Engine management during NTRE start up
NASA Technical Reports Server (NTRS)
Bulman, Mel; Saltzman, Dave
1993-01-01
The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.
Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl
1996-01-01
A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.
Using an operator training simulator in the undergraduate chemical engineering curriculim
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, D.; Turton, R.; Zitney, S.
2012-01-01
An operator training simulator (OTS) is to the chemical engineer what a flight simulator is to the aerospace engineer. The basis of an OTS is a high-fidelity dynamic model of a chemical process that allows an engineer to simulate start-up, shut-down, and normal operation. It can also be used to test the skill and ability of an engineer or operator to respond and control some unforeseen situation(s) through the use of programmed malfunctions. West Virginia University (WVU) is a member of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA). Working through the NETL-RUA, the authors have spent the lastmore » four years collaborating on the development of a high-fidelity OTS for an Integrated Gasification Combined Cycle (IGCC) power plant with CO{sub 2} capture that is the cornerstone of the AVESTARTM (Advanced Virtual Energy Simulation Training And Research) Center with sister facilities at NETL and WVU in Morgantown, WV. This OTS is capable of real-time dynamic simulation of IGCC plant operation, including start-up, shut-down, and power demand load following. The dynamic simulator and its human machine interfaces (HMIs) are based on the DYNSIM and InTouch software, respectively, from Invensys Operations Management. The purpose of this presentation is to discuss the authors’ experiences in using this sophisticated dynamic simulation-based OTS as a hands-on teaching tool in the undergraduate chemical engineering curriculum. At present, the OTS has been used in two separate courses: a new process simulation course and a traditional process control course. In the process simulation course, concepts of steady-state and dynamic simulations were covered prior to exposing the students to the OTS. Moreover, digital logic and the concept of equipment requiring one or more permissive states to be enabled prior to successful operation were also covered. Students were briefed about start-up procedures and the importance of following a predetermined sequence of actions in order to start-up the plant successfully. Student experience with the dynamic simulator consisted of a six-hour training session in which the Claus sulfur capture unit of the IGCC plant was started up. The students were able to operate the simulator through the InTouch-based HMI displays and study and understand the underlying dynamic modeling approach used in the DYNSIM-based simulator. The concepts learned during the training sessions were further reinforced when students developed their own DYNSIM models for a chemical process and wrote a detailed start-up procedure. In the process control course, students learned how the plant responds dynamically to changes in the manipulated inputs, as well as how the control system impacts plant performance, stability, robustness and disturbance rejection characteristics. The OTS provided the opportunity to study the dynamics of complicated, “real-life” process plants consisting of hundreds of pieces of equipment. Students implemented ideal forcing functions, tracked the time-delay through the entire plant, studied the response of open-loop unstable systems, and learned “good practices” in control system design by taking into account the real-world events where significant deviations from the “ideal” or “expected” response can occur. The theory of closed-loop stability was reinforced by implementing limiting proportional gain for stability limits of real plants. Finally, students were divided into several groups where each group was tasked to control a section of the plant within a set of operating limits in the face of disturbances and simulated process faults. At the end of this test, they suggested ways to improve the control system performance based on the theory they learned in class and the hands-on experience they earned while working on the OTS.« less
Brigo, Alessandro; Lee, Keun Woo; Iurcu Mustata, Gabriela; Briggs, James M.
2005-01-01
HIV-1 integrase (IN) is an essential enzyme for the viral replication and an interesting target for the design of new pharmaceuticals for multidrug therapy of AIDS. Single and multiple mutations of IN at residues T66, S153, or M154 confer degrees of resistance to several inhibitors that prevent the enzyme from performing its normal strand transfer activity. Four different conformations of IN were chosen from a prior molecular dynamics (MD) simulation on the modeled IN T66I/M154I catalytic core domain as starting points for additional MD studies. The aim of this article is to understand the dynamic features that may play roles in the catalytic activity of the double mutant enzyme in the absence of any inhibitor. Moreover, we want to verify the influence of using different starting points on the MD trajectories and associated dynamical properties. By comparison of the trajectories obtained from these MD simulations we have demonstrated that the starting point does not affect the conformational space explored by this protein and that the time of the simulation is long enough to achieve convergence for this system. PMID:15764656
FEM Simulation of Small Wind Power Generating System Using PMSG
NASA Astrophysics Data System (ADS)
Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke
The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.
Kannan, Srinivasaraghavan; Zacharias, Martin
2014-01-01
The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully extended as well as from partially folded Trp-cage structures a series of molecular dynamics simulations in explicit solvent and using four different force fields was performed. All simulations resulted in rapid collapse of the protein to on average relatively compact states. The simulations indicate a significant dependence of the speed of folding to near-native states on the side chain rotamer state of the central Trp residue. Whereas the majority of intermediate start structures with the central Trp side chain in a near-native rotameric state folded successfully within less than 100 ns only a fraction of start structures reached near-native folded states with an initially non-native Trp side chain rotamer state. Weak restraining of the Trp side chain dihedral angles to the state in the folded protein resulted in significant acceleration of the folding both starting from fully extended or intermediate conformations. The results indicate that the side chain conformation of the central Trp residue can create a significant barrier for controlling transitions to a near native folded structure. Similar mechanisms might be of importance for the folding of other protein structures. PMID:24563686
Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.
Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal
2014-05-15
We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.
VHDL-AMS modelling and simulation of a planar electrostatic micromotor
NASA Astrophysics Data System (ADS)
Endemaño, A.; Fourniols, J. Y.; Camon, H.; Marchese, A.; Muratet, S.; Bony, F.; Dunnigan, M.; Desmulliez, M. P. Y.; Overton, G.
2003-09-01
System level simulation results of a planar electrostatic micromotor, based on analytical models of the static and dynamic torque behaviours, are presented. A planar variable capacitance (VC) electrostatic micromotor designed, fabricated and tested at LAAS (Toulouse) in 1995 is simulated using the high level language VHDL-AMS (VHSIC (very high speed integrated circuits) hardware description language-analog mixed signal). The analytical torque model is obtained by first calculating the overlaps and capacitances between different electrodes based on a conformal mapping transformation. Capacitance values in the order of 10-16 F and torque values in the order of 10-11 N m have been calculated in agreement with previous measurements and simulations from this type of motor. A dynamic model has been developed for the motor by calculating the inertia coefficient and estimating the friction-coefficient-based values calculated previously for other similar devices. Starting voltage results obtained from experimental measurement are in good agreement with our proposed simulation model. Simulation results of starting voltage values, step response, switching response and continuous operation of the micromotor, based on the dynamic model of the torque, are also presented. Four VHDL-AMS blocks were created, validated and simulated for power supply, excitation control, micromotor torque creation and micromotor dynamics. These blocks can be considered as the initial phase towards the creation of intellectual property (IP) blocks for microsystems in general and electrostatic micromotors in particular.
Pressure calculation in hybrid particle-field simulations
NASA Astrophysics Data System (ADS)
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-01
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
Guenot, J.; Kollman, P. A.
1992-01-01
Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable. PMID:1304396
Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset.
Shirts, Michael R; Klein, Christoph; Swails, Jason M; Yin, Jian; Gilson, Michael K; Mobley, David L; Case, David A; Zhong, Ellen D
2017-01-01
We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to better than 0.1 % relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb's constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison.
Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset
Shirts, Michael R.; Klein, Christoph; Swails, Jason M.; Yin, Jian; Gilson, Michael K.; Mobley, David L.; Case, David A.; Zhong, Ellen D.
2017-01-01
We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to a better than 0.1% relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb’s constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison. PMID:27787702
Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset
NASA Astrophysics Data System (ADS)
Shirts, Michael R.; Klein, Christoph; Swails, Jason M.; Yin, Jian; Gilson, Michael K.; Mobley, David L.; Case, David A.; Zhong, Ellen D.
2017-01-01
We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to better than 0.1 % relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb's constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison.
Cold start dynamics and temperature sliding observer design of an automotive SOFC APU
NASA Astrophysics Data System (ADS)
Lin, Po-Hsu; Hong, Che-Wun
This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.
Metrics for comparing dynamic earthquake rupture simulations
Barall, Michael; Harris, Ruth A.
2014-01-01
Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.
Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.
Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru
2014-03-28
A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.
Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins
NASA Astrophysics Data System (ADS)
Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru
2014-03-01
A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.
Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi
2008-03-01
In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.
Reddy, M Rami; Erion, Mark D
2009-12-01
Molecular dynamics (MD) simulations in conjunction with thermodynamic perturbation approach was used to calculate relative solvation free energies of five pairs of small molecules, namely; (1) methanol to ethane, (2) acetone to acetamide, (3) phenol to benzene, (4) 1,1,1 trichloroethane to ethane, and (5) phenylalanine to isoleucine. Two studies were performed to evaluate the dependence of the convergence of these calculations on MD simulation length and starting configuration. In the first study, each transformation started from the same well-equilibrated configuration and the simulation length was varied from 230 to 2,540 ps. The results indicated that for transformations involving small structural changes, a simulation length of 860 ps is sufficient to obtain satisfactory convergence. In contrast, transformations involving relatively large structural changes, such as phenylalanine to isoleucine, require a significantly longer simulation length (>2,540 ps) to obtain satisfactory convergence. In the second study, the transformation was completed starting from three different configurations and using in each case 860 ps of MD simulation. The results from this study suggest that performing one long simulation may be better than averaging results from three different simulations using a shorter simulation length and three different starting configurations.
Entanglement dynamics in critical random quantum Ising chain with perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yichen, E-mail: ychuang@caltech.edu
We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.
Gravity Modeling Effects on Surface-Interacting Vehicles in Supersonic Flight
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2010-01-01
A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations per-form ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of these two models. A surface-interacting simulation cannot treat gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a supersonic aircraft in level flight under various start-ing conditions.
NASA Astrophysics Data System (ADS)
Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas
2018-03-01
Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.
Novel changes in discoidal high density lipoprotein morphology: a molecular dynamics study.
Catte, Andrea; Patterson, James C; Jones, Martin K; Jerome, W Gray; Bashtovyy, Denys; Su, Zhengchang; Gu, Feifei; Chen, Jianguo; Aliste, Marcela P; Harvey, Stephen C; Li, Ling; Weinstein, Gilbert; Segrest, Jere P
2006-06-15
ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 angstroms and 78 angstroms by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules.
Novel Changes in Discoidal High Density Lipoprotein Morphology: A Molecular Dynamics Study
Catte, Andrea; Patterson, James C.; Jones, Martin K.; Jerome, W. Gray; Bashtovyy, Denys; Su, Zhengchang; Gu, Feifei; Chen, Jianguo; Aliste, Marcela P.; Harvey, Stephen C.; Li, Ling; Weinstein, Gilbert; Segrest, Jere P.
2006-01-01
ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 Å and 78 Å by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules. PMID:16581834
Brownian dynamics simulation of rigid particles of arbitrary shape in external fields.
Fernandes, Miguel X; de la Torre, José García
2002-12-01
We have developed a Brownian dynamics simulation algorithm to generate Brownian trajectories of an isolated, rigid particle of arbitrary shape in the presence of electric fields or any other external agents. Starting from the generalized diffusion tensor, which can be calculated with the existing HYDRO software, the new program BROWNRIG (including a case-specific subprogram for the external agent) carries out a simulation that is analyzed later to extract the observable dynamic properties. We provide a variety of examples of utilization of this method, which serve as tests of its performance, and also illustrate its applicability. Examples include free diffusion, transport in an electric field, and diffusion in a restricting environment.
Excess protons in water-acetone mixtures. II. A conductivity study.
Semino, Rocío; Longinotti, M Paula
2013-10-28
In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion.
A framework for stochastic simulations and visualization of biological electron-transfer dynamics
NASA Astrophysics Data System (ADS)
Nakano, C. Masato; Byun, Hye Suk; Ma, Heng; Wei, Tao; El-Naggar, Mohamed Y.
2015-08-01
Electron transfer (ET) dictates a wide variety of energy-conversion processes in biological systems. Visualizing ET dynamics could provide key insight into understanding and possibly controlling these processes. We present a computational framework named VizBET to visualize biological ET dynamics, using an outer-membrane Mtr-Omc cytochrome complex in Shewanella oneidensis MR-1 as an example. Starting from X-ray crystal structures of the constituent cytochromes, molecular dynamics simulations are combined with homology modeling, protein docking, and binding free energy computations to sample the configuration of the complex as well as the change of the free energy associated with ET. This information, along with quantum-mechanical calculations of the electronic coupling, provides inputs to kinetic Monte Carlo (KMC) simulations of ET dynamics in a network of heme groups within the complex. Visualization of the KMC simulation results has been implemented as a plugin to the Visual Molecular Dynamics (VMD) software. VizBET has been used to reveal the nature of ET dynamics associated with novel nonequilibrium phase transitions in a candidate configuration of the Mtr-Omc complex due to electron-electron interactions.
Electronic polarization stabilizes tertiary structure prediction of HP-36.
Duan, Li L; Zhu, Tong; Zhang, Qing G; Tang, Bo; Zhang, John Z H
2014-04-01
Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.
Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics
Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej
2013-01-01
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems. PMID:23665897
Spin glass model for dynamics of cell reprogramming
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.
2015-03-01
Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor to another attractor. We perform Monte Carlo simulations in a simple model of the landscape. This model is based on spin glass theory and it can be used to construct a simulated epigenetic landscape starting from the experimental genomic data. We re-analyse data from several cell reprogramming experiments and compare with our simulation results. We find that the model can reproduce some of the main features of the dynamics of cell reprogramming.
Galindo-Murillo, Rodrigo; Roe, Daniel R; Cheatham, Thomas E
2015-05-01
The structure and dynamics of DNA are critically related to its function. Molecular dynamics simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Molecular dynamics simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale molecular dynamics performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. These molecular dynamics simulations-including one of the longest simulations of DNA published to date at ~44μs-surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1-5μs timescale. We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. With access to large-scale GPU resources or the specialized MD engine "Anton" it is possible for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. This article is part of a Special Issue entitled: Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Brown, S. C.
1973-01-01
A computer simulation of the YF-12 aircraft motions and propulsion system dynamics is presented. The propulsion system was represented in sufficient detail so that interactions between aircraft motions and the propulsion system dynamics could be investigated. Six degree-of-freedom aircraft motions together with the three-axis stability augmentation system were represented. The mixed compression inlets and their controls were represented in the started mode for a range of flow conditions up to the inlet unstart boundary. Effects of inlet moving geometry on aircraft forces and movements as well as effects of aircraft motions on the inlet behavior were simulated. The engines, which are straight subjects, were represented in the afterburning mode, with effects of changes in aircraft flight conditions included. The simulation was capable of operating in real time.
Convergence of Free Energy Profile of Coumarin in Lipid Bilayer
2012-01-01
Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from “pulling” coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives. PMID:22545027
Convergence of Free Energy Profile of Coumarin in Lipid Bilayer.
Paloncýová, Markéta; Berka, Karel; Otyepka, Michal
2012-04-10
Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.
Hamiltonian quantum simulation with bounded-strength controls
NASA Astrophysics Data System (ADS)
Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza
2014-04-01
We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.
Simulating the dynamics of the mechanochemical cycle of myosin-V
Mukherjee, Shayantani; Alhadeff, Raphael; Warshel, Arieh
2017-01-01
The detailed dynamics of the cycle of myosin-V are explored by simulation approaches, examining the nature of the energy-driven motion. Our study started with Langevin dynamics (LD) simulations on a very coarse landscape with a single rate-limiting barrier and reproduced the stall force and the hand-over-hand dynamics. We then considered a more realistic landscape and used time-dependent Monte Carlo (MC) simulations that allowed trajectories long enough to reproduce the force/velocity characteristic sigmoidal correlation, while also reproducing the hand-over-hand motion. Overall, our study indicated that the notion of a downhill lever-up to lever-down process (popularly known as the powerstroke mechanism) is the result of the energetics of the complete myosin-V cycle and is not the source of directional motion or force generation on its own. The present work further emphasizes the need to use well-defined energy landscapes in studying molecular motors in general and myosin in particular. PMID:28193897
Protocols for efficient simulations of long-time protein dynamics using coarse-grained CABS model.
Jamroz, Michal; Kolinski, Andrzej; Kmiecik, Sebastian
2014-01-01
Coarse-grained (CG) modeling is a well-acknowledged simulation approach for getting insight into long-time scale protein folding events at reasonable computational cost. Depending on the design of a CG model, the simulation protocols vary from highly case-specific-requiring user-defined assumptions about the folding scenario-to more sophisticated blind prediction methods for which only a protein sequence is required. Here we describe the framework protocol for the simulations of long-term dynamics of globular proteins, with the use of the CABS CG protein model and sequence data. The simulations can start from a random or a selected (e.g., native) structure. The described protocol has been validated using experimental data for protein folding model systems-the prediction results agreed well with the experimental results.
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel
2003-01-01
This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.
NASA Astrophysics Data System (ADS)
Tokarczyk, Jarosław
2016-12-01
Method for identification the effects of dynamic overload affecting the people, which may occur in the emergency state of suspended monorail is presented in the paper. The braking curve using MBS (Multi-Body System) simulation was determined. For this purpose a computational model (MBS) of suspended monorail was developed and two different variants of numerical calculations were carried out. An algorithm of conducting numerical simulations to assess the effects of dynamic overload acting on the suspended monorails' users is also posted in the paper. An example of computational model FEM (Finite Element Method) composed of technical mean and the anthropometrical model ATB (Articulated Total Body) is shown. The simulation results are presented: graph of HIC (Head Injury Criterion) parameter and successive phases of dislocation of ATB model. Generator of computational models for safety criterion, which enables preparation of input data and remote starting the simulation, is proposed.
Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging
Dai, Yunpeng; Chen, Xueli; Yin, Jipeng; Wang, Guodong; Wang, Bo; Zhan, Yonghua; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin
2018-01-01
Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo. The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential (BP) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations. PMID:29675325
Impact of chemical plant start-up emissions on ambient ozone concentration
NASA Astrophysics Data System (ADS)
Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas
2017-09-01
Flare emissions, especially start-up flare emissions, during chemical plant operations generate large amounts of ozone precursors that may cause highly localized and transient ground-level ozone increment. Such an adverse ozone impact could be aggravated by the synergies of multiple plant start-ups in an industrial zone. In this paper, a systematic study on ozone increment superposition due to chemical plant start-up emissions has been performed. It employs dynamic flaring profiles of two olefin plants' start-ups to investigate the superposition of the regional 1-hr ozone increment. It also summaries the superposition trend by manipulating the starting time (00:00-10:00) of plant start-up operations and the plant distance (4-32 km). The study indicates that the ozone increment induced by simultaneous start-up emissions from multiple chemical plants generally does not follow the linear superposition of the ozone increment induced by individual plant start-ups. Meanwhile, the trend of such nonlinear superposition related to the temporal (starting time and operating hours of plant start-ups) and spatial (plant distance) factors is also disclosed. This paper couples dynamic simulations of chemical plant start-up operations with air-quality modeling and statistical methods to examine the regional ozone impact. It could be helpful for technical decision support for cost-effective air-quality and industrial flare emission controls.
Molecular Dynamics Simulation of the Cage Effect in a Wide Packing Fraction Range
NASA Astrophysics Data System (ADS)
Pestryaev, E. M.
2018-07-01
The self-diffusion coefficient and particle residence time in the first coordination shell of its neighbours were investigated by molecular dynamics simulation with the packing fraction of the model system ranging from 0.1 to 0.8. The residence time distribution spans several orders of magnitude and broadens with the system packing fraction. The distribution exhibits a maximum localized in the short residence time region. The average residence time correlates with the conventionally-used intermolecular correlation time governed by the mutual particle translational diffusion. It was shown that the use of the coordination number as an argument for all searched parameters is the obvious representation of the cage effect onset. The agreement of the self-diffusion coefficient with one of the recent theories is excellent in most of the density range, including the start of the glass transition, with the largest divergence only observed for the rare gas state. The same conclusion is true for the simulated and theoretical values of the caging number, which is nearly five, defining the start of the system liquefaction.
Computational Modeling of the Dolphin Kick in Competitive Swimming
NASA Astrophysics Data System (ADS)
Loebbeck, A.; Mark, R.; Bhanot, G.
2005-11-01
Numerical simulations are being used to study the fluid dynamics of the dolphin kick in competitive swimming. This stroke is performed underwater after starts and turns and involves an undulatory motion of the body. Highly detailed laser body scans of elite swimmers are used and the kinematics of the dolphin kick is recreated from videos of Olympic level swimmers. We employ a parallelized immersed boundary method to simulate the flow associated with this stroke in all its complexity. The simulations provide a first of its kind glimpse of the fluid and vortex dynamics associated with this stroke and hydrodynamic force computations allow us to gain a better understanding of the thrust producing mechanisms.
Achieving Rigorous Accelerated Conformational Sampling in Explicit Solvent.
Doshi, Urmi; Hamelberg, Donald
2014-04-03
Molecular dynamics simulations can provide valuable atomistic insights into biomolecular function. However, the accuracy of molecular simulations on general-purpose computers depends on the time scale of the events of interest. Advanced simulation methods, such as accelerated molecular dynamics, have shown tremendous promise in sampling the conformational dynamics of biomolecules, where standard molecular dynamics simulations are nonergodic. Here we present a sampling method based on accelerated molecular dynamics in which rotatable dihedral angles and nonbonded interactions are boosted separately. This method (RaMD-db) is a different implementation of the dual-boost accelerated molecular dynamics, introduced earlier. The advantage is that this method speeds up sampling of the conformational space of biomolecules in explicit solvent, as the degrees of freedom most relevant for conformational transitions are accelerated. We tested RaMD-db on one of the most difficult sampling problems - protein folding. Starting from fully extended polypeptide chains, two fast folding α-helical proteins (Trpcage and the double mutant of C-terminal fragment of Villin headpiece) and a designed β-hairpin (Chignolin) were completely folded to their native structures in very short simulation time. Multiple folding/unfolding transitions could be observed in a single trajectory. Our results show that RaMD-db is a promisingly fast and efficient sampling method for conformational transitions in explicit solvent. RaMD-db thus opens new avenues for understanding biomolecular self-assembly and functional dynamics occurring on long time and length scales.
Adaptive Integration of Nonsmooth Dynamical Systems
2017-10-11
controlled time stepping method to interactively design running robots. [1] John Shepherd, Samuel Zapolsky, and Evan M. Drumwright, “Fast multi-body...software like this to test software running on my robots. Started working in simulation after attempting to use software like this to test software... running on my robots. The libraries that produce these beautiful results have failed at simulating robotic manipulation. Postulate: It is easier to
Galindo-Murillo, Rodrigo; Roe, Daniel R.; Cheatham, Thomas E.
2014-01-01
Background The structure and dynamics of DNA are critically related to its function. Molecular dynamics (MD) simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Methods MD simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale MD performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. Results These MD simulations —including one of the longest simulations of DNA published to date at ~44 μs—surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1–5 μs timescale. Conclusions We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. General Significance With access to large-scale GPU resources or the specialized MD engine “Anton” it is possibly for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. PMID:25219455
A stochastic hybrid model for pricing forward-start variance swaps
NASA Astrophysics Data System (ADS)
Roslan, Teh Raihana Nazirah
2017-11-01
Recently, market players have been exposed to the astounding increase in the trading volume of variance swaps. In this paper, the forward-start nature of a variance swap is being inspected, where hybridizations of equity and interest rate models are used to evaluate the price of discretely-sampled forward-start variance swaps. The Heston stochastic volatility model is being extended to incorporate the dynamics of the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. This is essential since previous studies on variance swaps were mainly focusing on instantaneous-start variance swaps without considering the interest rate effects. This hybrid model produces an efficient semi-closed form pricing formula through the development of forward characteristic functions. The performance of this formula is investigated via simulations to demonstrate how the formula performs for different sampling times and against the real market scenario. Comparison done with the Monte Carlo simulation which was set as our main reference point reveals that our pricing formula gains almost the same precision in a shorter execution time.
Golebiowski, Jérôme; Antonczak, Serge; Di-Giorgio, Audrey; Condom, Roger; Cabrol-Bass, Daniel
2004-02-01
The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.
Beam dynamics simulation of a double pass proton linear accelerator
Hwang, Kilean; Qiang, Ji
2017-04-03
A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less
The new car following model considering vehicle dynamics influence and numerical simulation
NASA Astrophysics Data System (ADS)
Sun, Dihua; Liu, Hui; Zhang, Geng; Zhao, Min
2015-12-01
In this paper, the car following model is investigated by considering the vehicle dynamics in a cyber physical view. In fact, that driving is a typical cyber physical process which couples the cyber aspect of the vehicles' information and driving decision tightly with the dynamics and physics of the vehicles and traffic environment. However, the influence from the physical (vehicle) view was been ignored in the previous car following models. In order to describe the car following behavior more reasonably in real traffic, a new car following model by considering vehicle dynamics (for short, D-CFM) is proposed. In this paper, we take the full velocity difference (FVD) car following model as a case. The stability condition is given on the base of the control theory. The analytical method and numerical simulation results show that the new models can describe the evolution of traffic congestion. The simulations also show vehicles with a more actual acceleration of starting process than early models.
Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul
2009-10-01
Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.
Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo
2015-02-01
This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Allnér, Olof; Foloppe, Nicolas; Nilsson, Lennart
2015-01-22
Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the trajectory into 10 replicas with different starting velocities.
Modelling, simulation and applications of longitudinal train dynamics
NASA Astrophysics Data System (ADS)
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation
NASA Astrophysics Data System (ADS)
Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting
2017-07-01
To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project
The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.
Hubley, Emily; Pierce, Greg
2017-08-01
Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Duan, Li L; Gao, Ya; Mei, Ye; Zhang, Qing G; Tang, Bo; Zhang, John Z H
2012-03-15
Multiple single-trajectory molecular dynamics (MD) simulation at room temperature (300 K) in explicit water was carried out to study the folding dynamics of an α-helix (PDB 2I9M ) using a polarized charge scheme that includes electronic polarization of backbone hydrogen bonds. Starting from an extended conformation, the 17-residue peptide was successfully folded into the native structure (α-helix) between 80 and 130 ns with a root-mean-square deviation of ~1.0 Å. Analysis of the time-dependent trajectories revealed that helix formation of the peptide started at the terminals and progressed toward the center of the peptide. For comparison, MD trajectories generated under various versions of standard AMBER force fields failed to show any significant or stable helix formation in our simulation. Our result shows clear evidence that the electronic polarization of backbone hydrogen bonds energetically stabilizes the helix formation and is critical to the stable folding of the short helix structure. © 2012 American Chemical Society
Free Energy Reconstruction from Metadynamics or Adiabatic Free Energy Dynamics Simulations.
Cuendet, Michel A; Tuckerman, Mark E
2014-08-12
In molecular dynamics simulations, most enhanced sampling methods are traditionally associated with one particular estimator to calculate the free energy surface (FES), such as the histogram, the mean force, or the bias potential. Here, we start from the realization that four enhanced sampling methods, metadynamics and well-tempered metadynamics (in their extended Lagrangian form), as well as driven adiabatic free energy dynamics (dAFED) and unified free energy dynamics (UFED), can be used in combination with any of the three above-mentioned FES estimators. We compare the convergence properties of these estimators on the alanine dipeptide and a sodium ion solvation shell. We find that the mean force estimator is superior in all cases. We also show that it can be marginally beneficial to combine information from the histogram and the force, provided that both are of comparable accuracy.
A quantitative dynamic systems model of health-related quality of life among older adults
Roppolo, Mattia; Kunnen, E Saskia; van Geert, Paul L; Mulasso, Anna; Rabaglietti, Emanuela
2015-01-01
Health-related quality of life (HRQOL) is a person-centered concept. The analysis of HRQOL is highly relevant in the aged population, which is generally suffering from health decline. Starting from a conceptual dynamic systems model that describes the development of HRQOL in individuals over time, this study aims to develop and test a quantitative dynamic systems model, in order to reveal the possible dynamic trends of HRQOL among older adults. The model is tested in different ways: first, with a calibration procedure to test whether the model produces theoretically plausible results, and second, with a preliminary validation procedure using empirical data of 194 older adults. This first validation tested the prediction that given a particular starting point (first empirical data point), the model will generate dynamic trajectories that lead to the observed endpoint (second empirical data point). The analyses reveal that the quantitative model produces theoretically plausible trajectories, thus providing support for the calibration procedure. Furthermore, the analyses of validation show a good fit between empirical and simulated data. In fact, no differences were found in the comparison between empirical and simulated final data for the same subgroup of participants, whereas the comparison between different subgroups of people resulted in significant differences. These data provide an initial basis of evidence for the dynamic nature of HRQOL during the aging process. Therefore, these data may give new theoretical and applied insights into the study of HRQOL and its development with time in the aging population. PMID:26604722
Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Wang, John; Trout, Bernhardt L
2016-05-12
An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations. For the (•)OOH reactions, addition to the pyrrole ring at position 2 is the most favored pathway, in contrast to the situation in the model system ethylene, where concerted addition to the double bond is preferred. From the (•)OOH position 2 adduct QM/MM simulations show that formation of oxy-3-indolanaline occurs readily in an aqueous environment. The observed transformation starts from an initial rupture of the O-O bond followed by a H atom transfer with the accompanying loss of an (•)OH radical to solution. Finally, classical molecular dynamics simulations were performed to equate observed differential oxidation rates of various tryptophan residues in monoclonal antibody fragments. It was found that simple parameters derived from simulation correlate well with the experimental data.
Evoli, Stefania; Guzzi, Rita; Rizzuti, Bruno
2013-10-01
The spectroscopic, thermal, and functional properties of blue copper proteins can be modulated by mutations in the metal binding loop. Molecular dynamics simulation was used to compare the conformational properties of azurin and two chimeric variants, which were obtained by inserting into the azurin scaffold the copper binding loop of amicyanin and plastocyanin, respectively. Simulations at room temperature show that the proteins retain their overall structure and exhibit concerted motions among specific inner regions, as revealed by principal component analysis. Molecular dynamics at high temperature indicates that the first events in the unfolding pathway are structurally similar in the three proteins and unfolding starts from the region of the α-helix that is far from the metal binding loop. The results provide details of the denaturation process that are consistent with experimental data and in close agreement with other computational approaches, suggesting a distinct mechanism of unfolding of azurin and its chimeric variants. Moreover, differences observed in the dynamics of specific regions in the three proteins correlate with their thermal behavior, contributing to the determination of the basic factors that influence the stability.
Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott
2017-11-01
Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.
How to identify dislocations in molecular dynamics simulations?
NASA Astrophysics Data System (ADS)
Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu
2014-12-01
Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.
Start-to-end simulations for beam dynamics in the injector system of the KHIMA heavy ion accelerator
NASA Astrophysics Data System (ADS)
Lee, Yumi; Kim, Eun-San; Kim, Chanmi; Bahng, Jungbae; Li, Zhihui; Hahn, Garam
2017-07-01
The Korea Heavy Ion Medical Accelerator (KHIMA) project has been developed for cancer therapy. The injector system consists of a low energy beam transport (LEBT) line, a radio-frequency quadrupole, a drift tube linac with two tanks, and a medium energy beam transport (MEBT) line with a charge stripper section. The injector system transports and accelerates the 12C4+ beam that is produced from electron cyclotron resonance ion source up to 7 MeV/u, respectively. The 12C6+ beam, which is transformed by a charge stripper from the 12C4+ beam, is injected into a synchrotron and accelerated up to 430 MeV/u. The lattice for the injector system was designed to optimize the beam parameters and to meet beam requirements for the synchrotron. We performed start-to-end simulations from the LEBT line to the MEBT line to confirm that the required design goals of the beam and injector system were met. Our simulation results indicate that our design achieves the required performance and a good transmission efficiency of 90%. We present the lattice design and beam dynamics for the injector system in the KHIMA project.
Tolerable hearing aid delays. V. Estimation of limits for open canal fittings.
Stone, Michael A; Moore, Brian C J; Meisenbacher, Katrin; Derleth, Ralph P
2008-08-01
Open canal fittings are a popular alternative to close-fitting earmolds for use with patients whose low-frequency hearing is near normal. Open canal fittings reduce the occlusion effect but also provide little attenuation of external air-borne sounds. The wearer therefore receives a mixture of air-borne sound and amplified but delayed sound through the hearing aid. To explore systematically the effect of the mixing, we simulated with varying degrees of complexity the effects of both a hearing loss and a high-quality hearing aid programmed to compensate for that loss, and used normal-hearing participants to assess the processing. The off-line processing was intended to simulate the percept of listening to the speech of a single (external) talker. The effect of introducing a delay on a subjective measure of speech quality (disturbance rating on a scale from 1 to 7, 7 being maximal disturbance) was assessed using both a constant gain and a gain that varied across frequency. In three experiments we assessed the effects of different amounts of delay, maximum aid gain and rate of change of gain with frequency. The simulated hearing aids were chosen to be appropriate for typical mild to moderate high-frequency losses starting at 1 or 2 kHz. Two of the experiments used simulations of linear hearing aids, whereas the third used fast-acting multichannel wide-dynamic-range compression and a simulation of loudness recruitment. In one experiment, a condition was included in which spectral ripples produced by comb-filtering were partially removed using a digital filter. For linear hearing aids, disturbance increased progressively with increasing delay and with decreasing rate of change of gain; the effect of amount of gain was small when the gain varied across frequency. The effect of reducing spectral ripples was also small. When the simulation of dynamic processes was included (experiment 3), the pattern with delay remained similar, but disturbance increased with increasing gain. It is argued that this is mainly due to disturbance increasing with increasing simulated hearing loss, probably because of the dynamic processing involved in the hearing aid and recruitment simulation. A disturbance rating of 3 may be considered as just acceptable. This rating was reached for delays of about 5 and 6 msec, for simulated hearing losses starting at 2 and 1 kHz, respectively. The perceptual effect of reducing the spectral ripples produced by comb-filtering was small; the effect was greatest when the hearing aid gain was small and when the hearing loss started at a low frequency.
Early Results from Solar Dynamic Space Power System Testing
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1996-01-01
A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.
A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers
Carrillo, Jan-Michael Y.; Katsaras, John; Sumpter, Bobby G.; ...
2017-01-12
Biological cell membranes are responsible for a range of structural and dynamical phenomena crucial to a cell's well-being and its associated functions. Due to the complexity of cell membranes, lipid bilayer systems are often used as biomimetic models. These systems have led to signficant insights into vital membrane phenomena such as domain formation, passive permeation and protein insertion. Experimental observations of membrane structure and dynamics are, however, limited in resolution, both spatially and temporally. Importantly, computer simulations are starting to play a more prominent role in interpreting experimental results, enabling a molecular under- standing of lipid membranes. Particularly, the synergymore » between scattering experiments and simulations offers opportunities for new discoveries in membrane physics, as the length and time scales probed by molecular dynamics (MD) simulations parallel those of experiments. We also describe a coarse-grained MD simulation approach that mimics neutron scattering data from large unilamellar lipid vesicles over a range of bilayer rigidity. Specfically, we simulate vesicle form factors and membrane thickness fluctuations determined from small angle neutron scattering (SANS) and neutron spin echo (NSE) experiments, respectively. Our simulations accurately reproduce trends from experiments and lay the groundwork for investigations of more complex membrane systems.« less
Gu, Rui; Xu, Jinglei
2014-01-01
The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.
Application of Grazing-Inspired Guidance Laws to Autonomous Information Gathering
2014-09-01
paths by expressing it as the Selective Traveling Salesman Problem subject to dynamic constraints. Tisdale et al. [11] utilized a receding horizon ap...vehicle failures by halving the initial fuel level on selected agents. Note that simulations start with agents 50s travel time away from where they
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
Importance of inlet boundary conditions for numerical simulation of combustor flows
NASA Technical Reports Server (NTRS)
Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.
1983-01-01
Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.
Loccisano, Anne E; Acevedo, Orlando; DeChancie, Jason; Schulze, Brita G; Evanseck, Jeffrey D
2004-05-01
The utility of multiple trajectories to extend the time scale of molecular dynamics simulations is reported for the spectroscopic A-states of carbonmonoxy myoglobin (MbCO). Experimentally, the A0-->A(1-3) transition has been observed to be 10 micros at 300 K, which is beyond the time scale of standard molecular dynamics simulations. To simulate this transition, 10 short (400 ps) and two longer time (1.2 ns) molecular dynamics trajectories, starting from five different crystallographic and solution phase structures with random initial velocities centered in a 37 A radius sphere of water, have been used to sample the native-fold of MbCO. Analysis of the ensemble of structures gathered over the cumulative 5.6 ns reveals two biomolecular motions involving the side chains of His64 and Arg45 to explain the spectroscopic states of MbCO. The 10 micros A0-->A(1-3) transition involves the motion of His64, where distance between His64 and CO is found to vary up to 8.8 +/- 1.0 A during the transition of His64 from the ligand (A(1-3)) to bulk solvent (A0). The His64 motion occurs within a single trajectory only once, however the multiple trajectories populate the spectroscopic A-states fully. Consequently, multiple independent molecular dynamics simulations have been found to extend biomolecular motion from 5 ns of total simulation to experimental phenomena on the microsecond time scale.
NASA Astrophysics Data System (ADS)
Zolghadr, Amin Reza; Boroomand, Samaneh
2017-02-01
Drug absorption at an acceptable dose depends on the pair of solubility and permeability. There are many potent therapeutics that are not active in vivo, presumably due to the lack of capability to cross the cell membrane. Molecular dynamics simulation of radicicol, diol-radicicol, cyclopropane-radicicol and 17-DMAG were performed at water/octanol interface to suggest interfacial activity as a physico-chemical characteristic of these heat shock protein 90 (HSP90) inhibitors. We have observed that orally active HSP90 inhibitors form aggregates at the water/octanol and DPPC-lipid/water interfaces by starting from an initial configuration with HSP90 inhibitors embedded in the water matrix.
Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes
2016-09-07
The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.
Electron-phonon thermalization in a scalable method for real-time quantum dynamics
NASA Astrophysics Data System (ADS)
Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.; Correa, Alfredo A.
2016-01-01
We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.
Bjelkmar, Pär; Niemelä, Perttu S.; Vattulainen, Ilpo; Lindahl, Erik
2009-01-01
Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous applications in drug design. Here, we present a full 1 µs atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements, including up to 120° rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation (∼35°) of the extracellular end of all S4 segments is present also in a reference 0.5 µs simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 310 helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarization destabilizes S4–lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the entire second half of the simulation (0.5–1 µs). Together with lipids binding in matching positions and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations. PMID:19229308
Further Investigations of Gravity Modeling on Surface-Interacting Vehicle Simulations
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2009-01-01
A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of the gravitation and world model. A surface-interacting simulation cannot treat the gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a subsonic civil transport in level flight under various starting conditions.
Gandhi, Neha S; Kukic, Predrag; Lippens, Guy; Mancera, Ricardo L
2017-01-01
The Tau protein plays an important role due to its biomolecular interactions in neurodegenerative diseases. The lack of stable structure and various posttranslational modifications such as phosphorylation at various sites in the Tau protein pose a challenge for many experimental methods that are traditionally used to study protein folding and aggregation. Atomistic molecular dynamics (MD) simulations can help around deciphering relationship between phosphorylation and various intermediate and stable conformations of the Tau protein which occur on longer timescales. This chapter outlines protocols for the preparation, execution, and analysis of all-atom MD simulations of a 21-amino acid-long phosphorylated Tau peptide with the aim of generating biologically relevant structural and dynamic information. The simulations are done in explicit solvent and starting from nearly extended configurations of the peptide. The scaled MD method implemented in AMBER14 was chosen to achieve enhanced conformational sampling in addition to a conventional MD approach, thereby allowing the characterization of folding for such an intrinsically disordered peptide at 293 K. Emphasis is placed on the analysis of the simulation trajectories to establish correlations with NMR data (i.e., chemical shifts and NOEs). Finally, in-depth discussions are provided for commonly encountered problems.
How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?
Šponer, Jiří; Krepl, Miroslav; Banáš, Pavel; Kührová, Petra; Zgarbová, Marie; Jurečka, Petr; Havrila, Marek; Otyepka, Michal
2017-05-01
We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Structural origin of fractional Stokes-Einstein relation in glass-forming liquids
NASA Astrophysics Data System (ADS)
Pan, Shaopeng; Wu, Z. W.; Wang, W. H.; Li, M. Z.; Xu, Limei
2017-01-01
In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.
Pseudochemotaxis in inhomogeneous active Brownian systems
NASA Astrophysics Data System (ADS)
Vuijk, Hidde D.; Sharma, Abhinav; Mondal, Debasish; Sommer, Jens-Uwe; Merlitz, Holger
2018-04-01
We study dynamical properties of confined, self-propelled Brownian particles in an inhomogeneous activity profile. Using Brownian dynamics simulations, we calculate the probability to reach a fixed target and the mean first passage time to the target of an active particle. We show that both these quantities are strongly influenced by the inhomogeneous activity. When the activity is distributed such that high-activity zone is located between the target and the starting location, the target finding probability is increased and the passage time is decreased in comparison to a uniformly active system. Moreover, for a continuously distributed profile, the activity gradient results in a drift of active particle up the gradient bearing resemblance to chemotaxis. Integrating out the orientational degrees of freedom, we derive an approximate Fokker-Planck equation and show that the theoretical predictions are in very good agreement with the Brownian dynamics simulations.
Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D
2015-03-01
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques such as machine learning for parameter estimation in dynamic simulation models. Upon reviewing this report in addition to using the SIMULATE checklist, the readers should be able to identify whether dynamic simulation modeling methods are appropriate to address the problem at hand and to recognize the differences of these methods from those of other, more traditional modeling approaches such as Markov models and decision trees. This report provides an overview of these modeling methods and examples of health care system problems in which such methods have been useful. The primary aim of the report was to aid decisions as to whether these simulation methods are appropriate to address specific health systems problems. The report directs readers to other resources for further education on these individual modeling methods for system interventions in the emerging field of health care delivery science and implementation. Copyright © 2015. Published by Elsevier Inc.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Bayesian ensemble refinement by replica simulations and reweighting
NASA Astrophysics Data System (ADS)
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Brownian dynamics simulations on a hypersphere in 4-space
NASA Astrophysics Data System (ADS)
Nissfolk, Jarl; Ekholm, Tobias; Elvingson, Christer
2003-10-01
We describe an algorithm for performing Brownian dynamics simulations of particles diffusing on S3, a hypersphere in four dimensions. The system is chosen due to recent interest in doing computer simulations in a closed space where periodic boundary conditions can be avoided. We specifically address the question how to generate a random walk on the 3-sphere, starting from the solution of the corresponding diffusion equation, and we also discuss an efficient implementation based on controlled approximations. Since S3 is a closed manifold (space), the average square displacement during a random walk is no longer proportional to the elapsed time, as in R3. Instead, its time rate of change is continuously decreasing, and approaches zero as time becomes large. We show, however, that the effective diffusion coefficient can still be obtained from the time dependence of the square displacement.
Klon, Anthony E; Segrest, Jere P; Harvey, Stephen C
2002-12-06
Apolipoprotein A-I (apo A-I) is the major protein component of high-density lipoprotein (HDL) particles. Elevated levels of HDL in the bloodstream have been shown to correlate strongly with a reduced risk factor for atherosclerosis. Molecular dynamics simulations have been carried out on three separate model discoidal high-density lipoprotein particles (HDL) containing two monomers of apo A-I and 160 molecules of palmitoyloleoylphosphatidylcholine (POPC), to a time-scale of 1ns. The starting structures were on the basis of previously published molecular belt models of HDL consisting of the lipid-binding C-terminal domain (residues 44-243) wrapped around the circumference of a discoidal HDL particle. Subtle changes between two of the starting structures resulted in significantly different behavior during the course of the simulation. The results provide support for the hypothesis of Segrest et al. that helical registration in the molecular belt model of apo A-I is modulated by intermolecular salt bridges. In addition, we propose an explanation for the presence of proline punctuation in the molecular belt model, and for the presence of two 11-mer helical repeats interrupting the otherwise regular pattern of 22-mer helical repeats in the lipid-binding domain of apo A-I.
Using sobol sequences for planning computer experiments
NASA Astrophysics Data System (ADS)
Statnikov, I. N.; Firsov, G. I.
2017-12-01
Discusses the use for research of problems of multicriteria synthesis of dynamic systems method of Planning LP-search (PLP-search), which not only allows on the basis of the simulation model experiments to revise the parameter space within specified ranges of their change, but also through special randomized nature of the planning of these experiments is to apply a quantitative statistical evaluation of influence of change of varied parameters and their pairwise combinations to analyze properties of the dynamic system.Start your abstract here...
Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.
Abusaada, Muath; Sauter, Martin
2013-01-01
The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low-permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady-state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West-Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well-constrained catchment with well-defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long-term dynamic model for the WMAB, starting from the pre-development period (i.e., 1940s) up to date. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.
NASA Astrophysics Data System (ADS)
He, Jianbin; Zhang, Zhiyong; Shi, Yunyu; Liu, Haiyan
2003-08-01
We describe a method for efficient sampling of the energy landscape of a protein in atomic molecular dynamics simulations. A simulation is divided into alternatively occurring relaxation phases and excitation phases. In the relaxation phase (conventional simulation), we use a frequently updated reference structure and deviations from this reference structure to mark whether the system has been trapped in a local minimum. In that case, the simulation enters the excitation phase, during which a few slow collective modes of the system are coupled to a higher temperature bath. After the system has escaped from the minimum (also judged by deviations from the reference structure) the simulation reenters the relaxation phase. The collective modes are obtained from a coarse-grained Gaussian elastic network model. The scheme, which we call ACM-AME (amplified collective motion-assisted minimum escaping), is compared with conventional simulations as well as an alternative scheme that elevates the temperature of all degrees of freedom during the excitation phase (amplified overall motion-assisted minimum escaping, or AOM-AME). Comparison is made using simulations on four peptides starting from non-native extended or all helical structures. In terms of sampling low energy conformations and continuously sampling new conformations throughout a simulation, the ACM-AME scheme demonstrates very good performance while the AOM-AME scheme shows little improvement upon conventional simulations. Limited success is achieved in producing structures close to the native structures of the peptides: for an S-peptide analog, the ACM-AME approach is able to reproduce its native helical structure, and starting from an all-helical structure of the villin headpiece subdomain (HP-36) in implicit solvent, two out of three 150 ns ACM-AME runs are able to sample structures with 3-4 Å backbone root-mean-square deviations from the nuclear magnetic resonance structure of the protein.
Takizawa, Yuumi; Shimomura, Takeshi; Miura, Toshiaki
2013-05-23
We study the initial nucleation dynamics of poly(3-hexylthiophene) (P3HT) in solution, focusing on the relationship between the ordering process of main chains and that of side chains. We carried out Langevin dynamics simulation and found that the initial nucleation processes consist of three steps: the ordering of ring orientation, the ordering of main-chain vectors, and the ordering of side chains. At the start, the normal vectors of thiophene rings aligned in a very short time, followed by alignment of main-chain end-to-end vectors. The flexible side-chain ordering took almost 5 times longer than the rigid-main-chain ordering. The simulation results indicated that the ordering of side chains was induced after the formation of the regular stack structure of main chains. This slow ordering dynamics of flexible side chains is one of the factors that cause anisotropic nuclei growth, which would be closely related to the formation of nanofiber structures without external flow field. Our simulation results revealed how the combined structure of the planar and rigid-main-chain backbones and the sparse flexible side chains lead to specific ordering behaviors that are not observed in ordinary linear polymer crystallization processes.
Dynamic global model of oxide Czochralski process with weighing control
NASA Astrophysics Data System (ADS)
Mamedov, V. M.; Vasiliev, M. G.; Yuferev, V. S.
2011-03-01
A dynamic model of oxide Czochralski growth with weighing control has been developed for the first time. A time-dependent approach is used for the calculation of temperature fields in different parts of a crystallization set-up and convection patterns in a melt, while internal radiation in crystal is considered in a quasi-steady approximation. A special algorithm is developed for the calculation of displacement of a triple point and simulation of a crystal surface formation. To calculate variations in the heat generation, a model of weighing control with a commonly used PID regulator is applied. As an example, simulation of the growth process of gallium-gadolinium garnet (GGG) crystals starting from the stage of seeding is performed.
Rocco, Alessandro Guerini; Mollica, Luca; Gianazza, Elisabetta; Calabresi, Laura; Franceschini, Guido; Sirtori, Cesare R.; Eberini, Ivano
2006-01-01
In this study, we propose a structure for the heterodimer between apolipoprotein A-IMilano and apolipoprotein A-II (apoA-IM–apoA-II) in a synthetic high-density lipoprotein (HDL) containing L-α-palmitoyloleoyl phosphatidylcholine. We applied bioinformatics/computational tools and procedures, such as molecular docking, molecular and essential dynamics, starting from published crystal structures for apolipoprotein A-I and apolipoprotein A-II. Structural and energetic analyses onto the simulated system showed that the molecular dynamics produced a stabilized synthetic HDL. The essential dynamic analysis showed a deviation from the starting belt structure. Our structural results were validated by limited proteolysis experiments on HDL from apoA-IM carriers in comparison with control HDL. The high sensitivity of apoA-IM–apoA-II to proteases was in agreement with the high root mean-square fluctuation values and the reduction in secondary structure content from molecular dynamics data. Circular dichroism on synthetic HDL containing apoA-IM–apoA-II was consistent with the α-helix content computed on the proposed model. PMID:16891368
Electron-phonon thermalization in a scalable method for real-time quantum dynamics
Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.; ...
2016-01-27
Here, we present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicitmore » quantum dynamics.« less
Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster
NASA Astrophysics Data System (ADS)
Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward
2018-01-01
I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.
Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model
NASA Astrophysics Data System (ADS)
Fellermann, Harold; Tanaka, Shinpei; Rasmussen, Steen
2017-12-01
Template-directed replication of nucleic acids is at the essence of all living beings and a major milestone for any origin of life scenario. We present an idealized model of prebiotic sequence replication, where binary polymers act as templates for their autocatalytic replication, thereby serving as each others reactants and products in an intertwined molecular ecology. Our model demonstrates how autocatalysis alters the qualitative and quantitative system dynamics in counterintuitive ways. Most notably, numerical simulations reveal a very strong intrinsic selection mechanism that favors the appearance of a few population structures with highly ordered and repetitive sequence patterns when starting from a pool of monomers. We demonstrate both analytically and through simulation how this "selection of the dullest" is caused by continued symmetry breaking through random fluctuations in the transient dynamics that are amplified by autocatalysis and eventually propagate to the population level. The impact of these observations on related prebiotic mathematical models is discussed.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, Edoardo; Kowalski, Karol
The NorthWest Chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers[6, 28, 49]. It contains an umbrella of modules that today includes Self Consistent Field (SCF), second order Mller-Plesset perturbation theory (MP2), Coupled Cluster, multi-conguration selfconsistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics, Car-Parrinello molecular dynamics, classical molecular dynamics (MD), QM/MM,more » AIMD/MM, GIAO NMR, COSMO, COSMO-SMD, and RISM solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities[ 22]. Moreover new capabilities continue to be added with each new release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com; Browning, Jim; Lin, Ming-Chieh
Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versusmore » continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.« less
Strong scaling of general-purpose molecular dynamics simulations on GPUs
NASA Astrophysics Data System (ADS)
Glaser, Jens; Nguyen, Trung Dac; Anderson, Joshua A.; Lui, Pak; Spiga, Filippo; Millan, Jaime A.; Morse, David C.; Glotzer, Sharon C.
2015-07-01
We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5 ×.
Xianwei, Tan; Diannan, Lu; Boxiong, Wang
2016-07-19
The EmrD transporter, which is a classical major facilitator superfamily (MFS) protein, can extrude a range of drug molecules out of E. coil. The drug molecules transport through the channel of MFS in an outward open state, an important issue in research about bacterial drug resistance, which however, is still unknown. In this paper, we construct a starting outward-open model of the EmrD transporter using a state transition method. The starting model is refined by a conventional molecular dynamics simulation. Locally enhanced sampling simulation (LES) is used to validate the outward-open model of EmrD. In the locally enhanced sampling simulation, ten substrates are placed along the channel of the outward-open EmrD, and these substrates are sampled in the outward-open center cavity. It is found that the translocation pathway of these substrates from the inside to the outside of the cell through the EmrD transporter is composed of two sub-pathways, one sub-pathway, including H2, H4, and H5, and another sub-pathway, including H8, H10, and H11. The results give us have a further insight to the ways of substrate translocation of an MFS protein. The model method is based on common features of an MFS protein, so this modeling method can be used to construct various MFS protein models which have a desired state with other conformations not known in the alternating-access mechanism.
Xue, Yi; Skrynnikov, Nikolai R
2014-01-01
Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989
NASA Astrophysics Data System (ADS)
Guo, Feng; Zhang, Hong; Hu, Hai-Quan; Cheng, Xin-Lu; Zhang, Li-Yan
2015-11-01
We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition. Project supported by the National Natural Science Foundation of China (Grant No. 11374217) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BQ008).
Molecular dynamics simulations of polarizable DNA in crystal environment
NASA Astrophysics Data System (ADS)
Babin, Volodymyr; Baucom, Jason; Darden, Thomas A.; Sagui, Celeste
We have investigated the role of the electrostatic description and cell environment in molecular dynamics (MD) simulations of DNA. Multiple unrestrained MD simulations of the DNA duplex d(CCAACGTTGG)2 have been carried out using two different force fields: a traditional description based on atomic point charges and a polarizable force field. For the time scales probed, and given the ?right? distribution of divalent ions, the latter performs better than the nonpolarizable force field. In particular, by imposing the experimental unit cell environment, an initial configuration with ideal B-DNA duplexes in the unit cell acquires sequence-dependent features that very closely resemble the crystallographic ones. Simultaneously, the all-atom root-mean-square coordinates deviation (RMSD) with respect to the crystallographic structure is seen to decay. At later times, the polarizable force field is able to maintain this lower RMSD, while the nonpolarizable force field starts to drift away.
Low, Diana H P; Motakis, Efthymios
2013-10-01
Binding free energy calculations obtained through molecular dynamics simulations reflect intermolecular interaction states through a series of independent snapshots. Typically, the free energies of multiple simulated series (each with slightly different starting conditions) need to be estimated. Previous approaches carry out this task by moving averages at certain decorrelation times, assuming that the system comes from a single conformation description of binding events. Here, we discuss a more general approach that uses statistical modeling, wavelets denoising and hierarchical clustering to estimate the significance of multiple statistically distinct subpopulations, reflecting potential macrostates of the system. We present the deltaGseg R package that performs macrostate estimation from multiple replicated series and allows molecular biologists/chemists to gain physical insight into the molecular details that are not easily accessible by experimental techniques. deltaGseg is a Bioconductor R package available at http://bioconductor.org/packages/release/bioc/html/deltaGseg.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tecimer, M.; Elias, L.R.
1995-12-31
Lienard-Wiechert (LW) fields, which are exact solutions of the Wave Equation for a point charge in free space, are employed to formulate a self-consistent treatment of the electron beam dynamics and the evolution of the generated radiation in long undulators. In a relativistic electron beam the internal forces leading to the interaction of the electrons with each other can be computed by means of retarded LW fields. The resulting electron beam dynamics enables us to obtain three dimensional radiation fields starting from an initial incoherent spontaneous emission, without introducing a seed wave at start-up. Based on the formalism employed here,more » both the evolution of the multi-bucket electron phase space dynamics in the beam body as well as edges and the relative slippage of the radiation with respect to the electrons in the considered short bunch are naturally embedded into the simulation model. In this paper, we present electromagnetic radiation studies, including multi-bucket electron phase dynamics and angular distribution of radiation in the time and frequency domain produced by a relativistic short electron beam bunch interacting with a circularly polarized magnetic undulator.« less
Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin
This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.
Magnetosphere Modeling: From Cartoons to Simulations
NASA Astrophysics Data System (ADS)
Gombosi, T. I.
2017-12-01
Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems, to global MHD to MHD-PIC and discuss the role of state-of-the-art models in forecasting space weather.
NASA Astrophysics Data System (ADS)
Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.
2018-02-01
Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest-neighbour interactions starting from random initial conditions. In this letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.
Karain, Wael I
2017-11-28
Proteins undergo conformational transitions over different time scales. These transitions are closely intertwined with the protein's function. Numerous standard techniques such as principal component analysis are used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a "baseline" recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure, as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in the dynamics of the protein. We apply this technique to a 132 ns long molecular dynamics simulation of the β-Lactamase Inhibitory Protein BLIP. We are able to detect conformational transitions in the nanosecond range in the recurrence dynamics of the BLIP protein during the simulation. The results compare favorably to those extracted using the principal component analysis technique. The recurrence quantification analysis based bootstrap technique is able to detect transitions between different dynamics states for a protein over different time scales. It is not limited to linear dynamics regimes, and can be generalized to any time scale. It also has the potential to be used to cluster frames in molecular dynamics trajectories according to the nature of their recurrence dynamics. One shortcoming for this method is the need to have large enough time windows to insure good statistical quality for the recurrence complexity measures needed to detect the transitions.
Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine
NASA Astrophysics Data System (ADS)
Zhang, Xue-wei; Zhang, Liang; Wang, Feng; Zhao, Dong-ya; Pang, Cheng-yan
2014-03-01
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
Regularity Aspects in Inverse Musculoskeletal Biomechanics
NASA Astrophysics Data System (ADS)
Lund, Marie; Stâhl, Fredrik; Gulliksson, Mârten
2008-09-01
Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling, which is unrealistic but the error maybe small enough to be accepted for specific applications. These results are a start to ensure better results of inverse musculoskeletal simulations from a numerical point of view.
MOLSIM: A modular molecular simulation software
Jurij, Reščič
2015-01-01
The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597
Johnston, Jennifer M.
2014-01-01
The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803
NASA Astrophysics Data System (ADS)
Yang, Y.
2014-12-01
Extensive permafrost degradation starting from 1970s is observed at the Qinghai-Tibet Plateau , China. Degradation is attributed to an increase in mean annual ground temperature 0.1◦-0.5◦ C with mainly winter warming. The construction of Qinghai-Tibet Railway also influenced a state of permafrost in the area Permafrost degradation caused negative environmental consequences in the area. The areas covered by sand are expanding steadily making large concern of accelerating desertification. The general pathway of future joint dynamics of permafrost, vegetation and hydrological status at the Qinghai-Tibet Plateau is still poorly understood and foreseeable. Hydrology in the area is determined by heat-moisture dynamics of active layer. This dynamics is highly non-linear and depends as on external climatic variables temperature and precipitation, so on soil and rock properties (amount of sand against aeolian deposits in the Plateau) as well as vegetation cover, which determine thaw and freeze processes in the active layer and evaporation and run-off. SEVER DGVM was modified to include heat-moisture dynamics of active layer in the Qinghai-Tibet Plateau. SEVER DGVM imitates processes in 10 plant functional types at coarse resolution of 0.5 degrees. This model imitates behavior of average individual of each plant type in each grid cell through simulation years. Each of those grid cells processed independently. First, this model starts from "bare soil", placing a bit of each plant type and giving them some time to grow and achieve equilibrium. Then, including active layer thickness and soil moisture dynamics into this layer, it allows assessment of potential environmental dynamics in this area. Simulations demonstrate further degradation of pastureland and accelerating desertification processes in this vitally important water feed area for many Asian rivers. Negative environmental problems related to operation of Qinghai-Tibet are also assessed.
Laser sculpting of atomic sp, sp(2) , and sp(3) hybrid orbitals.
Liu, Chunmei; Manz, Jörn; Yang, Yonggang
2015-01-12
Atomic sp, sp(2) , and sp(3) hybrid orbitals were introduced by Linus Pauling to explain the nature of the chemical bond. Quantum dynamics simulations show that they can be sculpted by means of a selective series of coherent laser pulses, starting from the 1s orbital of the hydrogen atom. Laser hybridization generates atoms with state-selective electric dipoles, opening up new possibilities for the study of chemical reaction dynamics and heterogeneous catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computer animation challenges for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine
2012-07-01
Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.
Hub, Jochen S; Kubitzki, Marcus B; de Groot, Bert L
2010-05-06
We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(beta)146, and they sum up to a total length of 5.6 micros. We observe spontaneous and reproducible T-->R quaternary transitions of the Hb tetramer and tertiary transitions of the alpha and beta subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the alpha and beta subunits. Using the mutual information as correlation measure, we find that the beta subunits are substantially more strongly linked to the quaternary transition than the alpha subunits. In addition, the tertiary populations of the alpha and beta subunits differ substantially, with the beta subunits showing a tendency towards R, and the alpha subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb.
de Groot, Bert L.
2010-01-01
We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(β)146, and they sum up to a total length of 5.6µs. We observe spontaneous and reproducible T→R quaternary transitions of the Hb tetramer and tertiary transitions of the α and β subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the α and β subunits. Using the mutual information as correlation measure, we find that the β subunits are substantially more strongly linked to the quaternary transition than the α subunits. In addition, the tertiary populations of the α and β subunits differ substantially, with the β subunits showing a tendency towards R, and the α subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb. PMID:20463873
Tail reconnection in the global magnetospheric context: Vlasiator first results
NASA Astrophysics Data System (ADS)
Palmroth, Minna; Hoilijoki, Sanni; Juusola, Liisa; Pulkkinen, Tuija I.; Hietala, Heli; Pfau-Kempf, Yann; Ganse, Urs; von Alfthan, Sebastian; Vainio, Rami; Hesse, Michael
2017-11-01
The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.
Dynamic Characteristics of a Simple Brayton Cryocycle
NASA Astrophysics Data System (ADS)
Kutzschbach, A.; Kauschke, M.; Haberstroh, Ch.; Quack, H.
2006-04-01
The goal of the overall program is to develop a dynamic numerical model of helium refrigerators and the associated cooling systems based on commercial simulation software. The aim is to give system designers a tool to search for optimum control strategies during the construction phase of the refrigerator with the help of a plant "simulator". In a first step, a simple Brayton refrigerator has been investigated, which consists of a compressor, an after-cooler, a counter-current heat exchanger, a turboexpander and a heat source. Operating modes are "refrigeration" and "liquefaction". Whereas for the steady state design only component efficiencies are needed and mass and energy balances have to be calculated, for the dynamic calculation one needs also the thermal masses and the helium inventory. Transient mass and energy balances have to be formulated for many small elements and then solved simultaneously for all elements. Starting point of the simulation of the Brayton cycle is the steady state operation at design conditions. The response of the system to step and cyclic changes of the refrigeration or liquefaction rate are calculated and characterized.
Computer Simulation of the VASIMR Engine
NASA Technical Reports Server (NTRS)
Garrison, David
2005-01-01
The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.
Lai, Balder; Hasenhindl, Christoph; Obinger, Christian; Oostenbrink, Chris
2014-01-01
An interesting format in the development of therapeutic monoclonal antibodies uses the crystallizable fragment of IgG1 as starting scaffold. Engineering of its structural loops allows generation of an antigen binding site. However, this might impair the molecule’s conformational stability, which can be overcome by introducing stabilizing point mutations in the CH3 domains. These point mutations often affect the stability and unfolding behavior of both the CH2 and CH3 domains. In order to understand this cross-talk, molecular dynamics simulations of the domains of the Fc fragment of human IgG1 are reported. The structure of human IgG1-Fc obtained from X-ray crystallography is used as a starting point for simulations of the wild-type protein at two different pH values. The stabilizing effect of a single point mutation in the CH3 domain as well as the impact of the hinge region and the glycan tree structure connected to the CH2 domains is investigated. Regions of high local flexibility were identified as potential sites for engineering antigen binding sites. Obtained data are discussed with respect to the available X-ray structure of IgG1-Fc, directed evolution approaches that screen for stability and use of the scaffold IgG1-Fc in the design of antigen binding Fc proteins. PMID:24451126
Soni, Vijay; Suryadevara, Priyanka; Sriram, Dharmarajan; Kumar, Santhosh; Nandicoori, Vinay Kumar; Yogeeswari, Perumal
2015-07-01
Persistent nature of Mycobacterium tuberculosis is one of the major factors which make the drug development process monotonous against this organism. The highly lipophilic cell wall, which constituting outer mycolic acid and inner peptidoglycan layers, acts as a barrier for the drugs to enter the bacteria. The rigidity of the cell wall is imparted by the peptidoglycan layer, which is covalently linked to mycolic acid by arabinogalactan. Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) serves as the starting material in the biosynthesis of this peptidoglycan layers. This UDP-GlcNAc is synthesized by N-acetylglucosamine-1-phosphate uridyltransferase (GlmU(Mtb)), a bi-functional enzyme with two functional sites, acetyltransferase site and uridyltransferase site. Here, we report design and screening of nine inhibitors against UTP and NAcGlc-1-P of uridyltransferase active site of glmU(Mtb). Compound 4 was showing good inhibition and was selected for further analysis. The isothermal titration calorimetry (ITC) experiments showed the binding energy pattern of compound 4 to the uridyltransferase active site is similar to that of substrate UTP. In silico molecular dynamics (MD) simulation studies, for compound 4, carried out for 10 ns showed the protein-compound complex to be stable throughout the simulation with relative rmsd in acceptable range. Hence, these compounds can serve as a starting point in the drug discovery processes against Mycobacterium tuberculosis.
NASA Astrophysics Data System (ADS)
Sessa, Francesco; D'Angelo, Paola; Migliorati, Valentina
2018-01-01
In this work we have developed an analytical procedure to identify metal ion coordination geometries in liquid media based on the calculation of Combined Distribution Functions (CDFs) starting from Molecular Dynamics (MD) simulations. CDFs provide a fingerprint which can be easily and unambiguously assigned to a reference polyhedron. The CDF analysis has been tested on five systems and has proven to reliably identify the correct geometries of several ion coordination complexes. This tool is simple and general and can be efficiently applied to different MD simulations of liquid systems.
Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment
NASA Astrophysics Data System (ADS)
Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar
2016-10-01
Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.
NASA Astrophysics Data System (ADS)
Li, Chuang; Min, Fuhong; Jin, Qiusen; Ma, Hanyuan
2017-12-01
An active charge-controlled memristive Chua's circuit is implemented, and its basic properties are analyzed. Firstly, with the system trajectory starting from an equilibrium point, the dynamic behavior of multiple coexisting attractors depending on the memristor initial value and the system parameter is studied, which shows the coexisting behaviors of point, period, chaos, and quasic-period. Secondly, with the system motion starting from a non-equilibrium point, the dynamics of extreme multistability in a wide initial value domain are easily conformed by new analytical methods. Furthermore, the simulation results indicate that some strange chaotic attractors like multi-wing type and multi-scroll type are observed when the observed signals are extended from voltage and current to power and energy, respectively. Specially, when different initial conditions are taken, the coexisting strange chaotic attractors between the power and energy signals are exhibited. Finally, the chaotic sequences of the new system are used for encrypting color image to protect image information security. The encryption performance is analyzed by statistic histogram, correlation, key spaces and key sensitivity. Simulation results show that the new memristive chaotic system has high security in color image encryption.
Mode localization in the cooperative dynamics of protein recognition
NASA Astrophysics Data System (ADS)
Copperman, J.; Guenza, M. G.
2016-07-01
The biological function of proteins is encoded in their structure and expressed through the mediation of their dynamics. This paper presents a study on the correlation between local fluctuations, binding, and biological function for two sample proteins, starting from the Langevin Equation for Protein Dynamics (LE4PD). The LE4PD is a microscopic and residue-specific coarse-grained approach to protein dynamics, which starts from the static structural ensemble of a protein and predicts the dynamics analytically. It has been shown to be accurate in its prediction of NMR relaxation experiments and Debye-Waller factors. The LE4PD is solved in a set of diffusive modes which span a vast range of time scales of the protein dynamics, and provides a detailed picture of the mode-dependent localization of the fluctuation as a function of the primary structure of the protein. To investigate the dynamics of protein complexes, the theory is implemented here to treat the coarse-grained dynamics of interacting macromolecules. As an example, calculations of the dynamics of monomeric and dimerized HIV protease and the free Insulin Growth Factor II Receptor (IGF2R) domain 11 and its IGF2R:IGF2 complex are presented. Either simulation-derived or experimentally measured NMR conformers are used as input structural ensembles to the theory. The picture that emerges suggests a dynamical heterogeneous protein where biologically active regions provide energetically comparable conformational states that are trapped by a reacting partner in agreement with the conformation-selection mechanism of binding.
A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)
NASA Astrophysics Data System (ADS)
Lee, Jin
2014-05-01
The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.
The molecular dynamics simulation on the mechanical properties of Ni glass with external pressure
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Hui; Wang, Ying; Sun, Dong-Bai
2017-08-01
In this paper, rapid quenching of Ni from crystal to metallic glass (MG) at different external pressures is simulated by molecular dynamics. The pair distribution functions (PDFs), mean-square displacement, glass transition temperature (Tg) and elastic property are calculated and compared with each other. The split of the second PDF peak means the liquid’s transition to glass state starts as previously reported for other MGs. And the Ri/R1 ratio rule is found to hold very well in Ni MG and reveals the SPO structural feature in the configurations. Moreover, with high external pressure, Tg values are more approximated by density-temperature and enthalpy-temperature curves. At last, the elastic modulus and mechanics modulus of quenching models produced a monotonous effect with increasing external pressure and temperature.
Traffic jam dynamics in stochastic cellular automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, K.; Schreckenberg, M.
1995-09-01
Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less
Chowell, Gerardo; Fuentes, R; Olea, A; Aguilera, X; Nesse, H; Hyman, J M
2013-01-01
We use a stochastic simulation model to explore the effect of reactive intervention strategies during the 2002 dengue outbreak in the small population of Easter Island, Chile. We quantified the effect of interventions on the transmission dynamics and epidemic size as a function of the simulated control intensity levels and the timing of initiation of control interventions. Because no dengue outbreaks had been reported prior to 2002 in Easter Island, the 2002 epidemic provided a unique opportunity to estimate the basic reproduction number R0 during the initial epidemic phase, prior to the start of control interventions. We estimated R0 at 27.2 (95%CI: 14.8, 49.3). We found that the final epidemic size is highly sensitive to the timing of start of interventions. However, even when the control interventions start several weeks after the epidemic onset, reactive intervention efforts can have a significant impact on the final epidemic size. Our results indicate that the rapid implementation of control interventions can have a significant effect in reducing the epidemic size of dengue epidemics.
Microsecond Molecular Dynamics Simulations of Lipid Mixing
2015-01-01
Molecular dynamics (MD) simulations of membranes are often hindered by the slow lateral diffusion of lipids and the limited time scale of MD. In order to study the dynamics of mixing and characterize the lateral distribution of lipids in converged mixtures, we report microsecond-long all-atom MD simulations performed on the special-purpose machine Anton. Two types of mixed bilayers, POPE:POPG (3:1) and POPC:cholesterol (2:1), as well as a pure POPC bilayer, were each simulated for up to 2 μs. These simulations show that POPE:POPG and POPC:cholesterol are each fully miscible at the simulated conditions, with the final states of the mixed bilayers similar to a random mixture. By simulating three POPE:POPG bilayers at different NaCl concentrations (0, 0.15, and 1 M), we also examined the effect of salt concentration on lipid mixing. While an increase in NaCl concentration is shown to affect the area per lipid, tail order, and lipid lateral diffusion, the final states of mixing remain unaltered, which is explained by the largely uniform increase in Na+ ions around POPE and POPG. Direct measurement of water permeation reveals that the POPE:POPG bilayer with 1 M NaCl has reduced water permeability compared with those at zero or low salt concentration. Our calculations provide a benchmark to estimate the convergence time scale of all-atom MD simulations of lipid mixing. Additionally, equilibrated structures of POPE:POPG and POPC:cholesterol, which are frequently used to mimic bacterial and mammalian membranes, respectively, can be used as starting points of simulations involving these membranes. PMID:25237736
Simulation of magnetic particles in microfluidic channels
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Schrefl, Thomas
2018-01-01
In the field of biomedicine the applications of magnetic beads have increased immensely in the last decade. Drug delivery, magnetic resonance imaging, bioseparation or hyperthermia are only a small excerpt of their usage. Starting from microscaled particles the research is focusing more and more on nanoscaled particles. We are investigating and validating a method for simulating magnetic beads in a microfluidic flow which will help to manipulate beads in a controlled and reproducible manner. We are using the soft-matter simulation package ESPResSo to simulate magnetic particle dynamics in a lattice Boltzmann flow and applied external magnetic fields. Laminar as well as turbulent flow conditions in microfluidic systems can be analyzed while particles tend to agglomerate due to magnetic interactions. The proposed simulation methods are validated with experiments from literature.
Balshi, M. S.; McGuire, A.D.; Zhuang, Q.; Melillo, J.; Kicklighter, D.W.; Kasischke, E.; Wirth, C.; Flannigan, M.; Harden, J.; Clein, Joy S.; Burnside, T.J.; McAllister, J.; Kurz, W.A.; Apps, M.; Shvidenko, A.
2007-01-01
Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45??N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties. Copyright 2007 by the American Geophysical Union.
Integrated Simulation Design Challenges to Support TPS Repair Operations
NASA Technical Reports Server (NTRS)
Quiocho, Leslie J.; Crues, Edwin Z.; Huynh, An; Nguyen, Hung T.; MacLean, John
2005-01-01
During the Orbiter Repair Maneuver (ORM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSRMS during the ORM, simulation tools used for previous 'nominal' mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. This paper discusses the simulation design challenges encountered while developing simulation capabilities to mirror the ORM operations. The paper also describes the incremental build approach that was utilized, starting with the subsystem simulation elements and integration into increasing more complex simulations until the resulting ORM worksite dynamics simulation had been assembled. Furthermore, the paper presents an overall integrated simulation V&V methodology based upon a subsystem level testing, integrated comparisons, and phased checkout.
Dynamics and Solubility of He and CO 2 in Brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Tenney, Craig M.
2016-09-01
Molecular dynamics simulation was implemented using LAMMPS simulation package (1) to study the diffusivity of He 3 and CO 2 in NaCl aqueous solution. To simulate at infinite dilute gas concentration, we placed one He 3 or CO 2 molecule in an initial simulation box of 24x24x33Å 3 containing 512 water molecules and a certain number of NaCl molecules depending on the concentration. Initial configuration was set up by placing water, NaCl, and gas molecules into different regions in the simulation box. Calculating diffusion coefficient for one He or CO 2 molecule consistently yields poor results. To overcome this, formore » each simulation at specific conditions (i.e., temperature, pressure, and NaCl concentration), we conducted 50 simulations initiated from 50 different configurations. These configurations are obtained by performing the simulation starting from the initial configuration mentioned above in the NVE ensemble (i.e., constant number of particles, volume, and energy). for 100,000 time steps and collecting one configuration every 2,000 times step. The output temperature of this simulation is about 500K. The collected configurations were then equilibrated for 2ns in the NPT ensemble (i.e., constant number of particles, pressure, and temperature) followed by 9ns simulations in the NVT ensemble (i.e., constant number of particles, volume, and temperature). The time step is 1fs for all simulations.« less
Answering Questions about Complex Events
2008-12-19
in their environment. To reason about events requires a means of describing, simulating, and analyzing their underlying dynamic processes . For our...that are relevant to our goal of connecting inference and reasoning about processes to answering questions about events. 11 We start with a...different event and process descriptions, ontologies, and models. 2.1.1 Logical AI In AI, formal approaches to model the ability to reason about
Confusing placebo effect with natural history in epilepsy: A big data approach.
Goldenholz, Daniel M; Moss, Robert; Scott, Jonathan; Auh, Sungyoung; Theodore, William H
2015-09-01
For unknown reasons, placebos reduce seizures in clinical trials in many patients. It is also unclear why some drugs showing statistical superiority to placebo in one trial may fail to do so in another. Using Seizuretracker.com, a patient-centered database of 684,825 seizures, we simulated "placebo" and "drug" trials. These simulations were employed to clarify the sources of placebo effects in epilepsy, and to identify methods of diminishing placebo effects. Simulation 1 included 9 trials with a 6-week baseline and 6-week test period, starting at time 0, 3, 6…24 months. Here, "placebo" reduced seizures regardless of study start time. Regression-to-the-mean persisted only for 3 to 6 months. Simulation 2 comprised a 6-week baseline and then 2 years of follow-up. Seizure frequencies continued to improve throughout follow-up. Although the group improved, individuals switched from improvement to worsening and back. Simulation 3 involved a placebo-controlled "drug" trial, to explore methods of placebo response reduction. An efficacious "drug" failed to demonstrate a significant effect compared with "placebo" (p = 0.12), although modifications either in study start time (p = 0.025) or baseline population reduction (p = 0.0028) allowed the drug to achieve a statistically significant effect compared with placebo. In epilepsy clinical trials, some seizure reduction traditionally attributed to placebo effect may reflect the natural course of the disease itself. Understanding these dynamics will allow future investigations into optimal clinical trial design and may lead to identification of more effective therapies. Ann Neurol 2015;78:329-336. © 2015 American Neurological Association.
Experimental study of starting plumes simulating cumulus cloud flows in the atmosphere
NASA Astrophysics Data System (ADS)
Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.; Diwan, S. S.; Narasimha, Roddam
2009-11-01
Turbulent jets and plumes subjected to off-source volumetric heating have been studied experimentally and numerically by Narasimha and co-workers and others over the past two decades. The off-source heating attempts to simulate the latent heat release that occurs in cumulus clouds on condensation of water vapour. This heat release plays a crucial role in determining the overall cloud shape among other things. Previous studies investigated steady state jets and plumes that had attained similarity upstream of heat injection. A better understanding and appreciation of the fluid dynamics of cumulus clouds should be possible by study of starting plumes. Experiments have been set up at JNCASR (Bangalore) using experimental techniques developed previously but incorporating various improvements. Till date, experiments have been performed on plumes at Re of 1000 and 2250, with three different heating levels in each case. Axial sections of the flow have been studied using standard PLIF techniques. The flow visualization provides us with data on the temporal evolution of the starting plume. It is observed that the broad nature of the effect of off-source heating on the starting plumes is generally consistent with the results obtained previously on steady state flows. More complete results and a critical discussion will be presented at the upcoming meeting.
Singharoy, Abhishek; Sereda, Yuriy
2012-01-01
Macromolecular assemblies often display a hierarchical organization of macromolecules or their sub-assemblies. To model this, we have formulated a space warping method that enables capturing overall macromolecular structure and dynamics via a set of coarse-grained order parameters (OPs). This article is the first of two describing the construction and computational implementation of an additional class of OPs that has built into them the hierarchical architecture of macromolecular assemblies. To accomplish this, first, the system is divided into subsystems, each of which is described via a representative set of OPs. Then, a global set of variables is constructed from these subsystem-centered OPs to capture overall system organization. Dynamical properties of the resulting OPs are compared to those of our previous nonhierarchical ones, and implied conceptual and computational advantages are discussed for a 100ns, 2 million atom solvated Human Papillomavirus-like particle simulation. In the second article, the hierarchical OPs are shown to enable a multiscale analysis that starts with the N-atom Liouville equation and yields rigorous Langevin equations of stochastic OP dynamics. The latter is demonstrated via a force-field based simulation algorithm that probes key structural transition pathways, simultaneously accounting for all-atom details and overall structure. PMID:22661911
Integrated Simulation Design Challenges to Support TPS Repair Operations
NASA Technical Reports Server (NTRS)
Quiocho, Leslie J.; Crues, Edwin Z.; Huynh, An; Nguyen, Hung T.; MacLean, John
2006-01-01
During the Orbiter Repair Maneuver (OM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSMS during the ORM, simulation tools used for previous nominal mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. Prevalent throughout this ORM operation is a dynamically varying topology. In other words, the ORM starts with the SRMS grappled to the mated Shuttle/ISS stack (closed loop topology), moves to an open loop chain topology consisting of the Shuttle, SRMS, and ISS, and then, at the repair configuration, extends the chain topology to one consisting of the Shuttle, SMS, ISS, and SSRMS/EVA crewman. The resulting long dynamic chain of vehicles and manipulators may exhibit significant motion between the Shuttle worksite and the EVA crewman due to the system flexibility throughout the topology (particularly within the SRMS/SSRMS joints and links). Since the attachment points of both manipulators span the flexible structure of the ISS, simulation analysis may also need to take that into consideration. Moreover, due to the lengthy time duration associated with the maneuver and repair, orbital effects become a factor and require the ISS vehicle control system to maintain active attitude control. Several facets of the ORM operation make the associated analytical efforts different from previous mission support, including: (1) the magnitude of the SRMS handled payload (Le., Orbiter class), (2) the orbital effects induced on the integrated system consisting of the large Shuttle and ISS masses connected by a light flexible SRMS, (3) long duration environmental consequences due to the lengthy operational times associated with the maneuver and repair of the TPS, (4) active attitude control (as opposed to free drift) interacting with the SRMS and SSRMS manipulators (also due to the length of the maneuver and repair), (5) relative dynamics between the EVA crewman and thc worksite influenced by the extended flexible topology. In order to meet these analysis challenges, an O Msi mulation architecture was developed leveraging upon numerous pre-existing simulation elements to analyze the various subsystems individually. For example, core manipulator subsystem simulations for both the SRMS and SSRMS were originally combined to provide the dual-arm dynamics topology simulation (in the absence of orbital dynamics and vehicle control). This capability was later merged with the simulation used to analyze SRMS loading with a heavy payload in the orbital environment with an active payload control system (in this case, the ISS Attitude Control System (ACS)), configured for the ORM. The resulting worksite dynamics simulation, based off of the modified ORM simulation, provided the extended topological chain of vehicles and manipulators, while taking into account the orbital effects of both the Shuttle and ISS (as well as its ACS). Verification and validation (V&V) of these integrated simulations became a challenge in itself. A systematic approach needed to be developed such that integration simulation results could be tested against previous constituent simulations upon which these simulations were built. General V&V categories included: (1) core orbital state propagation, (2), stand-alone SRMS, (3) stand-alone SSRMS, (4) stand-alone ISS ACS, (5)ntegrated Shuttle, SRMS, ISS (with active ACS) in the orbital environment, and (5) dual-arm SRMS/SSRMS dynamics topology. Integrated simulation V&V run suites were created and correlated to verification runs from subsystem simulations, in order to establish the validity of the results. This paper discusses the simulation design challenges encountered while developing simulation capabilities to mirror the ORM operations. The paper also describes the incremental build approach that was utilized, starting with the subsystem simulation elements and integration into increasing more complex simulations until the resulting ORM worksite dynamics simulation had been assembled. Furthermore, the paper presents an overall integrated simulation V&V methodology based upon a subsystem level testing, integrated comparisons, and phased checkout.
Anatomical connectivity influences both intra- and inter-brain synchronizations.
Dumas, Guillaume; Chavez, Mario; Nadel, Jacqueline; Martinerie, Jacques
2012-01-01
Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.
NASA Astrophysics Data System (ADS)
Destyanto, A. R.; Silalahi, T. D.; Hidayatno, A.
2017-11-01
System dynamic modeling is widely used to predict and simulate the energy system in several countries. One of the applications of system dynamics is to evaluate national energy policy alternatives, and energy efficiency analysis. Using system dynamic modeling, this research aims to evaluate the energy transition policy that has been implemented in Indonesia on the past conversion program of kerosene to LPG for household cook fuel consumption, which considered as successful energy transition program implemented since 2007. This research is important since Indonesia considered not yet succeeded to execute another energy transition program on conversion program of oil fuel to gas fuel for transportation that has started since 1989. The aim of this research is to explore which policy intervention that has significant contribution to support or even block the conversion program. Findings in this simulation show that policy intervention to withdraw the kerosene supply and government push to increase production capacity of the support equipment industries (gas stove, regulator, and LPG Cylinder) is the main influence on the success of the program conversion program.
Kolch, Walter; Kholodenko, Boris N.; Ambrosi, Cristina De; Barla, Annalisa; Biganzoli, Elia M.; Nencioni, Alessio; Patrone, Franco; Ballestrero, Alberto; Zoppoli, Gabriele; Verri, Alessandro; Parodi, Silvio
2015-01-01
The interconnected network of pathways downstream of the TGFβ, WNT and EGF-families of receptor ligands play an important role in colorectal cancer pathogenesis. We studied and implemented dynamic simulations of multiple downstream pathways and described the section of the signaling network considered as a Molecular Interaction Map (MIM). Our simulations used Ordinary Differential Equations (ODEs), which involved 447 reactants and their interactions. Starting from an initial “physiologic condition”, the model can be adapted to simulate individual pathologic cancer conditions implementing alterations/mutations in relevant onco-proteins. We verified some salient model predictions using the mutated colorectal cancer lines HCT116 and HT29. We measured the amount of MYC and CCND1 mRNAs and AKT and ERK phosphorylated proteins, in response to individual or combination onco-protein inhibitor treatments. Experimental and simulation results were well correlated. Recent independently published results were also predicted by our model. Even in the presence of an approximate and incomplete signaling network information, a predictive dynamic modeling seems already possible. An important long term road seems to be open and can be pursued further, by incremental steps, toward even larger and better parameterized MIMs. Personalized treatment strategies with rational associations of signaling-proteins inhibitors, could become a realistic goal. PMID:25671297
Molecular Dynamics based on a Generalized Born solvation model: application to protein folding
NASA Astrophysics Data System (ADS)
Onufriev, Alexey
2004-03-01
An accurate description of the aqueous environment is essential for realistic biomolecular simulations, but may become very expensive computationally. We have developed a version of the Generalized Born model suitable for describing large conformational changes in macromolecules. The model represents the solvent implicitly as continuum with the dielectric properties of water, and include charge screening effects of salt. The computational cost associated with the use of this model in Molecular Dynamics simulations is generally considerably smaller than the cost of representing water explicitly. Also, compared to traditional Molecular Dynamics simulations based on explicit water representation, conformational changes occur much faster in implicit solvation environment due to the absence of viscosity. The combined speed-up allow one to probe conformational changes that occur on much longer effective time-scales. We apply the model to folding of a 46-residue three helix bundle protein (residues 10-55 of protein A, PDB ID 1BDD). Starting from an unfolded structure at 450 K, the protein folds to the lowest energy state in 6 ns of simulation time, which takes about a day on a 16 processor SGI machine. The predicted structure differs from the native one by 2.4 A (backbone RMSD). Analysis of the structures seen on the folding pathway reveals details of the folding process unavailable form experiment.
The Fusion of Membranes and Vesicles: Pathway and Energy Barriers from Dissipative Particle Dynamics
Grafmüller, Andrea; Shillcock, Julian; Lipowsky, Reinhard
2009-01-01
The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8–15 kBT. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion. PMID:19348749
Chakraborty, Srirupa; Zheng, Wenjun
2015-01-27
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
Dynamics starting at a conical intersection: Application to the photochemistry of pyrrole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellner, Bernhard; Barbatti, Mario; Lischka, Hans
The photochemical ring opening process in pyrrole has been investigated by performing classical on-the-fly dynamics using the multiconfiguration self-consistent field method for the computation of energies and energy gradients. As starting point for the dynamics the conical intersection corresponding to the ring-puckered ring-opened structure, determined previously [Barbatti et al., J. Chem. Phys. 125, 164323 (2006)], has been chosen. Two sets of initial conditions for the nuclear velocities were constructed: (i) nuclear velocities in the branching (g,h) plane of the conical intersection and (ii) statistical distribution for all atoms. Both sets of initial conditions show very similar results. Reactive trajectories aremore » only found in a very limited sector in the (g,h) plane and reaction products are very similar. Within the simulation time of 1 ps, ring opening of pyrrole to the biradical NH=CH-CH-CH=CH chain followed by ring closure to a substituted cyclopropene structure (NH=CH-C{sub 3}H{sub 3}) is observed. The computed structural data correlate well with the experimentally observed dissociation products.« less
Wen, Han; Qin, Feng; Zheng, Wenjun
2016-01-01
As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state vs. the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. PMID:27699868
Quantum versus classical dynamics in the optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2017-09-01
The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.
Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine
NASA Astrophysics Data System (ADS)
Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.
2018-06-01
Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.
Compact Conformations of Human Protein Disulfide Isomerase
Cui, Lei; Ding, Xiang; Niu, Lili; Yang, Fuquan; Wang, Chao; Wang, Chih-chen; Lou, Jizhong
2014-01-01
Protein disulfide isomerase (PDI) composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI) in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact. PMID:25084354
800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1999-01-01
From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.
Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.
Crespo-Otero, Rachel; Barbatti, Mario
2018-05-16
Nonadiabatic mixed quantum-classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the molecular system into two subsystems: one to be treated quantum mechanically (usually but not restricted to electrons) and another to be dealt with classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms to enforce self-consistency. A local approximation underlies the classical subsystem, implying that direct dynamics can be simulated, without needing precomputed potential energy surfaces. The NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular systems in diverse fields. Starting from the three most well-established methods-mean-field Ehrenfest, trajectory surface hopping, and multiple spawning-this review focuses on the NA-MQC dynamics methods and programs developed in the last 10 years. It stresses the relations between approaches and their domains of application. The electronic structure methods most commonly used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-MQC simulations are critically discussed, and general guidelines to choose an adequate method for each application are delivered.
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2015-01-01
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling. PMID:25637963
NASA Astrophysics Data System (ADS)
Gayler, Sebastian; Wöhling, Thomas; Ingwersen, Joachim; Wizemann, Hans-Dieter; Warrach-Sagi, Kirsten; Attinger, Sabine; Streck, Thilo; Wulmeyer, Volker
2014-05-01
Interactions between the soil, the vegetation, and the atmospheric boundary layer require close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather and climate. However, land-surface schemes used in large scale models continue to show deficits in consistently simulating fluxes of water and energy from the subsurface through vegetation layers to the atmosphere. In this study, the multi-physics version of the Noah land-surface model (Noah-MP) was used to identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes between land-surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South-West Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of vegetation-related processes is the most important control for a consistent simulation of energy and water fluxes in the soil-plant-atmosphere system. In particular, using a newly implemented sub-module to simulate root growth dynamics has enhanced the performance of Noah-MP at both field sites. We conclude that further advances in the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting points for improving the simulation of feedbacks between the sub-soil, land-surface and atmosphere in fully-coupled hydrological and atmospheric models.
Electron tomography and 3D molecular simulations of platinum nanocrystals
NASA Astrophysics Data System (ADS)
Florea, Ileana; Demortière, Arnaud; Petit, Christophe; Bulou, Hervé; Hirlimann, Charles; Ersen, Ovidiu
2012-07-01
This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface.This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30990d
NASA Astrophysics Data System (ADS)
Beckman, Robert A.; Moreland, David; Louise-May, Shirley; Humblet, Christine
2006-05-01
Nuclear magnetic resonance (NMR) provides structural and dynamic information reflecting an average, often non-linear, of multiple solution-state conformations. Therefore, a single optimized structure derived from NMR refinement may be misleading if the NMR data actually result from averaging of distinct conformers. It is hypothesized that a conformational ensemble generated by a valid molecular dynamics (MD) simulation should be able to improve agreement with the NMR data set compared with the single optimized starting structure. Using a model system consisting of two sequence-related self-complementary ribonucleotide octamers for which NMR data was available, 0.3 ns particle mesh Ewald MD simulations were performed in the AMBER force field in the presence of explicit water and counterions. Agreement of the averaged properties of the molecular dynamics ensembles with NMR data such as homonuclear proton nuclear Overhauser effect (NOE)-based distance constraints, homonuclear proton and heteronuclear 1H-31P coupling constant ( J) data, and qualitative NMR information on hydrogen bond occupancy, was systematically assessed. Despite the short length of the simulation, the ensemble generated from it agreed with the NMR experimental constraints more completely than the single optimized NMR structure. This suggests that short unrestrained MD simulations may be of utility in interpreting NMR results. As expected, a 0.5 ns simulation utilizing a distance dependent dielectric did not improve agreement with the NMR data, consistent with its inferior exploration of conformational space as assessed by 2-D RMSD plots. Thus, ability to rapidly improve agreement with NMR constraints may be a sensitive diagnostic of the MD methods themselves.
Mechanical response of two polyimides through coarse-grained molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Sudarkodi, V.; Sooraj, K.; Nair, Nisanth N.; Basu, Sumit; Parandekar, Priya V.; Sinha, Nishant K.; Prakash, Om; Tsotsis, Tom
2018-03-01
Coarse-grained molecular dynamics (MD) simulations allow us to predict the mechanical responses of polymers, starting merely with a description of their molecular architectures. It is interesting to ask whether, given two competing molecular architectures, coarse-grained MD simulations can predict the differences that can be expected in their mechanical responses. We have studied two crosslinked polyimides PMR15 and HFPE52—both used in high- temperature applications—to assess whether the subtle differences in their uniaxial stress-strain responses, revealed by experiments, can be reproduced by carefully coarse-grained MD models. The coarse graining procedure for PMR15 is outlined in this work, while the coarse grain forcefields for HFPE52 are borrowed from an earlier one (Pandiyan et al 2015 Macromol. Theory Simul. 24 513-20). We show that the stress-strain responses of both these polyimides are qualitatively reproduced, and important insights into their deformation and failure mechanisms are obtained. More importantly, the differences in the molecular architecture between the polyimides carry over to the differences in the stress-strain responses in a manner that parallels the experimental results. A critical assessment of the successes and shortcomings of predicting mechanical responses through coarse-grained MD simulations has been made.
Atomistic Simulations of the pH Induced Functional Rearrangement of Influenza Hemagglutinin
NASA Astrophysics Data System (ADS)
Lin, Xingcheng; Noel, Jeffrey; Wang, Qinghua; Ma, Jianpeng; Onuchic, Jose
Influenza hemagglutinin (HA), a surface glycoprotein responsible for the entry and replication of flu viruses in their host cells, functions by starting a dramatic conformational rearrangement, which leads to a fusion of the viral and endosomal membranes. It has been claimed that a loop-to-coiled-coil transition of the B-loop domain of HA drives the HA-induced membrane fusion. On the lack of dynamical details, however, the microscopic picture for this proposed ``spring-loaded'' movement is missing. To elaborate on the transition of the B-loop, we performed a set of unbiased all-atom molecular dynamics simulations of the full B-loop structure with the CHARMM36 force field. The complete free-energy profile constructed from our simulations reveals a slow transition rate for the B-loop that is incompatible with a downhill process. Additionally, our simulations indicate two potential sources of kinetic traps in the structural switch of the B-loop: Desolvation barriers and non-native secondary structure formation. The slow timescale of the B-loop transition also confirms our previous discovery from simulations using a coarse-grained structure-based model, which identified two competitive pathways both with a slow B-loop transition for HA to guide the membrane fusion.
Espinoza-Fonseca, L Michel; Kast, David; Thomas, David D
2007-09-15
We have performed molecular dynamics simulations of the phosphorylated (at S-19) and the unphosphorylated 25-residue N-terminal phosphorylation domain of the regulatory light chain (RLC) of smooth muscle myosin to provide insight into the structural basis of regulation. This domain does not appear in any crystal structure, so these simulations were combined with site-directed spin labeling to define its structure and dynamics. Simulations were carried out in explicit water at 310 K, starting with an ideal alpha-helix. In the absence of phosphorylation, large portions of the domain (residues S-2 to K-11 and R-16 through Y-21) were metastable throughout the simulation, undergoing rapid transitions among alpha-helix, pi-helix, and turn, whereas residues K-12 to Q-15 remained highly disordered, displaying a turn motif from 1 to 22.5 ns and a random coil pattern from 22.5 to 50 ns. Phosphorylation increased alpha-helical order dramatically in residues K-11 to A-17 but caused relatively little change in the immediate vicinity of the phosphorylation site (S-19). Phosphorylation also increased the overall dynamic stability, as evidenced by smaller temporal fluctuations in the root mean-square deviation. These results on the isolated phosphorylation domain, predicting a disorder-to-order transition induced by phosphorylation, are remarkably consistent with published experimental data involving site-directed spin labeling of the intact RLC bound to the two-headed heavy meromyosin. The simulations provide new insight into structural details not revealed by experiment, allowing us to propose a refined model for the mechanism by which phosphorylation affects the N-terminal domain of the RLC of smooth muscle myosin.
Photodissociation Dynamics of Phenol: Multistate Trajectory Simulations including Tunneling
Xu, Xuefei; Zheng, Jingjing; Yang, Ke R.; ...
2014-10-27
We report multistate trajectory simulations, including coherence, decoherence, and multidimensional tunneling, of phenol photodissociation dynamics. The calculations are based on full-dimensional anchor-points reactive potential surfaces and state couplings fit to electronic structure calculations including dynamical correlation with an augmented correlation-consistent polarized valence double-ζ basis set. The calculations successfully reproduce the experimentally observed bimodal character of the total kinetic energy release spectra and confirm the interpretation of the most recent experiments that the photodissociation process is dominated by tunneling. Analysis of the trajectories uncovers an unexpected dissociation pathway for one quantum excitation of the O–H stretching mode of the S 1more » state, namely, tunneling in a coherent mixture of states starting in a smaller R OH (~0.9–1.0 Å) region than has previously been invoked. The simulations also show that most trajectories do not pass close to the S 1–S 2 conical intersection (they have a minimum gap greater than 0.6 eV), they provide statistics on the out-of-plane angles at the locations of the minimum energy adiabatic gap, and they reveal information about which vibrational modes are most highly activated in the products.« less
Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V
2011-01-01
Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.
A molecular dynamics simulation study of irradiation induced defects in gold nanowire
NASA Astrophysics Data System (ADS)
Liu, Wenqiang; Chen, Piheng; Qiu, Ruizhi; Khan, Maaz; Liu, Jie; Hou, Mingdong; Duan, Jinglai
2017-08-01
Displacement cascade in gold nanowires was studied using molecular dynamics computer simulations. Primary knock-on atoms (PKAs) with different kinetic energies were initiated either at the surface or at the center of the nanowires. We found three kinds of defects that were induced by the cascade, including point defects, stacking faults and crater at the surface. The starting points of PKAs influence the number of residual point defects, and this consequently affect the boundary of anti-radiation window which was proposed by calculation of diffusion of point defects to the free surface of nanowires. Formation of stacking faults that expanded the whole cross-section of gold nanowires was observed when the PKA's kinetic energy was higher than 5 keV. Increasing the PKA's kinetic energy up to more than 10 keV may lead to the formation of crater at the surface of nanowires due to microexplosion of hot atoms. At this energy, PKAs started from the center of nanowires can also result in the creation of crater because length of cascade region is comparable to diameter of nanowires. Both the two factors, namely initial positions of PKAs as well as the craters induced by higher energy irradiation, would influence the ability of radiation resistance of metal nanowires.
Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.
Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P
2015-08-01
Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.
CIELO-A GIS integrated model for climatic and water balance simulation in islands environments
NASA Astrophysics Data System (ADS)
Azevedo, E. B.; Pereira, L. S.
2003-04-01
The model CIELO (acronym for "Clima Insular à Escala Local") is a physically based model that simulates the climatic variables in an island using data from a single synoptic reference meteorological station. The reference station "knows" its position in the orographic and dynamic regime context. The domain of computation is a GIS raster grid parameterised with a digital elevation model (DEM). The grid is oriented following the direction of the air masses circulation through a specific algorithm named rotational terrain model (RTM). The model consists of two main sub-models. One, relative to the advective component simulation, assumes the Foehn effect to reproduce the dynamic and thermodynamic processes occurring when an air mass moves through the island orographic obstacle. This makes possible to simulate the air temperature, air humidity, cloudiness and precipitation as influenced by the orography along the air displacement. The second concerns the radiative component as affected by the clouds of orographic origin and by the shadow produced by the relief. The initial state parameters are computed starting from the reference meteorological station across the DEM transept until the sea level at the windward side. Then, starting from the sea level, the model computes the local scale meteorological parameters according to the direction of the air displacement, which is adjusted with the RTM. The air pressure, temperature and humidity are directly calculated for each cell in the computational grid, while several algorithms are used to compute the cloudiness, net radiation, evapotranspiration, and precipitation. The model presented in this paper has been calibrated and validated using data from some meteorological stations and a larger number of rainfall stations located at various elevations in the Azores Islands.
Yang, Zhongyue; Houk, K N
2018-03-15
Jacobus Henricus van 't Hoff was the first Nobel Laureate in Chemistry. He pioneered in the study of chemical dynamics, which referred at that time to chemical kinetics and thermodynamics. The term has evolved in modern times to refer to the exploration of chemical transformations in a time-resolved fashion. Chemical dynamics has been driven by the development of molecular dynamics trajectory simulations, which provide atomic visualization of chemical processes and illuminate how dynamic effects influence chemical reactivity and selectivity. In homage to the legend of van 't Hoff, we review the development of the chemical dynamics of organic reactions, our area of research. We then discuss our trajectory simulations of pericyclic reactions, and our development of dynamic criteria for concerted and stepwise reaction mechanisms. We also describe a method that we call environment-perturbed transition state sampling, which enables trajectory simulations in condensed-media using quantum mechanics and molecular mechanics (QM/MM). We apply the method to reactions in solvent and in enzyme. Jacobus Henricus van 't Hoff (1852, Rotterdam-1911, Berlin) received the Nobel Prize for Chemistry in 1901 "in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions". van 't Hoff was born the Netherlands, and earned his doctorate in Utrecht in 1874. In 1896 he moved to Berlin, where he was offered a position with more research and less teaching. van 't Hoff is considered one of the founders of physical chemistry. A key step in establishing this new field was the start of Zeitschrift für Physikalische Chemie in 1887. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
OpenSatKit Enables Quick Startup for CubeSat Missions
NASA Technical Reports Server (NTRS)
McComas, David; Melton, Ryan
2017-01-01
The software required to develop, integrate, and operate a spacecraft is substantial regardless of whether its a large or small satellite. Even getting started can be a monumental task. To solve this problem, NASAs Core Flight System (cFS), NASA's 42 spacecraft dynamics simulator, and Ball Aerospaces COSMOS ground system have been integrated together into a kit called OpenSatKit that provides a complete and open source software solution for starting a new satellite mission. Users can have a working system with flight software, dynamics simulation, and a ground command and control system up and running within hours.Every satellite mission requires three primary categories of software to function. The first is Flight Software (FSW) which provides the onboard control of the satellites and its payload(s). NASA's cFS provides a great platform for developing this software. Second, while developing a satellite on earth, it is necessary to simulate the satellites orbit, attitude, and actuators, to ensure that the systems that control these aspects will work correctly in the real environment. NASAs 42 simulator provides these functionalities. Finally, the ground has to be able to communicate with the satellite, monitor its performance and health, and display its data. Additionally, test scripts have to be written to verify the system on the ground. Ball Aerospace's COSMOS command and control system provides this functionality. Once the OpenSatKit is up and running, the next step is to customize the platform and get it running on the end target. Starting from a fully working system makes porting the cFS from Linux to a users platform much easier. An example Raspberry Pi target is included in the kit so users can gain experience working with a low cost hardware target. All users can benefit from OpenSatKit but the greatest impact and benefits will be to SmallSat missions with constrained budgets and small software teams. This paper describes OpenSatKits system design, the steps necessary to run the system to target the Raspberry Pi, and future plans. OpenSatKit is a free fully functional spacecraft software system that we hope will greatly benefit the SmallSat community.
NASA Astrophysics Data System (ADS)
Intriligator, D. S.; Sun, W.; Detman, T. R.; Dryer, Ph D., M.; Intriligator, J.; Deehr, C. S.; Webber, W. R.; Gloeckler, G.; Miller, W. D.
2015-12-01
Large solar events can have severe adverse global impacts at Earth. These solar events also can propagate throughout the heliopshere and into the interstellar medium. We focus on the July 2012 and Halloween 2003 solar events. We simulate these events starting from the vicinity of the Sun at 2.5 Rs. We compare our three dimensional (3D) time-dependent simulations to available spacecraft (s/c) observations at 1 AU and beyond. Based on the comparisons of the predictions from our simulations with in-situ measurements we find that the effects of these large solar events can be observed in the outer heliosphere, the heliosheath, and even into the interstellar medium. We use two simulation models. The HAFSS (HAF Source Surface) model is a kinematic model. HHMS-PI (Hybrid Heliospheric Modeling System with Pickup protons) is a numerical magnetohydrodynamic solar wind (SW) simulation model. Both HHMS-PI and HAFSS are ideally suited for these analyses since starting at 2.5 Rs from the Sun they model the slowly evolving background SW and the impulsive, time-dependent events associated with solar activity. Our models naturally reproduce dynamic 3D spatially asymmetric effects observed throughout the heliosphere. Pre-existing SW background conditions have a strong influence on the propagation of shock waves from solar events. Time-dependence is a crucial aspect of interpreting s/c data. We show comparisons of our simulation results with STEREO A, ACE, Ulysses, and Voyager s/c observations.
ODECS -- A computer code for the optimal design of S.I. engine control strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsie, I.; Pianese, C.; Rizzo, G.
1996-09-01
The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less
Molecular dynamics simulations on the local order of liquid and amorphous ZnTe
NASA Astrophysics Data System (ADS)
Rino, José Pedro; Borges, Denilson; Mota, Rita C.; Silva, Maurício A. P.
2008-05-01
Molecular dynamics studies of structural and dynamical correlations of molten and vitreous states under several conditions of density and temperature were performed. We use an effective recently proposed interatomic potential, consisting of two- and three-body covalent interactions which has successfully described the structural, dynamical, and structural phase transformation induced by pressure in ZnTe [D. S. Borges and J. P. Rino, Phys. Rev. B 72, 014107 (2005)]. The two-body term of the interaction potential consists of Coulomb interaction resulting from charge transfer, steric repulsion due to atomic sizes, charge-dipole interaction to include the effect of electronic polarizability of anions, and dipole-dipole (van der Waals) interactions. The three-body covalent term is a modification of the Stillinger-Weber potential. Molecular dynamics simulations in isobaric-isenthalpic ensemble have been performed for systems amounting to 4096 and 64 000 particles. Starting from a crystalline zinc-blende (ZB) structure, the system is initially heated until a very homogeneous liquid is obtained. The vitreous zinc telluride phase is attained by cooling the liquid at sufficiently fast cooling rates, while slower cooling rates lead to a disordered ZB crystalline structure. Two- and three-body correlations for the liquid and vitreous phases are analyzed through pair distribution functions, static structure factors, and bond angle distributions. In particular, the neutron static structure factor for the liquid phase is in very good agreement with both the reported experimental data and first-principles simulations.
NASA Astrophysics Data System (ADS)
Gabriel, Alice; Pelties, Christian
2014-05-01
In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.
Modeling nuclear processes by Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my
2015-04-29
Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less
Natural gas operations: considerations on process transients, design, and control.
Manenti, Flavio
2012-03-01
This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results
NASA Technical Reports Server (NTRS)
Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad
1992-01-01
To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.
NORTICA—a new code for cyclotron analysis
NASA Astrophysics Data System (ADS)
Gorelov, D.; Johnson, D.; Marti, F.
2001-12-01
The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.
One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue
Nury, Hugues; Poitevin, Frédéric; Van Renterghem, Catherine; Changeux, Jean-Pierre; Corringer, Pierre-Jean; Delarue, Marc; Baaden, Marc
2010-01-01
Recently discovered bacterial homologues of eukaryotic pentameric ligand-gated ion channels, such as the Gloeobacter violaceus receptor (GLIC), are increasingly used as structural and functional models of signal transduction in the nervous system. Here we present a one-microsecond-long molecular dynamics simulation of the GLIC channel pH stimulated gating mechanism. The crystal structure of GLIC obtained at acidic pH in an open-channel form is equilibrated in a membrane environment and then instantly set to neutral pH. The simulation shows a channel closure that rapidly takes place at the level of the hydrophobic furrow and a progressively increasing quaternary twist. Two major events are captured during the simulation. They are initiated by local but large fluctuations in the pore, taking place at the top of the M2 helix, followed by a global tertiary relaxation. The two-step transition of the first subunit starts within the first 50 ns of the simulation and is followed at 450 ns by its immediate neighbor in the pentamer, which proceeds with a similar scenario. This observation suggests a possible two-step domino-like tertiary mechanism that takes place between adjacent subunits. In addition, the dynamical properties of GLIC described here offer an interpretation of the paradoxical properties of a permeable A13′F mutant whose crystal structure determined at 3.15 Å shows a pore too narrow to conduct ions. PMID:20308576
Desolvation of polymers by ultrafast heating: Influence of hydrophilicity
NASA Astrophysics Data System (ADS)
Sun, Si Neng; Urbassek, Herbert M.
2010-10-01
Using molecular-dynamics simulation, we investigate the consequences of ultrafast laser-induced heating of a small water droplet containing a solvated polymer. Two polymers are studied: polyethylene as an example of a hydrophobic, and polyketone as an example of a hydrophilic polymer. In both cases, when the droplet is heated below the critical temperature of water, strong water evaporation is started, but the polymer remains in contact with a central water cluster. However, upon heating beyond the critical temperature, the hydrophilic polyethylene becomes completely desolvated, while polyketone still remains solvated. We analyze this behavior in terms of the intermolecular interactions and of the expansion dynamics of the heated droplet.
System simulation of direct-current speed regulation based on Simulink
NASA Astrophysics Data System (ADS)
Yang, Meiying
2018-06-01
Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Kilean; Qiang, Ji
A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less
Nonlinear dynamics of the cellular-automaton ``game of Life''
NASA Astrophysics Data System (ADS)
Garcia, J. B. C.; Gomes, M. A. F.; Jyh, T. I.; Ren, T. I.; Sales, T. R. M.
1993-11-01
A statistical analysis of the ``game of Life'' due to Conway [Berlekamp, Conway, and Guy, Winning Ways for Your Mathematical Plays (Academic, New York, 1982), Vol. 2] is reported. The results are based on extensive computer simulations starting with uncorrelated distributions of live sites at t=0. The number n(s,t) of clusters of s live sites at time t, the mean cluster size s¯(t), and the diversity of sizes among other statistical functions are obtained. The dependence of the statistical functions with the initial density of live sites is examined. Several scaling relations as well as static and dynamic critical exponents are found.
Developing Novel Frameworks for Many-Body Ensembles
2016-03-17
RETURN YOUR FORM TO THE ABOVE ADDRESS. Massachusetts Institute of Technology (MIT) 77 Massachusetts Ave. NE18-901 Cambridge , MA 02139 -4307 15-Jul-2015...of-equilibrium dynamics and to estimate prob- Page 4 of 9 Figure 2: Illustration of the dendro- gram representation. The rectangle on the left shows...isolation as illustrated in Figure 4. Starting from random initial conditions, an ensemble of particle pairs was simulated to establish the long-time
Methods for design and evaluation of parallel computating systems (The PISCES project)
NASA Technical Reports Server (NTRS)
Pratt, Terrence W.; Wise, Robert; Haught, Mary JO
1989-01-01
The PISCES project started in 1984 under the sponsorship of the NASA Computational Structural Mechanics (CSM) program. A PISCES 1 programming environment and parallel FORTRAN were implemented in 1984 for the DEC VAX (using UNIX processes to simulate parallel processes). This system was used for experimentation with parallel programs for scientific applications and AI (dynamic scene analysis) applications. PISCES 1 was ported to a network of Apollo workstations by N. Fitzgerald.
Molecular dynamics studies on the DNA-binding process of ERG.
Beuerle, Matthias G; Dufton, Neil P; Randi, Anna M; Gould, Ian R
2016-11-15
The ETS family of transcription factors regulate gene targets by binding to a core GGAA DNA-sequence. The ETS factor ERG is required for homeostasis and lineage-specific functions in endothelial cells, some subset of haemopoietic cells and chondrocytes; its ectopic expression is linked to oncogenesis in multiple tissues. To date details of the DNA-binding process of ERG including DNA-sequence recognition outside the core GGAA-sequence are largely unknown. We combined available structural and experimental data to perform molecular dynamics simulations to study the DNA-binding process of ERG. In particular we were able to reproduce the ERG DNA-complex with a DNA-binding simulation starting in an unbound configuration with a final root-mean-square-deviation (RMSD) of 2.1 Å to the core ETS domain DNA-complex crystal structure. This allowed us to elucidate the relevance of amino acids involved in the formation of the ERG DNA-complex and to identify Arg385 as a novel key residue in the DNA-binding process. Moreover we were able to show that water-mediated hydrogen bonds are present between ERG and DNA in our simulations and that those interactions have the potential to achieve sequence recognition outside the GGAA core DNA-sequence. The methodology employed in this study shows the promising capabilities of modern molecular dynamics simulations in the field of protein DNA-interactions.
Transient simulation of molten salt central receiver
NASA Astrophysics Data System (ADS)
Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael
2016-05-01
Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.
NASA Astrophysics Data System (ADS)
Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg
2018-03-01
Martensitic transformations in nanoscaled shape-memory alloys exhibit characteristic features absent for the bulk counterparts. Detailed understanding is required for applications in micro- and nanoelectromechanical systems, and experimental limitations render atomistic simulation an important complementary approach. Using a recently developed, accurate potential we investigate the phase transformation in freestanding Ni-Ti shape-memory nanoparticles with molecular-dynamics simulations. The results confirm that the decrease in the transformation temperature with decreasing particle size is correlated with an overstabilization of the austenitic surface energy over the martensitic surface energy. However, a detailed atomistic analysis of the nucleation and growth behavior reveals an unexpected difference in the mechanisms determining the austenite finish and martensite start temperature. While the austenite finish temperature is directly affected by a contribution of the surface energy difference, the martensite start temperature is mostly affected by the transformation strain, contrary to general expectations. This insight not only explains the reduced transformation temperature but also the reduced thermal hysteresis in freestanding nanoparticles.
Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory
NASA Astrophysics Data System (ADS)
Wittmann, René; Sitta, Christoph E.; Smallenburg, Frank; Löwen, Hartmut
2017-10-01
A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.
Free energy landscapes of a highly structured β-hairpin peptide and its single mutant
NASA Astrophysics Data System (ADS)
Kim, Eunae; Yang, Changwon; Jang, Soonmin; Pak, Youngshang
2008-10-01
We investigated the free energy landscapes of a highly structured β-hairpin peptide (MBH12) and a less structured peptide with a single mutation of Tyr6 to Asp6 (MBH10). For the free energy mapping, starting from an extended conformation, the replica exchange molecular dynamic simulations for two β-hairpins were performed using a modified version of an all-atom force field employing an implicit solvation (param99MOD5/GBSA). With the present simulation approach, we demonstrated that detailed stability changes associated with the sequence modification from MBH12 to MBH10 are quantitatively well predicted at the all-atom level.
Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm
NASA Astrophysics Data System (ADS)
Boytsov, A. Yu.; Bulychev, A. A.
2018-04-01
Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.
NASA Astrophysics Data System (ADS)
Ciunel, St.; Tica, B.
2016-08-01
The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.
System Verification of MSL Skycrane Using an Integrated ADAMS Simulation
NASA Technical Reports Server (NTRS)
White, Christopher; Antoun, George; Brugarolas, Paul; Lih, Shyh-Shiuh; Peng, Chia-Yen; Phan, Linh; San Martin, Alejandro; Sell, Steven
2012-01-01
Mars Science Laboratory (MSL) will use the Skycrane architecture to execute final descent and landing maneuvers. The Skycrane phase uses closed-loop feedback control throughout the entire phase, starting with rover separation, through mobility deploy, and through touchdown, ending only when the bridles have completely slacked. The integrated ADAMS simulation described in this paper couples complex dynamical models created by the mechanical subsystem with actual GNC flight software algorithms that have been compiled and linked into ADAMS. These integrated simulations provide the project with the best means to verify key Skycrane requirements which have a tightly coupled GNC-Mechanical aspect to them. It also provides the best opportunity to validate the design of the algorithm that determines when to cut the bridles. The results of the simulations show the excellent performance of the Skycrane system.
Dynamically accumulated dose and 4D accumulated dose for moving tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Heng; Li Yupeng; Zhang Xiaodong
2012-12-15
Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove themore » principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and/or total deliver time was also established.« less
Multiscale Simulations of Dynamics of Ferroelectric Domains
NASA Astrophysics Data System (ADS)
Liu, Shi
Ferroelectrics with switchable polarization have many important technological applications, which heavily rely on the interactions between the polarization and external perturbations. Understanding the dynamical response of ferroelectric materials is crucial for the discovery and development of new design principles and engineering strategies for optimized and breakthrough applications of ferroelectrics. We developed a multiscale computational approach that combines methods at different length and time scales to elucidate the connection between local structures, domain dynamics, and macroscopic finite-temperature properties of ferroelectrics. We started from first-principles calculations of ferroelectrics to build a model interatomic potential, enabling large-scale molecular dynamics (MD) simulations. The atomistic insights of nucleation and growth at the domain wall obtained from MD were then incorporated into a continuum model within the framework of Landau-Ginzburg-Devonshire theory. This progressive theoretical framework allows for the first time an efficient and accurate estimation of macroscopic properties such as the coercive field for a broad range of ferroelectrics from first-principles. This multiscale approach has also been applied to explore the effect of dipolar defects on ferroelectric switching and to understand the origin of giant electro-strain coupling. ONR, NSF, Carnegie Institution for Science.
Ahmed, Aqeel; Rippmann, Friedrich; Barnickel, Gerhard; Gohlke, Holger
2011-07-25
A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 Å) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.
NASA Astrophysics Data System (ADS)
Fu, Peihua; Zhu, Anding; Ni, He; Zhao, Xin; Li, Xiulin
2018-01-01
Ponzi schemes always lead to mass disasters after collapse. It is important to study the critical behaviors of both social dynamics and financial outcomes for Ponzi scheme diffusion in complex networks. We develop the potential-investor-divestor-investor (PIDI) model by considering the individual behavior of direct reinvestment. We find that only the spreading rate relates to the epidemic outbreak while the reinvestment rate relates to the zero and non-zero final states for social dynamics of both homo- and inhomogeneous networks. Financially, we find that there is a critical spreading threshold, above which the scheme needs not to use its own initial capital for taking off, i.e. the starting cost is covered by the rapidly inflowing funds. However, the higher the cost per recruit, the larger the critical spreading threshold and the worse the financial outcomes. Theoretical and simulation results also reveal that schemes are easier to take off in inhomogeneous networks. The reinvestment rate does not affect the starting. However, it improves the financial outcome in the early stages and postpones the outbreak of financial collapse. Some policy suggestions for the regulator from the perspective of social physics are proposed in the end of the paper.
Direct construction of mesoscopic models from microscopic simulations
NASA Astrophysics Data System (ADS)
Lei, Huan; Caswell, Bruce; Karniadakis, George Em
2010-02-01
Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.
Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan
2017-01-01
Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population dynamics and movement propensities via spatial simulation modeling frameworks may provide an informative means of predicting long-term habitat use, particularly for fluctuating populations with complex seasonal habitat needs. Importantly, our results indicate the possible need to consider habitat selection models as a starting point rather than the common end point for refining and prioritizing habitats for protection for cyclic and highly variable populations.
Todde, Guido; Hovmöller, Sven; Laaksonen, Aatto; Mocci, Francesca
2014-10-01
Glucose oxidase (GOx) is a flavoenzyme having applications in food and medical industries. However, GOx, as many other enzymes when extracted from the cells, has relatively short operational lifetimes. Several recent studies (both experimental and theoretical), carried out on small proteins (or small fractions of large proteins), show that a detailed knowledge of how the breakdown process starts and proceeds on molecular level could be of significant help to artificially improve the stability of fragile proteins. We have performed extended molecular dynamics (MD) simulations to study the denaturation of GOx (a protein dimer containing nearly 1200 amino acids) to identify weak points in its structure and in this way gather information to later make it more stable, for example, by mutations. A denaturation of a protein can be simulated by increasing the temperature far above physiological temperature. We have performed a series of MD simulations at different temperatures (300, 400, 500, and 600 K). The exit from the protein's native state has been successfully identified with the clustering method and supported by other methods used to analyze the simulation data. A common set of amino acids is regularly found to initiate the denaturation, suggesting a moiety where the enzyme could be strengthened by a suitable amino acid based modification. © 2014 Wiley Periodicals, Inc.
Muthukumar, Kaliappan; Valentí, Roser; Jeschke, Harald O
2014-05-14
Tungsten and cobalt carbonyls adsorbed on a substrate are typical starting points for the electron beam induced deposition of tungsten or cobalt based metallic nanostructures. We employ first principles molecular dynamics simulations to investigate the dynamics and vibrational spectra of W(CO)6 and W(CO)5 as well as Co2(CO)8 and Co(CO)4 precursor molecules on fully and partially hydroxylated silica surfaces. Such surfaces resemble the initial conditions of electron beam induced growth processes. We find that both W(CO)6 and Co2(CO)8 are stable at room temperature and mobile on a silica surface saturated with hydroxyl groups (OH), moving up to half an Angström per picosecond. In contrast, chemisorbed W(CO)5 or Co(CO)4 ions at room temperature do not change their binding site. These results contribute to gaining fundamental insight into how the molecules behave in the simulated time window of 20 ps and our determined vibrational spectra of all species provide signatures for experimentally distinguishing the form in which precursors cover a substrate.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim
The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. Here, we consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent “spontaneous” emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using themore » SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978)] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.« less
Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
NASA Astrophysics Data System (ADS)
Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.
2018-03-01
The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.
Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; ...
2018-03-12
The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. Here, we consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent “spontaneous” emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using themore » SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978)] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.« less
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
NASA Astrophysics Data System (ADS)
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
Wen, Han; Qin, Feng; Zheng, Wenjun
2016-12-01
As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state versus the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. Proteins 2016; 84:1938-1949. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Laghaei, Rozita; Mousseau, Normand
2010-04-01
Expansion of polyglutamine (polyQ) beyond the pathogenic threshold (35-40 Gln) is associated with several neurodegenerative diseases including Huntington's disease, several forms of spinocerebellar ataxias and spinobulbar muscular atrophy. To determine the structure of polyglutamine aggregates we perform replica-exchange molecular dynamics simulations coupled with the optimized potential for effective peptide forcefield. Using a range of temperatures from 250 to 700 K, we study the aggregation kinetics of the polyglutamine monomer and dimer with chain lengths from 30 to 50 residues. All monomers show a similar structural change at the same temperature from α-helical structure to random coil, without indication of any significant β-strand. For dimers, by contrast, starting from random structures, we observe spontaneous formation of antiparallel β-sheets and triangular and circular β-helical structures for polyglutamine with 40 residues in a 400 ns 50 temperature replica-exchange molecular dynamics simulation (total integrated time 20 μs). This ˜32 Å diameter structure reorganizes further into a tight antiparallel double-stranded ˜22 Å nanotube with 22 residues per turn close to Perutz' model for amyloid fibers as water-filled nanotubes. This diversity of structures suggests the existence of polymorphism for polyglutamine with possibly different pathways leading to the formation of toxic oligomers and to fibrils.
Mechanisms of proton transfer in Nafion: elementary reactions at the sulfonic acid groups.
Sagarik, Kritsana; Phonyiem, Mayuree; Lao-ngam, Charoensak; Chaiwongwattana, Sermsiri
2008-04-21
Proton transfer reactions at the sulfonic acid groups in Nafion were theoretically studied, using complexes formed from triflic acid (CF3SO3H), H3O+ and H2O, as model systems. The investigations began with searching for potential precursors and transition states at low hydration levels, using the test-particle model (T-model), density functional theory (DFT) and ab initio calculations. They were employed as starting configurations in Born-Oppenheimer molecular dynamics (BOMD) simulations at 298 K, from which elementary reactions were analyzed and categorized. For the H3O+-H2O complexes, BOMD simulations suggested that a quasi-dynamic equilibrium could be established between the Eigen and Zundel complexes, and that was considered to be one of the most important elementary reactions in the proton transfer process. The average lifetime of H3O+ obtained from BOMD simulations is close to the lowest limit, estimated from low-frequency vibrational spectroscopy. It was demonstrated that proton transfer reactions at -SO3H are not concerted, due to the thermal energy fluctuation and the existence of various quasi-dynamic equilibria, and -SO3H could directly and indirectly mediate proton transfer reactions through the formation of proton defects, as well as the -SO3- and -SO3H2+ transition states.
Jaeger, Johannes; Crombach, Anton
2012-01-01
We propose an approach to evolutionary systems biology which is based on reverse engineering of gene regulatory networks and in silico evolutionary simulations. We infer regulatory parameters for gene networks by fitting computational models to quantitative expression data. This allows us to characterize the regulatory structure and dynamical repertoire of evolving gene regulatory networks with a reasonable amount of experimental and computational effort. We use the resulting network models to identify those regulatory interactions that are conserved, and those that have diverged between different species. Moreover, we use the models obtained by data fitting as starting points for simulations of evolutionary transitions between species. These simulations enable us to investigate whether such transitions are random, or whether they show stereotypical series of regulatory changes which depend on the structure and dynamical repertoire of an evolving network. Finally, we present a case study-the gap gene network in dipterans (flies, midges, and mosquitoes)-to illustrate the practical application of the proposed methodology, and to highlight the kind of biological insights that can be gained by this approach.
Simulation of carbohydrates, from molecular docking to dynamics in water.
Sapay, Nicolas; Nurisso, Alessandra; Imberty, Anne
2013-01-01
Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.
NASA Astrophysics Data System (ADS)
Xu, Zhijun; Lazim, Raudah; Sun, Tiedong; Mei, Ye; Zhang, Dawei
2012-04-01
Solvent effect on protein conformation and folding mechanism of E6-associated protein (E6ap) peptide are investigated using a recently developed charge update scheme termed as adaptive hydrogen bond-specific charge (AHBC). On the basis of the close agreement between the calculated helix contents from AHBC simulations and experimental results, we observed based on the presented simulations that the two ends of the peptide may simultaneously take part in the formation of the helical structure at the early stage of folding and finally merge to form a helix with lowest backbone RMSD of about 0.9 Å in 40% 2,2,2-trifluoroethanol solution. However, in pure water, the folding may start at the center of the peptide sequence instead of at the two opposite ends. The analysis of the free energy landscape indicates that the solvent may determine the folding clusters of E6ap, which subsequently leads to the different final folded structure. The current study demonstrates new insight to the role of solvent in the determination of protein structure and folding dynamics.
Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.
Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong
2016-04-04
A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaoka, Masataka; Core Research for Evolutional Science and Technology; ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520
A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.
Vibration analysis on automatic take-up device of belt conveyor
NASA Astrophysics Data System (ADS)
Qin, Tailong; Wei, Jin
2008-10-01
Through introducing application condition of belt conveyor in the modern mining industry, the paper proposed, in the dynamic course of its starting, braking or loading, it would produce moving tension and elastic wave. And analyzed the factors cause the automatic take-up device of belt conveyor vibrating: the take-up device's structure and the elastic wave. Finally the paper proposed the measure to reduce vibration and carried on the modeling and simulation on the tension buffer device.
Conformational elasticity can facilitate TALE-DNA recognition
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P.; Segal, David J.; Duan, Yong
2015-01-01
Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo- and bound- conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann/surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. PMID:24629191
Conformational elasticity can facilitate TALE-DNA recognition.
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong
2014-01-01
Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2007-01-01
This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).
NASA Astrophysics Data System (ADS)
Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.
2017-07-01
Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain stable for the course of the simulation. The movie of the simulation is available at http://www.aanda.org
A Model Comparison for Characterizing Protein Motions from Structure
NASA Astrophysics Data System (ADS)
David, Charles; Jacobs, Donald
2011-10-01
A comparative study is made using three computational models that characterize native state dynamics starting from known protein structures taken from four distinct SCOP classifications. A geometrical simulation is performed, and the results are compared to the elastic network model and molecular dynamics. The essential dynamics is quantified by a direct analysis of a mode subspace constructed from ANM and a principal component analysis on both the FRODA and MD trajectories using root mean square inner product and principal angles. Relative subspace sizes and overlaps are visualized using the projection of displacement vectors on the model modes. Additionally, a mode subspace is constructed from PCA on an exemplar set of X-ray crystal structures in order to determine similarly with respect to the generated ensembles. Quantitative analysis reveals there is significant overlap across the three model subspaces and the model independent subspace. These results indicate that structure is the key determinant for native state dynamics.
Zhang, Liqun; Sodt, Alexander J.; Venable, Richard M.; Pastor, Richard W.; Buck, Matthias
2012-01-01
All-atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the great majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all-atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles and dimer contacts approximate those of the NMR derived structure, although the detailed contact surface remains off-set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling. PMID:23042146
Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.
Zhang, Liqun; Borthakur, Susmita; Buck, Matthias
2016-02-23
The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas
2011-01-01
A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.
Regan, R. Steve; Niswonger, Richard G.; Markstrom, Steven L.; Barlow, Paul M.
2015-10-02
The spin-up simulation should be run for a sufficient length of time necessary to establish antecedent conditions throughout a model domain. Each GSFLOW application can require different lengths of time to account for the hydrologic stresses to propagate through a coupled groundwater and surface-water system. Typically, groundwater hydrologic processes require many years to come into equilibrium with dynamic climate and other forcing (or stress) data, such as precipitation and well pumping, whereas runoff-dominated surface-water processes respond relatively quickly. Use of a spin-up simulation can substantially reduce execution-time requirements for applications where the time period of interest is small compared to the time for hydrologic memory; thus, use of the restart option can be an efficient strategy for forecast and calibration simulations that require multiple simulations starting from the same day.
Some Aspects of Advanced Tokamak Modeling in DIII-D
NASA Astrophysics Data System (ADS)
St John, H. E.; Petty, C. C.; Murakami, M.; Kinsey, J. E.
2000-10-01
We extend previous work(M. Murakami, et al., General Atomics Report GA-A23310 (1999).) done on time dependent DIII-D advanced tokamak simulations by introducing theoretical confinement models rather than relying on power balance derived transport coefficients. We explore using NBCD and off axis ECCD together with a self-consistent aligned bootstrap current, driven by the internal transport barrier dynamics generated with the GLF23 confinement model, to shape the hollow current profile and to maintain MHD stable conditions. Our theoretical modeling approach uses measured DIII-D initial conditions to start off the simulations in a smooth consistent manner. This mitigates the troublesome long lived perturbations in the ohmic current profile that is normally caused by inconsistent initial data. To achieve this goal our simulation uses a sequence of time dependent eqdsks generated autonomously by the EFIT MHD equilibrium code in analyzing experimental data to supply the history for the simulation.
Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Goldenfeld, Nigel
2010-07-01
Starting with stochastic rate equations for the fundamental interactions between microbes and their viruses, we derive a mean-field theory for the population dynamics of microbe-virus systems, including the effects of lysogeny. In the absence of lysogeny, our model is a generalization of that proposed phenomenologically by Weitz and Dushoff. In the presence of lysogeny, we analyze the possible states of the system, identifying a limit cycle, which we interpret physically. To test the robustness of our mean-field calculations to demographic fluctuations, we have compared our results with stochastic simulations using the Gillespie algorithm. Finally, we estimate the range of parameters that delineate the various steady states of our model.
NASA Astrophysics Data System (ADS)
He, Xibing; Shinoda, Wataru; DeVane, Russell; Anderson, Kelly L.; Klein, Michael L.
2010-02-01
A coarse-grained (CG) forcefield for linear alkylbenzene sulfonates (LAS) was systematically parameterized. Thermodynamic data from experiments and structural data obtained from all-atom molecular dynamics were used as targets to parameterize CG potentials for the bonded and non-bonded interactions. The added computational efficiency permits one to employ computer simulation to probe the self-assembly of LAS aqueous solutions into different morphologies starting from a random configuration. The present CG model is shown to accurately reproduce the phase behavior of solutions of pure isomers of sodium dodecylbenzene sulfonate, despite the fact that phase behavior was not directly taken into account in the forcefield parameterization.
Hulme, Adam; Thompson, Jason; Nielsen, Rasmus Oestergaard; Read, Gemma J M; Salmon, Paul M
2018-06-18
There have been recent calls for the application of the complex systems approach in sports injury research. However, beyond theoretical description and static models of complexity, little progress has been made towards formalising this approach in way that is practical to sports injury scientists and clinicians. Therefore, our objective was to use a computational modelling method and develop a dynamic simulation in sports injury research. Agent-based modelling (ABM) was used to model the occurrence of sports injury in a synthetic athlete population. The ABM was developed based on sports injury causal frameworks and was applied in the context of distance running-related injury (RRI). Using the acute:chronic workload ratio (ACWR), we simulated the dynamic relationship between changes in weekly running distance and RRI through the manipulation of various 'athlete management tools'. The findings confirmed that building weekly running distances over time, even within the reported ACWR 'sweet spot', will eventually result in RRI as athletes reach and surpass their individual physical workload limits. Introducing training-related error into the simulation and the modelling of a 'hard ceiling' dynamic resulted in a higher RRI incidence proportion across the population at higher absolute workloads. The presented simulation offers a practical starting point to further apply more sophisticated computational models that can account for the complex nature of sports injury aetiology. Alongside traditional forms of scientific inquiry, the use of ABM and other simulation-based techniques could be considered as a complementary and alternative methodological approach in sports injury research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Koulgi, Shruti; Sonavane, Uddhavesh; Joshi, Rajendra
2010-11-01
Protein folding studies were carried out by performing microsecond time scale simulations on the ultrafast/fast folding protein Engrailed Homeodomain (EnHD) from Drosophila melanogaster. It is a three-helix bundle protein consisting of 54 residues (PDB ID: 1ENH). The positions of the helices are 8-20 (Helix I), 26-36 (Helix II) and 40-53 (Helix III). The second and third helices together form a Helix-Turn-Helix (HTH) motif which belongs to the family of DNA binding proteins. The molecular dynamics (MD) simulations were performed using replica exchange molecular dynamics (REMD). REMD is a method that involves simulating a protein at different temperatures and performing exchanges at regular time intervals. These exchanges were accepted or rejected based on the Metropolis criterion. REMD was performed using the AMBER FF03 force field with the generalised Born solvation model for the temperature range 286-373 K involving 30 replicas. The extended conformation of the protein was used as the starting structure. A simulation of 600 ns per replica was performed resulting in an overall simulation time of 18 μs. The protein was seen to fold close to the native state with backbone root mean square deviation (RMSD) of 3.16 Å. In this low RMSD structure, the Helix I was partially formed with a backbone RMSD of 3.37 Å while HTH motif had an RMSD of 1.81 Å. Analysis suggests that EnHD folds to its native structure via an intermediate in which the HTH motif is formed. The secondary structure development occurs first followed by tertiary packing. The results were in good agreement with the experimental findings. Copyright © 2010 Elsevier Inc. All rights reserved.
Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Morgan, C. J.; Casiano, M. J.
2015-01-01
During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start transient. The implications of these results on previous analyses and understanding of the combustion instability observed during steady-state conditions, especially the effects of injector influences, is discussed.
Riccardi, Laura; Nguyen, Phuong H; Stock, Gerhard
2012-04-10
To describe the structure and dynamics of oligomers during peptide aggregation, a method is proposed that considers both the intramolecular and intermolecular structures of the multimolecule system and correctly accounts for its degeneracy. The approach is based on the "by-parts" strategy, which partitions a complex molecular system into parts, determines the metastable conformational states of each part, and describes the overall conformational state of the system in terms of a product basis of the states of the parts. Starting from a molecular dynamics simulation of n molecules, the method consists of three steps: (i) characterization of the intramolecular structure, that is, of the conformational states of a single molecule in the presence of the other molecules (e.g., β-strand or random coil); (ii) characterization of the intermolecular structure through the identification of all occurring aggregate states of the peptides (dimers, trimers, etc.); and (iii) construction of the overall conformational states of the system in terms of a product basis of the n "single-molecule" states and the aggregate states. Considering the Alzheimer β-amyloid peptide fragment Aβ16-22 as a first application, about 700 overall conformational states of the trimer (Aβ16-22)3 were constructed from all-atom molecular dynamics simulation in explicit water. Based on these states, a transition network reflecting the free energy landscape of the aggregation process can be constructed that facilitates the identification of the aggregation pathways.
NASA Astrophysics Data System (ADS)
Liang, Feng; Zhou, Ming; Xu, Quanyong
2016-09-01
Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the design of turbocharger. In order to explore the effects of outer clearance, a transient finite element analysis program for rotor and oil film bearing is built and validated by a published experimental case. The nonlinear dynamic behaviors of rotor-SFRB system are simulated. According to the simulation results, two representative subsynchronous oscillations excited by the two bearings respectively are discovered. As the outer clearance of SFRB increases from 24 μm to 60 μm, the low-frequency subsynchronous oscillation experiences three steps, including a strong start, a gradual recession and a combination with the other one. At the same time, the high-frequency subsynchronous oscillation starts to appear gradually, then strengthens, and finally combines. If gravity and unbalance are neglected, the combination will start starts from high rotor speed and extents to low rotor speed, just like a "zipper". It is found from the quantitative analysis that when the outer clearance increases, the vibration amplitude experiences large value firstly, then reduction, and suddenly increasing after combination. A useful design principle of SFRB outer clearance for minimum vibration amplitude is proposed: the outer clearance value should be chosen to keep the frequency of two subsynchronous oscillations clearly separated and their amplitudes close.
NASA Astrophysics Data System (ADS)
Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko
2017-12-01
This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10-3 s-1 to 1 s-1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, Tβ (880 890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above Tβ, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region.
Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko
2017-01-01
Abstract This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10−3 s−1 to 1 s−1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region. PMID:29152021
Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko
2017-01-01
This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10 -3 s -1 to 1 s -1 ) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β , continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+ β ) region.
An adaptive approach to the physical annealing strategy for simulated annealing
NASA Astrophysics Data System (ADS)
Hasegawa, M.
2013-02-01
A new and reasonable method for adaptive implementation of simulated annealing (SA) is studied on two types of random traveling salesman problems. The idea is based on the previous finding on the search characteristics of the threshold algorithms, that is, the primary role of the relaxation dynamics in their finite-time optimization process. It is shown that the effective temperature for optimization can be predicted from the system's behavior analogous to the stabilization phenomenon occurring in the heating process starting from a quenched solution. The subsequent slow cooling near the predicted point draws out the inherent optimizing ability of finite-time SA in more straightforward manner than the conventional adaptive approach.
The decay process of rotating unstable systems through the passage time distribution
NASA Astrophysics Data System (ADS)
Jiménez-Aquino, J. I.; Cortés, Emilio; Aquino, N.
2001-05-01
In this work we propose a general scheme to characterize, through the passage time distribution, the decay process of rotational unstable systems in the presence of external forces of large amplitude. The formalism starts with a matricial Langevin type equation formulated in the context of two dynamical representations given, respectively, by the vectors x and y, both related by a time dependent rotation matrix. The transformation preserves the norm of the vector and decouples the set of dynamical equations in the transformed space y. We study the dynamical characterization of the systems of two variables and show that the statistical properties of the passage time distribution are essentially equivalent in both dynamics. The theory is applied to the laser system studied in Dellunde et al. (Opt. Commun. 102 (1993) 277), where the effect of large injected signals on the transient dynamics of the laser has been studied in terms of complex electric field. The analytical results are compared with numerical simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meiser, Jerome; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de
Using classical molecular dynamics simulations and the Meyer-Entel interaction potential, we study the martensitic transformation pathway in a pure iron bi-crystal containing a symmetric tilt grain boundary. Upon cooling the system from the austenitic phase, the transformation starts with the nucleation of the martensitic phase near the grain boundary in a plate-like arrangement. The Kurdjumov-Sachs orientation relations are fulfilled at the plates. During further cooling, the plates expand and merge. In contrast to the orientation relation in the plate structure, the complete transformation proceeds via the Pitsch pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
Over the next four years, the Progetto Energia project will be building several cogeneration plants to help satisfy the increasing demands of Italy`s industrial users and the country`s demand for electrical power. Located at six different sites within Italy, these combined-cycle cogeneration plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50-MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipment performancemore » and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam desuperheating performance simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The dynamic study will undoubtedly reduce the associated plant start-up costs and contribute to a smooth commercial plant acceptance. As a result of the work, the control system has already been through its check-out and performance evaluation, usually performed during the plant start-up phase. Field engineers will directly benefit from this effort to identify and resolve control system {open_quotes}bugs{close_quotes} before the equipment reaches the field. High thermal efficiency, rapid dispatch and high plant availability were key reasons why the natural gas combined-cycle plant was chosen. Other favorable attributes of the combined-cycle plant contributing to the decision were: Minimal environmental impact; a simple and effective process and control philosophy to result in safe and easy plant operation; a choice of technologies and equipment proven in a large number of applications.« less
Klein, Tobias; Wu, Wenchang; Rausch, Michael Heinrich; Giraudet, Cédric; Koller, Thomas M; Fröba, Andreas Paul
2018-06-11
This study contributes to a fundamental understanding how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C 6 H 14 ) and carbon dioxide (CO 2 ) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO 2 mole fractions up to a CO 2 concentration of about 70 mol%, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH-stretching modes of n-C 6 H 14 identified by Raman spectroscopy show that the slowing-down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C 6 H 14 and CO 2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol% of CO 2 . The current results not only improve the general understanding of mass diffusion in liquids, but also serve to develop sound prediction models for Fick diffusivities.
Analysis of nanoscale two-phase flow of argon using molecular dynamics
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-01
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
Dynamical inference: where phase synchronization and generalized synchronization meet.
Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2014-06-01
Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.
Entrainment in Laboratory Simulations of Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.
2010-12-01
A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.
Molecular characteristics of stress overshoot for polymer melts under start-up shear flow.
Jeong, Sohdam; Kim, Jun Mo; Baig, Chunggi
2017-12-21
Stress overshoot is one of the most important nonlinear rheological phenomena exhibited by polymeric liquids undergoing start-up shear at sufficient flow strengths. Despite considerable previous research, the fundamental molecular characteristics underlying stress overshoot remain unknown. Here, we analyze the intrinsic molecular mechanisms behind the overshoot phenomenon using atomistic nonequilibrium molecular dynamics simulations of entangled linear polyethylene melts under shear flow. Through a detailed analysis of the transient rotational chain dynamics, we identify an intermolecular collision angular regime in the vicinity of the chain orientation angle θ ≈ 20° with respect to the flow direction. The shear stress overshoot occurs via strong intermolecular collisions between chains in the collision regime at θ = 15°-25°, corresponding to a peak strain of 2-4, which is an experimentally well-known value. The normal stress overshoot appears at approximately θ = 10°, at a corresponding peak strain roughly equivalent to twice that for the shear stress. We provide plausible answers to several basic questions regarding the stress overshoot, which may further help understand other nonlinear phenomena of polymeric systems.
NASA Technical Reports Server (NTRS)
Kitabatake, M.; Fons, P.; Greene, J. E.
1991-01-01
The relaxation, diffusion, and annihilation of split and hexagonal interstitials resulting from 10 eV Si irradiation of (2x1)-terminated Si(100) are investigated. Molecular dynamics and quasidynamics simulations, utilizing the Tersoff many-body potential are used in the investigation. The interstitials are created in layers two through six, and stable atomic configurations and total potential energies are derived as a function of site symmetry and layer depth. The interstitial Si atoms are allowed to diffuse, and the total potential energy changes are calculated. Lattice configurations along each path, as well as the starting configurations, are relaxed, and minimum energy diffusion paths are derived. The results show that the minimum energy paths are toward the surface and generally involved tetrahedral sites. The calculated interstitial migration activation energies are always less than 1.4 eV and are much lower in the near-surface region than in the bulk.
Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
Chen, Duan
2017-11-01
In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.
Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field
NASA Astrophysics Data System (ADS)
Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa
2015-07-01
Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.
Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo
2009-07-07
This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.
Flip-flopping binary black holes.
Lousto, Carlos O; Healy, James
2015-04-10
We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.
Modelling and Control of Robotic Leg as Assistive Device
NASA Astrophysics Data System (ADS)
Jingye, Yee; Zain, Badrul Aisham bin Md
2017-10-01
The ageing population (people older than 60 years old) is expected to constitute 21.8% of global population by year 2050. When human ages, bodily function including locomotors will deteriorate. Besides, there are hundreds of thousands of victims who suffer from multiple health conditions worldwide that leads to gait impairment. A promising solution will be the lower limb powered-exoskeleton. This study is to be a start-up platform to design a lower limb powered-exoskeleton for a normal Malaysian male, by designing and simulating the dynamic model of a 2-link robotic leg to observe its behaviour under different input conditions with and without a PID controller. Simulink in MATLAB software is used as the dynamic modelling and simulation software for this study. It is observed that the 2-links robotic leg behaved differently under different input conditions, and perform the best when it is constrained and controlled by PID controller. Simulink model is formed as a foundation for the upcoming researches and can be modified and utilised by the future researchers.
NASA Astrophysics Data System (ADS)
Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär
2018-01-01
Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.
Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär
2018-01-01
Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.
Giampaolo, Alessia Di; Mazza, Fernando; Daidone, Isabella; Amicosante, Gianfranco; Perilli, Mariagrazia; Aschi, Massimiliano
2013-07-12
Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical-biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment. Copyright © 2013 Elsevier Inc. All rights reserved.
GDP Release Preferentially Occurs on the Phosphate Side in Heterotrimeric G-proteins
Louet, Maxime; Martinez, Jean; Floquet, Nicolas
2012-01-01
After extra-cellular stimulation of G-Protein Coupled Receptors (GPCRs), GDP/GTP exchange appears as the key, rate limiting step of the intracellular activation cycle of heterotrimeric G-proteins. Despite the availability of a large number of X-ray structures, the mechanism of GDP release out of heterotrimeric G-proteins still remains unknown at the molecular level. Starting from the available X-ray structure, extensive unconstrained/constrained molecular dynamics simulations were performed on the complete membrane-anchored Gi heterotrimer complexed to GDP, for a total simulation time overcoming 500 ns. By combining Targeted Molecular Dynamics (TMD) and free energy profiles reconstruction by umbrella sampling, our data suggest that the release of GDP was much more favored on its phosphate side. Interestingly, upon the forced extraction of GDP on this side, the whole protein encountered large, collective motions in perfect agreement with those we described previously including a domain to domain motion between the two ras-like and helical sub-domains of Gα. PMID:22829757
Multidimensional Modeling of Coronal Rain Dynamics
NASA Astrophysics Data System (ADS)
Fang, X.; Xia, C.; Keppens, R.
2013-07-01
We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.
He, Gui-Li; Merlitz, Holger; Sommer, Jens-Uwe
2014-03-14
Molecular dynamics simulations are applied to investigate salt-free planar polyelectrolyte brushes under poor solvent conditions. Starting above the Θ-point with a homogeneous brush and then gradually reducing the temperature, the polymers initially display a lateral structure formation, forming vertical bundles of chains. A further reduction of the temperature (or solvent quality) leads to a vertical collapse of the brush. By varying the size and selectivity of the counterions, we show that lateral structure formation persists and therefore demonstrate that the entropy of counterions being the dominant factor for the formation of the bundle phase. By applying an external compression force on the brush we calculate the minimal work done on the polymer phase only and prove that the entropy gain of counterions in the bundle state, as compared to the homogeneously collapsed state at the same temperature, is responsible for the lateral microphase segregation. As a consequence, the observed lateral structure formation has to be regarded universal for osmotic polymer brushes below the Θ-point.
The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations.
Bellucci, Luca; Corni, Stefano; Di Felice, Rosa; Paci, Emanuele
2013-01-01
Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.
Malaria and global change: Insights, uncertainties and possible surprises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, P.H.; Steel, A.
Malaria may change with global change. Indeed, global change may affect malaria risk and malaria epidemiology. Malaria risk may change in response to a greenhouse warming; malaria epidemiology, in response to the social, economic, and political developments which a greenhouse warming may trigger. To date, malaria receptivity and epidemiology futures have been explored within the context of equilibrium studies. Equilibrium studies of climate change postulate an equilibrium present climate (the starting point) and a doubled-carbon dioxide climate (the end point), simulate conditions in both instances, and compare the two. What happens while climate changes, i.e., between the starting point andmore » the end point, is ignored. The present paper focuses on malaria receptivity and addresses what equilibrium studies miss, namely transient malaria dynamics.« less
Coarse graining of atactic polystyrene and its derivatives
NASA Astrophysics Data System (ADS)
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.
2014-03-01
Capturing large length scales in polymers and soft matter while retaining atomistic properties is imperative to computational studies of dynamic systems. Here we present a new methodology developing coarse-grain model based on atomistic simulation of atactic polystyrene (PS). Similar to previous work by Fritz et al., each monomer is described by two coarse grained beads. In contrast to this earlier work where intramolecular potentials were based on Monte Carlo simulation of both isotactic and syndiotactic single PS molecule to capture stereochemistry, we obtained intramolecular interactions from a single molecular dynamics simulation of an all-atom atactic PS melts. The non-bonded interactions are obtained using the iterative Boltzmann inversion (IBI) scheme. This methodology has been extended to coarse graining of poly-(t-butyl-styrene) (PtBS). An additional coarse-grained bead is used to describe the t-butyl group. Similar to the process for PS, the intramolecular interactions are obtained from a single all atom atactic melt simulation. Starting from the non-bonded interactions for PS, we show that the IBI method for the non-bonded interactions of PtBS converges relatively fast. A generalized scheme for substituted PS is currently in development. We would like to acknowledge Prof. Kurt Kremer for helpful discussions during this work.
NASA Astrophysics Data System (ADS)
Hsieh, Min-Kang; Lin, Shiang-Tai
2009-12-01
Molecular dynamics simulations are performed to study the initial structural development in poly(trimethylene terephthalate) (PTT) when quenched below its melting point. The development of local ordering has been observed in our simulations. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulations are in reasonable agreement with experimental values. It is found that, between these two temperatures, the number of local structures quickly increases during the thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The formation and development of local structures is found to be driven mainly by the torsional and van der Waals forces and follows the classical nucleation-growth mechanism. The variation of local structures' fraction with temperature exhibits a maximum between Tg and Tm, resembling the temperature dependence of the crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the local structures preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. As a consequence, we believe that such local structural ordering could be the baby nuclei that have been suggested to form in the early stage of polymer crystallization.
NASA Technical Reports Server (NTRS)
Mazurkivich, Pete; Chandler, Frank; Grayson, Gary
2005-01-01
To meet the requirements for the 2nd Generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and development cost by approximately 25%. A Main Propulsion System (MPS) crossfeed water demonstration test program was configured to address all the activities required to reduce the risks for the MPS crossfeed system. A transient, one-dimensional system simulation was developed for the subscale crossfeed water flow tests. To ensure accurate representation of the crossfeed valve's dynamics in the system model, a high-fidelity, three-dimensional, computational fluid-dynamics (CFD) model was employed. The results from the CFD model were used to specify the valve's flow characteristics in the system simulation. This yielded a crossfeed system model that was anchored to the specific valve hardware and achieved good agreement with the measured test data. These results allowed the transient models to be correlated and validated and used for full scale mission predictions. The full scale model simulations indicate crossfeed is ' viable with the system pressure disturbances at the crossfeed transition being less than experienced by the propulsion system during engine start and shutdown transients.
Skill of Ensemble Seasonal Probability Forecasts
NASA Astrophysics Data System (ADS)
Smith, Leonard A.; Binter, Roman; Du, Hailiang; Niehoerster, Falk
2010-05-01
In operational forecasting, the computational complexity of large simulation models is, ideally, justified by enhanced performance over simpler models. We will consider probability forecasts and contrast the skill of ENSEMBLES-based seasonal probability forecasts of interest to the finance sector (specifically temperature forecasts for Nino 3.4 and the Atlantic Main Development Region (MDR)). The ENSEMBLES model simulations will be contrasted against forecasts from statistical models based on the observations (climatological distributions) and empirical dynamics based on the observations but conditioned on the current state (dynamical climatology). For some start dates, individual ENSEMBLES models yield significant skill even at a lead-time of 14 months. The nature of this skill is discussed, and chances of application are noted. Questions surrounding the interpretation of probability forecasts based on these multi-model ensemble simulations are then considered; the distributions considered are formed by kernel dressing the ensemble and blending with the climatology. The sources of apparent (RMS) skill in distributions based on multi-model simulations is discussed, and it is demonstrated that the inclusion of "zero-skill" models in the long range can improve Root-Mean-Square-Error scores, casting some doubt on the common justification for the claim that all models should be included in forming an operational probability forecast. It is argued that the rational response varies with lead time.
Molecular Dynamic Studies of Particle Wake Potentials in Plasmas
NASA Astrophysics Data System (ADS)
Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren
2010-11-01
Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.
Protein-protein structure prediction by scoring molecular dynamics trajectories of putative poses.
Sarti, Edoardo; Gladich, Ivan; Zamuner, Stefano; Correia, Bruno E; Laio, Alessandro
2016-09-01
The prediction of protein-protein interactions and their structural configuration remains a largely unsolved problem. Most of the algorithms aimed at finding the native conformation of a protein complex starting from the structure of its monomers are based on searching the structure corresponding to the global minimum of a suitable scoring function. However, protein complexes are often highly flexible, with mobile side chains and transient contacts due to thermal fluctuations. Flexibility can be neglected if one aims at finding quickly the approximate structure of the native complex, but may play a role in structure refinement, and in discriminating solutions characterized by similar scores. We here benchmark the capability of some state-of-the-art scoring functions (BACH-SixthSense, PIE/PISA and Rosetta) in discriminating finite-temperature ensembles of structures corresponding to the native state and to non-native configurations. We produce the ensembles by running thousands of molecular dynamics simulations in explicit solvent starting from poses generated by rigid docking and optimized in vacuum. We find that while Rosetta outperformed the other two scoring functions in scoring the structures in vacuum, BACH-SixthSense and PIE/PISA perform better in distinguishing near-native ensembles of structures generated by molecular dynamics in explicit solvent. Proteins 2016; 84:1312-1320. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Description of waste pretreatment and interfacing systems dynamic simulation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbrick, D.J.; Zimmerman, B.D.
1995-05-01
The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less
On the Generation and Use of TCP Acknowledgments
NASA Technical Reports Server (NTRS)
Allman, Mark
1998-01-01
This paper presents a simulation study of various TCP acknowledgment generation and utilization techniques. We investigate the standard version of TCP and the two standard acknowledgment strategies employed by receivers: those that acknowledge each incoming segment and those that implement delayed acknowledgments. We show the delayed acknowledgment mechanism hurts TCP performance, especially during slow start. Next we examine three alternate mechanisms for generating and using acknowledgments designed to mitigate the negative impact of delayed acknowledgments. The first method is to generate delayed ACKs only when the sender is not using the slow start algorithm. The second mechanism, called byte counting, allows TCP senders to increase the amount of data being injected into the network based on the amount of data acknowledged rather than on the number of acknowledgments received. The last mechanism is a limited form of byte counting. Each of these mechanisms is evaluated in a simulated network with no competing traffic, as well as a dynamic environment with a varying amount of competing traffic. We study the costs and benefits of the alternate mechanisms when compared to the standard algorithm with delayed ACKs.
Simulation of the National Aerospace System for Safety Analysis
NASA Technical Reports Server (NTRS)
Pritchett, Amy; Goldsman, Dave; Statler, Irv (Technical Monitor)
2002-01-01
Work started on this project on January 1, 1999, the first year of the grant. Following the outline of the grant proposal, a simulator architecture has been established which can incorporate the variety of types of models needed to accurately simulate national airspace dynamics. For the sake of efficiency, this architecture was based on an established single-aircraft flight simulator, the Reconfigurable Flight Simulator (RFS), already developed at Georgia Tech. Likewise, in the first year substantive changes and additions were made to the RFS to convert it into a simulation of the National Airspace System, with the flexibility to incorporate many types of models: aircraft models; controller models; airspace configuration generators; discrete event generators; embedded statistical functions; and display and data outputs. The architecture has been developed with the capability to accept any models of these types; due to its object-oriented structure, individual simulator components can be added and removed during run-time, and can be compiled separately. Simulation objects from other projects should be easy to convert to meet architecture requirements, with the intent that both this project may now be able to incorporate established simulation components from other projects, and that other projects may easily use this simulation without significant time investment.
A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.
Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao
2012-01-17
The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications. © 2011 American Chemical Society
Lactation in the Human Breast From a Fluid Dynamics Point of View.
Negin Mortazavi, S; Geddes, Donna; Hassanipour, Fatemeh
2017-01-01
This study is a collaborative effort among lactation specialists and fluid dynamic engineers. The paper presents clinical results for suckling pressure pattern in lactating human breast as well as a 3D computational fluid dynamics (CFD) modeling of milk flow using these clinical inputs. The investigation starts with a careful, statistically representative measurement of suckling vacuum pressure, milk flow rate, and milk intake in a group of infants. The results from clinical data show that suckling action does not occur with constant suckling rate but changes in a rhythmic manner for infants. These pressure profiles are then used as the boundary condition for the CFD study using commercial ansys fluent software. For the geometric model of the ductal system of the human breast, this work takes advantage of a recent advance in the development of a validated phantom that has been produced as a ground truth for the imaging applications for the breast. The geometric model is introduced into CFD simulations with the aforementioned boundary conditions. The results for milk intake from the CFD simulation and clinical data were compared and cross validated. Also, the variation of milk intake versus suckling pressure are presented and analyzed. Both the clinical and CFD simulation show that the maximum milk flow rate is not related to the largest vacuum pressure or longest feeding duration indicating other factors influence the milk intake by infants.
Alternative Method to Simulate a Sub-idle Engine Operation in Order to Synthesize Its Control System
NASA Astrophysics Data System (ADS)
Sukhovii, Sergii I.; Sirenko, Feliks F.; Yepifanov, Sergiy V.; Loboda, Igor
2016-09-01
The steady-state and transient engine performances in control systems are usually evaluated by applying thermodynamic engine models. Most models operate between the idle and maximum power points, only recently, they sometimes address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes presents a challenging problem. A common method to cope with the problem is to extrapolate the component performances to the sub-idle range. Precise extrapolation is also a challenge. As a rule, many scientists concern only particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no reports about a model that considers all of these aspects and simulates the engine starting. The proposed paper addresses a new method to simulate the starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, this model consists of simplified relations between the gas path parameters and the corrected rotational speed.
NASA Astrophysics Data System (ADS)
Riva, L.; Giljarhus, K.-E.; Hjertager, B.; Kalvig, S. M.
2017-12-01
University of Stavanger has started The Smart Sustainable Campus & Energy Lab project, to gain knowledge and facilitate project based education in the field of renewable and sustainable energy and increase the research effort in the same area. This project includes the future installation of a vertical axis wind turbine on the campus roof. A newly developed Computational Fluid Dynamics (CFD) model by OpenFOAM have been implemented to study the wind behavior over the building and the turbine performance. The online available wind turbine model case from Bachant, Goude and Wosnik from 2016 is used as the starting point. This is a Reynolds-Averaged Navier-Stokes equations (RANS) case set up that uses the Actuator Line Model. The available test case considers a water tank with controlled external parameters. Bachant et al.’s model has been modified to study a VAWT in the atmospheric boundary layer. Various simulations have been performed trying to verify the models use and suitability. Simulation outcomes help to understand the impact of the surroundings on the turbine as well as its reaction to parameters changes. The developed model can be used for wind energy and flow simulations for both onshore and offshore applications.
NASA Astrophysics Data System (ADS)
Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao
2018-05-01
How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Sihvonen, Teemu; Lappalainen, Jari
2017-06-01
Supercritical carbon dioxide (sCO2) has recently gained a lot of interest as a working fluid in different power generation applications. For concentrated solar power (CSP) applications, sCO2 provides especially interesting option if it could be used both as the heat transfer fluid (HTF) in the solar field and as the working fluid in the power conversion unit. This work presents development of a dynamic model of CSP plant concept, in which sCO2 is used for extracting the solar heat in Linear Fresnel collector field, and directly applied as the working fluid in the recuperative Brayton cycle; these both in a single flow loop. We consider the dynamic model is capable to predict the system behavior in typical operational transients in a physically plausible way. The novel concept was tested through simulation cases under different weather conditions. The results suggest that the concept can be successfully controlled and operated in the supercritical region to generate electric power during the daytime, and perform start-up and shut down procedures in order to stay overnight in sub-critical conditions. Besides the normal daily operation, the control system was demonstrated to manage disturbances due to sudden irradiance changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bangquan; Wang, Hailong; Xing, Guozhong
We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Catching the Drift: Simulating Dark Spots and Bright Companions on the Ice Giants
NASA Astrophysics Data System (ADS)
LeBeau, R. P., Jr.; Koutas, N.; Palotai, C. J.; Bhure, S.; Hadland, N.; Sankar, R.
2017-12-01
Starting with the original Great Dark Spot (GDS-89) observed by Voyager 2, roughly a half-dozen large geophysical vortices have been observed on the Ice Giants, the most recent in 2015 on Neptune (Wong et al., 2016). While the presumption is that these Dark Spots are similar in structure to the large vortices on Jupiter, in some cases the Dark Spots exhibit dynamical motions such as the shape oscillations and latitudinal drift of GDS-89 (Smith et al., 1989) or the possible vortex drift underlying the "Berg" cloud feature on Uranus (de Pater et al., 2011). Others, like NGDS-1998, have remained largely stable across years of observation (Sromovsky et al., 2002). In addition, several of the vortices are linked with Bright Companion clouds which are presumed to be orographic features formed as the atmosphere rises over the vortex. The numerical simulation of these features has evolved with each new observation. Prior simulations have captured the forms if not all the specifics of observed Dark Spot dynamics (LeBeau and Dowling, 1998; LeBeau and Deng, 2006); likewise, numerical models have demonstrated the potential for orographic companion clouds (Stratman et al., 2001). However, as more knowledge of the Ice Giant atmospheres has been obtained, it has proven challenging to generate consistent dynamical models that capture the details of the Dark Spot variations and are physically consistent with known observations. In particular, current simulations indicate that the addition of a companion cloud can alter the vortex dynamics, both in terms of drift and oscillations. Given the impact of these clouds, a new parametric simulation study uses an updated microphysics model, implemented in the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al., 1998, 2006), to account for the condensation of methane and hydrogen sulfide (Palotai et al., 2016). Simulations of dark spots with varying sizes, strengths, and locations are conducted with different microphysical parameters such as the deep abundance and ambient supersaturation. Simulations are evaluated in terms of vortex stability and drift rate along with companion cloud formation with the goal of improving our understanding of the underlying physics driving the varying behaviors of the observed Dark Spots.
NASA Technical Reports Server (NTRS)
Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.
2015-01-01
Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980s. The effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from decreases in the simulated and satellite-derived LAIs. Both simulated and satellite-derived LAIs have the strongest correlations with air temperature at northern middle to high latitudes in spring reflecting the effect of these climatic variables on photosynthesis and phenological processes. Meanwhile, in southwestern dry lands, negative correlations appear due to the heat and moisture stress there during the summer. Furthermore, there are also positive correlations between soil wetness and LAI, which increases from spring to summer. The present study shows both the current improvements and remaining weaknesses in dynamical vegetation models. It also highlights large continental-scale variations that have occurred in NA vegetation over the past six decades and their potential relations to climate. With more observational data availability, more studies with differentmodels and focusing on different regions will be possible and are necessary to achieve comprehensive understanding of the vegetation dynamics and climate interactions.
Chemically reacting fluid flow in exoplanet and brown dwarf atmospheres
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
In the past few decades, spectral observations of planets and brown dwarfs have demonstrated significant deviations from predictions in certain chemical abundances. Starting with Jupiter, these deviations were successfully explained to be the effect of fast dynamics on comparatively slow chemical reactions. These dynamical effects are treated using mixing length theory in what is known as the "quench" approximation. In these objects, however, both radiative and convective zones are present, and it is not clear that this approximation applies. To resolve this issue, we solve the fully compressible equations of fluid dynamics in a matched polytropic atmosphere using the state-of-the-art pseudospectral simulation framework Dedalus. Through the inclusion of passive tracers, we explore the transport properties of convective and radiative zones, and verify the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes using abstract chemical reactions. By locating the quench point (the point at which the dynamical and chemical timescales are the same) in different dynamical regimes, we test the quench approximation, and generate prescriptions for the exoplanet and brown dwarf communities.
Superlinearly scalable noise robustness of redundant coupled dynamical systems.
Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L
2016-03-01
We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.
Coronal rain in magnetic bipolar weak fields
NASA Astrophysics Data System (ADS)
Xia, C.; Keppens, R.; Fang, X.
2017-07-01
Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de; Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in moremore » efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.« less
Paredes, Ricardo; Fariñas-Sánchez, Ana Isabel; Medina-Rodrı Guez, Bryan; Samaniego, Samantha; Aray, Yosslen; Álvarez, Luis Javier
2018-03-06
The process of equilibration of the tetradecane-water interface in the presence of sodium hexadecane-benzene sulfonate is studied using intensive atomistic molecular dynamics simulations. Starting as an initial point with all of the surfactants at the interface, it is obtained that the equilibration time of the interface (several microseconds) is orders of magnitude higher than previously reported simulated times. There is strong evidence that this slow equilibration process is due to the aggregation of surfactants molecules on the interface. To determine this fact, temporal evolution of interfacial tension and interfacial formation energy are studied and their temporal variations are correlated with cluster formation. To study cluster evolution, the mean cluster size and the probability that a molecule of surfactant chosen at random is free are obtained as a function of time. Cluster size distribution is estimated, and it is observed that some of the molecules remain free, whereas the rest agglomerate. Additionally, the temporal evolution of the interfacial thickness and the structure of the surfactant molecules on the interface are studied. It is observed how this structure depends on whether the molecules agglomerate or not.
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2004-01-01
We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.
Quasi-classical approaches to vibronic spectra revisited
NASA Astrophysics Data System (ADS)
Karsten, Sven; Ivanov, Sergei D.; Bokarev, Sergey I.; Kühn, Oliver
2018-03-01
The framework to approach quasi-classical dynamics in the electronic ground state is well established and is based on the Kubo-transformed time correlation function (TCF), being the most classical-like quantum TCF. Here we discuss whether the choice of the Kubo-transformed TCF as a starting point for simulating vibronic spectra is as unambiguous as it is for vibrational ones. Employing imaginary-time path integral techniques in combination with the interaction representation allowed us to formulate a method for simulating vibronic spectra in the adiabatic regime that takes nuclear quantum effects and dynamics on multiple potential energy surfaces into account. Further, a generalized quantum TCF is proposed that contains many well-established TCFs, including the Kubo one, as particular cases. Importantly, it also provides a framework to construct new quantum TCFs. Applying the developed methodology to the generalized TCF leads to a plethora of simulation protocols, which are based on the well-known TCFs as well as on new ones. Their performance is investigated on 1D anharmonic model systems at finite temperatures. It is shown that the protocols based on the new TCFs may lead to superior results with respect to those based on the common ones. The strategies to find the optimal approach are discussed.
Validity of the Electrodiffusion Model for Calculating Conductance of Simple Ion Channels.
Pohorille, Andrew; Wilson, Michael A; Wei, Chenyu
2017-04-20
We examine the validity and utility of the electrodiffusion (ED) equation, i.e., the generalized Nernst-Planck equation, to characterize, in combination with molecular dynamics, the electrophysiological behavior of simple ion channels. As models, we consider three systems-two naturally occurring channels formed by α-helical bundles of peptaibols, trichotoxin, and alamethicin, and a synthetic, hexameric channel, formed by a peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. Starting with equilibrium properties, such as the potential of mean force experienced by an ion traversing the channel and diffusivity, obtained from molecular dynamics simulations, the ED equation can be used to determine the full current-voltage dependence with modest or no additional effort. The potential of mean force can be obtained not only from equilibrium simulations, but also, with comparable accuracy, from nonequilibrium simulations at a single voltage. The main assumptions underlying the ED equation appear to hold well for the channels and voltages studied here. To expand the utility of the ED equation, we examine what are the necessary and sufficient conditions for Ohmic and nonrectifying behavior and relate deviations from this behavior to the shape of the ionic potential of mean force.
Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I
Miller, Bill R.; Parish, Carol A.; Wu, Eugene Y.
2014-01-01
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643
Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian
2017-11-01
An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.
NASA Astrophysics Data System (ADS)
Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier
2015-04-01
At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.
Coarse-graining to the meso and continuum scales with molecular-dynamics-like models
NASA Astrophysics Data System (ADS)
Plimpton, Steve
Many engineering-scale problems that industry or the national labs try to address with particle-based simulations occur at length and time scales well beyond the most optimistic hopes of traditional coarse-graining methods for molecular dynamics (MD), which typically start at the atomic scale and build upward. However classical MD can be viewed as an engine for simulating particles at literally any length or time scale, depending on the models used for individual particles and their interactions. To illustrate I'll highlight several coarse-grained (CG) materials models, some of which are likely familiar to molecular-scale modelers, but others probably not. These include models for water droplet freezing on surfaces, dissipative particle dynamics (DPD) models of explosives where particles have internal state, CG models of nano or colloidal particles in solution, models for aspherical particles, Peridynamics models for fracture, and models of granular materials at the scale of industrial processing. All of these can be implemented as MD-style models for either soft or hard materials; in fact they are all part of our LAMMPS MD package, added either by our group or contributed by collaborators. Unlike most all-atom MD simulations, CG simulations at these scales often involve highly non-uniform particle densities. So I'll also discuss a load-balancing method we've implemented for these kinds of models, which can improve parallel efficiencies. From the physics point-of-view, these models may be viewed as non-traditional or ad hoc. But because they are MD-style simulations, there's an opportunity for physicists to add statistical mechanics rigor to individual models. Or, in keeping with a theme of this session, to devise methods that more accurately bridge models from one scale to the next.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, John; Jankovsky, Zachary; Metzroth, Kyle G
2018-04-04
The purpose of the ADAPT code is to generate Dynamic Event Trees (DET) using a user specified set of simulators. ADAPT can utilize any simulation tool which meets a minimal set of requirements. ADAPT is based on the concept of DET which uses explicit modeling of the deterministic dynamic processes that take place during a nuclear reactor plant system (or other complex system) evolution along with stochastic modeling. When DET are used to model various aspects of Probabilistic Risk Assessment (PRA), all accident progression scenarios starting from an initiating event are considered simultaneously. The DET branching occurs at user specifiedmore » times and/or when an action is required by the system and/or the operator. These outcomes then decide how the dynamic system variables will evolve in time for each DET branch. Since two different outcomes at a DET branching may lead to completely different paths for system evolution, the next branching for these paths may occur not only at separate times, but can be based on different branching criteria. The computational infrastructure allows for flexibility in ADAPT to link with different system simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination), analysis of results, and user friendly graphical capabilities. The ADAPT system is designed for a distributed computing environment; the scheduler can track multiple concurrent branches simultaneously. The scheduler is modularized so that the DET branching strategy can be modified (e.g. biasing towards the worst-case scenario/event). Independent database systems store data from the simulation tasks and the DET structure so that the event tree can be constructed and analyzed later. ADAPT is provided with a user-friendly client which can easily sort through and display the results of an experiment, precluding the need for the user to manually inspect individual simulator runs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conicalmore » intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.« less
NASA Astrophysics Data System (ADS)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.
2013-07-01
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density - charge migration - between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.
Spin glass model for cell reprogramming
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja; Castillo, Horacio E.
2014-03-01
Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor state to another attractor state. We use a simple model based on spin glass theory that can construct a simulated epigenetic landscape starting from the experimental genomic data. We modify the model to incorporate experimental reprogramming protocols. Our simulations successfully reproduce several reprogramming experiments. We probe the robustness of the results against random changes in the model, explore the importance of asymmetric interactions between transcription factors and study the importance of histone modification errors in reprogramming.
Drag Reduction of an Airfoil Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, Chiyu; Sun, Anzhu; Marcus, Philip
2017-11-01
We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.
The Generalized Born solvation model: What is it?
NASA Astrophysics Data System (ADS)
Onufriev, Alexey
2004-03-01
Implicit solvation models provide, for many applications, an effective way of describing the electrostatic effects of aqueous solvation. Here we outline the main approximations behind the popular Generalized Born solvation model. We show how its accuracy, relative to the Poisson-Boltzmann treatment, can be significantly improved in a computationally inexpensive manner to make the model useful in the studies of large-scale conformational transitions at the atomic level. The improved model is tested in a molecular dynamics simulation of folding of a 46-residue (three helix bundle) protein. Starting from an extended structure at 450K, the protein folds to the lowest energy conformation within 6 ns of simulation time, and the predicted structure differs from the native one by 2.4 A (backbone RMSD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jae Woo; Rhee, Young Min, E-mail: ymrhee@postech.ac.kr; Department of Chemistry, Pohang University of Science and Technology
2014-04-28
Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabaticmore » transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.« less
Sigüenza, Julien; Pott, Desiree; Mendez, Simon; Sonntag, Simon J; Kaufmann, Tim A S; Steinseifer, Ulrich; Nicoud, Franck
2018-04-01
The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tian, Ziqi; Wen, Jin; Ma, Jing
2013-07-01
It is a challenge to simulate the switching process of functional self-assembled monolayers (SAMs) on metal surfaces, since the systems consist of thousands of atoms and the switching is triggered by quantum-mechanical events. Herein a molecular dynamics simulation with a reactive rotation potential of N=N bond is implemented to investigate the dynamic conformational changes and packing effects on the stimuli-responsive isomerization of the terminally thiol functionalized azobiphenyls (AZOs), which are bound on the Au(111) surface. To, respectively, distinguish the time evolutions that start from cis and trans initial configurations, two different functions are established to model the potential energy curves for cis-to-trans and trans-to-cis transitions, instead of the only one cosine function used in the conventional non-reactive force fields. In order to simulate the conformation transitions of the AZO film on surface, a random switching function, depending on the N=N twisting angle, is constructed to consider both forward and backward cis/trans isomerization events and to trigger the reaction by changing the N atom types automatically. The factors that will influence the isomerization process, including the choice of ensembles and thermostat algorithms, the time intervals separating each switching, and the forms of the switching function, are systematically tested. Most AZO molecules switch from the cis to trans configuration with a coverage of 5.76 × 10-6 mol/m2 on a picosecond time scale, and a low coverage might make the switching irreversible, which is in agreement with the experiments.
Molecular dynamics simulation of three plastic additives' diffusion in polyethylene terephthalate.
Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying
2017-06-01
Accurate diffusion coefficient data of additives in a polymer are of paramount importance for estimating the migration of the additives over time. This paper shows how this diffusion coefficient can be estimated for three plastic additives [2-(2'-hydroxy-5'-methylphenyl) (UV-P), 2,6-di-tert-butyl-4-methylphenol (BHT) and di-(2-ethylhexyl) phthalate (DEHP)] in polyethylene terephthalate (PET) using the molecular dynamics (MD) simulation method. MD simulations were performed at temperatures of 293-433 K. The diffusion coefficient was calculated through the Einstein relationship connecting the data of mean-square displacement at different times. Comparison of the diffusion coefficients simulated by the MD simulation technique, predicted by the Piringer model and experiments, showed that, except for a few samples, the MD-simulated values were in agreement with the experimental values within one order of magnitude. Furthermore, the diffusion process for additives is discussed in detail, and four factors - the interaction energy between additive molecules and PET, fractional free volume, molecular shape and size, and self-diffusion of the polymer - are proposed to illustrate the microscopic diffusion mechanism. The movement trajectories of additives in PET cell models suggested that the additive molecules oscillate slowly rather than hopping for a long time. Occasionally, when a sufficiently large hole was created adjacently, the molecule could undergo spatial motion by jumping into the free-volume hole and consequently start a continuous oscillation and hop. The results indicate that MD simulation is a useful approach for predicting the microstructure and diffusion coefficient of plastic additives, and help to estimate the migration level of additives from PET packaging.
The effect of sediments on turbulent plume dynamics in a stratified fluid
NASA Astrophysics Data System (ADS)
Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca
2017-11-01
We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.
Essential dynamics/factor analysis for the interpretation of molecular dynamics trajectories
NASA Astrophysics Data System (ADS)
Kaźmierkiewicz, R.; Czaplewski, C.; Lammek, B.; Ciarkowski, J.
1999-01-01
Subject of this work is the analysis of molecular dynamics (MD) trajectories of neurophysins I (NPI) and II (NPII) and their complexes with the neurophyseal nonapeptide hormones oxytocin (OT) and vasopresssin (VP), respectively, simulated in water. NPs serve in the neurosecretory granules as carrier proteins for the hormones before their release to the blood. The starting data consisted of two pairs of different trajectories for each of the (NPII/VP)2 and (NPI/OT)2 heterotetramers and two more trajectories for the NPII2 and NPI2 homodimers (six trajectories in total). Using essential dynamics which, to our judgement, is equivalent to factor analysis, we found that only about 10 degrees of freedom per trajectory are necessary and sufficient to describe in full the motions relevant for the function of the protein. This is consistent with these motions to explain about 90% of the total variance of the system. These principal degrees of freedom represent slow anharmonic motional modes, clearly pointing at distinguished mobility of the atoms involved in the protein's functionality.
Coarsening dynamics in condensing zero-range processes and size-biased birth death chains
NASA Astrophysics Data System (ADS)
Jatuviriyapornchai, Watthanan; Grosskinsky, Stefan
2016-05-01
Zero-range processes with decreasing jump rates are well known to exhibit a condensation transition under certain conditions on the jump rates, and the dynamics of this transition continues to be a subject of current research interest. Starting from homogeneous initial conditions, the time evolution of the condensed phase exhibits an interesting coarsening phenomenon of mass transport between cluster sites characterized by a power law. We revisit the approach in Godrèche (2003 J. Phys. A: Math. Gen. 36 6313) to derive effective single site dynamics which form a nonlinear birth death chain describing the coarsening behavior. We extend these results to a larger class of parameter values, and introduce a size-biased version of the single site process, which provides an effective tool to analyze the dynamics of the condensed phase without finite size effects and is the main novelty of this paper. Our results are based on a few heuristic assumptions and exact computations, and are corroborated by detailed simulation data.
Reliability of numerical wind tunnels for VAWT simulation
NASA Astrophysics Data System (ADS)
Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-09-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-11-01
This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells.
Tube Visualization and Properties from Isoconfigurational Averaging
NASA Astrophysics Data System (ADS)
Qin, Jian; Bisbee, Windsor; Milner, Scott
2012-02-01
We introduce a simulation method to visualize the confining tube in polymer melts and measure its properties. We studied bead-spring ring polymers, which conveniently suppresses constraint release and contour length fluctuations. We allow molecules to cross and reach topologically equilibrated states by invoking various molecular rebridging moves in Monte Carlo simulations. To reveal the confining tube, we start with a well equilibrated configuration, turn off rebridging moves, and run molecular dynamics simulation multiple times, each with different initial velocities. The resulting set of ``movies'' of molecular trajectories defines an isoconfigurational ensemble, with the bead positions at different times and in different ``movies'' giving rise to a cloud. The cloud shows the shape, range and strength of the tube confinement, which enables us to study the statistical properties of tube. Using this approach, we studied the effects of free surface, and found that the tube diameter near the surface is greater than the bulk value by about 25%.
Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers
NASA Astrophysics Data System (ADS)
Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.
2017-08-01
We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.
NASA Astrophysics Data System (ADS)
Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya
2016-11-01
We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.
Dynamic Analysis of a Two Member Manipulator Arm
NASA Technical Reports Server (NTRS)
McGinley, Mark; Shen, Ji Y.
1997-01-01
Attenuating start-up and stopping vibrations when maneuvering large payloads attached to flexible manipulator systems is a great concern for many space missions. To address this concern, it was proposed that the use of smart materials, and their applications in smart structures, may provide an effective method of control for aerospace structures. In this paper, a modified finite element model has been developed to simulate the performance of piezoelectric ceramic actuators, and was applied to a flexible two-arm manipulator system. Connected to a control voltage, the piezoelectric actuators produce control moments based on the optimal control theory. The computer simulation modeled the end-effector vibration suppression of the NASA manipulator testbed for berthing operations of the Space Shuttle to the Space Station. The results of the simulation show that the bonded piezoelectric actuators can effectively suppress follow-up vibrations of the end-effector, stimulated by some external disturbance.
Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan
2017-10-18
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.
2010-04-01
Characteristics associated with “Free Flight” Shroud and Stage Separation and Mode Switching in LENS II Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee...ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...switching and inlet-starting validation • Validation to CFD community ( CUBRC /UM) Figure 32: Numerical Simulation of the Unsteady Flow Dynamics during
A computer model of context-dependent perception in a very simple world
NASA Astrophysics Data System (ADS)
Lara-Dammer, Francisco; Hofstadter, Douglas R.; Goldstone, Robert L.
2017-11-01
We propose the foundations of a computer model of scientific discovery that takes into account certain psychological aspects of human observation of the world. To this end, we simulate two main components of such a system. The first is a dynamic microworld in which physical events take place, and the second is an observer that visually perceives entities and events in the microworld. For reason of space, this paper focuses only on the starting phase of discovery, which is the relatively simple visual inputs of objects and collisions.
Research on fuel cell and battery hybrid bus system parameters based on ADVISOR
NASA Astrophysics Data System (ADS)
Lai, Lianfeng; Lu, Youwen; Guo, Weiwei; Lin, Yuxiang; Xie, Yichun; Zheng, Liping; Chen, Wei; Liang, Boshan
2018-06-01
This paper aims at the fuel cell and battery hybrid automobile, based on one bus parameters, considers their own characteristics of fuel cell and battery and power demand when automobiles start, accelerate, climb, brake and other different working conditions, calculate the hybrid bus system parameters that match the fuel cell/battery., and ADVISOR is used is to verify simulation. The results show that the parameters of power drive system of this electric automobile are reasonable, and can meet the requirements of dynamic design indexes.
Physics in Industry: A Case Study
NASA Astrophysics Data System (ADS)
Pratt-Ferguson, Ben
2007-10-01
Often ignored and sometimes even considered ``black sheep'' by the university & government-lab physicists, many industrial physicists continue making valuable scientific contributions in diverse areas, from computer science to aero and thermo-dynamics, communications, mathematics, engineering, and simulation, to name a few. This talk will focus on what industrial physicists do, what preparations are beneficial to obtaining a first industrial job, and what the business environment is like for physicists. The case study will be that of the author, starting with undergraduate and graduate studies and continuing on to jobs in industry.
Relaxation and collective excitations of cluster nano-plasmas
NASA Astrophysics Data System (ADS)
Reinholz, Heidi; Röpke, Gerd; Broda, Ingrid; Morozov, Igor; Bystryi, Roman; Lavrinenko, Yaroslav
2018-01-01
Nano-plasmas produced, for example, in clusters after short-pulse laser irradiation, can show collective excitations, as derived from the time evolution of fluctuations in thermodynamic equilibrium. Molecular dynamical simulations are performed for various cluster sizes. New data are obtained for the minimum value of the stationary cluster charge. The bi-local autocorrelation function gives the spatial structure of the eigenmodes, for which energy eigenvalues are obtained. By varying the cluster size, starting from a few-particle cluster, the emergence of macroscopic properties such as collective excitations is shown.
Karakas, Esra; Taveneau, Cyntia; Bressanelli, Stéphane; Marchi, Massimo; Robert, Bruno; Abel, Stéphane
2017-01-01
In this paper, we describe the derivation and the validation of original RESP atomic partial charges for the N, N-dimethyl-dodecylamine oxide (LDAO) surfactant. These charges, designed to be fully compatible with all the AMBER force fields, are at first tested against molecular dynamics simulations of pure LDAO micelles and with a fragment of the lipid kinase PIK4A (DI) modeled with the QUARK molecular modeling server. To model the micelle, we used two distinct AMBER force fields (i.e. Amber99SB and Lipid14) and a variety of starting conditions. We find that the micelle structural properties (such as the shape, size, the LDAO headgroup hydration, and alkyl chain conformation) slightly depend on the force field but not on the starting conditions and more importantly are in good agreement with experiments and previous simulations. We also show that the Lipid14 force field should be used instead of the Amber99SB one to better reproduce the C(sp3)C(sp3)C(sp3)C(sp3) conformation in the surfactant alkyl chain. Concerning the simulations with LDAO-DI protein, we carried out different runs at two NaCl concentrations (i.e. 0 and 300 mM) to mimic, in the latter case, the experimental conditions. We notice a small dependence of the simulation results with the LDAO parameters and the salt concentration. However, we find that in the simulations, three out of four tryptophans of the DI protein are not accessible to water in agreement with our fluorescence spectroscopy experiments reported in the paper.
Role of Magnetic Diffusion Induced by Turbulent Magnetic Reconnection for Star Formation
NASA Astrophysics Data System (ADS)
Lazarian, Alex; Santos de Lima, R.; de Gouveia Dal Pino, E.
2010-01-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology or reconnect in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in the computer simulations and turbulent astrophysical environments is similar, as far as the magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our study of magnetic field diffusion reveals important propertie s of the process. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a decorrelation of the magnetic field and density, which corresponds well to the observations of the interstellar media. In the presence of gravity, our 3D simulations show the decrease of the flux to mass ratio with density concentration when turbulence is present. We observe this effect both in the situations when we start with the equilibrium distributions of gas and magnetic field and when we start with collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasistatic subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and flux in the saturated final state of simulations, supporting the notion that turbulent diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. At the same time, turbulence of high level may get the system unbound making the flux to mass ratio more uniform through the simulation box.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassi, Gabriele; Blednykh, Alexei; Smalyuk, Victor
A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numericalmore » simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.« less
'Towers in the Tempest' Computer Animation Submission
NASA Technical Reports Server (NTRS)
Shirah, Greg
2008-01-01
The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.
Capsaicin Interaction with TRPV1 Channels in a Lipid Bilayer: Molecular Dynamics Simulation
Hanson, Sonya M.; Newstead, Simon; Swartz, Kenton J.; Sansom, Mark S.P.
2015-01-01
Transient receptor potential vanilloid subtype 1 (TRPV1) is a heat-sensitive ion channel also involved in pain sensation, and is the receptor for capsaicin, the active ingredient of hot chili peppers. The recent structures of TRPV1 revealed putative ligand density within the S1 to S4 voltage-sensor-like domain of the protein. However, questions remain regarding the dynamic role of the lipid bilayer in ligand binding to TRPV1. Molecular dynamics simulations were used to explore behavior of capsaicin in a 1-palmitoyl-2-oleoyl phosphatidylcholine bilayer and with the target S1–S4 transmembrane helices of TRPV1. Equilibrium simulations reveal a preferred interfacial localization for capsaicin. We also observed a capsaicin molecule flipping from the extracellular to the intracellular leaflet, and subsequently able to access the intracellular TRPV1 binding site. Calculation of the potential of mean force (i.e., free energy profile) of capsaicin along the bilayer normal confirms that it prefers an interfacial localization. The free energy profile indicates that there is a nontrivial but surmountable barrier to the flipping of capsaicin between opposing leaflets of the bilayer. Molecular dynamics of the S1–S4 transmembrane helices of the TRPV1 in a lipid bilayer confirm that Y511, known to be crucial to capsaicin binding, has a distribution along the bilayer normal similar to that of the aromatic group of capsaicin. Simulations were conducted of the TRPV1 S1–S4 transmembrane helices in the presence of capsaicin placed in the aqueous phase, in the lipid, or docked to the protein. No stable interaction between ligand and protein was seen for simulations initiated with capsaicin in the bilayer. However, interactions were seen between TRPV1 and capsaicin starting from the cytosolic aqueous phase, and capsaicin remained stable in the majority of simulations from the docked pose. We discuss the significance of capsaicin flipping from the extracellular to the intracellular leaflet and mechanisms of binding site access by capsaicin. PMID:25809255
Dynamical quantum phase transitions: a review
NASA Astrophysics Data System (ADS)
Heyl, Markus
2018-05-01
Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.
Dynamical quantum phase transitions: a review.
Heyl, Markus
2018-05-01
Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.
NASA Astrophysics Data System (ADS)
Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang
2016-07-01
Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.
King, Mark A; Glynn, Jonathan A; Mitchell, Sean R
2011-11-01
A subject-specific angle-driven computer model of a tennis player, combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts, was developed to determine the effect of ball-racket impacts on loading at the elbow for one-handed backhand groundstrokes. Matching subject-specific computer simulations of a typical topspin/slice one-handed backhand groundstroke performed by an elite tennis player were done with root mean square differences between performance and matching simulations of < 0.5 degrees over a 50 ms period starting from ball impact. Simulation results suggest that for similar ball-racket impact conditions, the difference in elbow loading for a topspin and slice one-handed backhand groundstroke is relatively small. In this study, the relatively small differences in elbow loading may be due to comparable angle-time histories at the wrist and elbow joints with the major kinematic differences occurring at the shoulder. Using a subject-specific angle-driven computer model combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts allows peak internal loading, net impulse, and shock due to ball-racket impact to be calculated which would not otherwise be possible without impractical invasive techniques. This study provides a basis for further investigation of the factors that may increase elbow loading during tennis strokes.
TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD.
Vermaas, Josh V; Hardy, David J; Stone, John E; Tajkhorshid, Emad; Kohlmeyer, Axel
2016-06-27
Molecular dynamics (MD) simulation engines use a variety of different approaches for modeling molecular systems with force fields that govern their dynamics and describe their topology. These different approaches introduce incompatibilities between engines, and previously published software bridges the gaps between many popular MD packages, such as between CHARMM and AMBER or GROMACS and LAMMPS. While there are many structure building tools available that generate topologies and structures in CHARMM format, only recently have mechanisms been developed to convert their results into GROMACS input. We present an approach to convert CHARMM-formatted topology and parameters into a format suitable for simulation with GROMACS by expanding the functionality of TopoTools, a plugin integrated within the widely used molecular visualization and analysis software VMD. The conversion process was diligently tested on a comprehensive set of biological molecules in vacuo. The resulting comparison between energy terms shows that the translation performed was lossless as the energies were unchanged for identical starting configurations. By applying the conversion process to conventional benchmark systems that mimic typical modestly sized MD systems, we explore the effect of the implementation choices made in CHARMM, NAMD, and GROMACS. The newly available automatic conversion capability breaks down barriers between simulation tools and user communities and allows users to easily compare simulation programs and leverage their unique features without the tedium of constructing a topology twice.
Han, Longtao; Irle, Stephan; Nakai, Hiromi
2018-01-01
We performed nanosecond timescale computer simulations of clusterization and agglomeration processes of boron nitride (BN) nanostructures in hot, high pressure gas, starting from eleven different atomic and molecular precursor systems containing boron, nitrogen and hydrogen at various temperatures from 1500 to 6000 K. The synthesized BN nanostructures self-assemble in the form of cages, flakes, and tubes as well as amorphous structures. The simulations facilitate the analysis of chemical dynamics and we are able to predict the optimal conditions concerning temperature and chemical precursor composition for controlling the synthesis process in a high temperature gas volume, at high pressure. We identify the optimal precursor/temperature choices that lead to the nanostructures of highest quality with the highest rate of synthesis, using a novel parameter of the quality of the synthesis (PQS). Two distinct mechanisms of BN nanotube growth were found, neither of them based on the root-growth process. The simulations were performed using quantum-classical molecular dynamics (QCMD) based on the density-functional tight-binding (DFTB) quantum mechanics in conjunction with a divide-and-conquer (DC) linear scaling algorithm, as implemented in the DC-DFTB-K code, enabling the study of systems as large as 1300 atoms in canonical NVT ensembles for 1 ns time. PMID:29780513
The Dynamics of Miscible Interfaces: A Space Flight Experiment
NASA Technical Reports Server (NTRS)
Maxworthy, Tony; Meiburg, Eckart
2000-01-01
Experiments as well as accompanying simulations are described that serve in preparation of a space flight experiment to study the dynamics of miscible interfaces. The investigation specifically addresses the importance of both nonsolenoidal effects as well as nonconventional Korteweg stresses in flows that give rise to steep but finite concentration gradients. The investigation focuses on the flow in which a less viscous fluid displaces one of higher viscosity and different density within a narrow capillary tube. The fluids are miscible in all proportions. An intruding finger forms that occupies a fraction of the total tube diameter. Depending on the flow conditions, as expressed by the Peclet number, a dimensionless viscosity ratio, and a gravity parameter, this fraction can vary between approximately 0.9 and 0.2. For large Pe values, a quasi-steady finger forms, which persists for a time of O(Pe) before it starts to decay, and Poiseuille flow and Taylor dispersion are approached asymptotically. Depending on the specific flow conditions, we observe a variety of topologically different streamline patterns, among them some that leak fluid from the finger tip. For small Pe values, the flow decays from the start and asymptotically reaches Taylor dispersion after a time of O(Pe). Comparisons between experiments and numerical simulations based on the 'conventional' assumption of solenoidal velocity fields and without Korteweg stresses yield poor agreement as far as the Pe value is concerned that distinguishes these two regimes. As one possibility, we attribute this lack of agreement to the disregard of these terms. An attempt is made to use scaling arguments in order to evaluate the importance of the Korteweg stresses and of the assumption of solenoidality. While these effects should be strongest in absolute terms when steep concentration fronts exist, i.e., at large Pe, they may be relatively most important at lower values of Pe. We subsequently compare these conventional simulations to more complete simulations that account for nonvanishing divergence as well as Korteweg stresses. While the exact value of the relevant stress coefficients are not known, ballpark numbers do exist, and their use in the simulations indicates that these stresses may indeed be important. We plan to evaluate these issues in detail by means of comparing a space experiment with corresponding simulations, in order to extract more accurate Korteweg stress coefficients, and to confirm or deny the importance of such stresses.
Computer simulation of sputtering induced by swift heavy ions
NASA Astrophysics Data System (ADS)
Kucharczyk, P.; Füngerlings, A.; Weidtmann, B.; Wucher, A.
2018-07-01
New experimental results regarding the mass and charge state distribution of material sputtered under irradiation with swift heavy ions suggest fundamental differences between the ejection mechanisms under electronic and nuclear sputtering conditions. In order to illustrate the difference, computer simulations based on molecular dynamics were performed to model the surface ejection process of atoms and molecules induced by a swift heavy ion track. In a first approach, the track is homogeneously energized by assigning a fixed energy to each atom with randomly oriented direction of motion within a cylinder of a given radius around the projectile ion trace. The remainder of the target crystal is assumed to be at rest, and the resulting lattice dynamics is followed by molecular dynamics. The resulting sputter yield is calculated as a function of track radius and energy and compared to corresponding experimental data in order to find realistic values for the effective deposited lattice energy density. The sputtered material is analyzed with respect to emission angle and energy as well as depth of origin. The results are compared to corresponding data from keV sputter simulations. As a second step of complexity, the homogeneous and monoenergetic lattice energization is replaced by a starting energy distribution described by a local lattice temperature. As a first attempt, the respective temperature is assumed constant within the track, and the results are compared with those obtained from monoenergetic energization with the same average energy per atom.
NASA Astrophysics Data System (ADS)
Veldkamp, A.; Baartman, J. E. M.; Coulthard, T. J.; Maddy, D.; Schoorl, J. M.; Storms, J. E. A.; Temme, A. J. A. M.; van Balen, R.; van De Wiel, M. J.; van Gorp, W.; Viveen, W.; Westaway, R.; Whittaker, A. C.
2017-06-01
The development and application of numerical models to investigate fluvial sedimentary archives has increased during the last decades resulting in a sustained growth in the number of scientific publications with keywords, 'fluvial models', 'fluvial process models' and 'fluvial numerical models'. In this context we compile and review the current contributions of numerical modelling to the understanding of fluvial archives. In particular, recent advances, current limitations, previous unexpected results and future perspectives are all discussed. Numerical modelling efforts have demonstrated that fluvial systems can display non-linear behaviour with often unexpected dynamics causing significant delay, amplification, attenuation or blurring of externally controlled signals in their simulated record. Numerical simulations have also demonstrated that fluvial records can be generated by intrinsic dynamics without any change in external controls. Many other model applications demonstrate that fluvial archives, specifically of large fluvial systems, can be convincingly simulated as a function of the interplay of (palaeo) landscape properties and extrinsic climate, base level and crustal controls. All discussed models can, after some calibration, produce believable matches with real world systems suggesting that equifinality - where a given end state can be reached through many different pathways starting from different initial conditions and physical assumptions - plays an important role in fluvial records and their modelling. The overall future challenge lies in the development of new methodologies for a more independent validation of system dynamics and research strategies that allow the separation of intrinsic and extrinsic record signals using combined fieldwork and modelling.
Dynamic control of ocular disaccommodation: First and second-order dynamics
Bharadwaj, Shrikant R.; Schor, Clifton M.
2006-01-01
Velocity and acceleration characteristics provide valuable information about dynamic control of accommodation. We investigated velocity and acceleration of disaccommodation (near-far focusing) from three starting positions. Peak velocity and peak acceleration of disaccommodation increased with the proximity of starting position however for a given starting position they were invariant of response magnitude. These results suggest that all disaccommodation responses are initiated towards a constant primary destination and are switched mid-flight to attain the desired final position. Large discrepancies between the primary destination and desired final position appear to produce overshoots and oscillations of small responses from proximal starting positions. PMID:16045960
The application of active side arm controllers in helicopters
NASA Technical Reports Server (NTRS)
Knorr, R.; Melz, C.; Faulkner, A.; Obermayer, M.
1993-01-01
Eurocopter Deutschland (ECD) started simulation trials to investigate the particular problems of Side Arm Controllers (SAC) applied to helicopters. Two simulation trials have been performed. In the first trial, the handling characteristics of a 'passive' SAC and the basic requirements for the application of an 'active' SAC were evaluated in pilot-in-the-loop simulations, performing the tasks in a realistic scenario representing typical phases of a transport mission. The second simulation trial investigated the general control characteristics of the 'active' in comparison to the 'passive' control principle. A description of the SACs developed by ECD and the principle of the 'passive' and 'active' control concept is given, as well as specific ratings for the investigated dynamic and ergonomic parameters effecting SAC characteristics. The experimental arrangements, as well as the trials procedures of both simulation phases, are described and the results achieved are discussed emphasizing the advantages of the 'active' as opposed to the 'passive' SAC concept. This also includes the presentation of some critical aspects still to be improved and proposals to solve them.
Bassi, Gabriele; Blednykh, Alexei; Smalyuk, Victor
2016-02-24
A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numericalmore » simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.« less
Learning and Control Model of the Arm for Loading
NASA Astrophysics Data System (ADS)
Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu
We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.
Socher, Eileen; Sticht, Heinrich
2016-11-23
HdeA and YmgD are structurally homologous proteins in the periplasm of Escherichia coli. HdeA has been shown to represent an acid-activated chaperone, whereas the function of YmgD has not yet been characterized. We performed pH-titrating molecular dynamics simulations (pHtMD) to investigate the structural changes of both proteins and to assess whether YmgD may also exhibit an unfolding behavior similar to that of HdeA. The unfolding pathway of HdeA includes partially unfolded dimer structures, which represent a prerequisite for subsequent dissociation. In contrast to the coupled unfolding and dissociation of HdeA, YmgD displays dissociation of the folded subunits, and the subunits do not undergo significant unfolding even at low pH values. The differences in subunit stability between HdeA and YmgD may be explained by the structural features of helix D, which represents the starting point of unfolding in HdeA. In summary, the present study suggests that YmgD either is not an acid-activated chaperone or, at least, does not require unfolding for activation.
Simulation-driven machine learning: Bearing fault classification
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Freitas, Carina; Nicolai, Mike
2018-01-01
Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.
NASA Astrophysics Data System (ADS)
D'Angelo, Paola; Migliorati, Valentina; Mancini, Giordano; Barone, Vincenzo; Chillemi, Giovanni
2008-02-01
The structural and dynamic properties of the solvated Hg2+ ion in aqueous solution have been investigated by a combined experimental-theoretical approach employing x-ray absorption spectroscopy and molecular dynamics (MD) simulations. This method allows one to perform a quantitative analysis of the x-ray absorption near-edge structure (XANES) spectra of ionic solutions using a proper description of the thermal and structural fluctuations. XANES spectra have been computed starting from the MD trajectory, without carrying out any minimization in the structural parameter space. The XANES experimental data are accurately reproduced by a first-shell heptacoordinated cluster only if the second hydration shell is included in the calculations. These results confirm at the same time the existence of a sevenfold first hydration shell for the Hg2+ ion in aqueous solution and the reliability of the potentials used in the MD simulations. The combination of MD and XANES is found to be very helpful to get important new insights into the quantitative estimation of structural properties of disordered systems.
Coarse-grained theory of a realistic tetrahedral liquid model
NASA Astrophysics Data System (ADS)
Procaccia, I.; Regev, I.
2012-02-01
Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.
Simulation of dense amorphous polymers by generating representative atomistic models
NASA Astrophysics Data System (ADS)
Curcó, David; Alemán, Carlos
2003-08-01
A method for generating atomistic models of dense amorphous polymers is presented. The generated models can be used as starting structures of Monte Carlo and molecular dynamics simulations, but also are suitable for the direct evaluation physical properties. The method is organized in a two-step procedure. First, structures are generated using an algorithm that minimizes the torsional strain. After this, an iterative algorithm is applied to relax the nonbonding interactions. In order to check the performance of the method we examined structure-dependent properties for three polymeric systems: polyethyelene (ρ=0.85 g/cm3), poly(L,D-lactic) acid (ρ=1.25 g/cm3), and polyglycolic acid (ρ=1.50 g/cm3). The method successfully generated representative packings for such dense systems using minimum computational resources.
Deterministic diffusion in flower-shaped billiards.
Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre
2002-08-01
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
Influence of electric field on the amyloid-β(29-42) peptides embedded in a membrane bilayer
NASA Astrophysics Data System (ADS)
Lu, Yan; Shi, Xiao-Feng; Salsbury, Freddie R.; Derreumaux, Philippe
2018-01-01
Alzheimer's disease is linked to various types of aggregates of amyloid-β (Aβ) peptide and their interactions with protein receptors and neuronal cell membranes. Little is known on the impact of the electric field on membrane-embedded Aβ. Here we use atomistic molecular dynamics simulations to study the effects of a constant electric field on the conformations of Aβ29-42 dimer inside a membrane, where the electric field has a strength of 20 mV/nm which exists across the membrane of a human neuron. Starting from α-helix peptides, the transmembrane electric field (TMEF) accelerates the conversion from the Gly-out substate to the Gly-side and Gly-in substates. Starting from β-sheet peptides, TMEF induces changes of the kink and tilt angles at Gly33 and Gly37. Overall, in the simulations totaling 10 μs, TMEF establishes new ground states for the dimer, similar to induced-fit in ligand binding. Our findings indicate that TMEF can stabilize rare conformations of amyloid peptides, and this could influence the cleavage of the amyloid precursor protein and the formation of β-sheet oligomers in membrane bilayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunhua; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108; Lv, Dashuai
Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regionsmore » between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.« less
Andersen, Ole Juul; Grouleff, Julie; Needham, Perri; Walker, Ross C; Jensen, Frank
2015-11-19
Current enhanced sampling molecular dynamics methods for studying large conformational changes in proteins suffer from certain limitations. These include, among others, the need for user defined collective variables, the prerequisite of both start and end point structures of the conformational change, and the need for a priori knowledge of the amount by which to boost specific parts of the potential. In this paper, a framework is proposed for a molecular dynamics method for studying ligand-induced conformational changes, in which the nonbonded interactions between the ligand and the protein are used to calculate a biasing force. The method requires only a single input structure, and does not entail the use of collective variables. We provide a proof-of-concept for accelerating conformational changes in three simple test molecules, as well as promising results for two proteins known to undergo domain closure upon ligand binding. For the ribose-binding protein, backbone root-mean-square deviations as low as 0.75 Å compared to the crystal structure of the closed conformation are obtained within 50 ns simulations, whereas no domain closures are observed in unbiased simulations. A skewed closed structure is obtained for the glutamine-binding protein at high bias values, indicating that specific protein-ligand interactions might suppress important protein-protein interactions.
Conformational dynamics of Peb4 exhibit "mother's arms" chain model: a molecular dynamics study.
Dantu, Sarath Chandra; Khavnekar, Sagar; Kale, Avinash
2017-08-01
Peb4 from Campylobacter jejuni is an intertwined dimeric, periplasmic holdase, which also exhibits peptidyl prolyl cis/trans isomerase (PPIase) activity. Peb4 gene deletion alters the outer membrane protein profile and impairs cellular adhesion and biofilm formation for C. jejuni. Earlier crystallographic study has proposed that the PPIase domains are flexible and might form a cradle for holding the substrate and these aspects of Peb4 were explored using sub-microsecond molecular dynamics simulations in solution environment. Our simulations have revealed that PPIase domains are highly flexible and undergo a large structural change where they move apart from each other by 8 nm starting at .5 nm. Further, this large conformational change renders Peb4 as a compact protein with crossed-over conformation, forms a central cavity, which can "cradle" the target substrate. As reported for other chaperone proteins, flexibility of linker region connecting the chaperone and PPIase domains is key to forming the "crossed-over" conformation. The conformational transition of the Peb4 protein from the X-ray structure to the crossed-over conformation follows the "mother's arms" chain model proposed for the FkpA chaperone protein. Our results offer insights into how Peb4 and similar chaperones can use the conformational heterogeneity at their disposal to perform its much-revered biological function.
Modeling Dynamic Regulatory Processes in Stroke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.
2012-10-11
The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to developmore » dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.« less
Liu, X. Sherry; Huang, Angela H.; Zhang, X. Henry; Sajda, Paul; Ji, Baohua; Guo, X. Edward
2008-01-01
A three dimensional (3D) computational simulation of dynamic process of trabecular bone remodeling was developed with all the parameters derived from physiological and clinical data. Contributions of the microstructural bone formation deficits: trabecular plate perforations, trabecular rod breakages, and isolated bone fragments, to the rapid bone loss and disruption of trabecular microarchitecture during menopause were studied. Eighteen human trabecular bone samples from femoral neck (FN) and spine were scanned using a micro computed tomography (μCT) system. Bone resorption and formation were simulated as a computational cycle corresponding to 40-day resorption/160-day formation. Resorption cavities were randomly created over the bone surface according to the activation frequency, which was strictly based on clinical data. Every resorption cavity was refilled during formation unless it caused trabecular plate perforation, trabecular rod breakage or isolated fragments. A 20-year-period starting 5 years before and ending 15 years after menopause was simulated for each specimen. Elastic moduli, standard and individual trabeculae segmentation (ITS)-based morphological parameters were evaluated for each simulated 3D image. For both spine and FN groups, the time courses of predicted bone loss pattern by microstructural bone formation deficits were fairly consistent with the clinical measurements. The percentage of bone loss due to trabecular plate perforation, trabecular rod breakage, and isolated bone fragments were 73.2%, 18.9% and 7.9% at the simulated 15 years after menopause. The ITS-based plate fraction (pBV/BV), mean plate surface area (pTb.S), plate number density (pTb.N), and mean rod thickness (rTb.Th) decreased while rod fraction (rBV/BV) and rod number density (rTb.N) increased after the simulated menopause. The dynamic bone remodeling simulation based on microstructural bone formation deficits predicted the time course of menopausal bone loss pattern of spine and FN. Microstructural plate perforation could be the primary cause of menopausal trabecular bone loss. The combined effect of trabeculae perforation, breakage, and isolated fragments resulted in fewer and smaller trabecular plates and more but thinner trabecular rods. PMID:18550463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
Taha, Mohamed; Lee, Ming-Jer
2013-06-28
Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Bogatu, I. N.; Svidzinski, V. A.
2015-11-01
A novel project to develop Disruption Prediction And Simulation Suite (DPASS) of comprehensive computational tools to predict, model, and analyze disruption events in tokamaks has been recently started at FAR-TECH Inc. DPASS will eventually address the following aspects of the disruption problem: MHD, plasma edge dynamics, plasma-wall interaction, generation and losses of runaway electrons. DPASS uses the 3-D Disruption Simulation Code (DSC-3D) as a core tool and will have a modular structure. DSC is a one fluid non-linear, time-dependent 3D MHD code to simulate dynamics of tokamak plasma surrounded by pure vacuum B-field in the real geometry of a conducting tokamak vessel. DSC utilizes the adaptive meshless technique with adaptation to the moving plasma boundary, with accurate magnetic flux conservation and resolution of the plasma surface current. DSC has also an option to neglect the plasma inertia to eliminate fast magnetosonic scale. This option can be turned on/off as needed. During Phase I of the project, two modules will be developed: the computational module for modeling the massive gas injection and main plasma respond; and the module for nanoparticle plasma jet injection as an innovative disruption mitigation scheme. We will report on this development progress. Work is supported by the US DOE SBIR grant # DE-SC0013727.
Angle-resolved effective potentials for disk-shaped molecules
NASA Astrophysics Data System (ADS)
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.
2014-12-01
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.
NASA Technical Reports Server (NTRS)
McGhee, D. S.
2004-01-01
Launch vehicles consume large quantities of propellant quickly, causing the mass properties and structural dynamics of the vehicle to change dramatically. Currently, structural load assessments account for this change with a large collection of structural models representing various propellant fill levels. This creates a large database of models complicating the delivery of reduced models and requiring extensive work for model changes. Presented here is a method to account for these mass changes in a more efficient manner. The method allows for the subtraction of propellant mass as the propellant is used in the simulation. This subtraction is done in the modal domain of the vehicle generalized model. Additional computation required is primarily for constructing the used propellant mass matrix from an initial propellant model and further matrix multiplications and subtractions. An additional eigenvalue solution is required to uncouple the new equations of motion; however, this is a much simplier calculation starting from a system that is already substantially uncoupled. The method was successfully tested in a simulation of Saturn V loads. Results from the method are compared to results from separate structural models for several propellant levels, showing excellent agreement. Further development to encompass more complicated propellant models, including slosh dynamics, is possible.
Merkley, Eric D; Rysavy, Steven; Kahraman, Abdullah; Hafen, Ryan P; Daggett, Valerie; Adkins, Joshua N
2014-06-01
Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL-MS), in which protein complexes are crosslinked and characterized using liquid chromatography-mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS(3) ) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 Å apart. However, XL-MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine-lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS(3), a distance constraint of 26-30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures or in modeling. We also discuss the comparison of XL-MS results to MD simulations and known structures as a means to test and validate experimental XL-MS methods. © 2014 The Protein Society.
Merkley, Eric D; Rysavy, Steven; Kahraman, Abdullah; Hafen, Ryan P; Daggett, Valerie; Adkins, Joshua N
2014-01-01
Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL-MS), in which protein complexes are crosslinked and characterized using liquid chromatography-mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS3) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 Å apart. However, XL-MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine–lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS3, a distance constraint of 26–30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures or in modeling. We also discuss the comparison of XL-MS results to MD simulations and known structures as a means to test and validate experimental XL-MS methods. PMID:24639379
Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations.
Cavallotti, Carlo; Masi, Maurizio
2011-09-01
Though most of the current silicon photovoltaic technology relies on trichlorosilane (SiHCl3) as a precursor gas to deposit Si, only a few studies have been devoted to the investigation of its gas phase and surface kinetics. In the present work we propose a new kinetic mechanism apt to describe the gas phase and surface chemistry active during the deposition of Si from SiHCl3. Kinetic constants of key reactions were either taken from the literature or determined through ab initio calculations. The capability of the mechanism to reproduce experimental data was tested through the implementation of the kinetic scheme in a fluid dynamic model and in the simulation of both deposition and etching of Si in horizontal reactors. The results of the simulations show that the reactivity of HCl is of key importance in order to control the Si deposition rate. When HCl reaches a critical concentration in the gas phase it starts etching the Si surface, so that the net deposition rate is the net sum of the adsorption rate of the gas phase precursors and the etching rate due to HCl. In these conditions the possibility to further deposit Si is directly related to the rate of consumption of HCl through its reaction with SiHCl3 to give SiCl4. The proposed reaction mechanism was implemented in a 3D fluid dynamic model of a simple Siemens reactor. The simulation results indicate that the proposed interpretation of the growth process applies also to this class of reactors, which operate in what can be defined as a mixed kinetic-transport controlled regime.
Towards coupled earthquake dynamic rupture and tsunami simulations: The 2011 Tohoku earthquake.
NASA Astrophysics Data System (ADS)
Galvez, Percy; van Dinther, Ylona
2016-04-01
The 2011 Mw9 Tohoku earthquake has been recorded with a vast GPS and seismic network given an unprecedented chance to seismologists to unveil complex rupture processes in a mega-thrust event. The seismic stations surrounding the Miyagi regions (MYGH013) show two clear distinct waveforms separated by 40 seconds suggesting two rupture fronts, possibly due to slip reactivation caused by frictional melting and thermal fluid pressurization effects. We created a 3D dynamic rupture model to reproduce this rupture reactivation pattern using SPECFEM3D (Galvez et al, 2014) based on a slip-weakening friction with sudden two sequential stress drops (Galvez et al, 2015) . Our model starts like a M7-8 earthquake breaking dimly the trench, then after 40 seconds a second rupture emerges close to the trench producing additional slip capable to fully break the trench and transforming the earthquake into a megathrust event. The seismograms agree roughly with seismic records along the coast of Japan. The resulting sea floor displacements are in agreement with 1Hz GPS displacements (GEONET). The simulated sea floor displacement reaches 8-10 meters of uplift close to the trench, which may be the cause of such a devastating tsunami followed by the Tohoku earthquake. To investigate the impact of such a huge uplift, we ran tsunami simulations with the slip reactivation model and plug the sea floor displacements into GeoClaw (Finite element code for tsunami simulations, George and LeVeque, 2006). Our recent results compare well with the water height at the tsunami DART buoys 21401, 21413, 21418 and 21419 and show the potential using fully dynamic rupture results for tsunami studies for earthquake-tsunami scenarios.
NASA Astrophysics Data System (ADS)
Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee
1999-02-01
The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.
Preliminary investigation of flow dynamics during the start-up of a bulb turbine model
NASA Astrophysics Data System (ADS)
Coulaud, M.; Fraser, R.; Lemay, J.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.
2016-11-01
Nowadays, the electricity network undergoes more perturbations due to the market demand. Additionally, an increase of the production from alternative resources such as wind or solar also induces important variations on the grid. Hydraulic power plants are used to respond quickly to these variations to stabilize the network. Hydraulic turbines have to face more frequent start-up and stop sequences that might shorten significantly their life time. In this context, an experimental analysis of start-up sequences has been conducted on the bulb turbine model of the BulbT project at the Hydraulic Machines Laboratory (LAMH) of Laval University. Maintaining a constant head, guide vanes are opened from 0 ° to 30 °. Three guide vanes opening speed have been chosen from 5 °/s to 20 °/s. Several repetitions were done for each guide vanes opening speed. During these sequences, synchronous time resolved measurements have been performed. Pressure signals were recorded at the runner inlet and outlet and along the draft tube. Also, 25 pressure measurements and strain measurements were obtained on the runner blades. Time resolved particle image velocimetry were used to evaluate flowrate during start-up for some repetitions. Torque fluctuations at shaft were also monitored. This paper presents the experimental set-up and start-up conditions chosen to simulate a prototype start-up. Transient flowrate methodology is explained and validation measurements are detailed. The preliminary results of global performances and runner pressure measurements are presented.
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.
Statistical Study of the Early Solar System's Instability with 4, 5 and 6 Giant Planets
NASA Astrophysics Data System (ADS)
Nesvorny, David; Morbidelli, A.
2012-10-01
Several properties of the Solar System, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early Solar System evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly ten thousand numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of least one ice giant from the Solar System. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large, but we found that a massive disk would lead to excessive dynamical damping, and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the Solar System was assumed to have five giant planets initially and one ice giant, with the mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn. The range of possible outcomes is rather broad in this case, indicating that the present Solar System is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a few percent probability. The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five planet case.
Zhuang, Q.; McGuire, A.D.; Melillo, J.M.; Clein, Joy S.; Dargaville, R.J.; Kicklighter, D.W.; Myneni, Ranga B.; Dong, J.; Romanovsky, V.E.; Harden, J.; Hobbie, J.E.
2003-01-01
There is substantial evidence that soil thermal dynamics are changing in terrestrial ecosystems of the Northern Hemisphere and that these dynamics have implications for the exchange of carbon between terrestrial ecosystems and the atmosphere. To date, large-scale biogeochemical models have been slow to incorporate the effects of soil thermal dynamics on processes that affect carbon exchange with the atmosphere. In this study we incorporated a soil thermal module (STM), appropriate to both permafrost and non-permafrost soils, into a large-scale ecosystem model, version 5.0 of the Terrestrial Ecosystem Model (TEM). We then compared observed regional and seasonal patterns of atmospheric CO2 to simulations of carbon dynamics for terrestrial ecosystems north of 30°N between TEM 5.0 and an earlier version of TEM (version 4.2) that lacked a STM. The timing of the draw-down of atmospheric CO2 at the start of the growing season and the degree of draw-down during the growing season were substantially improved by the consideration of soil thermal dynamics. Both versions of TEM indicate that climate variability and change promoted the loss of carbon from temperate ecosystems during the first half of the 20th century, and promoted carbon storage during the second half of the century. The results of the simulations by TEM suggest that land-use change in temperate latitudes (30–60°N) plays a stronger role than climate change in driving trends for increased uptake of carbon in extratropical terrestrial ecosystems (30–90°N) during recent decades. In the 1980s the TEM 5.0 simulation estimated that extratropical terrestrial ecosystems stored 0.55 Pg C yr−1, with 0.24 Pg C yr−1 in North America and 0.31 Pg C yr−1 in northern Eurasia. From 1990 through 1995 the model simulated that these ecosystems stored 0.90 Pg C yr−1, with 0.27 Pg C yr−1 stored in North America and 0.63 Pg C yr−1 stored in northern Eurasia. Thus, in comparison to the 1980s, simulated net carbon storage in the 1990s was enhanced by an additional 0.35 Pg C yr−1 in extratropical terrestrial ecosystems, with most of the additional storage in northern Eurasia. The carbon storage simulated by TEM 5.0 in the 1980s and 1990s was lower than estimates based on other methodologies, including estimates by atmospheric inversion models and remote sensing and inventory analyses. This suggests that other issues besides the role of soil thermal dynamics may be responsible, in part, for the temporal and spatial dynamics of carbon storage of extratropical terrestrial ecosystems. In conclusion, the consideration of soil thermal dynamics and terrestrial cryospheric processes in modeling the global carbon cycle has helped to reduce biases in the simulation of the seasonality of carbon dynamics of extratropical terrestrial ecosystems. This progress should lead to an enhanced ability to clarify the role of other issues that influence carbon dynamics in terrestrial regions that experience seasonal freezing and thawing of soil.
Spasic, Aleksandar; Kennedy, Scott D; Needham, Laura; Manoharan, Muthiah; Kierzek, Ryszard; Turner, Douglas H; Mathews, David H
2018-05-01
The RNA "GAGU" duplex, (5'GAC GAGU GUCA) 2 , contains the internal loop (5'-GAGU-3') 2 , which has two conformations in solution as determined by NMR spectroscopy. The major conformation has a loop structure consisting of trans -Watson-Crick/Hoogsteen GG pairs, A residues stacked on each other, U residues bulged outside the helix, and all sugars with a C2'- endo conformation. This differs markedly from the internal loops, (5'-G AG C-3') 2 , (5'-A AG U-3') 2 , and (5'-UAGG-3') 2 , which all have cis -Watson-Crick/Watson-Crick AG "imino" pairs flanked by cis -Watson-Crick/Watson-Crick canonical pairs resulting in maximal hydrogen bonding. Here, molecular dynamics was used to test whether the Amber force field (ff99 + bsc0 + OL3) approximates molecular interactions well enough to keep stable the unexpected conformation of the GAGU major duplex structure and the NMR structures of the duplexes containing (5'-G AG C-3') 2 , (5'-A AG U-3') 2 , and (5'-U AG G-3') 2 internal loops. One-microsecond simulations were repeated four times for each of the duplexes starting in their NMR conformations. With the exception of (5'-UAGG-3') 2 , equivalent simulations were also run starting with alternative conformations. Results indicate that the Amber force field keeps the NMR conformations of the duplexes stable for at least 1 µsec. They also demonstrate an unexpected minor conformation for the (5'-GAGU-3') 2 loop that is consistent with newly measured NMR spectra of duplexes with natural and modified nucleotides. Thus, unrestrained simulations led to the determination of the previously unknown minor conformation. The stability of the native (5'-GAGU-3') 2 internal loop as compared to other loops can be explained by changes in hydrogen bonding and stacking as the flanking bases are changed. © 2018 Spasic et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Coalition Warfare Program Presentation to: 2009 EUCOM/AFRICOM Science and Technology Conference
2009-06-01
compac an nexpens ve m cro- fluxgate magnetometer for use in multiple COCOMs. To continue T&E with joint services and apply lessons learned to...Partners in EUCOM/AFRICOM FY08 Starts • Advanced Dynamic Magnetometer FY09 Starts • ADNS Coalition Network FY10 New Starts • Clip-on Night Vision...Partner 2008 New Starts Advanced Dynamic Magnetometer for Static and Moving Applications T d l t d i i i US Navy (SPAWAR) Italy, Sweden o eve op a a
Chirwa, Tobias; Floyd, Sian; Fine, Paul
2013-01-24
Household contact with an index case of an infectious disease is a known risk factor for infection transmission. However, such contact may be underestimated due to the dynamic nature of households, particularly in longitudinal studies. Such studies generally begin with contact defined at a single point in time ('snap-shot'), leading to contact misclassification for some individuals who actually experienced contact before and after the snapshot. To quantify contact misclassification with index cases of disease in households. Historical data of 112,026 individuals from 17,889 households from an epidemiological study on leprosy in northern Malawi were used. Individuals were interviewed in the early 1980s and followed up over 5 years. It was possible to trace whether individuals died, changed household within the area, or moved out of the area between the two surveys.Using a 10% sample of households as the starting population and parameters for demographic and household changes over 5 years, the extent of contact misclassification was estimated through a simulation model of household dynamics, which traced contact with index cases in households over time. The model thereafter compared initial contact status and 'true' contact status generated from simulations. The starting population had 11,401 individuals, 52% female, and 224 (2%) leprosy index cases. Eleven percent of the households had at least one index case resident and 10% (1, 177) of non-case individuals were initial contacts. Sensitivity of initial contact status ranged from 0.52 to 0.74 and varied by age and sex. Sensitivity was low in those aged 20-29 and under 5 years but high in 5- to 14-year-olds. By gender, there were no differences among those aged under 5; females had lower sensitivity among those aged under 20 and higher for those above 30, respectively. Sensitivity was also low in simulations of long incubation periods. This work demonstrates the implications of changes in households on household contact-associated disease spread, particularly for long durations of follow-up and infections with long incubation periods where earlier unobserved contact is critical.
NASA Technical Reports Server (NTRS)
Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.
2008-01-01
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.
Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Osman, Mohamed A.; Srivastava, Deepak
2000-01-01
The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.
Principal component analysis for protein folding dynamics.
Maisuradze, Gia G; Liwo, Adam; Scheraga, Harold A
2009-01-09
Protein folding is considered here by studying the dynamics of the folding of the triple beta-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.
Nanomechanics of Carbon and CxByNz Nanotubes: Via a Quantum Molecular Dynamics Method
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Menon, M.; Cho, Kyeong Jae; Saini, Subhash (Technical Monitor)
1999-01-01
Nanomechanics of single-wall C, BN and BC$_3$ and B doped C nanotubes under axial compression and tension are investigated through a generalized tight-binding molecular dynamics (GTBMD) and {\\it ab-initio} electronic structure methods. The dynamic strength of BN, BC$_3$ and B doped C nanotubes for small axial strain are comparable to each other. The main difference is in the critical strain at which structural collapse occurs. For example, even a shallow doping with B lowers the value of critical strain for C nanotubes. The critical strain for BN nanotube is found to be more than that for the similar C nanotube. Once the structural collapse starts to occur we find that carbon nanotubes irreversibly go into plastic deformation regime via the formation of tetrahedral (four-fold coordinated) bonds at the location of sharp pinches or kinks. This finding is considerably different from the classical MD (molecular dynamics) simulation results known so far. The energetics and electronic densities of states of the collapsed structures, investigated with {\\it ab-initio) methods, will also be discussed.
Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.
Wang, Linjun; Long, Run; Prezhdo, Oleg V
2015-04-01
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.
NASA Astrophysics Data System (ADS)
Li, Zheng; Borner, Arnaud; Levin, Deborah A.
2014-06-01
Homogeneous water condensation and ice formation in supersonic expansions to vacuum for stagnation pressures from 12 to 1000 mbar are studied using the particle-based Ellipsoidal-Statistical Bhatnagar-Gross-Krook (ES-BGK) method. We find that when condensation starts to occur, at a stagnation pressure of 96 mbar, the increase in the degree of condensation causes an increase in the rotational temperature due to the latent heat of vaporization. The simulated rotational temperature profiles along the plume expansion agree well with measurements confirming the kinetic homogeneous condensation models and the method of simulation. Comparisons of the simulated gas and cluster number densities, cluster size for different stagnation pressures along the plume centerline were made and it is found that the cluster size increase linearly with respect to stagnation pressure, consistent with classical nucleation theory. The sensitivity of our results to cluster nucleation model and latent heat values based on bulk water, specific cluster size, or bulk ice are examined. In particular, the ES-BGK simulations are found to be too coarse-grained to provide information on the phase or structure of the clusters formed. For this reason, molecular dynamics simulations of water condensation in a one-dimensional free expansion to simulate the conditions in the core of a plume are performed. We find that the internal structure of the clusters formed depends on the stagnation temperature. A larger cluster of average size 21 was tracked down the expansion, and a calculation of its average internal temperature as well as a comparison of its radial distribution functions (RDFs) with values measured for solid amorphous ice clusters lead us to conclude that this cluster is in a solid-like rather than liquid form. In another molecular-dynamics simulation at a much lower stagnation temperature, a larger cluster of size 324 and internal temperature 200 K was extracted from an expansion plume and equilibrated to determine its RDF and self-diffusion coefficient. The value of the latter shows that this cluster is formed in a supercooled liquid state rather than in an amorphous solid state.
Staritzbichler, René; Anselmi, Claudio; Forrest, Lucy R.; Faraldo-Gómez, José D.
2014-01-01
As new atomic structures of membrane proteins are resolved, they reveal increasingly complex transmembrane topologies, and highly irregular surfaces with crevices and pores. In many cases, specific interactions formed with the lipid membrane are functionally crucial, as is the overall lipid composition. Compounded with increasing protein size, these characteristics pose a challenge for the construction of simulation models of membrane proteins in lipid environments; clearly, that these models are sufficiently realistic bears upon the reliability of simulation-based studies of these systems. Here, we introduce GRIFFIN, which uses a versatile framework to automate and improve a widely-used membrane-embedding protocol. Initially, GRIFFIN carves out lipid and water molecules from a volume equivalent to that of the protein, so as to conserve the system density. In the subsequent optimization phase GRIFFIN adds an implicit grid-based protein force-field to a molecular dynamics simulation of the pre-carved membrane. In this force-field, atoms inside the implicit protein volume experience an outward force that will expel them from that volume, whereas those outside are subject to electrostatic and van-der-Waals interactions with the implicit protein. At each step of the simulation, these forces are updated by GRIFFIN and combined with the intermolecular forces of the explicit lipid-water system. This procedure enables the construction of realistic and reproducible starting configurations of the protein-membrane interface within a reasonable timeframe and with minimal intervention. GRIFFIN is a standalone tool designed to work alongside any existing molecular dynamics package, such as NAMD or GROMACS. PMID:24707227
Morra, Giulia; Potestio, Raffaello; Micheletti, Cristian; Colombo, Giorgio
2012-01-01
Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of the full length protein are available: mammalian Grp94, yeast Hsp90 and E.coli HtpG. These chaperones are studied in complex with the natural ligands ATP, ADP and in the Apo state. Common key aspects of their functional dynamics are elucidated with a novel multi-scale comparison of their internal dynamics. Starting from the atomic resolution investigation of internal fluctuations and geometric strain patterns, a novel analysis of domain dynamics is developed. The results reveal that the ligand-dependent structural modulations mostly consist of relative rigid-like movements of a limited number of quasi-rigid domains, shared by the three proteins. Two common primary hinges for such movements are identified. The first hinge, whose functional role has been demonstrated by several experimental approaches, is located at the boundary between the N-terminal and Middle-domains. The second hinge is located at the end of a three-helix bundle in the Middle-domain and unfolds/unpacks going from the ATP- to the ADP-state. This latter site could represent a promising novel druggable allosteric site common to all chaperones. PMID:22457611
Digital PCR Modeling for Maximal Sensitivity, Dynamic Range and Measurement Precision
Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey
2015-01-01
The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration. PMID:25806524
Historical data learning based dynamic LSP routing for overlay IP/MPLS over WDM networks
NASA Astrophysics Data System (ADS)
Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang
2013-08-01
Overlay IP/MPLS over WDM network is a promising network architecture starting to gain wide deployments recently. A desirable feature of such a network is to achieve efficient routing with limited information exchanges between the IP/MPLS and the WDM layers. This paper studies dynamic label switched path (LSP) routing in the overlay IP/MPLS over WDM networks. To enhance network performance while maintaining its simplicity, we propose to learn from the historical data of lightpath setup costs maintained by the IP-layer integrated service provider (ISP) when making routing decisions. Using a novel historical data learning scheme for logical link cost estimation, we develop a new dynamic LSP routing method named Existing Link First (ELF) algorithm. Simulation results show that the proposed algorithm significantly outperforms the existing ones under different traffic loads, with either limited or unlimited numbers of optical ports. Effects of the number of candidate routes, add/drop ratio and the amount of historical data are also evaluated.
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2016-09-09
The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation ontomore » that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.« less
NASA Astrophysics Data System (ADS)
Stankiewicz, Witold; Morzyński, Marek; Kotecki, Krzysztof; Noack, Bernd R.
2017-04-01
We present a low-dimensional Galerkin model with state-dependent modes capturing linear and nonlinear dynamics. Departure point is a direct numerical simulation of the three-dimensional incompressible flow around a sphere at Reynolds numbers 400. This solution starts near the unstable steady Navier-Stokes solution and converges to a periodic limit cycle. The investigated Galerkin models are based on the dynamic mode decomposition (DMD) and derive the dynamical system from first principles, the Navier-Stokes equations. A DMD model with training data from the initial linear transient fails to predict the limit cycle. Conversely, a model from limit-cycle data underpredicts the initial growth rate roughly by a factor 5. Key enablers for uniform accuracy throughout the transient are a continuous mode interpolation between both oscillatory fluctuations and the addition of a shift mode. This interpolated model is shown to capture both the transient growth of the oscillation and the limit cycle.
NASA Astrophysics Data System (ADS)
Tavanti, Francesco; Muniz-Miranda, Francesco; Pedone, Alfonso
2018-03-01
The ability of the sepiolite mineral to intercalate CO2 molecules inside its channels in the presence of different alkaline cations (K+, Na+ and Li+) has been studied by classical Molecular Dynamics simulations. Starting from an alkaline-free sepiolite crystalline model we built three models with stoichiometry Mg320Si440Al40O1200(OH)160X+40•480H2O. On these models, we gradually replaced the water molecules present in the channels with carbon dioxide and determined the energy of this exchange reaction as well as the structural organization and dynamics of carbon dioxide in the channels. The adsorption energy shows that the Li-containing sepiolite mineral retains more carbon dioxide with respect to those with sodium and potassium cations in the channels. Moreover, the ordered patterns of CO2 molecules observed in the alkaline-free sepiolite mineral are in part destabilized by the presence of cations decreasing the adsorption capacity of this clay mineral.
Rotating non-Boussinesq convection: oscillating hexagons
NASA Astrophysics Data System (ADS)
Moroz, Vadim; Riecke, Hermann; Pesch, Werner
2000-11-01
Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Fu, Chao; Ren, Xingmin; Yang, Yongfeng; Xia, Yebao; Deng, Wangqun
2018-07-01
A non-intrusive interval precise integration method (IPIM) is proposed in this paper to analyze the transient unbalance response of uncertain rotor systems. The transfer matrix method (TMM) is used to derive the deterministic equations of motion of a hollow-shaft overhung rotor. The uncertain transient dynamic problem is solved by combing the Chebyshev approximation theory with the modified precise integration method (PIM). Transient response bounds are calculated by interval arithmetic of the expansion coefficients. Theoretical error analysis of the proposed method is provided briefly, and its accuracy is further validated by comparing with the scanning method in simulations. Numerical results show that the IPIM can keep good accuracy in vibration prediction of the start-up transient process. Furthermore, the proposed method can also provide theoretical guidance to other transient dynamic mechanical systems with uncertainties.
Contact forces between a particle and a wet wall at both quasi-static and dynamic state
NASA Astrophysics Data System (ADS)
Zhang, Huang; Chen, Sheng; Li, Shuiqing
2017-06-01
The contact regime of particle-wall is investigated by the atomic force microscope (AFM) and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH). Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.
On the fragmentation of filaments in a molecular cloud simulation
NASA Astrophysics Data System (ADS)
Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.
2018-03-01
Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes increases far more quickly than those identified in two-dimensional column density maps. Conclusions: Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.
González-Andrade, Martin; Rodríguez-Sotres, Rogelio; Madariaga-Mazón, Abraham; Rivera-Chávez, José; Mata, Rachel; Sosa-Peinado, Alejandro; Del Pozo-Yauner, Luis; Arias-Olguín, Imilla I
2016-01-01
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.
Autiero, Ida; Ruvo, Menotti; Improta, Roberto; Vitagliano, Luigi
2018-04-01
Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations. Five different simulations have been conducted by varying starting structures and temperatures. The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300 K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400 K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing. Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism. The present study provides deeper understanding of the structural basis of the structural versatility of aptamers. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy Minimization of Molecular Features Observed on the (110) Face of Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Perozzo, Mary A.; Konnert, John H.; Li, Huayu; Nadarajah, Arunan; Pusey, Marc
1999-01-01
Molecular dynamics and energy minimization have been carried out using the program XPLOR to check the plausibility of a model lysozyme crystal surface. The molecular features of the (110) face of lysozyme were observed using atomic force microscopy (AFM). A model of the crystal surface was constructed using the PDB file 193L, and was used to simulate an AFM image. Molecule translations, van der Waals radii, and assumed AFM tip shape were adjusted to maximize the correlation coefficient between the experimental and simulated images. The highest degree of 0 correlation (0.92) was obtained with the molecules displaced over 6 A from their positions within the bulk of the crystal. The quality of this starting model, the extent of energy minimization, and the correlation coefficient between the final model and the experimental data will be discussed.
Modeling of fracture of protective concrete structures under impact loads
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-10-01
This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.
NASA Technical Reports Server (NTRS)
1984-01-01
NASA has planned a supercomputer for computational fluid dynamics research since the mid-1970's. With the approval of the Numerical Aerodynamic Simulation Program as a FY 1984 new start, Congress requested an assessment of the program's objectives, projected short- and long-term uses, program design, computer architecture, user needs, and handling of proprietary and classified information. Specifically requested was an examination of the merits of proceeding with multiple high speed processor (HSP) systems contrasted with a single high speed processor system. The panel found NASA's objectives and projected uses sound and the projected distribution of users as realistic as possible at this stage. The multiple-HSP, whereby new, more powerful state-of-the-art HSP's would be integrated into a flexible network, was judged to present major advantages over any single HSP system.
Hsieh, Chih-Chen; Jain, Semant; Larson, Ronald G
2006-01-28
A very stiff finitely extensible nonlinear elastic (FENE)-Fraenkel spring is proposed to replace the rigid rod in the bead-rod model. This allows the adoption of a fast predictor-corrector method so that large time steps can be taken in Brownian dynamics (BD) simulations without over- or understretching the stiff springs. In contrast to the simple bead-rod model, BD simulations with beads and FENE-Fraenkel (FF) springs yield a random-walk configuration at equilibrium. We compare the simulation results of the free-draining bead-FF-spring model with those for the bead-rod model in relaxation, start-up of uniaxial extensional, and simple shear flows, and find that both methods generate nearly identical results. The computational cost per time step for a free-draining BD simulation with the proposed bead-FF-spring model is about twice as high as the traditional bead-rod model with the midpoint algorithm of Liu [J. Chem. Phys. 90, 5826 (1989)]. Nevertheless, computations with the bead-FF-spring model are as efficient as those with the bead-rod model in extensional flow because the former allows larger time steps. Moreover, the Brownian contribution to the stress for the bead-FF-spring model is isotropic and therefore simplifies the calculation of the polymer stresses. In addition, hydrodynamic interaction can more easily be incorporated into the bead-FF-spring model than into the bead-rod model since the metric force arising from the non-Cartesian coordinates used in bead-rod simulations is absent from bead-spring simulations. Finally, with our newly developed bead-FF-spring model, existing computer codes for the bead-spring models can trivially be converted to ones for effective bead-rod simulations merely by replacing the usual FENE or Cohen spring law with a FENE-Fraenkel law, and this convertibility provides a very convenient way to perform multiscale BD simulations.
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chen; Jain, Semant; Larson, Ronald G.
2006-01-01
A very stiff finitely extensible nonlinear elastic (FENE)-Fraenkel spring is proposed to replace the rigid rod in the bead-rod model. This allows the adoption of a fast predictor-corrector method so that large time steps can be taken in Brownian dynamics (BD) simulations without over- or understretching the stiff springs. In contrast to the simple bead-rod model, BD simulations with beads and FENE-Fraenkel (FF) springs yield a random-walk configuration at equilibrium. We compare the simulation results of the free-draining bead-FF-spring model with those for the bead-rod model in relaxation, start-up of uniaxial extensional, and simple shear flows, and find that both methods generate nearly identical results. The computational cost per time step for a free-draining BD simulation with the proposed bead-FF-spring model is about twice as high as the traditional bead-rod model with the midpoint algorithm of Liu [J. Chem. Phys. 90, 5826 (1989)]. Nevertheless, computations with the bead-FF-spring model are as efficient as those with the bead-rod model in extensional flow because the former allows larger time steps. Moreover, the Brownian contribution to the stress for the bead-FF-spring model is isotropic and therefore simplifies the calculation of the polymer stresses. In addition, hydrodynamic interaction can more easily be incorporated into the bead-FF-spring model than into the bead-rod model since the metric force arising from the non-Cartesian coordinates used in bead-rod simulations is absent from bead-spring simulations. Finally, with our newly developed bead-FF-spring model, existing computer codes for the bead-spring models can trivially be converted to ones for effective bead-rod simulations merely by replacing the usual FENE or Cohen spring law with a FENE-Fraenkel law, and this convertibility provides a very convenient way to perform multiscale BD simulations.
Retrodicting the Cenozoic evolution of the mantle: Implications for dynamic surface topography
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro; Rowley, David; Simmons, Nathan; Grand, Stephen
2014-05-01
Seismic tomography is the essential starting ingredient for constructing realistic models of the mantle convective flow and for successfully predicting a wide range of convection-related surface observables. However, the lack of knowledge of the initial thermal state of the mantle in the geological past is still an outstanding problem in mantle convection. The resolution of this problem requires models of 3-D mantle evolution that yield maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. We have carried out mantle dynamic simulations (Glišović & Forte, EPSL 2014) using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spectral geometry that directly incorporate: 1) joint seismic-geodynamic inversions of mantle density structure with constraints provided by mineral physics data (Simmons et al., GJI 2009); and 2) constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) characterised by Earth-like Rayleigh numbers. These time-reversed convection simulations reveal how the buoyancy associated with hot, active upwellings is a major driver of the mantle-wide convective circulation and the changes in dynamic topography at the Earth's surface. These simulations reveal, for example, a stable and long-lived superplume under the East Pacific Rise (centred under the Easter and Pitcairn hotspots) that was previously identified by Rowley et al. (AGU 2011, Nature in review) on the basis of plate kinematic data. We also present 65 Myr reconstructions of the Reunion plume that gave rise to the Deccan Traps.
An end-to-end X-IFU simulator: constraints on ICM kinematics
NASA Astrophysics Data System (ADS)
Roncarelli, M.; Gaspari, M.; Ettori, S.; Brighenti, F.
2017-10-01
In the next years the study of ICM physics will benefit from a completely new type of oservations made available by the X-IFU microcalorimeter of the ATHENA X-ray telescope. X-IFU will combine energy and spatial resolution (2.5 eV and 5 arcsec) allowing to map line emission and, potentially, to characterise the ICM dynamics with an unprecedented detail. I will present an end-to-end simulator aimed at describing the ability of X-IFU to characterise ICM velocity features. Starting from hydrodynamical simulations of ICM turbulence (Gaspari et al. 2013) we went through a detailed and realistic spectral analysis of simulated observations to derive mapped quantities of gas density, temperature, metallicity and, most notably, centroid shift and velocity broadening of the emission lines, with relative errors. Our results show that X-IFU will be able to map in great detail the ICM velocity features and provide precise measurements of the broadening power spectrum. This will provide interesting constraints on the characteristics of turbulent motions, both on large and small scales.
A time-correlation function approach to nuclear dynamical effects in X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Karsten, Sven; Bokarev, Sergey I.; Aziz, Saadullah G.; Ivanov, Sergei D.; Kühn, Oliver
2017-06-01
Modern X-ray spectroscopy has proven itself as a robust tool for probing the electronic structure of atoms in complex environments. Despite working on energy scales that are much larger than those corresponding to nuclear motions, taking nuclear dynamics and the associated nuclear correlations into account may be of importance for X-ray spectroscopy. Recently, we have developed an efficient protocol to account for nuclear dynamics in X-ray absorption and resonant inelastic X-ray scattering spectra [Karsten et al., J. Phys. Chem. Lett. 8, 992 (2017)], based on ground state molecular dynamics accompanied with state-of-the-art calculations of electronic excitation energies and transition dipoles. Here, we present an alternative derivation of the formalism and elaborate on the developed simulation protocol using gas phase and bulk water as examples. The specific spectroscopic features stemming from the nuclear motions are analyzed and traced down to the dynamics of electronic energy gaps and transition dipole correlation functions. The observed tendencies are explained on the basis of a simple harmonic model, and the involved approximations are discussed. The method represents a step forward over the conventional approaches that treat the system in full complexity and provides a reasonable starting point for further improvements.
Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors
NASA Astrophysics Data System (ADS)
Green, K.; Champneys, A. R.; Lieven, N. J.
2006-04-01
We present a nonlinear bifurcation analysis of the dynamics of an automatic dynamic balancing mechanism for rotating machines. The principle of operation is to deploy two or more masses that are free to travel around a race at a fixed distance from the hub and, subsequently, balance any eccentricity in the rotor. Mathematically, we start from a Lagrangian description of the system. It is then shown how under isotropic conditions a change of coordinates into a rotating frame turns the problem into a regular autonomous dynamical system, amenable to a full nonlinear bifurcation analysis. Using numerical continuation techniques, curves are traced of steady states, limit cycles and their bifurcations as parameters are varied. These results are augmented by simulations of the system trajectories in phase space. Taking the case of a balancer with two free masses, broad trends are revealed on the existence of a stable, dynamically balanced steady-state solution for specific rotation speeds and eccentricities. However, the analysis also reveals other potentially attracting states—non-trivial steady states, limit cycles, and chaotic motion—which are not in balance. The transient effects which lead to these competing states, which in some cases coexist, are investigated.
A time-correlation function approach to nuclear dynamical effects in X-ray spectroscopy.
Karsten, Sven; Bokarev, Sergey I; Aziz, Saadullah G; Ivanov, Sergei D; Kühn, Oliver
2017-06-14
Modern X-ray spectroscopy has proven itself as a robust tool for probing the electronic structure of atoms in complex environments. Despite working on energy scales that are much larger than those corresponding to nuclear motions, taking nuclear dynamics and the associated nuclear correlations into account may be of importance for X-ray spectroscopy. Recently, we have developed an efficient protocol to account for nuclear dynamics in X-ray absorption and resonant inelastic X-ray scattering spectra [Karsten et al., J. Phys. Chem. Lett. 8, 992 (2017)], based on ground state molecular dynamics accompanied with state-of-the-art calculations of electronic excitation energies and transition dipoles. Here, we present an alternative derivation of the formalism and elaborate on the developed simulation protocol using gas phase and bulk water as examples. The specific spectroscopic features stemming from the nuclear motions are analyzed and traced down to the dynamics of electronic energy gaps and transition dipole correlation functions. The observed tendencies are explained on the basis of a simple harmonic model, and the involved approximations are discussed. The method represents a step forward over the conventional approaches that treat the system in full complexity and provides a reasonable starting point for further improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Po Jen; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw; Rapallo, Arnaldo
Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible syntheticmore » polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit solvent, we performed in this work the classical molecular dynamics simulation on a realistic model solution with the peptide embedded in an explicit water environment, and calculated its dynamic properties both as an outcome of the simulations, and by the diffusion theory in reduced statistical-mechanical approach within HBA on the premise that the mode-coupling approach to the diffusion theory can give both the long-range and local dynamics starting from equilibrium averages which were obtained from detailed atomistic simulations.« less
NASA Technical Reports Server (NTRS)
Mukhopadhyay, A. K.
1979-01-01
Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.
Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars
NASA Astrophysics Data System (ADS)
Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.
2002-08-01
We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.
Pulawski, Wojciech; Jamroz, Michal; Kolinski, Michal; Kolinski, Andrzej; Kmiecik, Sebastian
2016-11-28
The CABS coarse-grained model is a well-established tool for modeling globular proteins (predicting their structure, dynamics, and interactions). Here we introduce an extension of the CABS representation and force field (CABS-membrane) to the modeling of the effect of the biological membrane environment on the structure of membrane proteins. We validate the CABS-membrane model in folding simulations of 10 short helical membrane proteins not using any knowledge about their structure. The simulations start from random protein conformations placed outside the membrane environment and allow for full flexibility of the modeled proteins during their spontaneous insertion into the membrane. In the resulting trajectories, we have found models close to the experimental membrane structures. We also attempted to select the correctly folded models using simple filtering followed by structural clustering combined with reconstruction to the all-atom representation and all-atom scoring. The CABS-membrane model is a promising approach for further development toward modeling of large protein-membrane systems.
DNA Polymorphism: A Comparison of Force Fields for Nucleic Acids
Reddy, Swarnalatha Y.; Leclerc, Fabrice; Karplus, Martin
2003-01-01
The improvements of the force fields and the more accurate treatment of long-range interactions are providing more reliable molecular dynamics simulations of nucleic acids. The abilities of certain nucleic acid force fields to represent the structural and conformational properties of nucleic acids in solution are compared. The force fields are AMBER 4.1, BMS, CHARMM22, and CHARMM27; the comparison of the latter two is the primary focus of this paper. The performance of each force field is evaluated first on its ability to reproduce the B-DNA decamer d(CGATTAATCG)2 in solution with simulations in which the long-range electrostatics were treated by the particle mesh Ewald method; the crystal structure determined by Quintana et al. (1992) is used as the starting point for all simulations. A detailed analysis of the structural and solvation properties shows how well the different force fields can reproduce sequence-specific features. The results are compared with data from experimental and previous theoretical studies. PMID:12609851
Loeffler, Johannes R; Ehmki, Emanuel S R; Fuchs, Julian E; Liedl, Klaus R
2016-05-01
Urea derivatives are ubiquitously found in many chemical disciplines. N,N'-substituted ureas may show different conformational preferences depending on their substitution pattern. The high energetic barrier for isomerization of the cis and trans state poses additional challenges on computational simulation techniques aiming at a reproduction of the biological properties of urea derivatives. Herein, we investigate energetics of urea conformations and their interconversion using a broad spectrum of methodologies ranging from data mining, via quantum chemistry to molecular dynamics simulation and free energy calculations. We find that the inversion of urea conformations is inherently slow and beyond the time scale of typical simulation protocols. Therefore, extra care needs to be taken by computational chemists to work with appropriate model systems. We find that both knowledge-driven approaches as well as physics-based methods may guide molecular modelers towards accurate starting structures for expensive calculations to ensure that conformations of urea derivatives are modeled as adequately as possible.
Energy Conservation and Conversion in NIMROD Computations of Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Maddox, J. A.; Sovinec, C. R.
2017-10-01
Previous work modeling magnetic relaxation during non-inductive start-up at the Pegasus spherical tokamak indicates an order of magnitude gap between measured experimental temperature and simulated temperature in NIMROD. Potential causes of the plasma temperature gap include: insufficient transport modeling, too low modeled injector power input, and numerical loss of energy, as energy is not algorithmically conserved in NIMROD simulations. Simple 2D nonlinear MHD simulations explore numerical energy conservation discrepancies in NIMROD because understanding numerical loss of energy is fundamental to addressing the physical problems of the other potential causes of energy loss. Evolution of these configurations induces magnetic reconnection, which transfers magnetic energy to heat and kinetic energy. The kinetic energy is eventually damped so, magnetic energy loss must correspond to an increase in internal energy. Results in the 2D geometries indicate that numerical energy loss during reconnection depends on the temporal resolution of the dynamics. Work support from U.S. Department of Energy through a subcontract from the Plasma Science and Innovation Center.
Simulate what is measured: next steps towards predictive simulations (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bussmann, Michael; Kluge, Thomas; Debus, Alexander; Hübl, Axel; Garten, Marco; Zacharias, Malte; Vorberger, Jan; Pausch, Richard; Widera, René; Schramm, Ulrich; Cowan, Thomas E.; Irman, Arie; Zeil, Karl; Kraus, Dominik
2017-05-01
Simulations of laser matter interaction at extreme intensities that have predictive power are nowadays in reach when considering codes that make optimum use of high performance compute architectures. Nevertheless, this is mostly true for very specific settings where model parameters are very well known from experiment and the underlying plasma dynamics is governed by Maxwell's equations solely. When including atomic effects, prepulse influences, radiation reaction and other physical phenomena things look different. Not only is it harder to evaluate the sensitivity of the simulation result on the variation of the various model parameters but numerical models are less well tested and their combination can lead to subtle side effects that influence the simulation outcome. We propose to make optimum use of future compute hardware to compute statistical and systematic errors rather than just find the mots optimum set of parameters fitting an experiment. This requires to include experimental uncertainties which is a challenge to current state of the art techniques. Moreover, it demands better comparison to experiments as inclusion of simulating the diagnostic's response becomes important. We strongly advocate the use of open standards for finding interoperability between codes for comparison studies, building complete tool chains for simulating laser matter experiments from start to end.
Adhesion between a rutile surface and a polyimide: a coarse grained molecular dynamics study
NASA Astrophysics Data System (ADS)
Kumar, Arun; Sudarkodi, V.; Parandekar, Priya V.; Sinha, Nishant K.; Prakash, Om; Nair, Nisanth N.; Basu, Sumit
2018-04-01
Titanium, due to its high strength to weight ratio and polyimides, due to their excellent thermal stability are being increasingly used in aerospace applications. We investigate the bonding between a (110) rutile substrate and a popular commercial polyimide, PMR-15, starting from the known atomic structure of the rutile substrate and the architecture of the polymer. First, the long PMR-15 molecule is divided into four fragments and an all-atom non-bonded forcefield governing the interaction between PMR-15 and a rutile substrate is developed. To this end, parameters of Buckingham potential for interaction between each atom in the fragments and the rutile surface are fitted, so as to ensure that the sum of non-bonded and electrostatic interaction energy between the substrate and a large number of configurations of each fragment, calculated by the quantum mechanical route and obtained from the fitted potential, is closely matched. Further, two coarse grained models of PMR-15 are developed—one for interaction between two coarse grained PMR-15 molecules and another for that between a coarse grained PMR-15 and the rutile substrate. Molecular dynamics simulations with the coarse grained models yields a traction separation law—a very useful tool for conducting continuum level finite element simulations of rutile-PMR-15 joints—governing the normal separation of a PMR-15 block from a flat rutile substrate. Moreover, detailed information about the affinity of various fragments to the substrate are also obtained. In fact, though the separation energy between rutile and PMR-15 turns out to be rather low, our analysis—with merely the molecular architecture of the polyimide as the starting point—provides a scheme for in-silico prediction of adhesion energies for new polyimide formulations.
NASA Astrophysics Data System (ADS)
Kennedy, R. S.
2010-12-01
Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.
Haspel, Nurit; Geisbrecht, Brian V; Lambris, John; Kavraki, Lydia
2010-03-01
We present a novel multi-level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi-scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results, we project the resulting conformations on a low-dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work, we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra-cellular fibrinogen-binding domain (Efb-C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Scalable approximate policies for Markov decision process models of hospital elective admissions.
Zhu, George; Lizotte, Dan; Hoey, Jesse
2014-05-01
To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Juntao; Hu, Qinghua; Yu, Daren; Bao, Wen
2011-11-01
Start/unstart detection is one of the most important issues of hypersonic inlets and is also the foundation of protection control of scramjet. The inlet start/unstart detection can be attributed to a standard pattern classification problem, and the training sample costs have to be considered for the classifier modeling as the CFD numerical simulations and wind tunnel experiments of hypersonic inlets both cost time and money. To solve this problem, the CFD simulation of inlet is studied at first step, and the simulation results could provide the training data for pattern classification of hypersonic inlet start/unstart. Then the classifier modeling technology and maximum classifier utility theories are introduced to analyze the effect of training data cost on classifier utility. In conclusion, it is useful to introduce support vector machine algorithms to acquire the classifier model of hypersonic inlet start/unstart, and the minimum total cost of hypersonic inlet start/unstart classifier can be obtained by the maximum classifier utility theories.
LIPID11: A Modular Framework for Lipid Simulations using Amber
Skjevik, Åge A.; Madej, Benjamin D.; Walker, Ross C.; eigen, Knut T
2013-01-01
Accurate simulation of complex lipid bilayers has long been a goal in condensed phase molecular dynamics (MD). Structure and function of membrane-bound proteins are highly dependent on the lipid bilayer environment and are challenging to study through experimental methods. Within Amber, there has been limited focus on lipid simulations, although some success has been seen with the use of the General Amber Force Field (GAFF). However, to date there are no dedicated Amber lipid force fields. In this paper we describe a new charge derivation strategy for lipids consistent with the Amber RESP approach, and a new atom and residue naming and type convention. In the first instance, we have combined this approach with GAFF parameters. The result is LIPID11, a flexible, modular framework for the simulation of lipids that is fully compatible with the existing Amber force fields. The charge derivation procedure, capping strategy and nomenclature for LIPID11, along with preliminary simulation results and a discussion of the planned long-term parameter development are presented here. Our findings suggest that Lipid11 is a modular framework feasible for phospholipids and a flexible starting point for the development of a comprehensive, Amber-compatible lipid force field. PMID:22916730
Dilute suspensions in annular shear flow under gravity: simulation and experiment
NASA Astrophysics Data System (ADS)
Schröer, Kevin; Kurzeja, Patrick; Schulz, Stephan; Brockmann, Philipp; Hussong, Jeanette; Janas, Peter; Wlokas, Irenaeus; Kempf, Andreas; Wolf, Dietrich E.
2017-06-01
A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC) and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction.
NASA Astrophysics Data System (ADS)
Murokh, Alex
2002-01-01
In this work, the main results of the VISA experiment (Visible to Infrared SASE Amplifier) are presented and analyzed. The purpose of the experiment was to build a state-of-the-art single pass self-amplified spontaneous emission (SASE) free electron laser (FEL) based on a high brightness electron beam, and characterize its operation, including saturation, in the near infrared spectral region. This experiment was hosted by Accelerator Test Facility (ATF) at Brookhaven National Laboratory, which is a users facility that provides high brightness relativistic electron beams generated with the photoinjector. During the experiment, SASE FEL performance was studied in two regimes: a long bunch, lower gain operation; and a short bunch high gain regime. The transition between the two conditions was possible due to a novel bunch compression mechanism, which was discovered in the course of the experiment. This compression allowed the variation of peak current in the electron beam before it was launched into the 4-m VISA undulator. In the long bunch regime, a SASE FEL power gain length of 29 cm was obtained, and the generated radiation spectral and statistical properties were characterized. In the short bunch regime, a power gain length of under 18 cm was achieved at 842 nm, which is at least a factor of two shorter than ever previously achieved in this spectral range. Further, FEL saturation was obtained before the undulator exit. The FEL system's performance was measured along the length of the VISA undulator, and in the final state. Statistical, spectral and angular properties of the short bunch SASE radiation have been measured in the exponential gain regime, and at saturation. One of the most important aspects of the data analysis presented in this thesis was the development and use of start-to-end numerical simulations of the experiment. The dynamics of the ATF electron beam was modeled starting from the photocathode, through acceleration, transport, and inside the VISA undulator. The model allowed simulation of SASE process for different beam conditions, including the effects of the novel bunch compression mechanism on the electron beam 6-D phase space distribution. The numerical simulations displayed an excellent agreement with the experimental data, and became key to understanding complex dynamics of the SASE FEL process at VISA.
Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
Ludwiczak, Jan; Jarmula, Adam; Dunin-Horkawicz, Stanislaw
2018-07-01
Computational protein design is a set of procedures for computing amino acid sequences that will fold into a specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) simulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta design is started on MD-derived structural ensembles and showed that such a combined approach generates 20-30% more diverse sequences than currently available methods with only a slight increase in computation time. Importantly, the increase in diversity is achieved without a loss in the quality of the designed sequences assessed by their resemblance to natural sequences. We demonstrate that the MD-based procedure is also applicable to de novo design tasks started from backbone structures without any sequence information. In addition, we implemented a protocol that can be used to assess the stability of designed models and to select the best candidates for experimental validation. In sum our results demonstrate that the MD ensemble-based flexible backbone design can be a viable method for protein design, especially for tasks that require a large pool of diverse sequences. Copyright © 2018 Elsevier Inc. All rights reserved.
Linear modal stability analysis of bowed-strings.
Debut, V; Antunes, J; Inácio, O
2017-03-01
Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach, at least qualitatively. Notably, the technique provides an instructive and original picture of bowed motions, in terms of groups of well-defined unstable modes, which is physically intuitive to discuss tonal changes observed in real bowed string.
Patel, Sunita; Sasidhar, Yellamraju U
2007-10-01
Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease. Copyright (c) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Optimal satellite sampling to resolve global-scale dynamics in the I-T system
NASA Astrophysics Data System (ADS)
Rowland, D. E.; Zesta, E.; Connor, H. K.; Pfaff, R. F., Jr.
2016-12-01
The recent Decadal Survey highlighted the need for multipoint measurements of ion-neutral coupling processes to study the pathways by which solar wind energy drives dynamics in the I-T system. The emphasis in the Decadal Survey is on global-scale dynamics and processes, and in particular, mission concepts making use of multiple identical spacecraft in low earth orbit were considered for the GDC and DYNAMIC missions. This presentation will provide quantitative assessments of the optimal spacecraft sampling needed to significantly advance our knowledge of I-T dynamics on the global scale.We will examine storm time and quiet time conditions as simulated by global circulation models, and determine how well various candidate satellite constellations and satellite schemes can quantify the plasma and neutral convection patterns and global-scale distributions of plasma density, neutral density, and composition, and their response to changes in the IMF. While the global circulation models are data-starved, and do not contain all the physics that we might expect to observe with a global-scale constellation mission, they are nonetheless an excellent "starting point" for discussions of the implementation of such a mission. The result will be of great utility for the design of future missions, such as GDC, to study the global-scale dynamics of the I-T system.
Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach.
Plehn, Thomas; May, Volkhard
2017-01-21
The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.
Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases
Barbatti, Mario; Aquino, Adélia J. A.; Szymczak, Jaroslaw J.; Nachtigallová, Dana; Hobza, Pavel; Lischka, Hans
2010-01-01
A comprehensive effort in photodynamical ab initio simulations of the ultrafast deactivation pathways for all five nucleobases adenine, guanine, cytosine, thymine, and uracil is reported. These simulations are based on a complete nonadiabatic surface-hopping approach using extended multiconfigurational wave functions. Even though all five nucleobases share the basic internal conversion mechanisms, the calculations show a distinct grouping into purine and pyrimidine bases as concerns the complexity of the photodynamics. The purine bases adenine and guanine represent the most simple photodeactivation mechanism with the dynamics leading along a diabatic ππ* path directly and without barrier to the conical intersection seam with the ground state. In the case of the pyrimidine bases, the dynamics starts off in much flatter regions of the ππ* energy surface due to coupling of several states. This fact prohibits a clear formation of a single reaction path. Thus, the photodynamics of the pyrimidine bases is much richer and includes also nπ* states with varying importance, depending on the actual nucleobase considered. Trapping in local minima may occur and, therefore, the deactivation time to the ground state is also much longer in these cases. Implications of these findings are discussed (i) for identifying structural possibilities where singlet/triplet transitions can occur because of sufficient retention time during the singlet dynamics and (ii) concerning the flexibility of finding other deactivation pathways in substituted pyrimidines serving as candidates for alternative nucleobases. PMID:21115845
Molecular dynamics studies of thermal dissipation during shock induced spalling
NASA Astrophysics Data System (ADS)
Xiang, Meizhen; Hu, Haibo; Chen, Jun; Liao, Yi
2013-09-01
Under shock loadings, the temperature of materials may vary dramatically during deformation and fracture processes. Thus, thermal effect is important for constructing dynamical failure models. Existing works on thermal dissipation effects are mostly from meso- to macro-scale levels based on phenomenological assumptions. The main purpose of the present work is to provide several atomistic scale perspectives about thermal dissipation during spall fracture by nonequilibrium molecular dynamics simulations on single-crystalline and nanocrystalline Pb. The simulations show that temperature arising starts from the vicinity of voids during spalling. The thermal dissipation rate in void nucleation stage is much higher than that in the later growth and coalescence stages. Both classical spallation and micro-spallation are taken into account. Classical spallation is corresponding to spallation phenomenon where materials keep in solid state during shock compression and release stages, while micro-spallation is corresponding to spallation phenomenon where melting occurs during shock compression and release stages. In classical spallation, whether residuary dislocations are produced in pre-spall stages has significant influences on thermal dissipation rate during void growth and coalescence. The thermal dissipation rates decrease as shock intensity increases. When the shock intensity exceeds the threshold of micro-spallation, the thermal dissipation rate in void nucleation stage drops precipitously. It is found that grain boundaries mainly influence the thermal dissipation rate in void nucleation stage in classical spallation. In micro-spallation, the grain boundary effects are insignificant.
Translocation of a polymer through a nanopore across a viscosity gradient.
de Haan, Hendrick W; Slater, Gary W
2013-04-01
The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.
Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach
NASA Astrophysics Data System (ADS)
Plehn, Thomas; May, Volkhard
2017-01-01
The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.
NASA Astrophysics Data System (ADS)
Zhang, N.; Huang, H.; Duarte, M.; Zhang, J.
2016-06-01
Social media has developed extremely fast in metropolises in recent years resulting in more and more rumors disturbing our daily lives. Knowing the characteristics of rumor propagation in metropolises can help the government make efficient rumor refutation plans. In this paper, we established a dynamic spatio-temporal comprehensive risk assessment model for rumor propagation based on an improved 8-state ICSAR model (Ignorant, Information Carrier, Information Spreader, Advocate, Removal), large personal activity trajectory data, and governmental rumor refutation (anti-rumor) scenarios. Combining these relevant data with the 'big' traffic data on the use of subways, buses, and taxis, we simulated daily oral communications among inhabitants in Beijing. In order to analyze rumor and anti-rumor competition in the actual social network, personal resistance, personal preference, conformity, rumor intensity, government rumor refutation and other influencing factors were considered. Based on the developed risk assessment model, a long-term dynamic rumor propagation simulation for a seven day period was conducted and a comprehensive rumor propagation risk distribution map was obtained. A set of the sensitivity analyses were conducted for different social media and propagation routes. We assessed different anti-rumor coverage ratios and the rumor-spreading thresholds at which the government started to launch anti-rumor actions. The results we obtained provide worthwhile references useful for governmental decision making towards control of social-disrupting rumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blais, AR; Dekaban, M; Lee, T-Y
2014-08-15
Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less
Samson, M; Monnet, T; Bernard, A; Lacouture, P; David, L
2018-01-23
The propulsive forces generated by the hands and arms of swimmers have so far been determined essentially by quasi-steady approaches. This study aims to quantify the temporal dependence of the hydrodynamic forces for a simple translation movement: an impulsive start from rest. The study, carried out in unsteady numerical simulation, couples the calculation of the lift and the drag on an expert swimmer hand-forearm model with visualizations of the flow and flow vortex structure analysis. The results of these simulations show that the hand and forearm hydrodynamic forces should be studied from an unsteady approach because the quasi-steady model is inadequate. It also appears that the delayed stall effect generates higher circulatory forces during a short translation at high angle of attack than forces calculated under steady state conditions. During this phase the hand force coefficients are approximately twice as large as those of the forearm. The total force coefficients are highest for angles of attack between 40° and 60°. For the same angle of attack, the forces produced when the leading edge is the thumb side are slightly greater than those produced when the leading edge is the little finger side. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coupled grain boundary motion in aluminium: the effect of structural multiplicity
NASA Astrophysics Data System (ADS)
Cheng, Kuiyu; Zhang, Liang; Lu, Cheng; Tieu, Kiet
2016-05-01
The shear-induced coupled grain boundary motion plays an important role in the deformation of nanocrystalline (NC) materials. It has been known that the atomic structure of the grain boundary (GB) is not necessarily unique for a given set of misorientation and inclination of the boundary plane. However, the effect of the structural multiplicity of the GB on its coupled motion has not been reported. In the present study we investigated the structural multiplicity of the symmetric tilt Σ5(310) boundary in aluminium and its influence on the GB behaviour at a temperature range of 300 K-600 K using molecular dynamic simulations. Two starting atomic configurations were adopted in the simulations which resulted in three different GB structures at different temperatures. Under the applied shear deformation each GB structure exhibited its unique GB behaviour. A dual GB behaviour, namely the transformation of one GB behaviour to another during deformation, was observed for the second starting configuration at a temperature of 500 K. The atomistic mechanisms responsible for these behaviour were analysed in detail. The result of this study implicates a strong relationship between GB structures and their behaviour, and provides a further information of the grain boundary mediated plasticity in nanocrystalline materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsson, Mikael
This 3-year project was a collaboration between University of California Irvine (UC Irvine), Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), Argonne National Laboratory (ANL) and with an international collaborator at ForschungZentrum Jülich (FZJ). The project was led from UC Irvine under the direction of Profs. Mikael Nilsson and Hung Nguyen. The leads at PNNL, INL, ANL and FZJ were Dr. Liem Dang, Dr. Peter Zalupski, Dr. Nathaniel Hoyt and Dr. Giuseppe Modolo, respectively. Involved in this project at UC Irvine were three full time PhD graduate students, Tro Babikian, Ted Yoo, and Quynh Vo, and one MS student,more » Alba Font Bosch. The overall objective of this project was to study how the kinetics and thermodynamics of metal ion extraction can be described by molecular dynamic (MD) simulations and how the simulations can be validated by experimental data. Furthermore, the project includes the applied separation by testing the extraction systems in a single stage annular centrifugal contactor and coupling the experimental data with computational fluid dynamic (CFD) simulations. Specific objectives of the proposed research were: Study and establish a rigorous connection between MD simulations based on polarizable force fields and extraction thermodynamic and kinetic data. Compare and validate CFD simulations of extraction processes for An/Ln separation using different sizes (and types) of annular centrifugal contactors. Provide a theoretical/simulation and experimental base for scale-up of batch-wise extraction to continuous contactors. We approached objective 1 and 2 in parallel. For objective 1 we started by studying a well established extraction system with a relatively simple extraction mechanism, namely tributyl phosphate. What we found was that well optimized simulations can inform experiments and new information on TBP behavior was presented in this project, as well be discussed below. The second objective proved a larger challenge and most of the efforts were devoted to experimental studies.« less
Bronson, Jonathan; Lee, One-Sun; Saven, Jeffery G.
2006-01-01
Poor solubility and low expression levels often make membrane proteins difficult to study. An alternative to the use of detergents to solubilize these aggregation-prone proteins is the partial redesign of the sequence so as to confer water solubility. Recently, computationally assisted membrane protein solubilization (CAMPS) has been reported, where exposed hydrophobic residues on a protein's surface are computationally redesigned. Herein, the structure and fluctuations of a designed, water-soluble variant of KcsA (WSK-3) were studied using molecular dynamics simulations. The root mean square deviation of the protein from its starting structure, where the backbone coordinates are those of KcsA, was 1.8 Å. The structure of salt bridges involved in structural specificity and solubility were examined. The preferred configuration of ions and water in the selectivity filter of WSK-3 was consistent with the reported preferences for KcsA. The structure of the selectivity filter was maintained, which is consistent with WSK-3 having an affinity for agitoxin2 comparable to that of wild-type KcsA. In contrast to KcsA, the central cavity's side chains were observed to reorient, allowing water diffusion through the side of the cavity wall. These simulations provide an atomistic analysis of the CAMPS strategy and its implications for further investigations of membrane proteins. PMID:16299086
Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cojocaru, Vlad; Balali-Mood, Kia; Sansom, Mark S.
The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme’s buried active site. The membrane facilitated the openingmore » of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix.« less
Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles
NASA Astrophysics Data System (ADS)
Zhang, Pei; Galindo-Torres, S. A.; Tang, Hongwu; Jin, Guangqiu; Scheuermann, A.; Li, Ling
2016-06-01
We investigated the settling dynamics of irregularly shaped particles in a still fluid under a wide range of conditions with Reynolds numbers Re varying between 1 and 2000, sphericity ϕ and circularity c both greater than 0.5, and Corey shape factor (CSF) less than 1. To simulate the particle settling process, a modified lattice Boltzmann model combined with a turbulence module was adopted. This model was first validated using experimental data for particles of spherical and cubic shapes. For irregularly shaped particles, two different types of settling behaviors were observed prior to particles reaching a steady state: accelerating and accelerating-decelerating, which could be distinguished by a critical CSF value of approximately 0.7. The settling dynamics were analyzed with a focus on the projected areas and angular velocities of particles. It was found that a minor change in the starting projected area, an indicator of the initial particle orientation, would not strongly affect the settling velocity for low Re. Periodic oscillations developed for all simulated particles when Re>100 . The amplitude of these oscillations increased with Re. However, the periods were not sensitive to Re. The critical Re that defined the transition between the steady and periodically oscillating behaviors depended on the inertia tensor. In particular, the maximum eigenvalue of the inertia tensor played a major role in signaling this transition in comparison to the intermediate and minimum eigenvalues.
Pothoczki, Szilvia; Temleitner, László; Pusztai, László
2014-02-07
Synchrotron X-ray diffraction measurements have been conducted on liquid phosphorus trichloride, tribromide, and triiodide. Molecular Dynamics simulations for these molecular liquids were performed with a dual purpose: (1) to establish whether existing intermolecular potential functions can provide a picture that is consistent with diffraction data and (2) to generate reliable starting configurations for subsequent Reverse Monte Carlo modelling. Structural models (i.e., sets of coordinates of thousands of atoms) that were fully consistent with experimental diffraction information, within errors, have been prepared by means of the Reverse Monte Carlo method. Comparison with reference systems, generated by hard sphere-like Monte Carlo simulations, was also carried out to demonstrate the extent to which simple space filling effects determine the structure of the liquids (and thus, also estimating the information content of measured data). Total scattering structure factors, partial radial distribution functions and orientational correlations as a function of distances between the molecular centres have been calculated from the models. In general, more or less antiparallel arrangements of the primary molecular axes that are found to be the most favourable orientation of two neighbouring molecules. In liquid PBr3 electrostatic interactions seem to play a more important role in determining intermolecular correlations than in the other two liquids; molecular arrangements in both PCl3 and PI3 are largely driven by steric effects.
Recent progress in plasma modelling at INFN-LNS
NASA Astrophysics Data System (ADS)
Neri, L.; Castro, G.; Torrisi, G.; Galatà, A.; Mascali, D.; Celona, L.; Gammino, S.
2016-02-01
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.
Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations
NASA Astrophysics Data System (ADS)
Ren, Zhuyin; Xu, Chao; Lu, Tianfeng; Singer, Michael A.
2014-04-01
A numerical technique that uses dynamic adaptive chemistry (DAC) with operator splitting schemes to solve the equations governing reactive flows is developed and demonstrated. Strang-based splitting schemes are used to separate the governing equations into transport fractional substeps and chemical reaction fractional substeps. The DAC method expedites the numerical integration of reaction fractional substeps by using locally valid skeletal mechanisms that are obtained using the directed relation graph (DRG) reduction method to eliminate unimportant species and reactions from the full mechanism. Second-order temporal accuracy of the Strang-based splitting schemes with DAC is demonstrated on one-dimensional, unsteady, freely-propagating, premixed methane/air laminar flames with detailed chemical kinetics and realistic transport. The use of DAC dramatically reduces the CPU time required to perform the simulation, and there is minimal impact on solution accuracy. It is shown that with DAC the starting species and resulting skeletal mechanisms strongly depend on the local composition in the flames. In addition, the number of retained species may be significant only near the flame front region where chemical reactions are significant. For the one-dimensional methane/air flame considered, speed-up factors of three and five are achieved over the entire simulation for GRI-Mech 3.0 and USC-Mech II, respectively. Greater speed-up factors are expected for larger chemical kinetics mechanisms.
Time Recovery for a Complex Process Using Accelerated Dynamics.
Paz, S Alexis; Leiva, Ezequiel P M
2015-04-14
The hyperdynamics method (HD) developed by Voter (J. Chem. Phys. 1996, 106, 4665) sets the theoretical basis to construct an accelerated simulation scheme that holds the time scale information. Since HD is based on transition state theory, pseudoequilibrium conditions (PEC) must be satisfied before any system in a trapped state may be accelerated. As the system evolves, many trapped states may appear, and the PEC must be assumed in each one to accelerate the escape. However, since the system evolution is a priori unknown, the PEC cannot be permanently assumed to be true. Furthermore, the different parameters of the bias function used may need drastic recalibration during this evolution. To overcome these problems, we present a general scheme to switch between HD and conventional molecular dynamics (MD) in an automatic fashion during the simulation. To decide when HD should start and finish, criteria based on the energetic properties of the system are introduced. On the other hand, a very simple bias function is proposed, leading to a straightforward on-the-fly set up of the required parameters. A way to measure the quality of the simulation is suggested. The efficiency of the present hybrid HD-MD method is tested for a two-dimensional model potential and for the coalescence process of two nanoparticles. In spite of the important complexity of the latter system (165 degrees of freedoms), some relevant mechanistic properties were recovered within the present method.
Recent progress in plasma modelling at INFN-LNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neri, L., E-mail: neri@lns.infn.it; Castro, G.; Mascali, D.
2016-02-15
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via “cold” approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevinmore » formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an “as-a-whole” picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.« less
Hasegawa, M
2011-03-01
The aim of the present study is to elucidate how simulated annealing (SA) works in its finite-time implementation by starting from the verification of its conventional optimization scenario based on equilibrium statistical mechanics. Two and one supplementary experiments, the design of which is inspired by concepts and methods developed for studies on liquid and glass, are performed on two types of random traveling salesman problems. In the first experiment, a newly parameterized temperature schedule is introduced to simulate a quasistatic process along the scenario and a parametric study is conducted to investigate the optimization characteristics of this adaptive cooling. In the second experiment, the search trajectory of the Metropolis algorithm (constant-temperature SA) is analyzed in the landscape paradigm in the hope of drawing a precise physical analogy by comparison with the corresponding dynamics of glass-forming molecular systems. These two experiments indicate that the effectiveness of finite-time SA comes not from equilibrium sampling at low temperature but from downward interbasin dynamics occurring before equilibrium. These dynamics work most effectively at an intermediate temperature varying with the total search time and thus this effective temperature is identified using the Deborah number. To test directly the role of these relaxation dynamics in the process of cooling, a supplementary experiment is performed using another parameterized temperature schedule with a piecewise variable cooling rate and the effect of this biased cooling is examined systematically. The results show that the optimization performance is not only dependent on but also sensitive to cooling in the vicinity of the above effec-tive temperature and that this feature is interpreted as a consequence of the presence or absence of the workable interbasin dynamics. It is confirmed for the present instances that the effectiveness of finite-time SA derives from the glassy relaxation dynamics occurring in the "landscape-influenced" temperature regime and that its naive optimization scenario should be rectified by considering the analogy with vitrification phenomena. A comprehensive guideline for the design of finite-time SA and SA-related algorithms is discussed on the basis of this rectified analogy.
Simulation of transient flow in a shock tunnel and a high Mach number nozzle
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1991-01-01
A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.
Comparison of computational methods to model DNA minor groove binders.
Srivastava, Hemant Kumar; Chourasia, Mukesh; Kumar, Devesh; Sastry, G Narahari
2011-03-28
There has been a profound interest in designing small molecules that interact in sequence-selective fashion with DNA minor grooves. However, most in silico approaches have not been parametrized for DNA ligand interaction. In this regard, a systematic computational analysis of 57 available PDB structures of noncovalent DNA minor groove binders has been undertaken. The study starts with a rigorous benchmarking of GOLD, GLIDE, CDOCKER, and AUTODOCK docking protocols followed by developing QSSR models and finally molecular dynamics simulations. In GOLD and GLIDE, the orientation of the best score pose is closer to the lowest rmsd pose, and the deviation in the conformation of various poses is also smaller compared to other docking protocols. Efficient QSSR models were developed with constitutional, topological, and quantum chemical descriptors on the basis of B3LYP/6-31G* optimized geometries, and with this ΔT(m) values of 46 ligands were predicted. Molecular dynamics simulations of the 14 DNA-ligand complexes with Amber 8.0 show that the complexes are stable in aqueous conditions and do not undergo noticeable fluctuations during the 5 ns production run, with respect to their initial placement in the minor groove region.
Human posture in microgravity: An experiment on EUROMIR '95 to verify and improve a simulation tool
NASA Astrophysics Data System (ADS)
Colford, Nicholas; Giorgi, Pier Luigi; Gaia, Enrico; Cotronei, Vittorio
1995-10-01
An anthropometric mannequin implemented in robotic modelling software has proved very useful in the simulation of static and semi-dynamic reachability envelopes. Its prediction of working postures has been verified to some extent during neutral buoyancy trials. While a robotic solution is useful for static analyses or rough estimates of simple movements, more realistic movement strategies need to be identified directly measuring astronauts' in-orbit behaviour. A set of experiments is to be performed as part of the EUROMIR '95 mission to the MIR orbiting station in which dynamic posture (i.e. posture and movement) measurements will be taken using the ELITE system. The data and analyses of the data will be used to animate the Alenia anthopometric mannequin and to develop movement algorithms more similar to those of a person in microgravity than the robotic solutions currently employed. This paper presents the experiments to be performed and the changes to Alenia's mannequin that will allow the model to effect movements according to the experimental results. It is aimed at expanding the dialog between the biomechanical and human factors disciplines started in this experiment to other potential end-users of the experimental results.
ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal-organic framework.
Huang, Liangliang; Joshi, Kaushik L; van Duin, Adri C T; Bandosz, Teresa J; Gubbins, Keith E
2012-08-28
The thermal stability of a dehydrated Cu(3)(BTC)(2) (copper(II) benzene 1,3,5-tricarboxylate) metal-organic framework was studied by molecular dynamics simulation with a ReaxFF reactive force field. The results show that Cu(3)(BTC)(2) is thermally stable up to 565 K. When the temperature increases between 600 K and 700 K, the framework starts to partially collapse. The RDF analysis shows that the long range correlations between Cu dimers disappear, indicating the loss of the main channels of Cu(3)(BTC)(2). When the temperature is above 800 K, we find the decomposition of the Cu(3)(BTC)(2) framework. CO is the major product, and we also observe the release of CO(2), O(2), 1,3,5-benzenetricarboxylate (C(6)H(3)(CO(2))(3), BTC) and glassy carbon. The Cu dimer is stable up to 1100 K, but we find the formation of new copper oxide clusters at 1100 K. These results are consistent with experimental findings, and provide valuable information for future theoretical investigations of Cu(3)(BTC)(2) and its application in adsorption, separation and catalytic processes.
Molecular Dynamics Simulations of Strain-Induced Phase Transition of Poly(ethylene oxide) in Water.
Donets, Sergii; Sommer, Jens-Uwe
2018-01-11
We study the dilute aqueous solutions of poly(ethylene oxide) (PEO) oligomers that are subject to an elongating force dipole acting on both chain ends using atomistic molecular dynamics. By increasing the force, liquid-liquid demixing can be observed at room temperature far below the lower critical solution temperature. For forces above 35 pN, fibrillar nanostructures are spontaneously formed related to a decrease in hydrogen bonding between PEO and water. Most notable is a rapid decrease in the bifurcated hydrogen bonds during stretching, which can also be observed for isolated single chains. The phase-segregated structures display signs of chain ordering, but a clear signature of the crystalline order is not obtained during the simulation time, indicating a liquid-liquid phase transition induced by chain stretching. Our results indicate that the solvent quality of the aqueous solution of PEO depends on the conformational state of the chains, which is most likely related to the specific hydrogen-bond-induced solvation of PEO in water. The strain-induced demixing of PEO opens the possibility to obtain polymer fibers with low energy costs because crystallization starts via the strain-induced demixing in the extended state only.
NASA Astrophysics Data System (ADS)
Debela, Tekalign T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.
2017-05-01
The crystallization process of liquid metals is studied using ab initio molecular dynamics simulations. The evolution of short-range order during quenching in Pb and Zn liquids is compared with body-centered cubic (bcc) Nb and V, and hexagonal closed-packed (hcp) Mg. We found that the fraction and type of the short-range order depends on the system under consideration, in which the icosahedral symmetry seems to dominate in the body-centered cubic metals. Although the local atomic structures in stable liquids are similar, liquid hcp-like Zn, bcc-like Nb and V can be deeply supercooled far below its melting point before crystallization while the supercooled temperature range in liquid Pb is limited. Further investigations into the nucleation process reveal the process of polymorph selection. In the body-centered cubic systems, the polymorph selection occurs in the supercooled state before the nucleation is initiated, while in the closed-packed systems it starts at the time of onset of crystallization. Atoms with bcc-like lattices in all studied supercooled liquids are always detected before the polymorph selection. It is also found that the bond orientational ordering is strongly correlated with the crystallization process in supercooled Zn and Pb liquids.
Computational Infrastructure for Geodynamics (CIG)
NASA Astrophysics Data System (ADS)
Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.
2004-12-01
Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.
NASA Astrophysics Data System (ADS)
Guo, Donglin; Wang, Aihui; Li, Duo; Hua, Wei
2018-03-01
Change in the near-surface soil freeze/thaw cycle is critical for assessments of hydrological activity, ecosystems, and climate change. Previous studies investigated the near-surface soil freeze/thaw cycle change mostly based on in situ observations and satellite monitoring. Here numerical simulation method is tested to estimate the long-term change in the near-surface soil freeze/thaw cycle in response to recent climate warming for its application to predictions. Four simulations are performed at 0.5° × 0.5° resolution from 1979 to 2009 using the Community Land Model version 4.5, each driven by one of the four atmospheric forcing data sets (i.e., one default Climate Research Unit-National Centers for Environmental Prediction [CRUNCEP] and three newly developed Modern Era Retrospective-Analysis for Research and Applications, Climate Forecast System Reanalysis, and European Centre for Medium-Range Weather Forecasts Reanalysis Interim). The observations from 299 weather stations in both Russia and China are employed to validate the simulated results. The results show that all simulations reasonably reproduce the observed variations in the ground temperature, the freeze start and end dates, and the freeze duration (the correlation coefficients range from 0.47 to 0.99, and the Nash-Sutcliffe efficiencies range from 0.19 to 0.98). Part of the simulations also exactly simulate the trends of the ground temperature, the freeze start and end dates, and the freeze duration. Of the four simulations, the results from the simulation using the CRUNCEP data set show the best overall agreement with the in situ observations, indicating that the CRUNCEP data set could be preferentially considered as the basic atmospheric forcing data set for future prediction. The simulated area-averaged annual freeze duration shortened by 8.03 days on average from 1979 to 2009, with an uncertainty (one standard deviation) of 0.67 days caused by the different atmospheric forcing data sets. These results address the performance of numerical model in simulating the long-term changes in the near-surface soil freeze/thaw cycle and the role of different atmospheric forcing data sets in the simulation, which are useful for the prediction of future freeze/thaw dynamics.
An imaging-based stochastic model for simulation of tumour vasculature
NASA Astrophysics Data System (ADS)
Adhikarla, Vikram; Jeraj, Robert
2012-10-01
A mathematical model which reconstructs the structure of existing vasculature using patient-specific anatomical, functional and molecular imaging as input was developed. The vessel structure is modelled according to empirical vascular parameters, such as the mean vessel branching angle. The model is calibrated such that the resultant oxygen map modelled from the simulated microvasculature stochastically matches the input oxygen map to a high degree of accuracy (R2 ≈ 1). The calibrated model was successfully applied to preclinical imaging data. Starting from the anatomical vasculature image (obtained from contrast-enhanced computed tomography), a representative map of the complete vasculature was stochastically simulated as determined by the oxygen map (obtained from hypoxia [64Cu]Cu-ATSM positron emission tomography). The simulated microscopic vasculature and the calculated oxygenation map successfully represent the imaged hypoxia distribution (R2 = 0.94). The model elicits the parameters required to simulate vasculature consistent with imaging and provides a key mathematical relationship relating the vessel volume to the tissue oxygen tension. Apart from providing an excellent framework for visualizing the imaging gap between the microscopic and macroscopic imagings, the model has the potential to be extended as a tool to study the dynamics between the tumour and the vasculature in a patient-specific manner and has an application in the simulation of anti-angiogenic therapies.
NASA Astrophysics Data System (ADS)
Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui
2015-11-01
Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).
PFC and Triglyme for Li-Air Batteries: A Molecular Dynamics Study.
Kuritz, Natalia; Murat, Michael; Balaish, Moran; Ein-Eli, Yair; Natan, Amir
2016-04-07
In this work, we present an all-atom molecular dynamics (MD) study of triglyme and perfluorinated carbons (PFCs) using classical atomistic force fields. Triglyme is a typical solvent used in nonaqueous Li-air battery cells. PFCs were recently reported to increase oxygen availability in such cells. We show that O2 diffusion in two specific PFC molecules (C6F14 and C8F18) is significantly faster than in triglyme. Furthermore, by starting with two very different initial configurations for our MD simulation, we demonstrate that C8F18 and triglyme do not mix. The mutual solubility of these molecules is evaluated both theoretically and experimentally, and a qualitative agreement is found. Finally, we show that the solubility of O2 in C8F18 is considerably higher than in triglyme. The significance of these results to Li-air batteries is discussed.
Elastic moduli of a Brownian colloidal glass former
NASA Astrophysics Data System (ADS)
Fritschi, S.; Fuchs, M.
2018-01-01
The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.
Buckybomb: Reactive Molecular Dynamics Simulation
Chaban, Vitaly V.; Fileti, Eudes Eterno; Prezhdo, Oleg V.
2015-02-24
Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C 60(NO 2) 12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO 2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyballmore » surface. NO oxidizes into NO 2, and C 60 falls apart, liberating CO 2. At the highest temperatures, CO 2 gives rise to diatomic carbon. Lastly, the study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material.« less
Spin diffusion from an inhomogeneous quench in an integrable system.
Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž
2017-07-13
Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
Phase-locking dynamics in optoelectronic oscillator
NASA Astrophysics Data System (ADS)
Banerjee, Abhijit; Sarkar, Jayjeet; Das, NikhilRanjan; Biswas, Baidyanath
2018-05-01
This paper analyzes the phase-locking phenomenon in single-loop optoelectronic microwave oscillators considering weak and strong radio frequency (RF) signal injection. The analyses are made in terms of the lock-range, beat frequency and the spectral components of the unlocked-driven oscillator. The influence of RF injection signal on the frequency pulling of the unlocked-driven optoelectronic oscillator (OEO) is also studied. An approximate expression for the amplitude perturbation of the oscillator is derived and the influence of amplitude perturbation on the phase-locking dynamics is studied. It is shown that the analysis clearly reveals the phase-locking phenomenon and the associated frequency pulling mechanism starting from the fast-beat state through the quasi-locked state to the locked state of the pulled OEO. It is found that the unlocked-driven OEO output signal has a very non-symmetrical sideband distribution about the carrier. The simulation results are also given in partial support to the conclusions of the analysis.
Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2010-03-02
Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.
Dynamics of Active Microfilaments
NASA Astrophysics Data System (ADS)
Ling, Feng; Guo, Hanliang; Kanso, Eva
2017-11-01
Soft elastic filaments are ubiquitous in natural and artificial systems at various length scales, and their interactions within and between filaments and their environments provide a persistent source of curiosity due to both the complexity of their behaviors and the relative mathematical simplicity of their structures. Specifically, a deeper understanding of the dynamic characteristics of microscopic filaments in viscous fluids is relevant to many biophysical and physiological processes. Here we start with the Cosserat model that allows all six possible modes of deformation for an elastic rod, and focus on the case of inextensible filaments submerged in viscous fluids by ignoring inertial effects and using local resistive force theory for fluid-filament interactions. We verify our simulations against special analytic solutions and present some results on the active internal control of cilia and flagella motion. We conclude by commenting on the utility of this general framework for studying other cellular and sub-cellular physical processes such as systems involving protein filaments.
NASA Astrophysics Data System (ADS)
Sojahrood, Amin Jafari; Kolios, Michael C.
2012-07-01
Through numerical simulation of the Hoff model we show that when ultrasound contrast agents (UCAs) are excited at frequencies which are close to integer (m>2) multiples of their natural resonance frequency, the bifurcation structure of the UCA oscillations as a function of pressure may be characterized by 3 general distinct regions. The UCA behavior starts with initial period one oscillations which undergoes a saddle node bifurcation to m coexisting attractors for an acoustic pressure above a threshold, P. Further increasing the pressure above a second threshold P, is followed by a sudden transition to period 1 oscillations.
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
Condic-Jurkic, Karmen; Subramanian, Nandhitha; Mark, Alan E.
2018-01-01
Despite decades of research, the mechanism of action of the ABC multidrug transporter P-glycoprotein (P-gp) remains elusive. Due to experimental limitations, many researchers have turned to molecular dynamics simulation studies in order to investigate different aspects of P-gp function. However, such studies are challenging and caution is required when interpreting the results. P-gp is highly flexible and the time scale on which it can be simulated is limited. There is also uncertainty regarding the accuracy of the various crystal structures available, let alone the structure of the protein in a physiologically relevant environment. In this study, three alternative structural models of mouse P-gp (3G5U, 4KSB, 4M1M), all resolved to 3.8 Å, were used to initiate sets of simulations of P-gp in a membrane environment in order to determine: a) the sensitivity of the results to differences in the starting configuration; and b) the extent to which converged results could be expected on the times scales commonly simulated for this system. The simulations suggest that the arrangement of the nucleotide binding domains (NBDs) observed in the crystal structures is not stable in a membrane environment. In all simulations, the NBDs rapidly associated (within 10 ns) and changes within the transmembrane helices were observed. The secondary structure within the transmembrane domain was best preserved in the 4M1M model under the simulation conditions used. However, the extent to which replicate simulations diverged on a 100 to 200 ns timescale meant that it was not possible to draw definitive conclusions as to which structure overall was most stable, or to obtain converged and reliable results for any of the properties examined. The work brings into question the reliability of conclusions made in regard to the nature of specific interactions inferred from previous simulation studies on this system involving similar sampling times. It also highlights the need to demonstrate the statistical significance of any results obtained in simulations of large flexible proteins, especially where the initial structure is uncertain. PMID:29370310
Condic-Jurkic, Karmen; Subramanian, Nandhitha; Mark, Alan E; O'Mara, Megan L
2018-01-01
Despite decades of research, the mechanism of action of the ABC multidrug transporter P-glycoprotein (P-gp) remains elusive. Due to experimental limitations, many researchers have turned to molecular dynamics simulation studies in order to investigate different aspects of P-gp function. However, such studies are challenging and caution is required when interpreting the results. P-gp is highly flexible and the time scale on which it can be simulated is limited. There is also uncertainty regarding the accuracy of the various crystal structures available, let alone the structure of the protein in a physiologically relevant environment. In this study, three alternative structural models of mouse P-gp (3G5U, 4KSB, 4M1M), all resolved to 3.8 Å, were used to initiate sets of simulations of P-gp in a membrane environment in order to determine: a) the sensitivity of the results to differences in the starting configuration; and b) the extent to which converged results could be expected on the times scales commonly simulated for this system. The simulations suggest that the arrangement of the nucleotide binding domains (NBDs) observed in the crystal structures is not stable in a membrane environment. In all simulations, the NBDs rapidly associated (within 10 ns) and changes within the transmembrane helices were observed. The secondary structure within the transmembrane domain was best preserved in the 4M1M model under the simulation conditions used. However, the extent to which replicate simulations diverged on a 100 to 200 ns timescale meant that it was not possible to draw definitive conclusions as to which structure overall was most stable, or to obtain converged and reliable results for any of the properties examined. The work brings into question the reliability of conclusions made in regard to the nature of specific interactions inferred from previous simulation studies on this system involving similar sampling times. It also highlights the need to demonstrate the statistical significance of any results obtained in simulations of large flexible proteins, especially where the initial structure is uncertain.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verificationmore » test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.« less
HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.
Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less
Abd Halim, Khairul Bariyyah; Koldsø, Heidi; Sansom, Mark S P
2015-05-01
The epidermal growth factor receptor (EGFR) is the best characterised member of the receptor tyrosine kinases, which play an important role in signalling across mammalian cell membranes. The EGFR juxtamembrane (JM) domain is involved in the mechanism of activation of the receptor, interacting with the anionic lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in the intracellular leaflet of the cell membrane. Multiscale MD simulations were used to characterize PIP2-JM interactions. Simulations of the transmembrane helix plus JM region (TM-JM) dimer (PDB:2M20) in both PIP2-containing and PIP2-depleted lipid bilayer membranes revealed the interactions of the JM with PIP2 and other lipids. PIP2 forms strong interactions with the basic residues in the R645-R647 motif of the JM domain resulting in clustering of PIP2 around the protein. This association of PIP2 and the JM domain aids stabilization of JM-A dimer away from the membrane. Mutation (R645N/R646N/R647N) or PIP2-depletion results in deformation of the JM-A dimer and changes in JM-membrane interactions. These simulations support the proposal that the positively charged residues at the start of the JM-A domain stabilize the JM-A helices in an orientation away from the membrane surface through binding to PIP2, thus promoting a conformation corresponding to an asymmetric (i.e. activated) kinase. This study indicates that MD simulations may be used to characterise JM/lipid interactions, thus helping to define their role in the mechanisms of receptor tyrosine kinases. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
Use of a genetic algorithm to improve the rail profile on Stockholm underground
NASA Astrophysics Data System (ADS)
Persson, Ingemar; Nilsson, Rickard; Bik, Ulf; Lundgren, Magnus; Iwnicki, Simon
2010-12-01
In this paper, a genetic algorithm optimisation method has been used to develop an improved rail profile for Stockholm underground. An inverted penalty index based on a number of key performance parameters was generated as a fitness function and vehicle dynamics simulations were carried out with the multibody simulation package Gensys. The effectiveness of each profile produced by the genetic algorithm was assessed using the roulette wheel method. The method has been applied to the rail profile on the Stockholm underground, where problems with rolling contact fatigue on wheels and rails are currently managed by grinding. From a starting point of the original BV50 and the UIC60 rail profiles, an optimised rail profile with some shoulder relief has been produced. The optimised profile seems similar to measured rail profiles on the Stockholm underground network and although initial grinding is required, maintenance of the profile will probably not require further grinding.
Mathematical modeling and simulation of a thermal system
NASA Astrophysics Data System (ADS)
Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.
2016-12-01
The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.
Double-shot MeV electron diffraction and microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musumeci, P.; Cesar, D.; Maxson, J.
Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less
Double-shot MeV electron diffraction and microscopy
Musumeci, P.; Cesar, D.; Maxson, J.
2017-05-19
Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less
NASA Astrophysics Data System (ADS)
Messié, Monique; Chavez, Francisco P.
2017-09-01
A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.
Molteni, Matteo; Weigel, Udo M; Remiro, Francisco; Durduran, Turgut; Ferri, Fabio
2014-11-17
We present a new hardware simulator (HS) for characterization, testing and benchmarking of digital correlators used in various optical correlation spectroscopy experiments where the photon statistics is Gaussian and the corresponding time correlation function can have any arbitrary shape. Starting from the HS developed in [Rev. Sci. Instrum. 74, 4273 (2003)], and using the same I/O board (PCI-6534 National Instrument) mounted on a modern PC (Intel Core i7-CPU, 3.07GHz, 12GB RAM), we have realized an instrument capable of delivering continuous streams of TTL pulses over two channels, with a time resolution of Δt = 50ns, up to a maximum count rate of 〈I〉 ∼ 5MHz. Pulse streams, typically detected in dynamic light scattering and diffuse correlation spectroscopy experiments were generated and measured with a commercial hardware correlator obtaining measured correlation functions that match accurately the expected ones.
Climate change alters diffusion of forest pest: A model study
NASA Astrophysics Data System (ADS)
Jo, Woo Seong; Kim, Hwang-Yong; Kim, Beom Jun
2017-01-01
Population dynamics with spatial information is applied to understand the spread of pests. We introduce a model describing how pests spread in discrete space. The number of pest descendants at each site is controlled by local information such as temperature, precipitation, and the density of pine trees. Our simulation leads to a pest spreading pattern comparable to the real data for pine needle gall midge in the past. We also simulate the model in two different climate conditions based on two different representative concentration pathways scenarios for the future. We observe that after an initial stage of a slow spread of pests, a sudden change in the spreading speed occurs, which is soon followed by a large-scale outbreak. We found that a future climate change causes the outbreak point to occur earlier and that the detailed spatio-temporal pattern of the spread depends on the source position from which the initial pest infection starts.
Capello, M; Cutroneo, L; Ferranti, M P; Budillon, G; Bertolotto, R M; Ciappa, A; Cotroneo, Y; Castellano, M; Povero, P; Tucci, S
2014-02-15
The sandy deposits from dredging can have negative effects on the environment such as increase in suspended solids in the water column and their consequent transport. An experimental study was conducted to characterize water masses, dynamics, and sedimentation rates on the Ligurian continental shelf (Italy), where both a sand deposit, that could be used for beach nourishment, and a nearby Posidonia oceanica meadow coexist. The environmental plan provides a mathematical simulation of the sediment-dispersion to evaluate the possible impact on the meadow. It has been calculated that the dredging could double the concentration of suspended particles, but its scheduling will preclude a sediment accumulation. All the information obtained from this work will be used to study the environmental feasibility of the sand deposit exploitation and as starting point for drawing up the monitoring plan in case of dredging. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling of fracture of protective concrete structures under impact loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, P. A., E-mail: radchenko@live.ru; Batuev, S. P.; Radchenko, A. V.
This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength propertiesmore » of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.« less
NASA Astrophysics Data System (ADS)
Jiang, Jin-Wu
2015-08-01
We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.
Jiang, Jin-Wu
2015-08-07
We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.
Green's functions for analysis of dynamic response of wheel/rail to vertical excitation
NASA Astrophysics Data System (ADS)
Mazilu, Traian
2007-09-01
An analytical model to simulate wheel/rail interaction using the Green's functions method is proposed in this paper. The model consists of a moving wheel on a discretely supported rail. Particularly for this model of rail, the bending and the longitudinal displacement are coupled due to the rail pad and a complex model of the rail pad is adopted. An efficient method for solving a time-domain analysis for wheel/rail interaction is presented. The method is based on the properties of the rail's Green functions and starting to these functions, a track's Green matrix is assembled for the numerical simulations of wheel/rail response due to three kinds of vertical excitations: the steady-state interaction, the rail corrugation and the wheel flat. The study points to influence of the worn rail—rigid contact—on variation in the wheel/rail contact force. The concept of pinned-pinned inhibitive rail pad is also presented.
2008-03-01
Molecular Dynamics Simulations 5 Theory: Equilibrium Molecular Dynamics Simulations 6 Theory: Non...Equilibrium Molecular Dynamics Simulations 8 Carbon Nanotube Simulations : Approach and results from equilibrium and non-equilibrium molecular dynamics ...touched from the perspective of molecular dynamics simulations . However, ordered systems such as “Carbon Nanotubes” have been investigated in terms
Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène
2015-03-01
Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.
Critical dynamic approach to stationary states in complex systems
NASA Astrophysics Data System (ADS)
Rozenfeld, A. F.; Laneri, K.; Albano, E. V.
2007-04-01
A dynamic scaling Ansatz for the approach to stationary states in complex systems is proposed and tested by means of extensive simulations applied to both the Bak-Sneppen (BS) model, which exhibits robust Self-Organised Critical (SOC) behaviour, and the Game of Life (GOL) of J. Conway, whose critical behaviour is under debate. Considering the dynamic scaling behaviour of the density of sites (ρ(t)), it is shown that i) by starting the dynamic measurements with configurations such that ρ(t=0) →0, one observes an initial increase of the density with exponents θ= 0.12(2) and θ= 0.11(2) for the BS and GOL models, respectively; ii) by using initial configurations with ρ(t=0) →1, the density decays with exponents δ= 0.47(2) and δ= 0.28(2) for the BS and GOL models, respectively. It is also shown that the temporal autocorrelation decays with exponents Ca = 0.35(2) (Ca = 0.35(5)) for the BS (GOL) model. By using these dynamically determined critical exponents and suitable scaling relationships, we also obtain the dynamic exponents z = 2.10(5) (z = 2.10(5)) for the BS (GOL) model. Based on this evidence we conclude that the dynamic approach to stationary states of the investigated models can be described by suitable power-law functions of time with well-defined exponents.
NASA Astrophysics Data System (ADS)
Woo, Kyoungsuk
Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.
Towards atomically precise manipulation of 2D nanostructures in the electron microscope
NASA Astrophysics Data System (ADS)
Susi, Toma; Kepaptsoglou, Demie; Lin, Yung-Chang; Ramasse, Quentin M.; Meyer, Jannik C.; Suenaga, Kazu; Kotakoski, Jani
2017-12-01
Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångström-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.
Particle Simulations on Plasma and Dust Environment near Lunar Vertical Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Funaki, Y.; Nishino, M. N.
2016-12-01
The Japanese lunar orbiter KAGUYA has revealed the existence of vertical holes on the Moon, which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure is regarded as evidence for past existence of underground lava flows. Furthermore, the holes have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only of significance in selenology, but are also interesting from the viewpoint of plasma environments. The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Thus we applied three-dimensional, massively-parallelized, particle-in-cell simulations to the near-hole environment on the Moon. This year we have introduced a horizontal cavern opened at the vertical wall of the hole, assuming the presence of a subsurface lave tube. We will show some preliminary results on the surface potential and its nearly plasma environments. We also started to study the dynamics of submicron-sized charged dust grains around the distinctive landscape. We particularly focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently, and thus charge amount owned by each dust should be a stochastic variable unlike a widely-known spacecraft charging process. We develop a numerical model of such a charging process, which will be embedded into the test particle analysis of the dust dynamics. We report some results from our simulations on the dust charging process and dynamics around the lunar hole.
Fast equilibration protocol for million atom systems of highly entangled linear polyethylene chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sliozberg, Yelena R.; TKC Global, Inc., Aberdeen Proving Ground, Maryland 21005; Kröger, Martin
Equilibrated systems of entangled polymer melts cannot be produced using direct brute force equilibration due to the slow reptation dynamics exhibited by high molecular weight chains. Instead, these dense systems are produced using computational techniques such as Monte Carlo-Molecular Dynamics hybrid algorithms, though the use of soft potentials has also shown promise mainly for coarse-grained polymeric systems. Through the use of soft-potentials, the melt can be equilibrated via molecular dynamics at intermediate and long length scales prior to switching to a Lennard-Jones potential. We will outline two different equilibration protocols, which use various degrees of information to produce the startingmore » configurations. In one protocol, we use only the equilibrium bond angle, bond length, and target density during the construction of the simulation cell, where the information is obtained from available experimental data and extracted from the force field without performing any prior simulation. In the second protocol, we moreover utilize the equilibrium radial distribution function and dihedral angle distribution. This information can be obtained from experimental data or from a simulation of short unentangled chains. Both methods can be used to prepare equilibrated and highly entangled systems, but the second protocol is much more computationally efficient. These systems can be strictly monodisperse or optionally polydisperse depending on the starting chain distribution. Our protocols, which utilize a soft-core harmonic potential, will be applied for the first time to equilibrate a million particle system of polyethylene chains consisting of 1000 united atoms at various temperatures. Calculations of structural and entanglement properties demonstrate that this method can be used as an alternative towards the generation of entangled equilibrium structures.« less
Lee, Hwankyu; Kim, Hyun Ryoung; Park, Jae Chan
2014-02-28
Lipid bilayers, which consist of dipalmitoylglycerophosphocholines (DPPCs), PEGylated lipids, cholesterols, and elastin-like polypeptides (ELPs; [VPGVG]3) at different molar ratios, were simulated. Simulations were carried out for 2 μs using the coarse-grained (CG) model that had captured the experimentally observed phase behavior of PEGylated lipids and lateral diffusivity of DPPC bilayers. Starting with the initial position of ELPs on the bilayer surface, ELPs insert into the hydrophobic region of the bilayer because of their interaction with lipid tails, consistent with previous all-atom simulations. Lateral diffusion coefficients of DPPCs significantly increase in the bilayer composed of more ELPs and less cholesterols, showing their opposite effects on the bilayer dynamics. In particular, ELPs modulate the dynamics and phase for the disordered liquid bilayer, but not for the ordered gel bilayer, indicating that ELPs can destabilize only the disordered bilayer. In the ordered bilayer, ELP chains tend to have a spherical shape and slowly diffuse, while they are extended and diffuse faster in the disordered bilayer, indicating the effect of the bilayer phase on the conformation and diffusivity of ELPs. These findings explain the experimental observation that the ELP-conjugated liposomes are stable at 310 K (ordered phase) but become unstable and release the encapsulated drugs at 315 K (disordered phase), which suggests the effects of ELPs and cholesterols. Since the cholesterol-stabilized bilayer can be destabilized by the extended shaped ELPs only in the disordered phase (not in the ordered phase), the inclusion of cholesterols is required to safely shield drugs at 310 K as well as allow ELPs to disrupt lipids and destabilize the liposomes at 315 K.
NASA Astrophysics Data System (ADS)
Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.
2017-12-01
The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.
NASA Astrophysics Data System (ADS)
Gohda, Keigo; Hakoshima, Toshio
2008-11-01
Rho-kinase is a leading player in the regulation of cytoskeletal events involving smooth muscle contraction and neurite growth-cone collapse and retraction, and is a promising drug target in the treatment of both vascular and neurological disorders. Recent crystal structure of Rho-kinase complexed with a small-molecule inhibitor fasudil has revealed structural details of the ATP-binding site, which represents the target site for the inhibitor, and showed that the conserved phenylalanine on the P-loop occupies the pocket, resulting in an increase of protein-ligand contacts. Thus, the P-loop pliability is considered to play an important role in inhibitor binding affinity and specificity. In this study, we carried out a molecular dynamic simulation for Rho-kinase-fasudil complexes with two different P-loop conformations, i.e., the extended and folded conformations, in order to understand the P-loop pliability and dynamics at atomic level. A PKA-fasudil complex was also used for comparison. In the MD simulation, the flip-flop movement of the P-loop conformation starting either from the extended or folded conformation was not able to be observed. However, a significant conformational change in a long loop region covering over the P-loop, and also alteration of ionic interaction-manner of fasudil with acidic residues in the ATP binding site were shown only in the Rho-kinase-fasudil complex with the extended P-loop conformation, while Rho-kinase with the folded P-loop conformation and PKA complexes did not show large fluctuations, suggesting that the Rho-kinase-fasudil complex with the extended P-loop conformation represents a meta-stable state. The information of the P-loop pliability at atomic level obtained in this study could provide valuable clues to designing potent and/or selective inhibitors for Rho-kinase.
Kandeel, Mahmoud; Al-Taher, Abdulla; Li, Huifang; Schwingenschlogl, Udo; Al-Nazawi, Mohamed
2018-08-01
Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulations were carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lower root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HRs, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer was modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the a and d positions of HR helices stabilize the whole system, with minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at the a and d positions of HR helix were strong stabilizers of HR recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fu, Iris W; Markegard, Cade B; Chu, Brian K; Nguyen, Hung D
2013-10-01
Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of β-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jani, Vinod; Sonavane, Uddhavesh; Joshi, Rajendra
2016-07-01
Protein folding is a multi-micro second time scale event and involves many conformational transitions. Crucial conformational transitions responsible for biological functions of biomolecules are difficult to capture using current state-of-the-art molecular dynamics (MD) simulations. Protein folding, being a stochastic process, witnesses these transitions as rare events. Many new methodologies have been proposed for observing these rare events. In this work, a temperature-aided cascade MD is proposed as a technique for studying the conformational transitions. Folding studies for Engrailed homeodomain and Immunoglobulin domain B of protein A have been carried out. Using this methodology, the unfolded structures with RMSD of 20 Å were folded to a structure with RMSD of 2 Å. Three sets of cascade MD runs were carried out using implicit solvation, explicit solvation, and charge updation scheme. In the charge updation scheme, charges based on the conformation obtained are calculated and are updated in the topology file. In all the simulations, the structure of 2 Å was reached within a few nanoseconds using these methods. Umbrella sampling has been performed using snapshots from the temperature-aided cascade MD simulation trajectory to build an entire conformational transition pathway. The advantage of the method is that the possible pathways for a particular reaction can be explored within a short duration of simulation time and the disadvantage is that the knowledge of the start and end state is required. The charge updation scheme adds the polarization effects in the force fields. This improves the electrostatic interaction among the atoms, which may help the protein to fold faster.
Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano
2016-07-01
B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016. © 2016 Wiley Periodicals, Inc.
Fernández-Arévalo, T; Lizarralde, I; Grau, P; Ayesa, E
2014-09-01
This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bond lifetime and diffusion coefficient in colloids with short-range interactions.
Ndong Mintsa, E; Germain, Ph; Amokrane, S
2015-03-01
We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.
Drama in Dynamics: Boom, Splash, and Speed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netzloff, Heather Marie
2004-12-19
The full nature of chemistry and physics cannot be captured by static calculations alone. Dynamics calculations allow the simulation of time-dependent phenomena. This facilitates both comparisons with experimental data and the prediction and interpretation of details not easily obtainable from experiments. Simulations thus provide a direct link between theory and experiment, between microscopic details of a system and macroscopic observed properties. Many types of dynamics calculations exist. The most important distinction between the methods and the decision of which method to use can be described in terms of the size and type of molecule/reaction under consideration and the type andmore » level of accuracy required in the final properties of interest. These considerations must be balanced with available computational codes and resources as simulations to mimic ''real-life'' may require many time steps. As indicated in the title, the theme of this thesis is dynamics. The goal is to utilize the best type of dynamics for the system under study while trying to perform dynamics in the most accurate way possible. As a quantum chemist, this involves some level of first principles calculations by default. Very accurate calculations of small molecules and molecular systems are now possible with relatively high-level ab initio quantum chemistry. For example, a quantum chemical potential energy surface (PES) can be developed ''on-the-fly'' with dynamic reaction path (DRP) methods. In this way a classical trajectory is developed without prior knowledge of the PES. In order to treat solvation processes and the condensed phase, large numbers of molecules are required, especially in predicting bulk behavior. The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute and an ''effective fragment'' region that contains the remaining solvent molecules. But, despite the reduced cost relative to fully QM calculations, the EFP method, due to its complex, QM-based potential, does require more computation time than simple interaction potentials, especially when the method is used for large scale molecular dynamics simulations. Thus, the EFP method was parallelized to facilitate these calculations within the quantum chemistry program GAMESS. The EFP method provides relative energies and structures that are in excellent agreement with the analogous fully quantum results for small water clusters. The ability of the method to predict bulk water properties with a comparable accuracy is assessed by performing EFP molecular dynamics simulations. Molecular dynamics simulations can provide properties that are directly comparable with experimental results, for example radial distribution functions. The molecular PES is a fundamental starting point for chemical reaction dynamics. Many methods can be used to obtain a PES; for example, assuming a global functional form for the PES or, as mentioned above, performing ''on-the-fly'' dynamics with Al or semi-empirical calculations at every molecular configuration. But as the size of the system grows, using electronic structure theory to build a PES and, therefore, study reaction dynamics becomes virtually impossible. The program Grow builds a PES as an interpolation of Al data; the goal is to attempt to produce an accurate PES with the smallest number of Al calculations. The Grow-GAMESS interface was developed to obtain the Al data from GAMESS. Classical or quantum dynamics can be performed on the resulting surface. The interface includes the novel capability to build multi-reference PESs; these types of calculations are applicable to problems ranging from atmospheric chemistry to photochemical reaction mechanisms in organic and inorganic chemistry to fundamental biological phenomena such as photosynthesis.« less
Desmarais, Sarah L.; Nicholls, Tonia L.; Wilson, Catherine M.; Brink, Johann
2012-01-01
The Short-Term Assessment of Risk and Treatability (START) is a relatively new structured professional judgment guide for the assessment and management of short-term risks associated with mental, substance use, and personality disorders. The scheme may be distinguished from other violence risk instruments because of its inclusion of 20 dynamic factors that are rated in terms of both vulnerability and strength. This study examined the reliability and validity of START assessments in predicting inpatient aggression. Research assistants completed START assessments for 120 male forensic psychiatric patients through review of hospital files. They additionally completed Historical-Clinical-Risk Management – 20 (HCR-20) and the Hare Psychopathy Checklist: Screening Version (PCL:SV) assessments. Outcome data was coded from hospital files for a 12-month follow-up period using the Overt Aggression Scale (OAS). START assessments evidenced excellent interrater reliability and demonstrated both predictive and incremental validity over the HCR-20 Historical subscale scores and PCL:SV total scores. Overall, results support the reliability and validity of START assessments, and use of the structured professional judgment approach more broadly, as well as the value of using dynamic risk and protective factors to assess violence risk. PMID:22250595
NASA Astrophysics Data System (ADS)
Kumari, S.; Sharma, P.; Srivastava, A.; Rastogi, D.; Sehgal, V. K.; Dhakar, R.; Roy, S. B.
2017-12-01
Vegetation dynamics and surface meteorology are tightly coupled through the exchange of momentum, moisture and heat between the land surface and the atmosphere. In this study, we use a recently developed coupled atmosphere-crop growth dynamics model to study these exchanges and their effects in a spring wheat cropland in northern India. In particular, we investigate the role of irrigation in controlling crop growth rates, surface meteorology, and sensible and latent heat fluxes. The model is developed by implementing a crop growth module based on the Simple and Universal Crop growth Simulator (SUCROS) model in the Weather Research Forecasting (WRF) mesoscale atmospheric model. The crop module calculates photosynthesis rates, carbon assimilation, and biomass partitioning as a function of environmental factors and crop development stage. The leaf area index (LAI) and root depth calculated by the crop module is then fed to the Noah-MP land module of WRF to calculate land-atmosphere fluxes. The crop model is calibrated using data from an experimental spring wheat crop site in the Indian Agriculture Research Institute. The coupled model is capable of simulating the observed spring wheat phenology. Irrigation is simulated by changing the soil moisture levels from 50% - 100% of field capacity. Results show that the yield first increases with increasing soil moisture and then starts decreasing as we further increase the soil moisture. Yield attains its maximum value with soil moisture at the level of 60% water of FC. At this level, high LAI values lead to a decrease in the Bowen Ratio because more energy is transferred to the atmosphere as latent heat rather than sensible heat resulting in a cooling effect on near-surface air temperatures. Apart from improving simulation of land-atmosphere interactions, this coupled modeling approach can form the basis for the seamless crop yield and seasonal scale weather outlook prediction system.
NASA Technical Reports Server (NTRS)
Pisaich, Gregory; Flueckiger, Lorenzo; Neukom, Christian; Wagner, Mike; Buchanan, Eric; Plice, Laura
2007-01-01
The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space.
Chaotic dynamics and thermodynamics of periodic systems with long-range forces
NASA Astrophysics Data System (ADS)
Kumar, Pankaj
Gravitational and electromagnetic interactions form the backbone of our theoretical understanding of the universe. While, in general, such interactions are analytically inexpressible for three-dimensional infinite systems, one-dimensional modeling allows one to treat the long-range forces exactly. Not only are one-dimensional systems of profound intrinsic interest, physicists often rely on one-dimensional models as a starting point in the analysis of their more complicated higher-dimensional counterparts. In the analysis of large systems considered in cosmology and plasma physics, periodic boundary conditions are a natural choice and have been utilized in the study of one dimensional Coulombic and gravitational systems. Such studies often employ numerical simulations to validate the theoretical predictions, and in cases where theoretical relations have not been mathematically formulated, numerical simulations serve as a powerful method in characterizing the system's physical properties. In this dissertation, analytic techniques are formulated to express the exact phase-space dynamics of spatially-periodic one-dimensional Coulombic and gravitational systems. Closed-form versions of the Hamiltonian and the electric field are derived for single-component and two-component Coulombic systems, placing the two on the same footing as the gravitational counterpart. Furthermore, it is demonstrated that a three-body variant of the spatially-periodic Coulombic or gravitational system may be reduced isomorphically to a periodic system of a single particle in a two-dimensional rhombic potential. The analytic results are utilized for developing and implementing efficient computational tools to study the dynamical and the thermodynamic properties of the systems without resorting to numerical approximations. Event-driven algorithms are devised to obtain Lyapunov spectra, radial distribution function, pressure, caloric curve, and Poincare surface of section through an N-body molecular-dynamics approach. The simulation results for the three-body systems show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. The results for the large versions of the single-component and two-component Coulombic systems show no clear-cut indication of a phase transition. However, as predicted by the theoretical treatment, the simulated temperature dependencies of energy, pressure as well as Lyapunov exponent for the gravitational system indicate a phase transition and the critical temperature obtained in simulation agrees well with that from the theory.
NASA Astrophysics Data System (ADS)
Amouye Foumani, A.; Niknam, A. R.
2018-01-01
The response of copper films to irradiation with laser pulses of fluences in the range of 100-6000 J/m2 is simulated by using a modified combination of a two-temperature model (TTM) and molecular dynamics (MD). In this model, the dependency of the pulse penetration depth and the reflectivity of the target on electron temperature are taken into account. Also, the temperature-dependent electron-phonon coupling factor, electron thermal conductivity, and electron heat capacity are used in the simulations. Based on this model, the dependence of the integral reflectivity on pulse fluence, the changes in the film thickness, and the evolution of density and electron and lattice temperatures are obtained. Moreover, snapshots that show the melting and disintegration processes are presented. The disintegration starts at a fluence of 4200 J/m2, which corresponds with an absorbed fluence of 616 J/m2. The calculated values of integral reflectivity are in good agreement with the experimental data. The inclusion of such temperature-dependent absorption models in the TTM-MD method would facilitate the comparison of experimental data with simulation results.
Quantum simulations and many-body physics with light.
Noh, Changsuk; Angelakis, Dimitris G
2017-01-01
In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.
Coarse-Graining of Polymer Dynamics via Energy Renormalization
NASA Astrophysics Data System (ADS)
Xia, Wenjie; Song, Jake; Phelan, Frederick; Douglas, Jack; Keten, Sinan
The computational prediction of the properties of polymeric materials to serve the needs of materials design and prediction of their performance is a grand challenge due to the prohibitive computational times of all-atomistic (AA) simulations. Coarse-grained (CG) modeling is an essential strategy for making progress on this problem. While there has been intense activity in this area, effective methods of coarse-graining have been slow to develop. Our approach to this fundamental problem starts from the observation that integrating out degrees of freedom of the AA model leads to a strong modification of the configurational entropy and cohesive interaction. Based on this observation, we propose a temperature-dependent systematic renormalization of the cohesive interaction in the CG modeling to recover the thermodynamic modifications in the system and the dynamics of the AA model. Here, we show that this energy renormalization approach to CG can faithfully estimate the diffusive, segmental and glassy dynamics of the AA model over a large temperature range spanning from the Arrhenius melt to the non-equilibrium glassy states. Our proposed CG strategy offers a promising strategy for developing thermodynamically consistent CG models with temperature transferability.
Strength and dynamic characteristics analyses of wound composite axial impeller
NASA Astrophysics Data System (ADS)
Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert
2012-03-01
A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.
NASA Astrophysics Data System (ADS)
Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team
In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.
Perception-action map learning in controlled multiscroll systems applied to robot navigation.
Arena, Paolo; De Fiore, Sebastiano; Fortuna, Luigi; Patané, Luca
2008-12-01
In this paper a new technique for action-oriented perception in robots is presented. The paper starts from exploiting the successful implementation of the basic idea that perceptual states can be embedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli. In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent patterns. These have to be suitably linked to an action, executed by the robot, to fulfill an assigned mission. This task is addressed here: the action-oriented perception loop is closed by introducing a simple unsupervised learning stage, implemented via a bio-inspired structure based on the motor map paradigm. In this way, perceptual meanings, useful for solving a given task, can be autonomously learned, based on the environment-dependent patterns embedded into the controlled chaotic dynamics. The presented framework has been tested on a simulated robot and the performance have been successfully compared with other traditional navigation control paradigms. Moreover an implementation of the proposed architecture on a Field Programmable Gate Array is briefly outlined and preliminary experimental results on a roving robot are also reported.
The application of Markov decision process in restaurant delivery robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Hu, Zhen; Wang, Ying
2017-05-01
As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.
NASA Astrophysics Data System (ADS)
Almesallmy, Mohammed
Methodologies are developed for dynamic analysis of mechanical systems with emphasis on inertial propulsion systems. This work adopted the Lagrangian methodology. Lagrangian methodology is the most efficient classical computational technique, which we call Equations of Motion Code (EOMC). The EOMC is applied to several simple dynamic mechanical systems for easier understanding of the method and to aid other investigators in developing equations of motion of any dynamic system. In addition, it is applied to a rigid multibody system, such as Thomson IPS [Thomson 1986]. Furthermore, a simple symbolic algorithm is developed using Maple software, which can be used to convert any nonlinear n-order ordinary differential equation (ODE) systems into 1st-order ODE system in ready format to be used in Matlab software. A side issue, but equally important, we have started corresponding with the U.S. Patent office to persuade them that patent applications, claiming gross linear motion based on inertial propulsion systems should be automatically rejected. The precedent is rejection of patent applications involving perpetual motion machines.
UV photodissociation of proline-containing peptide ions: insights from molecular dynamics.
Girod, Marion; Sanader, Zeljka; Vojkovic, Marin; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérôme; Bonacic-Koutecky, Vlasta; Dugourd, Philippe
2015-03-01
UV photodissociation of proline-containing peptide ions leads to unusual product ions. In this paper, we report laser-induced dissociation of a series of proline-containing peptides at 213 nm. We observe specific fragmentation pathways corresponding to the formation of (y-2), (a + 2) and (b + 2) fragment ions. This was not observed at 266 nm or for peptides which do not contain proline residues. In order to obtain insights into the fragmentation dynamics at 213 nm, a small peptide (RPK for arginine-proline-lysine) was studied both theoretically and experimentally. Calculations of absorption spectra and non-adiabatic molecular dynamics (MD) were made. Second and third excited singlet states, S(2) and S(3), lie close to 213 nm. Non-adiabatic MD simulation starting from S(2) and S(3) shows that these transitions are followed by C-C and C-N bond activation close to the proline residue. After this first relaxation step, consecutive rearrangements and proton transfers are required to produce unusual (y-2), (a + 2) and (b + 2) fragment ions. These fragmentation mechanisms were confirmed by H/D exchange experiments.
UV Photodissociation of Proline-containing Peptide Ions: Insights from Molecular Dynamics
NASA Astrophysics Data System (ADS)
Girod, Marion; Sanader, Zeljka; Vojkovic, Marin; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérôme; Bonacic-Koutecky, Vlasta; Dugourd, Philippe
2015-03-01
UV photodissociation of proline-containing peptide ions leads to unusual product ions. In this paper, we report laser-induced dissociation of a series of proline-containing peptides at 213 nm. We observe specific fragmentation pathways corresponding to the formation of (y-2), (a + 2) and (b + 2) fragment ions. This was not observed at 266 nm or for peptides which do not contain proline residues. In order to obtain insights into the fragmentation dynamics at 213 nm, a small peptide (RPK for arginine-proline-lysine) was studied both theoretically and experimentally. Calculations of absorption spectra and non-adiabatic molecular dynamics (MD) were made. Second and third excited singlet states, S2 and S3, lie close to 213 nm. Non-adiabatic MD simulation starting from S2 and S3 shows that these transitions are followed by C-C and C-N bond activation close to the proline residue. After this first relaxation step, consecutive rearrangements and proton transfers are required to produce unusual (y-2), (a + 2) and (b + 2) fragment ions. These fragmentation mechanisms were confirmed by H/D exchange experiments.
NASA Astrophysics Data System (ADS)
Shiba, Hayato; Keim, Peter; Kawasaki, Takeshi
2018-03-01
It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.
Chemistry in CESM-SE: Evaluation, Performance and Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamarque, Jean-Francois; Conley, Andrew; Vitt, Francis
2016-01-06
The purpose of the proposed work focused on development of chemistry representation within the Spectral Element (SE) dynamical core as implemented in the Community Earth System Model (CESM). More specifically, a main focus was on the ability of SE to accurately represent tracer transport. The proposed approach was to incrementally increase the complexity of the problem, starting from specified two-dimensional flow and tracers to simulations using specified dynamics and full chemistry. As demonstrated below, we have successfully studied all aspects of the proposed work, although only part of the work has been published in the refereed literature so far. Furthermore,more » because the SE dynamical core has been found to have several deficiencies that are still being investigated for solution, not all proposed tasks were finalized. In addition to the tests for SE performance, in an effort to decrease the computational burden of interactive chemistry, especially in the case of a large number of chemical species and chemical reactions, development on a faster chemical solver and implementation on GPUs has been implemented in CESM under the leadership of John Drake (U. Tennessee).« less
The evolutionary rate dynamically tracks changes in HIV-1 epidemics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus
Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less
Parallel adaptive wavelet collocation method for PDEs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nejadmalayeri, Alireza, E-mail: Alireza.Nejadmalayeri@gmail.com; Vezolainen, Alexei, E-mail: Alexei.Vezolainen@Colorado.edu; Brown-Dymkoski, Eric, E-mail: Eric.Browndymkoski@Colorado.edu
2015-10-01
A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allowsmore » fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.« less
Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.
Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen
2016-12-01
In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.