On the dynamic singularities in the control of free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, E.; Dubowsky, S.
1989-01-01
It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.
Applications of dynamic scheduling technique to space related problems: Some case studies
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Ninomiya, Tetsujiro
1994-10-01
The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.
On dynamical systems approaches and methods in f ( R ) cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alho, Artur; Carloni, Sante; Uggla, Claes, E-mail: aalho@math.ist.utl.pt, E-mail: sante.carloni@tecnico.ulisboa.pt, E-mail: claes.uggla@kau.se
We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f ( R )-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f ( R ) = R + α R {sup 2}, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniquesmore » involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f ( R ) cosmology and discuss their advantages and disadvantages.« less
Sensitivity of Dynamical Systems to Banach Space Parameters
2005-02-13
We consider general nonlinear dynamical systems in a Banach space with dependence on parameters in a second Banach space. An abstract theoretical ... framework for sensitivity equations is developed. An application to measure dependent delay differential systems arising in a class of HIV models is presented.
Anharmonic quantum mechanical systems do not feature phase space trajectories
NASA Astrophysics Data System (ADS)
Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole
2018-07-01
Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.
143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ...
143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ROOM (120), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
On the Connectedness of Attractors for Dynamical Systems
NASA Astrophysics Data System (ADS)
Gobbino, Massimo; Sardella, Mirko
1997-01-01
For a dynamical system on a connected metric spaceX, the global attractor (when it exists) is connected provided that either the semigroup is time-continuous orXis locally connected. Moreover, there exists an example of a dynamical system on a connected metric space which admits a disconnected global attractor.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, R. W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1987-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
NASA Astrophysics Data System (ADS)
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Dynamic analysis of Space Shuttle/RMS configuration using continuum approach
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.
1994-01-01
The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.
Sun, Xiaodian; Jin, Li; Xiong, Momiao
2008-01-01
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.
Evolutionary growth for Space Station Freedom electrical power system
NASA Technical Reports Server (NTRS)
Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike
1989-01-01
Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.
Spacing of Kepler Planets: Sculpting by Dynamical Instability
NASA Astrophysics Data System (ADS)
Pu, Bonan; Wu, Yanqin
2015-07-01
We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.
2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility
NASA Technical Reports Server (NTRS)
1995-01-01
Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.
Tether dynamics and control results for tethered satellite system's initial flight
NASA Astrophysics Data System (ADS)
Chapel, Jim D.; Flanders, Howard
The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.
Tether dynamics and control results for tethered satellite system's initial flight
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Flanders, Howard
1993-01-01
The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.
NASA Technical Reports Server (NTRS)
Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.
1998-01-01
The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.
NASA Astrophysics Data System (ADS)
García-Vela, A.
2000-05-01
A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.
Verification Challenges of Dynamic Testing of Space Flight Hardware
NASA Technical Reports Server (NTRS)
Winnitoy, Susan
2010-01-01
The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary within the respective volumes. In addition, because this is a dynamic facility with a moving test bed, direct line-of-sight may not be available at all times between the measurement sensors and the tracking targets. Finally, the feedback data from the active test bed along with the two external measurement systems must be synchronized to allow for data correlation. To ensure the desired accuracy and resolution of these systems, calibration of the systems must be performed regularly. New innovations in sensor technology itself are periodically incorporated into the facility s overall measurement scheme. In addressing the challenges of the measurement systems, the facility is able to provide essential position and orientation data to verify the dynamic performance of space flight hardware.
Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.
2003-01-01
Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.
Technology development program for an advanced microsheet glass concentrator
NASA Technical Reports Server (NTRS)
Richter, Scott W.; Lacy, Dovie E.
1990-01-01
Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.
Dynamic reasoning in a knowledge-based system
NASA Technical Reports Server (NTRS)
Rao, Anand S.; Foo, Norman Y.
1988-01-01
Any space based system, whether it is a robot arm assembling parts in space or an onboard system monitoring the space station, has to react to changes which cannot be foreseen. As a result, apart from having domain-specific knowledge as in current expert systems, a space based AI system should also have general principles of change. This paper presents a modal logic which can not only represent change but also reason with it. Three primitive operations, expansion, contraction and revision are introduced and axioms which specify how the knowledge base should change when the external world changes are also specified. Accordingly the notion of dynamic reasoning is introduced, which unlike the existing forms of reasoning, provide general principles of change. Dynamic reasoning is based on two main principles, namely minimize change and maximize coherence. A possible-world semantics which incorporates the above two principles is also discussed. The paper concludes by discussing how the dynamic reasoning system can be used to specify actions and hence form an integral part of an autonomous reasoning and planning system.
On the nature of control algorithms for free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, Evangelos; Dubowsky, Steven
1991-01-01
It is suggested that nearly any control algorithm that can be used for fixed-based manipulators also can be employed in the control of free-floating space manipulator systems, with the additional conditions of estimating or measuring a spacecraft's orientation and of avoiding dynamic singularities. This result is based on the structural similarities between the kinematic and dynamic equations for the same manipulator but with a fixed base. Barycenters are used to formulate the kinematic and dynamic equations of free-floating space manipulators. A control algorithm for a space manipulator system is designed to demonstrate the value of the analysis.
Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach
NASA Astrophysics Data System (ADS)
Borrelli, Raffaele; Gelin, Maxim F.
2016-12-01
Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.
System impacts of solar dynamic and growth power systems on space station
NASA Technical Reports Server (NTRS)
Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.
1986-01-01
Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
A Solar Dynamic Power Option for Space Solar Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.
NASA Astrophysics Data System (ADS)
Doroshin, Anton V.
2018-06-01
In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.
NASA Technical Reports Server (NTRS)
Barro, E.; Delbufalo, A.; Rossi, F.
1993-01-01
The definition of some modern high demanding space systems requires a different approach to system definition and design from that adopted for traditional missions. System functionality is strongly coupled to the operational analysis, aimed at characterizing the dynamic interactions of the flight element with its surrounding environment and its ground control segment. Unambiguous functional, operational and performance requirements are to be defined for the system, thus improving also the successive development stages. This paper proposes a Petri Nets based methodology and two related prototype applications (to ARISTOTELES orbit control and to Hermes telemetry generation) for the operational analysis of space systems through the dynamic modeling of their functions and a related computer aided environment (ISIDE) able to make the dynamic model work, thus enabling an early validation of the system functional representation, and to provide a structured system requirements data base, which is the shared knowledge base interconnecting static and dynamic applications, fully traceable with the models and interfaceable with the external world.
Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems
NASA Astrophysics Data System (ADS)
Kakofengitis, Dimitris; Steuernagel, Ole
2017-09-01
There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1996-01-01
This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.
2000-01-01
The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.
Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Zia, Omar
1989-01-01
The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers.
Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei
1991-01-01
A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.
Dynamics and offset control of tethered space-tug system
NASA Astrophysics Data System (ADS)
Zhang, Jingrui; Yang, Keying; Qi, Rui
2018-01-01
Tethered space-tug system is regarded as one of the most promising active debris removal technologies to effectively decrease the steep increasing population of space debris. In order to suppress the spin of space debris, single-tethered space-tug system is employed by regulating the tether. Unfortunately, this system is underactuated as tether length is the only input, and there are two control objectives: the spinning debris and the vibration of tether. Thus, it may suffer great oscillations and result in failure in space debris removal. This paper presents the study of attitude stabilization of the single-tethered space-tug system using not only tether length but also the offset of tether attachment point to suppress the spin of debris, so as to accomplish the space debris removal mission. Firstly, a precise 3D mathematical model in which the debris and tug are both treated as rigid bodies is developed to study the dynamical evolution of the tethered space-tug system. The relative motion equation of the system is described using Lagrange method. Secondly, the dynamic characteristic of the system is analyzed and an offset control law is designed to stabilize the spin of debris by exploiting the variation of tether offset and the regulation of tether length. Besides, an estimation formula is proposed to evaluate the capability of tether for suppressing spinning debris. Finally, the effectiveness of attitude stabilization by the utilization of the proposed scheme is demonstrated via numerical case studies.
Computational Methods for Structural Mechanics and Dynamics
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.
NASA Technical Reports Server (NTRS)
Teles, Jerome (Editor); Samii, Mina V. (Editor)
1993-01-01
A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.
Intelligent control of a planning system for astronaut training.
Ortiz, J; Chen, G
1999-07-01
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.
Problems experienced and envisioned for dynamical physical systems
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1985-01-01
The use of high performance systems, which is the trend of future space systems, naturally leads to lower margins and a higher sensitivity to parameter variations and, therefore, more problems of dynamical physical systems. To circumvent dynamic problems of these systems, appropriate design, verification analysis, and tests must be planned and conducted. The basic design goal is to define the problem before it occurs. The primary approach for meeting this goal is a good understanding and reviewing of the problems experienced in the past in terms of the system under design. This paper reviews many of the dynamic problems experienced in space systems design and operation, categorizes them as to causes, and envisions future program implications, developing recommendations for analysis and test approaches.
Hamiltonian flow over saddles for exploring molecular phase space structures
NASA Astrophysics Data System (ADS)
Farantos, Stavros C.
2018-03-01
Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.
NASA Astrophysics Data System (ADS)
Blasch, Erik; Pham, Khanh D.; Shen, Dan; Chen, Genshe
2018-05-01
The dynamic data-driven applications systems (DDDAS) paradigm is meant to inject measurements into the execution model for enhanced systems performance. One area off interest in DDDAS is for space situation awareness (SSA). For SSA, data is collected about the space environment to determine object motions, environments, and model updates. Dynamically coupling between the data and models enhances the capabilities of each system by complementing models with data for system control, execution, and sensor management. The paper overviews some of the recent developments in SSA made possible from DDDAS techniques which are for object detection, resident space object tracking, atmospheric models for enhanced sensing, cyber protection, and information management.
Solar dynamic power systems for space station
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.
1986-01-01
The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.
Dynamic Modeling of Solar Dynamic Components and Systems
NASA Technical Reports Server (NTRS)
Hochstein, John I.; Korakianitis, T.
1992-01-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.
Energy dissipation in flows through curved spaces.
Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J
2017-02-14
Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces.
Solar dynamic power system development for Space Station Freedom
NASA Technical Reports Server (NTRS)
1993-01-01
The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.
NASA Technical Reports Server (NTRS)
Ryan, Robert S.
1994-01-01
Structural dynamics and its auxiliary fields are the most progressive and challenging areas space system engineering design and operations face. Aerospace systems are dependent on structural dynamicists for their success. Past experiences (history) are colored with many dynamic issues, some producing ground or flight test failures. The innovation and creativity that was brought to these issues and problems are the aura from the past that lights the path to the future. Using this illumination to guide understanding of the dynamic phenomena and designing for its potential occurrence are the keys to successful space systems. Our great paradox, or challenge, is how we remain in depth specialists, yet become generalists to the degree that we make good team members and set the right priorities. This paper will deal with how we performed with acclaim in the past, the basic characteristics of structural dynamics (loads cycle, for example), and the challenges of the future.
Benitez, P; Losada, J C; Benito, R M; Borondo, F
2015-10-01
A study of the dynamical characteristics of the phase space corresponding to the vibrations of the LiNC-LiCN molecule using an analysis based on the small alignment index (SALI) is presented. SALI is a good indicator of chaos that can easily determine whether a given trajectory is regular or chaotic regardless of the dimensionality of the system, and can also provide a wealth of dynamical information when conveniently implemented. In two-dimensional (2D) systems SALI maps are computed as 2D phase space representations, where the SALI asymptotic values are represented in color scale. We show here how these maps provide full information on the dynamical phase space structure of the LiNC-LiCN system, even quantifying numerically the volume of the different zones of chaos and regularity as a function of the molecule excitation energy.
Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1996-01-01
In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.
Fuel cell energy storage for Space Station enhancement
NASA Technical Reports Server (NTRS)
Stedman, J. K.
1990-01-01
Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.
NASA Technical Reports Server (NTRS)
Lorenzini, E. C.; Cosmo, M.; Vetrella, S.; Moccia, A.
1988-01-01
This paper investigates the dynamics and acceleration levels of a new tethered system for micro and variable-gravity applications. The system consists of two platforms tethered on opposite sides to the Space Station. A fourth platform, the elevator, is placed in between the Space Station and the upper platform. Variable-g levels on board the elevator are obtained by moving this facility along the upper tether, while micro-g experiments are carried out on board the Space Station. By controlling the length of the lower tether the position of the system CM can be maintained on board the Space Station despite variations of the station's distribution of mass. The paper illustrates the mathematical model, the environmental perturbations and the control techniques which have been adopted for the simulation and control of the system dynamics. Two sets of results from two different simulation runs are shown. The first set shows the system dynamics and the acceleration spectra on board the Space Station and the elevator during station-keeping. The second set of results demonstrates the capability of the elevator to attain a preselected g-level.
Calibrating the system dynamics of LISA Pathfinder
NASA Astrophysics Data System (ADS)
Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.
2018-06-01
LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.
Early Results from Solar Dynamic Space Power System Testing
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1996-01-01
A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.
NASA Astrophysics Data System (ADS)
Gurevich, Boris M.; Tempel'man, Arcady A.
2010-05-01
For a dynamical system \\tau with 'time' \\mathbb Z^d and compact phase space X, we introduce three subsets of the space \\mathbb R^m related to a continuous function f\\colon X\\to\\mathbb R^m: the set of time means of f and two sets of space means of f, namely those corresponding to all \\tau-invariant probability measures and those corresponding to some equilibrium measures on X. The main results concern topological properties of these sets of means and their mutual position. Bibliography: 18 titles.
Combinatorial-topological framework for the analysis of global dynamics.
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Combinatorial-topological framework for the analysis of global dynamics
NASA Astrophysics Data System (ADS)
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Querying databases of trajectories of differential equations: Data structures for trajectories
NASA Technical Reports Server (NTRS)
Grossman, Robert
1989-01-01
One approach to qualitative reasoning about dynamical systems is to extract qualitative information by searching or making queries on databases containing very large numbers of trajectories. The efficiency of such queries depends crucially upon finding an appropriate data structure for trajectories of dynamical systems. Suppose that a large number of parameterized trajectories gamma of a dynamical system evolving in R sup N are stored in a database. Let Eta is contained in set R sup N denote a parameterized path in Euclidean Space, and let the Euclidean Norm denote a norm on the space of paths. A data structure is defined to represent trajectories of dynamical systems, and an algorithm is sketched which answers queries.
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
Static and dynamic high power, space nuclear electric generating systems
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Begg, L. L.; Koester, J. K.
1985-01-01
Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.
New science from the phase space of old stellar systems
NASA Astrophysics Data System (ADS)
Varri, Anna Lisa; Breen, Philip G.; Heggie, Douglas C.; Tiongco, Maria; Vesperini, Enrico
2017-06-01
Our traditional interpretative picture of the internal dynamics of globular clusters has been recently revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The empirical evidence that their velocity space is much more complex than usually expected encourages us to use them as refreshingly novel phase space laboratories for some long-forgotten aspects of collisional gravitational dynamics. Such a realization, coupled with the discovery that the stars in clusters were not all born at once in a single population, makes them new, challenging chemodynamical puzzles.Thanks to the proper motions of thousands of stars that will be available from the Gaia mission, we are about to enter a new ''golden age'' for the study of the dynamics of this class of stellar systems, as the full phase space of several Galactic globular clusters will be soon unlocked for the first time. In this context, I will present the highlights of a more realistic dynamical paradigm for these intriguing stellar systems, with emphasis on the role of angular momentum, velocity anisotropy and external tidal field. Such a fundamental understanding of the emerging phase space complexity of globulars will allow us to address many open questions about their rich dynamical evolution, their elusive stellar populations and putative black holes, and their role within the history of our Galaxy.
NASA Technical Reports Server (NTRS)
1989-01-01
The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.
NASA Astrophysics Data System (ADS)
Zarafshan, P.; Moosavian, S. Ali A.
2013-10-01
Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors and perturb the object manipulation task. So, it is shown that these effects can be significantly eliminated by the proposed Hybrid Suppression Control algorithm.
Control-structure interaction study for the Space Station solar dynamic power module
NASA Technical Reports Server (NTRS)
Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.
1991-01-01
The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.
NASA Astrophysics Data System (ADS)
Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun
2018-05-01
In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.
A dynamic case-based planning system for space station application
NASA Technical Reports Server (NTRS)
Oppacher, F.; Deugo, D.
1988-01-01
We are currently investigating the use of a case-based reasoning approach to develop a dynamic planning system. The dynamic planning system (DPS) is designed to perform resource management, i.e., to efficiently schedule tasks both with and without failed components. This approach deviates from related work on scheduling and on planning in AI in several aspects. In particular, an attempt is made to equip the planner with an ability to cope with a changing environment by dynamic replanning, to handle resource constraints and feedback, and to achieve some robustness and autonomy through plan learning by dynamic memory techniques. We briefly describe the proposed architecture of DPS and its four major components: the PLANNER, the plan EXECUTOR, the dynamic REPLANNER, and the plan EVALUATOR. The planner, which is implemented in Smalltalk, is being evaluated for use in connection with the Space Station Mobile Service System (MSS).
Analysis and Ground Testing for Validation of the Inflatable Sunshield in Space (ISIS) Experiment
NASA Technical Reports Server (NTRS)
Lienard, Sebastien; Johnston, John; Adams, Mike; Stanley, Diane; Alfano, Jean-Pierre; Romanacci, Paolo
2000-01-01
The Next Generation Space Telescope (NGST) design requires a large sunshield to protect the large aperture mirror and instrument module from constant solar exposure at its L2 orbit. The structural dynamics of the sunshield must be modeled in order to predict disturbances to the observatory attitude control system and gauge effects on the line of site jitter. Models of large, non-linear membrane systems are not well understood and have not been successfully demonstrated. To answer questions about sunshield dynamic behavior and demonstrate controlled deployment, the NGST project is flying a Pathfinder experiment, the Inflatable Sunshield in Space (ISIS). This paper discusses in detail the modeling and ground-testing efforts performed at the Goddard Space Flight Center to: validate analytical tools for characterizing the dynamic behavior of the deployed sunshield, qualify the experiment for the Space Shuttle, and verify the functionality of the system. Included in the discussion will be test parameters, test setups, problems encountered, and test results.
NASA Astrophysics Data System (ADS)
Colagrossi, Andrea; Lavagna, Michèle
2018-03-01
A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.
A class of stabilizing controllers for flexible multibody systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.
1995-01-01
The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.
Variable input observer for state estimation of high-rate dynamics
NASA Astrophysics Data System (ADS)
Hong, Jonathan; Cao, Liang; Laflamme, Simon; Dodson, Jacob
2017-04-01
High-rate systems operating in the 10 μs to 10 ms timescale are likely to experience damaging effects due to rapid environmental changes (e.g., turbulence, ballistic impact). Some of these systems could benefit from real-time state estimation to enable their full potential. Examples of such systems include blast mitigation strategies, automotive airbag technologies, and hypersonic vehicles. Particular challenges in high-rate state estimation include: 1) complex time varying nonlinearities of system (e.g. noise, uncertainty, and disturbance); 2) rapid environmental changes; 3) requirement of high convergence rate. Here, we propose using a Variable Input Observer (VIO) concept to vary the input space as the event unfolds. When systems experience high-rate dynamics, rapid changes in the system occur. To investigate the VIO's potential, a VIO-based neuro-observer is constructed and studied using experimental data collected from a laboratory impact test. Results demonstrate that the input space is unique to different impact conditions, and that adjusting the input space throughout the dynamic event produces better estimations than using a traditional fixed input space strategy.
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics.
NASA Technical Reports Server (NTRS)
Potter, P. Y.
1990-01-01
The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
In-Space Transportation with Tethers
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico; Estes, Robert D.; Cosmo, Mario L.
1998-01-01
The annual report covers the research conducted on the following topics related to the use of spaceborne tethers for in-space transportation: ProSEDS tether modeling (current collection analyses, influence of a varying tether temperature); proSEDS mission analysis and system dynamics (tether thermal model, thermo-electro-dynamics integrated simulations); proSEDS-tether development and testing (tether requirements, deployment test plan, tether properties testing, deployment tests); and tethers for reboosting the space-based laser (mission analysis, tether system preliminary design, evaluation of attitude constraints).
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
NASA Technical Reports Server (NTRS)
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Spatial operator algebra for flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1993-01-01
This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.
A Process for Comparing Dynamics of Distributed Space Systems Simulations
NASA Technical Reports Server (NTRS)
Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.
2009-01-01
The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.
The space station power system
NASA Technical Reports Server (NTRS)
1989-01-01
The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.
Detecting recurrence domains of dynamical systems by symbolic dynamics.
beim Graben, Peter; Hutt, Axel
2013-04-12
We propose an algorithm for the detection of recurrence domains of complex dynamical systems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.
14 CFR 23.562 - Emergency landing dynamic conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Emergency Landing Conditions § 23.562 Emergency landing dynamic conditions. (a) Each seat/restraint system... dynamic tests conducted in accordance with paragraph (b) of this section: (1) The seat/restraint system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 23...
A continuum model for dynamic analysis of the Space Station
NASA Technical Reports Server (NTRS)
Thomas, Segun
1989-01-01
Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.
Using Innovative Outliers to Detect Discrete Shifts in Dynamics in Group-Based State-Space Models
ERIC Educational Resources Information Center
Chow, Sy-Miin; Hamaker, Ellen L.; Allaire, Jason C.
2009-01-01
Outliers are typically regarded as data anomalies that should be discarded. However, dynamic or "innovative" outliers can be appropriately utilized to capture unusual but substantively meaningful shifts in a system's dynamics. We extend De Jong and Penzer's 1998 approach for representing outliers in single-subject state-space models to a…
A complex systems analysis of stick-slip dynamics of a laboratory fault
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael
2014-03-15
We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less
Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A
2011-04-07
The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Youngsoo; Carlberg, Kevin Thomas
Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less
Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration
NASA Technical Reports Server (NTRS)
Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.
1993-01-01
Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.
1982-05-01
discovered during posttest inspection. The unit had experienced 2 As- designed damper, 0.92-1-.14 grams 8 tests for a total of 330 seconds of opera- 3...a Modeling DAMPED STRUCTURE DESIGN USING FINITE ELEMENT ANALYSIS M. F. Klunmner and M. L. Drake, University of Dayti-n Resatch Institute, Dayton, OH...IN DYNAMICS T. E. Simkins, U.S. Army Armament Research and Development Command, Watervliet, NY Stucturd Dynamics A PROCEDURE FOR DESIGNING OVERDAMPED
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence
McLeish, Tom C. B.
2015-01-01
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity—the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity—essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution. PMID:26640648
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.
McLeish, Tom C B
2015-12-06
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John; Schmitz, Eric; Hoff, William
1991-01-01
This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.
NASA/DOD Control/Structures Interaction Technology, 1986
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Compiler)
1986-01-01
Control/structures interactions, deployment dynamics and system performance of large flexible spacecraft are discussed. Spacecraft active controls, deployable truss structures, deployable antennas, solar power systems for space stations, pointing control systems for space station gimballed payloads, computer-aided design for large space structures, and passive damping for flexible structures are among the topics covered.
NASA Technical Reports Server (NTRS)
Brooks, George W.
1985-01-01
The options for the design, construction, and testing of a dynamic model of the space station were evaluated. Since the definition of the space station structure is still evolving, the Initial Operating Capacity (IOC) reference configuration was used as the general guideline. The results of the studies treat: general considerations of the need for and use of a dynamic model; factors which deal with the model design and construction; and a proposed system for supporting the dynamic model in the planned Large Spacecraft Laboratory.
Integrated dynamic analysis simulation of space stations with controllable solar array
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.
Active vibration control techniques for flexible space structures
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Jayasuriya, Suhada
1990-01-01
Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.
Multivariable Hermite polynomials and phase-space dynamics
NASA Technical Reports Server (NTRS)
Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.
1994-01-01
The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.
Dynamics of Space Vehicles and Space Research
1989-09-08
dynamics is used for study of longitudinal vibrations of RN, in which participates housing, power - supply system and engine installation. In American...scientific research of G. S. Narimanov. Research of the dynamics of solid bodies with the liquid filling, simulating RN and KA with ZhRD in the powered ...solid body. Page 9. Specifically, then he posed the problem about the review of the conceptual basis of research of rocket dynamics in the powered
NASA Technical Reports Server (NTRS)
Wang, J.; Hastings, D. E.
1991-01-01
Current collecting systems moving in the ionosphere will induce electromagnetic wave radiation. The commonly used static analysis is incapable of studying the situation when such systems undergo transient processes. A dynamic analysis has been developed, and the radiation excitation processes are studied. This dynamic analysis is applied to study the temporal wave radiation from the activation of current collecting systems in space. The global scale electrodynamic interactions between a space-station-like structure and the ionospheric plasma are studied. The temporal evolution and spatial propagation of the electric wave field after the activation are described. The wave excitations by tethered systems are also studied. The dependencies of the temporal Alfven wave and lower hybrid wave radiation on the activation time and the space system structure are discussed. It is shown that the characteristics of wave radiation are determined by the matching of two sets of characteristic frequencies, and a rapid change in the current collection can give rise to substantial transient radiation interference. The limitations of the static and linear analysis are examined, and the condition under which the static assumption is valid is obtained.
Yang, Chifu; Zhao, Jinsong; Li, Liyi; Agrawal, Sunil K
2018-01-01
Robotic spine brace based on parallel-actuated robotic system is a new device for treatment and sensing of scoliosis, however, the strong dynamic coupling and anisotropy problem of parallel manipulators result in accuracy loss of rehabilitation force control, including big error in direction and value of force. A novel active force control strategy named modal space force control is proposed to solve these problems. Considering the electrical driven system and contact environment, the mathematical model of spatial parallel manipulator is built. The strong dynamic coupling problem in force field is described via experiments as well as the anisotropy problem of work space of parallel manipulators. The effects of dynamic coupling on control design and performances are discussed, and the influences of anisotropy on accuracy are also addressed. With mass/inertia matrix and stiffness matrix of parallel manipulators, a modal matrix can be calculated by using eigenvalue decomposition. Making use of the orthogonality of modal matrix with mass matrix of parallel manipulators, the strong coupled dynamic equations expressed in work space or joint space of parallel manipulator may be transformed into decoupled equations formulated in modal space. According to this property, each force control channel is independent of others in the modal space, thus we proposed modal space force control concept which means the force controller is designed in modal space. A modal space active force control is designed and implemented with only a simple PID controller employed as exampled control method to show the differences, uniqueness, and benefits of modal space force control. Simulation and experimental results show that the proposed modal space force control concept can effectively overcome the effects of the strong dynamic coupling and anisotropy problem in the physical space, and modal space force control is thus a very useful control framework, which is better than the current joint space control and work space control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A "Kanes's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Hampton, R. David; Beech, Geoffrey
1999-01-01
Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
A "Kane's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Beech, G. S.; Rao, N. N. S.; Rupert, J. K.; Kim, Y. K.
2001-01-01
Many microgravity space science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack (ISPR)) level. Effective model-based vibration isolation requires: (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop a state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
System Theory Aspects of Multi-Body Dynamics.
1978-08-18
systems are described from a system theory point of view. Various system theory concepts and research topics which have applicability to this class of...systems are identified and briefly described. The subject of multi-body dynamics is presented in a vector space setting and is related to system theory concepts. (Author)
Lunar Volatile System Dynamics: Observations Enabled by the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Honniball, C. I.; Lucey, P. G.; Petro, N.; Hurley, D.; Farrell, W.
2018-02-01
A UV spectrometer-imager and IR spectrometer are proposed to solve questions regarding the lunar volatile system. The instrument takes advantage of highly elliptical orbits and the thermal management system of the Deep Space Gateway.
A qualitative numerical study of high dimensional dynamical systems
NASA Astrophysics Data System (ADS)
Albers, David James
Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high-dimensional chaotic region of parameter space is interpreted and related to the closing lemma of Pugh, the windows conjecture of Barreto, the stable ergodicity theorem of Pugh and Shub, and structural stability theorem of Robbin, Robinson, and Mane.
The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.
2012-01-01
Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration (NASA)-designated center for the development of space launch systems. MSFC is particularly known for propulsion system development. Many engineering skills and technical disciplines are needed to accomplish this mission. This presentation will focus on the work of the Fluid Dynamics Branch (ER42). ER42 resides in the Propulsion Systems Department at MSFC. The branch is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Applications include the propellant delivery system including the main propulsion system (MPS) and turbomachinery; combustion devices for liquid engines and solid rocket motors; coupled systems; and launch environments. An advantage of the branch is that it is neither analysis nor test centric, but discipline centric. Fluid dynamics assessments are made by analysis, from lumped parameter modeling through unsteady computational fluid dynamics (CFD); testing, which can be cold flow or hot fire; or a combination of analysis and testing. Integration of all discipline methods into one branch enables efficient and accurate support to the projects. To accomplish this work, the branch currently employs approximately fifty engineers divided into four teams -- Propellant Delivery CFD, Combustion Driven Flows CFD, Unsteady and Experimental Flows, and Acoustics and Stability. This discussion will highlight some of the work performed in the branch and the direction in which the branch is headed.
Longitudinal dynamics of an intense electron beam
NASA Astrophysics Data System (ADS)
Harris, John Richardson
2005-11-01
The dynamics of charged particle beams are governed by the particles' thermal velocities, external focusing forces, and Coulomb forces. Beams in which Coulomb forces play the dominant role are known as space charge dominated, or intense. Intense beams are of great interest for heavy ion fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams of interest are dominated by space charge forces when they are first created, so an understanding of space charge effects is critical to explain the later evolution of any beam. Historically, more attention has been paid to the transverse dynamics of beams. However, many interesting and important effects in beams occur along their length. These longitudinal effects can be limiting factors in many systems. For example, modulation or structure applied to the beam at low energy will evolve under space charge forces. Depending on the intended use of the beam and the nature of the modulation, this may result in improved or degraded performance. To study longitudinal dynamics in intense beams, experiments were conducted using the University of Maryland Electron Ring, a 10 keV, 100 mA electron transport system. These experiments concentrated on space charge driven changes in beam length in parabolic and rectangular beams, beam density and velocity modulation, and space charge wave propagation. Coupling between the transverse and longitudinal dynamics was also investigated. These experiments involved operating the UMER gun in space charge limited, temperature limited, triode amplification, photon limited, and hybrid modes. Results of these experiments are presented here, along with a theoretical framework for understanding the longitudinal dynamics of intense beams.
Mapping quantum-classical Liouville equation: projectors and trajectories.
Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond
2012-02-28
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.
A novel photovoltaic power system which uses a large area concentrator mirror
NASA Technical Reports Server (NTRS)
Arrison, Anne; Fatemi, Navid
1987-01-01
A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.
On safe configurations of a natural-artificial space tether system
NASA Astrophysics Data System (ADS)
Rodnikov, A. V.
2018-05-01
We study the dynamics of a particle moving under gravitation of precessing dynamically symmetric rigid body if the particle motion is restricted by two unilateral (flexible) constraints realized by two weightless unstretchable tethers with ends fixed at body poles, formed as the intersection of the body surface with the axis of its dynamical symmetry. The system under consideration is a simple model of an original natural-artificial space construction consisting of an asteroid and a space station tethered to each other via two cables. We note that the problem is integrable for the system safe configurations, i.e. for motions along the constraints common boundary (both tethers are tensed) if the body gravitational potential is invariant with respect to rotation about the axis of dynamical symmetry. We study these motions depicting phase portraits for possible values of system parameters. We also deduce conditions for the particle coming off the boundary of constraint(s) (if the tether(s) are slackened) and analyze these conditions, eliminating corresponding areas from phase portraits. We also formulate some statements, concerning the particle safety.
NASA Technical Reports Server (NTRS)
1991-01-01
Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering.
A nonrecursive 'Order N' preconditioned conjugate gradient/range space formulation of MDOF dynamics
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Menon, R.; Sunkel, John
1991-01-01
This paper addresses the requirements of present-day mechanical system simulations of algorithms that induce parallelism on a fine scale and of transient simulation methods which must be automatically load balancing for a wide collection of system topologies and hardware configurations. To this end, a combination range space/preconditioned conjugage gradient formulation of multidegree-of-freedon dynamics is developed, which, by employing regular ordering of the system connectivity graph, makes it possible to derive an extremely efficient preconditioner from the range space metric (as opposed to the system coefficient matrix). Because of the effectiveness of the preconditioner, the method can achieve performance rates that depend linearly on the number of substructures. The method, termed 'Order N' does not require the assembly of system mass or stiffness matrices, and is therefore amenable to implementation on work stations. Using this method, a 13-substructure model of the Space Station was constructed.
Advanced solar dynamic space power systems perspectives, requirements and technology needs
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.
1986-01-01
Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.
Technology Projections for Solar Dynamic Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.
NASA Technical Reports Server (NTRS)
Faget, N. M.
1986-01-01
Attention is given to results obtained to date in developmental investigations of a thermal energy storage (TES) system for the projected NASA Space Station's solar dynamic power system; these tests have concentrated on issues related to materials compatibility for phase change materials (PCMs) and their containment vessels' materials. The five PCMs tested have melting temperatures that correspond to the operating temperatures of either the Brayton or Rankine heat engines, which were independently chosen for their high energy densities.
Space power system automation approaches at the George C. Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Weeks, D. J.
1987-01-01
This paper discusses the automation approaches employed in various electrical power system breadboards at the Marshall Space Flight Center. Of particular interest is the application of knowledge-based systems to fault management and dynamic payload scheduling. A description of each major breadboard and the automation approach taken for each is given.
Dynamic analysis of space robot remote control system
NASA Astrophysics Data System (ADS)
Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem
2018-05-01
The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.
Dual redundant arm system operational quality measures and their applications - Dynamic measures
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Kim, Sungbok
1990-01-01
Dual-arm dynamic operation quality measures are presented which quantify the efficiency and capability of generating Cartesian accelerations by two cooperative arms based on the analysis of dual-arm dynamic interactions. Dual-arm dynamic manipulability is defined as the efficiency of generating Cartesian accelerations under the dynamic and kinematic interactions between individual arms and an object under manipulation. The analysis of dual-arm dynamic interactions is based on the so-called Cartesian space agent model of an arm, which represents an individual arm as a force source acting upon a point mass with the effective Cartesian space arm dynamics and an environment or an object under manipulation. The Cartesian space agent model of an arm makes it possible to derive the dynamic and kinematic constraints involved in the transport, assembly and grasping modes of dual-arm cooperation. A task-oriented operational quality measure, (TOQd) is defined by evaluating dual-arm dynamic manipulability in terms of given task requirements. TOQd is used in dual-arm joint configuration optimization. Simulation results are shown. A complete set of forward dynamic equations for a dual-arm system is derived, and dual-arm dynamic operational quality measures for various modes of dual-arm cooperation allowing sliding contacts are established.
ERIC Educational Resources Information Center
Tabor, Whitney; And Others
1997-01-01
Proposes a dynamical systems approach to parsing in which syntactic hypotheses are associated with attractors in a metric space. The experiments discussed documented various contingent frequency effects that cut across traditional linguistic grains, each of which was predicted by the dynamical systems model. (47 references) (Author/CK)
NASA Astrophysics Data System (ADS)
Xu, Wenfu; Hu, Zhonghua; Zhang, Yu; Liang, Bin
2017-03-01
After being launched into space to perform some tasks, the inertia parameters of a space robotic system may change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the linear and angular momentum equations. Then, the parameter identification problems are transformed into non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0) are completely identified. For the proposed method, only simple dynamics equations are needed for identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover, the method does not require prior knowledge of the mass properties of any body. It is general and practical for identifying a space robotic system on-orbit.
Advanced Mating System Development for Space Applications
NASA Technical Reports Server (NTRS)
Lewis, James L.
2004-01-01
This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.
NASA Astrophysics Data System (ADS)
Kähler, Sven; Olsen, Jeppe
2017-11-01
A computational method is presented for systems that require high-level treatments of static and dynamic electron correlation but cannot be treated using conventional complete active space self-consistent field-based methods due to the required size of the active space. Our method introduces an efficient algorithm for perturbative dynamic correlation corrections for compact non-orthogonal MCSCF calculations. In the algorithm, biorthonormal expansions of orbitals and CI-wave functions are used to reduce the scaling of the performance determining step from quadratic to linear in the number of configurations. We describe a hierarchy of configuration spaces that can be chosen for the active space. Potential curves for the nitrogen molecule and the chromium dimer are compared for different configuration spaces. Already the most compact spaces yield qualitatively correct potentials that with increasing size of configuration spaces systematically approach complete active space results.
NASA Technical Reports Server (NTRS)
Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.
2006-01-01
The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.
On the dynamical and geometrical symmetries of Keplerian motion
NASA Astrophysics Data System (ADS)
Wulfman, Carl E.
2009-05-01
The dynamical symmetries of classical, relativistic and quantum-mechanical Kepler systems are considered to arise from geometric symmetries in PQET phase space. To establish their interconnection, the symmetries are related with the aid of a Lie-algebraic extension of Dirac's correspondence principle, a canonical transformation containing a Cunningham-Bateman inversion, and a classical limit involving a preliminary canonical transformation in ET space. The Lie-algebraic extension establishes the conditions under which the uncertainty principle allows the local dynamical symmetry of a quantum-mechanical system to be the same as the geometrical phase-space symmetry of its classical counterpart. The canonical transformation converts Poincaré-invariant free-particle systems into ISO(3,1) invariant relativistic systems whose classical limit produces Keplerian systems. Locally Cartesian relativistic PQET coordinates are converted into a set of eight conjugate position and momentum coordinates whose classical limit contains Fock projective momentum coordinates and the components of Runge-Lenz vectors. The coordinate systems developed via the transformations are those in which the evolution and degeneracy groups of the classical system are generated by Poisson-bracket operators that produce ordinary rotation, translation and hyperbolic motions in phase space. The way in which these define classical Keplerian symmetries and symmetry coordinates is detailed. It is shown that for each value of the energy of a Keplerian system, the Poisson-bracket operators determine two invariant functions of positions and momenta, which together with its regularized Hamiltonian, define the manifold in six-dimensional phase space upon which motions evolve.
The Quest for the Ultimate Anisotropic Banach Space
NASA Astrophysics Data System (ADS)
Baladi, Viviane
2017-02-01
We present a new scale U^{t,s}_p (s<-t<0 and 1≤p <∞) of anisotropic Banach spaces, defined via Paley-Littlewood, on which the transfer operator L_g φ = (g \\cdot φ) circ T^{-1} associated to a hyperbolic dynamical system T has good spectral properties. When p=1 and t is an integer, the spaces are analogous to the "geometric" spaces B^{t,|s+t|} considered by Gouëzel and Liverani (Ergod Theory Dyn Syst 26:189-217, 2006). When p>1 and -1+1/p
Scott-Pandorf, Melissa M; O'Connor, Daniel P; Layne, Charles S; Josić, Kresimir; Kurz, Max J
2009-09-01
With human exploration of the moon and Mars on the horizon, research considerations for space suit redesign have surfaced. The portable life support system (PLSS) used in conjunction with the space suit during the Apollo missions may have influenced the dynamic balance of the gait pattern. This investigation explored potential issues with the PLSS design that may arise during the Mars exploration. A better understanding of how the location of the PLSS load influences the dynamic stability of the gait pattern may provide insight, such that space missions may have more productive missions with a smaller risk of injury and damaging equipment while falling. We explored the influence the PLSS load position had on the dynamic stability of the walking pattern. While walking, participants wore a device built to simulate possible PLSS load configurations. Floquet and Lyapunov analysis techniques were used to quantify the dynamic stability of the gait pattern. The dynamic stability of the gait pattern was influenced by the position of load. PLSS loads that are placed high and forward on the torso resulted in less dynamically stable walking patterns than loads placed evenly and low on the torso. Furthermore, the kinematic results demonstrated that all joints of the lower extremity may be important for adjusting to different load placements and maintaining dynamic stability. Space scientists and engineers may want to consider PLSS designs that distribute loads evenly and low, and space suit designs that will not limit the sagittal plane range of motion at the lower extremity joints.
Interactive information processing for NASA's mesoscale analysis and space sensor program
NASA Technical Reports Server (NTRS)
Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.
1985-01-01
The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.
Chaotic Motions in the Dynamics of Space Tethered Systems. 1. Analysis of the Problem
NASA Astrophysics Data System (ADS)
Pirozhenko, A. V.
The determined-chaos phenomenon in the dynamics of space tethered systems is analyzed. A model problem, the essence of stochastic regimes of motion in the oscillation of masses in the internal degrees of freedom is formulated. A number of calculus approaches to the phenomenon is considered and the supposition is made that it is impossible to define the essence of the phenomenon by the mathematical methods traditional for mechanics.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
Intermittent many-body dynamics at equilibrium
NASA Astrophysics Data System (ADS)
Danieli, C.; Campbell, D. K.; Flach, S.
2017-06-01
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
Design of a force reflecting hand controller for space telemanipulation studies
NASA Technical Reports Server (NTRS)
Paines, J. D. B.
1987-01-01
The potential importance of space telemanipulator systems is reviewed, along with past studies of master-slave manipulation using a generalized force reflecting master arm. Problems concerning their dynamic interaction with the human operator have been revealed in the use of these systems, with marked differences between 1-g and simulated weightless conditions. A study is outlined to investigate the optimization of the man machine dynamics of master-slave manipulation, and a set of specifications is determined for the apparatus necessary to perform this investigation. This apparatus is a one degree of freedom force reflecting hand controller with closed loop servo control which enables it to simulate arbitrary dynamic properties to high bandwidth. Design of the complete system and its performance is discussed. Finally, the experimental adjustment of the hand controller dynamics for smooth manual control performance with good operator force perception is described, resulting in low inertia, viscously damped hand controller dynamics.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
Effective control of complex turbulent dynamical systems through statistical functionals.
Majda, Andrew J; Qi, Di
2017-05-30
Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.
Single neuron computation: from dynamical system to feature detector.
Hong, Sungho; Agüera y Arcas, Blaise; Fairhall, Adrienne L
2007-12-01
White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input and to determine how these features are combined to drive the system's spiking response. These methods have also been applied to characterize the input-output relations of single neurons driven by synaptic inputs, simulated by direct current injection. To interpret the results of white noise analysis of single neurons, we would like to understand how the obtained feature space of a single neuron maps onto the biophysical properties of the membrane, in particular, the dynamics of ion channels. Here, through analysis of a simple dynamical model neuron, we draw explicit connections between the output of a white noise analysis and the underlying dynamical system. We find that under certain assumptions, the form of the relevant features is well defined by the parameters of the dynamical system. Further, we show that under some conditions, the feature space is spanned by the spike-triggered average and its successive order time derivatives.
Autonomous scheduling technology for Earth orbital missions
NASA Technical Reports Server (NTRS)
Srivastava, S.
1982-01-01
The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.
Digit replacement: A generic map for nonlinear dynamical systems.
García-Morales, Vladimir
2016-09-01
A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.
1999-01-01
Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.
RMS massless arm dynamics capability in the SVDS. [equations of motion
NASA Technical Reports Server (NTRS)
Flanders, H. A.
1977-01-01
The equations of motion for the remote manipulator system, assuming that the masses and inertias of the arm can be neglected, are developed for implementation into the space vehicle dynamics simulation (SVDS) program for the Orbiter payload system. The arm flexibility is incorporated into the equations by the computation of flexibility terms for use in the joint servo model. The approach developed in this report is based on using the Jacobian transformation matrix to transform force and velocity terms between the configuration space and the task space to simplify the form of the equations.
Tuning the fragility of a glass-forming liquid by curving space.
Sausset, François; Tarjus, Gilles; Viot, Pascal
2008-10-10
We investigate the influence of space curvature, and of the associated frustration, on the dynamics of a model glass former: a monatomic liquid on the hyperbolic plane. We find that the system's fragility, i.e., the sensitivity of the relaxation time to temperature changes, increases as one decreases the frustration. As a result, curving space provides a way to tune fragility and make it as large as wanted. We also show that the nature of the emerging "dynamic heterogeneities", another distinctive feature of slowly relaxing systems, is directly connected to the presence of frustration-induced topological defects.
NASA Astrophysics Data System (ADS)
Shi, Chengkun; Sun, Hanxu; Jia, Qingxuan; Zhao, Kailiang
2009-05-01
For realizing omni-directional movement and operating task of spherical space robot system, this paper describes an innovated prototype and analyzes dynamic characteristics of a spherical rolling robot with telescopic manipulator. Based on the Newton-Euler equations, the kinematics and dynamic equations of the spherical robot's motion are instructed detailedly. Then the motion simulations of the robot in different environments are developed with ADAMS. The simulation results validate the mathematics model of the system. And the dynamic model establishes theoretical basis for the latter job.
NASA Technical Reports Server (NTRS)
Coppolino, Robert N.
2018-01-01
Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.
NASA Astrophysics Data System (ADS)
Nelson, Hunter Barton
A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young
2017-03-14
Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.
Adaptive servo control for umbilical mating
NASA Technical Reports Server (NTRS)
Zia, Omar
1988-01-01
Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.
Structural Stability of Mathematical Models of National Economy
NASA Astrophysics Data System (ADS)
Ashimov, Abdykappar A.; Sultanov, Bahyt T.; Borovskiy, Yuriy V.; Adilov, Zheksenbek M.; Ashimov, Askar A.
2011-12-01
In the paper we test robustness of particular dynamic systems in a compact regions of a plane and a weak structural stability of one dynamic system of high order in a compact region of its phase space. The test was carried out based on the fundamental theory of dynamical systems on a plane and based on the conditions for weak structural stability of high order dynamic systems. A numerical algorithm for testing the weak structural stability of high order dynamic systems has been proposed. Based on this algorithm we assess the weak structural stability of one computable general equilibrium model.
A hyperjerk memristive system with infinite equilibrium points
NASA Astrophysics Data System (ADS)
Prousalis, Dimitrios A.; Volos, Christos K.; Stouboulos, Ioannis N.; Kyprianidis, Ioannis M.
2017-09-01
A novel 4-D dynamical memristive system is presented in this work. The specificity of the model is that it develops a line of equilibrium points and it has hyperjerk dynamics in a particular range of the parameters space. The behavior of the suggested system is investigated through numerical simulations, by using phase portraits, Lyapunov exponents, bifurcation diagrams. Also, its circuital implementation confirms the memristive system's expected dynamics.
State-space receptive fields of semicircular canal afferent neurons in the bullfrog
NASA Technical Reports Server (NTRS)
Paulin, M. G.; Hoffman, L. F.
2001-01-01
Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.
Dynamics in multiple-well Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Nigro, M.; Capuzzi, P.; Cataldo, H. M.; Jezek, D. M.
2018-01-01
We study the dynamics of three-dimensional weakly linked Bose-Einstein condensates using a multimode model with an effective interaction parameter. The system is confined by a ring-shaped four-well trapping potential. By constructing a two-mode Hamiltonian in a reduced highly symmetric phase space, we examine the periodic orbits and calculate their time periods both in the self-trapping and Josephson regimes. The dynamics in the vicinity of the reduced phase space is investigated by means of a Floquet multiplier analysis, finding regions of different linear stability and analyzing their implications on the exact dynamics. The numerical exploration in an extended region of the phase space demonstrates that two-mode tools can also be useful for performing a partition of the space in different regimes. Comparisons with Gross-Pitaevskii simulations confirm these findings and emphasize the importance of properly determining the effective on-site interaction parameter governing the multimode dynamics.
NASA Astrophysics Data System (ADS)
Hong, Taehoon; Kim, Jimin; Koo, Choongwan; Jeong, Kwangbok
2015-02-01
To systematically manage the energy consumption of existing buildings, the government has to enforce greenhouse gas reduction policies. However, most of the policies are not properly executed because they do not consider various factors from the urban level perspective. Therefore, this study aimed to conduct a dynamic analysis of an urban-based low-carbon policy using system dynamics, with a specific focus on housing and green space. This study was conducted in the following steps: (i) establishing the variables of urban-based greenhouse gases (GHGs) emissions; (ii) creating a stock/flow diagram of urban-based GHGs emissions; (iii) conducting an information analysis using the system dynamics; and (iv) proposing the urban-based low-carbon policy. If a combined energy policy that uses the housing sector (30%) and the green space sector (30%) at the same time is implemented, 2020 CO2 emissions will be 7.23 million tons (i.e., 30.48% below 2020 business-as-usual), achieving the national carbon emissions reduction target (26.9%). The results of this study could contribute to managing and improving the fundamentals of the urban-based low-carbon policies to reduce greenhouse gas emissions.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)
NASA Technical Reports Server (NTRS)
Savely, Robert T. (Editor)
1991-01-01
The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle.
Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Weihong; Sun, Kai; Qi, Junjian
2015-01-01
Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-busmore » system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.« less
Social Dynamics in the Preschool
ERIC Educational Resources Information Center
Martin, Carol Lynn; Fabes, Richard A.; Hanish, Laura D.; Hollenstein, Tom
2005-01-01
In this paper, we consider how concepts from dynamic systems (such as attractors, repellors, and self-organization) can be applied to the study of young children's peer relationships. We also consider how these concepts can be used to explore basic issues involving early peer processes. We use the dynamical systems approach called state space grid…
Dynamic Radioisotope Power System Development for Space Explorations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A L
Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less
DICE/ColDICE: 6D collisionless phase space hydrodynamics using a lagrangian tesselation
NASA Astrophysics Data System (ADS)
Sousbie, Thierry
2018-01-01
DICE is a C++ template library designed to solve collisionless fluid dynamics in 6D phase space using massively parallel supercomputers via an hybrid OpenMP/MPI parallelization. ColDICE, based on DICE, implements a cosmological and physical VLASOV-POISSON solver for cold systems such as dark matter (CDM) dynamics.
Design of the Heat Receiver for the U.S./Russia Solar Dynamic Power Joint Flight Demonstration
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Krystkowiak, Christopher; Klucher, Beth A.
1996-01-01
A joint U.S./Russia program is being conducted to develop, fabricate, launch, and operate a solar dynamic demonstration system on Space Station Mir. The goal of the program is to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station Alpha The major components of the system include a heat receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a concentrator, a radiator, a thermal control system, and a Space Shuttle Carrier. This paper discusses the design of the heat receiver component. The receiver comprises a cylindrical cavity, the walls of which are lined with a series of tubes running the length of the cavity. The engine working fluid, a mixture of xenon and helium, is heated by the concentrated sunlight incident on these tubes. The receiver incorporates integral thermal storage, using a eutectic mixture of lithium fluoride and calcium difluoride as the thermal storage solid-to-liquid phase change materiaL This thermal storage is required to enable power production during eclipse. The phase change material is contained in a series of individual containment canisters.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.
2014-01-01
The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.
Solar dynamic power for the Space Station
NASA Technical Reports Server (NTRS)
Archer, J. S.; Diamant, E. S.
1986-01-01
This paper describes a computer code which provides a significant advance in the systems analysis capabilities of solar dynamic power modules. While the code can be used to advantage in the preliminary analysis of terrestrial solar dynamic modules its real value lies in the adaptions which make it particularly useful for the conceptualization of optimized power modules for space applications. In particular, as illustrated in the paper, the code can be used to establish optimum values of concentrator diameter, concentrator surface roughness, concentrator rim angle and receiver aperture corresponding to the main heat cycle options - Organic Rankine and Brayton - and for certain receiver design options. The code can also be used to establish system sizing margins to account for the loss of reflectivity in orbit or the seasonal variation of insolation. By the simulation of the interactions among the major components of a solar dynamic module and through simplified formulations of the major thermal-optic-thermodynamic interactions the code adds a powerful, efficient and economic analytical tool to the repertory of techniques available for the design of advanced space power systems.
Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation
NASA Astrophysics Data System (ADS)
Yuan, Luqi; Xiao, Meng; Lin, Qian; Fan, Shanhui
2018-03-01
We show that a single ring resonator undergoing dynamic modulation can be used to create a synthetic space with an arbitrary dimension. In such a system, the phases of the modulation can be used to create a photonic gauge potential in high dimensions. As an illustration of the implication of this concept, we show that the Haldane model, which exhibits nontrivial topology in two dimensions, can be implemented in the synthetic space using three rings. Our results point to a route toward exploring higher-dimensional topological physics in low-dimensional physical structures. The dynamics of photons in such synthetic spaces also provides a mechanism to control the spectrum of light.
Joint nonlinearity effects in the design of a flexible truss structure control system
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1986-01-01
Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.
NASA Technical Reports Server (NTRS)
Mohler, S. R.
1982-01-01
The matter of aging and its relation to space vehicle crewmembers undertaking prolonged space missions is addressed. The capabilities of the older space traveler to recover from bone demineralization and muscle atrophy are discussed. Certain advantages of the older person are noted, for example, a greater tolerance of monotony and repetitious activities. Additional parameters are delineated including the cardiovascular system, the reproductive system, ionizing radiation, performance, and group dynamics.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2002-01-01
This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.
NASA Technical Reports Server (NTRS)
Hsia, Wei-Shen
1986-01-01
In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.
14 CFR 25.562 - Emergency landing dynamic conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
....562 Emergency landing dynamic conditions. (a) The seat and restraint system in the airplane must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 25... successfully complete dynamic tests or be demonstrated by rational analysis based on dynamic tests of a similar...
NASA Technical Reports Server (NTRS)
2005-01-01
This is a Roadmap to understanding the environment of our Earth, from its life-sustaining Sun out past the frontiers of the solar system. A collection of spacecraft now patrols this space, revealing not a placid star and isolated planets, but an immense, dynamic, interconnected system within which our home planet is embedded and through which space explorers must journey. These spacecraft already form a great observatory with which the Heliophysics program can study the Sun, the heliosphere, the Earth, and other planetary environments as elements of a system--one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar variability. NASA continually evolves the Heliophysics Great Observatory by adding new missions and instruments in order to answer the challenging questions confronting us now and in the future as humans explore the solar system. The three heliophysics science objectives: opening the frontier to space environment prediction; understanding the nature of our home in space, and safeguarding the journey of exploration, require sustained research programs that depend on combining new data, theory, analysis, simulation, and modeling. Our program pursues a deeper understanding of the fundamental physical processes that underlie the exotic phenomena of space.
How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.
2005-01-01
For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.
Thin film coatings for space electrical power system applications
NASA Technical Reports Server (NTRS)
Gulino, Daniel A.
1989-01-01
This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.
Thin film coatings for space electrical power system applications
NASA Technical Reports Server (NTRS)
Gulino, Daniel A.
1988-01-01
This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.
Trade Studies of Space Launch Architectures using Modular Probabilistic Risk Analysis
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Go, Susie
2006-01-01
A top-down risk assessment in the early phases of space exploration architecture development can provide understanding and intuition of the potential risks associated with new designs and technologies. In this approach, risk analysts draw from their past experience and the heritage of similar existing systems as a source for reliability data. This top-down approach captures the complex interactions of the risk driving parts of the integrated system without requiring detailed knowledge of the parts themselves, which is often unavailable in the early design stages. Traditional probabilistic risk analysis (PRA) technologies, however, suffer several drawbacks that limit their timely application to complex technology development programs. The most restrictive of these is a dependence on static planning scenarios, expressed through fault and event trees. Fault trees incorporating comprehensive mission scenarios are routinely constructed for complex space systems, and several commercial software products are available for evaluating fault statistics. These static representations cannot capture the dynamic behavior of system failures without substantial modification of the initial tree. Consequently, the development of dynamic models using fault tree analysis has been an active area of research in recent years. This paper discusses the implementation and demonstration of dynamic, modular scenario modeling for integration of subsystem fault evaluation modules using the Space Architecture Failure Evaluation (SAFE) tool. SAFE is a C++ code that was originally developed to support NASA s Space Launch Initiative. It provides a flexible framework for system architecture definition and trade studies. SAFE supports extensible modeling of dynamic, time-dependent risk drivers of the system and functions at the level of fidelity for which design and failure data exists. The approach is scalable, allowing inclusion of additional information as detailed data becomes available. The tool performs a Monte Carlo analysis to provide statistical estimates. Example results of an architecture system reliability study are summarized for an exploration system concept using heritage data from liquid-fueled expendable Saturn V/Apollo launch vehicles.
An integrated system for dynamic control of auditory perspective in a multichannel sound field
NASA Astrophysics Data System (ADS)
Corey, Jason Andrew
An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to create a perceptually strong impression of source location and movement within a simulated space.
NASA Astrophysics Data System (ADS)
Stolfi, A.; Gasbarri, P.; Sabatini, M.
2017-10-01
In the near future robotic systems will be playing an increasingly important role in space applications such as repairing, refueling, re-orbiting spacecraft and cleaning up the increasing amount of space debris. Space Manipulator Systems (SMSs) are robotic systems made of a platform (which has its own actuators such as thrusters and reaction wheels) equipped with one or more deployable arms. The present paper focuses on the issue of maintaining a stable first contact between the arms terminal parts (i.e. the end-effectors) and a target satellite, before the actual grasp is performed. The selected approach is a modified version of the Impedance Control algorithm, in which the end-effector is controlled in order to make it behave like a mass-spring-damper system regardless of the reaction motion of the base, so to absorb the impact energy. The usual approach consists in considering a point mass target and one-dimensional contact dynamics; however, the contact between the chaser and the target could generate a perturbation on the attitude of the target. On account of this, in the present work a more realistic scenario, consisting in a 2D rigid target and a relevant 2D contact dynamics, is considered. A two-arm configuration of the SMS is modelled and its effectiveness analyzed. The performance of the proposed control architecture is evaluated by means of a co-simulation involving the MSC Adams multibody code (for describing the dynamics of the space robot and target) together with Simulink (for the determination of the control actions). The co-simulation is a particularly useful tool to implement robust control applied to detailed dynamic systems. Several numerical results complete the work.
Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years
NASA Astrophysics Data System (ADS)
Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal
2017-12-01
Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.
Space station dynamics, attitude control and momentum management
NASA Technical Reports Server (NTRS)
Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi
1989-01-01
The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.
ERIC Educational Resources Information Center
Mitchell, Christine M.; Govindaraj, T.
1990-01-01
Discusses the use of intelligent tutoring systems as opposed to traditional on-the-job training for training operators of complex dynamic systems and describes the computer architecture for a system for operators of a NASA (National Aeronautics and Space Administration) satellite control system. An experimental evaluation with college students is…
Solar dynamic power system definition study
NASA Technical Reports Server (NTRS)
Wallin, Wayne E.; Friefeld, Jerry M.
1988-01-01
The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.
A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.
1984-09-01
structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links.
Juarez, Juan C; Young, David W; Sluz, Joseph E; Stotts, Larry B
2011-05-23
A high-sensitivity modem and high-dynamic range optical automatic gain controller (OAGC) have been developed to provide maximum link margin and to overcome the dynamic nature of free-space optical links. A sensitivity of -48.9 dBm (10 photons per bit) at 10 Gbps was achieved employing a return-to-zero differential phase shift keying based modem and a commercial Reed-Solomon forward error correction system. Low-noise optical gain was provided by an OAGC with a noise figure of 4.1 dB (including system required input loses) and a dynamic range of greater than 60 dB.
Patrick C. Tobin
2004-01-01
The estimation of spatial autocorrelation in spatially- and temporally-referenced data is fundamental to understanding an organism's population biology. I used four sets of census field data, and developed an idealized space-time dynamic system, to study the behavior of spatial autocorrelation estimates when a practical method of sampling is employed. Estimates...
Orientation of Space Station Freedom electrical power system in environmental effects assessment
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi
1990-01-01
The orientation effects of six Space Station Freedom Electrical Power System (EPS) components are evaluated for three environmental interactions: aerodynamic drag, atomic oxygen erosion, and orbital debris impact. Designers can directly apply these orientation factors to estimate the magnitude of the examined environment and the environmental effects for the EPS component of interest. The six EPS components are the solar array, photovoltaic module radiator, integrated equipment assembly, solar dynamic concentrator, solar dynamic radiator, and beta gimbal.
Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David
1995-01-01
The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2014-05-21
We have used a generalised coherent state resolution of the identity to map the quantum canonical statistical average for a general system onto a phase-space average over the centre and width parameters of a thawed Gaussian wave packet. We also propose an artificial phase-space density that has the same behaviour as the canonical phase-space density in the low-temperature limit, and have constructed a novel Nosé–Hoover looped chain thermostat that generates this density in conjunction with variational thawed Gaussian wave-packet dynamics. This forms a new platform for evaluating statistical properties of quantum condensed-phase systems that has an explicit connection to themore » time-dependent Schrödinger equation, whilst retaining many of the appealing features of path-integral molecular dynamics.« less
Security for safety critical space borne systems
NASA Technical Reports Server (NTRS)
Legrand, Sue
1987-01-01
The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.
Dynamically orthogonal field equations for stochastic flows and particle dynamics
2011-02-01
where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new
Molecular dynamics in principal component space.
Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L
2012-07-26
A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.
KC-135 materials handling robotics
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.
Stirling System Modeling for Space Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Johnson, Paul K.
2008-01-01
A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.
Graph determined symbolic dynamics and hybrid systems
NASA Astrophysics Data System (ADS)
Ayers, Kimberly Danielle
In this paper we explore the concept of symbolic dynamical systems whose structure is determined by a directed graph, and then discrete-continuous hybrid systems that arise from such dynamical systems. Typically, symbolic dynamics involve the study of a left shift of a bi-infinite sequence. We examine the case when the bi-infinite system is dictated by a graph; that is, the sequence is a bi-infinite path of a directed graph. We then use the concept to study a system of dynamical systems all on the same compact space M, where "switching" between the systems occurs as given by the bi-infinite sequence in question. The concepts of limit sets, chain recurrent sets, chaos, and Morse sets for these systems are explored.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1987-01-01
A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on May 12 and 13, 1987, at the NASA Lewis research Center. Aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics were discussed.
Application of the ADAMS program to deployable space truss structures
NASA Technical Reports Server (NTRS)
Calleson, R. E.
1985-01-01
The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.
Extended Phase-Space Methods for Enhanced Sampling in Molecular Simulations: A Review.
Fujisaki, Hiroshi; Moritsugu, Kei; Matsunaga, Yasuhiro; Morishita, Tetsuya; Maragliano, Luca
2015-01-01
Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein, and protein-DNA/RNA interactions. Straightforward applications, however, are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD), Logarithmic Mean Force Dynamics (LogMFD), and Multiscale Enhanced Sampling (MSES) algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free-energy landscape via automatic exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Sanchez, Travis
2005-02-06
The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less
Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing
NASA Technical Reports Server (NTRS)
Nance, Donald K.; Liever, Peter A.
2015-01-01
The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.
Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing
NASA Technical Reports Server (NTRS)
Nance, Donald; Liever, Peter; Nielsen, Tanner
2015-01-01
The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.
USSR Space Life Sciences Digest, issue 1
NASA Technical Reports Server (NTRS)
Hooke, L. R.; Radtke, M.; Rowe, J. E.
1985-01-01
The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tendick, Frank; Stark, Lawrence W.; Ellis, Stephen R.
1987-01-01
Position and rate control are the two common manual control modes in teleoperations. Human operator performance using the two modes is evaluated and compared. Simulated three-axis pick-and-place operations are used as the primary task for evaluation. First, ideal position and rate control are compared by considering several factors, such as joystick gain, joystick type, display mode, task, and manipulator work space size. Then the effects of the manipulator system dynamics are investigated by varying the natural frequency and speed limit. Experimental results show that ideal position control is superior to ideal rate control, regardless of joystick type or display mode, when the manipulation work space is small or comparable to the human operator's control space. Results also show that when the manipulator system is slow, the superiority of position control disappears. Position control is recommended for small-work-space telemanipulation tasks, while rate control is recommended for slow wide-work-space telemanipulation tasks.
Quasi-equilibria in reduced Liouville spaces.
Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon
2012-06-14
The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.
1994-01-01
This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.
Riemannian geometric approach to human arm dynamics, movement optimization, and invariance
NASA Astrophysics Data System (ADS)
Biess, Armin; Flash, Tamar; Liebermann, Dario G.
2011-03-01
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparametrized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm’s configuration space may provide insights into the emerging properties of the movements generated by the motor system.
AMTD - Advanced Mirror Technology Development in Mechanical Stability
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.
Modeling microbial community structure and functional diversity across time and space.
Larsen, Peter E; Gibbons, Sean M; Gilbert, Jack A
2012-07-01
Microbial communities exhibit exquisitely complex structure. Many aspects of this complexity, from the number of species to the total number of interactions, are currently very difficult to examine directly. However, extraordinary efforts are being made to make these systems accessible to scientific investigation. While recent advances in high-throughput sequencing technologies have improved accessibility to the taxonomic and functional diversity of complex communities, monitoring the dynamics of these systems over time and space - using appropriate experimental design - is still expensive. Fortunately, modeling can be used as a lens to focus low-resolution observations of community dynamics to enable mathematical abstractions of functional and taxonomic dynamics across space and time. Here, we review the approaches for modeling bacterial diversity at both the very large and the very small scales at which microbial systems interact with their environments. We show that modeling can help to connect biogeochemical processes to specific microbial metabolic pathways. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew
2017-01-01
The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agency's LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three primary components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after propulsion separation. A recommissioning period was added after an anomaly occurred in the thruster system. The paper will describe the activities used to commission DRS, present results from the commissioning of the DCS and the recommissioning activities per-formed after the thruster anomaly.
International Space Station Future Correlation Analysis Improvements
NASA Technical Reports Server (NTRS)
Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael
2018-01-01
Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.
NASA Technical Reports Server (NTRS)
Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew
2017-01-01
The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agencys LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three prima-ry components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after pro-pulsion separation. A recommissioning period was added after an anomaly oc-curred in the thruster system. The paper will describe the activities used to com-mission DRS, present results from the commissioning of the DCS and the re-commissioning activities performed after the thruster anomaly.
Annular suspension and pointing system with controlled DC electromagnets
NASA Technical Reports Server (NTRS)
Vu, Josephine Lynn; Tam, Kwok Hung
1993-01-01
The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.
Modelling and simulation of Space Station Freedom berthing dynamics and control
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.
1994-01-01
A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.
Nonlinear dynamic phenomena in the space shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Housner, J. M.; Edighoffer, H. H.; Park, K. C.
1981-01-01
The development of an analysis for examining the nonlinear dynamic phenomena arising in the space shuttle orbiter tile/pad thermal protection system is presented. The tile/pad system consists of ceramic tiles bonded to the aluminum skin of the orbiter through a thin nylon felt pad. The pads are a soft nonlinear material which permits large strains and displays both hysteretic and nonlinear viscous damping. Application of the analysis to a square tile subjected to transverse sinusoidal motion of the orbiter skin is presented and the following nonlinear dynamic phenomena are considered: highly distorted wave forms, amplitude-dependent resonant frequencies which initially decrease and then increase with increasing amplitude of motion, magnification of substrate motion which is higher than would be expected in a similarly highly damped linear system, and classical parametric resonance instability.
Geographic Visualization of Power-Grid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R.
2015-06-18
The visualization enables the simulation analyst to see changes in the frequency through time and space. With this technology, the analyst has a bird's eye view of the frequency at loads and generators as the simulated power system responds to the loss of a generator, spikes in load, and other contingencies. The significance of a contingency to the operation of an electrical power system depends critically on how the resulting tansients evolve in time and space. Consequently, these dynamic events can only be understood when seen in their proper geographic context. this understanding is indispensable to engineers working on themore » next generation of distributed sensing and control systems for the smart grid. By making possible a natural and intuitive presentation of dynamic behavior, our new visualization technology is a situational-awareness tool for power-system engineers.« less
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Constraint elimination in dynamical systems
NASA Technical Reports Server (NTRS)
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Automation of the space station core module power management and distribution system
NASA Technical Reports Server (NTRS)
Weeks, David J.
1988-01-01
Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.
Nuclear reactor power as applied to a space-based radar mission
NASA Technical Reports Server (NTRS)
Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.
1988-01-01
A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.
Overview of Glenn Mechanical Components Branch Research
NASA Astrophysics Data System (ADS)
Zakrajsek, James
2002-09-01
Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.
Patrick C. Tobin; Ottar N. Bjornstad
2005-01-01
Natural enemy-victim systems may exhibit a range of dynamic space-time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy-victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially...
Alternate space station freedom configuration considerations to accommodate solar dynamic power
NASA Technical Reports Server (NTRS)
Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.
1989-01-01
The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.
Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space
Cui, Jin-Ming; Huang, Yun-Feng; Wang, Zhao; Cao, Dong-Yang; Wang, Jian; Lv, Wei-Min; Luo, Le; del Campo, Adolfo; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction. PMID:27633087
Structural Dynamics Experimental Activities in Ultra-Lightweight and Inflatable Space Structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Lassiter, John O.; Ross, Brian P.
2001-01-01
This paper reports recently completed structural dynamics experimental activities with new ultralightweight and inflatable space structures (a.k.a., "Gossamer" spacecraft) at NASA Langley Research Center, NASA Marshall Space Flight Center, and NASA Goddard Space Flight Center. Nine aspects of this work are covered, as follows: 1) inflated, rigidized tubes, 2) active control experiments, 3) photogrammetry, 4) laser vibrometry, 5) modal tests of inflatable structures, 6) in-vacuum modal tests, 7) tensioned membranes, 8) deployment tests, and 9) flight experiment support. Structural dynamics will play a major role in the design and eventual in-space deployment and performance of Gossamer spacecraft, and experimental R&D work such as this is required now to validate new analytical prediction methods. The activities discussed in the paper are pathfinder accomplishments, conducted on unique components and prototypes of future spacecraft systems.
Dynamics and computation in functional shifts
NASA Astrophysics Data System (ADS)
Namikawa, Jun; Hashimoto, Takashi
2004-07-01
We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.
Coupled Loads Analysis of the Modified NASA Barge Pegasus and Space Launch System Hardware
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
A Coupled Loads Analysis (CLA) has been performed for barge transport of Space Launch System hardware on the recently modified NASA barge Pegasus. The barge re-design was facilitated with detailed finite element analyses by the ARMY Corps of Engineers - Marine Design Center. The Finite Element Model (FEM) utilized in the design was also used in the subject CLA. The Pegasus FEM and CLA results are presented as well as a comparison of the analysis process to that of a payload being transported to space via the Space Shuttle. Discussion of the dynamic forcing functions is included as well. The process of performing a dynamic CLA of NASA hardware during marine transport is thought to be a first and can likely support minimization of undue conservatism.
Numerical Estimation of Balanced and Falling States for Constrained Legged Systems
NASA Astrophysics Data System (ADS)
Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.
2017-08-01
Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs. elbow-down). For both 1- and 2-DOF systems, the results are validated in simulation environments. Finally, the manifold for a biped walking robot is constructed and illustrated against its single-support walking trajectories. The manifold identified by the proposed framework for any given legged system can be evaluated beforehand as a system property and serves as a map for either a specified state or a specific controller's performance.
Wigner flow reveals topological order in quantum phase space dynamics.
Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg
2013-01-18
The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.
Classical dynamics on curved Snyder space
NASA Astrophysics Data System (ADS)
Ivetić, B.; Meljanac, S.; Mignemi, S.
2014-05-01
We study the classical dynamics of a particle in nonrelativistic Snyder-de Sitter space. We show that for spherically symmetric systems, parameterizing the solutions in terms of an auxiliary time variable, which is a function only of the physical time and of the energy and angular momentum of the particles, one can reduce the problem to the equivalent one in classical mechanics. We also discuss a relativistic extension of these results, and a generalization to the case in which the algebra is realized in flat space.
Magnetofluid dynamics in curved spacetime
NASA Astrophysics Data System (ADS)
Bhattacharjee, Chinmoy; Das, Rupam; Mahajan, S. M.
2015-03-01
A grand unified field Mμ ν is constructed from Maxwell's field tensor and an appropriately modified flow field, both nonminimally coupled to gravity, to analyze the dynamics of hot charged fluids in curved background space-time. With a suitable 3 +1 decomposition, this new formalism of the hot fluid is then applied to investigate the vortical dynamics of the system. Finally, the equilibrium state for plasma with nonminimal coupling through Ricci scalar R to gravity is investigated to derive a double Beltrami equation in curved space-time.
Project WISH: The Emerald City
NASA Technical Reports Server (NTRS)
1990-01-01
When Project WISH (Wandering Interplanetary Space Harbor) was initiated as a multi-year project, several design requirements were specified. The space station must have a lifetime of at least 50 years, be autonomous and independent of Earth resources, be capable of traveling throughout the solar system within a maximum flight time of three years, and have a population of 500 to 1000 people. The purpose of the station is to provide a permanent home for space colonists and to serve as a service station for space missions. The orbital mechanics, propulsion system, vehicle dynamics and control, life support system, communication system, power system, and thermal system are discussed.
Robust coordinated control of a dual-arm space robot
NASA Astrophysics Data System (ADS)
Shi, Lingling; Kayastha, Sharmila; Katupitiya, Jay
2017-09-01
Dual-arm space robots are more capable of implementing complex space tasks compared with single arm space robots. However, the dynamic coupling between the arms and the base will have a serious impact on the spacecraft attitude and the hand motion of each arm. Instead of considering one arm as the mission arm and the other as the balance arm, in this work two arms of the space robot perform as mission arms aimed at accomplishing secure capture of a floating target. The paper investigates coordinated control of the base's attitude and the arms' motion in the task space in the presence of system uncertainties. Two types of controllers, i.e. a Sliding Mode Controller (SMC) and a nonlinear Model Predictive Controller (MPC) are verified and compared with a conventional Computed-Torque Controller (CTC) through numerical simulations in terms of control accuracy and system robustness. Both controllers eliminate the need to linearly parameterize the dynamic equations. The MPC has been shown to achieve performance with higher accuracy than CTC and SMC in the absence of system uncertainties under the condition that they consume comparable energy. When the system uncertainties are included, SMC and CTC present advantageous robustness than MPC. Specifically, in a case where system inertia increases, SMC delivers higher accuracy than CTC and costs the least amount of energy.
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
NASA Technical Reports Server (NTRS)
Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert
1987-01-01
Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.
Extended space expectation values in quantum dynamical system evolutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demiralp, Metin
2014-10-06
The time variant power series expansion for the expectation value of a given quantum dynamical operator is well-known and well-investigated issue in quantum dynamics. However, depending on the operator and Hamiltonian singularities this expansion either may not exist or may not converge for all time instances except the beginning of the evolution. This work focuses on this issue and seeks certain cures for the negativities. We work in the extended space obtained by adding all images of the initial wave function under the system Hamiltonian’s positive integer powers. This requires the introduction of certain appropriately defined weight operators. The resultingmore » better convergence in the temporal power series urges us to call the new defined entities “extended space expectation values” even though they are constructed over certain weight operators and are somehow pseudo expectation values.« less
Quantum walks and wavepacket dynamics on a lattice with twisted photons.
Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W; Marrucci, Lorenzo
2015-03-01
The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.
Quantum walks and wavepacket dynamics on a lattice with twisted photons
Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W.; Marrucci, Lorenzo
2015-01-01
The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations. PMID:26601157
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System
NASA Technical Reports Server (NTRS)
1995-01-01
The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.
Inflated speedups in parallel simulations via malloc()
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
Discrete-event simulation programs make heavy use of dynamic memory allocation in order to support simulation's very dynamic space requirements. When programming in C one is likely to use the malloc() routine. However, a parallel simulation which uses the standard Unix System V malloc() implementation may achieve an overly optimistic speedup, possibly superlinear. An alternate implementation provided on some (but not all systems) can avoid the speedup anomaly, but at the price of significantly reduced available free space. This is especially severe on most parallel architectures, which tend not to support virtual memory. It is shown how a simply implemented user-constructed interface to malloc() can both avoid artificially inflated speedups, and make efficient use of the dynamic memory space. The interface simply catches blocks on the basis of their size. The problem is demonstrated empirically, and the effectiveness of the solution is shown both empirically and analytically.
Efficient placement of structural dynamics sensors on the space station
NASA Technical Reports Server (NTRS)
Lepanto, Janet A.; Shepard, G. Dudley
1987-01-01
System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.
NASA Astrophysics Data System (ADS)
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
New prospects for observing and cataloguing exoplanets in well-detached binaries
NASA Astrophysics Data System (ADS)
Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á.
2016-08-01
This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well-detached binary-star systems using eclipse timing variations (ETVs). We investigated the dynamics of well-detached binary star systems with a star separation from 0.5 to 3 au, to determine the probability of the detection of such variations with ground-based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary-star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well-detached binary star systems from several catalogues and discussed the possibility of further candidates.
USSR Space Life Sciences Digest, issue 30
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)
1991-01-01
This is the thirtieth issue of NASA's Space Life Sciences Digest. It contains abstracts of 47 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, biospheric research, cardiovascular and respiratory systems, endocrinology, equipment and instrumentation, gastrointestinal system, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, psychology, radiobiology, and space biology and medicine.
Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery
NASA Technical Reports Server (NTRS)
1993-01-01
A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.
Stability of Dynamical Systems with Discontinuous Motions:
NASA Astrophysics Data System (ADS)
Michel, Anthony N.; Hou, Ling
In this paper we present a stability theory for discontinuous dynamical systems (DDS): continuous-time systems whose motions are not necessarily continuous with respect to time. We show that this theory is not only applicable in the analysis of DDS, but also in the analysis of continuous dynamical systems (continuous-time systems whose motions are continuous with respect to time), discrete-time dynamical systems (systems whose motions are defined at discrete points in time) and hybrid dynamical systems (HDS) (systems whose descriptions involve simultaneously continuous-time and discrete-time). We show that the stability results for DDS are in general less conservative than the corresponding well-known classical Lyapunov results for continuous dynamical systems and discrete-time dynamical systems. Although the DDS stability results are applicable to general dynamical systems defined on metric spaces (divorced from any kind of description by differential equations, or any other kinds of equations), we confine ourselves to finite-dimensional dynamical systems defined by ordinary differential equations and difference equations, to make this paper as widely accessible as possible. We present only sample results, namely, results for uniform asymptotic stability in the large.
In-space research, technology and engineering experiments and Space Station
NASA Technical Reports Server (NTRS)
Tyson, Richard; Gartrell, Charles F.
1988-01-01
The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.
Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System
NASA Technical Reports Server (NTRS)
Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.
2014-01-01
A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
Determination and Control of Optical and X-Ray Wave Fronts
NASA Technical Reports Server (NTRS)
Kim, Young K.
1997-01-01
A successful design of a space-based or ground optical system requires an iterative procedure which includes the kinematics and dynamics of the system in operating environment, control synthesis and verification. To facilitate the task of designing optical wave front control systems being developed at NASA/MSFC, a multi-discipline dynamics and control tool has been developed by utilizing TREETOPS, a multi-body dynamics and control simulation, NASTRAN and MATLAB. Dynamics and control models of STABLE and ARIS were developed for TREETOPS simulation, and their simulation results are documented in this report.
On the enhanced sampling over energy barriers in molecular dynamics simulations.
Gao, Yi Qin; Yang, Lijiang
2006-09-21
We present here calculations of free energies of multidimensional systems using an efficient sampling method. The method uses a transformed potential energy surface, which allows an efficient sampling of both low and high energy spaces and accelerates transitions over barriers. It allows efficient sampling of the configuration space over and only over the desired energy range(s). It does not require predetermined or selected reaction coordinate(s). We apply this method to study the dynamics of slow barrier crossing processes in a disaccharide and a dipeptide system.
Space construction base control system
NASA Technical Reports Server (NTRS)
Kaczynski, R. F.
1979-01-01
Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
NASA Astrophysics Data System (ADS)
Bhattacharyay, A.
2018-03-01
An alternative equilibrium stochastic dynamics for a Brownian particle in inhomogeneous space is derived. Such a dynamics can model the motion of a complex molecule in its conformation space when in equilibrium with a uniform heat bath. The derivation is done by a simple generalization of the formulation due to Zwanzig for a Brownian particle in homogeneous heat bath. We show that, if the system couples to different number of bath degrees of freedom at different conformations then the alternative model gets derived. We discuss results of an experiment by Faucheux and Libchaber which probably has indicated possible limitation of the Boltzmann distribution as equilibrium distribution of a Brownian particle in inhomogeneous space and propose experimental verification of the present theory using similar methods.
Space-time thermodynamics of the glass transition
NASA Astrophysics Data System (ADS)
Merolle, Mauro; Garrahan, Juan P.; Chandler, David
2005-08-01
We consider the probability distribution for fluctuations in dynamical action and similar quantities related to dynamic heterogeneity. We argue that the so-called “glass transition” is a manifestation of low action tails in these distributions where the entropy of trajectory space is subextensive in time. These low action tails are a consequence of dynamic heterogeneity and an indication of phase coexistence in trajectory space. The glass transition, where the system falls out of equilibrium, is then an order-disorder phenomenon in space-time occurring at a temperature Tg, which is a weak function of measurement time. We illustrate our perspective ideas with facilitated lattice models and note how these ideas apply more generally. Author contributions: M.M., J.P.G., and D.C. performed research and wrote the paper.
Control law synthesis and optimization software for large order aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Pototzky, A.; Noll, Thomas
1989-01-01
A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.
Cardiovascular and other dynamic systems in long-term space flight
NASA Technical Reports Server (NTRS)
Tipton, David A.
1987-01-01
The paper examines the physiology of the cardiovascular system, and to a lesser extent the endocrine, renal, and hematopoietic systems. The paper highlights the aspects of these areas that are most pertinent to space manufacturing, i.e., working in space. Areas covered include the physiological costs of working in microgravity and partial gravity (e.g., the moon or Mars), countermeasures to potentially adverse physiological adaptations, and problems associated with return to earth after long periods of weightlessness.
Microwave analog fiber-optic link for use in the deep space network
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1990-01-01
A novel fiber-optic system with dynamic range of up to 150 dB-Hz for transmission of microwave analog signals is described. The design, analysis, and laboratory evaluations of this system are reported, and potential applications in the NASA/JPL Deep Space Network are discussed.
Automated design of spacecraft systems power subsystems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Kordon, Mark; Mandutianu, Dan; Salcedo, Jose; Wood, Eric; Hashemi, Mona
2006-01-01
This paper discusses the application of evolutionary computing to a dynamic space vehicle power subsystem resource and performance simulation in a parallel processing environment. Our objective is to demonstrate the feasibility, application and advantage of using evolutionary computation techniques for the early design search and optimization of space systems.
Translating in vitro data and biological information into a predictive model for human toxicity poses a significant challenge. This is especially true for complex adaptive systems such as the embryo where cellular dynamics are precisely orchestrated in space and time. Computer ce...
Debates on the organization, structure and dynamics of ecosystems across scales of space and time have waxed and waned in the literature for a century. From successional theory to ecosystem theories of resilience and robustness, from hierarchy to ascendency to panarchy theory, e...
Quantum and classical chaos in kicked coupled Jaynes-Cummings cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, A. L. C.; Greentree, Andrew D.
2010-06-15
We consider two Jaynes-Cummings cavities coupled periodically with a photon hopping term. The semiclassical phase space is chaotic, with regions of stability over some ranges of the parameters. The quantum case exhibits dynamic localization and dynamic tunneling between classically forbidden regions. We explore the correspondence between the classical and quantum phase space and propose an implementation in a circuit QED system.
NASA Technical Reports Server (NTRS)
Soosaar, K.
1982-01-01
Some performance requirements and development needs for the design of large space structures are described. Areas of study include: (1) dynamic response of large space structures; (2) structural control and systems integration; (3) attitude control; and (4) large optics and flexibility. Reference is made to a large space telescope.
Eighteenth Space Simulation Conference: Space Mission Success Through Testing
NASA Technical Reports Server (NTRS)
Stecher, Joseph L., III (Compiler)
1994-01-01
The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'
Architecture for spacecraft operations planning
NASA Technical Reports Server (NTRS)
Davis, William S.
1991-01-01
A system which generates plans for the dynamic environment of space operations is discussed. This system synthesizes plans by combining known operations under a set of physical, functional, and temperal constraints from various plan entities, which are modeled independently but combine in a flexible manner to suit dynamic planning needs. This independence allows the generation of a single plan source which can be compiled and applied to a variety of agents. The architecture blends elements of temperal logic, nonlinear planning, and object oriented constraint modeling to achieve its flexibility. This system was applied to the domain of the Intravehicular Activity (IVA) maintenance and repair aboard Space Station Freedom testbed.
Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1995-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.
Small Stirling dynamic isotope power system for robotic space missions
NASA Technical Reports Server (NTRS)
Bents, D. J.
1992-01-01
The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.
Unified Approach to Modeling and Simulation of Space Communication Networks and Systems
NASA Technical Reports Server (NTRS)
Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth
2010-01-01
Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks
Technical needs and research opportunities provided by projected aeronautical and space systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1992-01-01
The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS
OTT, WILLIAM; RIVAS, MAURICIO A.; WEST, JAMES
2016-01-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence). PMID:28066028
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
Ott, William; Rivas, Mauricio A; West, James
2015-12-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).
Overcoming Dynamic Disturbances in Imaging Systems
NASA Technical Reports Server (NTRS)
Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian
2000-01-01
We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optomechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel speckle imaging technique with the potential to separate dynamic aberrations from static aberrations. Post-processing of a set of image data, using an algorithm based on this technique, should work for all but the lowest light levels and highest frequency dynamic environments. This technique may serve to reduce the complexity of the control system and provide for robust, fault-tolerant, reduced risk operation. For a given object, a short exposure image is "frozen" on the focal plane in the presence of the environmental disturbance (turbulence, jitter, etc.). A key factor is that this imaging data exhibits frame-to-frame linear shift invariance. Therefore, although the Point Spread Function is varying from frame to frame, the source is fixed; and each short exposure contains object spectrum data out to the diffraction limit of the imaging system. This novel speckle imaging technique uses the Knox-Thompson method. The magnitude of the complex object spectrum is straightforward to determine by well-established approaches. The phase of the complex object spectrum is decomposed into two parts. One is a single-valued function determined by the divergence of the optical phase gradient. The other is a multi-valued function determined by the circulation of the optical phase gradient-"hidden phase." Finite difference equations are developed for the phase. The novelty of this approach is captured in the inclusion of this "hidden phase." This technique allows the diffraction-limited reconstruction of the object from the ensemble of short exposure frames while simultaneously estimating the phase as a function of time from a set of exposures.
Overcoming Dynamic Disturbances in Imaging Systems
NASA Technical Reports Server (NTRS)
Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian
2000-01-01
We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optormechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel speckle imaging technique with the potential to separate dynamic aberrations from static aberrations. Post-processing of a set of image data, using an algorithm based on this technique, should work for all but the lowest light levels and highest frequency dynamic environments. This technique may serve to reduce the complexity of the control system and provide for robust, fault-tolerant, reduced risk operation. For a given object, a short exposure image is "frozen" on the focal plane in the presence of the environmental disturbance (turbulence, jitter, etc.). A key factor is that this imaging data exhibits frame-to-frame linear shift invariance. Therefore, although the Point Spread Function is varying from frame to frame, the source is fixed; and each short exposure contains object spectrum data out to the diffraction limit of the imaging system. This novel speckle imaging technique uses the Knox-Thompson method. The magnitude of the complex object spectrum is straightforward to determine by well-established approaches. The phase of the complex object spectrum is decomposed into two parts. One is a single-valued function determined by the divergence of the optical phase gradient. The other is a multi-valued function determined by, the circulation of the optical phase gradient-"hidden phase." Finite difference equations are developed for the phase. The novelty of this approach is captured in the inclusion of this "hidden phase." This technique allows the diffraction-limited reconstruction of the object from the ensemble of short exposure frames while simultaneously estimating the phase as a function of time from a set of exposures.
Information of Complex Systems and Applications in Agent Based Modeling.
Bao, Lei; Fritchman, Joseph C
2018-04-18
Information about a system's internal interactions is important to modeling the system's dynamics. This study examines the finer categories of the information definition and explores the features of a type of local information that describes the internal interactions of a system. Based on the results, a dual-space agent and information modeling framework (AIM) is developed by explicitly distinguishing an information space from the material space. The two spaces can evolve both independently and interactively. The dual-space framework can provide new analytic methods for agent based models (ABMs). Three examples are presented including money distribution, individual's economic evolution, and artificial stock market. The results are analyzed in the dual-space, which more clearly shows the interactions and evolutions within and between the information and material spaces. The outcomes demonstrate the wide-ranging applicability of using the dual-space AIMs to model and analyze a broad range of interactive and intelligent systems.
Viewing hybrid systems as products of control systems and automata
NASA Technical Reports Server (NTRS)
Grossman, R. L.; Larson, R. G.
1992-01-01
The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.
Selected tether applications in space: An analysis of five selected concepts
NASA Technical Reports Server (NTRS)
1984-01-01
Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.
Ground-based testing of the dynamics of flexible space structures using band mechanisms
NASA Technical Reports Server (NTRS)
Yang, L. F.; Chew, Meng-Sang
1991-01-01
A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.
Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining
2018-06-01
The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
1990-11-01
control and including final recovery for a wide range of space vehicles from tethered satellite systems and flexible space structures to the space plane...flight mechanics, members from the Fluid Dynamics Panel, the Guidance and Control Panel, the Propulsion and Energetics Panel and the Structures and... Structures and Materials which should be overcome for a successful realization of a human Space Transportation System in the 21st century. He
A manifold independent approach to understanding transport in stochastic dynamical systems
NASA Astrophysics Data System (ADS)
Bollt, Erik M.; Billings, Lora; Schwartz, Ira B.
2002-12-01
We develop a new collection of tools aimed at studying stochastically perturbed dynamical systems. Specifically, in the setting of bi-stability, that is a two-attractor system, it has previously been numerically observed that a small noise volume is sufficient to destroy would be zero-noise case barriers in the phase space (pseudo-barriers), thus creating a pre-heteroclinic tangency chaos-like behavior. The stochastic dynamical system has a corresponding Frobenius-Perron operator with a stochastic kernel, which describes how densities of initial conditions move under the noisy map. Thus in studying the action of the Frobenius-Perron operator, we learn about the transport of the map; we have employed a Galerkin-Ulam-like method to project the Frobenius-Perron operator onto a discrete basis set of characteristic functions to highlight this action localized in specified regions of the phase space. Graph theoretic methods allow us to re-order the resulting finite dimensional Markov operator approximation so as to highlight the regions of the original phase space which are particularly active pseudo-barriers of the stochastic dynamics. Our toolbox allows us to find: (1) regions of high activity of transport, (2) flux across pseudo-barriers, and also (3) expected time of escape from pseudo-basins. Some of these quantities are also possible via the manifold dependent stochastic Melnikov method, but Melnikov only applies to a very special class of models for which the unperturbed homoclinic orbit is available. Our methods are unique in that they can essentially be considered as a “black-box” of tools which can be applied to a wide range of stochastic dynamical systems in the absence of a priori knowledge of manifold structures. We use here a model of childhood diseases to showcase our methods. Our tools will allow us to make specific observations of: (1) loss of reducibility between basins with increasing noise, (2) identification in the phase space of active regions of stochastic transport, (3) stochastic flux which essentially completes the heteroclinic tangle.
V-SUIT Model Validation Using PLSS 1.0 Test Results
NASA Technical Reports Server (NTRS)
Olthoff, Claas
2015-01-01
The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.
Space shuttle flying qualities and criteria assessment
NASA Technical Reports Server (NTRS)
Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.
1987-01-01
Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.
NASA Astrophysics Data System (ADS)
Wray, Richard B.
1991-12-01
A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.
NASA Technical Reports Server (NTRS)
Wray, Richard B.
1991-01-01
A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.
A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Wan, Xiaoliang; Yu, Haijun
2017-02-01
This paper discusses the necessity and strategy to unify the development of a dynamic solver and a minimum action method (MAM) for a spatially extended system when employing the large deviation principle (LDP) to study the effects of small random perturbations. A dynamic solver is used to approximate the unperturbed system, and a minimum action method is used to approximate the LDP, which corresponds to solving an Euler-Lagrange equation related to but more complicated than the unperturbed system. We will clarify possible inconsistencies induced by independent numerical approximations of the unperturbed system and the LDP, based on which we propose to define both the dynamic solver and the MAM on the same approximation space for spatial discretization. The semi-discrete LDP can then be regarded as the exact LDP of the semi-discrete unperturbed system, which is a finite-dimensional ODE system. We achieve this methodology for the two-dimensional Navier-Stokes equations using a divergence-free approximation space. The method developed can be used to study the nonlinear instability of wall-bounded parallel shear flows, and be generalized straightforwardly to three-dimensional cases. Numerical experiments are presented.
A quantum-classical theory with nonlinear and stochastic dynamics
NASA Astrophysics Data System (ADS)
Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.
2014-12-01
The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.
Introducing new technologies into Space Station subsystems
NASA Technical Reports Server (NTRS)
Wiskerchen, Michael J.; Mollakarimi, Cindy L.
1989-01-01
A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.
State-space self-tuner for on-line adaptive control
NASA Technical Reports Server (NTRS)
Shieh, L. S.
1994-01-01
Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.
Rotating Space Elevators: Classical and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Knudsen, Steven
We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.
An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria
NASA Technical Reports Server (NTRS)
Hinton, D. A.
1996-01-01
A concept is presented for the development and implementation of a prototype Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to use current and short-term predictions of the atmospheric state in approach and departure corridors to provide, to ATC facilities, dynamical weather dependent separation criteria with adequate stability and lead time for use in establishing arrival scheduling. The AVOSS will accomplish this task through a combination of wake vortex transport and decay predictions, weather state knowledge, defined aircraft operational procedures and corridors, and wake vortex safety sensors. Work is currently underway to address the critical disciplines and knowledge needs so as to implement and demonstrate a prototype AVOSS in the 1999/2000 time frame.
Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media
NASA Astrophysics Data System (ADS)
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2018-01-01
The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.
NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch
NASA Technical Reports Server (NTRS)
Gilligan, Eric
2014-01-01
Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Technical Reports Server (NTRS)
Fincannon, James
1995-01-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Astrophysics Data System (ADS)
Fincannon, James
1995-05-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
A design methodology for neutral buoyancy simulation of space operations
NASA Technical Reports Server (NTRS)
Akin, David L.
1988-01-01
Neutral buoyancy has often been used in the past for EVA development activities, but little has been done to provide an analytical understanding of the environment and its correlation with space. This paper covers a set of related research topics at the MIT Space Systems Laboratory, dealing with the modeling of the space and underwater environments, validation of the models through testing in neutral buoyancy, parabolic flight, and space flight experiments, and applications of the models to gain a better design methodology for creating meaningful neutral buoyancy simulations. Examples covered include simulation validation criteria for human body dynamics, and for applied torques in a beam rotation task, which is the pacing crew operation for EVA structural assembly. Extensions of the dynamics models are presented for powered vehicles in the underwater environment, and examples given from the MIT Space Telerobotics Research Program, including the Beam Assembly Teleoperator and the Multimode Proximity Operations Device. Future expansions of the modeling theory are also presented, leading to remote vehicles which behave in neutral buoyancy exactly as the modeled system would in space.
A study of the Space Station Freedom response to the disturbance environment
NASA Technical Reports Server (NTRS)
Suleman, Afzal; Modi, V. J.; Venkayya, V. B.
1994-01-01
A relatively general formulation for studying the dynamics and control of an arbitrary spacecraft with interconnected flexible bodies has been developed. This self-contained and comprehensive numerical algorithm using system modes is applicable to a large class of spacecraft configurations of contemporary and future interest. Here, versatility of the approach is demonstrated through the dynamics and control studies aimed at the evolving Space Station Freedom.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1992-01-01
Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.
Improved dynamic analysis method using load-dependent Ritz vectors
NASA Technical Reports Server (NTRS)
Escobedo-Torres, J.; Ricles, J. M.
1993-01-01
The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.
Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems
NASA Astrophysics Data System (ADS)
Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.
2017-11-01
This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.
Polynomial f (R ) Palatini cosmology: Dynamical system approach
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2018-05-01
We investigate cosmological dynamics based on f (R ) gravity in the Palatini formulation. In this study, we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piecewise smooth dynamical system. This system is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee C0 extendibility of the metric similarly as "Milne-like" Friedmann-Lemaître-Robertson-Walker spacetimes are C0-extendible. We point out that importance of the dynamical system of the Newtonian type with nonsmooth right-hand sides in the context of Palatini cosmology. In this framework, we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.
Modeling and parameter identification of impulse response matrix of mechanical systems
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni V.
1998-12-01
A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.
Preliminary results on the dynamics of large and flexible space structures in Halo orbits
NASA Astrophysics Data System (ADS)
Colagrossi, Andrea; Lavagna, Michèle
2017-05-01
The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around one of the Earth-Moon collinear Lagrangian points, L1 or L2, is discussed to point out some relevant outcomes for the potential implementation of such a mission.
Mother-Infant Dyadic State Behaviour: Dynamic Systems in the Context of Risk
ERIC Educational Resources Information Center
Coburn, Shayna S.; Crnic, Keith A.; Ross, Emily K.
2015-01-01
Dynamic systems methods offer invaluable insight into the nuances of the early parent-child relationship. This prospective study aimed to highlight the characteristics of mother-infant dyadic behavior at 12?weeks post-partum using state space grid analysis (total n?=?322). We also examined whether maternal prenatal depressive symptoms and…
Criticality in conserved dynamical systems: experimental observation vs. exact properties.
Marković, Dimitrije; Gros, Claudius; Schuelein, André
2013-03-01
Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.
Rundle, J. B.; Tiampo, K. F.; Klein, W.; Sá Martins, J. S.
2002-01-01
Threshold systems are known to be some of the most important nonlinear self-organizing systems in nature, including networks of earthquake faults, neural networks, superconductors and semiconductors, and the World Wide Web, as well as political, social, and ecological systems. All of these systems have dynamics that are strongly correlated in space and time, and all typically display a multiplicity of spatial and temporal scales. Here we discuss the physics of self-organization in earthquake threshold systems at two distinct scales: (i) The “microscopic” laboratory scale, in which consideration of results from simulations leads to dynamical equations that can be used to derive the results obtained from sliding friction experiments, and (ii) the “macroscopic” earthquake fault-system scale, in which the physics of strongly correlated earthquake fault systems can be understood by using time-dependent state vectors defined in a Hilbert space of eigenstates, similar in many respects to the mathematics of quantum mechanics. In all of these systems, long-range interactions induce the existence of locally ergodic dynamics. The existence of dissipative effects leads to the appearance of a “leaky threshold” dynamics, equivalent to a new scaling field that controls the size of nucleation events relative to the size of background fluctuations. At the macroscopic earthquake fault-system scale, these ideas show considerable promise as a means of forecasting future earthquake activity. PMID:11875204
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-01-01
We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.
Ghosh, Soumen; Cramer, Christopher J; Truhlar, Donald G; Gagliardi, Laura
2017-04-01
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e. , systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. We recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functional theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet-triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet-triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.
14 CFR 23.181 - Dynamic stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Dynamic stability. 23.181 Section 23.181... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stability § 23.181 Dynamic... that the function of a stability augmentation system, reference § 23.672, is needed to meet the flight...
USSR Space Life Sciences Digest, issue 31
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1990-01-01
This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine.
Metabolic and Regulatory Systems in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.
A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.
2003-01-01
The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.
An Evaluation of the Applicability of Damage Tolerance to Dynamic Systems
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Le, Dy; Turnberg, Jay
2005-01-01
The Federal Aviation Administration, the National Aeronautics and Space Administration and the aircraft industry have teamed together to develop methods and guidance for the safe life-cycle management of dynamic systems. Based on the success of the United States Air Force damage tolerance initiative for airframe structure, a crack growth based damage tolerance approach is being examined for implementation into the design and management of dynamic systems. However, dynamic systems accumulate millions of vibratory cycles per flight hour, more than 12,000 times faster than an airframe system. If a detectable crack develops in a dynamic system, the time to failure is extremely short, less than 100 flight hours in most cases, leaving little room for error in the material characterization, life cycle analysis, nondestructive inspection and maintenance processes. In this paper, the authors review the damage tolerant design process focusing on uncertainties that affect dynamic systems and evaluate the applicability of damage tolerance on dynamic systems.
Mathematical and Computational Foundations of Recurrence Quantifications
NASA Astrophysics Data System (ADS)
Marwan, Norbert; Webber, Charles L.
Real-world systems possess deterministic trajectories, phase singularities and noise. Dynamic trajectories have been studied in temporal and frequency domains, but these are linear approaches. Basic to the field of nonlinear dynamics is the representation of trajectories in phase space. A variety of nonlinear tools such as the Lyapunov exponent, Kolmogorov-Sinai entropy, correlation dimension, etc. have successfully characterized trajectories in phase space, provided the systems studied were stationary in time. Ubiquitous in nature, however, are systems that are nonlinear and nonstationary, existing in noisy environments all of which are assumption breaking to otherwise powerful linear tools. What has been unfolding over the last quarter of a century, however, is the timely discovery and practical demonstration that the recurrences of system trajectories in phase space can provide important clues to the system designs from which they derive. In this chapter we will introduce the basics of recurrence plots (RP) and their quantification analysis (RQA). We will begin by summarizing the concept of phase space reconstructions. Then we will provide the mathematical underpinnings of recurrence plots followed by the details of recurrence quantifications. Finally, we will discuss computational approaches that have been implemented to make recurrence strategies feasible and useful. As computers become faster and computer languages advance, younger generations of researchers will be stimulated and encouraged to capture nonlinear recurrence patterns and quantification in even better formats. This particular branch of nonlinear dynamics remains wide open for the definition of new recurrence variables and new applications untouched to date.
NASA Astrophysics Data System (ADS)
Mohagheghi, Samira; Şerefoğlu, Melis
2017-07-01
In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.
Thermal energy storage for a space solar dynamic power system
NASA Technical Reports Server (NTRS)
Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.
1985-01-01
In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.
Detecting temperature fluctuations at equilibrium.
Dixit, Purushottam D
2015-05-21
The Gibbs and the Boltzmann definition of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite-sized 'small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in the equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant in biophysics and nanotechnology.
NASA Technical Reports Server (NTRS)
Evans, Austin Lewis
1988-01-01
The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.
Trajectory Design Strategies for the NGST L2 Libration Point Mission
NASA Technical Reports Server (NTRS)
Folta, David; Cooley, Steven; Howell, Kathleen; Bauer, Frank H.
2001-01-01
The Origins' Next Generation Space Telescope (NGST) trajectory design is addressed in light of improved methods for attaining constrained orbit parameters and their control at the exterior collinear libration point, L2. The use of a dynamical systems approach, state-space equations for initial libration orbit control, and optimization to achieve constrained orbit parameters are emphasized. The NGST trajectory design encompasses a direct transfer and orbit maintenance under a constant acceleration. A dynamical systems approach can be used to provide a biased orbit and stationkeeping maintenance method that incorporates the constraint of a single axis correction scheme.
Detection of chaotic dynamics in human gait signals from mobile devices
NASA Astrophysics Data System (ADS)
DelMarco, Stephen; Deng, Yunbin
2017-05-01
The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.
Modeling the Multi-Body System Dynamics of a Flexible Solar Sail Spacecraft
NASA Technical Reports Server (NTRS)
Kim, Young; Stough, Robert; Whorton, Mark
2005-01-01
Solar sail propulsion systems enable a wide range of space missions that are not feasible with current propulsion technology. Hardware concepts and analytical methods have matured through ground development to the point that a flight validation mission is now realizable. Much attention has been given to modeling the structural dynamics of the constituent elements, but to date an integrated system level dynamics analysis has been lacking. Using a multi-body dynamics and control analysis tool called TREETOPS, the coupled dynamics of the sailcraft bus, sail membranes, flexible booms, and control system sensors and actuators of a representative solar sail spacecraft are investigated to assess system level dynamics and control issues. With this tool, scaling issues and parametric trade studies can be performed to study achievable performance, control authority requirements, and control/structure interaction assessments.
NASA Astrophysics Data System (ADS)
Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei
2007-09-01
To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.
Recipes for free energy calculations in biomolecular systems.
Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher
2013-01-01
During the last decade, several methods for sampling phase space and calculating various free energies in biomolecular systems have been devised or refined for molecular dynamics (MD) simulations. Thus, state-of-the-art methodology and the ever increasing computer power allow calculations that were forbidden a decade ago. These calculations, however, are not trivial as they require knowledge of the methods, insight into the system under study, and, quite often, an artful combination of different methodologies in order to avoid the various traps inherent in an unknown free energy landscape. In this chapter, we illustrate some of these concepts with two relatively simple systems, a sugar ring and proline oligopeptides, whose free energy landscapes still offer considerable challenges. In order to explore the configurational space of these systems, and to surmount the various free energy barriers, we combine three complementary methods: a nonequilibrium umbrella sampling method (adaptively biased MD, or ABMD), replica-exchange molecular dynamics (REMD), and steered molecular dynamics (SMD). In particular, ABMD is used to compute the free energy surface of a set of collective variables; REMD is used to improve the performance of ABMD, to carry out sampling in space complementary to the collective variables, and to sample equilibrium configurations directly; and SMD is used to study different transition mechanisms.
Bounding the errors for convex dynamics on one or more polytopes.
Tresser, Charles
2007-09-01
We discuss the greedy algorithm for approximating a sequence of inputs in a family of polytopes lying in affine spaces by an output sequence made of vertices of the respective polytopes. More precisely, we consider here the case when the greed of the algorithm is dictated by the Euclidean norms of the successive cumulative errors. This algorithm can be interpreted as a time-dependent dynamical system in the vector space, where the errors live, or as a time-dependent dynamical system in an affine space containing copies of all the original polytopes. This affine space contains the inputs, as well as the inputs modified by adding the respective former errors; it is the evolution of these modified inputs that the dynamical system in affine space describes. Scheduling problems with many polytopes arise naturally, for instance, when the inputs are from a single polytope P, but one imposes the constraint that whenever the input belongs to a codimension n face, the output has to be in the same codimension n face (as when scheduling drivers among participants of a carpool). It has been previously shown that the error is bounded in the case of a single polytope by proving the existence of an arbitrary large convex invariant region for the dynamics in affine space: A region that is simultaneously invariant for several polytopes, each considered separately, was also constructed. It was then shown that there cannot be an invariant region in affine space in the general case of a family of polytopes. Here we prove the existence of an arbitrary large convex invariant set for the dynamics in the vector space in the case when the sizes of the polytopes in the family are bounded and the set of all the outgoing normals to all the faces of all the polytopes is finite. It was also previously known that starting from zero as the initial error set, the error set could not be saturated in finitely many steps in some cases with several polytopes: Contradicting a former conjecture, we show that the same happens for some single quadrilaterals and for a single pentagon with an axial symmetry. The disproof of that conjecture is the new piece of information that leads us to expect, and then to verify, as we recount here, that the proof that the errors are bounded in the general case could be a small step beyond the proof of the same statement for the single polytope case.
Bounding the errors for convex dynamics on one or more polytopes
NASA Astrophysics Data System (ADS)
Tresser, Charles
2007-09-01
We discuss the greedy algorithm for approximating a sequence of inputs in a family of polytopes lying in affine spaces by an output sequence made of vertices of the respective polytopes. More precisely, we consider here the case when the greed of the algorithm is dictated by the Euclidean norms of the successive cumulative errors. This algorithm can be interpreted as a time-dependent dynamical system in the vector space, where the errors live, or as a time-dependent dynamical system in an affine space containing copies of all the original polytopes. This affine space contains the inputs, as well as the inputs modified by adding the respective former errors; it is the evolution of these modified inputs that the dynamical system in affine space describes. Scheduling problems with many polytopes arise naturally, for instance, when the inputs are from a single polytope P, but one imposes the constraint that whenever the input belongs to a codimension n face, the output has to be in the same codimension n face (as when scheduling drivers among participants of a carpool). It has been previously shown that the error is bounded in the case of a single polytope by proving the existence of an arbitrary large convex invariant region for the dynamics in affine space: A region that is simultaneously invariant for several polytopes, each considered separately, was also constructed. It was then shown that there cannot be an invariant region in affine space in the general case of a family of polytopes. Here we prove the existence of an arbitrary large convex invariant set for the dynamics in the vector space in the case when the sizes of the polytopes in the family are bounded and the set of all the outgoing normals to all the faces of all the polytopes is finite. It was also previously known that starting from zero as the initial error set, the error set could not be saturated in finitely many steps in some cases with several polytopes: Contradicting a former conjecture, we show that the same happens for some single quadrilaterals and for a single pentagon with an axial symmetry. The disproof of that conjecture is the new piece of information that leads us to expect, and then to verify, as we recount here, that the proof that the errors are bounded in the general case could be a small step beyond the proof of the same statement for the single polytope case.
Parameter estimating state reconstruction
NASA Technical Reports Server (NTRS)
George, E. B.
1976-01-01
Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.
Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems
NASA Astrophysics Data System (ADS)
Meyer, Gregory; Machado, Francisco; Yao, Norman
2017-04-01
Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.
A self-organizing neural network for job scheduling in distributed systems
NASA Astrophysics Data System (ADS)
Newman, Harvey B.; Legrand, Iosif C.
2001-08-01
The aim of this work is to describe a possible approach for the optimization of the job scheduling in large distributed systems, based on a self-organizing Neural Network. This dynamic scheduling system should be seen as adaptive middle layer software, aware of current available resources and making the scheduling decisions using the "past experience." It aims to optimize job specific parameters as well as the resource utilization. The scheduling system is able to dynamically learn and cluster information in a large dimensional parameter space and at the same time to explore new regions in the parameters space. This self-organizing scheduling system may offer a possible solution to provide an effective use of resources for the off-line data processing jobs for future HEP experiments.
Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic
2010-01-14
We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.
2014-01-01
In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.
Durstewitz, Daniel
2017-06-01
The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.
Topology of Collisionless Relaxation
NASA Astrophysics Data System (ADS)
Pakter, Renato; Levin, Yan
2013-04-01
Using extensive molecular dynamics simulations we explore the fine-grained phase space structure of systems with long-range interactions. We find that if the initial phase space particle distribution has no holes, the final stationary distribution will also contain a compact simply connected region. The microscopic holes created by the filamentation of the initial distribution function are always restricted to the outer regions of the phase space. In general, for complex multilevel distributions it is very difficult to a priori predict the final stationary state without solving the full dynamical evolution. However, we show that, for multilevel initial distributions satisfying a generalized virial condition, it is possible to predict the particle distribution in the final stationary state using Casimir invariants of the Vlasov dynamics.
Singularity and stability in a periodic system of particle accelerators
NASA Astrophysics Data System (ADS)
Cai, Yunhai
2018-05-01
We study the single-particle dynamics in a general and parametrized alternating-gradient cell with zero chromaticity using the Lie algebra method. To our surprise, the first-order perturbation of the sextupoles largely determines the dynamics away from the major resonances. The dynamic aperture can be estimated from the topology and geometry of the phase space. In the linearly normalized phase space, it is scaled according to A ¯ ∝ϕ √{L } , where ϕ is the bending angle and L the length of the cell. For the 2 degrees of freedom with equal betatron tunes, the analytical perturbation theory leads us to the invariant or quasi-invariant tori, which play an important role in determining the stable volume in the four-dimensional phase space.
Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof
2018-01-01
We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.
Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.
Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia
2013-10-24
The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.
Rapid Exploration of Configuration Space with Diffusion Map-directed-Molecular Dynamics
Zheng, Wenwei; Rohrdanz, Mary A.; Clementi, Cecilia
2013-01-01
The gap between the timescale of interesting behavior in macromolecular systems and that which our computational resources can afford oftentimes limits Molecular Dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named Diffusion Map-directed-MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD. PMID:23865517
Spin-phase-space-entropy production
NASA Astrophysics Data System (ADS)
Santos, Jader P.; Céleri, Lucas C.; Brito, Frederico; Landi, Gabriel T.; Paternostro, Mauro
2018-05-01
Quantifying the degree of irreversibility of an open system dynamics represents a problem of both fundamental and applied relevance. Even though a well-known framework exists for thermal baths, the results give diverging results in the limit of zero temperature and are also not readily extended to nonequilibrium reservoirs, such as dephasing baths. Aimed at filling this gap, in this paper we introduce a phase-space-entropy production framework for quantifying the irreversibility of spin systems undergoing Lindblad dynamics. The theory is based on the spin Husimi-Q function and its corresponding phase-space entropy, known as Wehrl entropy. Unlike the von Neumann entropy production rate, we show that in our framework, the Wehrl entropy production rate remains valid at any temperature and is also readily extended to arbitrary nonequilibrium baths. As an application, we discuss the irreversibility associated with the interaction of a two-level system with a single-photon pulse, a problem which cannot be treated using the conventional approach.
Effect of smoothing on robust chaos.
Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae
2010-08-01
In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.
Phase Space Approach to Dynamics of Interacting Fermions
NASA Astrophysics Data System (ADS)
Davidson, Shainen; Sels, Dries; Kasper, Valentin; Polkovnikov, Anatoli
Understanding the behavior of interacting fermions is of fundamental interest in many fields ranging from condensed matter to high energy physics. Developing numerically efficient and accurate simulation methods is an indispensable part of this. Already in equilibrium, fermions are notoriously hard to handle due to the sign problem. Out of equilibrium, an important outstanding problem is the efficient numerical simulation of the dynamics of these systems. In this work we develop a new semiclassical phase-space approach (a.k.a. the truncated Wigner approximation) for simulating the dynamics of interacting lattice fermions in arbitrary dimensions. We demonstrate the strength of the method by comparing the results to exact diagonalization (ED) on small 1D and 2D systems. We furthermore present results on Many-Body Localized (MBL) systems in 1D and 2D, and demonstrate how the method can be used to determine the MBL transition.
Demonstration of Launch Vehicle Slosh Instability on Pole-Cart Platform
NASA Technical Reports Server (NTRS)
Pei, Jing; Rothhaar, Paul
2015-01-01
Liquid propellant makes up a significant portion of the total weight for large launch vehicles such as Saturn V, Space Shuttle, and the Space Launch System (SLS). Careful attention must be given to the influence of fuel slosh motion on the stability of the vehicle. A well-documented slosh danger zone occurs when the slosh mass is between the vehicle center of mass and the center of percussion. Passive damping via slosh baffle is generally required when the slosh mass is within this region. The pole-cart hardware system, typically used for academic purposes, has similar dynamic characteristics as an unstable launch vehicle. This setup offers a simple and inexpensive way of analyzing slosh dynamics and its impact on flight control design. In this paper, experimental and numerical results from the pole-cart system will be shown and direct analogies to launch vehicle slosh dynamics will be made.
The brain as a dynamic physical system.
McKenna, T M; McMullen, T A; Shlesinger, M F
1994-06-01
The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.
NASA Astrophysics Data System (ADS)
Yang, Xinxin; Ge, Shuzhi Sam; He, Wei
2018-04-01
In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.
NASA Astrophysics Data System (ADS)
Gabern, Frederic; Koon, Wang S.; Marsden, Jerrold E.; Ross, Shane D.
2005-11-01
The computation, starting from basic principles, of chemical reaction rates in realistic systems (with three or more degrees of freedom) has been a longstanding goal of the chemistry community. Our current work, which merges tube dynamics with Monte Carlo methods provides some key theoretical and computational tools for achieving this goal. We use basic tools of dynamical systems theory, merging the ideas of Koon et al. [W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos 10 (2000) 427-469.] and De Leon et al. [N. De Leon, M.A. Mehta, R.Q. Topper, Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory, J. Chem. Phys. 94 (1991) 8310-8328.], particularly the use of invariant manifold tubes that mediate the reaction, into a tool for the computation of lifetime distributions and rates of chemical reactions and scattering phenomena, even in systems that exhibit non-statistical behavior. Previously, the main problem with the application of tube dynamics has been with the computation of volumes in phase spaces of high dimension. The present work provides a starting point for overcoming this hurdle with some new ideas and implements them numerically. Specifically, an algorithm that uses tube dynamics to provide the initial bounding box for a Monte Carlo volume determination is used. The combination of a fine scale method for determining the phase space structure (invariant manifold theory) with statistical methods for volume computations (Monte Carlo) is the main contribution of this paper. The methodology is applied here to a three degree of freedom model problem and may be useful for higher degree of freedom systems as well.
Attractors of equations of non-Newtonian fluid dynamics
NASA Astrophysics Data System (ADS)
Zvyagin, V. G.; Kondrat'ev, S. K.
2014-10-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles.
Dynamics of Axially Symmetric Perturbed Hamiltonians in 1:1:1 Resonance
NASA Astrophysics Data System (ADS)
Carrasco, D.; Palacián, J. F.; Vidal, C.; Vidarte, J.; Yanguas, P.
2018-03-01
We study the dynamics of a family of perturbed three-degree-of-freedom Hamiltonian systems which are in 1:1:1 resonance. The perturbation consists of axially symmetric cubic and quartic arbitrary polynomials. Our analysis is performed by normalisation, reduction and KAM techniques. Firstly, the system is reduced by the axial symmetry, and then, periodic solutions and KAM 3-tori of the full system are determined from the relative equilibria. Next, the oscillator symmetry is extended by normalisation up to terms of degree 4 in rectangular coordinates; after truncation of higher orders and reduction to the orbit space, some relative equilibria are established and periodic solutions and KAM 3-tori of the original system are obtained. As a third step, the reduction in the two symmetries leads to a one-degree-of-freedom system that is completely analysed in the twice reduced space. All the relative equilibria together with the stability and parametric bifurcations are determined. Moreover, the invariant 2-tori (related to the critical points of the twice reduced space), some periodic solutions and the KAM 3-tori, all corresponding to the full system, are established. Additionally, the bifurcations of equilibria occurring in the twice reduced space are reconstructed as quasi-periodic bifurcations involving 2-tori and periodic solutions of the full system.
Selected OAST/OSSA space experiment activities in support of Space Station Freedom
NASA Astrophysics Data System (ADS)
Delombard, Richard
The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.
Selected OAST/OSSA space experiment activities in support of Space Station Freedom
NASA Technical Reports Server (NTRS)
Delombard, Richard
1992-01-01
The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.
Dynamics and control of robot for capturing objects in space
NASA Astrophysics Data System (ADS)
Huang, Panfeng
Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.
The Unifying Principle of Coordinated Measurements in Geospace Science
NASA Astrophysics Data System (ADS)
Lotko, William
2017-04-01
Space scientists recognize geospace as a coupled dynamical system extending from the Earth's upper atmosphere, ionosphere, and magnetosphere, through interplanetary space to the Sun. The weather in geospace describes variability in the electromagnetic fields, particle radiation, plasmas, and gases permeating it, usually in response to solar disturbances. Severe space weather poses a significant threat to human activities in space and to modern technological systems deployed both in space and at Earth. The challenge of characterizing and predicting space weather requires widely distributed, coordinated observations. Partnerships among government agencies, international consortia, and the private sector are developing creative solutions to address this challenge. This brief commentary highlights some of the coordinated measurements and data systems that are unifying knowledge of the geospace environment.
Massive Multi-Agent Systems Control
NASA Technical Reports Server (NTRS)
Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki
2004-01-01
In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.
NASA Technical Reports Server (NTRS)
Williams, F. E.; Lemon, R. S.; Jaggers, R. F.; Wilson, J. L.
1974-01-01
Dynamics and control, stability, and guidance analyses are summarized for the asymmetrical booster ascent guidance and control system design studies, performed in conjunction with space shuttle planning. The mathematical models developed for use in rigid body and flexible body versions of the NASA JSC space shuttle functional simulator are briefly discussed, along with information on the following: (1) space shuttle stability analysis using equations of motion for both pitch and lateral axes; (2) the computer program used to obtain stability margin; and (3) the guidance equations developed for the space shuttle powered flight phases.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed.
NASA Technical Reports Server (NTRS)
Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer
1994-01-01
The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.
Developing better artificial bones.
Flinn, Edward D
2003-01-01
Researchers at the Center for Commercial Applications of Combustion in Space at the Colorado School of Mines are preparing the Space-DRUMS (Dynamically Responding Ultrasonic Matrix Systems) materials processing facility for transport to the International Space Station. The Space-DRUMS uses acoustic pressure beams to maintain the position of a suspended liquid or solid. Space-DRUMS will be used to extend experiments with tricalcium phosphate in the development of artificial bone material.
Future Opportunities for Dynamic Power Systems for NASA Missions
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
2007-01-01
Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).
Technology for large space systems: A bibliography with indexes (supplement 20)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 694 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July, 1988 and December, 1988. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion.
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Bloomfield, H. S.
1985-01-01
A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.
Reliability Analysis of the Space Station Freedom Electrical Power System
1989-08-01
Cleveland, Ohio, who assisted in obtaining related research materials and provided feedback on our efforts to produce a dynamic analysis tool useful to...System software that we used to do our analysis of the electrical power system. Thanks are due to Dr. Vira Chankong, my thesis advisor, for his...a frequency duration analysis . Using a transition rate matrix with a model of the photovoltaic and solar dynamic systems, they have one model that
Dynamical Networks Characterization of Space Weather Events
NASA Astrophysics Data System (ADS)
Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
FISHER INFORMATION OF DYNAMIC REGIME TRANSITIONS IN ECOLOGICAL SYSTEMS
Ecosystems often exhibit transitions between multiple dynamic regimes (or steady states). As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or ?flip? into the neighborhood ...
NASA Technical Reports Server (NTRS)
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
Laser interferometer space antenna dynamics and controls model
NASA Astrophysics Data System (ADS)
Maghami, Peiman G.; Tupper Hyde, T.
2003-05-01
A 19 degree-of-freedom (DOF) dynamics and controls model of a laser interferometer space antenna (LISA) spacecraft has been developed. This model is used to evaluate the feasibility of the dynamic pointing and positioning requirements of a typical LISA spacecraft. These requirements must be met for LISA to be able to successfully detect gravitational waves in the frequency band of interest (0.1-100 mHz). The 19-DOF model includes all rigid-body degrees of freedom. A number of disturbance sources, both internal and external, are included. Preliminary designs for the four control systems that comprise the LISA disturbance reduction system (DRS) have been completed and are included in the model. Simulation studies are performed to demonstrate that the LISA pointing and positioning requirements are feasible and can be met.
Extensional channel flow revisited: a dynamical systems perspective
Meseguer, Alvaro; Mellibovsky, Fernando; Weidman, Patrick D.
2017-01-01
Extensional self-similar flows in a channel are explored numerically for arbitrary stretching–shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching–shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions. PMID:28690413
Pseudochaos and anomalous transport: A study on saw-tooth map
NASA Astrophysics Data System (ADS)
Fan, Rong
The observation of chaotic dynamics in digital filter in late 1980s propelled the interest in piecewise linear map beyond the border of theoretical electrical engineering. Also, during last two decades, various physical models and phenomena, such as stochastic web and sticky orbits, not only broadened our knowledge of chaos but also urged us to further our understanding of meaning of chaos and randomness. In this dissertation, a piecewise linear kicked oscillator model: saw-tooth map, is studied as an example of pseudochaos. Physically, kicked oscillator model describes one-dimensional harmonic oscillator effected by delta-like kicks from external force source at certain fixed frequency. Starting from a special case of global periodicity, numerical investigations were carefully carried out in two cases that deviate from global periodicity. We observe the appearance of stochastic web structure and accompanying erratic dynamical behavior in the system that can't be fully explained by the classical Kolmogorov-Arnold-Moser theorem. Also anomalous transport occurs in both cases. We perform accurate analysis of Poincare recurrences and reconstruct the probability density function of Poincare recurrence times, which suggests a relation between the transport and the Poincare recurrence exponents. Saw-tooth map has non-uniform phase space, in which domains of regular dynamics and domains of chaotic dynamics are intertwined. The large-scale dynamics of the system is hugely impacted by the heterogeneity of the phase space, especially by the existence of hierarchy of periodic islands. We carefully study the characteristics of phase space and numerically compute fractal dimensions of the so-called exceptional set Delta in both cases. Our results suggest that the fractal dimension is strictly less than 2 and that the fractal structures are unifractal rather than multifractal. We present a phenomenological theoretical framework of Fractional Kinetic Equation (FKE) and Renormalization Group of Kinetics (RGK). FKE, which is fractional generalization of the Fokker-Planck-Kolmogorov equation, adopts the fractality of time and space and serves probabilistic description of chaos in Hamiltonian systems. RGK bridges the self-similar structure in phase space and large-scale behavior of the dynamics, and establishes relationships among fractality, transport and Poincare recurrences.
Intelligent Robotic Systems Study (IRSS), phase 3
NASA Technical Reports Server (NTRS)
1991-01-01
This phase of the Intelligent Robotic Systems Study (IRSS) examines some basic dynamics and control issues for a space manipulator attached to its worksite through a compliant base. One example of this scenario is depicted, which is a simplified, planar representation of the Flight Telerobotic Servicer (FTS) Development Test Flight 2 (DTF-2) experiment. The system consists of 4 major components: (1) dual FTS arms to perform dextrous tasks; (2) the main body to house power and electronics; (3) an Attachment Stabilization and Positioning Subsystem (ASPS) to provide coarse positioning and stabilization of the arms, and (4) the Worksite Attachment Mechanism (WAM) which anchors the system to its worksite, such as a Space Station truss node or Shuttle bay platform. The analysis is limited to the DTF-2 scenario. The goal is to understand the basic interaction dynamics between the arm, the positioner and/or stabilizer, and the worksite. The dynamics and controls simulation model are described. Analysis and simulation results are presented.
Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule
NASA Astrophysics Data System (ADS)
Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong
2018-06-01
To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.
Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation
NASA Astrophysics Data System (ADS)
Sun, Xin; Xu, Ming; Zhong, Rui
2017-10-01
Long space tethers are becoming a rising concern as an alternate way for transportation in space. It benefits from fuel economizing. This paper focuses on the dynamics of the tether transportation system, which consists of two end satellites connected by a flexible tether, and a movable vehicle driven by the actuator carried by itself. The Absolute Nodal Coordinate Formulation is applied to the establishment of the equation of motion, so that the influence caused by the distributed mass and elasticity of the tether is introduced. Moreover, an approximated method for accelerating the calculation of the generalized gravitational forces on the tether is proposed by substituting the volume integral every step into summation of finite terms. Afterwards, dynamic evolutions of such a system in different configurations are illustrated using numerical simulations. The deflection of the tether and the trajectory of the crawler during the transportation is investigated. Finally, the effect on the orbit of the system due to the crawler is revealed.
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.
2000-01-01
The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.
Invariant measures in brain dynamics
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł
2006-10-01
This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a “folding” property on the space of ensembles.
How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?
Duarte, Jorge; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
2015-12-01
Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.
Space Shuttle Tail Service Mast Concept Verification
NASA Technical Reports Server (NTRS)
Uda, R. T.
1976-01-01
Design studies and analyses were performed to describe the loads and dynamics of the space shuttle tail service masts (TSMs). Of particular interest are the motion and interaction of the umbilical carrier plate, lanyard system, vacuum jacketed hoses, latches, links, and masthead. A development test rig was designed and fabricated to obtain experimental data. The test program is designed to (1) verify the theoretical dynamics calculations, (2) prove the soundness of design concepts, and (3) elucidate problem areas (if any) in the design of mechanisms and structural components. Design, fabrication, and initiation of TSM development testing at Kennedy Space Center are described.
Covariant hamiltonian spin dynamics in curved space-time
NASA Astrophysics Data System (ADS)
d'Ambrosi, G.; Satish Kumar, S.; van Holten, J. W.
2015-04-01
The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.
Finite element dynamic analysis of soft tissues using state-space model.
Iorga, Lucian N; Shan, Baoxiang; Pelegri, Assimina A
2009-04-01
A finite element (FE) model is employed to investigate the dynamic response of soft tissues under external excitations, particularly corresponding to the case of harmonic motion imaging. A solid 3D mixed 'u-p' element S8P0 is implemented to capture the near-incompressibility inherent in soft tissues. Two important aspects in structural modelling of these tissues are studied; these are the influence of viscous damping on the dynamic response and, following FE-modelling, a developed state-space formulation that valuates the efficiency of several order reduction methods. It is illustrated that the order of the mathematical model can be significantly reduced, while preserving the accuracy of the observed system dynamics. Thus, the reduced-order state-space representation of soft tissues for general dynamic analysis significantly reduces the computational cost and provides a unitary framework for the 'forward' simulation and 'inverse' estimation of soft tissues. Moreover, the results suggest that damping in soft-tissue is significant, effectively cancelling the contribution of all but the first few vibration modes.
Issues in the design of an executive controller shell for Space Station automation
NASA Technical Reports Server (NTRS)
Erickson, William K.; Cheeseman, Peter C.
1986-01-01
A major goal of NASA's Systems Autonomy Demonstration Project is to focus research in artificial intelligence, human factors, and dynamic control systems in support of Space Station automation. Another goal is to demonstrate the use of these technologies in real space systems, for both round-based mission support and on-board operations. The design, construction, and evaluation of an intelligent autonomous system shell is recognized as an important part of the Systems Autonomy research program. His paper describes autonomous systems and executive controllers, outlines how these intelligent systems can be utilized within the Space Station, and discusses a number of key design issues that have been raised during some preliminary work to develop an autonomous executive controller shell at NASA Ames Research Center.
An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar
NASA Technical Reports Server (NTRS)
Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi
1998-01-01
NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Bullock, T.; Holland, W. B.; Kross, D. A.; Kiefling, L. A.
1981-01-01
The achievement of an optimized design from the system standpoint under the low cost, high risk constraints of the present day environment was analyzed. Space Shuttle illustrates the requirement for an analysis approach that considers all major disciplines (coupling between structures control, propulsion, thermal, aeroelastic, and performance), simultaneously. The Space Shuttle and certain payloads, Space Telescope and Spacelab, are examined. The requirements for system analysis approaches and criteria, including dynamic modeling requirements, test requirements, control requirements, and the resulting design verification approaches are illustrated. A survey of the problem, potential approaches available as solutions, implications for future systems, and projected technology development areas are addressed.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
Space station systems: A bibliography with indexes (supplement 7)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 1,158 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1988 and June 30, 1988. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.
Space station systems: A bibliography with indexes (supplement 10)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 1,422 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.
Space Station Systems: a Bibliography with Indexes (Supplement 8)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.
Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Karr, Gerald R. (Editor)
1990-01-01
Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing
Space station systems: A bibliography with indexes (supplement 9)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.
NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.
On the dynamics of chain systems. [applications in manipulator and human body models
NASA Technical Reports Server (NTRS)
Huston, R. L.; Passerello, C. E.
1974-01-01
A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.
Dynamic Event Tree advancements and control logic improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego
The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been donemore » in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the input space characterized by epistemic uncertainties. The consequent Dynamic Event Tree performs the exploration of the aleatory space. In the RAVEN code, a more general approach has been developed, not limiting the exploration of the epistemic space through a Monte Carlo method but using all the forward sampling strategies RAVEN currently employs. The user can combine a Latin Hyper Cube, Grid, Stratified and Monte Carlo sampling in order to explore the epistemic space, without any limitation. From this pre-sampling, the Dynamic Event Tree sampler starts its aleatory space exploration. As reported by the authors, the Dynamic Event Tree is a good fit to develop a goal-oriented sampling strategy. The DET is used to drive a Limit Surface search. The methodology that has been developed by the authors last year, performs a Limit Surface search in the aleatory space only. This report documents how this approach has been extended in order to consider the epistemic space interacting with the Hybrid Dynamic Event Tree methodology.« less
NASA Astrophysics Data System (ADS)
Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim
2017-03-01
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
My chaotic trajectory: A brief (personalized) history of solar-system dynamics.
NASA Astrophysics Data System (ADS)
Burns, Joseph A.
2014-05-01
I will use this opportunity to recall my professional career. Like many, I was drawn into the space program during the mid-60s and early 70s when the solar system’s true nature was being revealed. Previously, dynamical astronomy discussed the short-term, predictable motions of point masses; simultaneously, small objects (e.g., satellites, asteroids, dust) were thought boring rather than dynamically rich. Many of today’s most active research subjects were unknown: TNOs, planetary rings, exoplanets and debris disks. The continuing stream of startling findings by spacecraft, ground-based surveys and numerical simulations forced a renaissance in celestial mechanics, incorporating new dynamical paradigms and additional physics (e.g., energy loss, catastrophic events, radiation forces). My interests evolved as the space program expanded outward: dust, asteroids, natural satellites, rings; rotations, orbital evolution, origins. Fortunately for me, in the early days, elementary models with simple solutions were often adequate to gain a first-order explanation of many puzzles. One could be a generalist, always learning new things.My choice of research subjects was influenced greatly by: i) Cornell colleagues involved in space missions who shared results: the surprising diversity of planetary satellites, the unanticipated orbital and rotational dynamics of asteroids, the chaotic histories of solar system bodies, the non-intuitive behavior of dust and planetary rings, irregular satellites. ii) Teaching introductory courses in applied math, dynamics and planetary science encouraged understandable models. iii) The stimulation of new ideas owing to service at Icarus and on space policy forums. iv) Most importantly, excellent students and colleagues who pushed me into new research directions, and who then stimulated and educated me about those topics.If time allows, I will describe some of today’s puzzles for me and point out similarities between the past development in our understanding of the solar system’s operation and the contemporary quest to figure out exoplanet systems.
Transition Manifolds of Complex Metastable Systems
NASA Astrophysics Data System (ADS)
Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof
2018-04-01
We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.
Automation for deep space vehicle monitoring
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.
1991-01-01
Information on automation for deep space vehicle monitoring is given in viewgraph form. Information is given on automation goals and strategy; the Monitor Analyzer of Real-time Voyager Engineering Link (MARVEL); intelligent input data management; decision theory for making tradeoffs; dynamic tradeoff evaluation; evaluation of anomaly detection results; evaluation of data management methods; system level analysis with cooperating expert systems; the distributed architecture of multiple expert systems; and event driven response.
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-01-01
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-09-02
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.
Nonlinear Dynamics and Chaos in Astrophysics: A Festschrift in Honor of George Contopoulos
NASA Astrophysics Data System (ADS)
Buchler, J. Robert; Gottesman, Stephen T.; Kandrup, Henry E.
1998-12-01
The annals of the New York Academy of Sciences is a compilation of work in the area of nonlinear dynamics and chaos in Astrophysics. Sections included are: From Quasars to Extraordinary N-body Problems; Dynamical Spectra and the Onset of Chaos; Orbital Complexity, Short-Time Lyapunov Exponents, and Phase Space Transport in Time-Independent Hamiltonian Systems; Bifurcations of Periodic Orbits in Axisymmetric Scalefree Potentials; Irregular Period-Tripling Bifurcations in Axisymmetric Scalefree Potentials; Negative Energy Modes and Gravitational Instability of Interpenetrating Fluids; Invariants and Labels in Lie-Poisson Systems; From Jupiter's Great Red Spot to the Structure of Galaxies: Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems; N-Body Simulations of Galaxies and Groups of Galaxies with the Marseille GRAPE Systems; On Nonlinear Dynamics of Three-Dimensional Astrophysical Disks; Satellites as Probes of the Masses of Spiral Galaxies; Chaos in the Centers of Galaxies; Counterrotating Galaxies and Accretion Disks; Global Spiral Patterns in Galaxies: Complexity and Simplicity; Candidates for Abundance Gradients at Intermediate Red-Shift Clusters; Scaling Regimes in the Distribution of Galaxies; Recent Progress in the Study of One-Dimensional Gravitating Systems; Modeling the Time Variability of Black Hole Candidates; Stellar Oscillons; Chaos in Cosmological Hamiltonians; and Phase Space Transport in Noisy Hamiltonian Systems.
NASA Technical Reports Server (NTRS)
Geyser, L. C.
1978-01-01
A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.
Octafluoropropane Concentration Dynamics on Board the International Space Station
NASA Technical Reports Server (NTRS)
Perry, J. L.
2003-01-01
Since activating the International Space Station s (IS9 Service Module in November 2000, archival air quality samples have shown highly variable concentrations of octafluoropropane in the cabin. This variability has been directly linked to leakage from air conditioning systems on board the Service Module, Zvezda. While octafluoro- propane is not highly toxic, it presents a significant chal- lenge to the trace contaminant control systems. A discussion of octafluoropropane concentration dynamics is presented and the ability of on board trace contami- nant control systems to effectively remove octafluoropro- pane from the cabin atmosphere is assessed. Consideration is given to operational and logistics issues that may arise from octafluoropropane and other halo- carbon challenges to the contamination control systems as well as the potential for effecting cabin air quality.
Space Resources and Space Settlements
NASA Technical Reports Server (NTRS)
Billingham, J. (Editor); Gilbreath, W. P. (Editor); Oleary, B. (Editor); Gosset, B. (Editor)
1979-01-01
The technical papers from the five tasks groups that took part in the 1977 Ames Summer Study on Space Settlements and Industrialization Using Nonterrestrial Materials are presented. The papers are presented under the following general topics: (1) research needs for regenerative life-support systems; (2) habitat design; (3) dynamics and design of electromagnetic mass drivers; (4) asteroids as resources for space manufacturing; and (5) processing of nonterrestrial materials.
Creating the Future: Research and Technology
NASA Technical Reports Server (NTRS)
1998-01-01
With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.
Interactive computer graphics and its role in control system design of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.
1985-01-01
This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.
Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot
NASA Astrophysics Data System (ADS)
Zhao, Yakun; Huang, Panfeng; Zhang, Fan
2018-02-01
Recent years, tethered space capturing systems have been considered as one of the most promising solutions for active space debris removal due to the increasing threat of space debris to spacecraft and astronauts. In this paper, one of the tethered space capturing systems, Tethered Space Robot (TSR), is investigated. TSR includes a space platform, a space tether, and a gripper as the terminal device. Based on the assumptions that the platform and the gripper are point masses and the tether is rigid, inextensible and remaining straight, the dynamic model of TSR is presented, in which the disturbances from space environment is considered. According to the previous study, the in-plane and out-of-plane angles of the tether oscillate periodically although the tether is released to the desired length. A super-twisting adaptive sliding mode control scheme is designed for TSR to eliminate the vibration of the tether to assure a successful capture in station-keeping phase. Both uncontrolled and controlled situations are simulated. The simulation results show that the proposed controller is effective. Additionally, after comparing with normal sliding mode control algorithm, it is verified that the proposed control scheme can avoid the chattering of normal sliding mode control and is robust for unknown boundary perturbations.
Alvermann, A; Fehske, H
2009-04-17
We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and efficient calculations of static, spectral, and dynamic quantities using standard exact diagonalization algorithms. The strength of the approach is demonstrated for the phase transition, critical behavior, and dissipative spin dynamics in the spin-boson model.
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.; ...
2017-01-19
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
Decentralized reinforcement-learning control and emergence of motion patterns
NASA Astrophysics Data System (ADS)
Svinin, Mikhail; Yamada, Kazuyaki; Okhura, Kazuhiro; Ueda, Kanji
1998-10-01
In this paper we propose a system for studying emergence of motion patterns in autonomous mobile robotic systems. The system implements an instance-based reinforcement learning control. Three spaces are of importance in formulation of the control scheme. They are the work space, the sensor space, and the action space. Important feature of our system is that all these spaces are assumed to be continuous. The core part of the system is a classifier system. Based on the sensory state space analysis, the control is decentralized and is specified at the lowest level of the control system. However, the local controllers are implicitly connected through the perceived environment information. Therefore, they constitute a dynamic environment with respect to each other. The proposed control scheme is tested under simulation for a mobile robot in a navigation task. It is shown that some patterns of global behavior--such as collision avoidance, wall-following, light-seeking--can emerge from the local controllers.
Bioattractors: dynamical systems theory and the evolution of regulatory processes
Jaeger, Johannes; Monk, Nick
2014-01-01
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812
Technology for large space systems: A bibliography with indexes (supplement 22)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 1077 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion.
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
NASA Astrophysics Data System (ADS)
Kusano, K.
2016-12-01
Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.
NASA Aircraft Vortex Spacing System Development Status
NASA Technical Reports Server (NTRS)
Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner
1999-01-01
The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.
Milestone report TCTP application to the SSME hydrogen system analysis
NASA Technical Reports Server (NTRS)
Richards, J. S.
1975-01-01
The Transient Cryogen Transfer Computer Program (TCTP) developed and verified for LOX systems by analyses of Skylab S-1B stage loading data from John F. Kennedy Space Center launches was extended to include hydrogen as the working fluid. The feasibility of incorporating TCTP into the space shuttle main engine dynamic model was studied. The program applications are documented.
Moving Word Learning to a Novel Space: A Dynamic Systems View of Referent Selection and Retention
ERIC Educational Resources Information Center
Samuelson, Larissa K.; Kucker, Sarah C.; Spencer, John P.
2017-01-01
Theories of cognitive development must address both the issue of how children bring their knowledge to bear on behavior in-the-moment, and how knowledge changes over time. We argue that seeking answers to these questions requires an appreciation of the dynamic nature of the developing system in its full, reciprocal complexity. We illustrate this…
USDA-ARS?s Scientific Manuscript database
Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...
A survey of decentralized control techniques for large space structures
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Reichard, K.
1987-01-01
Preliminary results on the design of decentralized controllers for the COFS I Mast are reported. A nine mode finite element model is used along with second order model of the actuators. It is shown that without actuator dynamics, the system is stable with collocated rate feedback and has acceptable performace. However, when actuator dynamics are included, the system is unstable.
Group dynamics challenges: Insights from Biosphere 2 experiments.
Nelson, Mark; Gray, Kathelin; Allen, John P
2015-07-01
Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.
2015-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.
A Dynamic Laplacian for Identifying Lagrangian Coherent Structures on Weighted Riemannian Manifolds
NASA Astrophysics Data System (ADS)
Froyland, Gary; Kwok, Eric
2017-06-01
Transport and mixing in dynamical systems are important properties for many physical, chemical, biological, and engineering processes. The detection of transport barriers for dynamics with general time dependence is a difficult, but important problem, because such barriers control how rapidly different parts of phase space (which might correspond to different chemical or biological agents) interact. The key factor is the growth of interfaces that partition phase space into separate regions. The paper Froyland (Nonlinearity 28(10):3587-3622, 2015) introduced the notion of dynamic isoperimetry: the study of sets with persistently small boundary size (the interface) relative to enclosed volume, when evolved by the dynamics. Sets with this minimal boundary size to volume ratio were identified as level sets of dominant eigenfunctions of a dynamic Laplace operator. In this present work we extend the results of Froyland (Nonlinearity 28(10):3587-3622, 2015) to the situation where the dynamics (1) is not necessarily volume preserving, (2) acts on initial agent concentrations different from uniform concentrations, and (3) occurs on a possibly curved phase space. Our main results include generalised versions of the dynamic isoperimetric problem, the dynamic Laplacian, Cheeger's inequality, and the Federer-Fleming theorem. We illustrate the computational approach with some simple numerical examples.
An application of high authority/low authority control and positivity
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Irwin, D.; Tollison, D.; Waites, H. B.
1988-01-01
Control Dynamics Company (CDy), in conjunction with NASA Marshall Space Flight Center (MSFC), has supported the U.S. Air Force Wright Aeronautical Laboratory (AFWAL) in conducting an investigation of the implementation of several DOD controls techniques. These techniques are to provide vibration suppression and precise attitude control for flexible space structures. AFWAL issued a contract to Control Dynamics to perform this work under the Active Control Technique Evaluation for Spacecraft (ACES) Program. The High Authority Control/Low Authority Control (HAC/LAC) and Positivity controls techniques, which were cultivated under the DARPA Active Control of Space Structures (ACOSS) Program, were applied to a structural model of the NASA/MSFC Ground Test Facility ACES configuration. The control systems design were accomplished and linear post-analyses of the closed-loop systems are provided. The control system designs take into account effects of sampling and delay in the control computer. Nonlinear simulation runs were used to verify the control system designs and implementations in the facility control computers. Finally, test results are given to verify operations of the control systems in the test facility.
The Dimensions of "Social Dynamics" in Comparative Studies on Higher Education
ERIC Educational Resources Information Center
Välimaa, Jussi; Nokkala, Terhi
2014-01-01
This article discusses social dynamics of higher education which is one of the most crucial but neglected perspectives in comparative studies of higher education. We pay attention to the importance of time, space and contexts--both geographical and socio-cultural ones--to reveal how they influence on different social dynamics in various systems of…
Topics in Modeling of Cochlear Dynamics: Computation, Response and Stability Analysis
NASA Astrophysics Data System (ADS)
Filo, Maurice G.
This thesis touches upon several topics in cochlear modeling. Throughout the literature, mathematical models of the cochlea vary according to the degree of biological realism to be incorporated. This thesis casts the cochlear model as a continuous space-time dynamical system using operator language. This framework encompasses a wider class of cochlear models and makes the dynamics more transparent and easier to analyze before applying any numerical method to discretize space. In fact, several numerical methods are investigated to study the computational efficiency of the finite dimensional realizations in space. Furthermore, we study the effects of the active gain perturbations on the stability of the linearized dynamics. The stability analysis is used to explain possible mechanisms underlying spontaneous otoacoustic emissions and tinnitus. Dynamic Mode Decomposition (DMD) is introduced as a useful tool to analyze the response of nonlinear cochlear models. Cochlear response features are illustrated using DMD which has the advantage of explicitly revealing the spatial modes of vibrations occurring in the Basilar Membrane (BM). Finally, we address the dynamic estimation problem of BM vibrations using Extended Kalman Filters (EKF). Due to the limitations of noninvasive sensing schemes, such algorithms are inevitable to estimate the dynamic behavior of a living cochlea.
Resident research associateships. Postdoctoral and senior research awards
NASA Technical Reports Server (NTRS)
1984-01-01
Opportunities for research at Marshall Space Flight Center's Materials and Processes Laboratory, Space Sciences Laboratory, and Systems Dynamics Laboratory are described. Information is provided for applicants desiring designation as a research associate and a list of laboratory directors and research advisors is provided.
Robustness of reduced-order multivariable state-space self-tuning controller
NASA Technical Reports Server (NTRS)
Yuan, Zhuzhi; Chen, Zengqiang
1994-01-01
In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.
NASA Astrophysics Data System (ADS)
Slutskin, R. L.
2001-12-01
Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.
Experimental Observation of Classical Dynamical Monodromy
NASA Astrophysics Data System (ADS)
Nerem, M. P.; Salmon, D.; Aubin, S.; Delos, J. B.
2018-03-01
A Hamiltonian system is said to have nontrivial monodromy if its fundamental action-angle loops do not return to their initial topological state at the end of a closed circuit in angular momentum-energy space. This process has been predicted to have consequences which can be seen in dynamical systems, called dynamical monodromy. Using an apparatus consisting of a spherical pendulum subject to magnetic potentials and torques, we observe nontrivial monodromy by the associated topological change in the evolution of a loop of trajectories.
Bubbling and on-off intermittency in bailout embeddings.
Cartwright, Julyan H E; Magnasco, Marcelo O; Piro, Oreste; Tuval, Idan
2003-07-01
We establish and investigate the conceptual connection between the dynamics of the bailout embedding of a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded phase space can be recognized as Hamiltonian bubbling.
21st Space Simulation Conference: The Future of Space Simulation Testing in the 21st Century
NASA Technical Reports Server (NTRS)
Stecher, Joseph L., III (Compiler)
2000-01-01
The Institute of Environmental Sciences and Technology's Twenty-first Space Simulation Conference, "The Future of Space Testing in the 21st Century" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, programs/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Future of Space Testing in the 21st Century."
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.
2005-01-01
This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.
Phase-space methods for the spin dynamics in condensed matter systems
Hurst, Jérôme; Manfredi, Giovanni
2017-01-01
Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903
A program for advancing the technology of space concentrators
NASA Technical Reports Server (NTRS)
Naujokas, Gerald J.; Savino, Joseph M.
1989-01-01
In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long-term goals, approach, planned accomplishments for the future, and the present status of the various program elements.
A program for advancing the technology of space concentrators
NASA Technical Reports Server (NTRS)
Naujokas, Gerald J.; Savino, Joseph M.
1989-01-01
In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.
Electric sail space flight dynamics and controls
NASA Astrophysics Data System (ADS)
Montalvo, Carlos; Wiegmann, Bruce
2018-07-01
This paper seeks to investigate the space flight dynamics of a rotating barbell Electric Sail (E-Sail). This E-Sail contains two 6U CubeSats connected to 8 km tethers joined at a central hub. The central hub is designed to be an insulator so that each tether can have differing voltages. An electron gun positively charges each tether which interacts with the solar wind to produce acceleration. If the voltage on each tether is different, the trajectory of the system can be altered. Flapping modes and tension spikes are found during many of these maneuvers and care must be taken to mitigate the magnitude of these oscillations. Using sinusoidal voltage inputs, it is possible to control the trajectory of this two-body E-Sail and propel the system to Near-Earth-Objects or even deep space.
NASA Astrophysics Data System (ADS)
Qin, Tao; Hofstetter, Walter
2017-08-01
We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.
Trajectory design strategies that incorporate invariant manifolds and swingby
NASA Technical Reports Server (NTRS)
Guzman, J. J.; Cooley, D. S.; Howell, K. C.; Folta, D. C.
1998-01-01
Libration point orbits serve as excellent platforms for scientific investigations involving the Sun as well as planetary environments. Trajectory design in support of such missions is increasingly challenging as more complex missions are envisioned in the next few decades. Software tools for trajectory design in this regime must be further developed to incorporate better understanding of the solution space and, thus, improve the efficiency and expand the capabilities of current approaches. Only recently applied to trajectory design, dynamical systems theory now offers new insights into the natural dynamics associated with the multi-body problem. The goal of this effort is the blending of analysis from dynamical systems theory with the well established NASA Goddard software program SWINGBY to enhance and expand the capabilities for mission design. Basic knowledge concerning the solution space is improved as well.
A model for rotorcraft flying qualities studies
NASA Technical Reports Server (NTRS)
Mittal, Manoj; Costello, Mark F.
1993-01-01
This paper outlines the development of a mathematical model that is expected to be useful for rotorcraft flying qualities research. A computer model is presented that can be applied to a range of different rotorcraft configurations. The algorithm computes vehicle trim and a linear state-space model of the aircraft. The trim algorithm uses non linear optimization theory to solve the nonlinear algebraic trim equations. The linear aircraft equations consist of an airframe model and a flight control system dynamic model. The airframe model includes coupled rotor and fuselage rigid body dynamics and aerodynamics. The aerodynamic model for the rotors utilizes blade element theory and a three state dynamic inflow model. Aerodynamics of the fuselage and fuselage empennages are included. The linear state-space description for the flight control system is developed using standard block diagram data.
Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations
NASA Technical Reports Server (NTRS)
Cutri-Kohart, Rebecca M.
2011-01-01
The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.
Shuttle vehicle and mission simulation requirements report, volume 1
NASA Technical Reports Server (NTRS)
Burke, J. F.
1972-01-01
The requirements for the space shuttle vehicle and mission simulation are developed to analyze the systems, mission, operations, and interfaces. The requirements are developed according to the following subject areas: (1) mission envelope, (2) orbit flight dynamics, (3) shuttle vehicle systems, (4) external interfaces, (5) crew procedures, (6) crew station, (7) visual cues, and (8) aural cues. Line drawings and diagrams of the space shuttle are included to explain the various systems and components.
Interference in the classical probabilistic model and its representation in complex Hilbert space
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei Yu.
2005-10-01
The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.
An Approach to Dynamic Service Management in Pervasive Computing Systems
2005-01-01
standard interface to them that is easily accessible by any user. This paper outlines the design of Centaurus , an infrastructure for presenting...based on Extensi- ble Markup Language (XML) for communication, giving the system a uniform and easily adaptable interface. Centaurus defines a...easy and automatic usage. This is the vision that guides our re- search on the Centaurus system. We define a SmartSpace as a dynamic environment that
NASA Astrophysics Data System (ADS)
Smith, Joshua; Hinterberger, Michael; Hable, Peter; Koehler, Juergen
2014-12-01
Extended battery system lifetime and reduced costs are essential to the success of electric vehicles. An effective thermal management strategy is one method of enhancing system lifetime increasing vehicle range. Vehicle-typical space restrictions favor the minimization of battery thermal management system (BTMS) size and weight, making their production and subsequent vehicle integration extremely difficult and complex. Due to these space requirements, a cooling plate as part of a water-glycerol cooling circuit is commonly implemented. This paper presents a computational fluid dynamics (CFD) model and multi-objective analysis technique for determining the thermal effect of coolant flow rate and inlet temperature in a cooling plate-at a range of vehicle operating conditions-on a battery system, thereby providing a dynamic input for one-dimensional models. Traditionally, one-dimensional vehicular thermal management system models assume a static heat input from components such as a battery system: as a result, the components are designed for a set coolant input (flow rate and inlet temperature). Such a design method is insufficient for dynamic thermal management models and control strategies, thereby compromising system efficiency. The presented approach allows for optimal BMTS design and integration in the vehicular coolant circuit.
The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics
NASA Technical Reports Server (NTRS)
2003-01-01
The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.
NASA Technical Reports Server (NTRS)
Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.
1994-01-01
The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.
1988-06-01
James McKelvy and Harold Tinsley *," . CONCEPTUAL DESIGN OF A SPACE STATION DYNAMIC SCALE MODEL ............. 87 Robert Letchworth, Paul E... CONCEPTUAL SYSTEM DESIGN FOR ANTENNA THERMAL AND DYNAMIC DISTORTION COMPENSATION USING A PHASED ARRAY FEED ................... 145 G. R. Sharp, R. J...to achieve somne desired state or trajectory. For conceptual purposes, however, an alternate view is useful in which the measurement reference against
NASA Technical Reports Server (NTRS)
Benavente, Javier E.; Luce, Norris R.
1989-01-01
Demands for nonlinear time history simulations of large, flexible multibody dynamic systems has created a need for efficient interfaces between finite-element modeling programs and time-history simulations. One such interface, TREEFLX, an interface between NASTRAN and TREETOPS, a nonlinear dynamics and controls time history simulation for multibody structures, is presented and demonstrated via example using the proposed Space Station Mobile Remote Manipulator System (MRMS). The ability to run all three programs (NASTRAN, TREEFLX and TREETOPS), in addition to other programs used for controller design and model reduction (such as DMATLAB and TREESEL, both described), under a UNIX Workstation environment demonstrates the flexibility engineers now have in designing, developing and testing control systems for dynamically complex systems.
Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system
NASA Astrophysics Data System (ADS)
Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal
2016-06-01
This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements' own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.
Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jašek, Roman; Dvořák, Jiří; Janková, Martina
This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen heremore » as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements’ own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.« less
Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication
NASA Technical Reports Server (NTRS)
Heldman, Christopher
2017-01-01
Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.
Validation of a "Kane's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Beech, Geoffrey S.; Hampton, R. David
2000-01-01
Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller, ARIS provides the ISS response to the first requirement. In November 1999, the authors presented a response to the second ("A 'Kane's Dynamics' model for the Active Rack Isolation System", Hampton and Beech) intended to facilitate an optimal-controls approach to the third. This paper documents the validation of that high-fidelity dynamic model of ARIS. As before, this model contains the full actuator dynamics, however, the umbilical models are not included in this presentation. The validation of this dynamics model was achieved by utilizing two Commercial Off the Shelf (COTS) software tools: Deneb's ENVISION, and Online Dynamics' AUTOLEV. ENVISION is a robotics software package developed for the automotive industry that employs 3-dimensional (3-D) Computer Aided Design (CAD) models to facilitate both forward and inverse kinematics analyses. AUTOLEV is a DOS based interpreter that is designed in general to solve vector based mathematical problems and specifically to solve Dynamics problems using Kane's method.
2010-01-01
Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. Conclusions Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space. PMID:20230643
Viscoelastic propellant effects on Space Shuttle Dynamics
NASA Technical Reports Server (NTRS)
Bugg, F.
1981-01-01
The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.
Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1995-01-01
A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.
Innovations in dynamic test restraint systems
NASA Technical Reports Server (NTRS)
Fuld, Christopher J.
1990-01-01
Recent launch system development programs have led to a new generation of large scale dynamic tests. The variety of test scenarios share one common requirement: restrain and capture massive high velocity flight hardware with no structural damage. The Space Systems Lab of McDonnell Douglas developed a remarkably simple and cost effective approach to such testing using ripstitch energy absorbers adapted from the sport of technical rockclimbing. The proven system reliability of the capture system concept has led to a wide variety of applications in test system design and in aerospace hardware design.
Dynamic Long-Term Anticipation of Chaotic States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Henning U.
2001-07-02
Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown recently that the driven system may anticipate the driving system in real time. Augmenting the phase space of the driven system, we accomplish anticipation times that are multiples of the coupling delay time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the associated anticipatory synchronization manifold in certain cases turn out to be the same as for identically synchronizing oscillators.
Computer simulation of multigrid body dynamics and control
NASA Technical Reports Server (NTRS)
Swaminadham, M.; Moon, Young I.; Venkayya, V. B.
1990-01-01
The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.
NASA Technical Reports Server (NTRS)
1987-01-01
Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.
Proceedings of the NASA Conference on Space Telerobotics, volume 4
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center.
Space-filling polyhedral sorbents
Haaland, Peter
2016-06-21
Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.
USING FISHER INFORMATION TO ASSESS THE RISK OF DYNAMIC REGIME CHANGES IN ECOLOGICAL SYSTEMS
The sustainable nature of particular dynamic regimes of ecosystems is an increasingly integral aspect of many ecological, economic, and social decisions. As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neig...
Dynamic data driven bidirectional reflectance distribution function measurement system
NASA Astrophysics Data System (ADS)
Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.
2014-09-01
The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.
NASA Astrophysics Data System (ADS)
Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin
2017-05-01
For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.
Hardware-efficient Bell state preparation using Quantum Zeno Dynamics in superconducting circuits
NASA Astrophysics Data System (ADS)
Flurin, Emmanuel; Blok, Machiel; Hacohen-Gourgy, Shay; Martin, Leigh S.; Livingston, William P.; Dove, Allison; Siddiqi, Irfan
By preforming a continuous joint measurement on a two qubit system, we restrict the qubit evolution to a chosen subspace of the total Hilbert space. This extension of the quantum Zeno effect, called Quantum Zeno Dynamics, has already been explored in various physical systems such as superconducting cavities, single rydberg atoms, atomic ensembles and Bose Einstein condensates. In this experiment, two superconducting qubits are strongly dispersively coupled to a high-Q cavity (χ >> κ) allowing for the doubly excited state | 11 〉 to be selectively monitored. The Quantum Zeno Dynamics in the complementary subspace enables us to coherently prepare a Bell state. As opposed to dissipation engineering schemes, we emphasize that our protocol is deterministic, does not rely direct coupling between qubits and functions only using single qubit controls and cavity readout. Such Quantum Zeno Dynamics can be generalized to larger Hilbert space enabling deterministic generation of many-body entangled states, and thus realizes a decoherence-free subspace allowing alternative noise-protection schemes.
Influence of rubbing on rotor dynamics, part 1
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.
1989-01-01
The results of analytical and experimental research on rotor-to-stationary element rubbing in rotating machines are presented. A characterization of physical phenomena associated with rubbing, as well as a literature survey on the subject of rub is given. The experimental results were obtained from two rubbing rotor rigs: one, which dynamically simulates the space shuttle main engine high pressure fuel turbopump (HPFTP), and the second one, much simpler, a two-mode rotor rig, designed for more generic studies on rotor-to-stator rubbing. Two areas were studied: generic rotor-to-stator rub-related dynamic phenomena affecting rotating machine behavior and applications to the space shuttle HPFTP. An outline of application of dynamic stiffness methodology for identification of rotor/bearing system modal parameters is given. The mathematical model of rotor/bearing/seal system under rub condition is given. The computer program was developed to calculate rotor responses. Compared with experimental results the computed results prove an adequacy of the model.
Dynamic modeling and optimal joint torque coordination of advanced robotic systems
NASA Astrophysics Data System (ADS)
Kang, Hee-Jun
The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving, highly versatile, advanced robotic systems. Therefore, finally, a module based dynamic modeling algorithm is presented for the dynamic coordination of such reconfigurable modular robotic systems. A user interactive module based manipulator analysis program (MBMAP) has been coded in C language running on 4D/70 Silicon Graphics.
Alpha LAMP Integration Facility
NASA Technical Reports Server (NTRS)
Oshiro, Richard; Sowers, Dennis; Gargiulo, Joe; Mcgahey, Mark
1994-01-01
This paper describes the activity recently completed to meet the simulated space environment requirements for the ground-based testing of an integrated Space Based Laser (SBL) system experiment. The need to maintain optical alignment in the challenging dynamic environment of the pressure recovery system required to simulate space dominated the design requirements. A robust system design was established which minimized the total program costs, most notably by reducing the cost of integrating the components of the experiment. The components of the experiment are integrated on an optical bench in a clean area adjacent to the vacuum chamber and moved on air bearings into the chamber for testing.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Heat engines were evaluated for terrestrial Solar Distributed Heat Receivers. The Stirling engine was identified as one of the most promising heat engines for terrestrial applications. Technology development is also conducted for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other.
Dynamic Stabilization of a Quantum Many-Body Spin System
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2013-08-01
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.
Global, real-time ionosphere specification for end-user communication and navigation products
NASA Astrophysics Data System (ADS)
Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.
2010-12-01
Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those data into operational space physics models, and finally generate visualization products such as the images, plots, and alerts that can be viewed on SpaceWx. In a real sense, the space weather community is now able to transition research models into operations through “proofing” products such as real-time disseminated of information through smart phones. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System
NASA Technical Reports Server (NTRS)
Dziubanek, Adam J.
2012-01-01
The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.
NASA Technical Reports Server (NTRS)
1990-01-01
Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.
Dynamic Forms. Part 2; Application to Aircraft Guidance
NASA Technical Reports Server (NTRS)
Meyer, George; Smith, G. Allan
1997-01-01
The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of waypoints through which the aircraft trajectory must pass. The waypoints typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory that satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multidimensional, multiaxis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions are required to be smooth. The proposed guidance algorithm is based on the inversion of the pure feedback approximation, followed by correction for the effects of zero dynamics. The paper describes the structure and major modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.
Characterizing and modeling the dynamics of online popularity.
Ratkiewicz, Jacob; Fortunato, Santo; Flammini, Alessandro; Menczer, Filippo; Vespignani, Alessandro
2010-10-08
Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.
Observation of the Topological Change Associated with the Dynamical Monodromy
NASA Astrophysics Data System (ADS)
Salmon, Daniel; Nerem, Matthew; Aubin, Seth; Delos, John
2017-04-01
Classical mechanics is an old theory and new phenomena do not often appear. A recently predicted phenomenon is called ``Dynamical Monodromy.'' Monodromy is the study of the behavior of a system as it evolves ``once around a closed circuit''. Systems that do not return to their original state after forming a closed circuit in some space are said to exhibit ``nontrivial monodromy.'' One such system is a collection of non-interacting particles moving in a ``champagne bottle'' potential. A loop of trajectories of this system exhibits a topological change when each of the particles traverse a monodromy circuit in Energy-Angular Momentum space (any closed path that encloses the singular point at the origin). This system has been realized using a rigid spherical pendulum, with a permanent magnet at its end. Magnetic fields generated by coils are used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
ORATOS: ESA's future flight dynamics operations system
NASA Astrophysics Data System (ADS)
Dreger, Frank; Fertig, Juergen; Muench, Rolf
The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.
Coordinating space telescope operations in an integrated planning and scheduling architecture
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela
1992-01-01
The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.
Advanced heat receiver conceptual design study
NASA Technical Reports Server (NTRS)
Kesseli, James; Saunders, Roger; Batchelder, Gary
1988-01-01
Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.
Anisotropic hydrodynamics with a scalar collisional kernel
NASA Astrophysics Data System (ADS)
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Free-piston Stirling Engine system considerations for various space power applications
NASA Technical Reports Server (NTRS)
Dochat, George R.; Dhar, Manmohan
1991-01-01
Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.
Constrained multibody system dynamics: An automated approach
NASA Technical Reports Server (NTRS)
Kamman, J. W.; Huston, R. L.
1982-01-01
The governing equations for constrained multibody systems are formulated in a manner suitable for their automated, numerical development and solution. The closed loop problem of multibody chain systems is addressed. The governing equations are developed by modifying dynamical equations obtained from Lagrange's form of d'Alembert's principle. The modifications is based upon a solution of the constraint equations obtained through a zero eigenvalues theorem, is a contraction of the dynamical equations. For a system with n-generalized coordinates and m-constraint equations, the coefficients in the constraint equations may be viewed as constraint vectors in n-dimensional space. In this setting the system itself is free to move in the n-m directions which are orthogonal to the constraint vectors.
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.
2006-01-01
The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.
Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew
2014-01-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456
NASA Technical Reports Server (NTRS)
Housner, J. M.; Edighoffer, H. H.; Park, K. C.
1980-01-01
A unidirectional analysis of the nonlinear dynamic behavior of the space shuttle tile/pad thermal protection system is developed and examined for imposed sinusoidal and random motions of the shuttle skin and/or applied tile pressure. The analysis accounts for the highly nonlinear stiffening hysteresis and viscous behavior of the pad which joins the tile to the shuttle skin. Where available, experimental data are used to confirm the validity of the analysis. Both analytical and experimental studies reveal that the system resonant frequency is very high for low amplitude oscillations but decreases rapidly to a minimum value with increasing amplitude. Analytical studies indicate that with still higher amplitude the resonant frequency increases slowly. The nonlinear pad is also responsible for the analytically and experimentally observed distorted response wave shapes having high sharp peaks when the system is subject to sinusoidal loads. Furthermore, energy dissipation in the pad is studied analytically and it is found that the energy dissipated is sufficiently high to cause rapid decay of dynamic transients. Nevertheless, the sharp peaked nonlinear responses of the system lead to higher magnification factors than would be expected in such a highly damped linear system.
Understanding neurodynamical systems via Fuzzy Symbolic Dynamics.
Dobosz, Krzysztof; Duch, Włodzisław
2010-05-01
Neurodynamical systems are characterized by a large number of signal streams, measuring activity of individual neurons, local field potentials, aggregated electrical (EEG) or magnetic potentials (MEG), oxygen use (fMRI) or activity of simulated neurons. Various basis set decomposition techniques are used to analyze such signals, trying to discover components that carry meaningful information, but these techniques tell us little about the global activity of the whole system. A novel technique called Fuzzy Symbolic Dynamics (FSD) is introduced to help in understanding of the multidimensional dynamical system's behavior. It is based on a fuzzy partitioning of the signal space that defines a non-linear mapping of the system's trajectory to the low-dimensional space of membership function activations. This allows for visualization of the trajectory showing various aspects of observed signals that may be difficult to discover looking at individual components, or to notice otherwise. FSD mapping can be applied to raw signals, transformed signals (for example, ICA components), or to signals defined in the time-frequency domain. To illustrate the method two FSD visualizations are presented: a model system with artificial radial oscillatory sources, and the output layer (50 neurons) of Respiratory Rhythm Generator (RRG) composed of 300 spiking neurons. 2009 Elsevier Ltd. All rights reserved.
Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.
1997-01-01
A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.
SHIELDS Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania Koleva
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data frommore » LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.« less
Telerobotic research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Sliwa, Nancy E.
1987-01-01
An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.
Analysis of shadowing effects on spacecraft power systems
NASA Technical Reports Server (NTRS)
Fincannon, H. J.
1995-01-01
This paper describes the Orbiting Spacecraft Shadowing Analysis (OSSA) computer program that was developed at NASA Lewis Research Center in order to assess the shadowing effects on various power systems. The algorithms, inputs and outputs are discussed. Examples of typical shadowing analyses that have been performed for the International Space Station Freedom, International Space Station Alpha and the joint United States/Russian Mir Solar Dynamic Flight Experiment Project are covered. Effects of shadowing on power systems are demonstrated.
Development of automation and robotics for space via computer graphic simulation methods
NASA Technical Reports Server (NTRS)
Fernandez, Ken
1988-01-01
A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.
The Solar Dynamic radiator with a historical perspective
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R.
1988-01-01
A historical perspective on pumped loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kWe each, are planned for growth Station power requirements. The Brayton (cycle) SD module configuration incorporates a pumped loop radiator that must reject up to 99 kW. The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped loop radiator systems. Nevertheless, past program successes have demonstrated a technology base which can be applied to the SD radiator development program to ensure a low risk, low cost system.
Minic, Djordje; Pleimling, Michel
2008-12-01
We point out that the recent discussion of nonrelativistic anti-de Sitter space and conformal field theory correspondence has a direct application in nonequilibrium statistical physics, a fact which has not been emphasized in the recent literature on the subject. In particular, we propose a duality between aging in systems far from equilibrium characterized by the dynamical exponent z=2 and gravity in a specific background. The key ingredient in our proposal is the recent geometric realization of the Schrödinger group. We also discuss the relevance of the proposed correspondence for the more general aging phenomena in systems where the value of the dynamical exponent is different from 2.
Algebraic and radical potential fields. Stability domains in coordinate and parametric space
NASA Astrophysics Data System (ADS)
Uteshev, Alexei Yu.
2018-05-01
A dynamical system d X/d t = F(X; A) is treated where F(X; A) is a polynomial (or some general type of radical contained) function in the vectors of state variables X ∈ ℝn and parameters A ∈ ℝm. We are looking for stability domains in both spaces, i.e. (a) domain ℙ ⊂ ℝm such that for any parameter vector specialization A ∈ ℙ, there exists a stable equilibrium for the dynamical system, and (b) domain 𝕊 ⊂ ℝn such that any point X* ∈ 𝕊 could be made a stable equilibrium by a suitable specialization of the parameter vector A.
Operationalizing safe operating space for regional social-ecological systems.
Hossain, Md Sarwar; Dearing, John A; Eigenbrod, Felix; Johnson, Fiifi Amoako
2017-04-15
This study makes a first attempt to operationalize the safe operating space concept at a regional scale by considering the complex dynamics (e.g. non-linearity, feedbacks, and interactions) within a systems dynamic model (SD). We employ the model to explore eight 'what if' scenarios based on well-known challenges (e.g. climate change) and current policy debates (e.g. subsidy withdrawal). The findings show that the social-ecological system in the Bangladesh delta may move beyond a safe operating space when a withdrawal of a 50% subsidy for agriculture is combined with the effects of a 2°C temperature increase and sea level rise. Further reductions in upstream river discharge in the Ganges would push the system towards a dangerous zone once a 3.5°C temperature increase was reached. The social-ecological system in Bangladesh delta may be operated within a safe space by: 1) managing feedback (e.g. by reducing production costs) and the slow biophysical variables (e.g. temperature, rainfall) to increase the long-term resilience, 2) negotiating for transboundary water resources, and 3) revising global policies (e.g. withdrawal of subsidy) that negatively impact at regional scales. This study demonstrates how the concepts of tipping points, limits to adaptations, and boundaries for sustainable development may be defined in real world social-ecological systems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
2012-01-11
dynamic behavior , wherein a dissipative dynamical system can deliver only a fraction of its energy to its surroundings and can store only a fraction of the...collection of interacting subsystems. The behavior and properties of the aggregate large-scale system can then be deduced from the behaviors of the...uniqueness is established. This state space formalism of thermodynamics shows that the behavior of heat, as described by the conservation equations of
1993-10-01
Structures: Simultaneous Trajectory Tracking and Vibration Reduction ... 10 3 . Buckling Control of a Flexible Beam Using Piezoelectric Actuators...bounded solution for the inverse dynamic torque has to be non-causal. Bayo, et. al. [ 3 ], extended the inverse dynamics to planar, multiple-link systems...presented by &ayo and Moulin [4] for the single link system, with provisions for 3 extension to multiple link systems. An equivalent time domain approach for
Systematic Technology Planning: GSFC Perspective
NASA Technical Reports Server (NTRS)
Steiner, Mark
2004-01-01
This viewgraph presentation describes the experiences of Goddard Space Flight Center (GSFC) in integrating systematic technology investment planning into the process of architecting NASA space missions. The presentation uses the assessment of a lidar mission as a case study, and illustrates integration strategies through flow charts and dynamic systems models.
Making Conferences Human Places of Learning
ERIC Educational Resources Information Center
Kenny, Michael
2014-01-01
Open Space Technology is a cumbersome name for a participative conference model that enables dynamic inclusive engagement and challenges traditional, highly structured hierarchical conference formats. Based on self-organising systems, (Wenger, 1998) Open Space Technology conferences have an open process, start with no agenda and empower the most…
NASA Workshop on Computational Structural Mechanics 1987, part 3
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.
173. Photocopy of drawing (1963 piping drawing by General Dynamics/Astronautics) ...
173. Photocopy of drawing (1963 piping drawing by General Dynamics/Astronautics) COMPRESSED AIR AND WATER SYSTEM SCHEMATIC FOR THE MST, SHEET P38 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA