

  4. Simulation of ceramics fracture due to high rate dynamic impact

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Bratov, V. A.; Petrov, Y. V.

    2015-11-01

    In this paper dynamic fracture process due to high-speed impact of steel plunger into ceramic sample is simulated. The developed numerical model is based on finite element method and a concept of incubation time criterion, which is proven applicable in order to predict brittle fracture under high-rate deformation. Simulations were performed for ZrO2(Y2O3) ceramic plates. To characterize fracture process quantitatively fracture surface area parameter is introduced and controlled. This parameter gives the area of new surface created during dynamic fracture of a sample and is essentially connected to energetic peculiarities of fracture process. Multiple simulations with various parameters made it possible to explore dependencies of fracture area on plunger velocity and material properties. Energy required to create unit of fracture area at fracture initiation (dynamic analogue of Griffith surface energy) was evaluated and was found to be an order of magnitude higher as comparing to its static value.

  5. Simulation of nanofractal dynamics with MBN Explorer

    NASA Astrophysics Data System (ADS)

    Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2013-06-01

    One of the goals of nanotechnology is the development of controlled, reproducible, and industrially transposable nanostructured materials. In this context, controlling of the final architecture of such materials by tuneable parameters is one of the fundamental problems. Post-growth processes occurring in patterns grown on a surface were studied using a multi-purpose computer code MBN EXPLORER introduced in the present paper. The package allows to model molecular systems of varied level of complexity, and in the present paper was used, in particular, to study dynamics of silver nanofractal formation and fragmentation on graphite surface. We demonstrate that the detachment of particles from the fractal and their diffusion within the fractal and over the surface determines the shape of the islands remaining on a surface after the fractal fragmentation.

  6. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  7. Analytical Dynamics and Nonrigid Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1974-01-01

    Application to the simulation of idealized spacecraft are considered both for multiple-rigid-body models and for models consisting of combination of rigid bodies and elastic bodies, with the elastic bodies being defined either as continua, as finite-element systems, or as a collection of given modal data. Several specific examples are developed in detail by alternative methods of analytical mechanics, and results are compared to a Newton-Euler formulation. The following methods are developed from d'Alembert's principle in vector form: (1) Lagrange's form of d'Alembert's principle for independent generalized coordinates; (2) Lagrange's form of d'Alembert's principle for simply constrained systems; (3) Kane's quasi-coordinate formulation of D'Alembert's principle; (4) Lagrange's equations for independent generalized coordinates; (5) Lagrange's equations for simply constrained systems; (6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations); (7) Hamilton's equations for simply constrained systems; and (8) Hamilton's equations for independent generalized coordinates.

  8. Robotic Simulation of Flexible-Body Spacecraft Dynamics

    NASA Technical Reports Server (NTRS)

    Brannan, Justin C.; Carignan, Craig R.

    2016-01-01

    A robotic testbed has been developed to conduct hardware-in-the-loop simulations of a robotic servicer interacting with a client satellite on-orbit. By creating an analytical model of a satellite with flexible appendages, it is possible to simulate the system response to external force and torque inputs and compare the predicted system motion to a robot mass simulator outfitted with physical appendages. This validation effort includes multiple test cases that encompass the types of interaction forces a satellite might experience during a nominal on-orbit servicing mission and aims to show the simulation's ability to capture the physical system response. After incorporating the flexible-body dynamics into the robotic mass simulator at NASA Goddard Space Flight Center (GSFC), a hardware-in-the-loop simulation can be used to characterize the potential impact of structural flexibility on an end-to-end satellite servicing mission.

  9. Event-Scale Morphodynamics and Sediment Sorting in a Dynamic Braided River Revealed by TLS

    NASA Astrophysics Data System (ADS)

    Vericat, D.; Brasington, J.

    2008-12-01

    In the last decade, advances in topographic survey and digital elevation modelling have enabled a revolution in the study of fluvial morphodynamics. Despite this recent progress, our understanding of braided river dynamics remains limited by the time-space scale of studies. Hindered by high labour and flight costs, together with slow ground-based survey methods, studies to date have focused either on event-scale dynamics of morphological units (Ferguson and Ashworth, 1992; Lane et al., 1995; Milan et al., 2007) or seasonal-annual dynamics of larger system-scale reaches (sensu Lane, 2006; e.g., Brasington et al., 2003; Lane et al., 2003). Terrestrial Laser Scanning technology offers the potential to acquire rapidly, reach-scale datasets which record topographic information at the resolution of bed grain-scale upwards. However, as yet, no detailed 3d datasets exist that reveal the system-scale evolution of a braided river through a continuous sequence of floods. Such data are urgently required to address unresolved and fundamental questions concerning the controls and behaviour of braided rivers and are also needed to validate morphodynamic simulation models (Brasington and Richards, 2007). Our recent wok has demonstrated that TLS can be applied to recover centimetre-scale channel morphology, maps of particle size, sorting, packing and floodplain roughness (Brasington et al., 2007, 2008; Antonarakis, 2008a,b; Hodge et al., in review). This potential is illustrated by the results obtained in a field study conducted in January 2008. This used TLS to monitor the evolution of channel morphology and develop methods to derive models of bed roughness and facies in a small 500 x 300 m reach of the actively braided Rees River, New Zealand. Fieldwork comprised repeat surveys before and after 3 competent events, combining laser scans from eight positions with bathymetric data obtained by RTK GPS. The resulting point clouds incorporated between 48-110 million survey points, with

  10. Hybrid simulations with dynamical quarks: Spectra, screening and thermodynamics

    SciTech Connect

    Sinclair, D.K.

    1987-11-18

    We summarize simulations made by the Argonne/University of Illinois group using the Hybrid algorithm to include dynamical staggered fermions. Recent work on the mass spectrum and screening effects due to the inclusion of four light flavors of dynamical quarks is presented. We also present a brief overview of what we have learned about the finite temperature chiral phase transition. 5 refs., 4 figs., 1 tab.

  11. Numerical simulation of dynamic fracture and failure in solids

    SciTech Connect

    Chen, E.P.

    1994-05-01

    Numerical simulation of dynamic fracture and failure processes in solid continua using Lagrangian finite element techniques is the subject of discussion in this investigation. The specific configurations in this study include penetration of steel projectiles into aluminum blocks and concrete slabs. The failure mode in the aluminum block is excessive deformation while the concrete slab fails by hole growth, spallation, and scabbing. The transient dynamic finite element code LS-DYNA2D was used for the numerical analysis. The erosion capability in LS-DYNA2D was exercised to carry out the fracture and failure simulations. Calculated results were compared to the experimental data. Good correlations were obtained.

  12. Simulation of Naval Guns' Breechblock System Dynamics Based on ADAMS

    NASA Astrophysics Data System (ADS)

    Tan, Bo; Liu, Hui-Min; Liu, Kai

    In order to study the dynamical characteristics of the breechblock system during gun firing, a virtual prototype model was established based on ADAMS, in which motion and force transmission among mechanisms are realized by collision. By simulation, kinematics and dynamics properties of main components are obtained, and the relationships between the motion of breechblock and the position of breechblock opening plate are analyzed. According to the simulation results, the collision among the breechblock opening plate and the roller is discontinuous, which may make the breechblock system fail to hitch the breechblock reliably. And within allowable scope of the structure, the breechblock opening template should be installed near the upside as much as possible.

  13. Molecular Dynamics Simulations of Gas Transport in Polymer Films

    NASA Astrophysics Data System (ADS)

    Whitley, David; Butler, Simon; Adolf, David

    2010-03-01

    Parallel molecular dynamics simulations have been carried out to determine the permeability of O2 and N2 through polyethylene terephthalate, polypropylene and cis(1-4) polybutadiene. The permeability of both mixed and unmixed gas penetrants is studied within films of these well known gas barrier polymers. Results are obtained either through the solubility and diffusion (i.e. P=D*S) or via the permeability directly. Encouraging results are obtained. Additional analysis focuses on ``unmixed/mixed gas'' intracomparisons of the simulated permeability data in addition to corresponding penetrant and host polymer local dynamics.

  14. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  15. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    SciTech Connect

    Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

    2009-04-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  16. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems

    PubMed Central

    Bernardi, Rafael C.; Melo, Marcelo C. R.; Schulten, Klaus

    2014-01-01

    Background Molecular Dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. Scope of review In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Major Conclusions Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. General Significance Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. PMID:25450171

  17. Combined molecular dynamics-spin dynamics simulations of bcc iron

    SciTech Connect

    Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg

    2014-01-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  18. Dynamical QCD+QED simulation with staggered quarks

    SciTech Connect

    Zhou, Ran; Gottlieb, Steven

    2014-11-15

    Electromagnetic effects play an important role in many phenomena such as isospin-symmetry breaking in the hadron spectrum and the hadronic contributions to g-2. We have generalized the MILC QCD code to include the electromagnetic field. In this work, we focus on simulations including charged sea quarks using the RHMC algorithm. We show details of the dynamical QCD+QED simulation algorithm with compact QED. We analyze the code performance and results for hadron-spectrum observables.

  19. Molecular dynamics simulation of carbon disulphide with a Gaussian correction

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił B. J.

    2017-02-01

    Molecular Dynamics (MD) simulations of liquid carbon disulphide (CS2) in the temperature range 164-318 K under normal pressure and at experimental density were performed using an expa-6 potential with a Gaussian correction plus electrostatic interactions. This correction allowed to modify the curvature of the potential. The results of the MD simulation are compared with available experimental data. The agreement is good.

  20. Dissipative Particle Dynamics simulation of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; Boromand, Arman; Maia, Joao

    2014-03-01

    DPD as a mesoscale method was firstly proposed to study dynamics of suspensions under flow condition. However the proposed method failed to capture shear properties of suspensions because it lacked: first a potential to reproduce lubrication forces and second a clear definition for the colloid surface. Recently we reported a modified DPD method which defines colloidal particles as particles with hard core and a dissipative coat. An additional lubrication force was introduced to include the short-range hydrodynamics that are not captured in original DPD. The model was found to be able to reproduce shear properties of suspensions for a wide range of different systems, from monodisperse to bimodal with different volume fractions, compositions and size ratios. In present work our modified DPD method is employed to study both equilibrium and flow properties of colloidal suspension. Zero shear viscosity of suspension is measured using Green-Kubo expressions and the results are compared to theoretical predictions. Furthermore, structure formation in suspensions is studied in respect to energy landscape of the fluid both at rest and under flow.

  1. Dynamic simulation of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Wu, S. T.

    1980-01-01

    A model is developed for the formation and propagation through the lower corona of the loop-like coronal transients in which mass is ejected from near the solar surface to the outer corona. It is assumed that the initial state for the transient is a coronal streamer. The initial state for the streamer is a polytropic, hydrodynamic solution to the steady-state radial equation of motion coupled with a force-free dipole magnetic field. The numerical solution of the complete time-dependent equations then gradually approaches a stationary coronal streamer configuration. The streamer configuration becomes the initial state for the coronal transient. The streamer and transient simulations are performed completely independent of each other. The transient is created by a sudden increase in the pressure at the base of the closed-field region in the streamer configuration. Both coronal streamers and coronal transients are calculated for values of the plasma beta (the ratio of thermal to magnetic pressure) varying from 0.1 to 100.

  2. Molecular dynamics simulations: Parameter evaluation, application and development

    NASA Astrophysics Data System (ADS)

    Zhou, Jin

    Molecular dynamics (MD) simulation is a theoretical technique for investigating the physical properties of a wide variety of molecules. This dissertation contains my studies on three important parts of the MD simulation: evaluation of parameters in empirical energy functions widely used in MD simulations, application of MD simulation on experimentally interested biological molecules and development of new methods for constraint dynamics simulations. All the work in this thesis made use of CHARMM as an MD simulation tool. The MD simulation uses empirical energy functions parameterized by a set of parameters. These parameters play an important role in the quality of the simulations. I evaluated nine parameter sets from Harvard University and Molecular Simulations, Inc. for protein simulations by the MD simulations of hydrated form of carboxy- myoglobin and interleukin-1/beta, which are rich in two typical protein structure motifs, helix and β sheet structures respectively. It is found that some sets are good at representing helical structure proteins while others are good at β sheet proteins. But all of them need improvement on representing motions at low temperature. Experimental evidence indicates that the 1A coiled-coil domains of the Intermediate Filament (IF) proteins consisting of coiled human keratins 1 and 10 (K1 and K10) are 'hot spots' for substitutional mutations. Some of these mutations are correlated to the human skin diseases-epidermolytic hyperkeratiosis (EH) and epidermolysis bullosa simplex (EBS). The MD simulation technique is used here for the first time to model and simulate these proteins to elucidate the molecular-level effects of these mutations. Lacking the experimental crystal structures, the initial structure of 1A domain of the wild type Intermediate Filament protein and its mutants were modeled from scratch to reproduce the well- known properties of the proteins of this kind followed by identical MD simulations. The important result is

  3. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS)

    SciTech Connect

    Hernández, Rebeca E-mail: aurora.nogales@csic.es; Mijangos, Carmen; Nogales, Aurora E-mail: aurora.nogales@csic.es; Ezquerra, Tiberio A.; Sprung, Michael

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles.

  4. Flight Simulation of Taketombo Based on Computational Fluid Dynamics and Computational Flight Dynamics

    NASA Astrophysics Data System (ADS)

    Kawamura, Kohei; Ueno, Yosuke; Nakamura, Yoshiaki

    In the present study we have developed a numerical method to simulate the flight dynamics of a small flying body with unsteady motion, where both aerodynamics and flight dynamics are fully considered. A key point of this numerical code is to use computational fluid dynamics and computational flight dynamics at the same time, which is referred to as CFD2, or double CFDs, where several new ideas are adopted in the governing equations, the method to make each quantity nondimensional, and the coupling method between aerodynamics and flight dynamics. This numerical code can be applied to simulate the unsteady motion of small vehicles such as micro air vehicles (MAV). As a sample calculation, we take up Taketombo, or a bamboo dragonfly, and its free flight in the air is demonstrated. The eventual aim of this research is to virtually fly an aircraft with arbitrary motion to obtain aerodynamic and flight dynamic data, which cannot be taken in the conventional wind tunnel.

  5. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  6. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210

  7. Efficient dynamic simulation for multiple chain robotic mechanisms

    NASA Technical Reports Server (NTRS)

    Lilly, Kathryn W.; Orin, David E.

    1989-01-01

    An efficient O(mN) algorithm for dynamic simulation of simple closed-chain robotic mechanisms is presented, where m is the number of chains, and N is the number of degrees of freedom for each chain. It is based on computation of the operational space inertia matrix (6 x 6) for each chain as seen by the body, load, or object. Also, computation of the chain dynamics, when opened at one end, is required, and the most efficient algorithm is used for this purpose. Parallel implementation of the dynamics for each chain results in an O(N) + O(log sub 2 m+1) algorithm.

  8. Selection of Solar Simulator for Solar Dynamic Ground Test

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol M.

    1994-01-01

    The 2 kWe Solar Dynamic (SD) Ground Test Demonstration (GTD) experiment will be conducted in 1995 at NASA Lewis Research Center (LeRC). This solar dynamic power system test will be conducted in a simulated space environment and will require an artificial sun. To address the solar simulator requirements for the GTD, Arnold Engineering Development Center (AEDC) was hired under contract to review and visit four existing solar simulator facilities. The four facilities included, AEDC's Mark 1 Chamber, NASA-JSC Chamber A, AEDC's 12V Chamber, and NASA-JPL Space Simulator Chamber. Two design concepts were considered following several months of evaluating existing solar simulator facilities throughout the United States. To satisfy system requirements for the SD GTD experiment the solar simulator needs to provide a uniform light flux to the SD concentrator, provide the light within a subtense angle of one degree, and provide an intensity of one solar constant (1.37 kW/sq m) at airmass zero. Most solar simulators are designed for supplying heat loads to spacecraft where a cone angle as large as 3 degrees is acceptable. It was also concluded that a solar simulator, such like these considered in the AEDC study, would require major facility modifications for NASA LeRC and result in significant impacts to the program. The advanced solar simulator concept developed by NASA LeRC will meet the system requirements for the SD GTD experiment Since SD GTD solar simulator requirements could not be addressed by existing simulator, an advanced concept was considered.

  9. Energetic ion dynamics of the inner magnetosphere revealed in coordinated Cluster-Double Star observations

    NASA Astrophysics Data System (ADS)

    Dandouras, Iannis; Cao, Jinbin; Vallat, Claire

    2009-01-01

    Since early 2004 the Chinese spacecraft Tan Ce 1 (TC-1), first component of the Double Star (DSP) mission, has been on an equatorial elliptical orbit (13.4 R E apogee), allowing the study of the dynamics of the Earth's magnetosphere in conjunction with the four European Cluster spacecraft (19.6 R E apogee). The Cluster and Double Star spacecraft orbits are such that the spacecraft are almost in the same meridian, allowing conjugate studies. The four Cluster spacecraft highly eccentric polar orbit at 4 R E perigee permits them to sample the ring current, the radiation belts, and the outer plasmasphere from south to north, almost following the same magnetic flux tube (latitudinal profile), whereas TC-1, with its very low-perigee equatorial orbit, gives the plasma profile across L shells. Coordinated ion measurements provided by the Cluster Ion Spectrometry and Hot Ion Analyzer instruments onboard Cluster and TC-1, respectively, obtained during quiet conditions, disturbed geomagnetic conditions, and an intense storm, are used to analyze crossings of the plasmasphere and the ring current region. Multiple narrow ion energy bands (``nose-like'' structures) are simultaneously observed by both Cluster and TC-1. These observations reveal the large-scale character of these structures and pose a challenge for the simulation and modeling of the inner magnetosphere populations.

  10. Direct and indirect mechanisms of KLK4 inhibition revealed by structure and dynamics

    NASA Astrophysics Data System (ADS)

    Riley, Blake T.; Ilyichova, Olga; Costa, Mauricio G. S.; Porebski, Benjamin T.; de Veer, Simon J.; Swedberg, Joakim E.; Kass, Itamar; Harris, Jonathan M.; Hoke, David E.; Buckle, Ashley M.

    2016-10-01

    The kallikrein-related peptidase (KLK) family of proteases is involved in many aspects of human health and disease. One member of this family, KLK4, has been implicated in cancer development and metastasis. Understanding mechanisms of inactivation are critical to developing selective KLK4 inhibitors. We have determined the X-ray crystal structures of KLK4 in complex with both sunflower trypsin inhibitor-1 (SFTI-1) and a rationally designed SFTI-1 derivative to atomic (~1 Å) resolution, as well as with bound nickel. These structures offer a structural rationalization for the potency and selectivity of these inhibitors, and together with MD simulation and computational analysis, reveal a dynamic pathway between the metal binding exosite and the active site, providing key details of a previously proposed allosteric mode of inhibition. Collectively, this work provides insight into both direct and indirect mechanisms of inhibition for KLK4 that have broad implications for the enzymology of the serine protease superfamily, and may potentially be exploited for the design of therapeutic inhibitors.

  11. Direct and indirect mechanisms of KLK4 inhibition revealed by structure and dynamics

    PubMed Central

    Riley, Blake T.; Ilyichova, Olga; Costa, Mauricio G. S.; Porebski, Benjamin T.; de Veer, Simon J.; Swedberg, Joakim E.; Kass, Itamar; Harris, Jonathan M.; Hoke, David E.; Buckle, Ashley M.

    2016-01-01

    The kallikrein-related peptidase (KLK) family of proteases is involved in many aspects of human health and disease. One member of this family, KLK4, has been implicated in cancer development and metastasis. Understanding mechanisms of inactivation are critical to developing selective KLK4 inhibitors. We have determined the X-ray crystal structures of KLK4 in complex with both sunflower trypsin inhibitor-1 (SFTI-1) and a rationally designed SFTI-1 derivative to atomic (~1 Å) resolution, as well as with bound nickel. These structures offer a structural rationalization for the potency and selectivity of these inhibitors, and together with MD simulation and computational analysis, reveal a dynamic pathway between the metal binding exosite and the active site, providing key details of a previously proposed allosteric mode of inhibition. Collectively, this work provides insight into both direct and indirect mechanisms of inhibition for KLK4 that have broad implications for the enzymology of the serine protease superfamily, and may potentially be exploited for the design of therapeutic inhibitors. PMID:27767076

  12. Determining equilibrium constants for dimerization reactions from molecular dynamics simulations.

    PubMed

    De Jong, Djurre H; Schäfer, Lars V; De Vries, Alex H; Marrink, Siewert J; Berendsen, Herman J C; Grubmüller, Helmut

    2011-07-15

    With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices covers sufficiently many dimerization and dissociation events, their binding free energy is readily derived from the fraction of time during which the two helices are observed in dimeric form. Exactly how the correct value for the free energy is to be calculated, however, is unclear, and indeed several different and contradictory approaches have been used. In particular, results obtained via Boltzmann statistics differ from those determined via the law of mass action. Here, we develop a theory that resolves this discrepancy. We show that for simulation systems containing two molecules, the dimerization free energy is given by a formula of the form ΔG ∝ ln(P(1) /P(0) ). Our theory is also applicable to high concentrations that typically have to be used in molecular dynamics simulations to keep the simulation system small, where the textbook dilute approximations fail. It also covers simulations with an arbitrary number of monomers and dimers and provides rigorous error estimates. Comparison with test simulations of a simple Lennard Jones system with various particle numbers as well as with reference free energy values obtained from radial distribution functions show full agreement for both binding free energies and dimerization statistics.

  13. Dynamic simulation and validation of a satellite docking system

    NASA Astrophysics Data System (ADS)

    Hays, Anthony B.; Tchoryk, Peter, Jr.; Pavlich, Jane C.; Wassick, Gregory

    2003-08-01

    In recent years, Michigan Aerospace has approached the problem of gentle autonomous spacecraft rendezvous and docking using a flexible soft-dock cable that is extended from the docking spacecraft to the target spacecraft. Because of the nature of a soft-dock cable, testing and validation of the technology is difficult in normal gravity. To properly emulate the behavior of this soft-dock cable, we have performed dynamic computer simulations so that the effects of micro-gravity could be simulated. The Autonomous Satellite Docking System (ASDS) was initially prototyped and tested at Marshall Space Flight Center"s air-bearing floor facility. The test data was compared to the simulations and used to validate the model. Once a good correlation between the simulation"s predicted results and the actual data was shown, the model was used to predict future performance of the ASDS mechanism on several potential spacecraft for the Orbital Express program. A new dynamic simulation model was created and compared to test data from a recent KC-135 flight test to further validate the modeling approach used. This paper will describe the methodology used in modeling and simulating the ASDS mechanism. Correlation between the models and the test data will be discussed.

  14. Molecular dynamics simulation of aqueous solutions of glycine betaine

    NASA Astrophysics Data System (ADS)

    Civera, Monica; Fornili, Arianna; Sironi, Maurizio; Fornili, Sandro L.

    2003-01-01

    Molecular dynamics simulation is used to investigate hydration properties of glycine betaine in a large range of solute concentrations. Statistical analyses of the system trajectories evidence microscopic details suggesting an interpretation of experimental results recently obtained for aqueous solutions of trimethylamine- N-oxide, a bioprotectant closely related to glycine betaine.

  15. The 3-axis Dynamic Motion Simulator (DMS) system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A three-axis dynamic motion simulator (DMS) consisting of a test table with three degrees of freedom and an electronics control system was designed, constructed, delivered, and tested. Documentation, as required in the Data Requirements List (DRL), was also provided.

  16. Simulating Poverty and Inequality Dynamics in Developing Countries

    ERIC Educational Resources Information Center

    Ansoms, An; Geenen, Sara

    2012-01-01

    This article considers how the simulation game of DEVELOPMENT MONOPOLY provides insight into poverty and inequality dynamics in a development context. It first discusses how the game is rooted in theoretical and conceptual frameworks on poverty and inequality. Subsequently, it reflects on selected playing experiences, with special focus on the…

  17. Evaluating the Accuracy of Hessian Approximations for Direct Dynamics Simulations.

    PubMed

    Zhuang, Yu; Siebert, Matthew R; Hase, William L; Kay, Kenneth G; Ceotto, Michele

    2013-01-08

    Direct dynamics simulations are a very useful and general approach for studying the atomistic properties of complex chemical systems, since an electronic structure theory representation of a system's potential energy surface is possible without the need for fitting an analytic potential energy function. In this paper, recently introduced compact finite difference (CFD) schemes for approximating the Hessian [J. Chem. Phys.2010, 133, 074101] are tested by employing the monodromy matrix equations of motion. Several systems, including carbon dioxide and benzene, are simulated, using both analytic potential energy surfaces and on-the-fly direct dynamics. The results show, depending on the molecular system, that electronic structure theory Hessian direct dynamics can be accelerated up to 2 orders of magnitude. The CFD approximation is found to be robust enough to deal with chaotic motion, concomitant with floppy and stiff mode dynamics, Fermi resonances, and other kinds of molecular couplings. Finally, the CFD approximations allow parametrical tuning of different CFD parameters to attain the best possible accuracy for different molecular systems. Thus, a direct dynamics simulation requiring the Hessian at every integration step may be replaced with an approximate Hessian updating by tuning the appropriate accuracy.

  18. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing.

    PubMed

    Basner, Mathias; Dinges, David F; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W; Hyder, Eric C; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V; Sutton, Jeffrey P

    2013-02-12

    The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep-wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep-wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep-wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior.

  19. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing

    PubMed Central

    Basner, Mathias; Dinges, David F.; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W.; Hyder, Eric C.; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V.; Sutton, Jeffrey P.

    2013-01-01

    The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep–wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep–wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep–wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep–wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior. PMID:23297197

  20. Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations

    SciTech Connect

    Vijaykumar, Adithya; Bolhuis, Peter G.; Rein ten Wolde, Pieter

    2015-12-07

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level.

  1. Molecular dynamics simulation: A tool for exploration and discovery

    NASA Astrophysics Data System (ADS)

    Rapaport, Dennis C.

    2009-03-01

    The exploratory and didactic aspects of science both benefit from the ever-growing role played by computer simulation. One particularly important simulational approach is the molecular dynamics method, used for studying the nature of matter from the molecular to much larger scales. The effectiveness of molecular dynamics can be enhanced considerably by employing visualization and interactivity during the course of the computation and afterwards, allowing the modeler not only to observe the detailed behavior of the systems simulated in different ways, but also to steer the computations in alternative directions by manipulating parameters that govern the actual behavior. This facilitates the creation of potentially rich simulational environments for examining a multitude of complex phenomena, as well as offering an opportunity for enriching the learning process. A series of relatively advanced examples involving molecular dynamics will be used to demonstrate the value of this approach, in particular, atomistic simulations of spontaneously emergent structured fluid flows (the classic Rayleigh--B'enard and Taylor--Couette problems), supramolecular self-assembly of highly symmetric shell structures (involved in the formation of viral capsids), and that most counterintuitive of phenomena, granular segregation (e.g., axial and radial separation in a rotating cylinder).

  2. Acoustic properties in glycerol glass-former: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Remi; Pezeril, Thomas; Institut des Materiaux et Molecules du Mans Team

    2013-03-01

    Study of high-frequency collective dynamics around TeraHertz region in glass former has been a subject of intense investigations and debates over the past decade. In particular, the presence of the Boson peak characteristic of glassy material and its relation to other glass anomalies. Recently, experiments and simulations have underlined possible relation between Boson peak and transverse acoustic modes in glassy materials. In particular, simulations of simple Lennard Jones glass former have shown a relation between Ioffe-Regel criterion in transverse modes and Boson peak. We present here molecular dynamics simulation on high frequency dynamics of glycerol. In order to study mesoscopic order (0.5-5nm-1), we made use of large simulation box containing 80000 atoms. Analysis of collective longitudinal and transverse acoustic modes shows striking similarities in comparison with simulation of Lennard-Jones particles. In particular, it seems that a connection may exist between Ioffe-Regel criterion for transverse modes and Bose Peak frequency. However,in our case we show that this connection may be related with structural correlation arising from molecular clusters.

  3. 4D simulation of explosive eruption dynamics at Vesuvius

    NASA Astrophysics Data System (ADS)

    Neri, Augusto; Esposti Ongaro, Tomaso; Menconi, Gianluca; De'Michieli Vitturi, Mattia; Cavazzoni, Carlo; Erbacci, Giovanni; Baxter, Peter J.

    2007-02-01

    We applied a new simulation model, based on multiphase transport laws, to describe the 4D (3D spatial coordinates plus time) dynamics of explosive eruptions. Numerical experiments, carried out on a parallel supercomputer, describe the collapse of the volcanic eruption column and the propagation of pyroclastic density currents (PDCs), for selected medium scale (sub-Plinian) eruptive scenarios at Vesuvius, Italy. Simulations provide crucial insights into the effects of the generation mechanism of the flows - partial collapse vs boiling-over - on their evolution and hazard potential, the unstable dynamics of the fountain, and the influence of Mount Somma on the propagation of PDCs into the circum-Vesuvian area, one of the world's most hazardous volcanic settings. Results also show that it is possible to characterize the volcanic column behavior in terms of percentage of the mass of pyroclasts collapsed to the ground and how this parameter strongly influences the dynamics and hazard of the associated PDCs.

  4. Molecular Dynamics Simulations of Perylenediimide DNA Base Surrogates.

    PubMed

    Markegard, Cade B; Mazaheripour, Amir; Jocson, Jonah-Micah; Burke, Anthony M; Dickson, Mary N; Gorodetsky, Alon A; Nguyen, Hung D

    2015-09-03

    Perylene-3,4,9,10-tetracarboxylic diimides (PTCDIs) are a well-known class of organic materials. Recently, these molecules have been incorporated within DNA as base surrogates, finding ready applications as probes of DNA structure and function. However, the assembly dynamics and kinetics of PTCDI DNA base surrogates have received little attention to date. Herein, we employ constant temperature molecular dynamics simulations to gain an improved understanding of the assembly of PTCDI dimers and trimers. We also use replica-exchange molecular dynamics simulations to elucidate the energetic landscape dictating the formation of stacked PTCDI structures. Our studies provide insight into the equilibrium configurations of multimeric PTCDIs and hold implications for the construction of DNA-inspired systems from perylene-derived organic semiconductor building blocks.

  5. Quantum Dynamics Simulations for Modeling Experimental Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Pearson, Brett; Nayyar, Sahil; Liss, Kyle; Weinacht, Thomas

    2016-05-01

    Time-resolved studies of quantum dynamics have benefited greatly from developments in ultrafast table-top and free electron lasers. Advances in computer software and hardware have lowered the barrier for performing calculations such that relatively simple simulations allow for direct comparison with experimental results. We describe here a set of quantum dynamics calculations in low-dimensional molecular systems. The calculations incorporate coupled electronic-nuclear dynamics, including two interactions with an applied field and nuclear wave packet propagation. The simulations were written and carried out by undergraduates as part of a senior research project, with the specific goal of allowing for detailed interpretation of experimental pump-probe data (in additional to the pedagogical value).

  6. Multiscale and multimodel simulation of Bloch-point dynamics

    NASA Astrophysics Data System (ADS)

    Andreas, Christian; Kákay, Attila; Hertel, Riccardo

    2014-04-01

    We present simulation results on the structure and dynamics of micromagnetic point singularities with atomistic resolution. This is achieved by embedding an atomistic computational region into a standard micromagnetic algorithm. Several length scales are bridged by means of an adaptive mesh refinement and a seamless coupling between the continuum theory and a Heisenberg formulation for the atomistic region. The code operates on graphical processing units and is able to detect and track the position of strongly inhomogeneous magnetic regions. This enables us to reliably simulate the dynamics of Bloch points, which means that a fundamental class of micromagnetic switching processes can be analyzed with unprecedented accuracy. We test the code by comparing it with established results and present its functionality with the example of a simulated field-driven Bloch-point motion in a soft-magnetic cylinder.

  7. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    SciTech Connect

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  8. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    PubMed Central

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-01-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588

  9. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    NASA Astrophysics Data System (ADS)

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-12-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.

  10. Ultrascale simulations of non-smooth granular dynamics

    NASA Astrophysics Data System (ADS)

    Preclik, Tobias; Rüde, Ulrich

    2015-06-01

    This article presents new algorithms for massively parallel granular dynamics simulations on distributed memory architectures using a domain partitioning approach. Collisions are modelled with hard contacts in order to hide their micro-dynamics and thus to extend the time and length scales that can be simulated. The global multi-contact problem is solved using a non-linear block Gauss-Seidel method that is conforming to the subdomain structure. The parallel algorithms employ a sophisticated protocol between processors that delegate algorithmic tasks such as contact treatment and position integration uniquely and robustly to the processors. Communication overhead is minimized through aggressive message aggregation, leading to excellent strong and weak scaling. The robustness and scalability is assessed on three clusters including two peta-scale supercomputers with up to 458,752 processor cores. The simulations can reach unprecedented resolution of up to ten billion () non-spherical particles and contacts.

  11. Software life cycle dynamic simulation model: The organizational performance submodel

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  12. ParaDiS-FEM dislocation dynamics simulation code primer

    SciTech Connect

    Tang, M; Hommes, G; Aubry, S; Arsenlis, A

    2011-09-27

    The ParaDiS code is developed to study bulk systems with periodic boundary conditions. When we try to perform discrete dislocation dynamics simulations for finite systems such as thin films or cylinders, the ParaDiS code must be extended. First, dislocations need to be contained inside the finite simulation box; Second, dislocations inside the finite box experience image stresses due to the free surfaces. We have developed in-house FEM subroutines to couple with the ParaDiS code to deal with free surface related issues in the dislocation dynamics simulations. This primer explains how the coupled code was developed, the main changes from the ParaDiS code, and the functions of the new FEM subroutines.

  13. Molecular dynamics simulation of friction of hydrocarbon thin films

    SciTech Connect

    Tamura, Hiroyuki; Yoshida, Muneo; Kusakabe, Kenichi

    1999-10-26

    Molecular Dynamics (MD) simulations were performed to investigate the dynamic behavior of hydrocarbon molecules under shear conditions. Frictional properties of cyclohexane, n-hexane, and iso-hexane thin films confirmed between two solid surfaces were calculated. Because the affinity of the solid surfaces in these simulations is strong, slippages occurred at inner parts of the confined films, whereas no slippages were observed at the solid boundaries. The hexagonal closest packing structure was observed for the adsorbed cyclohexane molecular layers. The branched methyl groups in the iso-hexane molecules increase the shear stress between the molecular layers. For the n-hexane monolayer, molecules were observed to roll during the sliding simulations. Rolling of the n-hexane molecules decreased the shear stress.

  14. Distributed Modeling Reveals the Ecohydrological Dynamics Linked with Woody Plant Encroachment in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Pierini, N. A.; Vivoni, E. R.; Anderson, C.; Saripalli, S.; Robles-Morua, A.

    2012-12-01

    moisture and temperature distributions through comparisons of canopy and intercanopy sites. The field and remote sensing observations are then used in simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) at high spatiotemporal resolutions over the two study years (2011-2012). Numerical experiments are designed to reveal the influence of the mesquite encroachment patterns on the watershed dynamics. Through the spatiotemporal analysis of model outputs, we identify how and when mesquite trees affect the spatial patterns of energy and water fluxes and their linkage to runoff production. As a result, the distributed model application provides a more complete understanding of the impact of woody encroachment on watershed-scale hydrologic patterns.

  15. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics.

  16. Information diversity in structure and dynamics of simulated neuronal networks.

    PubMed

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  17. Dynamic simulation for distortion image with turbulence atmospheric transmission effects

    NASA Astrophysics Data System (ADS)

    Du, Huijie; Fei, Jindong; Qing, Duzheng; Zhao, Hongming; Yu, Hong; Cheng, Chen

    2013-09-01

    The imaging through atmospheric turbulence is an inevitable problem encountered by infrared imaging sensors working in the turbulence atmospheric environment. Before light-rays enter the window of the imaging sensors, the atmospheric turbulence will randomly interfere with the transmission of the light waves came from the objects, causing the distribution of image intensity values on the focal plane to diffuse, the peak value to decrease, the image to get blurred, and the pixels to deviate, and making image identification very difficult. Owing to the fact of the long processing time and that the atmospheric turbulent flow field is unknown and hard to be described by mathematical models, dynamic simulation for distortion Image with turbulence atmospheric transmission effects is much more difficult and challenging in the world. This paper discusses the dynamic simulation for distortion Image of turbulence atmospheric transmission effect. First of all, with the data and the optical transmission model of the turbulence atmospheric, the ray-tracing method is applied to obtain the propagation path of optical ray which propagates through the high-speed turbulent flow field, and then to calculate the OPD from the reference wave to the reconverted wave front and obtain the point spread function (PSF). Secondly, infrared characteristics models of typical scene were established according to the theory of infrared physics and heat conduction, and then the dynamic infrared image was generated by OpenGL. The last step is to obtain the distortion Image with turbulence atmospheric transmission effects .With the data of atmospheric transmission computation, infrared simulation image of every frame was processed according to the theory of image processing and the real-time image simulation, and then the dynamic distortion simulation images with effects of blurring, jitter and shifting were obtained. Above-mentioned simulation method can provide the theoretical bases for recovering

  18. Simulating Field-Scale Soil Organic Carbon Dynamics Using EPIC

    SciTech Connect

    Causarano, Hector J.; Shaw, Joey N.; Franzluebbers, A. J.; reeves, D. W.; Raper, Randy L.; Balkcom, Kipling S.; Norfleet, M. L.; Izaurralde, R Cesar

    2007-07-01

    Simulation models integrate our knowledge of soil organic C (SOC) dynamics and are useful tools for evaluating impacts of crop management on soil C sequestration; yet, they require local calibration. Our objectives were to calibrate the Environmental Policy Integrated Climate (EPIC) model, and evaluate its performance for simulating SOC fractions as affected by soil landscape and management. An automated parameter optimization procedure was used to calibrate the model for a site-specific experiment in the Coastal Plain of central Alabama. The ability of EPIC to predict corn (Zea mays L.) and cotton (Gossypium hirsutum L.) yields and SOC dynamics on different soil landscape positions (summit, sideslope and drainageway) during the initial period of conservation tillage adoption (5 years) was evaluated using regression and mean squared deviations. Simulated yield explained 88% of measured yield variation, with greatest disagreement on the sideslope position and highest agreement in the drainageway. Simulations explained approximately 1, 34 and 40% of the total variation in microbial biomass C (MBC), particulate organic C (POC) and total organic C (TOC), respectively. Lowest errors on TOC simulations (0-20 cm) were found on the sideslope and summit. We conclude that the automated parameterization was generally successful, although further work is needed to refine the MBC and POC fractions, and to improve EPIC predictions of SOC dynamics with depth. Overall, EPIC was sensitive to spatial differences in C fractions that resulted from differing soil landscape positions. The model needs additional refinement for accurate simulations of field-scale SOC dynamics affected by short-term management decisions.

  19. Water-mediated potassium acetate intercalation in kaolinite as revealed by molecular simulation.

    PubMed

    Ható, Zoltán; Makó, Éva; Kristóf, Tamás

    2014-03-01

    Molecular simulations are suitable tools to study the adsorption and intercalation of molecules in clays. In this work, a recently proposed thermodynamically consistent force field for inorganic compounds (INTERFACE, Heinz H, Lin TJ, Mishra RK, Emami FS (2013) Langmuir 29:1754-1765), which enables accurate simulations of inorganic-organic interfaces, was tested for a two-sheet type clay mineral. All-atom NpT molecular dynamics simulations were used to describe the characteristics (basal spacing, loading, molecular orientation) of some intercalate complexes of kaolinite with potassium acetate and the results were compared with the available experimental data. The most probable structural configurations of the kaolinite/potassium acetate intercalate complexes were determined from the simulations. Our examinations confirmed some supposed (single- or double-layered) arrangements of guest molecules. The need of interlayer water in the intercalate complex, which can be produced by the basic synthesis procedure in air atmosphere, was verified.

  20. Simulation of nonlinear electron dynamics in tetramer metal-carbon nanoclusters

    NASA Astrophysics Data System (ADS)

    Yaltychenko, O. V.; Kanarovskii, E. Yu.; Baranov, S. A.; Gorinchoy, N. N.

    2016-12-01

    In this paper the simulation of nonlinear electron dynamics in the metal-carbon tetramer nanocluster was carried out using the modified approach in a framework of jellium model. The model Hamiltonian includes the terms accounting the action of external electric field and the interaction between the tunneling electron with the vibrational modes of carbon shell. As a result, the system of differential equations for the amplitudes of the electron localization probability at the MCN centers was obtained and then at the various sets of model parameters it was solved numerically. The different regimes in the electron localization dynamics were revealed and the control role of the electric field was shown.

  1. Human Sensibility Ergonomics Approach to Vehicle Simulator Based on Dynamics

    NASA Astrophysics Data System (ADS)

    Son, Kwon; Choi, Kyung-Hyun; Yoon, Ji-Sup

    Simulators have been used to evaluate drivers' reactions to various transportation products. Most research, however, has concentrated on their technical performance. This paper considers driver's motion perception on a vehicle simulator through the analysis of human sensibility ergonomics. A sensibility ergonomic method is proposed in order to improve the reliability of vehicle simulators. A simulator in a passenger vehicle consists of three main modules such as vehicle dynamics, virtual environment, and motion representation modules. To evaluate drivers' feedback, human perceptions are categorized into a set verbal expressions collected and investigated to find the most appropriate ones for translation and angular accelerations of the simulator. The cut-off frequency of the washout filter in the representation module is selected as one sensibility factor. Sensibility experiments were carried out to find a correlation between the expressions and the cut-off frequency of the filter. This study suggests a methodology to obtain an ergonomic database that can be applied to the sensibility evaluation of dynamic simulators.

  2. Dynamic Simulation of a Wave Rotor Topped Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Paxson, D. E.; Schobeiri, M. T.

    1997-01-01

    The dynamic behavior of a wave rotor topped turboshaft engine is examined using a numerical simulation. The simulation utilizes an explicit, one-dimensional, multi-passage, CFD based wave rotor code in combination with an implicit, one-dimensional, component level dynamic engine simulation code. Transient responses to rapid fuel flow rate changes and compressor inlet pressure changes are simulated and compared with those of a similarly sized, untopped, turboshaft engine. Results indicate that the wave rotor topped engine responds in a stable, and rapid manner. Furthermore, during certain transient operations, the wave rotor actually tends to enhance engine stability. In particular, there is no tendency toward surge in the compressor of the wave rotor topped engine during rapid acceleration. In fact, the compressor actually moves slightly away from the surge line during this transient. This behavior is precisely the opposite to that of an untopped engine. The simulation is described. Issues associated with integrating CFD and component level codes are discussed. Results from several transient simulations are presented and discussed.

  3. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.

  4. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.

  5. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  6. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  7. Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Şopu, D.; Ritter, Y.; Gleiter, H.; Albe, K.

    2011-03-01

    In this study, we characterize the mechanical properties of Cu64Zr36 nanoglasses under tensile load by means of large-scale molecular dynamics simulations and compare the deformation behavior to the case of a homogeneous bulk glass. The simulations reveal that interfaces act as precursors for the formation of multiple shear bands. In contrast, a bulk metallic glass under uniaxial tension shows inhomogeneous plastic flow confined in one dominant shear band. The results suggest that controlling the microstructure of a nanoglass can pave the way for tuning the mechanical properties of glassy materials.

  8. Generic solar photovoltaic system dynamic simulation model specification

    SciTech Connect

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  9. Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    PubMed Central

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072

  10. Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics

    PubMed Central

    Smathers, Rebecca L.; Fritz, Kristofer S.; Galligan, James J.; Shearn, Colin T.; Reigan, Philip; Marks, Michael J.; Petersen, Dennis R.

    2012-01-01

    4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd1 = 0.395 µM and Kd2 = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a

  11. Binding region of alanopine dehydrogenase predicted by unbiased molecular dynamics simulations of ligand diffusion.

    PubMed

    Gohlke, Holger; Hergert, Ulrike; Meyer, Tatu; Mulnaes, Daniel; Grieshaber, Manfred K; Smits, Sander H J; Schmitt, Lutz

    2013-10-28

    Opine dehydrogenases catalyze the reductive condensation of pyruvate with L-amino acids. Biochemical characterization of alanopine dehydrogenase from Arenicola marina revealed that this enzyme is highly specific for L-alanine. Unbiased molecular dynamics simulations with a homology model of alanopine dehydrogenase captured the binding of L-alanine diffusing from solvent to a putative binding region near a distinct helix-kink-helix motif. These results and sequence comparisons reveal how mutations and insertions within this motif dictate the L-amino acid specificity.

  12. NETIMIS: Dynamic Simulation of Health Economics Outcomes Using Big Data.

    PubMed

    Johnson, Owen A; Hall, Peter S; Hulme, Claire

    2016-02-01

    Many healthcare organizations are now making good use of electronic health record (EHR) systems to record clinical information about their patients and the details of their healthcare. Electronic data in EHRs is generated by people engaged in complex processes within complex environments, and their human input, albeit shaped by computer systems, is compromised by many human factors. These data are potentially valuable to health economists and outcomes researchers but are sufficiently large and complex enough to be considered part of the new frontier of 'big data'. This paper describes emerging methods that draw together data mining, process modelling, activity-based costing and dynamic simulation models. Our research infrastructure includes safe links to Leeds hospital's EHRs with 3 million secondary and tertiary care patients. We created a multidisciplinary team of health economists, clinical specialists, and data and computer scientists, and developed a dynamic simulation tool called NETIMIS (Network Tools for Intervention Modelling with Intelligent Simulation; http://www.netimis.com ) suitable for visualization of both human-designed and data-mined processes which can then be used for 'what-if' analysis by stakeholders interested in costing, designing and evaluating healthcare interventions. We present two examples of model development to illustrate how dynamic simulation can be informed by big data from an EHR. We found the tool provided a focal point for multidisciplinary team work to help them iteratively and collaboratively 'deep dive' into big data.

  13. Ab-Initio Molecular Dynamics Simulation of Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.

    2017-01-01

    The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.

  14. Climate Simulations with an Isentropic Finite Volume Dynamical Core

    SciTech Connect

    Chen, Chih-Chieh; Rasch, Philip J.

    2012-04-15

    This paper discusses the impact of changing the vertical coordinate from a hybrid pressure to a hybrid-isentropic coordinate within the finite volume dynamical core of the Community Atmosphere Model (CAM). Results from a 20-year climate simulation using the new model coordinate configuration are compared to control simulations produced by the Eulerian spectral and FV dynamical cores of CAM which both use a pressure-based ({sigma}-p) coordinate. The same physical parameterization package is employed in all three dynamical cores. The isentropic modeling framework significantly alters the simulated climatology and has several desirable features. The revised model produces a better representation of heat transport processes in the atmosphere leading to much improved atmospheric temperatures. We show that the isentropic model is very effective in reducing the long standing cold temperature bias in the upper troposphere and lower stratosphere, a deficiency shared among most climate models. The warmer upper troposphere and stratosphere seen in the isentropic model reduces the global coverage of high clouds which is in better agreement with observations. The isentropic model also shows improvements in the simulated wintertime mean sea-level pressure field in the northern hemisphere.

  15. Analysis of utilization of desert habitats with dynamic simulation

    USGS Publications Warehouse

    Williams, B.K.

    1986-01-01

    The effects of climate and herbivores on cool desert shrubs in north-western Utah were investigated with a dynamic simulation model. Cool desert shrublands are extensively managed as grazing lands, and are defoliated annually by domestic livestock. A primary production model was used to simulate harvest yields and shrub responses under a variety of climatic regimes and defoliation patterns. The model consists of six plant components, and it is based on equations of growth analysis. Plant responses were simulated under various combinations of 20 annual weather patterns and 14 defoliation strategies. Results of the simulations exhibit some unexpected linearities in model behavior, and emphasize the importance of both the pattern of climate and the level of plant vigor in determining optimal harvest strategies. Model behaviors are interpreted in terms of shrub morphology, physiology and ecology.

  16. Survey of Dynamic Simulation Programs for Nuclear Fuel Reprocessing

    SciTech Connect

    Troy J. Tranter; Daryl R. Haefner

    2008-06-01

    The absence of any industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other industries. Modeling programs to simulate the dynamic behavior of nuclear fuel separations and processing were originally developed to support the US government’s mission of weapons production and defense fuel recovery. Consequently there has been little effort is the US devoted towards improving this specific process simulation capability during the last two or three decades. More recent work has been focused on elucidating chemical thermodynamics and developing better models of predicting equilibrium in actinide solvent extraction systems. These equilibrium models have been used to augment flowsheet development and testing primarily at laboratory scales. The development of more robust and complete process models has not kept pace with the vast improvements in computational power and user interface and is significantly behind simulation capability in other chemical processing and separation fields.

  17. Molecular-dynamics simulation of a ceramide bilayer

    NASA Astrophysics Data System (ADS)

    Pandit, Sagar A.; Scott, H. Larry

    2006-01-01

    Ceramide is the simplest lipid in the biologically important class of glycosphingolipids. Ceramide is an important signaling molecule and a major component of the strateum corneum layer in the skin. In order to begin to understand the biophysical properties of ceramide, we have carried out a molecular-dynamics simulation of a hydrated 16:0 ceramide lipid bilayer at 368K (5° above the main phase transition). In this paper we describe the simulation and present the resulting properties of the bilayer. We compare the properties of the simulated ceramide bilayer to an earlier simulation of 18:0 sphingomyelin, and we discuss the results as they relate to experimental data for ceramide and other sphingolipids. The most significant differences arise at the lipid/water interface, where the lack of a large ceramide polar group leads to a different electron density and a different electrostatic potential but, surprisingly, not a different overall "dipole potential," when ceramide is compared to sphingomyelin.

  18. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    NASA Technical Reports Server (NTRS)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  19. Advanced beam-dynamics simulation tools for RIA.

    SciTech Connect

    Garnett, R. W.; Wangler, T. P.; Billen, J. H.; Qiang, J.; Ryne, R.; Crandall, K. R.; Ostroumov, P.; York, R.; Zhao, Q.; Physics; LANL; LBNL; Tech Source; Michigan State Univ.

    2005-01-01

    We are developing multi-particle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. This year will mark the end of our project. In this paper we present the status of the work, describe some recent additions to the codes, and show some preliminary simulation results.

  20. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    SciTech Connect

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube

  1. Lattice Boltzmann simulations of multiple-droplet interaction dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Wenchao; Loney, Drew; Fedorov, Andrei G.; Degertekin, F. Levent; Rosen, David W.

    2014-03-01

    A lattice Boltzmann (LB) formulation, which is consistent with the phase-field model for two-phase incompressible fluid, is proposed to model the interface dynamics of droplet impingement. The interparticle force is derived by comparing the macroscopic transport equations recovered from LB equations with the governing equations of the continuous phase-field model. The inconsistency between the existing LB implementations and the phase-field model in calculating the relaxation time at the phase interface is identified and an approximation is proposed to ensure the consistency with the phase-field model. It is also shown that the commonly used equilibrium velocity boundary for the binary fluid LB scheme does not conserve momentum at the wall boundary and a modified scheme is developed to ensure the momentum conservation at the boundary. In addition, a geometric formulation of the wetting boundary condition is proposed to replace the popular surface energy formulation and results show that the geometric approach enforces the prescribed contact angle better than the surface energy formulation in both static and dynamic wetting. The proposed LB formulation is applied to simulating droplet impingement dynamics in three dimensions and results are compared to those obtained with the continuous phase-field model, the LB simulations reported in the literature, and experimental data from the literature. The results show that the proposed LB simulation approach yields not only a significant speed improvement over the phase-field model in simulating droplet impingement dynamics on a submillimeter length scale, but also better accuracy than both the phase-field model and the previously reported LB techniques when compared to experimental data. Upon validation, the proposed LB modeling methodology is applied to the study of multiple-droplet impingement and interactions in three dimensions, which demonstrates its powerful capability of simulating extremely complex interface

  2. A reliable simulator for dynamic flux balance analysis.

    PubMed

    Höffner, K; Harwood, S M; Barton, P I

    2013-03-01

    Dynamic flux balance analysis (DFBA) provides a platform for detailed design, control and optimization of biochemical process technologies. It is a promising modeling framework that combines genome-scale metabolic network analysis with dynamic simulation of the extracellular environment. Dynamic flux balance analysis assumes that the intracellular species concentrations are in equilibrium with the extracellular environment. The resulting underdetermined stoichiometric model is solved under the assumption of a biochemical objective such as growth rate maximization. The model of the metabolism is coupled with the dynamic mass balance equations of the extracellular environment via expressions for the rates of substrate uptake and product excretion, which imposes additional constraints on the linear program (LP) defined by growth rate maximization of the metabolism. The linear program is embedded into the dynamic model of the bioreactor, and together with the additional constraints this provides an accurate model of the substrate consumption, product secretion, and biomass production during operation. A DFBA model consists of a system of ordinary differential equations for which the evaluation of the right-hand side requires not only function evaluations, but also the solution of one or more linear programs. The numerical tool presented here accurately and efficiently simulates large-scale dynamic flux balance models. The main advantages that this approach has over existing implementation are that the integration scheme has a variable step size, that the linear program only has to be solved when qualitative changes in the optimal flux distribution of the metabolic network occur, and that it can reliably simulate behavior near the boundary of the domain where the model is defined. This is illustrated through large-scale examples taken from the literature.

  3. Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Salsbury, Freddie R.

    2015-01-01

    ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.

  4. Trotter-based simulation of quantum-classical dynamics.

    PubMed

    Kernan, Dónal Mac; Ciccotti, Giovanni; Kapral, Raymond

    2008-01-17

    Quantum rate processes in condensed phase systems are often computed by combining quantum and classical descriptions of the dynamics. An algorithm for simulating the quantum-classical Liouville equation, which describes the dynamics of a quantum subsystem coupled to a classical bath, is presented in this paper. The algorithm is based on a Trotter decomposition of the quantum-classical propagator, in conjunction with Monte Carlo sampling of quantum transitions, to yield a surface-hopping representation of the dynamics. An expression for the nonadiabatic propagator that is responsible for quantum transitions and associated bath momentum changes is derived in a form that is convenient for Monte Carlo sampling and exactly conserves the total energy of the system in individual trajectories. The expectation values of operators or quantum correlation functions can be evaluated by initial sampling of quantum states and use of quantum-classical Liouville dynamics for the time evolution. The algorithm is tested by calculations on the spin-boson model, for which exact quantum results are available, and is shown to reproduce the exact results for stronger nonadiabatic coupling and much longer times using fewer trajectories than other schemes for simulating quantum-classical Liouville dynamics.

  5. Spectral Element Simulations of Rupture Dynamics along kinked faults

    NASA Astrophysics Data System (ADS)

    Vilotte, J.; Festa, G.; Madariaga, R.

    2005-12-01

    Numerical simulation of earthquake source dynamics provides key elements for ground-motion prediction and insights into the physics of dynamic rupture propagation. Faulting is controlled by non-linear frictional interactions and damage within the fault zone. Important features of the earthquakes dynamics, such as rupture velocity, arrest phase and high-frequency radiation are believed to be strongly influenced by the geometry of the faults (kinks, jogs and forks). Data analysis as well as kinematic inversions have pointed out potential links between super-shear and geometry, as in the case of the Denali and Izmit earthquakes. Finally, recent laboratory experiments of sub- and super-shear rupture propagation along kink interfaces have shed new lights on these phenomena. We present here spectral element simulations of the dynamic rupture propagation along kinked and curved fault interfaces, a problem that has been experimentally investigated by Rousseau and Rosakis (2003). Depending on the state of the initial stress, we numerically analyze the mechanics of the dynamical fault branching for sub- and super-shear rupture propagation. Special interest is devoted to source directivity effects and high frequency generation related to the branching process. Implications for strong motion analysis will be discussed. This work was supported by the SPICE - Research and Training project

  6. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    PubMed Central

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-01-01

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. PMID:23579956

  7. Nonholonomic Hamiltonian method for molecular dynamics simulations of reacting shocks

    NASA Astrophysics Data System (ADS)

    Bass, Joseph; Fahrenthold, Eric P.

    2017-01-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general the potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new nonholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations, and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted parameters.

  8. Molecular dynamical simulations of melting behaviors of metal clusters

    SciTech Connect

    Hamid, Ilyar; Fang, Meng; Duan, Haiming

    2015-04-15

    The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.

  9. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  10. Investigation of Ribosomes Using Molecular Dynamics Simulation Methods.

    PubMed

    Makarov, G I; Makarova, T M; Sumbatyan, N V; Bogdanov, A A

    2016-12-01

    The ribosome as a complex molecular machine undergoes significant conformational changes while synthesizing a protein molecule. Molecular dynamics simulations have been used as complementary approaches to X-ray crystallography and cryoelectron microscopy, as well as biochemical methods, to answer many questions that modern structural methods leave unsolved. In this review, we demonstrate that all-atom modeling of ribosome molecular dynamics is particularly useful in describing the process of tRNA translocation, atomic details of behavior of nascent peptides, antibiotics, and other small molecules in the ribosomal tunnel, and the putative mechanism of allosteric signal transmission to functional sites of the ribosome.

  11. Multi-Scale Dynamics, Control, and Simulation of Granular Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Basinger, Scott; Swartzlander, Grover

    2013-01-01

    In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of grains in orbit. An example of application is a spaceborne observatory for exoplanet imaging, where the primary aperture is a cloud instead of a monolithic aperture. A model is proposed of a multi-scale dynamics of the grains and cloud in orbit, as well as a control approach for cloud shape maintenance and alignment, and preliminary simulation studies are carried out for the representative imaging system.

  12. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics.

    PubMed

    Petsev, Nikolai D; Leal, L Gary; Shell, M Scott

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  13. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    SciTech Connect

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  14. Process Modeling and Dynamic Simulation for EAST Helium Refrigerator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofei; Fu, Peng; Zhuang, Ming; Qiu, Lilong; Hu, Liangbing

    2016-06-01

    In this paper, the process modeling and dynamic simulation for the EAST helium refrigerator has been completed. The cryogenic process model is described and the main components are customized in detail. The process model is controlled by the PLC simulator, and the realtime communication between the process model and the controllers is achieved by a customized interface. Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K. Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge. The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future. supported by National Natural Science Foundation of China (No. 51306195) and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS (No. CRYO201408)

  15. Methods for simulating the dynamics of complex biological processes.

    PubMed

    Schilstra, Maria J; Martin, Stephen R; Keating, Sarah M

    2008-01-01

    In this chapter, we provide the basic information required to understand the central concepts in the modeling and simulation of complex biochemical processes. We underline the fact that most biochemical processes involve sequences of interactions between distinct entities (molecules, molecular assemblies), and also stress that models must adhere to the laws of thermodynamics. Therefore, we discuss the principles of mass-action reaction kinetics, the dynamics of equilibrium and steady state, and enzyme kinetics, and explain how to assess transition probabilities and reactant lifetime distributions for first-order reactions. Stochastic simulation of reaction systems in well-stirred containers is introduced using a relatively simple, phenomenological model of microtubule dynamic instability in vitro. We demonstrate that deterministic simulation [by numerical integration of coupled ordinary differential equations (ODE)] produces trajectories that would be observed if the results of many rounds of stochastic simulation of the same system were averaged. In Section V, we highlight several practical issues with regard to the assessment of parameter values. We draw some attention to the development of a standard format for model storage and exchange, and provide a list of selected software tools that may facilitate the model building process, and can be used to simulate the modeled systems.

  16. Petascale Molecular Dynamics Simulations of Polymers and Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael; Brown, W. Michael

    2014-03-01

    The availability of faster and larger supercomputers and more efficient parallel algorithms now enable us to perform unprecedented simulations approaching experimental scales. Here we present two examples of our latest large-scale molecular dynamics simulations using the Titan supercomputer in the Oak Ridge Leadership Computing Facility (OLCF). In the first study, we address the rupture origin of liquid crystal thin films wetting a solid substrate. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation. Importantly, we found evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. In the second study, we used coarse-grained molecular dynamics to simulate the thermal annealing of poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM) blends in the presence of a silicon substrate found in organic solar cells. Our simulations show different phase segregated morphologies dependent on the P3HT chain length and PCBM volume fraction in the blend. Furthermore, the ternary blend of short and long P3HT chains with PCBM affects the vertical phase segregation of PCBM decreasing its concentration in the vicinity of the substrate. U.S. DOE Contract No. DE-AC05-00OR22725.

  17. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    PubMed

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  18. Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water

    NASA Astrophysics Data System (ADS)

    Singer, Philip M.; Asthagiri, Dilip; Chapman, Walter G.; Hirasaki, George J.

    2017-04-01

    Molecular dynamics (MD) simulations are used to investigate 1H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk n-C5H12 to n-C17H36 hydrocarbons and bulk water. The MD simulations of the 1H NMR relaxation times T1,2 in the fast motion regime where T1 =T2 agree with measured (de-oxygenated) T2 data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion DT coefficients calculated using simulation configurations agree with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.

  19. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.

    PubMed

    Özpınar, Gül Altınbaş; Beierlein, Frank R; Peukert, Wolfgang; Zahn, Dirk; Clark, Timothy

    2012-08-01

    Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules.

  20. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  1. The architecture of Newton, a general-purpose dynamics simulator

    NASA Technical Reports Server (NTRS)

    Cremer, James F.; Stewart, A. James

    1989-01-01

    The architecture for Newton, a general-purpose system for simulating the dynamics of complex physical objects, is described. The system automatically formulates and analyzes equations of motion, and performs automatic modification of this system equations when necessitated by changes in kinematic relationships between objects. Impact and temporary contact are handled, although only using simple models. User-directed influence of simulations is achieved using Newton's module, which can be used to experiment with the control of many-degree-of-freedom articulated objects.

  2. Research of TREETOPS Structural Dynamics Controls Simulation Upgrade

    NASA Technical Reports Server (NTRS)

    Yates, Rose M.

    1996-01-01

    Under the provisions of contract number NAS8-40194, which was entitled 'TREETOPS Structural Dynamics and Controls Simulation System Upgrade', Oakwood College contracted to produce an upgrade to the existing TREETOPS suite of analysis tools. This suite includes the main simulation program, TREETOPS, two interactive preprocessors, TREESET and TREEFLX, an interactive post processor, TREEPLOT, and an adjunct program, TREESEL. A 'Software Design Document', which provides descriptions of the argument lists and internal variables for each subroutine in the TREETOPS suite, was established. Additionally, installation guides for both DOS and UNIX platforms were developed. Finally, updated User's Manuals, as well as a Theory Manual, were generated.

  3. Periodic boundary conditions for dislocation dynamics simulations in three dimensions

    SciTech Connect

    Bulatov, V V; Rhee, M; Cai, W

    2000-11-20

    This article presents an implementation of periodic boundary conditions (PBC) for Dislocation Dynamics (DD) simulations in three dimensions (3D). We discuss fundamental aspects of PBC development, including preservation of translational invariance and line connectivity, the choice of initial configurations compatible with PBC and a consistent treatment of image stress. On the practical side, our approach reduces to manageable proportions the computational burden of updating the long-range elastic interactions among dislocation segments. The timing data confirms feasibility and practicality of PBC for large-scale DD simulations in 3D.

  4. Using collective variables to drive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme

    2013-12-01

    A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.

  5. Molecular dynamics simulation of threshold displacement energies in zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.

    2009-10-15

    Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.

  6. Superionicity in Na3 PO4 : A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yin, Wei-Guo; Liu, Jianjun; Duan, Chun-Gang; Mei, W. N.; Smith, R. W.; Hardy, J. R.

    2004-08-01

    Fast ionic conduction in solid Na3PO4 is studied by use of molecular dynamics simulation based on the modified Lu -Hardy approach. We obtain reasonable agreement with experiment for the structural transition and diffusion of the sodium ions. All the sodium ions are found to contribute comparably to the high ionic conductivity. The results of the simulation are discussed in terms of the relative magnitude of the two proposed transport mechanisms: percolation and paddle-wheel. It appears to us that the percolation mechanism dominates the sodium diffusion.

  7. The very local Hubble flow: Computer simulations of dynamical history

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Makarov, D. I.

    2004-02-01

    The phenomenon of the very local (≤3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the ``initial conditions'' of the flow are drastically different from the linear velocity-distance relation. The simulations enable one also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by the cosmic vacuum.

  8. Structural considerations for a software life cycle dynamic simulation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.; Mckenzie, M.; Lin, C. Y.

    1983-01-01

    This paper presents the results of a preliminary study into the prospects for simulating the software implementation and maintenance life cycle process, with the aim of producing a computerized tool for use by management and software engineering personnel in project planning, tradeoff studies involving product, environmental, situational, and technological factors, and training. The approach taken is the modular application of a 'flow of resource' concept to the systems dynamics simulation modeling technique. The software life cycle process is represented as a number of stochastic, time-varying, interacting work tasks that each achieves one of the project milestones. Each task is characterized by the item produced, the personnel applied, and the budgetary profile.

  9. Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions.

    PubMed Central

    Pandit, Sagar A; Berkowitz, Max L

    2002-01-01

    We performed a molecular dynamics simulation of dipalmitoylphosphatidylserine (DPPS) bilayer with Na+ counterions. We found that hydrogen bonding between the NH group and the phosphate group leads to a reduction in the area per headgroup when compared to the area in dipalmitoylphosphatidylcholine bilayer. The Na+ ions bind to the oxygen in the carboxyl group of serine, thus giving rise to a dipolar bilayer similar to dipalmitoylphosphatidylethanolamine bilayer. The results of the simulation show that counterions play a crucial role in determining the structural and electrostatic properties of DPPS bilayer. PMID:11916841

  10. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  11. Finite-size effects in dissipative particle dynamics simulations.

    PubMed

    Velázquez, María Eugenia; Gama-Goicochea, Armando; González-Melchor, Minerva; Neria, Maricela; Alejandre, José

    2006-02-28

    We have performed dissipative particle dynamics (DPD) simulations to evaluate the effect that finite size of transversal area has on stress anisotropy and interfacial tension. The simulations were carried out in one phase and two phases in parallelepiped cells. In one-phase simulations there is no finite-size effect on stress anisotropy when the simulation is performed using repulsive forces. However, an oscillatory function of stress anisotropy is found for attractive-repulsive interactions. In the case of liquid-liquid interfaces with repulsive interaction between molecules, there is only a small effect of surface area on interfacial tension when the simulations are performed using the Monte Carlo method at constant temperature and normal pressure. An important but artificial finite-size effect of interfacial area on surface tension is found in simulations in the canonical ensemble. Reliable results of interfacial tension from DPD simulations can be obtained using small systems, less than 2000 particles, when they interact exclusively with repulsive forces.

  12. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  13. ICT-Based Dynamic Assessment to Reveal Special Education Students' Potential in Mathematics

    ERIC Educational Resources Information Center

    Peltenburg, Marjolijn; van den Heuvel-Panhuizen, Marja; Robitzsch, Alexander

    2010-01-01

    This paper reports on a research project on information and communication technology (ICT)-based dynamic assessment. The project aims to reveal the mathematical potential of students in special education. The focus is on a topic that is generally recognised as rather difficult for weak students: subtraction up to 100 with crossing the ten. The…

  14. Grain-level simulation of dynamic failure in ceramic materials

    NASA Astrophysics Data System (ADS)

    Maiti, Spandan

    2002-04-01

    Advanced ceramic materials are finding increasing use in different adverse mechanical and chemical situations due to their good mechanical properties, corrosion resistance and thermal stability. Their wider use is however impeded by their brittleness, especially in applications involving dynamic loads, in which dynamic fracture and fragmentation events are often observed. Most of the research aimed at the understanding of dynamic crack initiation and propagation mechanisms in this class of materials do not take into account the inherent granular microstructure of ceramics. In this project, we develop a grain-based finite element scheme that allows for the mesoscale study of a range of dynamic failure events in granular media, including propagation and branching of inter-granular cracks and fragmentation. The scheme relies on Voronoi tessellation to generate the granular microstructure and on a 2-D explicit cohesive/volumetric finite element (CVFE) scheme to simulate the constitutive and failure response of the material under dynamic loads. A non-linear kinematics description is used in our analysis to account for the possible large deformations and/or rotations of the grains during the fracture event. A viscoplastic update algorithm is also introduced to model problems (such as dynamic indentation and grinding) for which localized plasticity plays a key role. The numerical scheme finally relies on robust contact search and enforcement algorithms to capture the complex contact events between fracture surfaces, between individual grains and between the impactor/tool and the ceramic specimen. To demonstrate the capabilities and versatility of the grain-based CVFE code, we investigate four dynamic fracture problems. The first one is concerned with the propagation of dynamic intergranular cracks under mode I loading, with special emphasis on the effect of the microstructure on the branching instability of the crack motion. The second problem is that of dynamic fracture

  15. Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation

    PubMed Central

    Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald

    2016-01-01

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107

  16. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation.

    PubMed

    Doshi, Urmi; Holliday, Michael J; Eisenmesser, Elan Z; Hamelberg, Donald

    2016-04-26

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue-residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coup