Science.gov

Sample records for dynamo generation due

  1. Tsunami: ocean dynamo generator.

    PubMed

    Sugioka, Hiroko; Hamano, Yozo; Baba, Kiyoshi; Kasaya, Takafumi; Tada, Noriko; Suetsugu, Daisuke

    2014-01-08

    Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field ('ocean dynamo effect'), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems.

  2. Tsunami: Ocean dynamo generator

    PubMed Central

    Sugioka, Hiroko; Hamano, Yozo; Baba, Kiyoshi; Kasaya, Takafumi; Tada, Noriko; Suetsugu, Daisuke

    2014-01-01

    Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field (‘ocean dynamo effect’), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems. PMID:24399356

  3. Dynamo generated by the centrifugal instability

    NASA Astrophysics Data System (ADS)

    Marcotte, Florence; Gissinger, Christophe

    2016-10-01

    We present a scenario for magnetic field amplification where an electrically conducting fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the angular momentum sufficiently decreases outwards, a hydrodynamic instability develops in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components. We show that the critical magnetic Reynolds number seems to reach a constant value at large Reynolds number and that the global rotation can strongly decrease the dynamo onset. Our numerical results are understood within the framework of a simple dynamical system, and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications for both laboratory dynamos and astrophysical magnetic fields are finally discussed.

  4. Dynamo theory, vorticity generation, and exponential stretching.

    PubMed

    Friedlander, Susan; Vishik, Misha M.

    1991-08-01

    A discussion is given of the analogy between the dynamo equation for the generation of a magnetic field by the motion of an electrically conducting fluid and the equation for the evolution of vorticity of a viscous fluid. In both cases exponential stretching is an important feature of the underlying instability problem. For the "fast" dynamo problem, the existence of exponential stretching (i.e., the positivity of the Lyapunov exponent) somewhere in the flow is a necessary condition when the flow is smooth. An example is presented of a flow with exponential stretching (an Anosov flow) that supports fast dynamo action. A parallel treatment is described for the linearized Navier-Stokes equations for the motion of a viscous fluid. In this problem the analogous necessary condition for "fast vorticity generation" is the existence of some instability in the corresponding Euler (i.e., inviscid) equation. Dynamo theory methods give a second related result, namely a universal geometric estimate from below on the growth rate of a small perturbation in an inviscid fluid. This bound gives an effective sufficient condition for local instability for Eulers equations. In particular, it is proved that a steady flow with a hyperbolic stagnation point is unstable. The growth rate of an infinitesimal perturbation in a metric with derivatives depends on this metric. This dependence is completely described.

  5. Dynamo quenching due to shear flow.

    PubMed

    Leprovost, Nicolas; Kim, Eun-jin

    2008-04-11

    We provide a theory of dynamo (alpha effect) and momentum transport in three-dimensional magnetohydrodynamics. For the first time, we show that the alpha effect is reduced by the shear even in the absence of magnetic field. The alpha effect is further suppressed by magnetic fields well below equipartition (with the large-scale flow) with different scalings depending on the relative strength of shear and magnetic field. The turbulent viscosity is also found to be significantly reduced by shear and magnetic fields, with positive value. These results suggest a crucial effect of shear and magnetic field on dynamo quenching and momentum transport reduction, with important implications for laboratory and astrophysical plasmas, in particular, for the dynamics of the Sun.

  6. Performance benchmarks for a next generation numerical dynamo model

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroaki; Heien, Eric; Aubert, Julien; Aurnou, Jonathan M.; Avery, Margaret; Brown, Ben; Buffett, Bruce A.; Busse, Friedrich; Christensen, Ulrich R.; Davies, Christopher J.; Featherstone, Nicholas; Gastine, Thomas; Glatzmaier, Gary A.; Gubbins, David; Guermond, Jean-Luc; Hayashi, Yoshi-Yuki; Hollerbach, Rainer; Hwang, Lorraine J.; Jackson, Andrew; Jones, Chris A.; Jiang, Weiyuan; Kellogg, Louise H.; Kuang, Weijia; Landeau, Maylis; Marti, Philippe; Olson, Peter; Ribeiro, Adolfo; Sasaki, Youhei; Schaeffer, Nathanaël.; Simitev, Radostin D.; Sheyko, Andrey; Silva, Luis; Stanley, Sabine; Takahashi, Futoshi; Takehiro, Shin-ichi; Wicht, Johannes; Willis, Ashley P.

    2016-05-01

    Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ˜106 processor cores, paving the way for more realistic simulations in the next model generation.

  7. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  8. Magnetic flux concentrations from dynamo-generated fields

    NASA Astrophysics Data System (ADS)

    Jabbari, S.; Brandenburg, A.; Losada, I. R.; Kleeorin, N.; Rogachevskii, I.

    2014-08-01

    Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims: We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an α2 mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods: We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. Results: DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MFS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions: Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.

  9. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  10. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  11. Magnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos.

    PubMed

    Tilgner, A

    2014-07-01

    A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and without mean field exist in rapidly rotating convecting plane layers.

  12. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow.

    PubMed

    Bayliss, R A; Forest, C B; Nornberg, M D; Spence, E J; Terry, P W

    2007-02-01

    The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.

  13. The solar dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1994-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood in spite of decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. The two basic processes involved in dynamo activity are demonstrated and the Sun's activity effects are presented in this document, along with a historical perspective regarding solar dynamos and the efforts to understand and measure them.

  14. Radiative transfer dynamo effect

    NASA Astrophysics Data System (ADS)

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  15. Radiative transfer dynamo effect

    DOE PAGES

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-17

    Here, magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  16. Compositionally Driven Dynamos

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Schubert, G.

    2014-12-01

    It is generally believed that compositional convection driven by inner core solidification is the main driver of the geodynamo. Thermal evolution considerations make it likely that compositional convection is also behind the present dynamos of Mercury and Ganymede as well as the early dynamos in the Moon, Mars and smaller solar system bodies. Compositional buoyancy can arise in several different ways, for example, through inner core solidification and FeS flotation with upward mixing and through freezing out and sinking of iron snow near the core-mantle boundary or deeper within the core. The mode of core cooling and freezing depends on conditions of temperature and pressure in the core and the concentration of light elements such as sulfur. Different distributions of compositional buoyancy will give rise to different patterns of core convection and dynamo magnetic fields. We report here the first results of a systematic study of the distribution of compositional buoyancy on the dynamo-generated magnetic fields, with an emphasis on Mars' core evolution due to iron rain.

  17. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A.; Bedding, Timothy R.; Bildsten, Lars; Silva Aguirre, Victor

    2016-01-01

    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.

  18. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.

    PubMed

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva

    2016-01-21

    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.

  19. Generation of electric fields and currents by neutral flows in weakly ionized plasmas through collisional dynamos

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.

    2016-08-01

    In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.

  20. Generation of Currents in Weakly Ionized Plasmas through a Collisional Dynamo

    NASA Astrophysics Data System (ADS)

    Dimant, Yakov; Oppenheim, Meers; Fletcher, Alex

    2016-10-01

    Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. We argue that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for the current formation, ∇ × (U-> × B->) ≠ ∂ B-> / ∂ t , where U-> is the neutral flow velocity, B-> is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ̂ . For many systems, the displacement current, ∂ B-> / ∂ t , is negligible, making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates electrojets plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law. Work supported by NSF/DOE Grant PHY-1500439.

  1. HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO

    SciTech Connect

    Pipin, V. V.; Sokoloff, D. D.; Zhang, H.; Kuzanyan, K. M.

    2013-05-01

    It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magnetic Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.

  2. The lunar dynamo.

    PubMed

    Weiss, Benjamin P; Tikoo, Sonia M

    2014-12-05

    The inductive generation of magnetic fields in fluid planetary interiors is known as the dynamo process. Although the Moon today has no global magnetic field, it has been known since the Apollo era that the lunar rocks and crust are magnetized. Until recently, it was unclear whether this magnetization was the product of a core dynamo or fields generated externally to the Moon. New laboratory and spacecraft measurements strongly indicate that much of this magnetization is the product of an ancient core dynamo. The dynamo field persisted from at least 4.25 to 3.56 billion years ago (Ga), with an intensity reaching that of the present Earth. The field then declined by at least an order of magnitude by ∼3.3 Ga. The mechanisms for sustaining such an intense and long-lived dynamo are uncertain but may include mechanical stirring by the mantle and core crystallization.

  3. The energy coupling function and the power generated by the solar wind-magnetosphere dynamo

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1980-01-01

    A solar wind parameter epsilon, known as the energy coupling function, has been shown to correlate with the power consumption in the magnetosphere. It is shown in the present paper that the parameter epsilon can be identified semi-quantitatively as the dynamo power delivered from the solar wind to an open magnetosphere. This identification not only provides a theoretical basis for the energy coupling function, but also constitutes an observational verification of the solar wind-magnetosphere dynamo along the magnetotail. Moreover, one can now conclude that a substorm results when the dynamo power exceeds 10 to the 18th erg/s.

  4. Generation of magnetic fields by chaotic fluid convection - The fast dynamo problem

    NASA Technical Reports Server (NTRS)

    Finn, John M.

    1992-01-01

    In the kinematic fast dynamo problem, the underlying nonlinear dynamics of the flow play a critical role in the behavior of a dynamo field. It is presently noted that the two important facets of the problem are the approximately lognormal distribution of vector lengths, and the presence of partial cancellation. It is suggested that these features may be reflected in the magnetic fields observed on the sun.

  5. Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field.

    PubMed

    Heyner, Daniel; Wicht, Johannes; Gómez-Pérez, Natalia; Schmitt, Dieter; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz

    2011-12-23

    The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.

  6. Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1994-01-01

    Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial

  7. The Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1998-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.

  8. F-Region Dynamo Simulations at Low and Mid-Latitude

    NASA Astrophysics Data System (ADS)

    Maute, Astrid; Richmond, Arthur D.

    2017-03-01

    The "F-layer dynamo" or "F-region dynamo" concept was introduced by Rishbeth (Planet. Space Sci. 19(2):263-267, 1971a; 19(3):357-369, 1971b). F-region winds blow the plasma across magnetic field lines setting up transverse drifts and polarization electric fields leading to equatorial downward current during the daytime and upward current at dusk which were confirmed by satellite observations. In the daytime the F-region current can close through the highly conducting E-region. At night when the E-region conductivity is small the F-region dynamo generates polarization electric fields and is mainly responsible for the nighttime drift variations. In the evening the F-region dynamo is instrumental in generating an enhanced vertical drift, the pre-reversal enhancement. The current due to the F-region dynamo is larger at day than at night, but the F-region dynamo contributes approximately 10-15 % to the total current at day versus approximately 50 % at night (Rishbeth in J. Atmos. Sol.-Terr. Phys. 43(56):387-392, 1981). The F-region dynamo effects strongly depend on the Pedersen conductivity and therefore on the solar cycle. We will review the influence of the F-region dynamo on the ionosphere in general and particularly focus on the role it plays in generating ionospheric currents and magnetic perturbations at low-earth orbiting (LEO) satellite altitudes.

  9. F-Region Dynamo Simulations at Low and Mid-Latitude

    NASA Astrophysics Data System (ADS)

    Maute, Astrid; Richmond, Arthur D.

    2016-07-01

    The " F-layer dynamo" or " F-region dynamo" concept was introduced by Rishbeth (Planet. Space Sci. 19(2):263-267, 1971a; 19(3):357-369, 1971b). F-region winds blow the plasma across magnetic field lines setting up transverse drifts and polarization electric fields leading to equatorial downward current during the daytime and upward current at dusk which were confirmed by satellite observations. In the daytime the F-region current can close through the highly conducting E-region. At night when the E-region conductivity is small the F-region dynamo generates polarization electric fields and is mainly responsible for the nighttime drift variations. In the evening the F-region dynamo is instrumental in generating an enhanced vertical drift, the pre-reversal enhancement. The current due to the F-region dynamo is larger at day than at night, but the F-region dynamo contributes approximately 10-15 % to the total current at day versus approximately 50 % at night (Rishbeth in J. Atmos. Sol.-Terr. Phys. 43(56):387-392, 1981). The F-region dynamo effects strongly depend on the Pedersen conductivity and therefore on the solar cycle. We will review the influence of the F-region dynamo on the ionosphere in general and particularly focus on the role it plays in generating ionospheric currents and magnetic perturbations at low-earth orbiting (LEO) satellite altitudes.

  10. Properties of Nonlinear Dynamo Waves

    NASA Technical Reports Server (NTRS)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  11. Secular variation of a metallic asteroid dynamo

    NASA Astrophysics Data System (ADS)

    Bryson, J. F. J.; Harrison, R. J.; Neufeld, J. A.; Nimmo, F.; Herrero-Albillos, J.; Kronast, F.; Weiss, B. P.

    2015-12-01

    The mechanisms by which inward core solidification may drive dynamo activity, and the properties of any fields that may result from this process, are highly uncertain. The fast cooling rates of the IVA iron meteorites suggest that their parent core had its silicate mantle removed by planetary collisions during the early solar system. Due to the resulting rapid radiative surface cooling, the IVA parent core solidified from the top-down, permitting a cold metallic crust that feasibly experienced fields generated by the hot interior liquid as it inwardly solidified. The IVA meteorites therefore potentially contain unique paleomagnetic information regarding top-down solidification. Through x-ray microscopy of the cloudy zone in the Steinbach and Chinautla meteorites and traditional paleomagnetic measurements on silicates extracted from the Steinbach, Bishop Canyon and São João Nepomuceno meteorites, we argue that the IVA parent core generated an intense (>100 μT) and secularly varying (time-scale <100 kyr) field during top-down solidification. These results show that certain iron meteorites are capable of having experienced dynamo fields, and that asteroids can generate directionally varying magnetic activity, strengthening claims that the fundamentals of dynamo activity are consistent across small and large bodies. Models of the thermochemical evolution and solidification of an unmantled core suggest that this field resulted from liquid motion induced by the repeated delamination and sinking of material from the base of the inwardly solidifying crust. This efficient dynamo generation mechanism was likely capable of readily creating magnetic activity at the slow cooling rates expected within mantled, inwardly solidifying cores (e.g., Mercury, Ganymede, many asteroids). Combining this observation with that of efficient solidification-driven dynamos during bottom-up asteroid core solidification, it is likely that magnetic activity was widespread in the early solar

  12. Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter steps finally away from the sun and towards the stars, the idea being to apply the physical insight gained so far to see how much of stellar magnetism can be understood in terms of dynamo action. Dynamo action in the convective core of massive main-sequence stars is first considered and shown viable. For intermediate-mass main-sequence stars the fossil field hypothesis will carry the day, although possible dynamo alternatives are also briefly discussed. The extension of the solar dynamo models investigated in Chap. 3 (10.1007/978-3-642-32093-4_3) to other solar-type stars will first take us through an important detour in first having to understand rotational evolution in response to angular momentum loss in a magnetized wind. Dynamo action in fully convective stars comes next, and the chapter closes with an overview of the situation for pre- and post-main-sequence stars and compact objects, leading finally to the magnetic fields of galaxies and beyond.

  13. Formation of sunspots and active regions through the emergence of magnetic flux generated in a solar convective dynamo

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Rempel, Matthias D.; Fan, Yuhong

    2016-05-01

    We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the near surface layer radiation MHD simulations of magneto-convection and flux emergence with the MURaM code. The latter code simulates the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere.The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries come most probably from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted and the leading sides of the emerging flux tubes are usually up against the downdraft lanes of the giant cells. It is also found that penumbrae with numerous filamentary structures form in regions of strong horizontal magnetic fields that naturally comes from the ongoing flux emergence. In contrast to previous models, the penumbrae and umbrae are divided by very sharp boarders, which is highly consistent with observations.

  14. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  15. A long-lived lunar dynamo driven by continuous mechanical stirring.

    PubMed

    Dwyer, C A; Stevenson, D J; Nimmo, F

    2011-11-09

    Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years and which has been attributed to a lunar dynamo. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids.

  16. Fluctuation dynamos and their Faraday rotation signatures

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy

    2013-03-01

    Turbulence is ubiquitous in many astrophysical systems like galaxies, galaxy clusters and possibly even the filaments in the intergalactic medium. We study fluctuation dynamo action in turbulent systems focusing on one observational signature, the random Faraday rotation measure (RM) from radio emission of background sources seen through the intermittent magnetic field generated by such a dynamo. We simulate the fluctuation dynamo in periodic boxes up to resolutions of 5123, with varying fluid and magnetic Reynolds numbers, and measure the resulting random RMs. We show that even though the magnetic field generated is intermittent, it still allows for contributions to the RM to be significant. When the dynamo saturates, the rms value of RM is of the order of 40-50 per cent of the value expected in a model where fields of strength Brms uniformly fill cells of the largest turbulent eddy but are randomly oriented from one cell to another. This level of RM dispersion is obtained across different values of magnetic Reynolds number and Prandtl number explored. We also use the random RMs to probe the structure of the generated fields to distinguish the contribution from intense and diffuse field regions. We find that the strong field regions (say with B > 2Brms) contribute only of the order of 15-20 per cent to the RM. Thus, rare structures do not dominate the RM; rather, the general `sea' of volume filling fluctuating fields are the dominant contributors. We also show that the magnetic integral scale, Lint, which is directly related to the RM dispersion, increases in all the runs, as Lorentz forces become important to saturate the dynamo. It appears that due to the ordering effect of the Lorentz forces, Lint of the saturated field tends to a modest fraction, 1/2-1/3 of the integral scale of the velocity field, for all our runs. These results are then applied to discuss the Faraday rotation signatures of fluctuation dynamo generated fields in young galaxies, galaxy

  17. Planetary Dynamos

    NASA Technical Reports Server (NTRS)

    Busse, F. H.

    1985-01-01

    The MAGSAT-program has added significantly to our knowledge of planetary magnetism. The accuracy of observations has been improved such that a reliable extrapolation of the magnetic field to the core surface is now much more feasible than it has been before, and the prospect of further MAGSAT missions raises the expectation that the time dependence of the geomagnetic field will be known with similar accuracy in the future. In the research support it has been attempted to develop dynamo theory with these applications in mind.

  18. Ionospheric disturbance dynamo

    SciTech Connect

    Blanc, M.; Richmond, A.D.

    1980-04-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes.

  19. Faraday's first dynamo: A retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  20. Effect of an Overlying Stable Layer on Planetary Dynamos

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Chan, K. H.; Liao, X.; Zhang, K.

    2003-12-01

    A fully three-dimensional, nonlinear, time-dependent, multi-layered spherical kinematic dynamo model is used to study the effect on the observable external magnetic field of flow in a stable layer above a spherical turbulent dynamo region. For a rapidly rotating planet with sufficiently large magnetic and ordinary Reynolds numbers it is reasonable to assume that turbulence in the magnetic field generation region is associated with an α effect having a symmetry reflecting the rapid rotation. In this case, we would expect the observed planetary magnetic field to be predominantly a dipole aligned with the rotation axis. Except for Saturn, observed planetary magnetic fields are more complicated. We show that the structure of the observed field is essentially determined by the flow in the overlying stable layer. It is also shown that a strong-field planetary dynamo can be readily produced by the circulation in a stable layer above the turbulent convective region. Such stable layers might exist at the top of the Earth's core due to chemical or thermal causes, in the cores of other terrestrial planets for similar reasons, and in Saturn due to the differentiation of helium from hydrogen. An electrically conducting and differentially rotating layer could exist above the metallic hydrogen region in Jupiter especially if the observed near surface zonal winds extend to great depth. Lateral temperature gradients resulting in thermal winds drive the flow in the stable layers. It is the amplitude and structure of the flow in the stable layer that mainly determines the nature of the observable magnetic field. Saturn's axisymmetric, rotation-aligned dipole field could indicate either the presence of axisymmetric flow in an overlying stable shell (Stevenson, 1982) or the absence of such a stable layer. The structure of the Earth's magnetic field could simply reflect the structure of stable-layer thermal winds driven by lateral thermal heterogeneity in the lower mantle. Planetary

  1. Dynamos in precessing cubes

    NASA Astrophysics Data System (ADS)

    Goepfert, O.; Tilgner, A.

    2016-10-01

    We investigate with numerical simulations the dynamo properties of liquid flows in precessing cubes. There are some similarities with the flow in precessing spheres. Instabilities in the form of triad resonances are observed. The flow is turbulent far above the onset of instability but simplifies to a single vortex for certain control parameters. The critical magnetic Reynolds numbers for the onset of magnetic field generation are lower than, but comparable to, the numbers known for precessing spheres, and are larger than the Reynolds numbers realizable in an experiment currently under construction in Dresden.

  2. Dynamo and anomalous transport in the reversed field pinch

    SciTech Connect

    Prager, S.C.

    1998-08-01

    The reversed field pinch is an effective tool to study the macroscopic consequences of magnetic fluctuations, such as the dynamo effect and anomalous transport. Several explanations exist for the dynamo (the self-generation of plasma current)--the MHD dynamo, the kinetic dynamo, and the diamagnetic dynamo. There is some experimental evidence for each, particularly from measurements of ion velocity and electron pressure fluctuations. Magnetic fluctuations are known to produce energy and particle flux in the RFP core. Current profile control is able to decrease fluctuation-induced transport by a factor of five. Improved confinement regimes are also obtained at deep reversal and, possibly, with flow shear.

  3. Subcritical dynamo bifurcation in the Taylor-Green flow.

    PubMed

    Ponty, Y; Laval, J-P; Dubrulle, B; Daviaud, F; Pinton, J-F

    2007-11-30

    We report direct numerical simulations of dynamo generation for flow generated using a Taylor-Green forcing. We find that the bifurcation is subcritical and show its bifurcation diagram. We connect the associated hysteretic behavior with hydrodynamics changes induced by the action of the Lorentz force. We show the geometry of the dynamo magnetic field and discuss how the dynamo transition can be induced when an external field is applied to the flow.

  4. Multiple scale dynamo

    PubMed Central

    Le Mouël, Jean-Louis; Allègre, Claude J.; Narteau, Clément

    1997-01-01

    A scaling law approach is used to simulate the dynamo process of the Earth’s core. The model is made of embedded turbulent domains of increasing dimensions, until the largest whose size is comparable with the site of the core, pervaded by large-scale magnetic fields. Left-handed or right-handed cyclones appear at the lowest scale, the scale of the elementary domains of the hierarchical model, and disappear. These elementary domains then behave like electromotor generators with opposite polarities depending on whether they contain a left-handed or a right-handed cyclone. To transfer the behavior of the elementary domains to larger ones, a dynamic renormalization approach is used. A simple rule is adopted to determine whether a domain of scale l is a generator—and what its polarity is—in function of the state of the (l − 1) domains it is made of. This mechanism is used as the main ingredient of a kinematic dynamo model, which displays polarity intervals, excursions, and reversals of the geomagnetic field. PMID:11038547

  5. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    NASA Astrophysics Data System (ADS)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the

  6. The Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.

    2005-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin-Madison's liquid-sodium facility. The experiment is designed to self-generate magnetic fields from flows of conducting metal. The apparatus consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium. Two 100 Hp motors drive impellers which generate the flow. The motors have been operated up to 1200 RPM (60% of design specification), achieving a magnetic Reynolds number of 130, based on impeller tip speed. Various polarizations of external magnetic fields have been applied to the sodium, and the induced magnetic field has been measured by both internal and external Hall probe arrays. Cavitation of the sodium is monitored using an ultrasonic transducer and suppressed through pressurization. Operating parameters and performance of the experiment are presented. Future plans for the experiment are discussed.

  7. Kinematic dynamo of inertial waves

    NASA Astrophysics Data System (ADS)

    Herreman, Wietze; Le Gal, Patrice; Le Dizes, Stephane

    2008-11-01

    Inertial waves are natural oscillatory tridimensional perturbations in rapidly rotating flows. They can be driven to high amplitudes by an external oscillatory forcing such as precession, or by a parametric instability such as in the elliptical instability. Inertial waves were observed in a MHD-flow (Gans, 1971, JFM ; Kelley et al., 2008, GAFD) and could be responsable of dynamo action. For travelling waves, a constructive alpha-effect was identified (Moffatt, 1970, JFM), but it does not apply to confined inertial wave flows. Yet, recent numerical work demonstrated that precession driven MHD flows can sustain magnetic fields (Tilgner, 2005, POF; Wu & Roberts, 2008, GAFD). This motivates us to study more precisely how inertial waves can exhibit dynamo action. Using a numerical code in cylindrical geometry, we find that standing inertial waves can generate a kinematic dynamo. We show that the dynamo-action results from a second order interaction of the diffusive eigenmodes of the magnetic field with the inertial wave. Scaling laws are obtained, which allows us to to apply the results to flows of geophysical interest.

  8. The solar dynamo.

    PubMed

    Tobias, S M

    2002-12-15

    In this article I review the fundamentals of solar-dynamo theory. I describe both historical and contemporary observations of the solar magnetic field before outlining why it is believed that the solar field is maintained by a hydromagnetic dynamo. Having explained the basic dynamo process and applications of the theory to the Sun, I shall conclude by speculating on future directions for the theory.

  9. Babcock-Leighton Solar Dynamo: The Role of Downward Pumping and the Equatorward Propagation of Activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-11-01

    The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.

  10. Statistical dynamo theory: Mode excitation.

    PubMed

    Hoyng, P

    2009-04-01

    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .

  11. STELLAR WIND INFLUENCE ON PLANETARY DYNAMOS

    SciTech Connect

    Heyner, Daniel; Glassmeier, Karl-Heinz; Schmitt, Dieter

    2012-05-10

    We examine the possible influence of early stellar wind conditions on the evolution of planetary dynamo action. In our model, the dynamo operates within a significant ambient magnetospheric magnetic field generated by the interaction between the stellar wind and the planetary magnetic field. This provides a negative feedback mechanism which quenches the dynamo growth. The external magnetic field magnitude which the dynamo experiences, and thus the strength of the quenching, depends on the stellar wind dynamic pressure. As this pressure significantly changes during stellar evolution, we argue that under early stellar system conditions the coupling between the stellar wind and the interior dynamics of a planet is much more important than has been thought up to now. We demonstrate the effects of the feedback coupling in the course of stellar evolution with a planet at a similar distance to the central star as Mercury is to the Sun.

  12. Liquid Metal Dynamo Measurements

    NASA Astrophysics Data System (ADS)

    Luh, W. J.; Choi, Y. H.; Hardy, B. S.; Brown, M. R.

    1997-11-01

    Detection of convected magnetic fields in a small-scale liquid metal dynamo is attempted. Initial experiments will focus on the conversion of toroidal to poloidal flux (a version of the ω effect). A precision vector magnetometer will be used to measure the effect of a rotating magnetofluid on a static magnetic field. Water will be used as a control medium and effects will be compared with a conducting medium (liquid sodium or NaK). A small spherical flask (0.16 m diameter) houses 2 liters of fluid, a teflon stirrer creates an asymmetrical flow pattern, and Helmholtz coils generate a constant magnetic field on the order of 10 gauss. The Reynold's number will be of order unity.

  13. Onset of dynamo action in an axisymmetric flow.

    PubMed

    Tilgner, A

    2002-07-01

    Peffley, Cawthorne, and Lathrop [Phys. Rev. E 61, 5287 (2000)] have reported on an experiment using liquid sodium, which studies the approach toward a self-generating dynamo. Their results challenge the traditional views of kinematic dynamo theory because (i) the modes of the magnetic field with the smallest decay rates appear to be nearly axisymmetric and (ii) the observed decay rates vary spatially. This report shows how these observations can be reconciled with kinematic dynamo theory.

  14. Pallasite paleomagnetism: Quiescence of a core dynamo

    NASA Astrophysics Data System (ADS)

    Nichols, Claire I. O.; Bryson, James F. J.; Herrero-Albillos, Julia; Kronast, Florian; Nimmo, Francis; Harrison, Richard J.

    2016-05-01

    Recent paleomagnetic studies of two Main Group pallasites, the Imilac and Esquel, have found evidence for a strong, late-stage magnetic field on the parent body. It has been hypothesized that this magnetic field was generated by a core dynamo, driven by compositional convection during core solidification. Cooling models suggest that the onset of core solidification occurred ∼200 Ma after planetary accretion. Prior to core solidification, a core dynamo may have been generated by thermal convection; however a thermal dynamo is predicted to be short-lived, with a duration of ∼10 Ma to ∼40 Ma after planetary accretion. These models predict, therefore, a period of quiescence between the thermally driven dynamo and the compositionally driven dynamo, when no core dynamo should be active. To test this hypothesis, we have measured the magnetic remanence recorded by the Marjalahti and Brenham pallasites, which based on cooling-rate data locked in any magnetic field signals present ∼95 Ma to ∼135 Ma after planetary accretion, before core solidification began. The cloudy zone, a region of nanoscale tetrataenite islands within a Fe-rich matrix was imaged using X-ray photoemission electron microscopy. The recovered distribution of magnetisation within the cloudy zone suggests that the Marjalahti and Brenham experienced a very weak magnetic field, which may have been induced by a crustal remanence, consistent with the predicted lack of an active core dynamo at this time. We show that the transition from a quiescent period to an active, compositionally driven dynamo has a distinctive paleomagnetic signature, which may be a crucial tool for constraining the time of core solidification on differentiated bodies, including Earth.

  15. Planetary Dynamos: Magnetic Constraints on the Interior Structure and Evolution of a Planet

    NASA Astrophysics Data System (ADS)

    Tian, Bob Yunsheng

    Planetary magnetism is a phenomenon that not only protects humanity from the destructive forces of nature, but also provides us with a natural probe into our planet's deep interior. In this dissertation, I will explore some of the insights concerning planetary interiors that can be gained by combining the techniques of interior structure modelling with constraints provided by planetary dynamo theory. Applications to the dynamical history of the Moon, the interior evolution of Jovian planets, and predicted magnetic fields of planets in our solar system and beyond are considered under this framework. The inferred intensity and longevity of the lunar dynamo from paleomagnetic studies has led to the proposition of mechanical stirring, caused by differential rotation of the inner core and the mantle relative to the fluid outer core, as an energy source alternative to convection. Using fully three-dimensional magnetohydrodynamics (MHD) modelling techniques, I simulated the purported mechanism, and found it to reproduce not only the strength and longevity of the inferred lunar dynamo, but also its precipitous decline later in its history. For the Jovian planets, due to the lack of constraints, there are a wide range of acceptable interior models in the literature. By combining 1-D interior modelling techniques with constraints imposed by theories of the planet's dynamo, I was able to construct improved models of these planets' interior structure. The discrepancy between the pictures of the Neptunian interior suggested by dynamo models and by thermal evolution models motivated improvements on our current theories about multipolar magnetic field generation. Therefore, I determined some predictive scaling laws for the magnetic field morphologies of planets (and exoplanets) using parameter studies of interior structure and dynamo models. These results will aid in our understandings of the link between interior properties and observed magnetic field characteristics for planets

  16. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    SciTech Connect

    Augustson, Kyle; Miesch, Mark; Brun, Allan Sacha

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  17. Final Technical Report for DOE DE-FG02-05ER54831 "Laboratory Studies of Dynamos."

    SciTech Connect

    Forest, Cary B.

    2014-11-06

    Laboratory Studies of Dynamos: Executive Summary. The self-generation of magnetic fields by astrophysical bodies like planets, stars, accretion disks, galaxies, and even galaxy clusters arises due to a mechanism referred to as a homogeneous dynamo. It is quite simple to demonstrate the generation of a magnetic fi eld from a rotating copper disk coupled with a coil of wire, a device known as the homopolar dynamo. The device works like a magnetic fi eld ampli er with a feedback circuit: the differential rotation of a metal disk past an infinitesimally small seed magnetic field induces currents in the disk which, when coupled to a coil winding, can amplify the field until it becomes strong enough to slow the rotation of the disk. What is remarkable is that the same type of circuit may be achieved in a flowing conducting fluid such as a liquid metal in the case of planetary dynamos or a plasma in the case of astrophysical dynamos. The complexity of describing planetary and stellar dynamos despite their ubiquity and the plethora of observational data from the Earth and the Sun motivates the demonstration of a laboratory homogenous dynamo. To create a homogenous dynamo, one first needs a su fficiently large, fast flow of a highly conducting fluid that the velocity shear in the fluid can bend magnetic field lines. With a high Rm-flow, the magnetic fi eld can be ampli ed by the stretching action provided by di fferential rotation. The other critical ingredient is a flow geometry that provides feedback so that the ampli ed eld reinforces the initial in nitesimal seed field - a mechanism that recreates the feedback provided by the coil of wire in the homopolar dynamo. In the Madison Dynamo Experiment, this combination of magnetic ampli cation and feedback is feasible in the simple geometry of two counter-rotating helical vortices in a 1 meter-diameter spherical vessel lled with liquid sodium. For an optimal helical pitch of the flow the threshold for exciting a dynamo is

  18. On large-scale dynamo action at high magnetic Reynolds number

    SciTech Connect

    Cattaneo, F.; Tobias, S. M.

    2014-07-01

    We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect of the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.

  19. Dynamo action in stratified convection with overshoot

    NASA Technical Reports Server (NTRS)

    Nordlund, Ake; Brandenburg, Axel; Jennings, Richard L.; Rieutord, Michel; Ruokolainen, Juha; Stein, Robert F.; Tuominen, Ilkka

    1992-01-01

    Results are presented from direct simulations of turbulent compressible hydromagnetic convection above a stable overshoot layer. Spontaneous dynamo action occurs followed by saturation, with most of the generated magnetic field appearing as coherent flux tubes in the vicinity of strong downdrafts, where both the generation and destruction of magnetic field is most vigorous. Whether or not this field is amplified depends on the sizes of the magnetic Reynolds and magnetic Prandtl numbers. Joule dissipation is balanced mainly by the work done against the magnetic curvature force. It is this curvature force which is also responsible for the saturation of the dynamo.

  20. The global solar dynamo

    NASA Astrophysics Data System (ADS)

    Cameron, Robert

    2016-07-01

    I will review our understanding of the solar dynamo, concentrating on how observations constrain the theoretical possibilities. Possibilities for future progress, including understanding the Sun in the solar-stellar context will be outlined.

  1. Turbulent dynamo in a collisionless plasma

    PubMed Central

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-01-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas. PMID:27035981

  2. Turbulent dynamo in a collisionless plasma

    NASA Astrophysics Data System (ADS)

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-04-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.

  3. The magnetic shear-current effect: Generation of large-scale magnetic fields by the small-scale dynamo

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2016-03-14

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. Here, the effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo – in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean field${\\it\\alpha}$coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.

  4. The magnetic shear-current effect: Generation of large-scale magnetic fields by the small-scale dynamo

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2016-03-14

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. Here, the effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo – in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean fieldmore » $${\\it\\alpha}$$coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.« less

  5. Persistence and origin of the lunar core dynamo

    PubMed Central

    Suavet, Clément; Weiss, Benjamin P.; Cassata, William S.; Shuster, David L.; Gattacceca, Jérôme; Chan, Lindsey; Garrick-Bethell, Ian; Head, James W.; Grove, Timothy L.; Fuller, Michael D.

    2013-01-01

    The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ∼13 μT. These data extend the known lifetime of the lunar dynamo by ∼160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo. PMID:23650386

  6. Persistence and origin of the lunar core dynamo.

    PubMed

    Suavet, Clément; Weiss, Benjamin P; Cassata, William S; Shuster, David L; Gattacceca, Jérôme; Chan, Lindsey; Garrick-Bethell, Ian; Head, James W; Grove, Timothy L; Fuller, Michael D

    2013-05-21

    The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ~13 μT. These data extend the known lifetime of the lunar dynamo by ~160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo.

  7. Decline of the lunar core dynamo

    NASA Astrophysics Data System (ADS)

    Tikoo, Sonia M.; Weiss, Benjamin P.; Cassata, William S.; Shuster, David L.; Gattacceca, Jérôme; Lima, Eduardo A.; Suavet, Clément; Nimmo, Francis; Fuller, Michael D.

    2014-10-01

    Recent analyses of Apollo samples have demonstrated that a core dynamo existed on the Moon between at least 4.25 and 3.56 billion years ago (Ga) with surface field intensities reaching ˜70 μT. However, it is unknown when the Moon's magnetic field declined. Determining the temporal evolution of the dynamo is important because it constrains secular changes in power at the lunar core-mantle boundary and, by implication, the Moon's thermal and orbital evolution and the field generation mechanism. Here we present paleomagnetic data from several younger mare basalts which demonstrate that the surface magnetic field had declined precipitously to <˜4 μT by 3.19 Ga. It is currently unclear whether such a rapid decrease in field strength reflects either the cessation of the dynamo during this period or its persistence beyond 3.19 Ga in a drastically weakened state.

  8. Magnetic Helicity and Planetary Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  9. Shear dynamo problem: Quasilinear kinematic theory.

    PubMed

    Sridhar, S; Subramanian, Kandaswamy

    2009-04-01

    Large-scale dynamo action due to turbulence in the presence of a linear shear flow is studied. Our treatment is quasilinear and kinematic but is nonperturbative in the shear strength. We derive the integrodifferential equation for the evolution of the mean magnetic field by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. For nonhelical turbulence the time evolution of the cross-shear components of the mean field does not depend on any other components excepting themselves. This is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence the shear-current assisted dynamo is essentially absent, although large-scale nonhelical dynamo action is not ruled out.

  10. Waldmeier's Rules in the Solar and Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284

  11. Convective dynamos for rotating stars

    NASA Technical Reports Server (NTRS)

    Gilman, P. A.

    1981-01-01

    Global dynamo theory is applied to the problem of why some stars have field reversing dynamos, and others do not. It is argued that convectively driven dynamos are the most likely source of magnetic fields in stars that have convection zones.

  12. Preface: Solar Dynamo Frontiers

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.

    2016-10-01

    The last six years have seen substantial progress in our understanding of the solar dynamo, fueled by continuing advances in observations and modeling. With the launch of NASAs Solar Dynamics Observatory (SDO) in 2010 came an unprecedented window on the evolving magnetic topology of the Sun, highlighting its intricate 3D structure and global connectivity. The Helioseismic Magnetic Imager (HMI) instrument on SDO in particular has provided potentially transformative yet enigmatic insights into the internal dynamics of the solar convection zone that underlie the dynamo. One of these enigmas is the amplitude and structure of deep solar convection.

  13. Fourier-Beltrami Analysis of Dynamo Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kato, Masahiko; Kusano, Kanya

    2000-10-01

    We performed a numerical analyses of the kinematic dynamo field based on the Fourier-Beltrami expansion technique. Since Beltrami function, which is the eigenfunction of curl operator, forms a complete set for the divergence free vector field, we can uniquely decompose any magnetic field into the positive and the negative helicity field using this technique. The objective of this work is to study the characteristic structure of the magnetic helicity generated by dynamo action. We first solve the kinematic dynamo equation for several flow models using high resolution numerical calculation, and numerically expands the solution by Beltrami functions. First we clearly show that dynamo field can grow if and only if the sign of the current helicity, which is created as a result of dynamo process, is same as the kinetic helicity. Secondly, we study the slow dynamo process produced by an integrable flow such as the Roberts cell, and found that the solution of that may be classified into two different classes between the cases those the magnetic Reynolds number (R) is lower and higher than the value to maximize the dynamo growth rate. In the lower R case, the asymmetry between the positive and the negative helicity components, that is the source of dynamo action, exists in the lowest Fourier modes, whereas in the higher R case it shifts to the higher Fourier modes, where the nonlinear coupling is largely affected by the resistive diffusion. Also the coupling between the positive and the negative component is calculated, and it is revealed that the nonlinear coupling between different sign modes is stronger in lower modes. It indicates that the slowing down of dynamo action might be caused by the equipartition of the helicity into different Beltrami modes. Also the result for chaotic flows, those are the candidate of fast dynamo, will be presented.

  14. Magnetic Helicity in a Cyclic Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.; Zhang, Mei; Augustson, Kyle C.

    2016-05-01

    Magnetic helicity is a fundamental agent for magnetic self-organization in magnetohydrodynamic (MHD) dynamos. As a conserved quantity in ideal MHD, it establishes a strict topological coupling between large and small-scale magnetic fields. The generation of magnetic fields on scales larger than the velocity field is linked to an upscale transfer of magnetic helicity, either locally in spectral space as in the inverse cascade of magnetic helicity in MHD turbulence or non-locally, as in the turbulent alpha-effect of mean-field dynamo theory. Thus, understanding the generation, transport, and dissipation of magnetic helicity is an essential prerequisite to understanding manifestations of magnetic self-organization in the solar dynamo, including sunspots, the prominent dipole and quadrupole moments, and the 22-year magnetic activity cycle. We investigate the role of magnetic helicity in a convective dynamo model that exhibits regular magnetic cycles. The cycle is marked by coherent bands of toroidal field that persist within the convection zone and that are antisymmetric about the equator. When these toriodal bands interact across the equator, it initiates a global restructuring of the magnetic topology that contributes to the reversal of the dipole moment. Thus, the polar field reversals are preceeded by a brief reversal of the subsurface magnetic helicity. There is some evidence that the Sun may exhibit a similar magnetic helicity reversal prior to its polar field reversals.

  15. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    SciTech Connect

    Cébron, D.; Hollerbach, R. E-mail: r.hollerbach@leeds.ac.uk

    2014-07-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.

  16. Stretch fast dynamo mechanism via conformal mapping in Riemannian manifolds

    SciTech Connect

    Garcia de Andrade, L. C.

    2007-10-15

    Two new analytical solutions of the self-induction equation in Riemannian manifolds are presented. The first represents a twisted magnetic flux tube or flux rope in plasma astrophysics, where the rotation of the flow implies that the poloidal field is amplified from toroidal field, in the spirit of dynamo theory. The value of the amplification depends on the Frenet torsion of the magnetic axis of the tube. Actually this result illustrates the Zeldovich stretch, twist, and fold method to generate dynamos from straight and untwisted ropes. Based on the fact that this problem was previously handled, using a Riemannian geometry of twisted magnetic flux ropes [Phys Plasmas 13, 022309 (2006)], investigation of a second dynamo solution, conformally related to the Arnold kinematic fast dynamo, is obtained. In this solution, it is shown that the conformal effect on the fast dynamo metric enhances the Zeldovich stretch, and therefore a new dynamo solution is obtained. When a conformal mapping is performed in an Arnold fast dynamo line element, a uniform stretch is obtained in the original line element.

  17. Dynamo Models for Saturn's Axisymmetric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tajdaran, K.

    2012-12-01

    Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric . For example, Saturn's dipole tilt is less than 0.06 degrees (Cao et al., 2011) . The nearly-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with Cowling's Theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetrized potential field observed at satellite altitude. Stevenson (1980) proposed a mechanism for this axisymmetrization. He suggested that differential rotation in a stably-stratified electrically conducting layer (i.e. the helium rain-out layer) surrounding the dynamo could act to shear out the non-axisymmetry and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that a thin helium rain-out layer can produce a more axisymmetrized field (Stanley, 2010). We also found that the direction of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the thickness of the helium rain-out layer and the intensity of the thermal winds on the axisymmetrization of the field. We search for optimal regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties to the observed Saturnian field.

  18. Ambipolar diffusion drifts and dynamos in turbulent gases

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1988-01-01

    Ambipolar drift in turbulent fluids are considered. Using mean-field electrodynamics, a two-scale theory originally used to study hydromagnetic dynamos, it is shown that magnetic fields can be advected by small-scale magnetosonic (compressional) turbulence or generated by Alfvenic (helical) turbulence. A simple dynamo theory is made and is compared with standard theories in which dissipation is caused by turbulent diffusion. The redistribution of magnetic flux in interstellar clouds is also discussed.

  19. Fluctuation dynamo based on magnetic reconnections

    NASA Astrophysics Data System (ADS)

    Baggaley, A. W.; Shukurov, A.; Barenghi, C. F.; Subramanian, K.

    2010-01-01

    We develop a new model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multi-scale flow which models turbulence. Magnetic dissipation occurs only via reconnections of flux ropes. The model is particularly suitable for rarefied plasma, such as the solar corona or galactic halos. We investigate the kinetic energy release into heat, mediated by dynamo action, both in our model and by solving the induction equation with the same flow. We find that the flux rope dynamo is more than an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy released during reconnections has a power-law form with the slope -3, consistent with the solar corona heating by nanoflares. We also present a nonlinear extension of the model. This shows that a plausible saturation mechanism of the fluctuation dynamo is the suppression of turbulent magnetic diffusivity, due to suppression of random stretching at the location of the flux ropes. We confirm that the probability distribution function of the magnetic line curvature has a power-law form suggested by \\citet{Sheck:2002b}. We argue, however, using our results that this does not imply a persistent folded structure of magnetic field, at least in the nonlinear stage.

  20. SOLAR PARITY ISSUE WITH FLUX-TRANSPORT DYNAMO

    SciTech Connect

    Hotta, H.; Yokoyama, T.

    2010-05-10

    We investigated the dependence of the solar magnetic parity between the hemispheres on two important parameters, the turbulent diffusivity and the meridional flow, by means of axisymmetric kinematic dynamo simulations based on the flux-transport dynamo model. It is known that the coupling of the magnetic field between hemispheres due to turbulent diffusivity is an important factor for the solar parity issue, but the detailed criterion for the generation of the dipole field has not been investigated. Our conclusions are as follows. (1) The stronger diffusivity near the surface is more likely to cause the magnetic field to be a dipole. (2) The thinner layer of the strong diffusivity near the surface is also more apt to generate a dipolar magnetic field. (3) The faster meridional flow is more prone to cause the magnetic field to be a quadrupole, i.e., symmetric about the equator. These results show that turbulent diffusivity and meridional flow are crucial for the configuration of the solar global magnetic field.

  1. Planetary magnetism. [emphasizing dynamo theories

    NASA Technical Reports Server (NTRS)

    Stevenson, D.

    1974-01-01

    The origin and maintenance of planetary magnetic fields are discussed. The discussion is not limited to dynamo theories, although these are almost universally favored. Thermoelectric currents are found to be a possible alternative for Jupiter. Two energy sources for dynamos are considered: convection and precessionally induced fluid flow. The earth is the most favorable planet for precessionally driven dynamo, although Neptune is a possibility. Jupiter is likely to have a convectionally driven dynamo, as may Saturn, but the relevant properties of Saturn are not yet well known. Conclusions for each planet are given.

  2. Neoclassical tearing dynamo and self-sustainment of a bootstrapped tokamak

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Bhattacharjee, A.

    1993-10-01

    The dynamo effect due to neoclassical tearing modes is considered. It is found that the global constraints on energy and helicity balance require a redefinition of the dynamo field in neoclassical magnetohydrodynamics. The parallel dynamo field is calculated from the boundary-layer equations governing tearing modes. This dynamo effect can sustain a completely bootstrapped tokamak. A typical steady-state current profile has a core region of weak pressure gradients surrounded by a region of strong pressure gradients, where the current profile is entirely due to the bootstrap effect.

  3. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    SciTech Connect

    Stanley, Sabine

    2012-04-18

    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  4. Paleomagnetic Detection of Magnetic Fields on a Differentiated Asteroid During the Dynamo Epoch

    NASA Astrophysics Data System (ADS)

    Fischer, S. R.; Fu, R. R.; Weiss, B. P.; Li, L.; Gattacceca, J.; Sonzogni, C.

    2013-12-01

    The detection of a core dynamo in a planetary body places strong constraints on its internal structure and thermal history. Paleomagnetic studies of meteorites from the howardite-eucrite-diogenite (HED) clan, which likely originated on the asteroid Vesta, can provide evidence for early dynamo activity and thereby confirm the existence of a core and constrain early thermal state of Vesta. A paleomagnetic study of the eucrite ALHA81001 showed that Vesta has a magnetized crust most likely due to the presence of an early dynamo-generated magnetic field. At the same time, a paleomagnetic study of the NWA 5480 olivine-rich diogenite showed that this meteorite was magnetized in a stable background field with an intensity of 36.3 μT, which may be due to a magnetic core dynamo. However, because a dynamo in a Vesta-sized body is expected to last less than ~100 million years (My), confirmation of paleomagnetic recording of dynamo-generated fields on Vesta requires paleomagnetic experiments on a HED meteorite that experienced its most recent heating event during that time span. We conducted paleomagnetic analyses of PCA 82502, a fine-grained polymict eucrite. 40Ar-39Ar dating of PCA 82502 shows that the most recent major heating event occurred at 4.506 Ga, which is ~60 My after the formation of Vesta and in the time range expected for planetesimal dynamos. However, the anomalous oxygen isotope composition of PCA 82502 means that it is unclear whether it is a sample of Vesta or another differentiated asteroid. We performed alternating field (AF) demagnetization, thermal demagnetization, and viscous, isothermal (IRM), and anhysteretic remnant magnetization (ARM) acquisition experiments for both bulk samples and clasts found in the interior of PCA 82502. Samples of PCA 82502 taken from within ~2 mm of the fusion crust carry a component of magnetization not observed in interior samples, indicating that the meteorite passes a fusion crust baked contact test and the interior

  5. Magnetized Turbulent Dynamo in Protogalaxies

    SciTech Connect

    Leonid Malyshkin; Russell M. Kulsrud

    2002-01-28

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.

  6. Modelling astrophysical outflows via the unified dynamo-reverse dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Mahajan, Swadesh M.

    2015-04-01

    The unified dynamo-reverse dynamo (Dy-RDy) mechanism, capable of simultaneously generating large-scale outflows and magnetic fields from an ambient microscopic reservoir, is explored in a broad astrophysical context. The Dy-RDy mechanism is derived via the Hall magnetohydrodynamics, which unifies the evolution of magnetic field and fluid vorticity. It also introduces an intrinsic length-scale, the ion skin depth, allowing for the proper normalization and categorization of microscopic and macroscopic scales. The large-scale Alfvén Mach number MA, defining the relative `abundance' of the flow field to the magnetic field is shown to be tied to a microscopic scalelength that reflects the characteristics of the ambient short-scale reservoir. The dynamo (Dy), preferentially producing the large-scale magnetic field, is the dominant mode when the ambient turbulence is mostly kinetic, while the outflow producing reverse dynamo (RDy) is the principal manifestation of a magnetically dominated turbulent reservoir. It is conjectured that an efficient RDy may be the source of many observed astrophysical outflows that have MA ≫ 1.

  7. Inherently unstable internal gravity waves due to resonant harmonic generation

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Zareei, Ahmad; Alam, Mohammad-Reza

    2017-01-01

    Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain for a linearly-stratified fluid if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance presented here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing.

  8. Effects of basin-forming impacts on the historical Martian dynamo

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Kuang, W.; Roberts, J. H.

    2011-12-01

    It is now well accepted that Mars had an active dynamo in its early history [1-2], evidenced by the strong remanent crustal field observed by Mars Global Surveyor [3]. Recent studies [4] show a strong correlation between the timing of the dynamo termination and giant impacts (forming basins greater than 1000 km in diameter) during the mid-Noachian period. Further modeling studies [5-9] suggest that such impacts could generate a strong thermal heterogeneity in the deep interior. These results imply that giant impacts may play an important role in terminating the Martian dynamo via several possibilities, e.g., a small perturbation ending permanently a subcritical dynamo, or a strong thermal heterogeneity destroying a supercritical dynamo. To better understand the effects of basin-forming impacts on Martian dynamo, we simulate the Martian dynamo with a heterogeneous heat flux across the core mantle boundary arising from the shock heating from such impacts (e.g., Utopia). Our initial results show that depending on the location, the influence of the impacts can be catastrophic: a modest thermal heterogeneity from an impact in the equatorial region can destroy a strong field dynamo. However, if the same impact occurred near the polar region, the effect on the dynamo is minimal. These results could have implications on other geodynamic processes, e.g. paleo polar motion of Mars.

  9. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    SciTech Connect

    Miesch, Mark S.; Dikpati, Mausumi

    2014-04-10

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.

  10. A Three-dimensional Babcock-Leighton Solar Dynamo Model

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.; Dikpati, Mausumi

    2014-04-01

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.

  11. On steady kinematic helical dynamos

    NASA Astrophysics Data System (ADS)

    Eltayeb, I. A.; Loper, D. E.

    The equations governing steady kinematic helical dynamos are studied, using the formalism of Benton (1979), when the flow has no radial component (in cylindrical coordinates). It is shown that all solutions must decay exponentially to zero at large distances, s, from the axis of the helix. When the flow depends on s only it is shown that a necessary condition for dynamo action is that the flow possesses components along both the primary and secondary helices. It is also found that periodic motion of one mode along the primary helix cannot support dynamo action even if the field is composed of mean and periodic parts.

  12. ON THE ROLE OF TACHOCLINES IN SOLAR AND STELLAR DYNAMOS

    SciTech Connect

    Guerrero, G.; Smolarkiewicz, P. K.; De Gouveia Dal Pino, E. M.; Kosovichev, A. G.; Mansour, N. N. E-mail: smolar@ecmwf.int E-mail: sasha@bbso.njit.edu

    2016-03-10

    Rotational shear layers at the boundary between radiative and convective zones, tachoclines, play a key role in the process of magnetic field generation in solar-like stars. We present two sets of global simulations of rotating turbulent convection and dynamo. The first set considers a stellar convective envelope only; the second one, aiming at the formation of a tachocline, also considers the upper part of the radiative zone. Our results indicate that the resulting properties of the mean flows and dynamo, such as the growth rate, saturation energy, and mode, depend on the Rossby number (Ro). For the first set of models either oscillatory (with ∼2 yr period) or steady dynamo solutions are obtained. The models in the second set naturally develop a tachocline, which in turn leads to the generation of a strong mean magnetic field. Since the field is also deposited in the stable deeper layer, its evolutionary timescale is much longer than in the models without a tachocline. Surprisingly, the magnetic field in the upper turbulent convection zone evolves on the same timescale as the deep field. These models result in either an oscillatory dynamo with a ∼30 yr period or a steady dynamo depending on Ro. In terms of the mean-field dynamo coefficients computed using the first-order smoothing approximation, the field evolution in the oscillatory models without a tachocline seems to be consistent with dynamo waves propagating according to the Parker–Yoshimura sign rule. In the models with tachoclines the dynamics is more complex and involves other transport mechanisms as well as tachocline instabilities.

  13. On the Role of Tachoclines in Solar and Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Guerrero, G.; Smolarkiewicz, P. K.; de Gouveia Dal Pino, E. M.; Kosovichev, A. G.; Mansour, N. N.

    2016-03-01

    Rotational shear layers at the boundary between radiative and convective zones, tachoclines, play a key role in the process of magnetic field generation in solar-like stars. We present two sets of global simulations of rotating turbulent convection and dynamo. The first set considers a stellar convective envelope only; the second one, aiming at the formation of a tachocline, also considers the upper part of the radiative zone. Our results indicate that the resulting properties of the mean flows and dynamo, such as the growth rate, saturation energy, and mode, depend on the Rossby number (Ro). For the first set of models either oscillatory (with ˜2 yr period) or steady dynamo solutions are obtained. The models in the second set naturally develop a tachocline, which in turn leads to the generation of a strong mean magnetic field. Since the field is also deposited in the stable deeper layer, its evolutionary timescale is much longer than in the models without a tachocline. Surprisingly, the magnetic field in the upper turbulent convection zone evolves on the same timescale as the deep field. These models result in either an oscillatory dynamo with a ˜30 yr period or a steady dynamo depending on Ro. In terms of the mean-field dynamo coefficients computed using the first-order smoothing approximation, the field evolution in the oscillatory models without a tachocline seems to be consistent with dynamo waves propagating according to the Parker-Yoshimura sign rule. In the models with tachoclines the dynamics is more complex and involves other transport mechanisms as well as tachocline instabilities.

  14. Constraints on dynamo action in plasmas

    NASA Astrophysics Data System (ADS)

    Helander, P.; Strumik, M.; Schekochihin, A. A.

    2016-12-01

    Upper bounds are derived on the amount of magnetic energy that can be generated by dynamo action in collisional and collisionless plasmas with and without external forcing. A hierarchy of mathematical descriptions is considered for the plasma dynamics: ideal magnetohydrodynamics (MHD), visco-resistive MHD, the double-adiabatic theory of Chew, Goldberger and Low (CGL), kinetic MHD and other kinetic models. It is found that dynamo action is greatly constrained in models where the magnetic moment of any particle species is conserved. In the absence of external forcing, the magnetic energy then remains small at all times if it is small in the initial state. In other words, a small `seed' magnetic field cannot be amplified significantly, regardless of the nature of flow, as long as the collision frequency and gyroradius are small enough to be negligible. A similar conclusion also holds if the system is subject to external forcing as long as this forcing conserves the magnetic moment of at least one plasma species and does not greatly increase the total energy of the plasma (i.e. in practice, is subsonic). Dynamo action therefore always requires collisions or some small-scale kinetic mechanism for breaking the adiabatic invariance of the magnetic moment.

  15. Kinematic dynamo, supersymmetry breaking, and chaos

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Enßlin, Torsten A.

    2016-04-01

    The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.

  16. Magnetospheric Feedback Effects on Mercury's Dynamo

    NASA Astrophysics Data System (ADS)

    Gomez Perez, N.; Heyner, D.; Wicht, J.; Solomon, S. C.; Glassmeier, K.

    2010-12-01

    The internal magnetic field of Mercury has been sampled by the Mariner 10 and MESSENGER spacecraft during a combined total of five flybys to date. The measurements are consistent with a magnetic dipole moment of ~ 250 nT RM3, where RM is the radius of Mercury. The action of high solar wind pressure at Mercury’s solar distance on such a weak internal field produces a small magnetosphere for which the dayside magnetopause is unusually close to the surface of the planet (at a planetocentric distance of about 1.5 RM). Because of this small magnetosphere and Mercury’s relatively thin silicate mantle, it has been proposed that magnetospheric currents may influence the internal dynamo process. From numerical simulations, we have previously demonstrated that magnetic field sources external to the dynamo-generating region may modify core dynamics and that this magnetospheric feedback may have influenced the history of Mercury’s dipole field. Here we combine new results from two types of numerical simulations. First, we estimate the magnitude of magnetospheric surface currents with a semi-empirical Earth model adapted to Mercury’s conditions. These currents are calculated for a range of internal dipole moments to establish the functional dependence of the feedback magnitude on internal field amplitude. Second, we implement this feedback function in the internal dynamo model. Earlier magnetospheric feedback models, such as those by Glassmeier and others and Heyner and others, demonstrated that this process is able to sustain an extremely weak magnetic field. Our new, more realistic feedback function leads to slower secular variation than in previous dynamic feedback models, but the secular variation is still typically faster than for isolated dynamos that neglect the external field altogether. Most generally, magnetospheric feedback is able to stabilize a weak dipole field with characteristics that are consistent in magnitude and form with measurements at Mercury.

  17. Spontaneous toroidal flow generation due to negative effective momentum diffusivity

    SciTech Connect

    McMillan, Ben F.

    2015-02-15

    Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.

  18. Spontaneous toroidal flow generation due to negative effective momentum diffusivity

    NASA Astrophysics Data System (ADS)

    McMillan, Ben F.

    2015-02-01

    Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.

  19. The Solar Dynamo Zoo

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie H.; Baliunas, Sallie L.; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-05-01

    We present composite time series of Ca II H & K line core emission indices of up to 50 years in length for a set of 27 solar-analog stars (spectral types G0-G5; within ~10% of the solar mass) and the Sun. These unique data are available thanks to the long-term dedicated efforts of the Mount Wilson Observatory HK project, the Lowell Observatory Solar-Stellar Spectrograph, and the National Solar Observatory/Air Force Research Laboratory/Sacremento Peak K-line monitoring program. The Ca II H & K emission originates in the lower chromosphere and is strongly correlated with the presence of magnetic plage regions in the Sun. These synoptic observations allow us to trace the patterns long-term magnetic variability and explore dynamo behavior over a wide range of rotation regimes and stellar evolution timescales.

  20. Shear dynamo, turbulence, and the magnetorotational instability

    SciTech Connect

    Squire, Jonathan

    2015-09-01

    The formation, evolution, and detailed structure of accretion disks remain poorly understood, with wide implications across a variety of astrophysical disciplines. While the most pressing question – what causes the high angular momentum fluxes that are necessary to explain observations? – is nicely answered by the idea that the disk is turbulent, a more complete grasp of the fundamental processes is necessary to capture the wide variety of behaviors observed in the night sky. This thesis studies the turbulence in ionized accretion disks from a theoretical standpoint, in particular focusing on the generation of magnetic fields in these processes, known as dynamo. Such fields are expected to be enormously important, both by enabling the magnetorotational instability (which evolves into virulent turbulence), and through large-scale structure formation, which may transport angular momentum in different ways and be fundamental for the formation of jets. The central result of this thesis is the suggestion of a new large-scale dynamo mechanism in shear flows – the “magnetic shear-current effect” – which relies on a positive feedback from smallscale magnetic fields. As well as being a very promising candidate for driving field generation in the central regions of accretion disks, this effect is interesting because small-scale magnetic fields have historically been considered to have a negative effect on the large-scale dynamo, damping growth and leading to dire predictions for final saturation amplitudes. Given that small-scale fields are ubiquitous in plasma turbulence above moderate Reynolds numbers, the finding that they could instead have a positive effect in some situations is interesting from a theoretical and practical standpoint. The effect is studied using direct numerical simulation, analytic techniques, and novel statistical simulation methods. In addition to the dynamo, much attention is given to the linear physics of disks and its relevance to

  1. An early lunar core dynamo driven by thermochemical mantle convection.

    PubMed

    Stegman, Dave R; Jellinek, A Mark; Zatman, Stephen A; Baumgardner, John R; Richards, Mark A

    2003-01-09

    Although the Moon currently has no internally generated magnetic field, palaeomagnetic data, combined with radiometric ages of Apollo samples, provide evidence for such a magnetic field from approximately 3.9 to 3.6 billion years (Gyr) ago, possibly owing to an ancient lunar dynamo. But the presence of a lunar dynamo during this time period is difficult to explain, because thermal evolution models for the Moon yield insufficient core heat flux to power a dynamo after approximately 4.2 Gyr ago. Here we show that a transient increase in core heat flux after an overturn of an initially stratified lunar mantle might explain the existence and timing of an early lunar dynamo. Using a three-dimensional spherical convection model, we show that a dense layer, enriched in radioactive elements (a 'thermal blanket'), at the base of the lunar mantle can initially prevent core cooling, thereby inhibiting core convection and magnetic field generation. Subsequent radioactive heating progressively increases the buoyancy of the thermal blanket, ultimately causing it to rise back into the mantle. The removal of the thermal blanket, proposed to explain the eruption of thorium- and titanium-rich lunar mare basalts, plausibly results in a core heat flux sufficient to power a short-lived lunar dynamo.

  2. The influence of magnetic fields in planetary dynamo models

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista; King, Eric; Aurnou, Jonathan

    2013-04-01

    Magnetic fields are common throughout the solar system with properties as diverse as the planets themselves. Since these fields likely result from convectively driven dynamo action, the coupling between magnetic fields, fluid flow, and heat transfer must be understood in order to determine what controls the strength, morphology, and evolution of planetary magnetic fields. Towards this end, we have carried out a suite of dynamo and non-magnetic convection simulations to investigate the effect of the presence of magnetic fields on convection, the effect of varying convective vigor, and the effect of varying the rotation rate. This survey considers models with Prandtl number Pr = 1; magnetic Prandtl numbers up to Pm = 5; Ekman numbers in the range 10-3 × E × 10-5; and Rayleigh numbers from near onset to more than 1000 times critical. We measure the strengths and structures of magnetic fields and fluid motions, as well as heat transfer efficiency and in situ force balances. These analyses illustrate that dynamo action does not necessitate a fundamental change to the overall flow field, although the impact of magnetic fields is found to increase for lower Ekman numbers. By directly calculating the forces in each of our simulations, we show that the traditionally defined Elsasser number, ?i, overestimates the role of the Lorentz force in dynamos. The Coriolis force remains greater than the Lorentz force even in cases with ?i ? 100, explaining the persistence of columnar flows in ?i > 1 dynamo simulations, a quasigeostrophic phenomena. We argue that a dynamic Elsasser number, ?d, better represents the Lorentz to Coriolis force ratio. By applying the ?d parametrization to planetary settings, we predict that the convective dynamics (excluding zonal flows) in planetary interiors are only weakly influenced by their large-scale magnetic fields. Our survey also provides new insight into the breakdown of dipolar magnetic field generation since we observe a sharp transition

  3. A dynamo driven by zonal winds at the upper surface

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2009-12-01

    In a first approximation, Jupiter is made of two fluid layers: a deep metallic hydrogen layer where the jovian dynamo is generated and a superficial “atmospheric” non metallic envelope of approximately 10,000 km depth (10-20% of the total radius of the planet). Recent numerical simulations of three-dimensional rotating convection in a relatively thin spherical shell modelling the atmospheric layer of Jupiter reproduce zonal winds similar to the bands visible on Jupiter’s surface [1]. The simulated flow displays a quasi two-dimensional structure aligned with axis of rotation. Thus [1] suggests that the zonal winds may be “deep rooted” within Jupiter’s interior. These zonal winds are believed to be damped within the deep metallic hydrogen layer [2]. The main question that leads to our work is simple: can the external forcing created by the zonal winds at the top of the metallic hydrogen region drive a dynamo? The external zonal winds generate geostrophic shear layers inside which may lead to non-axisymmetric hydrodynamic instabilities. Such instabilities are known to excite dynamo action [3], [4] and the jovian dynamo will be discussed following these ideas. [1] Heimpel, M.H., Aurnou, J.M., Wicht, J., 2005. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193-196. [2] Kirk, R.L., Stevenson, D.J., 1987. Hydromagnetic constraints on deep zonal flow in the giant planets. Astrophys. J. 316, 816-846 [3] Guervilly C. and Cardin P., 2009. Numerical simulations of dynamos generated in spherical Couette flows, submitted to Geophys. Astrophys. Fluid Dyn. [4] Schaeffer, N. and Cardin, P., 2006. Quasi-geostrophic kinematic dynamos at low magnetic Prandtl number. Earth Planet. Sci. Lett., 245, 595-604.

  4. Measurement of the dynamo effect in a plasma

    SciTech Connect

    Ji, H.; Prager, S.C.; Almagri, A.F.; Sarff, J.S.; Hirano, Y.; Toyama, H.

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the {alpha} effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the {alpha} effect accounts for the dynamo current generation, even in the time dependence through a ``sawtooth`` cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD) model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ``electron diamagnetic dynamo`` is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor`s conjecture.

  5. HEATING THE SOLAR ATMOSPHERE BY THE SELF-ENHANCED THERMAL WAVES CAUSED BY THE DYNAMO PROCESSES

    SciTech Connect

    Dumin, Yurii V. E-mail: dumin@izmiran.ru

    2012-05-20

    We discuss a possible mechanism for heating the solar atmosphere by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upward with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyrofrequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by a few times, i.e., it may be responsible for heating the chromosphere and the base of the transition region.

  6. Open questions about homogeneous fluid dynamos: the VKS experiment

    NASA Astrophysics Data System (ADS)

    Marie, L.; Petrelis, F.; Bourgoin, M.; Burguete, J.; Chiffaudel, A.; Daviaud, F.; Fauve, S.; Odier, P.; Pinton, J.-F.

    2002-06-01

    We consider several problems that arise in the context of homogeneous fluid dynamos such as the effect of turbulence on the dynamo threshold, the saturation level of the generated magnetic field above the threshold and its dynamics. We compare some of our predictions with the recent experimental results of the Karlsruhe and Riga experiments. Finally, we present the VKS experiment that we have designed to answer some of the remaining open questions. We study, in particular, the response of a turbulent flow to an external magnetic field. Fig. 5, Refs. 42.

  7. Numerical study of dynamo action at low magnetic Prandtl numbers.

    PubMed

    Ponty, Y; Mininni, P D; Montgomery, D C; Pinton, J-F; Politano, H; Pouquet, A

    2005-04-29

    We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.

  8. TURBULENT SMALL-SCALE DYNAMO ACTION IN SOLAR SURFACE SIMULATIONS

    SciTech Connect

    Graham, Jonathan Pietarila; Cameron, Robert; Schuessler, Manfred

    2010-05-10

    We demonstrate that a magneto-convection simulation incorporating essential physical processes governing solar surface convection exhibits turbulent small-scale dynamo action. By presenting a derivation of the energy balance equation and transfer functions for compressible magnetohydrodynamics, we quantify the source of magnetic energy on a scale-by-scale basis. We rule out the two alternative mechanisms for the generation of the small-scale magnetic field in the simulations: the tangling of magnetic field lines associated with the turbulent cascade and Alfvenization of small-scale velocity fluctuations ('turbulent induction'). Instead, we find that the dominant source of small-scale magnetic energy is stretching by inertial-range fluid motions of small-scale magnetic field lines against the magnetic tension force to produce (against Ohmic dissipation) more small-scale magnetic field. The scales involved become smaller with increasing Reynolds number, which identifies the dynamo as a small-scale turbulent dynamo.

  9. COHERENT NONHELICAL SHEAR DYNAMOS DRIVEN BY MAGNETIC FLUCTUATIONS AT LOW REYNOLDS NUMBERS

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-01

    Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire and Bhattacharjee—pertain to the “magnetic shear-current effect” as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. These illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.

  10. Coherent Nonhelical Shear Dynamos Driven by Magnetic Fluctuations at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Squire, J.; Bhattacharjee, A.

    2015-11-01

    Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire & Bhattacharjee—pertain to the “magnetic shear-current effect” as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. These illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.

  11. Coherent nonhelical shear dynamos driven by magnetic fluctuations at low Reynolds numbers

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-10-28

    Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire & Bhattacharjee—pertain to the "magnetic shear-current effect" as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. Furthermore, these illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.

  12. Coherent nonhelical shear dynamos driven by magnetic fluctuations at low Reynolds numbers

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-10-28

    Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire & Bhattacharjee—pertain to the "magnetic shear-current effect" as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis bymore » enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. Furthermore, these illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.« less

  13. The Solar Dynamo Zoo

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie; Baliunas, Sallie; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-07-01

    We present composite time series of Ca II H & K line core emission indices of up to 50 years in length for a set of 27 solar-analog stars (spectral types G0-G5; within 10% of the solar mass) and the Sun. These unique data are available thanks to the long-term dedicated efforts of the Mount Wilson Observatory HK project, the Lowell Observatory Solar-Stellar Spectrograph, and the National Solar Observatory/Air Force Research Laboratory/Sacramento Peak K-line monitoring program. The Ca II H & K emission originates in the lower chromosphere and is strongly correlated with the presence of magnetic plage regions in the Sun. These synoptic observations allow us to trace the patterns long-term magnetic variability and explore dynamo behavior over a wide range of rotation regimes and stellar evolution timescales.In this poster, the Ca HK observations are expressed using the Mount Wilson S-index. Each time series is accompanied by a Lomb-Scargle periodogram, fundemental stellar parameters derived from the Geneva-Copenhagen Survey, and statistics derived from the time series including the median S-index value and seasonal and long-term amplitudes. Statistically significant periodogram peaks are ranked according to a new cycle quality metric. We find that clear, simple, Sun-like cycles are the minority in this sample.

  14. The Dynamo Clinical Trial

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2016-04-01

    The Dynamo Clinical Trial evaluates long-term stellar magnetic health through periodic X-ray examinations (by the Chandra Observatory). So far, there are only three subjects enrolled in the DTC: Alpha Centauri A (a solar-like G dwarf), Alpha Cen B (an early K dwarf, more active than the Sun), and Alpha Canis Majoris A (Procyon, a mid-F subgiant similar in activity to the Sun). Of these, Procyon is a new candidate, so it is too early to judge how it will fare. Of the other two, Alpha Cen B has responded well, with a steady magnetic heartbeat of about 8 years duration. The sickest of the bunch, Alpha Cen A, was in magnetic cardiac arrest during 2005-2010, but has begun responding to treatment in recent years, and seems to be successfully cycling again, perhaps achieving a new peak of magnetic health in the 2016 time frame. If this is the case, it has been 20 years since A's last healthful peak, significantly longer than the middle-aged Sun's 11-year magnetic heartbeat, but perhaps in line with Alpha Cen A's more senescent state (in terms of "relative evolutionary age," apparently an important driver of activity). (By the way, don't miss the exciting movie of the Alpha Cen stars' 20-year X-ray dance.)

  15. Predictability and Coupled Dynamics of MJO During DYNAMO

    DTIC Science & Technology

    2013-09-30

    00-2013 to 00-00-2013 4 . TITLE AND SUBTITLE Predictability and Coupled Dynamics of MJO During DYNAMO 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...during DYNAMO, large number of vertical layers are allocated in the upper ocean to allow 4 - 5 layers in the upper 1-meter and 33 layers in the upper...whereas CF24 lacks the diurnal variation. While the mean SST appears to be slightly warmer in CF24 than 4 CF1, due to the large range of diurnal

  16. A SPHERICAL PLASMA DYNAMO EXPERIMENT

    SciTech Connect

    Spence, E. J.; Reuter, K.; Forest, C. B.

    2009-07-20

    We propose a plasma experiment to be used to investigate fundamental properties of astrophysical dynamos. The highly conducting, fast-flowing plasma will allow experimenters to explore systems with magnetic Reynolds numbers an order of magnitude larger than those accessible with liquid-metal experiments. The plasma is confined using a ring-cusp strategy and subject to a toroidal differentially rotating outer boundary condition. As proof of principle, we present magnetohydrodynamic simulations of the proposed experiment. When a von Karman-type boundary condition is specified, and the magnetic Reynolds number is large enough, dynamo action is observed. At different values of the magnetic Prandtl and Reynolds numbers the simulations demonstrate either laminar or turbulent dynamo action.

  17. Reconnecting flux-rope dynamo.

    PubMed

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  18. Reconnecting flux-rope dynamo

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit Rm→∞ for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  19. Solar Cycle 24 and the Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.; Schatten, K.

    2007-05-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 ± 35 (2 σ), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 ± 35 [2 σ]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  20. Solar Cycle 24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Schatten, K.

    2007-01-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  1. REALISTIC MODELING OF LOCAL DYNAMO PROCESSES ON THE SUN

    SciTech Connect

    Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A.; Kosovichev, A. G.

    2015-08-10

    Magnetic fields are usually observed in the quiet Sun as small-scale elements that cover the entire solar surface (the “salt-and-pepper” patterns in line-of-sight magnetograms). By using 3D radiative MHD numerical simulations, we find that these fields result from a local dynamo action in the top layers of the convection zone, where extremely weak “seed” magnetic fields (e.g., from a 10{sup −6} G) can locally grow above the mean equipartition field to a stronger than 2000 G field localized in magnetic structures. Our results reveal that the magnetic flux is predominantly generated in regions of small-scale helical downflows. We find that the local dynamo action takes place mostly in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into the deeper layers by convective downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and horizontal fields above the photosphere can be explained by small-scale magnetic loops produced by the dynamo. Such small-scale loops play an important role in the structure and dynamics of the solar atmosphere and their detection in observations is critical for understanding the local dynamo action on the Sun.

  2. Geomagnetic Field -- From Paleomagnetism to Dynamo Theory

    NASA Astrophysics Data System (ADS)

    Kono, M.

    2008-05-01

    . But the present field does not show such features. What is the solution of this difference? (3) If the dynamo is very simple, the dynamo modes may be divided into two distinct groups (dipole family and quadrupole family) due to the selection rules (Roberts and Stix, 1972). McFadden et al. (1988) derived a paleosecular variation model based on this separation. Is it a real feature?

  3. MAGNETIC WREATHS AND CYCLES IN CONVECTIVE DYNAMOS

    SciTech Connect

    Nelson, Nicholas J.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha

    2013-01-10

    Solar-type stars exhibit a rich variety of magnetic activity. Seeking to explore the convective origins of this activity, we have carried out a series of global three-dimensional magnetohydrodynamic simulations with the anelastic spherical harmonic code. Here we report on the dynamo mechanisms achieved as the effects of artificial diffusion are systematically decreased. The simulations are carried out at a nominal rotation rate of three times the solar value (3 {Omega}{sub Sun }), but similar dynamics may also apply to the Sun. Our previous simulations demonstrated that convective dynamos can build persistent toroidal flux structures (magnetic wreaths) in the midst of a turbulent convection zone and that high rotation rates promote the cyclic reversal of these wreaths. Here we demonstrate that magnetic cycles can also be achieved by reducing the diffusion, thus increasing the Reynolds and magnetic Reynolds numbers. In these more turbulent models, diffusive processes no longer play a significant role in the key dynamical balances that establish and maintain the differential rotation and magnetic wreaths. Magnetic reversals are attributed to an imbalance in the poloidal magnetic induction by convective motions that is stabilized at higher diffusion levels. Additionally, the enhanced levels of turbulence lead to greater intermittency in the toroidal magnetic wreaths, promoting the generation of buoyant magnetic loops that rise from the deep interior to the upper regions of our simulated domain. The implications of such turbulence-induced magnetic buoyancy for solar and stellar flux emergence are also discussed.

  4. TURBULENT DYNAMOS WITH SHEAR AND FRACTIONAL HELICITY

    SciTech Connect

    Kaepylae, Petri J.; Brandenburg, Axel

    2009-07-10

    Dynamo action owing to helically forced turbulence and large-scale shear is studied using direct numerical simulations. The resulting magnetic field displays propagating wave-like behavior. This behavior can be modeled in terms of an {alpha}{omega} dynamo. In most cases super-equipartition fields are generated. By varying the fraction of helicity of the turbulence the regeneration of poloidal fields via the helicity effect (corresponding to the {alpha}-effect) is regulated. The saturation level of the magnetic field in the numerical models is consistent with a linear dependence on the ratio of the fractional helicities of the small and large-scale fields, as predicted by a simple nonlinear mean-field model. As the magnetic Reynolds number (Re{sub M}) based on the wavenumber of the energy-carrying eddies is increased from 1 to 180, the cycle frequency of the large-scale field is found to decrease by a factor of about 6 in cases where the turbulence is fully helical. This is interpreted in terms of the turbulent magnetic diffusivity, which is found to be only weakly dependent on the Re{sub M}.

  5. Nonlinear states of the screw dynamo.

    PubMed

    Dobler, Wolfgang; Shukurov, Anvar; Brandenburg, Axel

    2002-03-01

    The self-excitation of magnetic field by a spiral Couette flow between two coaxial cylinders is considered. We solve numerically the fully nonlinear, three-dimensional magnetohydrodynamic (MHD) equations for magnetic Prandtl numbers P(m) (ratio of kinematic viscosity to magnetic diffusivity) between 0.14 and 10 and kinematic and magnetic Reynolds numbers up to about 2000. In the initial stage of exponential field growth (kinematic dynamo regime), we find that the dynamo switches from one distinct regime to another as the radial width delta(r)(B) of the magnetic field distribution becomes smaller than the separation of the field maximum from the flow boundary. The saturation of magnetic field growth is due to a reduction in the velocity shear resulting mainly from the azimuthally and axially averaged part of the Lorentz force, which agrees with an asymptotic result for the limit of P(m)<1. In the parameter regime considered, the magnetic energy decreases with kinematic Reynolds number as Re-0.84, which is approximately as predicted by the nonlinear asymptotic theory (approximately Re(-1)). However, when the velocity field is maintained by a volume force (rather than by viscous stress) the dependence of magnetic energy on the kinematic Reynolds number is much weaker.

  6. Overview of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Jacobson, C. M.; Parada, C. A.; Forest, C. B.

    2006-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin-Madison's liquid-sodium facility. The experiment is designed to self-generate magnetic fields from flows of conducting metal. The apparatus consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium. Two 100 Hp motors drive impellers which generate the flow. The motors have been operated up to 1300 RPM (70% of design specification), achieving a magnetic Reynolds number of 130, based on impeller tip speed. Various polarizations of external magnetic fields have been applied to the sodium, and the induced magnetic field has been measured by both internal and external Hall probe arrays. The voltage induced across the sphere by the turbulent flow has been measured. Techniques for using ultrasound Doppler velocimetry have been explored in the water model of the experiment, including the use of high-pressure bubbles as seed particles.

  7. Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms.

    PubMed

    Castaño-Díez, Daniel; Kudryashev, Mikhail; Stahlberg, Henning

    2017-02-01

    Cryo electron tomography allows macromolecular complexes within vitrified, intact, thin cells or sections thereof to be visualized, and structural analysis to be performed in situ by averaging over multiple copies of the same molecules. Image processing for subtomogram averaging is specific and cumbersome, due to the large amount of data and its three dimensional nature and anisotropic resolution. Here, we streamline data processing for subtomogram averaging by introducing an archiving system, Dynamo Catalogue. This system manages tomographic data from multiple tomograms and allows visual feedback during all processing steps, including particle picking, extraction, alignment and classification. The file structure of a processing project file structure includes logfiles of performed operations, and can be backed up and shared between users. Command line commands, database queries and a set of GUIs give the user versatile control over the process. Here, we introduce a set of geometric tools that streamline particle picking from simple (filaments, spheres, tubes, vesicles) and complex geometries (arbitrary 2D surfaces, rare instances on proteins with geometric restrictions, and 2D and 3D crystals). Advanced functionality, such as manual alignment and subboxing, is useful when initial templates are generated for alignment and for project customization. Dynamo Catalogue is part of the open source package Dynamo and includes tools to ensure format compatibility with the subtomogram averaging functionalities of other packages, such as Jsubtomo, PyTom, PEET, EMAN2, XMIPP and Relion.

  8. Oscillating dynamo in the presence of a fossil magnetic field - The solar cycle

    NASA Technical Reports Server (NTRS)

    Levy, E. H.; Boyer, D.

    1982-01-01

    Hydromagnetic dynamo generation of oscillating magnetic fields in the presence of an external, ambient magnetic field introduces a marked polarity asymmetry between the two halves of the magnetic cycle. The principle of oscillating dynamo interaction with external fields is developed, and a tentative application to the sun is described. In the sun a dipole moment associated with the stable fluid beneath the convection zone would produce an asymmetrical solar cycle.

  9. Broken Symmetries and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.

  10. Torsional oscillations in dynamo simulations

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Christensen, Ulrich R.

    2010-06-01

    Cylinders aligned with the planetary rotation axis have a special significance in the dynamics of planetary dynamo regions. The azimuthal Lorentz forces on these geostrophic cylinders is expected to cancel to a large degree, establishing the so-called Taylor state. Deviations from this state take the form of torsional oscillations (TOs) that are supposed to represent important fast flow variations. These oscillations have reportedly been identified in the secular variation signal from the top of Earth's core. We have performed several dynamo simulations at different parameters to check whether Taylor state and TOs can also be identified in a numerical model. Taylor states are approached when viscous effects are small at Ekman numbers of E = 3 × 10-5 or below and Reynolds stresses are kept low by choosing moderate Rayleigh numbers. One-dimensional magnetic Alfvén waves that travel towards the boundaries then become prominent in the motion of the geostrophic cylinders. These waves obey the TO theory but are also damped and modified by other effects. For example, fast variations of likely convective origin remain important in all our simulations. Reynolds stresses may play a more sizable role for the dynamics in Earth's dynamo region than commonly assumed. They may also contribute to the motions of geostrophic cylinders and severely reduce the significance of TOs for the fast core dynamics. The amplitude of TOs amounts to not more than a few percent of the total flow amplitude in the simulations, which renders these motions insignificant for the long-term dynamo process.

  11. A hemispherical dynamo on Mars?

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Wicht, Johannes; Hori, Kumiko

    2015-04-01

    Numerous threedimensional MHD models investigated the induction of planetary magnetic fields under the influence of a laterally varying heat flux through the core mantle boundary (CMB). E.g. for the dynamo process in ancient Mars, a planetary scale CMB heat flux anomaly (Y10) reduces the rate of heat escaping the core in the north and increases it in the south, what concentrates the convection and induction into a single hemisphere. On the expense of rapid polarity inversions, it then seemed possible to increase the equatorial asymmetry far enough to correspond to the hemisphericity of the Martian crustal magnetisation. Within this study we parametrise horizontal extent, latitudinal position and amplitude of the anomaly in a rather comprehensive parameter study. Global flow symmetry properties are justified and used to quantify the influence of the heat flux anomalies and the action of the magnetic field. Our results suggest, that only rather large scale and strong amplitude anomalies are sufficient to induce magnetic fields matching the equatorial asymmetry of the crustal magnetisation pattern. Further all geometrically corresponding dynamo models show the problematic rapid polarity inversions which allow a strong and unidirectional magnetisation only when the crustal built-up time is on the order of the magnetic diffusion time (several kyrs). In summary, our results suggest that a single mantle hot spot positionend anywhere at the CMB will affect the core dynamics significantly only if its horizontal extent is on the order of the radius of the outer core. For Mars it seemes quite plausible, that the crustal magnetisation pattern was strongly influenced by post-dynamo demagnetisation processes rather than being magnetised by a geometrically corresponding internal dynamo field.

  12. Experimental demonstration of linear precompensation of a nonlinear transfer function due to second-harmonic generation.

    PubMed

    Vidal, Sébastien; Luce, Jacques; Penninckx, Denis

    2011-01-01

    We report on what we believe is the first experimental demonstration of the linear precompensation of a nonlinear transfer function due to frequency conversion. As a proof of principle, we show the effective precompensation with an interferometric filter of FM-to-AM conversion due to second-harmonic generation in a potassium titanyl phosphate crystal.

  13. A core dynamo in Vesta?

    NASA Astrophysics Data System (ADS)

    Formisano, M.; Federico, C.; De Angelis, S.; De Sanctis, M. C.; Magni, G.

    2016-05-01

    A recent study of Fu et al. analysed the remaining magnetization in the eucrite meteorite Allan Hills A81001, which mostly likely has been produced during the cooling phase of the life of the asteroid Vesta, arguing that an ancient dynamo in the advective liquid metallic core could be set in. Using petrographic and paleomagnetic arguments, Fu et al. estimated a surface magnetic field of at least 2 μT. In this work, we verify the possibility that an early core dynamo took place in Vesta by analysing four different possible fully differentiated configurations of Vesta, characterized by different chondritic compositions, with the constraints on core size and density provided by Ermakov et al. We only incorporate the thermal convection, by neglecting the effects of the compositional convection, so our results in terms of magnetic Reynolds number and duration of the dynamo can be interpreted as a lower bound. The presence of a magnetic field would make Vesta a peculiar object of the Solar system, a `small-Earth', since it has also a differentiated structure like Earth and the magnetic field has preserved Vesta from the space weathering.

  14. Optimization of the magnetic dynamo.

    PubMed

    Willis, Ashley P

    2012-12-21

    In stars and planets, magnetic fields are believed to originate from the motion of electrically conducting fluids in their interior, through a process known as the dynamo mechanism. In this Letter, an optimization procedure is used to simultaneously address two fundamental questions of dynamo theory: "Which velocity field leads to the most magnetic energy growth?" and "How large does the velocity need to be relative to magnetic diffusion?" In general, this requires optimization over the full space of continuous solenoidal velocity fields possible within the geometry. Here the case of a periodic box is considered. Measuring the strength of the flow with the root-mean-square amplitude, an optimal velocity field is shown to exist, but without limitation on the strain rate, optimization is prone to divergence. Measuring the flow in terms of its associated dissipation leads to the identification of a single optimal at the critical magnetic Reynolds number necessary for a dynamo. This magnetic Reynolds number is found to be only 15% higher than that necessary for transient growth of the magnetic field.

  15. Experimental Bullard-von Karman dynamo: MHD saturated regimes

    NASA Astrophysics Data System (ADS)

    Miralles, Sophie; Plihon, Nicolas; Pinton, Jean-François

    2014-05-01

    The dynamo instability, converting kinetic energy into magnetic energy, creates the magnetic fields of many astrophysical bodies for which the flows are highly turbulent. Those turbulent fluctuations restricts the range of parameters of numerical and theoretical predictions. As laboratory experiments are closer from natural parameters, this approach is favored in this work. In the past decades, dynamo action has been observed in experiments involving laminar flows [1] or fully turbulent flows [2] in liquid sodium. Nevertheless, the saturation of the velocity field by the Lorentz force due to the dynamo magnetic field is weak in those experiment because the control parameter is always close to the threshold of the instability (which is not the case in astrophysical situations). The details of the mechanism of the back reaction of Lorentz force on the flow are not known. We present here an experimental semi-synthetic dynamo, for which a fluid turbulent induction mechanism ('omega' effect) is associated to an external amplification applying a current into a pair of coils. The flow, called von-Karman, is produced by the counter rotation of two coaxial propellers in a cylindrical tank filled with liquid gallium. The resulting flow is highly turbulent (Re > 10 ^ 5). The amplification, mimicking a turbulent 'alpha' effect, allow to observe the dynamo instability at low magnetic Reynolds number (Rm ~ 2), far below the threshold of natural homogeneous dynamo. This experiment reaches non linear regimes, for which the saturation is a MHD process, at control parameter several times the critical value. The instability grows through an on-off intermittent regime evolving into a full MHD saturated regime for which the Lorentz force is in balance with the inertial one. The power budget is strongly modified by the dynamo magnetic field and we give an insight of the estimated rate of conversion of kinetic energy into magnetic one from experimental data. Very rich regimes such as

  16. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.

  17. Explaining Mercury's Magnetic Field Observables Using Dynamo Models with Stable Layers and Laterally Variable Heat Flux

    NASA Astrophysics Data System (ADS)

    Tian, Z.; Zuber, M. T.; Stanley, S.

    2013-12-01

    Mercury's surface magnetic field is unique among planetary fields for its weak intensity, spin-aligned axisymmetry, and large dipole offset (Anderson et al., 2011). Reproducing these features with dynamo models is challenging and requires additions to the 'standard' dynamo setup. Here we explain the magnetic field observables by a combination of two effects: (1) a stably-stratified layer at the top of the outer core, and (2) a low-degree spherical harmonic (SH) heat flux variation at the core-mantle boundary (CMB). A stably-stratified layer at the top of the outer core was proposed by Stevenson (1980,1982) to explain the weak intensity and axisymmetry of Saturn's magnetic field. Recent studies (Christensen, 2006, Christensen & Wicht, 2008) used a stable layer to produce the low-intensity and axisymmetric features of Mercury's magnetic field, but didn't typically produce a dipole offset similar to the observed value. Stratification in Mercury's upper core region can occur due to a sub-adiabatic heat flux or an enrichment of sulfur there. Mercury's equator-to-north pole crustal thinning trend suggests a low degree SH global crustal thickness pattern, which can result in heat flux variability at the CMB. We use the Kuang & Bloxham (1999) numerical dynamo scheme to model Mercury's magnetic field generation. We use an internal structure model for Mercury that has a stably-stratified layer at the top of the outer core. We also apply degree-1 SH heat flux variations at the CMB. We vary the stable layer thickness, the inner core size and the magnitude of the CMB heat flux variations. We find models that can produce surface magnetic fields with a weak intensity, high axisymmetry and a large offset, similar to the observed features of Mercury.

  18. Dynamo Action and Magnetic Cycles in F-type Stars

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle C.; Brun, Allan Sacha; Toomre, Juri

    2013-11-01

    Magnetic activity and differential rotation are commonly observed features on main-sequence F-type stars. We seek to make contact with such observations and to provide a self-consistent picture of how differential rotation and magnetic fields arise in the interiors of these stars. The three-dimensional magnetohydrodynamic anelastic spherical harmonic code is employed to simulate global-scale convection and dynamo processes in a 1.2 M ⊙ F-type star at two rotation rates. The simulations are carried out in spherical shells that encompass most of the convection zone and a portion of the stably stratified radiative zone below it, allowing us to explore the effects a stable zone has upon the morphology of the global-scale magnetic fields. We find that dynamo action with a high degree of time variation occurs in the star rotating more rapidly at 20 Ω⊙, with the polarity of the mean field reversing on a timescale of about 1600 days. Between reversals, the magnetic energy rises and falls with a fairly regular period, with three magnetic energy cycles required to complete a reversal. The magnetic energy cycles and polarity reversals arise due to a linking of the polar-slip instability in the stable region and dynamo action present in the convection zone. For the more slowly rotating case (10 Ω⊙), persistent wreaths of magnetism are established and maintained by dynamo action. Compared to their hydrodynamic progenitors, the dynamo states here involve a marked reduction in the exhibited latitudinal differential rotation, which also vary during the course of a cycle.

  19. DYNAMO ACTION AND MAGNETIC CYCLES IN F-TYPE STARS

    SciTech Connect

    Augustson, Kyle C.; Toomre, Juri; Brun, Allan Sacha

    2013-11-10

    Magnetic activity and differential rotation are commonly observed features on main-sequence F-type stars. We seek to make contact with such observations and to provide a self-consistent picture of how differential rotation and magnetic fields arise in the interiors of these stars. The three-dimensional magnetohydrodynamic anelastic spherical harmonic code is employed to simulate global-scale convection and dynamo processes in a 1.2 M{sub ☉} F-type star at two rotation rates. The simulations are carried out in spherical shells that encompass most of the convection zone and a portion of the stably stratified radiative zone below it, allowing us to explore the effects a stable zone has upon the morphology of the global-scale magnetic fields. We find that dynamo action with a high degree of time variation occurs in the star rotating more rapidly at 20 Ω{sub ☉}, with the polarity of the mean field reversing on a timescale of about 1600 days. Between reversals, the magnetic energy rises and falls with a fairly regular period, with three magnetic energy cycles required to complete a reversal. The magnetic energy cycles and polarity reversals arise due to a linking of the polar-slip instability in the stable region and dynamo action present in the convection zone. For the more slowly rotating case (10 Ω{sub ☉}), persistent wreaths of magnetism are established and maintained by dynamo action. Compared to their hydrodynamic progenitors, the dynamo states here involve a marked reduction in the exhibited latitudinal differential rotation, which also vary during the course of a cycle.

  20. Tidal Excitation of the Core Dynamo of Mars

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Arkani-Hamed, J.; Aldridge, K.

    2007-05-01

    The lack of magnetic anomalies inside the giant impact basins Hellas, Isidis, Utopia and Argyre, inside the northern low lands, over the Tharsis bulge, and over the Tharsis and Olympus mounts suggests that the core field of Mars ceased to exist by about 4 Gyr ago, almost when the giant basins were formed. On the other hand, the giant basins are located on a great circle, implying that the basins were likely produced by fragments of a large asteroid that broke apart as it entered the Roche limit of Mars. This scenario offers a causative relationship for the apparent coincidence of the formation of the giant basins and the cessation of the core dynamo. We suggest that the core dynamo was excited by tidally driven elliptical instability in the Martian core. The breaking of the asteroid and its final impact on Mars eliminated the excitation and thus killed the dynamo. We show that a retrograde asteroid captured in a Keplerian orbit around Mars at a distance of about 50,000-100,000 km could orbit Mars for several hundreds of millions of years before impacting the planet due to the tidal coupling of the asteroid and Mars. Because of relatively very short growth time of the elliptical instability, less than 50,000 years, the asteroid was capable of retaining the elliptical instability and energizing the core dynamo for a geologically long period prior to 4 Ga. Our laboratory observations of a parametric instability of a rotating incompressible fluid, contained in a flexible-walled spherical cavity, confirm the possibility that an early Martian dynamo could have been powered by tidal straining.

  1. The Dynamo Clinical Trial

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    2016-07-01

    Poster concerning the coronal activity cycles of Alpha Centauri A and B, the nearest sun-like stars, as observed by several generations of X-ray observatories including ROSAT, XMM-Newton, and most recently Chandra.

  2. Cosmological and astrophysical consequences from the magnetic dynamo equation in torsioned spacetime and teleparallel gravity

    NASA Astrophysics Data System (ADS)

    de Andrade, L. C. G.

    2016-01-01

    A generalized dynamo equation in the first order torsion Garcia de Andrade L C (2012 Phys. Lett. B 711 143) has previously been derived. From this equation it is shown that for the 10 kpc scale, torsion gravity is not able to help seed galactic dynamos since the dynamo time is not long enough to take into account structure formation. In this paper, the dynamo equation is extended to second-order torsion terms—but unfortunately, the situation is even worse and the torsion does not seem to help dynamo efficiency. Nevertheless, in the intergalactic magnetic field scale of 1 mpc, the efficiency of the self-induction equation with torsion changes, and even in the first-order torsion case, one obtains large-scale magnetic fields with 109 yr dynamo efficiency. Dynamo efficiency in the case of interstellar matter (ISM) reaches a diffusion time of 1013 yr. This seems to be in contrast with a recent investigation by Bamba et al (2012 J. Cosmol. Astropart. Phys. JCAP05(2010)08) where they obtained, from another type of torsion theory called teleparallelism (A Einstein, Math Annalen (1922)), a large scale intergalactic magnetic field of 10-9 G. If this is not a model-dependent result, there is an apparent contradiction that has to be addressed. It is shown that for dynamo efficiency in astrophysical flow without shear, a strong seed field of 10-11 G is obtained, which is suitable for seeding galactic dynamos. As an example of a non-parity-violating dynamo equation, a magnetic field of the order of 10-27G is obtained as a seed field for the galactic dynamo from the theory of Einstein’s unified teleparallelism. This shows that in certain gravity models, torsion is able to enhance cosmological magnetic fields in view of obtaining better dynamo efficiency. To better compare our work with Bamba et al (2012 J. Cosmol. Astropart. Phys. JCAP05(2010)08), we consider the slow decay of magnetic fields in the teleparallel model. This observation is due to an anonymous referee who

  3. A long-lived lunar dynamo powered by core crystallization

    NASA Astrophysics Data System (ADS)

    Laneuville, M.; Wieczorek, M. A.; Breuer, D.; Aubert, J.; Morard, G.; Rückriemen, T.

    2014-09-01

    The Moon does not possess an internally generated magnetic field at the present day, but extensive evidence shows that such a field existed between at least 4.2 and 3.56 Ga ago. The existence of a metallic lunar core is now firmly established, and we investigate the influence of inner core growth on generating a lunar core dynamo. We couple the results of a 3-D spherical thermochemical convection model of the lunar mantle to a 1-D thermodynamic model of its core. The energy and entropy budget of the core are computed to determine the inner core growth rate and its efficiency to power a dynamo. Sulfur is considered to be the main alloying element and we investigate how different sulfur abundances and initial core temperatures affect the model outcomes. For reasonable initial conditions, a solid inner core between 100 and 200 km is always produced. During its growth, a surface magnetic field of about 0.3 μT is generated and is predicted to last several billion years. Though most simulations predict the existence of a core dynamo at the present day, one way to stop magnetic field generation when the inner core is growing is by a transition between a bottom-up and top-down core crystallization scheme when the sulfur content becomes high enough in the outer core. According to this hypothesis, a model with about 6 to 8 wt.% sulfur in the core would produce a 120-160 km inner core and explain the timing of the lunar dynamo as constrained by paleomagnetic data.

  4. Solar Dynamo Driven by Periodic Flow Oscillation

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  5. A Long-Lived Lunar Core Dynamo

    NASA Astrophysics Data System (ADS)

    Shea, Erin K.; Weiss, Benjamin P.; Cassata, William S.; Shuster, David L.; Tikoo, Sonia M.; Gattacceca, Jérôme; Grove, Timothy L.; Fuller, Michael D.

    2012-01-01

    Paleomagnetic measurements indicate that a core dynamo probably existed on the Moon 4.2 billion years ago. However, the subsequent history of the lunar core dynamo is unknown. Here we report paleomagnetic, petrologic, and 40Ar/39Ar thermochronometry measurements on the 3.7-billion-year-old mare basalt sample 10020. This sample contains a high-coercivity magnetization acquired in a stable field of at least ~12 microteslas. These data extend the known lifetime of the lunar dynamo by 500 million years. Such a long-lived lunar dynamo probably required a power source other than thermochemical convection from secular cooling of the lunar interior. The inferred strong intensity of the lunar paleofield presents a challenge to current dynamo theory.

  6. A long-lived lunar core dynamo.

    PubMed

    Shea, Erin K; Weiss, Benjamin P; Cassata, William S; Shuster, David L; Tikoo, Sonia M; Gattacceca, Jérôme; Grove, Timothy L; Fuller, Michael D

    2012-01-27

    Paleomagnetic measurements indicate that a core dynamo probably existed on the Moon 4.2 billion years ago. However, the subsequent history of the lunar core dynamo is unknown. Here we report paleomagnetic, petrologic, and (40)Ar/(39)Ar thermochronometry measurements on the 3.7-billion-year-old mare basalt sample 10020. This sample contains a high-coercivity magnetization acquired in a stable field of at least ~12 microteslas. These data extend the known lifetime of the lunar dynamo by 500 million years. Such a long-lived lunar dynamo probably required a power source other than thermochemical convection from secular cooling of the lunar interior. The inferred strong intensity of the lunar paleofield presents a challenge to current dynamo theory.

  7. LARGE-SCALE AZIMUTHAL STRUCTURES OF TURBULENCE IN ACCRETION DISKS: DYNAMO TRIGGERED VARIABILITY OF ACCRETION

    SciTech Connect

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N.; Henning, Th.

    2012-01-10

    We investigate the significance of large-scale azimuthal, magnetic, and velocity modes for the magnetorotational instability (MRI) turbulence in accretion disks. We perform three-dimensional global ideal MHD simulations of global stratified protoplanetary disk models. Our domains span azimuthal angles of {pi}/4, {pi}/2, {pi}, and 2{pi}. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models {pi}/2 and {pi}/4 compared to the full 2{pi} model. We show that for those models the Maxwell stress is larger due to strong axisymmetric magnetic fields generated by the {alpha}{Omega} dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-{alpha} in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2{pi}, the toroidal field is mostly antisymmetric with respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelengths of the turbulent velocity and magnetic fields are between one and two disk scale heights. At the midplane, we find magnetic tilt angles around 8 Degree-Sign -9 Degree-Sign increasing up to 12 Degree-Sign -13 Degree-Sign in the corona. We conclude that an azimuthal extent of {pi} is sufficient to reproduce most turbulent properties in three-dimensional global stratified simulations of magnetized accretion disks.

  8. Solar Nebula Magnetohydrodynamic Dynamos: Kinematic Theory, Dynamical Constraints, and Magnetic Transport of Angular Momentum

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.

    1993-01-01

    A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.

  9. Quiet sun magnetic fields vs. polar faculae - local vs. global dynamo?

    NASA Astrophysics Data System (ADS)

    Okunev, O. V.; Domínguez Cerdeña, I.; Puschmann, K. G.; Kneer, F.; Sánchez Almeida, J.

    2005-04-01

    Quiet Sun magnetic fields in the internetwork are almost ubiquitous. Simultaneous observations in infra-red and visible lines and high spatial resolution (< 0.5'') data in visible lines show that their field strengths range from below few hundred Gauss to kilo-Gauss. Most of the flux is contained in small-scale, strong-field features located mainly in intergranular lanes. The average unsigned flux density exceeds 20 Gauss. The new detections are confirmed by recent quiet Sun observations in the G band. The generation of the strong fields in the internetwork, which may be due to a local dynamo, poses a challenging problem. - Polar faculae (PFe) are small-scale magnetic features at the polar caps of the Sun. They take part in the solar cycle and are thus likely to be rooted deeply in the solar interior. They are the result of the global dynamo at the solar poles. PFe also possess kilo-Gauss magnetic fields which have the same polarity as the global magnetic field. The rôle of quiet Sun magnetic field structures and of PFe for the dynamics of the corona and for the solar wind are addressed.

  10. View forward to aft of dynamo room (compartment A21) showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View forward to aft of dynamo room (compartment A-21) showing port ventilation fan; electrical generator is at left center of photograph. Platform for generator is at bottom center of photograph. Hatch for passing powder up from magazine is located just above the generator base. Frames support armored protective deck. (018) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  11. Global Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    SciTech Connect

    Ebrahimi, Fatima

    2014-07-31

    Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport, we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.

  12. Radially dependent large-scale dynamos in global cylindrical shear flows and the local cartesian limit

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Blackman, E. G.

    2016-06-01

    For cylindrical differentially rotating plasmas, we study large-scale magnetic field generation from finite amplitude non-axisymmetric perturbations by comparing numerical simulations with quasi-linear analytic theory. When initiated with a vertical magnetic field of either zero or finite net flux, our global cylindrical simulations exhibit the magnetorotational instability (MRI) and large-scale dynamo growth of radially alternating mean fields, averaged over height and azimuth. This dynamo growth is explained by our analytic calculations of a non-axisymmetric fluctuation-induced electromotive force that is sustained by azimuthal shear of the fluctuating fields. The standard `Ω effect' (shear of the mean field by differential rotation) is unimportant. For the MRI case, we express the large-scale dynamo field as a function of differential rotation. The resulting radially alternating large-scale fields may have implications for angular momentum transport in discs and corona. To connect with previous work on large-scale dynamos with local linear shear and identify the minimum conditions needed for large-scale field growth, we also solve our equations in local Cartesian coordinates. We find that large-scale dynamo growth in a linear shear flow without rotation can be sustained by shear plus non-axisymmetric fluctuations - even if not helical, a seemingly previously unidentified distinction. The linear shear flow dynamo emerges as a more restricted version of our more general new global cylindrical calculations.

  13. Solar-type dynamo behaviour in fully convective stars without a tachocline.

    PubMed

    Wright, Nicholas J; Drake, Jeremy J

    2016-07-28

    In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.

  14. Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow

    SciTech Connect

    Khalzov, I. V.; Brown, B. P.; Schnack, D. D.; Forest, C. B.; Ebrahimi, F.

    2011-03-15

    The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMROD code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.

  15. Aurora on Uranus - A Faraday disc dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Dessler, A. J.; Rassbach, M. E.

    1983-10-01

    A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.

  16. INTERIOR STRUCTURE OF WATER PLANETS: IMPLICATIONS FOR THEIR DYNAMO SOURCE REGIONS

    SciTech Connect

    Yunsheng Tian, Bob; Stanley, Sabine

    2013-05-10

    Recent discoveries of water-rich, sub-Neptunian- to Neptunian-massed exoplanets with short-period orbits present a new parameter space for the study of exoplanetary dynamos. We explore the geometry of the dynamo source region within this parameter space using 1D interior structure models. We model planets with four chemically distinct layers that consist of (1) an iron core, (2) a silicate layer, (3) an H{sub 2}O layer, and (4) an H/He envelope. By varying the total planetary mass in the range of 1-19 M{sub Circled-Plus }, the mass fraction of the H/He envelope between 0.1% and 5.1%, and the equilibrium temperature between 100 K and 1000 K, a survey of the parameter space for potential dynamo source region geometries is conducted. We find that due to the nature of the phase diagram of water at pressure and temperature conditions of planetary interiors, two different dynamo source region geometries are obtainable. Specifically, we find that smaller planets, and planets with thicker H/He envelopes, are likely to be in the regime of a thick-shelled dynamo. Massive planets, and planets with thin H/He envelopes, are likely to be in the regime of a thin-shelled dynamo. Also, small variations of these parameters can produce large interior structure differences. This implies the potential to constrain these parameters based on observations of a planet's magnetic field signature.

  17. Helicity and the ALPHA-EFFECT:DYNAMO Theory and Observations

    NASA Astrophysics Data System (ADS)

    Kuzanyan, Kirill M.

    The best available tracers of the alpha-effect in the solar convection zone are current helicity and twist of the photospheric magnetic fields obtained by vector magnetographic observations. Here we present results of systematic studies of the current helicity and twist of averaged over a series of solar active regions. The data analysis enables us to reveal latitudinal dependence of the effect which is antisymmetric over the solar equator. Consideration of individual rotation rates of active regions versus the solar internal differential rotation law indicates that the radial structure of the alpha-effect is likely sign-changing. These properties are in agreement with theoretical estimates and numerical simulations of flows in the solar convection zone and model assumptions of dynamo theory. The fine structure of observational signatures of the alpha-effect indicates that the magnetic field generation mainly occurs near the bottom of the convection zone. We revealed some cyclic evolution of current helicity over the solar cycle that is in accord with dynamo models under certain parameter range. Thus knowledge on the spatially-temporal structure of signatures of the alpha-effect leads to further improvement of dynamo theory in description of the mechanism of generation of solar magnetic fields.

  18. A unified large/small-scale dynamo in helical turbulence

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  19. Constraining Substellar Magnetic Dynamos using Auroral Radio Emission

    NASA Astrophysics Data System (ADS)

    Kao, Melodie; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam J.; Stevenson, David J.

    2017-01-01

    An important outstanding problem in dynamo theory is understanding how magnetic fields are generated and sustained in fully convective stellar objects. A number of models for possible dynamo mechanisms in this regime have been proposed but constraining data on magnetic field strengths and topologies across a wide range of mass, age, rotation rate, and temperature are sorely lacking, particularly in the brown dwarf regime. Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime. However, these detections are very rare; previous radio surveys encompassing ˜60 L6 or later targets have yielded only one detection. We have developed a selection strategy for biasing survey targets based on possible optical and infrared tracers of auroral activity. Using our selection strategy, we previously observed six late L and T dwarfs with the Jansky Very Large Array (VLA) and detected the presence of highly circularly polarized radio emission for five targets. Our initial detections at 4-8 GHz provided the most robust constraints on dynamo theory in this regime, confirming magnetic fields >2.5 kG. To further develop our understanding of magnetic fields in the ultracool brown dwarf mass regime bridging planets and stars, we present constraints on surface magnetic field strengths for two Y-dwarfs as well as higher frequency observations of the previously detected L/T dwarfs corresponding ~3.6 kG fields. By carefully comparing magnetic field measurements derived from auroral radio emission to measurements derived from Zeeman broadening and Zeeman Doppler imaging, we provide tentative evidence that the dynamo operating in this mass regime may be inconsistent with predicted values from currently in vogue models. This suggests that parameters beyond convective flux may influence magnetic field generation in brown dwarfs.

  20. HYSTERESIS BETWEEN DISTINCT MODES OF TURBULENT DYNAMOS

    SciTech Connect

    Karak, Bidya Binay; Brandenburg, Axel; Kitchatinov, Leonid L.

    2015-04-20

    Nonlinear mean-field models of the solar dynamo show long-term variability, which may be relevant to different states of activity inferred from long-term radiocarbon data. This paper is aimed at probing the dynamo hysteresis predicted by the recent mean-field models of Kitchatinov and Olemskoy with direct numerical simulations. We perform three-dimensional (3D) simulations of large-scale dynamos in a shearing box with helically forced turbulence. As an initial condition, we either take a weak random magnetic field or we start from a snapshot of an earlier simulation. Two quasi-stable states are found to coexist in a certain range of parameters close to the onset of the large-scale dynamo. The simulations converge to one of these states depending on the initial conditions. When either the fractional helicity or the magnetic Prandtl number is increased between successive runs above the critical value for onset of the dynamo, the field strength jumps to a finite value. However, when the fractional helicity or the magnetic Prandtl number is then decreased again, the field strength stays at a similar value (strong field branch) even below the original onset. We also observe intermittent decaying phases away from the strong field branch close to the point where large-scale dynamo action is just possible. The dynamo hysteresis seen previously in mean-field models is thus reproduced by 3D simulations. Its possible relation to distinct modes of solar activity such as grand minima is discussed.

  1. Generation of galactic disc warps due to intergalactic accretion flows onto the disc

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Betancort-Rijo, J.; Beckman, J. E.

    2002-04-01

    A new method is developed to calculate the amplitude of the galactic warps generated by a torque due to external forces. This takes into account that the warp is produced as a reorientation of the different rings which constitute the disc in order to compensate the differential precession generated by the external force, yielding a uniform asymptotic precession for all rings. Application of this method to gravitational tidal forces in the Milky Way due to the Magellanic Clouds leads to a very low amplitude of the warp, as has been inferred in previous studies; so, tidal forces are unlikely to generate warps, at least in the Milky Way. If the force were due to an extragalactic magnetic field, its intensity would have to be very high, greater than 1 mu G, to generate the observed warps. An alternative hypothesis is explored: the accretion of the intergalactic medium over the disk. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shape warp. The torque produced by a flow of velocity ~ 100 km s-1 and baryon density ~ 10-25 kg/m3 is enough to generate the observed warps and this mechanism offers quite a plausible explanation. First, because this order of accretion rate is inferred from other processes observed in the Galaxy, notably its chemical evolution. The inferred rate of infall of matter, ~ 1 M_sun/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of this chemical evolution resolving key issues, notably the G-dwarf problem. Second, the required density of the intergalactic medium is within the range of values compatible with observation. By this mechanism, we can explain the warp phenomenon in terms of intergalactic accretion flows onto the disk of the galaxy.

  2. Energy deposition in the earth's atmosphere due to impact of solar activity-generated disturbances

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Kan, L. C.; Tandberg-Hanssen, E.; Dryer, M.

    1979-01-01

    Energy deposition in and dynamic responses of the terrestrial atmosphere to solar flare-generated shocks and other physical processes - such as particle precipitation and local heating - are investigated self-consistently in the context of hydrodynamics, the problem being treated as an initial boundary-value problem. It is extremely difficult to construct a general model for the line solar activity-magnetosphere-atmosphere; however, a limited model for this link is possible. The paper describes such a model, and presents some results on energy deposition into the earth's atmosphere due to solar activity-generated disturbances. Results from the present calculations are presented and discussed.

  3. CONSISTENT SCALING LAWS IN ANELASTIC SPHERICAL SHELL DYNAMOS

    SciTech Connect

    Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.; Duarte, Lucia D. V.

    2013-09-01

    Numerical dynamo models always employ parameter values that differ by orders of magnitude from the values expected in natural objects. However, such models have been successful in qualitatively reproducing properties of planetary and stellar dynamos. This qualitative agreement fuels the idea that both numerical models and astrophysical objects may operate in the same asymptotic regime of dynamics. This can be tested by exploring the scaling behavior of the models. For convection-driven incompressible spherical shell dynamos with constant material properties, scaling laws had been established previously that relate flow velocity and magnetic field strength to the available power. Here we analyze 273 direct numerical simulations using the anelastic approximation, involving also cases with radius-dependent magnetic, thermal, and viscous diffusivities. These better represent conditions in gas giant planets and low-mass stars compared to Boussinesq models. Our study provides strong support for the hypothesis that both mean velocity and mean magnetic field strength scale as a function of the power generated by buoyancy forces in the same way for a wide range of conditions.

  4. An impact-driven dynamo for the early Moon.

    PubMed

    Le Bars, M; Wieczorek, M A; Karatekin, O; Cébron, D; Laneuville, M

    2011-11-09

    The origin of lunar magnetic anomalies remains unresolved after their discovery more than four decades ago. A commonly invoked hypothesis is that the Moon might once have possessed a thermally driven core dynamo, but this theory is problematical given the small size of the core and the required surface magnetic field strengths. An alternative hypothesis is that impact events might have amplified ambient fields near the antipodes of the largest basins, but many magnetic anomalies exist that are not associated with basin antipodes. Here we propose a new model for magnetic field generation, in which dynamo action comes from impact-induced changes in the Moon's rotation rate. Basin-forming impact events are energetic enough to have unlocked the Moon from synchronous rotation, and we demonstrate that the subsequent large-scale fluid flows in the core, excited by the tidal distortion of the core-mantle boundary, could have powered a lunar dynamo. Predicted surface magnetic field strengths are on the order of several microteslas, consistent with palaeomagnetic measurements, and the duration of these fields is sufficient to explain the central magnetic anomalies associated with several large impact basins.

  5. Current results on the asymptotics of dynamo models

    NASA Astrophysics Data System (ADS)

    Popova, H. P.

    2016-06-01

    Magnetic field generation and evolution models that are capable of describing a large body of observational material are currently available for different celestial bodies. Despite recent decades of great success in numerical magnetic hydrodynamics and in detailed research into some specific problems, asymptotic methods still have to be used to clarify the magnetic field generation mechanism in dynamo theory. In this review, current asymptotic methods are presented together with the results of their application to the simulation of solar, stellar, and galactic magnetic activities.

  6. Simple Scaling Relationships For Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle; Mathis, Stéphane; Brun, Allan Sacha

    2016-12-01

    This paper provides a brief overview of dynamo scaling relationships for the degree of equipartition between magnetic and kinetic energies. Three basic approaches are adopted to explore these scaling relationships, with a first look at two simple models: one assuming magnetostrophy and another that includes the effects of inertia. Next, a third scaling relationship is derived that utilizes the assumptions that the dynamo possesses two integral spatial scales and that it is driven by the balance of buoyancy work and ohmic dissipation as studied in Davidson 2013. The results of which are then compared to a suite of convective dynamo simulations that possess a fully convective domain with a weak density stratification and that captured the behavior of the resulting dynamo for a range of convective Rossby numbers (Augustson et al. 2016).

  7. Kinetic Magnetorotational Turbulence and Dynamo

    NASA Astrophysics Data System (ADS)

    Kunz, Matthew; Stone, James; Quataert, Eliot

    2016-10-01

    Low-luminosity black-hole accretion flows, such as that at the Galactic center, are collisionless. A kinetic approach is thus necessary to understand the transport of heat and angular momentum, the acceleration of particles, and the growth and structure of the magnetic field in these systems. We present results from the first 6D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model. Special attention will be paid to the enhanced transport of angular momentum by field-aligned pressure anisotropies, as well as to the ion-Larmor-scale kinetic instabilities (firehose, mirror, ion-cyclotron) which regulate those anisotropies. Energy spectra and phase-space evolution will be discussed. Time permitting, dedicated nonlinear studies of firehose and mirror instabilities in a shearing plasma will also be presented as a complement to the study of the magnetorotational instability. The profits, perils, and price of using a kinetic approach will be briefly mentioned.

  8. Constraints on lunar dynamo mechanism for interpreting lunar-wide magnetic field

    NASA Astrophysics Data System (ADS)

    Hemant Singh, Kumar; Kuang, Weijia

    2015-04-01

    Moon, once considered an in-active celesitial body, surprisingly showed evidences of magnetized crust in satellite and returned samples from Apollo mission. Several mechanisms have been suggested in the past for the origin of the lunar magnetization, but the origin of the magnetization remains unknown. Among the suggested mechanisms is the paleo lunar dynamo, i.e. the crustal magnetization was acquired in an internal magnetic field generated by a dynamo once operated in the lunar core. A key for this to work is that the generated field strength should be sufficient to explain observations. The paleo field strengths from the past paleomagnetic measurements of returned samples show that they vary from different sample sites, ranging from 33.3 (±8.18) to 5430 (±1330) nT. Results from the satellite data are more than an order of magnitude weaker than those from the samples. The dynamo field strength could be significantly weaker. Simple envelope estimation of magnetic induction can lead to the necessary condition for a dynamo is magnetic Reynolds number ≥ 10, which is approximately two orders of magnitude smaller than that estimated for the Earth's core. Our estimation with a strong-field lunar dynamo suggests that the field strengths are between 155 and 700 nT, depending on the lunar core size. This estimation is consistent with more recent results from paleomagnetic analysis of Apollo sample (76535) which provides paleointensity of the Moon to be at least 300 to 1000 nT.

  9. BUOYANT MAGNETIC LOOPS IN A GLOBAL DYNAMO SIMULATION OF A YOUNG SUN

    SciTech Connect

    Nelson, Nicholas J.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha

    2011-10-01

    The current dynamo paradigm for the Sun and Sun-like stars places the generation site for strong toroidal magnetic structures deep in the solar interior. Sunspots and starspots on Sun-like stars are believed to arise when sections of these magnetic structures become buoyantly unstable and rise from the deep interior to the photosphere. Here, we present the first three-dimensional global magnetohydrodynamic (MHD) simulation in which turbulent convection, stratification, and rotation combine to yield a dynamo that self-consistently generates buoyant magnetic loops. We simulate stellar convection and dynamo action in a spherical shell with solar stratification, but rotating three times faster than the current solar rate. Strong wreaths of toroidal magnetic field are realized by dynamo action in the convection zone. By turning to a dynamic Smagorinsky model for subgrid-scale turbulence, we here attain considerably reduced diffusion in our simulation. This permits the regions of strongest magnetic field in these wreaths to rise toward the top of the convection zone via a combination of magnetic buoyancy instabilities and advection by convective giant cells. Such a global simulation yielding buoyant loops represents a significant step forward in combining numerical models of dynamo action and flux emergence.

  10. Magnetic helicity in astrophysical dynamos

    NASA Astrophysics Data System (ADS)

    Candelaresi, Simon

    2012-09-01

    The broad variety of ways in which magnetic helicity affects astrophysical systems, in particular dynamos, is discussed. The so-called alpha effect is responsible for the growth of large-scale magnetic fields. The conservation of magnetic helicity, however, quenches the alpha effect, in particular for high magnetic Reynolds numbers. Predictions from mean-field theories state particular power law behavior of the saturation strength of the mean fields, which we confirm in direct numerical simulations. The loss of magnetic helicity in the form of fluxes can alleviate the quenching effect, which means that large-scale dynamo action is regained. Physically speaking, galactic winds or coronal mass ejections can have fundamental effects on the amplification of galactic and solar magnetic fields. The gauge dependence of magnetic helicity is shown to play no effect in the steady state where the fluxes are represented in form of gauge-independent quantities. This we demonstrate in the Weyl-, resistive- and pseudo Lorentz-gauge. Magnetic helicity transport, however, is strongly affected by the gauge choice. For instance the advecto-resistive gauge is more efficient in transporting magnetic helicity into small scales, which results in a distinct spectrum compared to the resistive gauge. The topological interpretation of helicity as linking of field lines is tested with respect to the realizability condition, which imposes a lower bound for the spectral magnetic energy in presence of magnetic helicity. It turns out that the actual linking does not affect the relaxation process, unlike the magnetic helicity content. Since magnetic helicity is not the only topological variable, I conduct a search for possible others, in particular for non-helical structures. From this search I conclude that helicity is most of the time the dominant restriction in field line relaxation. Nevertheless, not all numerical relaxation experiments can be described by the conservation of magnetic helicity

  11. Saturation of the turbulent dynamo.

    PubMed

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  12. Faraday's first dynamo: An alternate analysis

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-02-01

    The steady-state charge densities, electric potential, and current densities are determined analytically in the case of the first dynamo created by Michael Faraday, which consists of a conducting disk rotating between the poles of an off-axis permanent magnet. The results obtained are compared with another work that considered the same problem using a different approach. We also obtain analytical expressions for the total current on the disk and for the dynamo's electromotive force.

  13. An Early Nutation-Driven Lunar Dynamo

    NASA Astrophysics Data System (ADS)

    Dwyer, C. A.; Stevenson, D. J.; Nimmo, F.

    2010-12-01

    Paleointensity data have long been adduced as evidence of an ancient lunar magnetic dynamo and recent paleomagnetic measurements have strengthened this argument [1]. However, a driving mechanism for the dynamo has been hard to find. We investigate here the possibility of a mechanically-stirred dynamo driven by nutation. Nutation results in the stirring of a liquid core by the differential motion of the solid outer mantle. Lunar laser ranging supports a small (≈335 km) liquid core and provides an estimate of the energy dissipated at the lunar core/mantle boundary at the present-day [2]. While the current energy dissipation rate is not enough to power a dynamo, the energy available would have been much larger earlier in lunar history, when the moon was closer to Earth and the spin axis was more offset from the orbital plane. As a first step investigating the feasibility of a nutation-driven lunar paleodynamo, we considered the energy budget likely available to power a dynamo. Model A used a simple scaling argument based on the terrestrial dynamo. Model B was based on the energy flux model of [3]. For lunar semi-major axes less than ≈42 REarth (≈3 Ga), both models produce comparable results and predict surface fields greater than 1 µT (comparable to the paleointensity estimates of [1]). Furthermore, a nutation-driven dynamo would have naturally ceased to operate as the lunar orbit expanded; it would have failed when the available power (which strongly depends on semi-major axis) was no longer able to overcome the tendency of the core to cool to a subadiabatic state. Thus, mechanical stirring via nutation is a viable potential driver of a lunar dynamo and deserves further study. [1] Garrick-Bethell et al. (2009) Science 323, 356-359. [2] Williams et al. (2001) JGR-P 106, 27933-27968. [3] Christensen et al. (2009) Nature 457, 167-169.

  14. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  15. On the rolling noise generation due to wheel/track parametric excitation

    NASA Astrophysics Data System (ADS)

    Wu, T. X.; Thompson, D. J.

    2006-06-01

    As a discretely supported railway track is essentially periodic, when a wheel rolls over the rail, it experiences the varying dynamic stiffness in a sleeper bay of the track, and thus the wheel and rail is periodically excited at the sleeper-passing frequency. The parametric excitation due to the varying track stiffness, in addition to the roughness or discontinuities on the wheel and rail rolling surfaces, also causes vibration and noise emission. A frequency-time domain methodology is applied for simulation of the wheel/rail interaction due to the parametric excitation. The wheel/rail interaction forces are calculated and Track-Wheel Interaction Noise Software (TWINS) is used to predict the noise radiation due to the parametric excitation at various train speeds. The results are compared with those from a moving irregularity model where no parametric excitation is generated. It is found that the components due to the parametric excitation are not significant at lower speeds compared with those due to the roughness excitation. Use of a moving irregularity model without considering the wheel/track parametric excitation may under-estimate the noise emission level at high speeds.

  16. Wave drag due to generation of capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Burghelea, Teodor; Steinberg, Victor

    2002-11-01

    The onset of the wave resistance via the generation of capillary-gravity waves by a small object moving with a velocity V is investigated experimentally. Due to the existence of a minimum phase velocity Vc for surface waves, the problem is similar to the generation of rotons in superfluid helium near their minimum. In both cases, waves or rotons are produced at V>Vc due to Cherenkov radiation. We find that the transition to the wave drag state is continuous: in the vicinity of the bifurcation the wave resistance force is proportional to (V-Vc) for various fluids. This observation contradicts the theory of Raphaël and de Gennes. We also find that the reduced wave drag force for different fluids and different ball size may be scaled in such a way that all the data collapse on a single curve. The capillary-gravity wave pattern and the shape of the wave-generating region are investigated both experimentally and theoretically. Good agreement between the theory and the experimental data is found in this case.

  17. Modeling MHD accretion-ejection: episodic ejections of jets triggered by a mean-field disk dynamo

    SciTech Connect

    Stepanovs, Deniss; Fendt, Christian; Sheikhnezami, Somayeh E-mail: fendt@mpia.de

    2014-11-20

    We present MHD simulations exploring the launching, acceleration, and collimation of jets and disk winds. The evolution of the disk structure is consistently taken into account. Extending our earlier studies, we now consider the self-generation of the magnetic field by an α{sup 2}Ω mean-field dynamo. The disk magnetization remains on a rather low level, which helps to evolve the simulations for T > 10, 000 dynamical time steps on a domain extending 1500 inner disk radii. We find the magnetic field of the inner disk to be similar to the commonly found open field structure, favoring magneto-centrifugal launching. The outer disk field is highly inclined and predominantly radial. Here, differential rotation induces a strong toroidal component, which plays a key role in outflow launching. These outflows from the outer disk are slower, denser, and less collimated. If the dynamo action is not quenched, magnetic flux is continuously generated, diffuses outward through the disk, and fills the entire disk. We have invented a toy model triggering a time-dependent mean-field dynamo. The duty cycles of this dynamo lead to episodic ejections on similar timescales. When the dynamo is suppressed as the magnetization falls below a critical value, the generation of the outflows and also accretion is inhibited. The general result is that we can steer episodic ejection and large-scale jet knots by a disk-intrinsic dynamo that is time-dependent and regenerates the jet-launching magnetic field.

  18. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  19. Infective endocarditis due to Enterobacter cloacae resistant to third- and fourth-generation cephalosporins.

    PubMed

    Yoshino, Yusuke; Okugawa, Shu; Kimura, Satoshi; Makita, Eiko; Seo, Kazunori; Koga, Ichiro; Matsunaga, Naohisa; Kitazawa, Takatoshi; Ota, Yasuo

    2015-04-01

    We report the case of using a long-term combination of meropenem and amikacin to treat infective endocarditis caused by Enterobacter cloacae resistant to third- and fourth-generation cephalosporins. Multi-drug resistant Gram-negative bacilli, such as the E. cloacae in our study, may become possible pathogens of infective endocarditis. Our experience with this case indicates that long-term use of a combination of β-lactam and aminoglycosides might represent a suitable management option for future infective endocarditis cases due to non-Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella spp. (HACEK group) Gram-negative bacilli such as ours.

  20. CONVECTIVE BABCOCK-LEIGHTON DYNAMO MODELS

    SciTech Connect

    Miesch, Mark S.; Brown, Benjamin P.

    2012-02-20

    We present the first global, three-dimensional simulations of solar/stellar convection that take into account the influence of magnetic flux emergence by means of the Babcock-Leighton (BL) mechanism. We have shown that the inclusion of a BL poloidal source term in a convection simulation can promote cyclic activity in an otherwise steady dynamo. Some cycle properties are reminiscent of solar observations, such as the equatorward propagation of toroidal flux near the base of the convection zone. However, the cycle period in this young sun (rotating three times faster than the solar rate) is very short ({approx}6 months) and it is unclear whether much longer cycles may be achieved within this modeling framework, given the high efficiency of field generation and transport by the convection. Even so, the incorporation of mean-field parameterizations in three-dimensional convection simulations to account for elusive processes such as flux emergence may well prove useful in the future modeling of solar and stellar activity cycles.

  1. TURBULENT CROSS-HELICITY IN THE MEAN-FIELD SOLAR DYNAMO PROBLEM

    SciTech Connect

    Pipin, V. V.; Kuzanyan, K. M.; Zhang, H.; Kosovichev, A. G.

    2011-12-20

    We study the dynamical and statistical properties of turbulent cross-helicity (correlation of the aligned fluctuating velocity and magnetic field components). We derive an equation governing generation and evolution of the turbulent cross-helicity and discuss its meaning for the dynamo. Using the symmetry properties of the problem we suggest a general expression for the turbulent cross-helicity. Effects of the density stratification, large-scale magnetic fields, differential rotation, and turbulent convection are taken into account. We investigate the relative contribution of these effects to the cross-helicity evolution for two kinds of dynamo models of the solar cycle: a distributed mean-field model and a flux-transport dynamo model. We show that the contribution from the density stratification follows the evolution of the radial magnetic field, while large-scale electric currents produce a more complicated pattern of the cross-helicity of comparable magnitude. The pattern of the cross-helicity evolution strongly depends on details of the dynamo mechanism. Thus, we anticipate that direct observations of the cross-helicity on the Sun may serve for the diagnostic purpose of the solar dynamo process.

  2. The Dynamo's Sensitivity to Core-Mantle Thermal Interactions: Investigations of Mars and Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Zuber, M. T.; Elkins-Tanton, L. T.; Parmentier, E.

    2009-12-01

    Various mechanisms can generate lateral thermal variations at the core-mantle boundary (CMB) in terrestrial planets. For example on early Mars, a giant impact, magma ocean overturn, mantle viscosity variations or phase changes have been invoked to explain the hemispheric crustal dichotomy. These mechanisms would have resulted in episodes of hemispheric scale heat flux variations at the CMB. On Earth, plate tectonics governs the thermal variations at the CMB. Previous work has investigated the effects of CMB thermal variations on the core dynamo and resulting magnetic field for both Earth and Mars. The sensitivity can be dramatic, as in a single hemisphere dynamo or cessation of the dynamo in Mars, or more subtle, as in the locking of flux spots and prescribing intensities in the paleomagnetic power spectrum in Earth. Here we use dynamo models to investigate the sensitivity of the dynamo to core-mantle thermal interactions. We examine both the morphology and intensity of core-mantle thermal variations in order to place constraints on interior processes in both Mars and Earth.

  3. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    NASA Astrophysics Data System (ADS)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.

    2017-02-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at http://www.aanda.org

  4. The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos

    NASA Astrophysics Data System (ADS)

    Hide, Raymond

    1997-02-01

    This paper discusses the derivation of the autonomous sets of dimensionless nonlinear ordinary differential equations (ODE's) that govern the behaviour of a hierarchy of related electro-mechanical self-exciting Faraday-disk homopolar dynamo systems driven by steady mechanical couples. Each system comprises N interacting units which could be arranged in a ring or lattice. Within each unit and connected in parallel or in series with the coil are electric motors driven into motion by the dynamo, all having linear characteristics, so that nonlinearity arises entirely through the coupling between components. By introducing simple extra terms into the equations it is possible to represent biasing effects arising from impressed electromotive forces due to thermoelectric or chemical processes and from the presence of ambient magnetic fields. Dissipation in the system is due not only to ohmic heating but also to mechanical friction in the disk and the motors, with the latter agency, no matter how weak, playing an unexpectedly crucial rôle in the production of régimes of chaotic behaviour. This has already been demonstrated in recent work on a case of a single unit incorporating just one series motor, which is governed by a novel autonomous set of nonlinear ODE's with three time-dependent variables and four control parameters. It will be of mathematical as well as geophysical and astrophysical interest to investigate systematically phase and amplitude locking and other types of behaviour in the more complicated cases that arise when N > 1, which can typically involve up to 6 N dependent variables and 19 N-5 control parameters. Even the simplest members of the hierarchy, with N as low as 1, 2 or 3, could prove useful as physically-realistic low-dimensional models in theoretical studies of fluctuating stellar and planetary magnetic fields. Geomagnetic polarity reversals could be affected by the presence of the Earth's solid metallic inner core, driven like an electric motor

  5. Non-normal and stochastic amplification of magnetic energy in the turbulent dynamo: subcritical case.

    PubMed

    Fedotov, Sergei

    2003-12-01

    Our attention focuses on the stochastic dynamo equation with non-normal operator that gives an insight into the role of stochastics and non-normality in magnetic field generation. The main point of this Brief Report is a discussion of the generation of a large-scale magnetic field that cannot be explained by traditional linear eigenvalue analysis. The main result is a discovery of nonlinear deterministic instability and growth of finite magnetic field fluctuations in alpha beta dynamo theory. We present a simple stochastic model for the thin-disk axisymmetric alpha Omega dynamo involving three factors: (a) non-normality generated by differential rotation, (b) nonlinearity reflecting how the magnetic field affects the turbulent dynamo coefficients, and (c) stochastic perturbations. We show that even for the subcritical case (all eigenvalues are negative), there are three possible mechanisms for the generation of magnetic field. The first mechanism is a deterministic one that describes an interplay between transient growth and nonlinear saturation of the turbulent alpha effect and diffusivity. It turns out that the trivial state is nonlinearly unstable to small but finite initial perturbations. The second and third are stochastic mechanisms that account for the interaction of non-normal effect generated by differential rotation with random additive and multiplicative fluctuations.

  6. A new simple dynamo model for solar activity cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu; Schmitt, Dieter

    2015-04-01

    The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).

  7. Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Busse, A.; Müller, W.-C.

    2013-09-01

    Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate on time scales that are longer than the characteristic time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear bursts are a significant driver of dynamo action in turbulent magnetoconvection.

  8. Predictability and Coupled Dynamics of MJO During DYNAMO

    DTIC Science & Technology

    2013-09-30

    2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4 . TITLE AND SUBTITLE Predictability and Coupled Dynamics of MJO During DYNAMO 5a...allocated in the upper ocean to allow 4 - 5 layers in the upper 1-meter and 33 layers in the upper 55 meters. WRF and ROMS share the identical grids and...SST appears to be slightly warmer in CF24 than 4 CF1, due to the large range of diurnal variation in temperature, higher SST is achieved on

  9. ON THE CAUSE OF SOLAR-LIKE EQUATORWARD MIGRATION IN GLOBAL CONVECTIVE DYNAMO SIMULATIONS

    SciTech Connect

    Warnecke, Jörn; Käpylä, Petri J.; Käpylä, Maarit J.; Brandenburg, Axel

    2014-11-20

    We present results from four convectively driven stellar dynamo simulations in spherical wedge geometry. All of these simulations produce cyclic and migrating mean magnetic fields. Through detailed comparisons, we show that the migration direction can be explained by an αΩ dynamo wave following the Parker-Yoshimura rule. We conclude that the equatorward migration in this and previous work is due to a positive (negative) α effect in the northern (southern) hemisphere and a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward propagation.

  10. Unscheduled load flow effect due to large variation in the distributed generation in a subtransmission network

    NASA Astrophysics Data System (ADS)

    Islam, Mujahidul

    A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable

  11. Statistical Tests of Galactic Dynamo Theory

    NASA Astrophysics Data System (ADS)

    Chamandy, Luke; Shukurov, Anvar; Taylor, A. Russ

    2016-12-01

    Mean-field galactic dynamo theory is the leading theory to explain the prevalence of regular magnetic fields in spiral galaxies, but its systematic comparison with observations is still incomplete and fragmentary. Here we compare predictions of mean-field dynamo models to observational data on magnetic pitch angle and the strength of the mean magnetic field. We demonstrate that a standard {α }2{{Ω }} dynamo model produces pitch angles of the regular magnetic fields of nearby galaxies that are reasonably consistent with available data. The dynamo estimates of the magnetic field strength are generally within a factor of a few of the observational values. Reasonable agreement between theoretical and observed pitch angles generally requires the turbulent correlation time τ to be in the range of 10-20 {Myr}, in agreement with standard estimates. Moreover, good agreement also requires that the ratio of the ionized gas scale height to root-mean-square turbulent velocity increases with radius. Our results thus widen the possibilities to constrain interstellar medium parameters using observations of magnetic fields. This work is a step toward systematic statistical tests of galactic dynamo theory. Such studies are becoming more and more feasible as larger data sets are acquired using current and up-and-coming instruments.

  12. Fate of Alpha Dynamos at Large Rm.

    PubMed

    Cameron, Alexandre; Alexakis, Alexandros

    2016-11-11

    At the heart of today's solar magnetic field evolution models lies the alpha dynamo description. In this work, we investigate the fate of alpha dynamos as the magnetic Reynolds number Rm is increased. Using Floquet theory, we are able to precisely quantify mean-field effects like the alpha and beta effect (i) by rigorously distinguishing dynamo modes that involve large-scale components from the ones that only involve small scales, and by (ii) providing a way to investigate arbitrary large-scale separations with minimal computational cost. We apply this framework to helical and nonhelical flows as well as to random flows with short correlation time. Our results determine that the alpha description is valid for Rm smaller than a critical value Rm_{c} at which small-scale dynamo instability starts. When Rm is above Rm_{c}, the dynamo ceases to follow the mean-field description and the growth rate of the large-scale modes becomes independent of the scale separation, while the energy in the large-scale modes is inversely proportional to the square of the scale separation. The results in this second regime do not depend on the presence of helicity. Thus, alpha-type modeling for solar and stellar models needs to be reevaluated and new directions for mean-field modeling are proposed.

  13. Testing Numerical Dynamo Models Against Experimental Results

    NASA Astrophysics Data System (ADS)

    Gissinger, C. J.; Fauve, S.; Dormy, E.

    2007-12-01

    Significant progress has been achieved over the past few years in describing the geomagnetic field using computer models for dynamo action. Such models are so far limited to parameter regimes which are very remote from actual values relevant to the Earth core or any liquid metal (the magnetic Prandtl number is always over estimated by a factor at least 104). While existing models successfully reproduce many of the magnetic observations, it is difficult to assert their validity. The recent success of an experimental homogeneous unconstrained dynamo (VKS) provides a new way to investigate dynamo action in turbulent conducting flows, but it also offers a chance to test the validity of exisiting numerical models. We use a code originaly written for the Geodynamo (Parody) and apply it to the experimental configuration. The direct comparison of simulations and experiments is of great interest to test the predictive value of numerical simulations for dynamo action. These turbulent simulations allow us to approach issues which are very relevant for geophysical dynamos, especially the competition between different magnetic modes and the dynamics of reversals.

  14. MHD Dynamo phenomenon in our lab (Petrus Peregrinus Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gailitis, Agris

    2016-04-01

    Celestial objects generate magnetic field very like technical dynamo do. Field induces current in a moving electroconductor. The induced current amplifies magnetic field. At large enough product conductivity time's velocity time's size amplification exceeds losses and situation without magnetic field is impossible. Such scenario is obvious for technical dynamo made from insolated wire but not so for uniform conductor as in celestial bodies. Development of the idea took literally the entire 20th century. Discovery of sunspot magnetic fields at the century rise and laboratory verification at the very fall. At thirties Cowling noticed that geometrically simple shaped (axially symmetrical) field can't sustain itself. Process must be more complex, somehow spatially fragmented. At the middle of century Parker and Steenbeck saw such fragmentation in a turbulent structure of hydrodynamic flow. Shortly after his α-effect approach was made ready Steenbeck invited us to think on molten Na experiments for theory verification. The first idea was to push the Na flow through the hand-blown pipe maze. Similar industrial scale experiment after years and regardless of us was realized in Karlsruhe. Seeking for something cheaper we stopped at Ponomarenko idea - axially symmetric helical flow can't generate axi-simmetric field but it can generate azimuthally structured one. The mathematical model was modified to experimental conditions and numerically optimized. The Dynamo stand was built and it works. Even after optimization Dynamo stand exceeds usual size of hydraulic experiments. 2m3 of molten Na circulate there by means of propeller powered from 200kW motor. When circulation exceeds 0.6 m3/s (at 120°C) seemingly from nowhere appears magnetic field. Twisted field pattern slowly (about 1.5Hz) rotates round flow axis. Up to 0.1T field stay as long as stay circulation and temperature. When sodium is heated up or slowed down the field is slowly dying out. Phenomenon is much richer

  15. Dynamos driven by helical waves: scaling laws for numerical dynamos and for the planets

    NASA Astrophysics Data System (ADS)

    Davidson, P. A.

    2016-11-01

    We derive scaling relationships for planetary dynamos based on a balance between energy production and Joule dissipation, and between the curl of the buoyancy and Coriolis forces. These scaling relationships are deduced for the particular case of dynamos driven by helical waves, but are shown to have a much broader applicability. They are consistent with the evidence of the numerical dynamos, yielding predictions consistent with published empirical scaling laws and also with the observed transition from dipolar to multipolar dynamos. A direct comparison with the observational evidence for the planets is hampered by the fact that we do not know what sets the smallest scale of the motion in the planets. Nevertheless, we use our scaling relationships to show that the traditional assumption that the Elsasser number is of order unity is inconsistent with the observation that the gas-giant dynamos are dipolar dynamos, as is the more recent suggestion that the strength of the dipole is independent of rotation rate and controlled by the buoyancy flux alone. On the other hand, we show that the observational data is consistent with the hypothesis that a dipolar dynamo saturates at the lowest permissible magnetic energy compatible with a given buoyancy flux.

  16. Higher and sub-harmonic Lamb wave mode generation due to debond-induced contact nonlinearity

    NASA Astrophysics Data System (ADS)

    Guha, Anurup; Bijudas, C. R.

    2016-04-01

    Non-cumulative higher and sub-harmonic Lamb wave mode generation as a result of partial-debond of piezoelectric wafer transducers (PWT) bonded onto an Aluminium plate, is numerically investigated and experimentally validated. The influence of excitation frequency on the extent of nonlinearity due to clapping mechanism of the partially-debonded PWTs is discussed. A set of specific frequency range is arrived at based on the Eigen-value and Harmonic analyses of PWTs used in the model. It is found that, at these frequencies, which are integral multiple of the first width-direction mode of a PWT, significantly higher amplitudes of higher-harmonics are observed. It is also seen that at specific debond-positions and lengths, sharp sub-harmonics in addition to higher-harmonics are present. Signal processing is carried out using Fast Fourier transform, which is normalized for comparisons.

  17. Dissipation due to pure spin-current generated by spin pumping

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Saslow, Wayne M.

    2014-12-01

    Based on spin-dependent transport theory and thermodynamics, we develop a generalized theory of the Joule heating in the presence of a spin current. Along with the conventional Joule heating consisting of an electric current and electrochemical potential, it is found that the spin current and spin accumulation give an additional dissipation because the spin-dependent scatterings inside bulk and ferromagnetic/nonmagnetic interface lead to a change of entropy. The theory is applied to investigate the dissipation due to pure spin-current generated by spin pumping across a ferromagnetic/nonmagnetic/ferromagnetic multilayer. The dissipation arises from an interface because the spin pumping is a transfer of both the spin angular momentum and the energy from the ferromagnet to conduction electrons near the interface. It is found that the dissipation is proportional to the enhancement of the Gilbert damping constant by spin pumping.

  18. Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model

    NASA Astrophysics Data System (ADS)

    Guerrero, G.; de Gouveia Dal Pino, E. M.

    2008-07-01

    Context: The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims: We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods: As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results: The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r=0.95~R⊙ at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions: This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of

  19. Transient Phenomena of Disk MHD Generator due to Change of Load Resistance

    NASA Astrophysics Data System (ADS)

    Koka, Hidetoshi; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    Results of experimental study on transient phenomena of the closed cycle disk MHD generator are described in this paper. The transient phenomena were caused by a step-like change of load resistance during a test time of the shock-tube driven disk MHD generator. The load resistance was changed by using an IGBT (Insulated Gate Bipolar Transistor) installed in a load circuit. When the load resistance was changed from 0.096Ω to 2.5Ω, an overshoot of the Hall output voltage and of the Hall electric field was observed, and a large fluctuation of static pressure was also observed. At the same time, a spike-like increase of cesium recombination continuum and line spectrum appeared just after the load change. Results of the quasi-one dimensional numerical simulation have indicated that the observed overshoot was caused by the following phenomena: 1) a steep reduction of the Hall current and a steep increase in both the Faraday current and the electrical conductivity, and 2) a slow reduction of gas velocity due to the enhanced retarding force. Furthermore, the measured spike-like increase of radiation intensity was ascribed to an increase of electron temperature and electron number density by a steep increase of Joule heating.

  20. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    NASA Astrophysics Data System (ADS)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  1. Multiple periodicities in the solar magnetic field - Possible origin in a multiple-mode solar dynamo

    NASA Technical Reports Server (NTRS)

    Boyer, D. W.; Levy, E. H.

    1992-01-01

    The solar magnetic field is generated in an oscillatory mode with a 22 yr full period and gives rise to the 11 yr sunspot cycle. However, analyses of contemporary solar records, as well as other surrogate indicators of solar activity, suggest the presence also of longer term periodicities in the solar magnetic cycle. This paper suggests that the solar dynamo can operate in a multiply periodic state, with several periodicites being generated simultaneously at different depths in the convection zone. A simple two-layer model of the solar convection zone is used to illustrate the physical mechanism of spatially localized, multiple-periodicity-mode dynamo regeneration. The two layers are characterized by differences in their respective turbulent magnetic diffusivities. Although the magnetic modes interact with one another, each mode is produced large in one layer or the other, and has an oscillation period approximately equal to the time characteristic of magnetic diffusion across the layer. The observed complicated periodicity pattern in the solar magnetic field could be a combination of two (or more) dynamo modes generated in this manner. The calculations are carried out using a differential rotation model consistent with recent helioseismological measurements, illustrating the challenge to dynamo theory raised by those observational results.

  2. What is a large-scale dynamo?

    NASA Astrophysics Data System (ADS)

    Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. M.

    2017-01-01

    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number (Rm). We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations.

  3. Higher helicity invariants and solar dynamo

    NASA Astrophysics Data System (ADS)

    Sokolov, D. D.; Illarionov, E. A.; Akhmet'ev, P. M.

    2017-01-01

    Modern models of nonlinear dynamo saturation in celestial bodies (specifically, on the Sun) are largely based on the consideration of the balance of magnetic helicity. This physical variable has also a topological meaning: it is associated with the linking coefficient of magnetic tubes. In addition to magnetic helicity, magnetohydrodynamics has a number of topological integrals of motion (the so-called higher helicity moments). We have compared these invariants with magnetic helicity properties and concluded that they can hardly serve as nonlinear constraints on dynamo action.

  4. Reversals of the solar magnetic dipole in the light of observational data and simple dynamo models

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Moss, D.; Sokoloff, D.; Hoeksema, J. T.

    2014-07-01

    Context. Observations show that the photospheric solar magnetic dipole usually does not vanish during the reversal of the solar magnetic field, which occurs in each solar cycle. In contrast, mean-field solar dynamo models predict that the dipole field does become zero. In a recent paper it was suggested that this contradiction could be explained as a large-scale manifestation of small-scale magnetic fluctuations of the surface poloidal field. Aims: Our aim is to confront this interpretation with the available observational data. Methods: Here we compare this interpretation with Wilcox Solar Observatory (WSO) photospheric magnetic field data in order to determine the amplitude of magnetic fluctuations required to explain the phenomenon and to compare the results with predictions from a simple dynamo model which takes these fluctuations into account. Results: We demonstrate that the WSO data concerning the magnetic dipole reversals are very similar to the predictions from our very simple solar dynamo model, which includes both mean magnetic field and fluctuations. The ratio between the rms value of the magnetic fluctuations and the mean field is estimated to be about 2, in reasonable agreement with estimates from sunspot data. The reversal epoch, during which the fluctuating contribution to the dipole is larger than that from the mean field, is about 4 months. The memory time of the fluctuations is about 2 months. Observations demonstrate that the rms of the magnetic fluctuations is strongly modulated by the phase of the solar cycle. This gives additional support to the concept that the solar magnetic field is generated by a single dynamo mechanism rather than also by independent small-scale dynamo action. A suggestion of a weak nonaxisymmetric magnetic field of a fluctuating nature arises from the analysis, with a lifetime of about 1 year. Conclusions: The behaviour of the magnetic dipole during the reversal epoch gives valuable information about details of solar

  5. Alpha-effect dynamos with zero kinetic helicity.

    PubMed

    Rädler, Karl-Heinz; Brandenburg, Axel

    2008-02-01

    A simple explicit example of a Roberts-type dynamo is given in which the alpha effect of mean-field electrodynamics exists in spite of pointwise vanishing kinetic helicity of the fluid flow. In this way, it is shown that alpha-effect dynamos do not necessarily require nonzero kinetic helicity. A mean-field theory of Roberts-type dynamos is established within the framework of the second-order correlation approximation. In addition, numerical solutions of the original dynamo equations are given that are independent of any approximation of that kind. Both theory and numerical results demonstrate the possibility of dynamo action in the absence of kinetic helicity.

  6. {alpha}-effect dynamos with zero kinetic helicity

    SciTech Connect

    Raedler, Karl-Heinz; Brandenburg, Axel

    2008-02-15

    A simple explicit example of a Roberts-type dynamo is given in which the {alpha} effect of mean-field electrodynamics exists in spite of pointwise vanishing kinetic helicity of the fluid flow. In this way, it is shown that {alpha}-effect dynamos do not necessarily require nonzero kinetic helicity. A mean-field theory of Roberts-type dynamos is established within the framework of the second-order correlation approximation. In addition, numerical solutions of the original dynamo equations are given that are independent of any approximation of that kind. Both theory and numerical results demonstrate the possibility of dynamo action in the absence of kinetic helicity.

  7. The nuclear dynamo; Can a nuclear tornado annihilate nations

    SciTech Connect

    McNally, J.R. Jr.

    1991-01-01

    This paper reports on the development of the hypothesis of a nuclear dynamo for a controlled nuclear fusion reactor. This dynamo hypothesis suggests properties for a nuclear tornado that could annihilate nations if accidentally triggered by a single high yield to weight nuclear weapon detonation. The formerly classified reports on ignition of the atmosphere, the properties of a nuclear dynamo, methods to achieve a nuclear dynamo in the laboratory, and the analogy of a nuclear dynamo to a nuclear tornado are discussed. An unclassified international study of this question is urged.

  8. Large-scale magnetic field generation by randomly forced shearing waves.

    PubMed

    Heinemann, T; McWilliams, J C; Schekochihin, A A

    2011-12-16

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.

  9. A New Simple Dynamo Model for Stellar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Schmitt, D.; Pipin, V.; Hamba, F.

    2016-06-01

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity-magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α-Ω-type models in two main ways. First, in addition to the usual helicity (α) and turbulent magnetic diffusivity (β) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  10. Limited role of spectra in dynamo theory: coherent versus random dynamos.

    PubMed

    Tobias, Steven M; Cattaneo, Fausto

    2008-09-19

    We discuss the importance of phase information and coherence times in determining the dynamo properties of turbulent flows. We compare the kinematic dynamo properties of three flows with the same energy spectrum. The first flow is dominated by coherent structures with nontrivial phase information and long eddy coherence times, the second has random phases and long-coherence time, the third has nontrivial phase information, but short coherence time. We demonstrate that the first flow is the most efficient kinematic dynamo, owing to the presence of sustained stretching and constructive folding. We argue that these results place limitations on the possible inferences of the dynamo properties of flows from the use of spectra alone, and that the role of coherent structures must always be accounted for.

  11. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  12. Configuration Design of Novel Manually Operated Dynamo Flashlights

    NASA Astrophysics Data System (ADS)

    Yan, Hong-Sen; Wang, Hsin-Te

    This paper synthesizes novel configurations of manually operated dynamo flashlights. Topology and motion characteristics of existing gear dynamos are modified and concluded. The structural sketches and corresponding graph representations for gear trains and dynamos with the defined induced magnetic circuits are defined. Through the concepts of generalization and specialization, the atlas of the structural sketches and graphs of the embedded gear dynamos is obtained subject to the defined design requirements and constraints. And, a systematic approach is proposed to synthesize the novel mechanisms of the embedded gear dynamos. As a result, the embedded three-link and four-link gear dynamos have 12 and 24 novel design configurations, respectively. One prototype of the embedded three-link and another of the embedded four-link gear dynamo are built.

  13. Destruction of large-scale magnetic field in non-linear simulations of the shear dynamo

    NASA Astrophysics Data System (ADS)

    Teed, Robert J.; Proctor, Michael R. E.

    2016-05-01

    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In the past the α-effect (mean-field) concept has been used to model the solar cycle, but recent work has cast doubt on the validity of the mean-field ansatz under solar conditions. This indicates that one should seek an alternative mechanism for generating large-scale structure. One possibility is the recently proposed `shear dynamo' mechanism where large-scale magnetic fields are generated in the presence of a simple shear. Further investigation of this proposition is required, however, because work has been focused on the linear regime with a uniform shear profile thus far. In this paper we report results of the extension of the original shear dynamo model into the non-linear regime. We find that whilst large-scale structure can initially persist into the saturated regime, in several of our simulations it is destroyed via large increase in kinetic energy. This result casts doubt on the ability of the simple uniform shear dynamo mechanism to act as an alternative to the α-effect in solar conditions.

  14. Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Calkins, Michael A.; Long, Louie; Nieves, David; Julien, Keith; Tobias, Steven M.

    2016-12-01

    Most large-scale planetary magnetic fields are thought to be driven by low Rossby number convection of a low magnetic Prandtl number fluid. Here kinematic dynamo action is investigated with an asymptotic, rapidly rotating dynamo model for the plane layer geometry that is intrinsically low magnetic Prandtl number. The thermal Prandtl number and Rayleigh number are varied to illustrate fundamental changes in flow regime, ranging from laminar cellular convection to geostrophic turbulence in which an inverse energy cascade is present. A decrease in the efficiency of the convection to generate a dynamo, as determined by an increase in the critical magnetic Reynolds number, is observed as the buoyancy forcing is increased. This decreased efficiency may result from both the loss of correlations associated with the increasingly disordered states of flow that are generated, and boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial characteristics of the large-scale magnetic field is dependent only weakly on changes in flow behavior. In contrast, the behavior of the small-scale magnetic field is directly dependent on, and therefore shows significant variations with, the small-scale convective flow field. However, our results are limited to the linear, kinematic dynamo regime; future simulations that include the Lorentz force are therefore necessary to assess the robustness of these results.

  15. Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark

    2016-10-01

    The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  16. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation

    PubMed Central

    Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player. PMID:26247588

  17. The RFP dynamo: MHD to kinetic regimes

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; Almagri, A. F.; den Hartog, D. J.; McCollam, K. J.; Nornberg, M. D.; Sauppe, J. P.; Sovinec, C. R.; Terry, P. W.; Triana, J. C.; Brower, D. L.; Ding, W. X.; Parke, E.

    2015-11-01

    The hallmark of magnetic relaxation in an RFP plasma is profile flattening of J0 .B0 /B2 effected by a dynamo-like emf in Ohm's law. This is well-studied in single-fluid MHD, but recent MST results and extended MHD modeling show that both and the Hall emf, - /ene , are important, revealing decoupled electron and ion motion. Since dynamo is current-related, the electron fluid emf, , captures both effects. In MST, the electron flow is dominantly Ve , 1 ~E1 ×B0 /B2 , implying ~ / B . This and the Hall emf are measured in MST for comparison in Ohm's law. A finite-pressure response is also possible, e.g., ``diamagnetic dynamo'', ∇ . /ene , associated with diamagnetic drift, and ``kinetic dynamo'' associated with collisionless streaming of electrons in a stochastic magnetic field. Correlation measurements and using FIR interferometry and Thomson scattering reveal these as small but finite in MST. A kinetic emf might be expected for any high-beta plasma with inhomogeneous pressure. Support by DOE/NSF.

  18. Magnetic reversals from planetary dynamo waves.

    PubMed

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  19. Extrapolating Solar Dynamo Models Throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Cox, B. T.; Miesch, M. S.; Augustson, K.; Featherstone, N. A.

    2014-12-01

    There are multiple theories that aim to explain the behavior of the solar dynamo, and their associated models have been fiercely contested. The two prevailing theories investigated in this project are the Convective Dynamo model that arises from the pure solving of the magnetohydrodynamic equations, as well as the Babcock-Leighton model that relies on sunspot dissipation and reconnection. Recently, the supercomputer simulations CASH and BASH have formed models of the behavior of the Convective and Babcock-Leighton models, respectively, in the convective zone of the sun. These models show the behavior of the models within the sun, while much less is known about the effects these models may have further away from the solar surface. The goal of this work is to investigate any fundamental differences between the Convective and Babcock-Leighton models of the solar dynamo outside of the sun and extending into the solar system via the use of potential field source surface extrapolations implemented via python code that operates on data from CASH and BASH. The use of real solar data to visualize supergranular flow data in the BASH model is also used to learn more about the behavior of the Babcock-Leighton Dynamo. From the process of these extrapolations it has been determined that the Babcock-Leighton model, as represented by BASH, maintains complex magnetic fields much further into the heliosphere before reverting into a basic dipole field, providing 3D visualisations of the models distant from the sun.

  20. Converting DYNAMO simulations to Powersim Studio simulations

    SciTech Connect

    Walker, La Tonya Nicole; Malczynski, Leonard A.

    2014-02-01

    DYNAMO is a computer program for building and running 'continuous' simulation models. It was developed by the Industrial Dynamics Group at the Massachusetts Institute of Technology for simulating dynamic feedback models of business, economic, and social systems. The history of the system dynamics method since 1957 includes many classic models built in DYANMO. It was not until the late 1980s that software was built to take advantage of the rise of personal computers and graphical user interfaces that DYNAMO was supplanted. There is much learning and insight to be gained from examining the DYANMO models and their accompanying research papers. We believe that it is a worthwhile exercise to convert DYNAMO models to more recent software packages. We have made an attempt to make it easier to turn these models into a more current system dynamics software language, Powersim © Studio produced by Powersim AS2 of Bergen, Norway. This guide shows how to convert DYNAMO syntax into Studio syntax.

  1. Nonlinear theory of a "shear-current" effect and mean-field magnetic dynamos.

    PubMed

    Rogachevskii, Igor; Kleeorin, Nathan

    2004-10-01

    The nonlinear theory of a "shear-current" effect in a nonrotating and nonhelical homogeneous turbulence with an imposed mean velocity shear is developed. The shear-current effect is associated with the W x J term in the mean electromotive force and causes the generation of the mean magnetic field even in a nonrotating and nonhelical homogeneous turbulence (where W is the mean vorticity and J is the mean electric current). It is found that there is no quenching of the nonlinear shear-current effect contrary to the quenching of the nonlinear alpha effect, the nonlinear turbulent magnetic diffusion, etc. During the nonlinear growth of the mean magnetic field, the shear-current effect only changes its sign at some value B (*) of the mean magnetic field. The magnitude B (*) determines the level of the saturated mean magnetic field which is less than the equipartition field. It is shown that the background magnetic fluctuations due to the small-scale dynamo enhance the shear-current effect and reduce the magnitude B (*) . When the level of the background magnetic fluctuations is larger than 1/3 of the kinetic energy of the turbulence, the mean magnetic field can be generated due to the shear-current effect for an arbitrary exponent of the energy spectrum of the velocity fluctuations.

  2. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean; Schatten, Kenneth

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears

  3. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Pesnell, W. Dean

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes

  4. Quantifying paleosecular variation: Insights from numerical dynamo simulations

    NASA Astrophysics Data System (ADS)

    Lhuillier, F.; Gilder, S. A.

    2013-12-01

    Numerical dynamo simulations can be used to investigate paleosecular variation of Earth-like magnetic fields over several million-year timescales. Using a set of five numerical models integrated over the equivalent of 40-50 Myr, we generated synthetic data analogous to paleomagnetic data. We show that paleosecular variation among the five models is best discriminated by the relative variability in paleointensity (ɛ_F) and the precision parameter (k) of directions or poles. Whether the geodynamo operated in different regimes in its past can be best tested with these parameters in combination. Roughly one million years of time with 200 time-independent samples is required to achieve convergence of ɛ_F and k. The quantities ɛ_F and k correlate well with the average chron duration (μ_chr), which suggests that excursions and reversals are an integral part of palaeosecular variation. If applicable to the geodynamo, the linear dependence of k on μ_chr could help to predict μ_chr for the Earth during geologic times with no available reversal frequency data; it also predicts much higher average k for directions during superchrons (k ≈ 2500 for the Cretaceous normal superchron) than during actively reversing times (k ≈ 35 for the last 80 Myr). As such high k values are not observed, either this family of dynamo models is not applicable to the geodynamo, or the geodynamo regime acting during superchrons lies statistically within the same energy state as at present.

  5. Extending the core paradox posed by an early dynamo

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Cottrell, R. D.

    2014-12-01

    New, higher values of core thermal conductivity, together with the reliance of any early geodynamo on thermal convection, represent a paradox (Olson, 2013). These factors suggest either early Earth lacked an internally-generated magnetic field or novel mechanisms for driving an early dynamo. The oldest record of past field strength from in situ igneous rocks comes from 3.4 to 3.45 Ga dacites of the Barberton and Nondweni Greenstone belts of South Africa. These analyses, based on single silicate crystals containing magnetic inclusions with ideal recording characteristics, indicate a field strength within 50 to 70% of the present-day field (Tarduno et al., 2010). Much older igneous rocks are generally not viable as paleomagnetic recorders because of their high metamorphic state (amphibolite grade or higher). Here we discuss extending Earth's magnetic field history further back in time using Archean and Hadean zircons hosting magnetic inclusions that are now found in younger sedimentary units of low metamorphic grade. Thellier-Coe paleointensity data passing reliability checks from zircons of the Jack Hills belt (Western Australia) suggest the presence of a magnetic field at 3.55 Ga, thereby extending the core paradox by 100 million years. We will discuss our continuing efforts to test for the presence/absence of a dynamo field between 3.55 Ga and 4.2 Ga.

  6. Simulation of an Ice Giant-style Dynamo

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Aurnou, J. M.

    2010-12-01

    The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.

  7. Measuring and Optimizing flows in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, N. Z.; Clark, M.; Forest, C. B.; Kaplan, E. J.; Nornberg, M. D.; Rasmus, A. M.; Rahbarnia, K.

    2012-10-01

    In the Madison Dynamo Experiment, two counter-rotating impellers drive a turbulent flow of liquid sodium in a one meter-diameter sphere. One of the goals of the experiment is to observe a magnetic field grow at the expense of kinetic energy in the flow. The enormous Reynolds number of the experiment and its two vortex geometry leads to a large turbulent EMF. This poster presents results from the MDE after several upgrades were made. First, an equatorial baffle was installed to stabilize the position of the shear layer between the two counterrotating hemispheres. This reduced the scale of the largest eddies in the experiment, lowering the effective resistivity due to turbulence. Next, a probe was used to measure both the fluctuating velocity and magnetic fields, enabling a direct measurement of the turbulent EMF. This EMF is anti-parallel to the mean current, consistent with an enhanced resistivity predicted by mean field theory. Finally, vanes with adjustable orientation were installed on the vessel wall, allowing the pitch of the helical flow to be altered. Computational fluid dynamics simulations and inversion of the measured induced magnetic field are used to determine the optimum angle of these vanes to minimize the critical velocity at which the dynamo onset occurs.

  8. Statistical Mechanics of Turbulent Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  9. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  10. Density Fluctuation Induced Kinetic Dynamo and Tearing Mode Nonlinear Saturation in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Lin, Liang; Duff, J. R.; Brower, D. L.; Sarff, J. S.

    2014-10-01

    In the MST reversed field pinch (RFP), the evolution of core tearing mode nonlinear evolution is partially determined by the electron current density profile along with nonlinear interactions among multiple tearing modes. Density fluctuations driven by intrinsic magnetic perturbations are usually large, approximately 1%, in RFP plasmas. These density fluctuations can modify the current density profile via the kinetic dynamo effect, defined as the correlated product of parallel electron pressure and radial magnetic field fluctuations, which alters the temporal dynamics of tearing modes in MST. A component of the kinetic dynamo originating from the correlated product of density and radial magnetic fluctuations has been measured using a high-speed, low phase noise polarimetry-interferometry diagnostic. Between sawtooth crashes it is found that the measured kinetic dynamo has finite amplitude that generates an anti-dynamo in the plasma core, which would tend to flatten the current density profile. These measurements suggest that density fluctuations passively driven by magnetic fluctuations can actively alter tearing modes via fluctuation-induced current transport. Work supported by US DOE and NSF.

  11. DYNAMO EFFECTS NEAR THE TRANSITION FROM SOLAR TO ANTI-SOLAR DIFFERENTIAL ROTATION

    SciTech Connect

    Simitev, Radostin D.; Kosovichev, Alexander G.; Busse, Friedrich H.

    2015-09-01

    Numerical MHD simulations play an increasingly important role for understanding the mechanisms of stellar magnetism. We present simulations of convection and dynamos in density-stratified rotating spherical fluid shells. We employ a new 3D simulation code for obtaining the solution of a physically consistent anelastic model of the process with a minimum number of parameters. The reported dynamo simulations extend into a “buoyancy-dominated” regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by pressure gradients, and strong anti-solar differential rotation develops as a result. We find that the self-generated magnetic fields, despite being relatively weak, are able to reverse the direction of differential rotation from anti-solar to solar-like. We also find that convection flows in this regime are significantly stronger in the polar regions than in the equatorial region, leading to non-oscillatory dipole-dominated dynamo solutions, and to a concentration of magnetic field in the polar regions. We observe that convection has a different morphology in the inner and the outer part of the convection zone simultaneously such that organized geostrophic convection columns are hidden below a near-surface layer of well-mixed highly chaotic convection. While we focus our attention on the buoyancy-dominated regime, we also demonstrate that conical differential rotation profiles and persistent regular dynamo oscillations can be obtained in the parameter space of the rotation-dominated regime even within this minimal model.

  12. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    2016-02-01

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

  13. Dynamo Models for Saturn's Axisymmetric Magnetic Field: Finding the Non-axisymmetry

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tajdaran, K.

    2013-12-01

    Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric. For example, Saturn's dipole tilt is less than 0.06 degrees. The near-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with the theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetric potential field observed at satellite altitude. Stevenson (1980) proposed that the Helium Insolubility Layer (HIL), which forms at the top of the metallic hydrogen layer in Saturn, could provide such a mechanism. This layer is stably stratified and electrically conducting. Differential rotation in this layer, which surrounds the dynamo source region, could act to attenuate the non-axisymmetric features and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that the HIL can produce a more axisymmetric field. We found that the morphology of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the HIL's thickness, stability and thermal wind intensity on the axisymmetrization of the field. We find regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties as Saturn's field. We also find that non-axisymmetric features exist at the surface at smaller wavelengths (i.e. higher multipoles) at high latitudes. This suggests that Cassini's final orbital passes of Saturn in 2017 may find non-axisymmetric features in Saturn's magnetic field for the first time.

  14. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.

    PubMed

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

  15. Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos.

    PubMed

    Christensen, Ulrich R; Tilgner, Andreas

    2004-05-13

    In the Earth's fluid outer core, a dynamo process converts thermal and gravitational energy into magnetic energy. The power needed to sustain the geomagnetic field is set by the ohmic losses (dissipation due to electrical resistance). Recent estimates of ohmic losses cover a wide range, from 0.1 to 3.5 TW, or roughly 0.3-10% of the Earth's surface heat flow. The energy requirement of the dynamo puts constraints on the thermal budget and evolution of the core through Earth's history. Here we use a set of numerical dynamo models to derive scaling relations between the core's characteristic dissipation time and the core's magnetic and hydrodynamic Reynolds numbers--dimensionless numbers that measure the ratio of advective transport to magnetic and viscous diffusion, respectively. The ohmic dissipation of the Karlsruhe dynamo experiment supports a simple dependence on the magnetic Reynolds number alone, indicating that flow turbulence in the experiment and in the Earth's core has little influence on its characteristic dissipation time. We use these results to predict moderate ohmic dissipation in the range of 0.2-0.5 TW, which removes the need for strong radioactive heating in the core and allows the age of the solid inner core to exceed 2.5 billion years.

  16. Torsion Bounds from CP Violation α2-DYNAMO in Axion-Photon Cosmic Plasma

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    Years ago Mohanty and Sarkar [Phys. Lett. B 433, 424 (1998)] have placed bounds on torsion mass from K meson physics. In this paper, associating torsion to axions a la Campanelli et al. [Phys. Rev. D 72, 123001 (2005)], it is shown that it is possible to place limits on spacetime torsion by considering an efficient α2-dynamo CP violation term. Therefore instead of Kostelecky et al. [Phys. Rev. Lett. 100, 111102 (2008)] torsion bounds from Lorentz violation, here torsion bounds are obtained from CP violation through dynamo magnetic field amplification. It is also shown that oscillating photon-axion frequency peak is reduced to 10-7 Hz due to torsion mass (or Planck mass when torsion does not propagate) contribution to the photon-axion-torsion action. Though torsion does not couple to electromagnetic fields at classical level, it does at the quantum level. Recently, Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear nonstandard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. Torsion constraints of the order of K0≈10-42 GeV can be obtained which are more stringent than the value obtained by Kostelecky et al. A lower bound for the existence of galactic dynamos is obtained for torsion as K0≈10-37 GeV.

  17. Impact of DYNAMO observations on NASA GEOS-5 reanalyses and the representation of MJO initiation

    NASA Astrophysics Data System (ADS)

    Achuthavarier, D.; Wang, H.; Schubert, S. D.; Sienkiewicz, M.

    2017-01-01

    This study examines the impact of the Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign in situ observations on NASA Goddard Earth Observing System version 5 (GEOS-5) reanalyses and the improvements gained thereby in the representation of the Madden-Julian Oscillation (MJO) initiation processes. To this end, we produced a global, high-resolution (1/4° spatially) reanalysis that assimilates the level-4, quality-controlled DYNAMO upper air soundings from about 87 stations in the equatorial Indian Ocean region along with a companion data-denied control reanalysis. The DYNAMO reanalysis produces a more realistic vertical structure of the temperature and moisture in the central tropical Indian Ocean by correcting the model biases, namely, the cold and dry biases in the lower troposphere and warm bias in the upper troposphere. The reanalysis horizontal winds are substantially improved, in that, the westerly acceleration and vertical shear of the zonal wind are enhanced. The DYNAMO reanalysis shows enhanced low-level diabatic heating, moisture anomalies and vertical velocity during the MJO initiation. Due to the warmer lower troposphere, the deep convection is invigorated, which is evident in convective cloud fraction. The GEOS-5 atmospheric general circulation model (AGCM) employed in the reanalysis is overall successful in assimilating the additional DYNAMO observations, except for an erroneous model response for medium rain rates, between 700 and 600 hPa, reminiscent of a bias in earlier versions of the AGCM. The moist heating profile shows a sharp decrease there due to the excessive convective rain re-evaporation, which is partly offset by the temperature increment produced by the analysis.

  18. Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.

    PubMed

    Guervilly, Céline; Brummell, Nicholas H

    2012-10-01

    We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.

  19. A potential thermal dynamo and its astrophysical applications

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Mahajan, Swadesh M.

    2016-05-01

    It is shown that thermal turbulence, not unlike the standard kinetic and magnetic turbulence, can be an effective driver of a mean-field dynamo. In simple models, such as hydrodynamics and magnetohydrodynamics, both vorticity and induction equations can have strong thermal drives that resemble the α and γ effects in conventional dynamo theories; the thermal drives are likely to be dominant in systems that are endowed with subsonic, low-β turbulence. A pure thermal dynamo is quite different from the conventional dynamo in which the same kinetic/magnetic mix in the ambient turbulence can yield a different ratio of macroscopic magnetic/vortical fields. The possible implications of the similarities and differences between the thermal and non-thermal dynamos are discussed. The thermal dynamo is shown to be highly important in the stellar and planetary context, and yields results broadly consistent with other theoretical and experimental approaches.

  20. Modeling of the Coupled Magnetospheric and Neutral Wind Dynamos

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1997-01-01

    Over the past four years of funding, SRI, in collaboration with the University of Texas at Dallas, has been involved in assessing the influence of thermospheric neutral winds on the electric field and current systems at high latitudes. The initial direction of the project was to perform a set of numerical experiments concerning the contribution of the magnetospheric and neutral wind dynamo processes, under specific boundary conditions, to the polarization electric field and/or the field-aligned current distribution at high latitudes. To facilitate these numerical experiments we developed a numerical scheme that relied on using output from the NCAR Thermosphere-Ionosphere General Circulation Model (NCAR-TIGCM), expanding them in the form of spherical harmonics and solving the dynamo equations spectrally. Once initial calculations were completed, it was recognized that the neutral wind contribution could be significant but its actual contribution to the electric field or currents depended strongly on the generator properties of the magnetosphere. Solutions to this problem are not unique because of the unknown characteristics of the magnetospheric generator, therefore the focus was on two limiting cases. One limiting case was to consider the magnetosphere as a voltage generator delivering a fixed voltage to the high-latitude ionosphere and allowing for the neutral wind dynamo to contribute only to the current system. The second limiting case was to consider the magnetosphere as a current generator and allowing for the neutral wind dynamo to contribute only to the generation of polarization electric fields. This work was completed and presented at the l994 Fall AGU meeting. The direction of the project then shifted to applying the Poynting flux concept to the high-latitude ionosphere. This concept was more attractive as it evaluated the influence of neutral winds on the high-latitude electrodynamics without actually having to determine the generator characteristics of

  1. Evolution of protoplanetary disks with dynamo magnetic fields

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, M.; Stepinski, Tomasz F.

    1994-01-01

    -consistent evolution of a turbulent PP disk including the effects of a dynamo-generated magnetic field.

  2. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  3. Mercury's magnetic field - A thermoelectric dynamo?

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1987-01-01

    Permanent magnetism and conventional dynamo theory are possible but problematic explanations for the magnitude of the Mercurian magnetic field. A new model is proposed in which thermoelectric currents driven by temperature differences at a bumpy core-mantle boundary are responsible for the (unobserved) toroidal field, and the helicity of convective motions in a thin outer core (thickness of about 100 km) induces the observed poloidal field from the toroidal field. The observed field of about 3 x 10 to the -7th T can be reproduced provided the electrical conductivity of Mercury's semiconducting mantle approaches 1000/ohm per m. This model may be testable by future missions to Mercury because it predicts a more complicated field geometry than conventional dynamo theories. However, it is argued that polar wander may cause the core-mantle topography to migrate so that some aspects of the rotational symmetry may be reflected in the observed field.

  4. Evidence for a Second Martian Dynamo from Electron Reflection Magnetometry

    NASA Technical Reports Server (NTRS)

    Lillis, R. J.; Manga, M.; Mitchell, D. L.; Lin, R. P.; Acuna, M. H.

    2005-01-01

    Present-day Mars does not possess an active core dynamo and associated global magnetic field. However, the discovery of intensely magnetized crust in Mars Southern hemisphere implies that a Martian dynamo has existed in the past. Resolving the history of the Martian core dynamo is important for understanding the evolution of the planet's interior. Moreover, because the global magnetic field provided by an active dynamo can shield the atmosphere from erosion by the solar wind, it may have influenced past Martian climate. Additional information is included in the original extended abstract.

  5. A lunar core dynamo at 3.7 Ga?

    NASA Astrophysics Data System (ADS)

    Shea, E. K.; Weiss, B. P.; Tikoo, S. M.; Gattacceca, J.; Shuster, D. L.; Grove, T. L.; Fuller, M.

    2010-12-01

    The discovery of remnant magnetization in returned Apollo samples and the lunar crust has long suggested that the Moon has a metallic core and once had a core-dynamo magnetic field (Fuller and Cisowski, 1987). However, the association of magnetization with the antipodes of impact basins suggests that meteoroid impacts may also be the source of lunar magnetization (e.g., Hood and Artemieva, 2008). Distinguishing between these two hypotheses is difficult as most lunar samples are poor recorders of paleomagnetic fields (Fuller and Cisowski, 1987; Tikoo et al., 2010). Since impact-generated shock waves can remagnetize low-coercivity (<~30 mT) grains, samples must have high coercivities and show no petrographic evidence for shock (Gattacceca et al., 2009). Recent paleomagnetic analyses of one lunar sample, troctolite 76535, observed a stable NRM blocked up to >200 mT (Garrick-Bethell et al., 2009). The slow cooling timescale of this rock (millions of years) relative the lifetime of impact-produced fields (<1 day maximum) suggests that the moon had a core dynamo at 4.2 Ga. We present a new paleomagnetic study of another high coercivity, unshocked lunar rock, mare basalt 10020. This sample records evidence for lunar magnetism 500 Ma after troctolite 76535. Our results suggest it too has a stable NRM acquired over timescales that are long relative to impact-produced fields. 10020 is a fine-grained, vesicular, ilmenite basalt with a 40Ar/39Ar age of 3.72 ±0.04 Ga that is within error of Rb/Sr crystallization ages of similar composition Apollo 11 basalts (Geiss et al., 1977, Guggisberg et al., 1979). Collinson et al. (1972) and Stephenson et al. 1977 found that a 10020 has one of the most stable NRMs of any studied lunar sample (blocked up to >65 mT). We have now found that two mutually oriented samples of 10020 have a stable (> 65-80 mT) origin-trending unidirectional NRM component. Petrographic analyses of this sample find no evidence for shock such as alteration to

  6. Mesogranulation and small-scale dynamo action in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Bushby, P. J.; Favier, B.

    2014-02-01

    Context. Regions of quiet Sun generally exhibit a complex distribution of small-scale magnetic field structures, which interact with the near-surface turbulent convective motions. Furthermore, it is probable that some of these magnetic fields are generated locally by a convective dynamo mechanism. In addition to the well-known granular and supergranular convective scales, various observations have indicated that there is an intermediate scale of convection, known as mesogranulation, with vertical magnetic flux concentrations accumulating preferentially at the boundaries of mesogranules. Aims: Our aim is to investigate the small-scale dynamo properties of a convective flow that exhibits both granulation and mesogranulation, comparing our findings with solar observations. Methods: Adopting an idealised model for a localised region of quiet Sun, we use numerical simulations of compressible magnetohydrodynamics, in a three-dimensional Cartesian domain, to investigate the parametric dependence of this system (focusing particularly upon the effects of varying the aspect ratio and the Reynolds number). Results: In purely hydrodynamic convection, we find that mesogranulation is a robust feature of this system provided that the domain is wide enough to accommodate these large-scale motions. The mesogranular peak in the kinetic energy spectrum is more pronounced in the higher Reynolds number simulations. We investigate the dynamo properties of this system in both the kinematic and the nonlinear regimes and we find that the dynamo is always more efficient in larger domains, when mesogranulation is present. Furthermore, we use a filtering technique in Fourier space to demonstrate that it is indeed the larger scales of motion that are primarily responsible for driving the dynamo. In the nonlinear regime, the magnetic field distribution compares very favourably to observations, both in terms of the spatial distribution and the measured field strengths.

  7. The Alpha Dynamo Effects in Laboratory Plasmas

    SciTech Connect

    Hantao Ji; Stewart C. Prager

    2001-10-16

    A concise review of observations of the alpha dynamo effect in laboratory plasmas is given. Unlike many astrophysical systems, the laboratory pinch plasmas are driven magnetically. When the system is overdriven, the resultant instabilities cause magnetic and flow fields to fluctuate, and their correlation induces electromotive forces along the mean magnetic field. This alpha-effect drives mean parallel electric current, which, in turn, modifies the initial background mean magnetic structure towards the stable regime. This drive-and-relax cycle, or the so-called self-organization process, happens in magnetized plasmas in a timescale much shorter than resistive diffusion time, thus it is a fast and unquenched dynamo process. The observed alpha-effect redistributes magnetic helicity (a measure of twistedness and knottedness of magnetic field lines) but conserves its total value. It can be shown that fast and unquenched dynamos are natural consequences of a driven system where fluctuations are statistically either not stationary in time or not homogeneous in space, or both. Implications to astrophysical phenomena will be discussed.

  8. Superbubble Explosions and the Galactic Dynamo

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell

    2014-10-01

    The alpha-omega dynamo appears to be the most likely origin for the galactic magnetic field. However, it has a major problem in that to complete the dynamo operation, flux of the wrong sign must be expelled. For normal situations this is no problem. However, in the case of the galactic disc, the combination of almost perfect flux freezing and a strong gravitational field strongly inhibit this expulsion. It is energetically impossible to expel straight magnetic lines from the disc because they would carry all their ISM with them and their gravitational binding energy is much too large. I propose that the lines can be expelled in a topological manner. This can be done by massive superbubble explosions that can expel a tiny piece of each line leading to a situation where the lines in the disc are broken and act like lines of finite length. Such lines can be random turned in the disc and cause the disappearance of any negative flux. If this proposal should be valid then the alpha-omega dynamo can work to amplify the a very weak field to the present galactic value. This work was supported by the DOE Contract No. DE-AC02-09CH11466.

  9. RESONANCE IN FORCED FLUX-TRANSPORT DYNAMOS

    SciTech Connect

    Gilman, Peter A.; Dikpati, Mausumi E-mail: dikpati@ucar.edu

    2011-09-01

    We show that simple two- and three-layer flux-transport dynamos, when forced at the top by a poloidal source term, can produce a widely varying amplitude of toroidal field at the bottom, depending on how close the meridional flow speed of the bottom layer is to the propagation speed of the forcing applied above the top layer, and how close the amplitude of the {alpha}-effect is to two values that give rise to a resonant response. This effect should be present in this class of dynamo model no matter how many layers are included. This result could have implications for the prediction of future solar cycles from the surface magnetic fields of prior cycles. It could be looked for in flux-transport dynamos that are more realistic for the Sun, done in spherical geometry with differential rotation, meridional flow, and {alpha}-effect that vary with latitude and time as well as radius. Because of these variations, if resonance occurs, it should be more localized in time, latitude, and radius.

  10. Water Experiments Related To The "Von Karman Sodium" Dynamo Project

    NASA Astrophysics Data System (ADS)

    Marie, L.; Bourgoin, M.; Petrelis, F.; Roy, J.; Burguete, J.; Chiffaudel, A.; Daviaud, F.; Fauve, S.; Odier, P.; Pinton, J.-F.

    2002-07-01

    The purpose of the "Von Karman Sodium" (V.K.S.) experiment is to study the "Dynamo Effect," namely the spontaneous generation of magnetic field in a flow of electrically conducting fluid. The device has been built at CEA / Cadarache, in collaboration with CEA / Saclay, Ecole Normale Superieure de Lyon and Ecole Normale Superieure de Paris. It consists of a cylindrical vessel, filled with liquid Sodium, in which two coaxial rotating disks induce a Von-Karman type flow. Several experimental runs have taken place since June 2000. In order to optimize the V.K.S. set-up, a half-scale water prototype has also been built. It has allowed us to measure mean velocity profiles, as well as pressure fluctuations and mechanical power dissipation. We have observed that under certain circumstances the mean component of the turbulent flow can undergo a global bifurcation.

  11. Magnetostrophic balance in planetary dynamos - Predictions for Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Ness, N. F.

    1986-01-01

    With the purpose of estimating Neptune's magnetic field and its implications for nonthermal Neptune radio emissions, a new scaling law for planetary magnetic fields was developed in terms of externally observable parameters (the planet's mean density, radius, mass, rotation rate, and internal heat source luminosity). From a comparison of theory and observations by Voyager it was concluded that planetary dynamos are two-state systems with either zero intrinsic magnetic field (for planets with low internal heat source) or (for planets with the internal heat source sufficiently strong to drive convection) a magnetic field near the upper bound determined from magnetostrophic balance. It is noted that mass loading of the Neptune magnetosphere by Triton may play an important role in the generation of nonthermal radio emissions.

  12. On the mechanism of the magnetic dynamo of the planets

    NASA Technical Reports Server (NTRS)

    Dolginov, S. S.

    1977-01-01

    Results of testing the effectiveness of the theory of precessional dynamos in the generation of the magnetic fields of the planets are presented. It is shown that the magnetic state of Earth and of the planets Mars, Jupiter, and Venus can be satisfactorily described by the formula H(i) = H(3) V(i)/V(3) T(3)/T(i) omega(i)/omega(3) sin(alpha 1)/sin(alpha 2) where H, V, T, omega and alpha are the dipole fields, volumes of liquid cores, periods of rotation, rates of precession, and angles between precession vector and angular rotation, respectively, for the planets and earth. The v(i) corresponds to known models of the internal structure. It is shown that the magnetic state of Mercury satisfies this formula if the dynamic flattening of the planet f = .000057-.000083.

  13. Solar physics: Dynamo theory questioned

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    2016-07-01

    Observations of X-ray emission -- a diagnostic tool for the mechanisms driving stellar magnetic fields -- from four cool stars call into question accepted models of magnetic-field generation in the Sun and stars. See Letter p.526

  14. Generation of coronal electric currents due to convective motions on the photosphere

    NASA Technical Reports Server (NTRS)

    Sakurai, T.; Levine, R. H.

    1981-01-01

    Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.

  15. Small-Scale-Field Dynamo

    SciTech Connect

    Gruzinov, A.; Cowley, S.; Sudan, R. ||

    1996-11-01

    Generation of magnetic field energy, without mean field generation, is studied. Isotropic mirror-symmetric turbulence of a conducting fluid amplifies the energy of small-scale magnetic perturbations if the magnetic Reynolds number is high, and the dimensionality of space {ital d} satisfies 2.103{lt}{ital d}{lt}8.765. The result does not depend on the model of turbulence, incompressibility, and isotropy being the only requirements. {copyright} {ital 1996 The American Physical Society.}

  16. The Fe snow regime in Ganymede's core: A deep-seated dynamo below a stable snow zone

    NASA Astrophysics Data System (ADS)

    Rückriemen, T.; Breuer, D.; Spohn, T.

    2015-06-01

    Ganymede shows signs of a present-day magnetic field, whose origin is thought to be in its core. The Fe snow regime has been suggested to be vital in Ganymede's history. In this regime, Fe crystals first form at the core-mantle boundary and later settle to the deeper core due to their higher density (Fe snow). A stable chemical gradient arises within the liquid of the snow zone. Below the snow zone the Fe particles remelt. We propose that the remelting of Fe in the deeper, entirely liquid core initiates compositional convection, which could be the origin of the dynamo. Such a dynamo is restricted by the period of time the snow zone needs to grow across the core. We investigate this time period with a 1-D core evolution model by varying the initial sulfur concentration, the core heat flux, and the thermal conductivity of the core. For the proposed dynamo in the deeper liquid core, we obtain necessary time periods of between 320 and 800 Myr and magnetic field strengths at the surface that match the observed value of 719 nT. To explain the present magnetic field, we favor cores with high sulfur concentrations because those lead to a late start and a long duration of the dynamo. Furthermore, a present dynamo below the snow zone suggests the absence of an inner core.

  17. Aerodynamic sound generation due to vortex-aerofoil interaction. Part 2: Analysis of the acoustic field

    NASA Technical Reports Server (NTRS)

    Parasarathy, R.; Karamcheti, K.

    1972-01-01

    The Lighthill method was the basic procedure used to analyze the sound field associated with a vortex of modified strength interacting with an airfoil. A free vortex interacting with an airfoil in uniform motion was modeled in order to determine the sound field due to all the acoustic sources, not only on the airfoil surfaces (dipoles), but also the ones distributed on the perturbed flow field (quadrupoles) due to the vortex-airfoil interaction. Because inviscid flow is assumed in the study of the interaction, the quadrupoles considered in the perturbed flow field are entirely due to an unsteady flow field. The effects of airfoil thickness on the second radiation are examined by using a symmetric Joukowski airfoil for the vortex-airfoil interaction. Sound radiation in a plane, far field simplification, and computation of the sound field are discussed.

  18. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism.

    PubMed

    Mira, L; Maia, L; Barreira, L; Manso, C F

    1995-04-01

    Several studies associate ethanol hepatic toxicity to the generation of reactive oxygen species. Ethanol metabolism by alcohol dehydrogenase (ADH) originates acetaldehyde and NADH, with the subsequent increase of the NADH/NAD+ ratio. Some authors have suggested that the oxidation of acetaldehyde by aldehyde oxidase (AO) may be responsible for oxyradical generation during ethanol metabolism. In this study we demonstrated that AO acts not only upon acetaldehyde but also upon NADH, with superoxide anion radical (O2.-) formation. The apparent Km of NADH for AO was approximately 28 microM, a much smaller value than the one reported for acetaldehyde (1 mM). The NADH oxidation by AO promoted the O2.- generation and the ADP-Fe(3+)-dependent microsomal lipid peroxidation in a NADH and AO concentration-dependent manner. If in these experiments NADH is substituted by ethanol, NAD+, and ADH, a higher level of lipid peroxidation will be obtained. To explain this observation a vicious cycle which increases the oxyradical production is suggested: ADH reduces NAD+ to NADH, which is oxidized by AO, generating reactive oxidative species plus NAD+ available again for reduction by ADH. From the studies which were done in the presence of some antioxidants it was observed that the addition of SOD and/or catalase did not inhibit lipid peroxidation, but these results do not exclude the participation of reactive oxygen species. Our studies indicate that the NADH oxidation by AO may play a role in ethanol-induced generation of reactive oxygen species, contributing to its hepatotoxicity.

  19. Dynamo room (compartment A21) with view of port side, art ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dynamo room (compartment A-21) with view of port side, art electrical generator in background. Note cables, speaking tubes and steering crank arm at top center of photograph. These rise through an armored tube to the Conning Tower. The electrical distribution board at left is a reproduction of the board as it may have looked in the 1920's. Reproduction was done in the 1970's and the 1980's. (015) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  20. Wheel/rail noise generation due to nonlinear effects and parametric excitation.

    PubMed

    Nordborg, Anders

    2002-04-01

    Two models are developed, one in the time domain and another in the frequency domain, to explain when a wheel/rail noise generation model requires the inclusion of discrete supports, parametric excitation, and the nonlinear contact spring. Numerical simulations indicate the inclusion of discrete supports to describe low frequency response, and also at higher frequencies, especially where the rail is very smooth or has a corrugation/wavelength corresponding to the pinned-pinned frequency. With a corrugation, it may become essential to include the nonlinear contact spring, as contact loss occurs at high corrugation amplitudes. As nonlinearity causes force generation over a broad frequency range, some contributions excite wheel resonances, resulting in high radiation levels, that require the inclusion of wheel/rail nonlinear effects and parametric excitation for accurate prediction.

  1. Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping.

    PubMed

    Stockem, A; Grismayer, T; Fonseca, R A; Silva, L O

    2014-09-05

    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales ∼10(4)ωpe-1. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well confined to the downstream region of the electrostatic shock. The shock formation process is not modified, and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock.

  2. Structure interaction due to thermal bowing of shrouds in steam generator of gas-cooled reactor

    SciTech Connect

    Woo, H.H.

    1981-01-01

    The design of the gas-cooled reactor steam generators includes a tube bundle support plate system which restrains and supports the helical tubes in the steam generator. The support system consists of an array of radially oriented, perforated plates through which the helical tube coils are wound. These support plates have tabs on their edges which fit into vertical slots in the inner and outer shrouds. When the helical tube bundle and support plates are installed in the steam generator, they most likely cannot fit evenly between the inner and outer shrouds. This imperfection leads to different gaps between two extreme sides of the tube bundle and the shrouds. With different gaps through the tube bundle height, the helium flow experiences different cooling effects from the tube bundle. Hence, the temperature distribution in the shrouds will be non-uniform circumferentially since their surrounding helium flow temperatures are varied. These non-uniform temperatures in the shrouds result in the phenomenon of thermal bowing of shrouds.

  3. A Coupled 2 × 2D Babcock–Leighton Solar Dynamo Model. II. Reference Dynamo Solutions

    NASA Astrophysics Data System (ADS)

    Lemerle, Alexandre; Charbonneau, Paul

    2017-01-01

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.

  4. Giant impacts, core stratification, and failure of the Martian dynamo

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar; Olson, Peter

    2010-07-01

    The close timing of the giant impacts and the cessation of the core dynamo of Mars at around 4 Ga suggest a possible causal relationship between these two events. We study the shock heating of the Martian interior caused by the impact that created Utopia basin, the largest of the 20 giant impact basins formed on Mars around 4 Ga. Using empirical scaling laws connecting the diameters of the basin and the projectile, we calculate the shock pressure distribution in Mars on the basis of Pierazzo et al.'s (1997) formula, which is then used to estimate the impact-induced temperature increase in the Martian mantle and core, adopting the “ordinary” and “foundering” shock heating mechanisms proposed by Watters et al. (2009) and impact velocities of 10 and 15 km/s. It is shown that the reduction of the heat flux out of the core due to impact heating of the overlying mantle is on the order of 0.03%-0.3% of the preimpact heat flux of the core (15 mW/m2), indicating that the impact heating of the mantle has insignificant effect on the thermal convection of the core. However, the shock waves that penetrate into the core directly and differentially heat the core in only a few minutes, which causes stable thermal stratification of the core within about a few years and diminishes the core convection and the thermally driven core dynamo within a few thousand years. Exhaustion of the impact heat and removal of the stratification is necessary to reestablish a superadiabatic temperature gradient and reactivate convection in the core. As the impact heat becomes concentrated in the upper parts of the core, the stratified part of the core first cools by conduction to the mantle and then later with a contribution from penetrative convection below the core-mantle boundary and by conduction into the deeper parts of the core. Depending on the impact velocity and the shock heating mechanisms, tens of millions of years may be needed to fully exhaust the core heat to the mantle, during

  5. The study of the solar cycle and its irregularities using dynamo models

    NASA Astrophysics Data System (ADS)

    Binay Karak, Bidya

    The solar cycle is not regular. The strength as well as the period varies from cycle to cycle. One puzzling aspect of this sunspot cycle is the Maunder minimum in 17th century when sunspots disappeared for about 70 years. Indirect studies suggest that there were several other such events in the past. The motivation of our work will be first to understand the generation and the evolution of the large-scale magnetic field of the Sun and then to model some irregular features of the solar cycle. We shall present a flux transport dynamo model to study the evolution of magnetic fields in the Sun. In this model the toroidal field is generated by the strong differential rotation near the base of the convection zone and the poloidal field is generated near the solar surface from the decay of sunspots. The turbulent diffusion, the meridional circulation and the turbulent pumping are the important flux transport agents in this model which communicate these two spatially segregated source regions of the magnetic field. With this dynamo model, the speaker shall explain several aspects of the solar cycle including the grand minima. We shall also discuss the predictability of the future solar cycle using dynamo models.

  6. Magnetic Cycles in a Dynamo Simulation of Fully Convective M-star Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Yadav, Rakesh K.; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja

    2016-12-01

    The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristics of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.

  7. Sound generation and upstream influence due to instability waves interacting with non-uniform mean flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1984-01-01

    Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.

  8. Efficiency measurement using a motor-dynamo module

    NASA Astrophysics Data System (ADS)

    Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen

    2009-11-01

    In this article, we describe a simple method which can be used to measure the efficiency of a low power dc motor, a motor-converted dynamo and a coupled motor-dynamo module as a function of the speed of rotation. The result can also be used to verify Faraday's law of electromagnetic induction.

  9. Efficiency Measurement Using a Motor-Dynamo Module

    ERIC Educational Resources Information Center

    Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen

    2009-01-01

    In this article, we describe a simple method which can be used to measure the efficiency of a low power dc motor, a motor-converted dynamo and a coupled motor-dynamo module as a function of the speed of rotation. The result can also be used to verify Faraday's law of electromagnetic induction. (Contains 1 table and 8 figures.)

  10. Primordial magnetic fields and dynamos from parity violated torsion

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2012-05-01

    It is well known that torsion induced magnetic fields may seed galactic dynamos, but the price one pays for that is the conformal and gauge invariance breaks and a tiny photon mass. More recently I have shown [L.C. Garcia de Andrade, Phys. Lett. B 468 (2011) 28] that magnetic fields decay in a gauge invariant non-minimal coupling theory of torsion is slow down, which would allow for dynamo action to take place. In this Letter, by adding a parity violation term of the type Rɛ to the non-coupling term, a magnetic dynamo equation is obtained. From dynamo equation it is shown that torsion terms only appear in the dynamo equation when diffusion in the cosmic plasma is present. Torsion breaks the homogeneity of the magnetic field in the universe. Since Zeldovich anti-dynamo theorem assumes that the spacetime should be totally flat, torsion is responsible for violation of anti-dynamo theorem in 2D spatial dimensions. Contrary to previous results torsion induced primordial magnetic fields cannot seed galactic dynamos since from torsion and diffusion coefficient the decaying time of the magnetic field is 106yrs, which is much shorter than the galaxy age.

  11. Generation and protection of steady-state quantum correlations due to quantum channels with memory

    NASA Astrophysics Data System (ADS)

    Guo, You-neng; Fang, Mao-fa; Wang, Guo-you; Zeng, Ke

    2016-12-01

    We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel μ . The stronger the memory coefficient of channel μ is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of μ → 1.

  12. MHD dynamo in Reversed Field Pinch Plasmas: electrostatic drift nature of the dynamo velocity field

    NASA Astrophysics Data System (ADS)

    Cappello, Susanna

    2005-10-01

    Within the framework of MHD numerical modelling, the Reversed Field Pinch (RFP) has been found to develop turbulent or laminar regimes switching from the former to the latter in a continuous way depending on the strength of dissipative forces. The laminar solution corresponds to a simple global helical deformation of the current channel and is associated to an electrostatic dynamo field. In this work we show that the associated drift yields the main component of the dynamo velocity. While quite natural in the stationary helical state, this analysis is shown to extend also to the dynamic turbulent regime for a sustained RFP. The continuity of the transition between the two regimes suggests that the simple helical symmetric solution can provide a fruitful intuitive description of the RFP dynamo in general. Many of the MHD predictions are in good agreement with experimental findings. References: [1] S. Cappello and D.F. Escande, ``Bifurcation in viscoresistive MHD: the Hartmann number and the RFP,'' Phys. Rev. Lett. 85, 3838 (2000) [2] S. Cappello, ``Bifurcation in the MHD behaviour of a self-organizing system: the RFP,'' Plasma Phys. Control. Fusion 46, B313 (2004) [3] D. Bonfiglio, S. Cappello, D.F. Escande, ``Dominant electrostatic nature of the Reversed Field Pinch dynamo,'' Phys. Rev. Lett. 94, 145001 (2005) In collaboration with D.F. Escande and D. Bonfiglio.

  13. Small-scale kinematic dynamo and non-dynamo in inertial-range turbulence

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Neto, Antônio F.

    2010-02-01

    We investigate the Lagrangian mechanism of the kinematic 'fluctuation' magnetic dynamo in a turbulent plasma flow at small magnetic Prandtl numbers. The combined effect of turbulent advection and plasma resistivity is to carry infinitely many field lines to each space point, with the resultant magnetic field at that point given by the average over all the individual line vectors. As a consequence of the roughness of the advecting velocity, this remains true even in the limit of zero resistivity. We show that the presence of the dynamo effect requires sufficient angular correlation of the passive line vectors that arrive simultaneously at the same space point. We illustrate this in detail for the Kazantsev-Kraichnan model of the kinematic dynamo with a Gaussian advecting velocity that is spatially rough and white noise in time. In the regime where dynamo action fails, we also obtain the precise rate of decay of the magnetic energy. These exact results for the model are obtained by a generalization of the 'slow-mode expansion' of Bernard, Gawȩdzki and Kupiainen to non-Hermitian evolution. Much of our analysis applies also to magnetohydrodynamic turbulence.

  14. Cosmological magnetic fields as string dynamo seeds and axion fields in torsioned spacetime

    SciTech Connect

    De Andrade, L.C. Garcia

    2014-08-01

    In this paper two examples of the generation cosmological magnetic fields (CMF) are given. The first is the string dynamo seed cosmological magnetic field estimated as B{sub seed}∼10{sup -24} Gauss from a static spin polarised cylinder in Einstein-Cartan-Maxwell spacetime. The string dynamo seeds from a static spin polarised cylinder is given by B∼σ{sup 2}R{sup 2} where σ is the spin-torsion density while R is the string radius. The B-field value above is able to seed galactic dynamo. In the BBN the magnetic fields around 10{sup 12} Gauss give rise to a string radius as small as 10{sup 17}l{sub P} where l{sub P} is the Planck length. The second is the CMF from axionic torsion field which is given by B{sub seed}∼10{sup -27} Gauss which is stronger than the primordial magnetic field B{sub BICEP2}∼10{sup -30} Gauss from the BICEP2 recent experiment on primordial gravitational waves and cosmological inflation to axionic torsion. The interaction Lagrangean between axionic torsion scalar φ and magnetic fields used in this last example is given by f{sup 2}(φ)F{sub μν}F{sup μν}. A similar lagrangean has been used by K. Bamba et al. [JCAP 10 (2012) 058] so generate magnetic fields without dynamo action. Since axionic torsion can be associated with axionic domain walls both examples discussed here could be consider as topological defects examples of the generation of primordial magnetic fields in universes endowed with spacetime torsion.

  15. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU tokamak

    SciTech Connect

    Martin-Solis, Jose Ramon; Sanchez, Raul; Esposito, Basilio

    2010-01-01

    The threshold electric field for runaway generation has been investigated during runaway suppression experiments by means of electron-cyclotron-resonance heating in the flattop phase of FTU discharges. Runaway suppression has been experimentally found to occur at electric fields substantially larger than those predicted by the relativistic collisional theory of runaway generation, E{sub R} = n{sub e}e{sup 3}ln{Lambda}/4{pi}{var_epsilon}{sub 0}{sup 2}m{sub e}c{sup 2}. These experimental results are consistent with an increase of the critical electric field due to the electron synchrotron radiation losses. No runaway electrons are found in FTU experiments below the radiation threshold. These results support evidence for a new threshold electric field for runaway generation that accounts for the effect of the synchrotron losses, and which should be considered when making predictions on runaway generation and mitigation in devices such as ITER.

  16. Processing Doppler Lidar and Cloud Radar Observations for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations

    DTIC Science & Technology

    2014-09-30

    provide a local moistening of the troposphere above the cloudy boundary layer, or if the moistening is due to a larger-scale mechanism for moisture...hence play a role in the moistening of the upper troposphere . APPROACH Our approach is to anlyze HRDL observations obtained during DYNAMO in

  17. Could giant basin-forming impacts have killed Martian dynamo?

    NASA Astrophysics Data System (ADS)

    Kuang, W.; Jiang, W.; Roberts, J.; Frey, H. V.

    2014-11-01

    The observed strong remanent crustal magnetization at the surface of Mars suggests an active dynamo in the past and ceased to exist around early to middle Noachian era, estimated by examining remagnetization strengths in extant and buried impact basins. We investigate whether the Martian dynamo could have been killed by these large basin-forming impacts, via numerical simulation of subcritical dynamos with impact-induced thermal heterogeneity across the core-mantle boundary. We find that subcritical dynamos are prone to the impacts centered on locations within 30° of the equator but can easily survive those at higher latitudes. Our results further suggest that magnetic timing places a strong constraint on postimpact polar reorientation, e.g., a minimum 16° polar reorientation is needed if Utopia is the dynamo killer.

  18. Could Giant Basin-Forming Impacts Have Killed Martian Dynamo?

    NASA Technical Reports Server (NTRS)

    Kuang, W.; Jiang, W.; Roberts, J.; Frey, H. V.

    2014-01-01

    The observed strong remanent crustal magnetization at the surface of Mars suggests an active dynamo in the past and ceased to exist around early to middle Noachian era, estimated by examining remagnetization strengths in extant and buried impact basins. We investigate whether the Martian dynamo could have been killed by these large basin-forming impacts, via numerical simulation of subcritical dynamos with impact-induced thermal heterogeneity across the core-mantle boundary. We find that subcritical dynamos are prone to the impacts centered on locations within 30 deg of the equator but can easily survive those at higher latitudes. Our results further suggest that magnetic timing places a strong constraint on postimpact polar reorientation, e.g., a minimum 16 deg polar reorientation is needed if Utopia is the dynamo killer.

  19. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    SciTech Connect

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W.; Senkpeil, Ryan R.; Tlatov, Andrey G.; Nagovitsyn, Yury A.; Pevtsov, Alexei A.; Chapman, Gary A.; Cookson, Angela M.; Yeates, Anthony R.; Watson, Fraser T.; Balmaceda, Laura A.; DeLuca, Edward E.; Martens, Petrus C. H.

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  20. Complicated high-order harmonic generation due to the falling edge of a trapezoidal laser pulse

    NASA Astrophysics Data System (ADS)

    Ahmadi, H.; Vafaee, M.; Maghari, A.

    2016-02-01

    High-order harmonic generation (HHG) is investigated for {{{H}}}2+ and its isotopologues under seven and ten-cycle trapezoidal laser pulses at an 800 nm wavelength and I = 4 × 1014 W cm-2 intensity. We numerically solved the full-dimensional electronic time-dependent Schrödinger equation (TDSE) with and without the Born-Oppenheimer approximation (BO). We show that contribution to the HHG spectrum from the trailing edge of a trapezoidal laser pulse can result in a redshift and complexity in the total HHG spectrum. This effect can be removed by considering different laser pulse durations and nuclear motion that is not possible for sin2 and Gaussian laser pulses. We have resolved the contributions to the redshift and other patterns in the HHG spectra into the different electronic and vibrational channels and the interference thereof.

  1. Consequences of Giant Impacts on the Martian dynamo

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Amit, H.; Arkani-Hamed, J.; Choblet, G.; Langlais, B.; Tobie, G.; Johnson, C. L.; Jellinek, M.

    2015-12-01

    The Martian surface exhibits a strong dichotomy in elevation, crustal thickness and magnetization between the southern and northern hemispheres. A giant impact has been proposed to explain the formation of the Northern Lowlands on Mars. Such an impact probably led to strong and deep mantle heating and merging between the two cores. These processes will have implications on the thermal state and on the magnetic evolution of the planet. We model the effects of such an impact on the Martian magnetic field (1) by characterizing the thermochemical consequences of the sinking of the impactor's core as a single diapir, (2) by imposing a heat flux heterogeneity on the Martian core-mantle boundary (CMB). Our results show that large viscosity contrasts between the impactor's core and the surrounding mantle silicates can reduce the duration of the merging down to 1 kyr. Direct impact heating of Martian core favor thermal stratification of the core and core dynamo cessation. The merging of the impactor's core with the Martian core only delays the re-initiation of the dynamo for a very short time. While the core thermal stratification is likely to be evacuated rapidly, the impact induced thermal anomaly within the mantle is likely to remain stable for a longer timescale above the CMB. This thermal anomaly generates a large scale cooling heterogeneity at the CMB and a magnetic field dichotomy. A polar impactor leads to a north-south hemispheric magnetic dichotomy that is stronger than an east-west dichotomy created by an equatorial impactor. The amplitude of the magnetic dichotomy is mostly controlled by the horizontal Rayleigh number that represents the vigor of the convection driven by the lateral variations of the CMB heat flux. Our results imply that an impactor radius of 1000 km could have recorded the magnetic dichotomy observed in the Martian crustal field only if very rapid post-impact magma cooling took place.

  2. Modeling of the coupled magnetospheric and neutral wind dynamos

    NASA Technical Reports Server (NTRS)

    Thayer, J. P.; Vickrey, J. F.; Heelis, R. A.; Gary, J. B.

    1995-01-01

    Work at SRI involved modeling the exchange of electromagnetic energy between the ionosphere and magnetosphere to help interpret the DE-B Poynting flux observations. To describe the electrical properties of the high-latitude ionosphere, we constructed a numerical model, from the framework provided by the Vector Spherical Harmonic (VSH) model, that determines the ionospheric currents, conductivities, and electric fields including both magnetospheric inputs and neutral wind dynamo effects. This model development grew from the earlier question of whether an electrical energy source in the ionosphere was capable of providing an upward Poynting flux. The model solves the steady-state neutral wind dynamo equations and the Poynting flux equation to provide insight into the electrodynamic role of the neutral winds. The modeling effort to determine the high-latitude energy flux has been able to reproduce many of the large-scale features observed in the Poynting flux measurements made by DE-2. Because the Poynting flux measurement is an integrated result of energy flux into or out of the ionosphere, we investigated the ionospheric properties that may contribute to the observed flux of energy measured by the spacecraft. During steady state the electromagnetic energy flux, or DC Poynting flux, is equal to the Joule heating rate and the mechanical energy transfer rate in the high-latitude ionosphere. Although the Joule heating rate acts as an energy sink, transforming electromagnetic energy into thermal or internal energy of the gas, the mechanical energy transfer rate may be either a sink or source of electromagnetic energy. In the steady state, it is only the mechanical energy transfer rate that can generate electromagnetic energy and result in a DC Poynating flux that is directed out of the ionosphere.

  3. Understanding the Interiors of Saturn and Mercury through Magnetic Field Observation and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Cao, Hao

    action. The second concerns about the possible heterogeneous heat transfer efficiency in the outer envelope of Saturn and its influence on Saturn's dynamo action. We then carried out numerical convective dynamo simulations using the community dynamo code MagIC version 3.44 to test our dynamo hypothesis. In our numerical dynamo experiments, the central core sizes and the outer boundary heat flow heterogeneities are both varied. We find that the central core size is an important factor that can strongly influence the geometry of the dynamo generated magnetic field. Such influence is rendered through the tangent cylinder, which is an imaginary cylinder with its axis parallel to the spin axis of the planet and is tangent to the central core at the equator. We find that both the convective motion and the magnetic field generation efficiency, represented by kinetic helicity, are weaker inside the tangent cylinder than those outside the tangent cylinder. As a result, the magnetic fields inside the tangent cylinder are consistently weaker than those outside the tangent cylinder. Thus the lack of a polar field minimum region at Saturn could be indicative of the absence or a small central core inside Saturn. MESSENGER observations revealed that Mercury's magnetic field is more unusual than previously thought. In particular, Mercury's magnetic field is strongly north-south asymmetric: the magnetic field strength in the northern hemisphere is three times as strong as that in the southern hemisphere. Yet, there is no evidence for any such north-south asymmetry in the basic properties of Mercury that could possibly influence the present-day dynamo action. Here we propose a mechanism to break the equatorial symmetry of Mercury's magnetic field within the framework of convective dynamos. The essence of our mechanism is the mutual excitation of two fundamental modes of columnar convection in rapidly rotating spherical shells. Such mutual excitation results in equatorially asymmetric

  4. Objective vortex detection in an astrophysical dynamo

    NASA Astrophysics Data System (ADS)

    Rempel, E. L.; Chian, A. C.-L.; Beron-Vera, F. J.; Szanyi, S.; Haller, G.

    2017-03-01

    A novel technique for detecting Lagrangian vortices is applied to a helical magnetohydrodynamic dynamo simulation. The vortices are given by tubular level surfaces of the Lagrangian averaged vorticity deviation, the trajectory integral of the normed difference of the vorticity from its spatial mean. This simple method is objective, i.e. invariant under time-dependent rotations and translations of the coordinate frame. We also adapt the technique to use it on magnetic fields and propose the method of integrated averaged current deviation to determine precisely the boundary of magnetic vortices. The relevance of the results for the study of vortices in solar plasmas is discussed.

  5. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation.

    PubMed

    Yao, Yijun; Wu, Yun; Wang, Yue; Verginelli, Iason; Zeng, Tian; Suuberg, Eric M; Jiang, Lin; Wen, Yuezhong; Ma, Jie

    2015-10-06

    At petroleum vapor intrusion (PVI) sites at which there is significant methane generation, upward advective soil gas transport may be observed. To evaluate the health and explosion risks that may exist under such scenarios, a one-dimensional analytical model describing these processes is introduced in this study. This new model accounts for both advective and diffusive transport in soil gas and couples this with a piecewise first-order aerobic biodegradation model, limited by oxygen availability. The predicted results from the new model are shown to be in good agreement with the simulation results obtained from a three-dimensional numerical model. These results suggest that this analytical model is suitable for describing cases involving open ground surface beyond the foundation edge, serving as the primary oxygen source. This new analytical model indicates that the major contribution of upward advection to indoor air concentration could be limited to the increase of soil gas entry rate, since the oxygen in soil might already be depleted owing to the associated high methane source vapor concentration.

  6. Sound waves generated due to the absorption of a pulsed electron beam in gas

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Pushkarev, M. A.; Remnev, G. E.

    2002-03-01

    The results of an experimental investigation of acoustic vibrations (their frequency, amplitude, and attenuation coefficient) generated in a gas mixture as a result of the injection of a high-current pulsed electron beam into a closed reactor are presented. It is shown that the change in the phase composition of the initial mixture under the action of the electron beam leads to a change in the frequency of the sound waves and to an increase in the attenuation coefficient. By measuring the change in frequency, it is possible to evaluate with sufficient accuracy (about 2%) the degree of conversion of the initial products in the plasmochemical process. Relations describing the dependence of the sound energy attenuation coefficient on the size of the reactor and on the thermal and physical properties of the gases under study are derived. It is shown that a simple experimental setup measuring the parameters of acoustic waves can be used for monitoring the plasmochemical processes initiated by a pulsed excitation of a gas mixture.

  7. Generation and Evolution of Channels due to the Melt Chennel Instability

    NASA Astrophysics Data System (ADS)

    Mueller, K.; Schmeling, H.

    2005-12-01

    We investigate melt transport in partially molten rocks under different stress fieldsunder hydrous and anhydrous conditions. We model such aggregates with the 2D-FD code FDCON [1] by means of a porous deformable matrix with melt to clarify the following key questions: Could channeling occur in a matrix containing a random melt distribution under a given stress field? How do channels evolve during finite simple shear? Is it possible to achieve a focussing of melt towards an MOR (dykes)? How does a Plume influence the orientation of dykes? In a deforming partially molten aggregate, weakening of the solid matrix due to the presence of melt creates an instability in which melt is localized by the following mechanism: regions of initially high meltfraction are areas of low viscosity and pressure, so that melt is drawn into these regions from higher pressure surroundings.This further enhances the melt weakening, producing a self-excited localization mechanism [2]. For both, simple as well as pure shear, the growth rate α for an inclined 1D sine pertubation is highest for an orientation parallel to the direction of the maximum compressive stress (MCS). α is proportional to the applied stress, the reverse of the Melt Retention Number [1] and the wavenumber k of the 1D sine. This also confirms the theoretical growth rate α found by Stevenson [2]. Small-scale simulations (~1 km×1 km box dimensions) with inclined 1D sine, 1D single channel-like pertubations, 2D ellipses, random fields and large-scale Plume-MOR simulations are investigated. In our isothermal models we found that the influence of water reduces the growth rate, in contrast to non-isothermal models of Hall [3]. Under simple as well as pure shear (small-scale simulations), melt channels evolve from an irregular melt distribution (mean porosity 3±0.5%) at angles parallel to the MCS (45° and 0°, resp.). Upon further straining in the simple shear case they slightly rotate out of the orientation of maximum

  8. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The 'minimum mass' protosolar nebula

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.

  9. Numerical study of homogeneous dynamo based on experimental von Kármán type flows

    NASA Astrophysics Data System (ADS)

    Marié, L.; Burguete, J.; Daviaud, F.; Léorat, J.

    2003-06-01

    A numerical study of the magnetic induction equation has been performed on von Kármán type flows. These flows are generated by two co-axial counter-rotating propellers in cylindrical containers. Such devices are currently used in the von Kármán sodium (VKS) experiment designed to study dynamo action in an unconstrained flow. The mean velocity fields have been measured for different configurations and are introduced in a periodic cylindrical kinematic dynamo code. Depending on the driving configuration, on the poloidal to toroidal flow ratio and on the conductivity of boundaries, some flows are observed to sustain growing magnetic fields for magnetic Reynolds numbers accessible to a sodium experiment. The response of the flow to an external magnetic field has also been studied: The results are in excellent agreement with experimental results in the single propeller case but can differ in the two propellers case.

  10. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Chaky, R. C.; Inouye, G. T.

    1985-01-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  11. Flux Transport Solar Dynamos with Shallow Meridional Flow and Turbulent Pumping

    NASA Astrophysics Data System (ADS)

    Nandi, Dibyendu; Hazra, Soumitra

    2016-07-01

    The large-scale solar magnetic cycle is sustained by a dynamo mechanism in which the induction of the toroidal component of the magnetic field by differential rotation and the regeneration of the poloidal component are crucial processes. In the Sun, the Babcock-Leighton mechanism, i.e., the (near-surface) redistribution of the flux of tilted bipolar sunspot pairs is thought to be the main source of the solar poloidal field. The poloidal field so generated must be transported to the solar interior where the toroidal field is generated and stored - presumably near the base of the solar convection zone. Traditionally, flux transport dynamo models have relied on a deep meridional circulation to achieve this transport. However, recent observations claim that the meridional circulation could be much shallower that previously thought. We explore the question whether flux transport dynamos can function with a shallow meridional flow and present an alternative paradigm for flux transport dynamics in solar-stellar interiors sustained by turbulent pumping.

  12. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.

    PubMed

    Starkebaum, G; Harlan, J M

    1986-04-01

    We have examined whether the toxic effects of homocysteine on cultured endothelial cells could result from the formation and action of hydrogen peroxide. In initial experiments with a cell-free system, micromolar amounts of copper were found to catalyze an oxygen-dependent oxidation of homocysteine. The molar ratio of homocysteine oxidized to oxygen consumed was approximately 4.0, which suggests that oxygen was reduced to water. The addition of catalase, however, decreased oxygen consumption by nearly one-half, which suggests that H2O2 was formed during the reaction. Confirming this hypothesis, H2O2 formation was detected using the horseradish peroxidase-dependent oxidation of fluorescent scopoletin. Ceruloplasmin was also found to catalyze oxidation of homocysteine and generation of H2O2 in molar amounts equivalent to copper sulfate. Finally, homocysteine oxidation was catalyzed by normal human serum in a concentration-dependent manner. Using cultured human and bovine endothelial cells, we found that homocysteine plus copper could lyse the cells in a dose-dependent manner, an effect that was completely prevented by catalase. Homocystine plus copper was not toxic to the cells. Specific injury to endothelial cells was seen only after 4 h of incubation with homocysteine plus copper. Confirming the biochemical studies, ceruloplasmin was also found to be equivalent to Cu++ in its ability to cause injury to endothelial cells in the presence of homocysteine. Since elevated levels of homocysteine have been implicated in premature development of atherosclerosis, these findings may be relevant to the mechanism of some types of chronic vascular injury.

  13. Turbulent Dynamo in a Conducting Fluid and a Partially Ionized Gas

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, A.

    2016-12-01

    By following the Kazantsev theory and taking into account both microscopic and turbulent diffusion of magnetic fields, we develop a unified treatment of the kinematic and nonlinear stages of a turbulent dynamo process, and we study the dynamo process for a full range of magnetic Prandtl number P m and ionization fractions. We find a striking similarity between the dependence of dynamo behavior on P m in a conducting fluid and { R } (a function of ionization fraction) in a partially ionized gas. In a weakly ionized medium, the kinematic stage is largely extended, including not only exponential growth but a new regime of dynamo characterized by a linear-in-time growth of magnetic field strength, and the resulting magnetic energy is much higher than the kinetic energy carried by viscous-scale eddies. Unlike the kinematic stage, the subsequent nonlinear stage is unaffected by microscopic diffusion processes and has a universal linear-in-time growth of magnetic energy with the growth rate as a constant fraction 3/38 of the turbulent energy transfer rate, showing good agreement with earlier numerical results. Applying the analysis to the first stars and galaxies, we find that the kinematic stage is able to generate a field strength only an order of magnitude smaller than the final saturation value. But the generation of large-scale magnetic fields can only be accounted for by the relatively inefficient nonlinear stage and requires longer time than the free-fall time. It suggests that magnetic fields may not have played a dynamically important role during the formation of the first stars.

  14. Planetary magnetic fields in the solar system: A numerical study of dynamo models

    NASA Astrophysics Data System (ADS)

    Gomez Perez, Natalia

    In this dissertation numerical models of self-sustained convective dynamos are studied and developed, with application to solar system planetary dynamos. The three main works are: Chapter 2, model of different stages of terrestrial planet core growth; Chapter 3, model of magnetic fields of the ice giants; Chapters 4 and 5, development of the legacy dynamo code to include radially variable conductivity, and application of resulting models to the gas giants. Aging terrestrial planets have growing inner cores. We show that core size can determine the character of dynamo generated magnetic fields. Even though they depend on initial conditions and scaling parameters, it is possible to use field geometries and magnitudes as diagnostic of internal planetary structure. The ratio between inner and outer core radii, h, yields strong magnetic fields for intermediate values (0.25 < h < 0.45), and weaker fields otherwise. High magnetic field intensity patches are found near latitudes arccos(h) where the inner core tangent cylinder intersects the outer boundary. Boundary conditions and internal force balances are responsible for dominant harmonic components of external magnetic fields. The peculiar characteristics of ice giants' magnetic fields can be explained by internal force balances. Uranus and Neptune have deep electrolytic liquid interiors of ice-like composition, with electrical conductivity about two orders of magnitude lower than molten iron. Low electrical conductivity models yield numerical dynamos dominated by kinetic energies. We show the simulated flows are quasi-geostrophic and result in non- dipolar, highly transient, and non-axisymmetric magnetic fields, comparable to magnetic fields of the ice giants. Modifications of the numerical code, better representing the gas giants' interiors, are introduced and tested. Radially variable electrical conductivity (expected for the gas giants) is implemented into numerical algorithms to solve the magnetohydrodynamic

  15. Equatorial counterelectrojets during geomagnetic storms and their possible dynamos in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Tsuji, Y.; Veenadhari, B.; Nishimura, T.; Tanaka, T.; Fujita, S.; Nagatsuma, T.

    2012-12-01

    During the substorm growth phase and storm main phase, the high pressure plasma accumulated in the cusp and mantle regions activates a dynamo for the dawn-to-dusk convection electric field and the Region-1 field-aligned currents (R1 FACs) [Tanaka, 1995]. The electric field and FACs are conveyed by the shear Alfven waves to the polar ionosphere and the electric field extends promptly to low latitude through the Earth-ionosphere waveguide [Kikuchi and Araki, 1979]. The electric field drives the DP2 currents at mid latitudes [Wilson et al., 2001; Tsuji et al., 2012] and intensifies the equatorial electrojet (EEJ) [Kikuchi et al., 1996, 2008]. The convection electric field extends to the inner magnetosphere promptly [Nishimura et al., 2009] and energizes the plasma in the partial ring current region with the help of the gradient and curvature drift [Ebihara and Ejiri, 2000], which in turn works as a dynamo for the dusk-to-dawn electric field and the R2 FACs. The dusk-to-dawn electric field causes the counterelectrojet (CEJ) at the equator when the IMF turns northward [Rastogi, 1975]. The CEJ often appears during substorms [Kobea et al., 2000; Kikuchi et al., 2000]. Both the R1 and R2 FACs are intensified by the substorm expansion, with the R2 FACs strong enough to cause the CEJ [Hashimoto et al., 2011]. The CEJ often occurs during the recovery phase of geomagnetic storms [Kikuchi et al., 2008; Tsuji et al., 2012], while the CEJ also appears during the storm main phase under the relatively stable southward IMF [Fejer et al., 2007; Veenadhari et al., 2010]. In this paper, we analyzed several storm events to identify the dynamo for the stormtime CEJ. The disturbance dynamo is a commonly accepted dynamo for the long lasting stormtime CEJ [Blanc and Richmond, 1980; Fejer and Scherliess 1997]. However, the observed rapid and periodic development of the CEJ should be attributed to the R2 FACs generated in the inner magnetosphere. Based on the magnetometer and radar

  16. Nonlinear dynamos at infinite magnetic Prandtl number.

    PubMed

    Alexakis, Alexandros

    2011-03-01

    The dynamo instability is investigated in the limit of infinite magnetic Prandtl number. In this limit the fluid is assumed to be very viscous so that the inertial terms can be neglected and the flow is enslaved to the forcing. The forcing consist of an external forcing function that drives the dynamo flow and the resulting Lorentz force caused by the back reaction of the magnetic field. The flows under investigation are the Archontis flow and the ABC flow forced at two different scales. The investigation covers roughly 3 orders of magnitude of the magnetic Reynolds number above onset. All flows show a weak increase of the averaged magnetic energy as the magnetic Reynolds number is increased. Most of the magnetic energy is concentrated in flat elongated structures that produce a Lorentz force with small solenoidal projection so that the resulting magnetic field configuration is almost force free. Although the examined system has zero kinetic Reynolds number at sufficiently large magnetic Reynolds number the structures are unstable to small scale fluctuations that result in a chaotic temporal behavior.

  17. The manifold zoology of anelastic dynamos with variable conductivity

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Jones, Chris

    2015-04-01

    Whereas the dynamo processes in terrestrial planets is strongly influenced by the overlying rocky mantle, the induction of global magnetic fields in gas giants is mainly affected by internal properties, such as the rapid outward decay of static density, pressure and temperature throughout the gaseous shell. Further for Jupiter and Saturn it is well known that the transition from metallic to molecular hydrogen leads to a steep decrease in the electrical conductivity. This drop-off radius is closer to the surface for heavy Jupiter (at 90% of its respective radius), but much deeper for the less massive Saturn (65%). From the modelling perspective this leads to an inner conducting shell where the magnetic fields dominate the dynamics, and outer hydro dynamic shell where the strong Coriolis force reigns. Within this study we parametrise the conductivity drop-off radius and investigate the interaction between these shells, such as the emergence of differential rotation and induction of magnetic fields. Remarkably, we could identify numerous rather different self-consistent dynamo solutions. E.g., hemispherical dynamos, quadrupolar dynamos, octupolar dynamos, dipolar dynamo waves or many mixed modes, such as solutions where the quadrupole is stable in time and the dipole periodically reverses. In summary, our results suggest anelastic dynamo models with variable conductivity yield manifold different solutions in close poriximity in the parameter space. Unfortunately for Saturn-like models with deep conductivity drop-off, Saturn-like magnetic field (stable, strongly dipolar) seemed rather unlikely.

  18. Magnetic dipole moment estimates for an ancient lunar dynamo

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1983-01-01

    The four measured planetary magnetic moments combined with a recent theoretical prediction for dynamo magnetic fields suggests that no dynamo exists in the moon's interior today. For the moon to have had a magnetic moment in the past of sufficient strength to account for at least some of the lunar rock magnetism, the rotation would have been about twenty times faster than it is today and the radius of the fluid, conducting core must have been about 750 km. The argument depends on the validity of the Busse solution to the validity of the MHD problem of planetary dynamos.

  19. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    2016-10-01

    We study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x-y) averaging, we also demonstrate the presence of large-scale fields when vertical (y-z) averaging is employed instead. By computing space-time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase - a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumber fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode-mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.

  20. Seaglider Observations of Equatorial Ocean Rossby Wave Interactions With the Madden-Julian Oscillation During CINDY-DYNAMO

    NASA Astrophysics Data System (ADS)

    Webber, B. G.; Matthews, A. J.; Heywood, K. J.; Stevens, D. P.

    2012-12-01

    During the CINDY-DYNAMO field campaign in 2011-12, a Seaglider was deployed at 80°E in the Indian Ocean, and patrolled between 3° and 4°S over a period of three months. In addition, the periods when the Seaglider was travelling to and from the deployment location at 1.5°S represent two independent sections almost four months apart. The 3-4°S data have been optimally interpolated to generate unique and very high resolution data sets of temperature, salinity, chlorophyll and oxygen, along with derived geostrophic velocities in a region that has been under-observed to date. These observations reveal the importance of equatorial ocean Rossby waves in generating intraseasonal variability in the subsurface Indian Ocean, with temperature anomalies of around 0.5°C and salinity anomalies of 0.1 due to such waves. These anomalies extend with only slightly reduced magnitude into the deep ocean up to the maximum observed depth of 1000 m. The latitudinal structure of the temperature, salinity and density anomalies is generally very coherent, consistent with the structure of first meridional mode equatorial ocean Rossby waves. The chlorophyll and oxygen data from the Seaglider show how these waves have a substantial impact on biological activity at this location, with the peak productivity shifting vertically by up to 20 metres due to upwelling and downwelling. Linearised numerical ocean model simulations were conducted for the period around the Seaglider deployment period, to put the observations in context. These model simulations were forced by ERA-Interim winds that were filtered to remove the high-frequency variability while retaining that relating to the Madden-Julian Oscillation (MJO). Comparison between the model runs and Seaglider observations indicates that the MJO-related winds are directly responsible for a large portion of the observed ocean Rossby wave activity, although there is also a role for lower-frequency wind forcing. The model results also highlight

  1. Numerical Studies of Dynamo Action in a Turbulent Shear Flow. I.

    NASA Astrophysics Data System (ADS)

    Singh, Nishant K.; Jingade, Naveen

    2015-06-01

    We perform numerical experiments to study the shear dynamo problem where we look for the growth of a large-scale magnetic field due to non-helical stirring at small scales in a background linear shear flow in previously unexplored parameter regimes. We demonstrate the large-scale dynamo action in the limit where the fluid Reynolds number (\\operatorname{Re}) is below unity while the magnetic Reynolds number (Rm) is above unity; the exponential growth rate scales linearly with shear, which is consistent with earlier numerical works. The limit of low \\operatorname{Re} is particularly interesting, as seeing the dynamo action in this limit would provide enough motivation for further theoretical investigations, which may focus attention on this analytically more tractable limit of \\operatorname{Re}\\lt 1 compared to the more formidable limit of \\operatorname{Re}\\gt 1. We also perform simulations in the regimes where (i) both (\\operatorname{Re}, Rm) < 1, and (ii) \\operatorname{Re}\\gt 1 and Rm\\lt 1, and compute all of the components of the turbulent transport coefficients ({{α }ij} and {{η }ij}) using the test-field method. A reasonably good agreement is observed between our results and the results of earlier analytical works in similar parameter regimes.

  2. A Flux Tube Solar Dynamo Model Based on the Competing Role of Buoyancy and Downflows

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Sofia, S.; Belvedere, G.

    2005-08-01

    A magnetic flux tube can be considered both as a separate body and as a confined field. As a field, it is affected by both differential rotation (Ω-effect) and cyclonic convection (α-effect). As a body, the tube experiences not only a buoyant force, but also a dynamic pressure due to downflows above the tube. These two competing dynamic effects are incorporated into the α-Ω dynamo equations through the total magnetic turbulent diffusivity, leading to a flux tube dynamo operating in the convection zone. We analyze and solve the extended dynamo equations in the linear approximation by adopting the observed solar internal rotation and assuming a downflow effect derived from numerical simulations of a solar convection zone. The model reproduces the 22 yr cycle period; the extended butterfly diagram with the confinement of strong activity to low heliographic latitudes |Φ|<=35deg the evidence that at low latitudes the radial field is in an approximately π phase lag compared to the toroidal field at the same latitude; the evidence that the poleward branch is in a π/2 phase lag with respect to the equatorward branch; and the evidence that most of the magnetic flux is present in an intermittent form, concentrated into strong flux tubes.

  3. Ionospheric disturbance dynamo associated to a coronal hole: Case study of 5-10 April 2010

    NASA Astrophysics Data System (ADS)

    Fathy, I.; Amory-Mazaudier, C.; Fathy, A.; Mahrous, A. M.; Yumoto, K.; Ghamry, E.

    2014-05-01

    In this paper we study the planetary magnetic disturbance during the magnetic storm occurring on 5 April 2010 associated with high-speed solar wind stream due to a coronal hole following a coronal mass ejection. We separate the magnetic disturbance associated to the ionospheric disturbance dynamo (Ddyn) from the magnetic disturbance associated to the prompt penetration of magnetospheric electric field (DP2). This event exhibits different responses of ionospheric disturbance dynamo in the different longitude sectors (European-African, Asian, and American). The strongest effect is observed in the European-African sector. The Ddyn disturbance reduces the amplitude of the daytime H component at low latitudes during four consecutive days in agreement with the Blanc and Richmond's model of ionospheric disturbance dynamo. The amplitude of Ddyn decreased with time during the 4 days. We discuss its diverse worldwide effects. The observed signature of magnetic disturbance process in specific longitude sector is strongly dependent on which Earth's side faces the magnetic storms (i.e., there is a different response depending on which longitude sector is at noon when the SSC hits). Finally, we determined an average period of 22 h for Ddyn using wavelet analysis.

  4. The Magnetic Furnace: Examining Fully Convective Dynamos And The Influence Of Rotation

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle; Mathis, S.; Brun, A. S.; Toomre, J.

    2016-08-01

    The dynamo action likely present within fully convective regions is explored through global-scale 3-D simulations. These simulations provide a contextual analog for the convective dynamos that are likely operating deep within the interiors of fully convective low mass stars. A logarithmic range of rotation rates is considered, thereby capturing both convection barely sensing the effects of rotation to others in which the Coriolis forces are prominent. The vigorous dynamo action realized within all of these turbulent convective cores builds magnetic fields with peak strengths exceeding a megagauss, with the overall magnetic energy (ME) in the faster rotators reaching super-equipartition levels compared to the convective kinetic energy (KE). Such strong fields are able to coexist with the flows without quenching them through Lorentz forces. This state is achieved due to the velocity and magnetic fields being nearly co-aligned, and with peak magnetic islands being somewhat displaced from the fastest flows as the intricate evolution of these MHD structures proceeds. As the rotation rate is increased, the primary force balance shifts from nonlinear advection balancing Lorentz forces to a magnetostrophic balance between Coriolis and Lorentz forces.

  5. An update of Leighton's solar dynamo model

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2017-02-01

    In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (i) turbulent diffusion at the surface and in the convection zone; (ii) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (iii) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent

  6. Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects

    NASA Technical Reports Server (NTRS)

    Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.

    1991-01-01

    A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.

  7. Initial operation with sodium in the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Spence, Ej; Forest, C. B.; O'Connell, R.; Nornberg, Md; Canary, Hw; Wright, A.; Robinson, K.

    1999-11-01

    A new liquid metal MHD experiment has been constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 ^circC. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurization are presented, and safety elements are highlighted.

  8. SOLAR MAGNETIC FIELD REVERSALS AND THE ROLE OF DYNAMO FAMILIES

    SciTech Connect

    DeRosa, M. L.

    2012-09-20

    The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity occurring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory and the Michelson Doppler Imager into its harmonic constituents, and present the time evolution of the mode coefficients for the past three sunspot cycles. The interplay between the various modes is then interpreted from the perspective of general dynamo theory, where the coupling between the primary and secondary families of modes is found to correlate with large-scale polarity reversals for many examples of cyclic dynamos. Mean-field dynamos based on the solar parameter regime are then used to explore how such couplings may result in the various long-term trends in the surface magnetic field observed to occur in the solar case.

  9. Early Mars Chronology: When did the Dynamo Really Die?

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Stewart, S. T.; Roberts, J.; Bottke, W. F.; Manga, M.; Frey, H. V.; Kuang, W.; Robbins, S.

    2014-07-01

    Mars' dynamo is a key aspect of early Mars evolution. It likely started some time after primordial crust formation and ceased before the Utopia impact. Its total duration depends on impactor flux following accretion and the timing of the LHB.

  10. Nonlinear dynamo action in a cylindrical container driven by precession

    NASA Astrophysics Data System (ADS)

    Nore, C.; Léorat, J.; Guermond, J.-L.; Luddens, F.

    2011-12-01

    Precession, which results simply from the composition of two rotations with distinct axes, is an efficient way to drive a 3D flow in a closed rigid container. Are such flows relevant to dynamo action in some astrophysical bodies? Positive answers are available for a spherical and a spheroidal containers, using parameters which are, however, not realistic. An experimental approach could be relevant to natural dynamos and seems within reach using a cylindrical container (cf. the experiment now planned at the DREsden Sodium facility for DYNamo and thermohydraulic studies in Germany (DRESDYN), F. Stefani, personal communication, 2011). Using a nonlinear magnetohydrodynamics (MHD) code (SFEMaNS), we numerically demonstrate that precession is able to drive a cylindrical dynamo.

  11. Sharp magnetic structures from dynamos with density stratification

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Rogachevskii, Igor

    2017-01-01

    Recent direct numerical simulations (DNS) of large-scale turbulent dynamos in strongly stratified layers have resulted in surprisingly sharp bipolar structures at the surface. Here we present new DNS of helically and non-helically forced turbulence with and without rotation and compare with corresponding mean-field simulations (MFS) to show that these structures are a generic outcome of a broader class of dynamos in density-stratified layers. The MFS agree qualitatively with the DNS, but the period of oscillations tends to be longer in the DNS. In both DNS and MFS, the sharp structures are produced by converging flows at the surface and might be driven in nonlinear stage of evolution by the Lorentz force associated with the large-scale dynamo-driven magnetic field if the dynamo number is at least 2.5 times supercritical.

  12. The dynamo theory of solar flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    1991-04-01

    It is shown that the main problems of the dynamo theory of solar flares; namely, the unrealistically great current growth time and the current interruption mechanism, can be solved by assuming the emergence of magnetic loops with current and by the correct application of Ohm's law. A generalized Ohm's law for solar flares is obtained, and prerequisites for flare energy release are proposed. Coalescence of a flare loop and of a filament is considered as an example, and it is shown that the current dissipation increases dramatically as compared with that in completely ionized plasma, providing effective Joule heating of the plasma and particle acceleration in a solar flare. The ion-atom collisions play the decisive role in the energy release process, leading to an 8-10-order-of-magnitude increase in the flare loop resistance. The energy release emerging from the upper part of a flare loop stimulates a powerful energy release in the chromosphere.

  13. Dynamo efficiency controlled by hydrodynamic bistability

    NASA Astrophysics Data System (ADS)

    Miralles, Sophie; Hérault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas

    2014-06-01

    Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow—where one disk has been replaced by a propeller—are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.

  14. Introduction to Plasma Dynamo, Reconnection and Shocks

    SciTech Connect

    Intrator, Thomas P.

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  15. The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Kulsrud, Russell M.; Anderson, Stephen W.

    1992-01-01

    The fluctuation spectrum that must arise in a mean field dynamo generation of galactic fields if the initial field is weak is considered. A kinetic equation for its evolution is derived and solved. The spectrum evolves by transfer of energy from one magnetic mode to another by interaction with turbulent velocity modes. This kinetic equation is valid in the limit that the rate of evolution of the magnetic modes is slower than the reciprocal decorrelation time of the turbulent modes. This turns out to be the case by a factor greater than 3. Most of the fluctuation energy concentrates on small scales, shorter than the hydrodynamic turbulent scales. The fluctuation energy builds up to equipartition with the turbulent energy in times that are short compared to the e-folding time of the mean field. The turbulence becomes strongly modified before the dynamo amplification starts. Thus, the kinematic assumption of the mean dynamo theory is invalid. Thus, the galactic field must have a primordial origin, although it may subsequently be modified by dynamo action.

  16. Analysis of Helicities and Hall and MHD Dynamo Effects in Two-Fluid Reversed-Field Pinch Simulations

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Sovinec, Carl

    2015-11-01

    Relaxation in the RFP is studied numerically with extended-MHD modeling that includes the Hall term and ion gyroviscous stress. Previous results show significant coupling between magnetic relaxation and parallel flow evolution [King PoP 19, 055905]. Computations presented here display quasi-periodic relaxation events with current relaxation through MHD and Hall dynamo drives. The MHD dynamo always relaxes currents while the Hall dynamo may add or subtract from it, but the total dynamo drive is similar to single-fluid MHD computations. Changes in plasma momentum are due to viscous coupling to the wall and fluctuation-induced Maxwell stresses transport momentum radially inward when two-fluid effects are included. The magnetic helicity and hybrid helicity, a two-fluid extension of magnetic helicity that includes cross and kinetic helicity [Turner, 1986], are well-conserved relative to magnetic energy at each event. The cross helicity is well-conserved in single-fluid MHD but is significantly affected by both two-fluid effects and ion gyroviscosity. The plasma parallel current evolves towards the predicted flat profile; however, the plasma flow does not. Work supported through NSF grant PHY-0821899 and DOE grant DE-FG02-06ER54850.

  17. UNIVERSALITY OF THE SMALL-SCALE DYNAMO MECHANISM

    SciTech Connect

    Moll, R.; Cameron, R. H.; Schuessler, M.; Pietarila Graham, J.; Pratt, J.; Mueller, W.-C.

    2011-07-20

    We quantify possible differences between turbulent dynamo action in the Sun and the dynamo action studied in idealized simulations. For this purpose, we compare Fourier-space shell-to-shell energy transfer rates of three incrementally more complex dynamo simulations: an incompressible, periodic simulation driven by random flow, a simulation of Boussinesq convection, and a simulation of fully compressible convection that includes physics relevant to the near-surface layers of the Sun. For each of the simulations studied, we find that the dynamo mechanism is universal in the kinematic regime because energy is transferred from the turbulent flow to the magnetic field from wavenumbers in the inertial range of the energy spectrum. The addition of physical effects relevant to the solar near-surface layers, including stratification, compressibility, partial ionization, and radiative energy transport, does not appear to affect the nature of the dynamo mechanism. The role of inertial-range shear stresses in magnetic field amplification is independent from outer-scale circumstances, including forcing and stratification. Although the shell-to-shell energy transfer functions have similar properties to those seen in mean-flow driven dynamos in each simulation studied, the saturated states of these simulations are not universal because the flow at the driving wavenumbers is a significant source of energy for the magnetic field.

  18. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris. Final report

    SciTech Connect

    Zigler, G.; Brideau, J.; Rao, D.V.; Shaffer, C.; Souto, F.; Thomas, W.

    1995-10-01

    This report documents a plant-specific study for a BWR/4 with a Mark I containment that evaluated the potential for LOCA generated debris and the probability of losing long term recirculation capability due ECCS pump suction strainer blockage. The major elements of this study were: (1) acquisition of detailed piping layouts and installed insulation details for a reference BWR; (2) analysis of plant specific piping weld failure probabilities to estimate the LOCA frequency; (3) development of an insulation and other debris generation and drywell transport models for the reference BWR; (4) modeling of debris transport in the suppression pool; (5) development of strainer blockage head loss models for estimating loss of NPSH margin; (6) estimation of core damage frequency attributable to loss of ECCS recirculation capability following a LOCA. Elements 2 through 5 were combined into a computer code, BLOCKAGE 2.3. A point estimate of overall DEGB pipe break frequency (per Rx-year) of 1.59E-04 was calculated for the reference plant, with a corresponding overall ECCS loss of NPSH frequency (per Rx-year) of 1.58E-04. The calculated point estimate of core damage frequency (per Rx-year) due to blockage related accident sequences for the reference BWR ranged from 4.2E-06 to 2.5E-05. The results of this study show that unacceptable strainer blockage and loss of NPSH margin can occur within the first few minutes after ECCS pumps achieve maximum flows when the ECCS strainers are exposed to LOCA generated fibrous debris in the presence of particulates (sludge, paint chips, concrete dust). Generic or unconditional extrapolation of these reference plant calculated results should not be undertaken.

  19. Magnetorotational Turbulence and Dynamo in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Kunz, Matthew W.; Stone, James M.; Quataert, Eliot

    2016-12-01

    We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an Alfvén-wave cascade at large scales and a kinetic-Alfvén-wave cascade at small scales, with strong small-scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle acceleration, their distribution accurately described by a κ distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.

  20. Magnetorotational Turbulence and Dynamo in a Collisionless Plasma.

    PubMed

    Kunz, Matthew W; Stone, James M; Quataert, Eliot

    2016-12-02

    We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an Alfvén-wave cascade at large scales and a kinetic-Alfvén-wave cascade at small scales, with strong small-scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle acceleration, their distribution accurately described by a κ distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.

  1. The competition between Lorentz and Coriolis forces in planetary dynamos

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista M.; Sheyko, Andrey; King, Eric M.; Aurnou, Jonathan M.

    2015-12-01

    Fluid motions within planetary cores generate magnetic fields through dynamo action. These core processes are driven by thermo-compositional convection subject to the competing influences of rotation, which tends to organize the flow into axial columns, and the Lorentz force, which tends to inhibit the relative movement of the magnetic field and the fluid. It is often argued that these forces are predominant and approximately equal in planetary cores; we test this hypothesis using a suite of numerical geodynamo models to calculate the Lorentz to Coriolis force ratio directly. Our results show that this ratio can be estimated by ( Λ i is the traditionally defined Elsasser number for imposed magnetic fields and Rm is the system-scale ratio of magnetic induction to magnetic diffusion). Best estimates of core flow speeds and magnetic field strengths predict the geodynamo to be in magnetostrophic balance where the Lorentz and Coriolis forces are comparable. The Lorentz force may also be significant, i.e., within an order of magnitude of the Coriolis force, in the Jovian interior. In contrast, the Lorentz force is likely to be relatively weak in the cores of Saturn, Uranus, Neptune, Ganymede, and Mercury.

  2. Dynamo action and magnetic activity of the giant star Pollux

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha; Palacios, Ana

    2015-08-01

    Recent spectropolarimetric observations of the giant star Pollux have revealed that it possesses a weak global magnetic field of the order of a Gauss. Using 3-D nonlinear MHD simulations performed with the ASH code we study the source of this global magnetic field in this slowly rotating giant star (Omega*=Omega_sun/20). We find that the extended convective envelope is able to generate a multi-scales magnetic field reaching of the order of 10% of the kinetic energy contained in the envelope. This global field acts such as to suppress the strong differential rotation present in the purely hydrodynamical progenitor simulation. When filtering the large scale magnetic field components (dipole, quadrupole) we find magnetic field of the order of a few Gauss, hence in qualitative agreeement with observations. Our study confirms that such slowly rotating convective giants are likely to possess global magnetic field maintained through contemporaneous dynamo action and not as the vestige of their past main sequence activity.

  3. Nonperturbative quasilinear approach to the shear dynamo problem

    SciTech Connect

    Sridhar, S.; Subramanian, Kandaswamy

    2009-12-15

    We study large-scale dynamo action due to turbulence in the presence of a linear shear flow. Our treatment is quasilinear and equivalent to the standard 'first-order smoothing approximation'. However it is non perturbative in the shear strength. We first derive an integrodifferential equation for the evolution of the mean magnetic field, by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. We show that, for nonhelical turbulence, the time evolution of the cross-shear components of the mean field do not depend on any other components excepting themselves; this is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence, to all orders in the shear parameter, there is no shear-current-type effect for non helical turbulence in a linear shear flow in quasilinear theory in the limit of zero resistivity. We then develop a systematic approximation of the integro-differential equation for the case when the mean magnetic field varies slowly compared to the turbulence correlation time. For nonhelical turbulence, the resulting partial differential equations can again be solved by making a shearing coordinate transformation in Fourier space. The resulting solutions are in the form of shearing waves, labeled by the wave number in the sheared coordinates. These shearing waves can grow at early and intermediate times but are expected to decay in the long time limit.

  4. Nonperturbative quasilinear approach to the shear dynamo problem.

    PubMed

    Sridhar, S; Subramanian, Kandaswamy

    2009-12-01

    We study large-scale dynamo action due to turbulence in the presence of a linear shear flow. Our treatment is quasilinear and equivalent to the standard "first-order smoothing approximation." However it is non perturbative in the shear strength. We first derive an integrodifferential equation for the evolution of the mean magnetic field, by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. We show that, for nonhelical turbulence, the time evolution of the cross-shear components of the mean field do not depend on any other components excepting themselves; this is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence, to all orders in the shear parameter, there is no shear-current-type effect for non helical turbulence in a linear shear flow in quasilinear theory in the limit of zero resistivity. We then develop a systematic approximation of the integro-differential equation for the case when the mean magnetic field varies slowly compared to the turbulence correlation time. For nonhelical turbulence, the resulting partial differential equations can again be solved by making a shearing coordinate transformation in Fourier space. The resulting solutions are in the form of shearing waves, labeled by the wave number in the sheared coordinates. These shearing waves can grow at early and intermediate times but are expected to decay in the long time limit.

  5. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by l-lysine oxidase activity.

    PubMed

    Chen, Wen Ming; Lin, Chang Yi; Sheu, Shih Yi

    2010-05-05

    A greenish yellow pigmented bacterial strain, designated GR5, was recently isolated from a freshwater culture pond for a soft-shell turtle. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain GR5 belongs to the genus Rheinheimera and its only closest neighbor is the type strain of Rheinheimera texasensis (98.2%). Based on the antibiogram assay, strain GR5 possesses a broad spectrum of antimicrobial activity including Gram-positive and Gram-negative bacteria, yeast, algae, and strain GR5 itself. Strain GR5 can synthesize a macromolecule with antimicrobial activity due to the generation of hydrogen peroxide and this antimicrobial effect can be inhibited by catalase. This antimicrobial activity is active only in complex culture media or chemically defined culture media containing l-lysine. This antimicrobial macromolecule in strain GR5 is shown to be a monomeric protein with a molecular mass of 71kDa and isoelectric point of approximately 3.68. Liquid chromatography-tandem mass spectrometry analyses reveal close similarity of a 19-amino acid fragment derived from this protein to the antibacterial protein, AlpP from the marine bacterium Pseudoalteromonas tunicata D2, and to the antibacterial protein, marinocine, from the marine bacterium Marinomonas mediterranea. This study explores the nature of antimicrobial macromolecule such as l-lysine oxidase. This is the first report on a freshwater bacterium producing antimicrobial activity by generating hydrogen peroxide through its enzymatic activity of l-lysine oxidase.

  6. A self-consistent dynamo model for fully convective stars

    NASA Astrophysics Data System (ADS)

    Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Gastine, Thomas; Reiners, Ansgar; Poppenhaeger, Katja; Wolk, Scott J.

    2016-01-01

    The tachocline region inside the Sun, where the rigidly rotating radiative core meets the differentially rotating convection zone, is thought to be crucial for generating the Sun's magnetic field. Low-mass fully convective stars do not possess a tachocline and were originally expected to generate only weak small-scale magnetic fields. Observations, however, have painted a different picture of magnetism in rapidly-rotating fully convective stars: (1) Zeeman broadening measurements revealed average surface field of several kiloGauss (kG), which is similar to the typical field strength found in sunspots. (2) Zeeman-Doppler-Imaging (ZDI) technique discovered large-scale magnetic fields with a morphology often similar to the Earth's dipole-dominated field. (3) Comparison of Zeeman broadening and ZDI results showed that more than 80% of the magnetic flux resides at small scales. So far, theoretical and computer simulation efforts have not been able to reproduce these features simultaneously. Here we present a self-consistent global model of magnetic field generation in low-mass fully convective stars. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The ZDI technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass fully convective stars.

  7. Using Jupiter’s gravitational field to probe the Jovian convective dynamo

    PubMed Central

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-01-01

    Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472

  8. Non-Maxwellian electron distribution functions due to self-generated turbulence in collisionless guide-field reconnection

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Büchner, J.

    2016-10-01

    Non-Maxwellian electron velocity space distribution functions (EVDFs) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, EVDFs were obtained mainly for antiparallel reconnection and under the influence of weak guide-fields in the direction perpendicular to the reconnection plane. EVDFs are, however, not well known, yet, for oblique (or component-) reconnection in case and in dependence on stronger guide-magnetic fields and for the exhaust (outflow) region of reconnection away from the diffusion region. In view of the multi-spacecraft Magnetospheric Multiscale Mission (MMS), we derived the non-Maxwellian EVDFs of collisionless magnetic reconnection in dependence on the guide-field strength bg from small ( b g ≈ 0 ) to very strong (bg = 8) guide-fields, taking into account the feedback of the self-generated turbulence. For this sake, we carried out 2.5D fully kinetic Particle-in-Cell simulations using the ACRONYM code. We obtained anisotropic EVDFs and electron beams propagating along the separatrices as well as in the exhaust region of reconnection. The beams are anisotropic with a higher temperature in the direction perpendicular rather than parallel to the local magnetic field. The beams propagate in the direction opposite to the background electrons and cause instabilities. We also obtained the guide-field dependence of the relative electron-beam drift speed, threshold, and properties of the resulting streaming instabilities including the strongly non-linear saturation of the self-generated plasma turbulence. This turbulence and its non-linear feedback cause non-adiabatic parallel electron acceleration. We further obtained the resulting EVDFs due to the non-linear feedback of the saturated self-generated turbulence near the separatrices and in the exhaust region of reconnection in dependence on the guide field strength. We found that the influence of the self-generated plasma turbulence

  9. EFFECTS OF PENETRATIVE CONVECTION ON SOLAR DYNAMO

    SciTech Connect

    Masada, Youhei; Yamada, Kohei; Kageyama, Akira

    2013-11-20

    Spherical solar dynamo simulations are performed. A self-consistent, fully compressible magnetohydrodynamic system with a stably stratified layer below the convective envelope is numerically solved with a newly developed simulation code based on the Yin-Yang grid. The effects of penetrative convection are studied by comparing two models with and without the stable layer. The differential rotation profile in both models is reasonably solar-like with equatorial acceleration. When considering the penetrative convection, a tachocline-like shear layer is developed and maintained beneath the convection zone without assuming any forcing. While the turbulent magnetic field becomes predominant in the region where the convective motion is vigorous, mean-field components are preferentially organized in the region where the convective motion is less vigorous. Particularly in the stable layer, the strong, large-scale field with a dipole symmetry is spontaneously built up. The polarity reversal of the mean-field component takes place globally and synchronously throughout the system regardless of the presence of the stable layer. Our results suggest that the stably stratified layer is a key component for organizing the large-scale strong magnetic field, but is not essential for the polarity reversal.

  10. Diurnal Cycle of Convection during Dynamo

    NASA Astrophysics Data System (ADS)

    Ciesielski, P. E.; Johnson, R. H.

    2014-12-01

    During the special observing period (SOP) of the DYNAMO/CINDY/AMIE field campaign, conducted over the Indian Ocean from October to November 2011, two sounding networks, one north and one south of the equator, took 4-8 soundings/day. This dataset with 3-hr time resolution offers a unique opportunity to investigate the diurnal cycle of Intertropical Convergence Zone (ITCZ) convection which was present within the southern sounding array (SSA) for extended periods during the SOP. For example, during the first half of October 2011 when the ITCZ was located between 3°S and 8°S, TRMM 3B42 3-h rainfall averaged over the SSA exhibited a prominent diurnal cycle with a late night/early morning maximum and an early evening minimum. The rainfall diurnal range during this period over the SSA was 4.8 mm which was ~50% of the daily mean (10.1 mm). Mean rainfall over the northern sounding array was much lighter (0.9 mm) during this period with a diurnal cycle nearly out of phase with that over the SSA. Using primarily sounding and satellite data, we will explore the characteristics of this diurnally varying convection and what, if any, influence it may have had on the Madden-Julian Oscillation (MJO) signal.

  11. MHD dynamo for the Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Bonfiglio, Daniele; Cappello, Susanna; Escande, Dominique Frank; Spizzo, Gianluca

    2006-10-01

    MHD modelling is believed to provide a good description of large scale dynamics of the Reversed Field Pinch. In particular, 3-dimensional nonlinear simulations in a simple visco-resistive approximation [see Cappello PPCF 2004 and references therein] display many features in reasonable agreement with experiments. In recent times it has been shown that the general and basic tendency of the RFP to develop a more or less regular global kink type deformation of the plasma column forces a corresponding charge separation (consistent with quasi-neutrality) and a related electrostatic field. The ensuing electrostatic drift velocity (nearly) coincides with the dynamo velocity field traditionally considered to sustain the configuration [Bonfiglio,Cappello,Escande PRL 2005; Cappello,Bonfiglio,Escande PHP 2006]. In this presentation we review our present understanding in this subject. In particular we focus on the description of the formation of pure helical laminar RFP solutions, and study the relationship between the electrostatic structure and the topological properties of the magnetic field in the case of the less regular turbulent solutions, where the robustness of a chain of magnetic islands isolating the chaotic core from the edge has been recently highlighted [Spizzo,Cappello, Cravotta, Escande, Predebon, Marrelli, Martin, White, PRL 2006].

  12. A Proposed Paradigm for Solar Cycle Dynamics Mediated via Turbulent Pumping of Magnetic Flux in Babcock-Leighton-type Solar Dynamos

    NASA Astrophysics Data System (ADS)

    Hazra, Soumitra; Nandy, Dibyendu

    2016-11-01

    At present, the Babcock-Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker-Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock-Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  13. Fate of Alpha Dynamos at Large R m

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros

    2016-11-01

    At the heart of today's solar magnetic field evolution models lies the alpha dynamo description. In this work, we investigate the fate of alpha dynamos as the magnetic Reynolds number R m is increased. Using Floquet theory, we are able to precisely quantify mean-field effects like the alpha and beta effect (i) by rigorously distinguishing dynamo modes that involve large-scale components from the ones that only involve small scales, and by (ii) providing a way to investigate arbitrary large-scale separations with minimal computational cost. We apply this framework to helical and nonhelical flows as well as to random flows with short correlation time. Our results determine that the alpha description is valid for R m smaller than a critical value R mc at which small-scale dynamo instability starts. When R m is above R mc, the dynamo ceases to follow the mean-field description and the growth rate of the large-scale modes becomes independent of the scale separation, while the energy in the large-scale modes is inversely proportional to the square of the scale separation. The results in this second regime do not depend on the presence of helicity. Thus, alpha-type modeling for solar and stellar models needs to be reevaluated and new directions for mean-field modeling are proposed.

  14. CATASTROPHIC QUENCHING IN {alpha}{Omega} DYNAMOS REVISITED

    SciTech Connect

    Hubbard, Alexander; Brandenburg, Axel

    2012-03-20

    At large magnetic Reynolds numbers, magnetic helicity evolution plays an important role in astrophysical large-scale dynamos. The recognition of this fact led to the development of the dynamical {alpha} quenching formalism, which predicts catastrophically low mean fields in open systems. Here, we show that in oscillatory {alpha}{Omega} dynamos this formalism predicts an unphysical magnetic helicity transfer between scales. An alternative technique is proposed where this artifact is removed by using the evolution equation for the magnetic helicity of the total field in the shearing advective gauge. In the traditional dynamical {alpha} quenching formalism, this can be described by an additional magnetic helicity flux of small-scale fields that does not appear in homogeneous {alpha}{sup 2} dynamos. In {alpha}{Omega} dynamos, the alternative formalism is shown to lead to larger saturation fields than what has been obtained in some earlier models with the traditional formalism. We have compared the predictions of the two formalisms to results of direct numerical simulations, finding that the alternative formulation provides a better fit. This suggests that worries about catastrophic dynamo behavior in the limit of large magnetic Reynolds number are unfounded.

  15. MHD dynamo and charge separation for the Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Cappello, Susanna; Bonfiglio, Daniele; Franck Escande, Dominique

    2004-11-01

    The reversed field pinch (RFP) is a toroidal configuration for magnetic confinement characterized by a plasma current strong enough to excite a kink instability. Though according to the standard paradigm developed in the 80'-90' the ensuing MHD turbulence would be intrinsic to the RFP dynamo, more recent studies go beyond this view. Three-dimensional visco-resistive MHD simulations display a transition from multiple helicity (MH) states to single helicity (SH) steady states [1] when dissipation is increased. These SH states provide a laminar dynamo for the RFP. The present work unveils the features of these SH states by performing a detailed analysis of numerical simulations. Since this state is stationary, the electric field is curl-free. Poisson equation reveals a charge separation, which is small enough to be consistent with the quasi-neutrality condition. This charge separation is shown to play a key role in the dynamo effect, since the related electrostatic field produces a drift velocity which is the main part of the dynamo velocity field. This physical interpretation of the dynamo, involving a leading role of the charge separation, can be extended to the quasi single helicity (QSH) states found in RFP devices as well as to turbulent MH states. [1] S. Cappello and D.F. Escande , Physical Review Letters 85-18 (2000) 3838

  16. Convection-driven dynamos in the limit of rapid rotation

    NASA Astrophysics Data System (ADS)

    Calkins, Michael; Long, Louie; Nieves, David; Julien, Keith; Tobias, Steven

    2016-11-01

    Most large-scale planetary magnetic fields are thought to be driven by rapidly rotating convection. Direct numerical simulation (DNS) remains an important tool for investigating the physics of dynamos, but remains severely restricted in parameter space relative to geo- and astrophysical systems. Asymptotic models provide a complimentary approach to DNS that have the ability to access planetary-like magnetohydrodynamical regimes. We utilize an asymptotic dynamo model to investigate the influence of convective flow regime on dynamo action. We find that the spatial characteristics of the large-scale magnetic field are dependent only weakly on changes in flow behavior. In contrast, the behavior of the small-scale magnetic field is directly dependent on, and therefore shows significant variations with, the small-scale convective flow field. These results may suggest why many previous DNS studies, which reside in a vastly different parameter space relative to planets, are nonetheless successful in reproducing many of the observed features of planetary magnetic fields.

  17. Insights on the solar dynamo from stellar observations

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Martens, Petrus C.; Judge, Philip G.

    2014-06-01

    A successful dynamo model should not only explain the broad characteristics of the magnetic field cycle for the Sun (22-year sunspot cycle with polarity reversals, migration of active latitudes toward the poles throughout the cycle, and Joy’s law), but should also be able to explain the cycling behavior observed in Solar-analog stars, which are very close to the Sun in essential characteristics. Our aim is to develop a set of constraints on dynamo models from the observed behavior of solar-analog stars obtained from a number of long-running synoptic surveys of cycling activity (Mount Wilson Observatory HK survey, Lowel Observatory Solar-Stellar Spectrograph, and the Fairborn Observatory Automatic Photoelectric Telescope survey), in conjuncture with stellar rotation and differential rotation data obtained by the Kepler Mission and other sources. By carefully piecing together the best data available today, we will provide an improved understanding of the parameter space in which Solar-like dynamos operate.

  18. Hall Current Effects in Mean-Field Dynamo Theory

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Bhattacharjee, Amitava

    2016-09-01

    The role of the Hall term on large-scale dynamo action is investigated by means of the first-order smoothing approximation. It is shown that the standard α coefficient is altered, and is zero when a specific double Beltrami state is attained, in contrast to the Alfvénic state for magnetohydrodynamical dynamos. The β coefficient is no longer positive definite, and thereby enables dynamo action even if α-quenching were to operate. The similarities and differences with the (magnetic) shear-current effect are pointed out, and a mechanism that may be potentially responsible for β \\lt 0 is advanced. The results are compared against previous studies, and their astrophysical relevance is also highlighted.

  19. Kinematic dynamo theory for an arbitrary mean flow

    NASA Astrophysics Data System (ADS)

    Hoyng, P.

    1984-11-01

    Arbitrary, incompressible mean flow (vo) in kinematic dynamo theory is analyzed via stochastic differential equations. When the first order smoothing approximation is made the only effect of a nonzero vo is that in the definition of the tensors the turbulent velocity v is replaced by the effect of passive advection by vo. Dynamo action depends only on velocity correlations measured in a frame comoving with and distorted by the mean flow through passive advection. Conclusions apply when the analysis is extended to arbitrary order, relevant for a long correlation time. The result admits straightforward evaluation for given model mean flows. The shear in vo causes a (kinematic) anisotropy in the tensors. This can be a large effect, which comes on top of the intrinsic (dynamical) anisotropy in the velocity correlation functions. Conditions for applicability are very large magnetic Reynolds number; incompressible flows; stationary vo; and correlation time period of the dynamo.

  20. Understanding Core-Mantle Coupling Through Dynamo Models

    NASA Astrophysics Data System (ADS)

    Sreenivasan, B.

    2007-12-01

    Core-mantle interaction in the Earth is studied using convection-driven dynamo models. We begin by considering an idealized regime that supports locking of the fluid motion and magnetic field to external inhomogeneities. In perfect locking, the azimuthal velocity in the fluid core has the profile of a thermal wind imposed by the boundary. In strongly convective dynamos, the competition between buoyancy-driven and boundary-driven thermal winds determines the extent of fluid-boundary coupling. We go on to show that dynamos with weakly convecting outer layers support locking, whereas strongly convecting outer regions swamp any influence of the lateral variations at the boundary. Finally, we investigate the tomographic boundary condition to see how its individual harmonic components may affect the morphology of the geomagnetic field.

  1. Linking Paleomagnetic Observations to Numerical Dynamo Simulations

    NASA Astrophysics Data System (ADS)

    Constable, C.

    2006-05-01

    Over the past decade a number of numerical dynamo simulations have successfully mimicked properties considered important for the geomagnetic field. These include predominantly dipolar surface field structures and the ability to reverse polarity, along with some sensitivities to the presence and size of a conductive inner core and to spatial variations in core-mantle boundary conditions. The surface manifestations of geomagnetic excursions and reversals in these models are spatially and temporally variable as in paleomagnetic data. Detailed comparisons with paleosecular variation models lead to less satisfying comparisons in many cases. A huge advantage in studying the geodynamo from a numerical perspective is the detailed knowledge available about physical processes going on throughout the simulated core, instead of non-unique interpretations of inexact and incomplete actual surface observations. The well-known disadvantage to such simulations is that the parameter regime in which they operate is still far from that of Earth (resulting in viscous boundary layers that are too thick) despite concerted efforts to approach the appropriate numerical regime. The importance of these limitations in reproducing Earth-like geomagnetic field variations remains in doubt, but an optimistic view is that although the dynamics at short time scales may not be realistic, one can hope for viable comparisons on sufficiently long time scales, with the definition of sufficiently long dependent on the parameter regime. Both paleomagnetic and numerical studies appear to support the idea that the same kind of processes contribute to very long term secular variations, geomagnetic excursions, and reversals. This work attempts to link the statistical descriptions of long term paleomagnetic observations with physical descriptions from numerical simulations, and identify conditions associated with geomagnetic reversals and excursions.

  2. THE SUBSURFACE-SHEAR-SHAPED SOLAR {alpha}{Omega} DYNAMO

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2011-02-01

    We propose a solar dynamo model distributed in the bulk of the convection zone with toroidal magnetic-field flux concentrated in a near-surface layer. We show that if the boundary conditions at the top of the dynamo region allow the large-scale toroidal magnetic fields to penetrate close to the surface, then the modeled butterfly diagram for the toroidal magnetic field in the upper convection zone is formed by the subsurface rotational shear layer. The model is in agreement with observed properties of the magnetic solar cycle.

  3. L'effet dynamo et le champ magnétique solaire.

    NASA Astrophysics Data System (ADS)

    Leorat, J.

    Contents: (1) Introduction. (2) Propriétés générales des équations d'évolution. (3) Définition de l'effet dynamo et condition nécessaire. (4) Dynamos phénoménologiques; théorèmes antidynamos. (5) Exemples de dynamos à champ de vitesse stationnaire. (6) Dynamos dépendant du temps. (7) Dynamos homogènes expérimentales. (8) Remarques finales.

  4. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    SciTech Connect

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  5. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    SciTech Connect

    Chapman, James Tharp

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  6. Astrophysical dynamos and the growth of magnetic fields in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2015-08-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Observations of galaxies at high-redshift give evidence for strong galactic magnetic fields even in the early Universe which are consistently measured at later times up to the present age. However, primordial magnetic fields and seed field generation by battery processes cannot explain such high field strengths, suggesting the presence of a rapid growth mechanism in those high-redshift galaxies and subsequent maintenance against decay. Astrophysical dynamo theory provides efficient means of field amplification where even weak initial fields can grow exponentially on sufficiently fast timescales, driving the conversion of kinetic energy into magnetic energy. We investigate the role which feedback mechanisms play in the creation of the turbulence necessary for dynamos to operate. Performing magnetohydrodynamic simulations of cooling halos of dwarf and Milky Way-like high-redshift progenitors, we compare the magnetic field evolution of weak seed fields with various topologies and stellar feedback mechanisms. We find that strong feedback can drive galactic gas turbulence which gives rise to velocity fields with fast exponential magnetic field growth. The simulations display a high gas fraction and a clumpy morphology with kinematics resembling Kolmogorov turbulence and magnetic energy spectra as predicted by Kazantsev dynamo theory. Magnetic fields reach equipartition with $\\mu$G field strength. In a final quiescent phase where feedback is turned off, gas turbulence is reduced and a quadrupole symmetry is observed in the magnetic field. These findings support the theory of rapid magnetic field amplification inside high-redshift galaxies, when the Universe was still young.

  7. An integrated model for Jupiter's dynamo action and mean jet dynamics

    NASA Astrophysics Data System (ADS)

    Gastine, Thomas; Wicht, Johannes; Duarte, Lucia; Heimpel, Moritz

    2014-05-01

    Data from various space crafts revealed that Jupiter's large scale interior magnetic field is very Earth-like. This is surprising since numerical simulations have demonstrated that, for example, the radial dependence of density, electrical conductivity and other physical properties, which is only mild in the iron cores of terrestrial planets but very drastic in gas planets, can significantly affect the interior dynamics. Jupiter's dynamo action is thought to take place in the deeper envelope where hydrogen, the main constituent of Jupiter's atmosphere, assumes metallic properties. The potential interaction between the observed zonal jets and the deeper dynamo region is an unresolved problem with important consequences for the magnetic field generation. Here we present the first numerical simulation that is based on recent interior models and covers 99% of the planetary radius (below the 1 bar level). A steep decease in the electrical conductivity over the outer 10% in radius allowed us to model both the deeper metallic region and the outer molecular layer in an integrated approach. The magnetic field very closely reproduces Jupiter's known large scale field. A strong equatorial zonal jet remains constrained to the molecular layer while higher latitude jets are suppressed by Lorentz forces. This suggests that Jupiter's higher latitude jets remain shallow and are driven by an additional effect not captured in our deep convection model. The dynamo action of the equatorial jet produces a band of magnetic field located around the equator. The unprecedented magnetic field resolution expected from the Juno mission will allow to resolve this feature allowing a direct detection of the equatorial jet dynamics at depth. Typical secular variation times scales amount to around 750 yr for the dipole contribution but decrease to about 5 yr at the expected Juno resolution (spherical harmonic degree 20). At a nominal mission duration of one year Juno should therefore be able to

  8. Strong-field dynamo action in rapidly rotating convection with no inertia.

    PubMed

    Hughes, David W; Cattaneo, Fausto

    2016-06-01

    The earth's magnetic field is generated by dynamo action driven by convection in the outer core. For numerical reasons, inertial and viscous forces play an important role in geodynamo models; however, the primary dynamical balance in the earth's core is believed to be between buoyancy, Coriolis, and magnetic forces. The hope has been that by setting the Ekman number to be as small as computationally feasible, an asymptotic regime would be reached in which the correct force balance is achieved. However, recent analyses of geodynamo models suggest that the desired balance has still not yet been attained. Here we adopt a complementary approach consisting of a model of rapidly rotating convection in which inertial forces are neglected from the outset. Within this framework we are able to construct a branch of solutions in which the dynamo generates a strong magnetic field that satisfies the expected force balance. The resulting strongly magnetized convection is dramatically different from the corresponding solutions in which the field is weak.

  9. Three decades of 3D global simulations of the solar dynamo (Invited)

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G. A.

    2009-12-01

    Studies of convective dynamos using dynamically consistent three-dimensional numerical simulations began with the work of Gilman and Miller (1981). Their Boussinesq simulations maintained a differential rotation "constant on cylinders" and produced magnetic cycles, but with fields propagating toward the poles, unlike the sunspot cycle. Anelastic dynamo simulations then illustrated the effects of the large radial gradients in density, temperature and diffusivity (Glatzmaier 1984) and could generate fields in the overshoot region at the base of the convection zone that propagate toward the equator. However, the differential rotation was still mainly "constant on cylinders" throughout most of the convection zone. Helioseismology then showed that the sun's internal rotation profile is closer to "constant on radii", especially at mid-latitude. As computers became more powerful and parallel, more turbulent (i.e., realistic) simulations were produced (Toomre et al.), which demonstrated the importance of resolving more of the turbulent flux of angular momentum in maintaining differential rotation and generating magnetic field. Considerable progress has been made over the past three decades; but we are still far from having a clear understanding of the magnetohydrodynamics of the solar convection zone, tachocline and internal radiative region.

  10. Laboratory experiments on rain-driven convection: Implications for planetary dynamos

    NASA Astrophysics Data System (ADS)

    Olson, Peter; Landeau, Maylis; Hirsh, Benjamin H.

    2017-01-01

    Compositional convection driven by precipitating solids or immiscible liquids has been invoked as a dynamo mechanism in planets and satellites throughout the solar system, including Mercury, Ganymede, and the Earth. Here we report laboratory experiments on turbulent rain-driven convection, analogs for the flows generated by precipitation within planetary fluid interiors. We subject a two-layer fluid to a uniform intensity rainfall, in which the rain is immiscible in the upper layer and miscible in the lower layer. Rain falls through the upper layer and accumulates as a two-fluid emulsion in the interfacial region between the layers. In experiments where the rain is denser than the lower fluid, rain-injected vortices evolve into small-scale plumes that rapidly coalesce into larger structures, resulting in turbulent convection throughout the lower layer. The turbulent convective velocity in our experiments increases approximately as the cube root of the rain buoyancy flux, implying little or no dependence on viscous and chemical diffusivities. Applying diffusion-free scaling laws for magnetic field generation, we find that precipitation-driven convection can be an effective dynamo mechanism in planetary cores provided the precipitation buoyancy flux is large and the convecting region is deep and nearly adiabatic.

  11. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows.

    PubMed

    Giesecke, André; Stefani, Frank; Burguete, Javier

    2012-12-01

    We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von Kármán-like flow subject to time-dependent nonaxisymmetric velocity perturbations. The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow measurements from a water experiment conducted at the University of Navarra in Pamplona, Spain. The principal experimental observations that are modeled in our simulations are nonaxisymmetric vortexlike structures which perform an azimuthal drift motion in the equatorial plane. Our simulations show that the interactions of these periodic flow perturbations with the fundamental drift of the magnetic eigenmode (including the special case of nondrifting fields) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an (m=2) vortexlike flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth rates and a drift of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of the growth rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is identified as a spectral exceptional point where eigenvalues (growth rates and frequencies) and eigenfunctions of two previously independent modes collapse. In the actual configuration the drift frequencies of the velocity perturbations that are observed in the water experiment are much larger than the fundamental drift frequency of the magnetic

  12. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows

    NASA Astrophysics Data System (ADS)

    Giesecke, André; Stefani, Frank; Burguete, Javier

    2012-12-01

    We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von Kármán-like flow subject to time-dependent nonaxisymmetric velocity perturbations. The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow measurements from a water experiment conducted at the University of Navarra in Pamplona, Spain. The principal experimental observations that are modeled in our simulations are nonaxisymmetric vortexlike structures which perform an azimuthal drift motion in the equatorial plane. Our simulations show that the interactions of these periodic flow perturbations with the fundamental drift of the magnetic eigenmode (including the special case of nondrifting fields) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an (m=2) vortexlike flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth rates and a drift of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of the growth rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is identified as a spectral exceptional point where eigenvalues (growth rates and frequencies) and eigenfunctions of two previously independent modes collapse. In the actual configuration the drift frequencies of the velocity perturbations that are observed in the water experiment are much larger than the fundamental drift frequency of the magnetic

  13. The role of curvature and stretching on the existence of fast dynamo plasma in Riemannian space

    SciTech Connect

    Garcia de Andrade, L. C.

    2008-12-15

    Vishik's anti-dynamo theorem is applied to a nonstretched twisted magnetic flux tube in Riemannian space. Marginal or slow dynamos along curved (folded), torsioned (twisted), and nonstretching flux tubes plasma flows are obtained. Riemannian curvature of the twisted magnetic flux tube is computed in terms of the Frenet curvature in the thin tube limit. It is shown that, for nonstretched filaments, fast dynamo action in the diffusive case cannot be obtained, in agreement with Vishik's argument that fast dynamos cannot be obtained in nonstretched flows. Instead of a fast dynamo, a nonuniform stretching slow dynamo is obtained. An example is given, which generalizes plasma dynamo laminar flows, recently presented by Wang et al. [Phys Plasmas 9, 1491 (2002)], in the case of low magnetic Reynolds number Re{sub m}{>=}210. Curved and twisting Riemannian heliotrons, where nondynamo modes are found even when stretching is present, shows that the simple presence of stretching is not enough for the existence of dynamo action. In this paper, folding plays the role of Riemannian curvature and can be used to cancel magnetic fields, not enhancing the dynamo action. Nondynamo modes are found for certain values of torsion, or Frenet curvature (folding) in the spirit of the anti-dynamo theorem. It is also shown that curvature and stretching are fundamental for the existence of fast dynamos in plasmas.

  14. MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2011-09-01

    This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottom of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.

  15. Powering Earth's dynamo with magnesium precipitation from the core.

    PubMed

    O'Rourke, Joseph G; Stevenson, David J

    2016-01-21

    Earth's global magnetic field arises from vigorous convection within the liquid outer core. Palaeomagnetic evidence reveals that the geodynamo has operated for at least 3.4 billion years, which places constraints on Earth's formation and evolution. Available power sources in standard models include compositional convection (driven by the solidifying inner core's expulsion of light elements), thermal convection (from slow cooling), and perhaps heat from the decay of radioactive isotopes. However, recent first-principles calculations and diamond-anvil cell experiments indicate that the thermal conductivity of iron is two or three times larger than typically assumed in these models. This presents a problem: a large increase in the conductive heat flux along the adiabat (due to the higher conductivity of iron) implies that the inner core is young (less than one billion years old), but thermal convection and radiogenic heating alone may not have been able to sustain the geodynamo during earlier epochs. Here we show that the precipitation of magnesium-bearing minerals from the core could have served as an alternative power source. Equilibration at high temperatures in the aftermath of giant impacts allows a small amount of magnesium (one or two weight per cent) to partition into the core while still producing the observed abundances of siderophile elements in the mantle and avoiding an excess of silicon and oxygen in the core. The transport of magnesium as oxide or silicate from the cooling core to underneath the mantle is an order of magnitude more efficient per unit mass as a source of buoyancy than inner-core growth. We therefore conclude that Earth's dynamo would survive throughout geologic time (from at least 3.4 billion years ago to the present) even if core radiogenic heating were minimal and core cooling were slow.

  16. The effect of giant impactors on the magnetic field energy of an early Martian dynamo.

    NASA Astrophysics Data System (ADS)

    Drummond, McGregor; Thieulot, Cedric; Monteux, Julien

    2016-04-01

    Through the cratering record embedded on its surface, Mars is one of the key planets required for investigating the formation and impact frequency in the early history of our Solar System. This record also holds clues to the events that may have caused the observed hemispheric dichotomy and cessation of the magnetic field that was present within the first 500 Myr of the planets' formation. We investigate the influence of giant impacts on the early Martian dynamo using the numerical dynamo modelling code PARODY-JA [1]. We hypothesize that the input heat from a giant impact will decrease the total heat flux at the CMB through mantle heating which leads to a decrease in the Rayleigh number of the core. As boundary conditions for the heat flux anomaly size, we use numerical results of a 750 km diameter impactor from the Monteux and Arkani-Hamed, 2014 [2] study which investigated impact heating and core merging of giant impacts in early Mars. We also determine the decrease in Rayleigh number from the change in total heat flux at the CMB using these results, where the decrease after impact is due to shock heating at the CMB. We calculate the time-averaged total magnetic field energy for an initial homogeneous heat flux model using a range of Rayleigh numbers (5 x 103 - 1 x 10^5). The Rayleigh number is then decreased for three new models - homogeneous, north pole impact and equatorial impact - and the time-averaged energy again determined. We find that the energy decreases more in our impact models, compared with the homogeneous, along with a variation in energy between the north pole and equatorial impact models. We conclude that giant impacts in Mars' early history would have decreased the total magnetic energy of the field and the decrease in energy is also dependent on the location of the impact. The magnetic field could have been disrupted beyond recovery from a planetesimal-sized collision; such as the suggested Borealis basin forming impact, or through the

  17. Gravitational dynamos and the low-frequency geomagnetic secular variation

    PubMed Central

    Olson, P.

    2007-01-01

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  18. Analytic solution of an oscillatory migratory α2 stellar dynamo

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.

    2017-02-01

    Context. Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for homogeneous helical turbulence or constant α effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant α. Aims: We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant α, but different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two boundaries. Methods: We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions. Results: The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point. The field always migrates away from the perfect conductor boundary toward the vacuum boundary, independently of the sign of α. Conclusions: The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration that oscillatory migratory dynamos are possible with constant α.

  19. Mean-field dynamo action in renovating shearing flows.

    PubMed

    Kolekar, Sanved; Subramanian, Kandaswamy; Sridhar, S

    2012-08-01

    We study mean-field dynamo action in renovating flows with finite and nonzero correlation time (τ) in the presence of shear. Previous results obtained when shear was absent are generalized to the case with shear. The question of whether the mean magnetic field can grow in the presence of shear and nonhelical turbulence, as seen in numerical simulations, is examined. We show in a general manner that, if the motions are strictly nonhelical, then such mean-field dynamo action is not possible. This result is not limited to low (fluid or magnetic) Reynolds numbers nor does it use any closure approximation; it only assumes that the flow renovates itself after each time interval τ. Specifying to a particular form of the renovating flow with helicity, we recover the standard dispersion relation of the α(2)Ω dynamo, in the small τ or large wavelength limit. Thus mean fields grow even in the presence of rapidly growing fluctuations, surprisingly, in a manner predicted by the standard quasilinear closure, even though such a closure is not strictly justified. Our work also suggests the possibility of obtaining mean-field dynamo growth in the presence of helicity fluctuations, although having a coherent helicity will be more efficient.

  20. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  1. 4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ALONG SOUTH SIDE OF WESTERN PORTION OF BUILDING, FROM EASTERN ENTRANCE TO MACHINERY ROOM, LOOKING WEST. - Oakland Naval Supply Center, Cold Storage Warehouse, South of C Street between First & Second Street, Oakland, Alameda County, CA

  2. Solar small-scale dynamo and polarity of sunspot groups

    NASA Astrophysics Data System (ADS)

    Sokoloff, D.; Khlystova, A.; Abramenko, V.

    2015-08-01

    In order to clarify a possible role of small-scale dynamo in formation of solar magnetic field, we suggest an observational test for small-scale dynamo action based on statistics of anti-Hale sunspot groups. As we have shown, according to theoretical expectations the small-scale dynamo action has to provide a population of sunspot groups which do not follow the Hale polarity law, and the density of such groups on the time-latitude diagram is expected to be independent on the phase of the solar cycle. Correspondingly, a percentage of the anti-Hale groups is expected to reach its maximum values during solar minima. For several solar cycles, we considered statistics of anti-Hale groups obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.

  3. Fluctuation dynamo and turbulent induction at small Prandtl number

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.

    2010-10-01

    We study the Lagrangian mechanism of the fluctuation dynamo at zero Prandtl number and infinite magnetic Reynolds number, in the Kazantsev-Kraichnan model of white-noise advection. With a rough velocity field corresponding to a turbulent inertial range, flux freezing holds only in a stochastic sense. We show that field lines arriving to the same point which were initially separated by many resistive lengths are important to the dynamo. Magnetic vectors of the seed field that point parallel to the initial separation vector arrive anticorrelated and produce an “antidynamo” effect. We also study the problem of “magnetic induction” of a spatially uniform seed field. We find no essential distinction between this process and fluctuation dynamo, both producing the same growth rates and small-scale magnetic correlations. In the regime of very rough velocity fields where fluctuation dynamo fails, we obtain the induced magnetic energy spectra. We use these results to evaluate theories proposed for magnetic spectra in laboratory experiments of turbulent induction.

  4. Robustness of oscillatory α2 dynamos in spherical wedges

    NASA Astrophysics Data System (ADS)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  5. A Liquid Metal Dynamo and MRI Experiment; Rm ≃ 120

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling

    2003-10-01

    A liquid metal (sodium) model of an α ω dynamo has been build and initially tested with water. The measured torque confirms the designed stable Couette flow, the required power, and hence the minimum level of turbulence. The experiment is designed to simulate what we believe is the highest gain, e^10^11 and highest power ˜ 3 ot 10^46 ergs/s, dynamo, which presumably occurs in the accretion disk forming the massive black hole, ˜ 10^8 M_⊙, of every galaxy. The experiment also simulates the fast dynamo gain at the resistivity truncated end of the turbulence spectrum as well as stellar convection driven helicity. In the experiment the Keplerian shear in a conducting fluid is approximated as limiting stable Couette flow in liquid sodium between two cylinders 30 and 15 cm radius rotating at 30 and 120 Hz respectively. The driven plumes are approximated by a pair of forced axial jets driven axially (30 cm length and at ˜ 10 Hz). Numerical simulations and flux rotation arguments both predict positive gain, ˜ 0.2 Ω_0, at the design Couette flow magnetic Reynolds number, Rm = Ω0 R_0^2/ η ≃ 120 and plume Rm ≃ 10. Initially, without the jets, we plan on applying an external quadrupole field which allows us to measure the Ω gain, B_φ≃ Rm/2π ≃ 20 B_r. An axial external field allows us to test for up to six modes of MRI growth. The resulting MRI driven turbulence allows us to test for an MRI dynamo effect at the level of 10-4 of the applied field. Mean-field dynamo theory can be compared to a heuristic coherent flux rotation analysis. Supported by NSF, NMIMT, and LANL.

  6. Small-scale dynamo at low magnetic Prandtl numbers.

    PubMed

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  7. DYNAMO ACTIVITIES DRIVEN BY MAGNETOROTATIONAL INSTABILITY AND THE PARKER INSTABILITY IN GALACTIC GASEOUS DISKS

    SciTech Connect

    Machida, Mami; Nakamura, Kenji E.; Kudoh, Takahiro; Akahori, Takuya; Sofue, Yoshiaki; Matsumoto, Ryoji

    2013-02-10

    We carried out global three-dimensional magnetohydrodynamic simulations of dynamo activities in galactic gaseous disks without assuming equatorial symmetry. Numerical results indicate the growth of azimuthal magnetic fields non-symmetric to the equatorial plane. As the magnetorotational instability (MRI) grows, the mean strength of magnetic fields is amplified until the magnetic pressure becomes as large as 10% of the gas pressure. When the local plasma {beta} (=p {sub gas}/p {sub mag}) becomes less than 5 near the disk surface, magnetic flux escapes from the disk by the Parker instability within one rotation period of the disk. The buoyant escape of coherent magnetic fields drives dynamo activities by generating disk magnetic fields with opposite polarity to satisfy the magnetic flux conservation. The flotation of the azimuthal magnetic flux from the disk and the subsequent amplification of disk magnetic field by the MRI drive quasi-periodic reversal of azimuthal magnetic fields on a timescale of 10 rotation periods. Since the rotation speed decreases with radius, the interval between the reversal of azimuthal magnetic fields increases with radius. The rotation measure computed from the numerical results shows symmetry corresponding to a dipole field.

  8. Dynamo Sensitivity in Solar Analogs with 50 Years of Ca II H & K Activity

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie H.; Baliunas, Sallie L.; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-05-01

    The Sun has a steady 11-year cycle in magnetic activity most well-known by the rising and falling in the occurrence of dark sunspots on the solar disk in visible bandpasses. The 11-year cycle is also manifest in the variations of emission in the Ca II H & K line cores, due to non-thermal (i.e. magnetic) heating in the lower chromosphere. The large variation in Ca II H & K emission allows for study of the patterns of long-term variability in other stars thanks to synoptic monitoring with the Mount Wilson Observatory HK photometers (1966-2003) and Lowell Observatory Solar-Stellar Spectrograph (1994-present). Overlapping measurements for a set of 27 nearby solar-analog (spectral types G0-G5) stars were used to calibrate the two instruments and construct time series of magnetic activity up to 50 years in length. Precise properties of fundamental importance to the dynamo are available from Hipparcos, the Geneva-Copenhagen Survey, and CHARA interferometry. Using these long time series and measurements of fundamental properties, we do a comparative study of stellar "twins" to explore the sensitivity of the stellar dynamo to small changes to structure, rotation, and composition. We also compare this sample to the Sun and find hints that the regular periodic variability of the solar cycle may be rare among its nearest neighbors in parameter space.

  9. Dynamo Sensitivity In Solar Analogs With 50 Years Of Ca II H & K Activity

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie; Baliunas, Sallie; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-09-01

    The Sun has a steady 11-year cycle in magnetic activity most well-known by the rising and falling in the occurrence of dark sunspots on the solar disk in visible bandpasses. The 11-year cycle is also manifest in the variations of emission in the Ca II H & K line cores, due to non-thermal (i.e. magnetic) heating in the lower chromosphere. The large variation in Ca II H & K emission allows for study of the patterns of long-term variability in other stars thanks to synoptic monitoring with the Mount Wilson Observatory HK photometers (1966-2003) and Lowell Observatory Solar-Stellar Spectrograph (1994-present). Overlapping measurements for a set of 27 nearby solar-analog (spectral types G0-G5) stars were used to calibrate the two instruments and construct time series of magnetic activity up to 50 years in length. Precise properties of fundamental importance to the dynamo are available from Hipparcos, the Geneva-Copenhagen Survey, and CHARA interferometry. Using these long time series and measurements of fundamental properties, we do a comparative study of stellar "twins" to explore the sensitivity of the stellar dynamo to small changes to structure, rotation, and composition. We also compare this sample to the Sun and find hints that the regular periodic variability of the solar cycle may be rare among its nearest neighbors in parameter space.

  10. Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation

    NASA Astrophysics Data System (ADS)

    Gan, Quan; Wang, Wenbing; Yue, Jia; Liu, Hanli; Chang, Loren C.; Zhang, Shaodong; Burns, Alan; Du, Jian

    2016-10-01

    The Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to theoretically study the 6 day wave effects on the ionosphere. By introducing a 6 day perturbation with zonal wave number 1 at the model lower boundary, the TIME-GCM reasonably reproduces the 6 day wave in temperature and horizontal winds in the mesosphere and lower thermosphere region during the vernal equinox. The E region wind dynamo exhibits a prominent 6 day oscillation that is directly modulated by the 6 day wave. Meanwhile, significant local time variability (diurnal and semidiurnal) is also seen in wind dynamo as a result of altered tides due to the nonlinear interaction between the 6 day wave and migrating tides. More importantly, the perturbations in the E region neutral winds (both the 6 day oscillation and tidal-induced short-term variability) modulate the polarization electric fields, thus leading to the perturbations in vertical ion drifts and ionospheric F2 region peak electron density (NmF2). Our modeling work shows that the 6 day wave couples with the ionosphere via both the direct neutral wind modulation and the interaction with atmospheric tides.

  11. Sodium Handling Technology and Engineering Design of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Forest, C. B.; O'Connell, R.; Wright, A.; Robinson, K.

    1998-11-01

    A new liquid metal MHD experiment is being constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 degrees Celsius. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurazation are presented, and safety elements are highlighted.

  12. Fluoroquinolone and Third-Generation-Cephalosporin Resistance among Hospitalized Patients with Urinary Tract Infections Due to Escherichia coli: Do Rates Vary by Hospital Characteristics and Geographic Region?

    PubMed Central

    Bidell, Monique R.; Palchak, Melissa; Mohr, John

    2016-01-01

    This analysis of nearly 10,000 hospital-associated urinary tract infection (UTI) episodes due to Escherichia coli showed that fluoroquinolone and third-generation-cephalosporin resistance rates were 34.5% and 8.6%, respectively; the rate of concurrent resistance to both agents was 7.3%. Fluoroquinolone resistance rates exceeded 25% regardless of geographic location or hospital characteristics. The findings suggest that fluoroquinolones should be reserved and third-generation cephalosporins be used with caution as empirical agents for hospitalized patients with UTIs due to E. coli. PMID:26926640

  13. Recent Progress in Understanding the Sun's Magnetic Dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David. H.

    2004-01-01

    100 years ago we thought that the Sun and stars shone as a result of slow gravitational contraction over a few tens of millions of years - putting astronomers at odds with geologists who claimed that the Earth was much, much older. That mystery was solved in the 1920s and 30s with the discovery of nuclear energy (proving that the geologists had it right all along). Other scientific mysteries concerning the Sun have come and gone but three major mysteries remain: 1) How does the Sun produce sunspots with an 11-year cycle? 2) What produces the huge explosions that result in solar flares, prominence eruptions, and coronal mass ejections? and 3) Why is the Sun's outer atmosphere, the corona, so darned hot? Recent progress in solar astronomy reveals a single key to understanding all three of these mysteries.The 11-year time scale for the sunspot cycle indicates the presence of a magnetic dynamo within the Sun. For decades this dynamo was though to operate within the Sun's convection zone - the outmost 30% of the Sun where convective currents transport heat and advect magnetic lines of force. The two leading theories for the dynamo had very different models for the dynamics of the convection zone. Actual measurements of the dynamics using the techniques of helioseismology showed that both of these models had to be wrong some 20 years ago. A thin layer of strongly sheared flow at the base of the convection zone (now called the tachocline) was then taken to be the seat of the dynamo. Over the last 10 years it has become apparent that a weak meridional circulation within the convection zone also plays a key role in the dynamo. This meridional circulation has plasma rising up from the tachocline in the equatorial regions, spreading out toward the poles at a top speed of about 10-20 m/s at the surface, sinking back down to the tachocline in the polar regions, and then flowing back toward the equator at a top speed of about 1-2 m/s in the tachocline itself. Recent dynamo

  14. Effective Improvement in Generation Efficiency due to Partition Cooperation Management of a Fuel Cell Micro-Grid

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    The fuel cell micro-grid is expected as a distributed power supply with little environmental impact. However, if a micro-grid is installed in an urban area, a generation efficiency of less than 21% on an all-year basis is expected. Generally, in planning an electric power network using a micro-grid, all the target buildings are connected and electric power is supplied. In this paper, a micro-grid is divided into multiple and each is optimized for the purpose of maximization of power generation efficiency. In the cooperation management of a micro-grid, large fluctuations in load, or increases and decreases in a building, can be followed with a grid using a system-interconnection device. The system proposed in this paper obtained results with high generation efficiency (from 21.1% to 27.6%) compared with the central system (generation efficiency is 20.6% to 24.8%) of a fuel cell micro-grid.

  15. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax.

  16. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect

    Forest, Cary B.

    2013-09-19

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  17. Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.

    PubMed

    Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul

    2010-03-01

    We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.

  18. Metallic precipitate contribution to carrier generation in metal-oxide-semiconductor capacitors due to the Schottky effect

    NASA Astrophysics Data System (ADS)

    Negoita, M. D.; Tan, T. Y.

    2004-01-01

    The contribution of metallic precipitates to carrier generation has been modeled for metal-oxide-semiconductor (MOS) capacitor devices fabricated using Si, with the precipitate located in the depletion region of the device. The physical mechanism responsible for the electrical activity of the metallic precipitate is attributed to the Schottky junction property between the precipitate and the Si matrix materials. The precipitate serves as a highly effective carrier generation center when the capacitor is switched from the accumulation mode to the deep depletion mode. As a practical case, the electrical activity of the Cu3Si precipitate is investigated and the impact of the precipitate located at different positions within the depleted region of the MOS capacitor on the device performance degradation is analyzed.

  19. New features of different frequency generating systems due to the use of electrodeless rigidly mounted VBA quartz crystal resonator

    NASA Technical Reports Server (NTRS)

    Jendly, A.; Graf, E.; Busca, G.; Brownsea, D. A.

    1984-01-01

    The BVA 5 MHz crystal equipped frequency sources exhibit a new blend of performances such as 10 to 11 daily stability, 5x10-13 short term stability (1 to 30 s time intervals) and close to the carrier low phase noise (1 Hz : -120 dBc, 10 Hz : -140 dBc), whereby retaining the customary crystal oscillator benefits of small volume, high reliability and low price, as opposed to more sophisticated frequency generators which would be required to achieve comparable performances. Examples illustrating the impact of the Oscilloquartz BVA oven-controlled crystal oscillator in different frequency generating systems are presented: cesium frequency standards; hydrogen frequency standard; a precision distribution sub-system for satellite ground stations; and high hierarchy exchanges of digital networks, synchronized by the master-slave method are discussed.

  20. Spectroscopic observation of fluctuation-induced dynamo in the edge of the reversed-field pinch.

    PubMed

    Fontana, P W; Den Hartog, D J; Fiksel, G; Prager, S C

    2000-07-17

    The fluctuation-induced dynamo has been investigated by direct measurement of v and b in the edge of a reversed-field pinch and is found to be significant in balancing Ohm's law. The velocity fluctuations producing the dynamo emf have poloidal mode number m = 0, consistent with MHD calculations and in contrast with the core m = 1 dynamo. The velocity fluctuations exhibit the parity relative to their resonant surface predicted by linear MHD theory.

  1. Stellar Dynamo Models with Prominent Surface Toroidal Fields

    NASA Astrophysics Data System (ADS)

    Bonanno, Alfio

    2016-12-01

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy in low-mass fast-rotating stars can be naturally explained with an underlying αΩ mechanism.

  2. An explicit solution for static unbounded helical dynamos

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Milovich, Jose L.

    The Lortz dynamo with helical symmetry is re-examined. It is shown that by imposing appropriate boundary conditions the set of possible solutions can be broken down into various classes characterized by the behavior of the mean magnetic field. It is found that, as the cylindrical radius, s, tends to zero, 0(sj), const + 0(sj-i), where j>5. It is proved that the azimuthal wavenumber associated with the j=5 class is necessarily equal to 2. The existence of at least one cylindrical surface inside which the dynamo is self-sustained is demonstrated. A new simple explicit solution is obtained. The topology the magnetic field is studied and three-dimensional pictures of the magnetic field lines are exhibited. Finally, a criterion for reversal of the magnetic field as a function of radius is ohtained and is applied to our solution.

  3. Simple Model of the (alpha)(omega) Dynamo: Self-Excited Spheromaks

    SciTech Connect

    Fowler, T K

    2010-01-26

    The astrophysical {alpha}{omega} dynamo converting angular momentum to magnetic energy can be interpreted as a self-excited Faraday dynamo together with magnetic relaxation coupling the dynamo poloidal field to the toroidal field produced by dynamo currents. Since both toroidal and poloidal fields are involved, the system can be modeled as helicity creation and transport, in a spheromak plasma configuration in quasi-equilibrium on the time scale of changes in magnetic energy. Neutral beams or plasma gun injection across field lines could create self-excited spheromaks in the laboratory.

  4. Predictability and Coupled Dynamics of MJO During DYNAMO

    DTIC Science & Technology

    2015-02-03

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Woods Hole Oceanographic Institution 266 Woods Hole Road, MS#21 Woods Hole , MA...release: distribution is unlimited. Predictability and Coupled Dynamics of MJO During DYNAMO Hyodae Seo Woods Hole Oceanographic Institution Woods... Hole , MA 02543 phone: (508) 289-2792 fax: (508) 457-2181 email: hseo@whoi.edu Award Number: N00014-13-1-0133 LONG-TERM GOALS Our long-term goal

  5. Dynamos of the Sun, Stars, and Planets - Preface

    NASA Astrophysics Data System (ADS)

    Stix, M.

    2005-04-01

    The conference ``Dynamos of the Sun, Stars, and Planets'' was organized by the Kiepenheuer-Institut für Sonnenphysik Freiburg, and was held at the University of Freiburg from 4th to 6th October 2004. About 50 participants attended the conference, with 8 review lectures, 20 contributed talks, and 6 posters. With only few exceptions, these contributions appear in the present issue of Astronomische Nachrichten. This preface summarizes the discussion of the closing session.

  6. Rotating convection-driven dynamos at low Ekman number.

    PubMed

    Rotvig, Jon; Jones, Chris A

    2002-11-01

    We present a fully 3D self-consistent convection-driven dynamo model with reference to the geodynamo. A relatively low Ekman number regime is reached, with the aim of investigating the dynamical behavior at low viscosity. This regime is computationally very demanding, which has prompted us to adopt a plane layer model with an inclined rotation vector, and to make use of efficiently parallelized code. No hyperdiffusion is used, all diffusive operators are in the classical form. Our model has infinite Prandtl number, a Rayleigh number that scales as E(-1/3) (E being the Ekman number), and a constant Roberts number. The optimized model allows us to study dynamos with Ekman numbers in the range [10(-5),10(-4)]. In this regime we find strong-field dynamos where the induced magnetic fields satisfy Taylor's constraint to good accuracy. The solutions are characterized by (i) a MAC balance within the bulk, i.e., Coriolis, pressure, Lorentz, and buoyancy forces are of comparable magnitude, while viscous forces are only significant in thin boundary layers, (ii) the Elsasser number is O(10), (iii) the strong magnetic fields cannot prevent small-scale structures from becoming dominant over the large-scale components, (iv) the Taylor-Proudman effect is detectable, (v) the Taylorization decreases as the Ekman number is lowered, and (vi) the ageostrophic velocity component makes up 80% of the flow.

  7. The metastable dynamo model of stellar rotational evolution

    SciTech Connect

    Brown, Timothy M.

    2014-07-10

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  8. Effects of enhanced stratification on equatorward dynamo wave propagation

    SciTech Connect

    Käpylä, Petri J.; Mantere, Maarit J.; Cole, Elizabeth; Warnecke, Jörn; Brandenburg, Axel

    2013-11-20

    We present results from simulations of rotating magnetized turbulent convection in spherical wedge geometry representing parts of the latitudinal and longitudinal extents of a star. Here we consider a set of runs for which the density stratification is varied, keeping the Reynolds and Coriolis numbers at similar values. In the case of weak stratification, we find quasi-steady dynamo solutions for moderate rotation and oscillatory ones with poleward migration of activity belts for more rapid rotation. For stronger stratification, the growth rate tends to become smaller. Furthermore, a transition from quasi-steady to oscillatory dynamos is found as the Coriolis number is increased, but now there is an equatorward migrating branch near the equator. The breakpoint where this happens corresponds to a rotation rate that is about three to seven times the solar value. The phase relation of the magnetic field is such that the toroidal field lags behind the radial field by about π/2, which can be explained by an oscillatory α{sup 2} dynamo caused by the sign change of the α-effect about the equator. We test the domain size dependence of our results for a rapidly rotating run with equatorward migration by varying the longitudinal extent of our wedge. The energy of the axisymmetric mean magnetic field decreases as the domain size increases and we find that an m = 1 mode is excited for a full 2π azimuthal extent, reminiscent of the field configurations deduced from observations of rapidly rotating late-type stars.

  9. The Metastable Dynamo Model of Stellar Rotational Evolution

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    2014-07-01

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived "C-sequence" of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating "I-sequence" stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  10. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement.

    PubMed

    Du, Zheren; Chen, Lianwei; Kao, Tsung-Sheng; Wu, Mengxue; Hong, Minghui

    2015-01-01

    For practical application, optical limiting materials must exhibit a fast response and a low threshold in order to be used for the protection of the human eye and electro-optical sensors against intense light. Many nanomaterials have been found to exhibit optical limiting properties. Laser ablation offers the possibility of fabricating nanoparticles from a wide range of target materials. For practical use of these materials, their optical limiting performance, including optical limiting threshold and the ability to efficiently attenuate high intensity light, needs to be improved. In this paper, we fabricate nanoparticles of different metals by laser ablation in liquid. We study the optical nonlinear properties of the laser-generated nanoparticle dispersion. Silica microspheres are used to enhance the optical limiting performance of the nanoparticle dispersion. The change in the optical nonlinear properties of the laser-generated nanoparticle dispersion caused by silica microspheres is studied. It is found that the incident laser beam is locally focused by the microspheres, leading to an increased optical nonlinearity of the nanoparticle dispersion.

  11. Simulation analysis of Maanshan steam generator level high-high transient due to reactor coolant pump trip and restart

    SciTech Connect

    Lee, Shawcuang; Wang, Jyhgang; Lee, Heikuang; King, Chuanheng

    1990-06-01

    On March 21, 1989, the reactor coolant pump (RCP) of Maanshan nuclear power plant unit 1 was tripped so that the power output of loop 1 decreased to almost zero. After this short transient, the unit 1 reactor remained in steady-state operation and maintained 19% of rated power with only two loops (two RCPs). The problem of RCP-A was then resolved, and it was restarted at {approximately} 30 min after the prior trip. After 11 s, a water-level transient occurred in steam generator (SG)-A, and shortly thereafter the turbine and generator were automatically tripped because of the SG-A high-high level setpoint. At that point, because of another electrical system failure, the electrical bus could not automatically switch over the RCP power supply to off-site power so that all three RCPs were tripped because of a low-voltage signal. The resulted in a reactor trip. In this study, the Institute of Nuclear Energy Research was requested to analyze the scenario of the Maanshan nuclear power plant unit 1 SG-A high-high level transient event, which was induced by RCP-A restart after an accidental trip.

  12. Application of computational neural networks in predicting atmospheric pollutant concentrations due to fossil-fired electric power generation

    SciTech Connect

    El-Hawary, F.

    1995-12-31

    The ability to accurately predict the behavior of a dynamic system is of essential importance in monitoring and control of complex processes. In this regard recent advances in neural-net based system identification represent a significant step toward development and design of a new generation of control tools for increased system performance and reliability. The enabling functionality is the one of accurate representation of a model of a nonlinear and nonstationary dynamic system. This functionality provides valuable new opportunities including: (1) The ability to predict future system behavior on the basis of actual system observations, (2) On-line evaluation and display of system performance and design of early warning systems, and (3) Controller optimization for improved system performance. In this presentation, we discuss the issues involved in definition and design of learning control systems and their impact on power system control. Several numerical examples are provided for illustrative purpose.

  13. Density profile steepening due to self-generated magnetic fields in plasmas produced by laser irradiation of spherical targets

    SciTech Connect

    Vyas, P.; Srivastava, M.P.

    1995-07-01

    The density variation of plasmas produced by irradiation with laser beams on spherical targets has been studied in the steady state. This study used an adiabatic plasma model with self-generated magnetic fields included in a phenomenological manner. The density variation with a radial coordinate is found to have a steep rise through the critical density, which reaches a plateau in the overdense region, then a density minimum and finally, a rise. This variation has been compared with experimentally observed values in earlier works and is found to be in fairly good agreement. The variation of plateau density with the intensity of the laser is also compared with the experimentally observed variation. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Measurements of the large-scale direct-current Earth potential and possible implications for the geomagnetic dynamo.

    PubMed

    1985-07-05

    The magnitude of the large-scale direct-current earth potential was measured on a section of a recently laid transatlantic telecommunications cable. Analysis of the data acquired on the 4476-kilometer cable yielded a mean direct-current potential drop of less than about 0.072 +/- 0.050 millivolts per kilometer. Interpreted in terms of a generation of the potential by the earth's geodynamo, such a small value of the mean potential implies that the toroidal and poloidal magnetic fields of the dynamo are approximately equal at the core-mantle boundary.

  15. Influence of time dependent flows on the threshold of the kinematic dynamo action

    NASA Astrophysics Data System (ADS)

    de La Torre, A.; Burguete, J.; Pérez-García, C.

    2007-07-01

    A numerical study of the influence of slowly evolving velocity fields in the threshold of the dynamo action is presented. Using experimental time averaged velocity fields, harmonic variations are introduced in a kinematic code in order to characterize the response of the magnetic field to a broad range of frequencies. A critical frequency is found around ωc=200 where a transition is obtained. For large values of the frequency (i.e. smaller periods) the magnetic field can not see the velocity fluctuations and the response of the system corresponds to that of the mean flow. For smaller frequencies, the magnetic field sees the slow evolution of the velocity field, and reduces significatively its growth rates when compared to the mean value. This loss of efficiency is due to the dissipation that appears during the transition between the magnetic eigenvectors corresponding to each one of the velocity fields.

  16. Magneto Rotation Instability and the Problem of Magneto Dynamo

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.

    2007-12-01

    A new approach to the geophysical Earth's problem is considered, where the main role of geophysical time variation of magnetic force of Earth is due to magneto rotation instability rather than the theory of magneto dynamo. Besides the attention is drawn to magneto rotation instability (MRI) as a source of evolution of Earth's magnetic force. First studied theoretically by E.P. Velikhov in ideal condtions, then experimentally and numerically, MRI is never observed at real laboratory conditions. Most part of experiments is dedicated to the instability Raileigh-Taylor that is very close to MRI: viz., non compressible liquid metal is between rotating coaxial cylinders; permanent magnetic field along the axis is produced by currents beside cylinders. A great challenge is that motion of liquid metal is very far from ideal for MRI proof. So Reinolds Number appears to be large, meantime magnetic Reinolds Number is of order of unity or even less. A ratio = , since viscosity, . At study MRI which often called Standard MRI (SMRI) one more condition is to be satisfied: time of motion of perturbation between cylinders is to be less then the time of magnetic force diffusion. Hence one has two inequalities: - Lundquist Number, -Alfven velocity. It follows that and magnetic forces are to be several KGs. Besides, a difficulty appears due to height of cylinders and boundary conditions on the butts of cylinders. It brings about additional motion, for instance due to Eckman force in usual hydrodynamics and counter currents in unit on checking of SMRN. The way out is either search of modification SMRN (like Goodman), or checking of thresholds MRN (like Taylor) with very large aspect relation, to forget butts cylinder conditions. To escape the difficulty tackled with Eckman force Goodman at Princeton University create rotating butts of cylinders to get closer to configuration Taylor but with larger aspect ratio. For Taylor aspect ratio was of the order of 100, for Goodman and

  17. An unconventional approach to impedance microbiology: detection of culture media conductivity variations due to bacteriophage generated lyses of host bacteria.

    PubMed

    Mortari, Alessia; Adami, Andrea; Lorenzelli, Leandro

    2015-05-15

    A novel and unconventional approach to impedance microbiology has been under investigation. In our approach, solution conductivity variations are generated from bacteriophage lyses of infected host cells and the consequent release of conductive endoplasmic material. To sensitively detect the lysis, low conductive growth media have been developed. A microchip has been fabricated to perform the analysis. The microchip is made of two bare gold electrodes and PDMS microchamber of 36 nL volume. Escherichia coli and selective phages T4 have been used as case study. Proof-of-principle experiments are here presented and discussed. The method was characterised in a wide range between 10(4) and 10(8) CFU/mL, where linear relation was found between conductivity variation and cell concentration in a log10 vs. log10 plot. The method is suited to integration with sample preparation based on phage-functionalised magnetic beads. It has a potential detection limit below 1 CFU/chamber and a total assay time of less than 1 h.

  18. Slip Flow of Powell-Eyring Liquid Film Due to an Unsteady Stretching Sheet with Heat Generation

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mostafa A. A.; Megahed, Ahmed M.

    2016-06-01

    This paper is focused on the study of the viscous Powell-Eyring liquid thin film flow and heat transfer driven by an unsteady stretching sheet in the presence of slip velocity and non-uniform heat generation. A system of equations for momentum and thermal energy are reduced to a set of coupled non-linear ordinary differential equations with the aid of dimensionless transformation. The resulting seven-parameter problem has been solved numerically by using an efficient shooting technique coupled with the fourth-order Runge-Kutta algorithm over the entire range of physical parameters. To interpret various physical parameters governing the flow and heat transfer which appear in the momentum and energy equations, the results are presented graphically. The present results are compared with some of the earlier published work in some limiting cases and are found to be in an excellent agreement. This favorable comparison lends confidence in the numerical results to be reported in the present work. Furthermore, the effects of the parameters governing the thin film flow and heat transfer are examined and discussed through graphs and tables. Also, the values of the local skin-friction coefficient and the local Nusselt number for different values of physical parameters are presented through tables. Additionally, the obtained results for some particular cases of the present problem appear in good agreement with the literature review.

  19. Generation of pseudo-waves in the middle atmosphere by flow accelerations due to breaking gravity waves?

    NASA Technical Reports Server (NTRS)

    Jacobson, Raymond A.; Larsen, M. F.

    1993-01-01

    Low frequency, large amplitude waves are often observed at mesospheric heights in radar and lidar wind measurements. A series of individual profiles of 1-hr averages of velocity data that were taken in October 1981 using the MST radar at Poker Flat, Alaska are presented. The vertical wavelength of this wave-like event is about 15 km and has a period close to 10 hours. A clear downward phase propagation can be seen, and so these oscillations are usually, and probably correctly, interpreted as being gravity wave flow perturbations. We investigate an alternative explanation that may also be possible; specifically, we investigate the possibility that the perturbed flow is a pseudo-wave structure produced by mean flow acceleration due to gravity waves propagating upward from below and breaking in the mesosphere. The question is whether effects similar to those that produce the much longer period Quasi-Biennial Oscillation (QBO) in the equatorial stratosphere can produce mesospheric pseudo-waves (MPW) at much shorter periods.

  20. Tertiary trisomy due to a reciprocal translocation of chromosomes 5 and 21 in a four-generation family.

    PubMed

    Braddock, S R; Henley, K M; Potter, K L; Nguyen, H G; Huang, T H

    2000-06-19

    Tertiary trisomy, or double trisomy, is a rare occurrence. We present two individuals with a previously unreported tertiary trisomy for chromosomes 5p and 21q in an eight-generation pedigree. Their phenotypes are compared with other partial trisomies of either 5p or 21q from the literature. The propositus was diagnosed with trisomy 21 at 2 years of age after a karyotype study for short stature and developmental delay. His phenotype was described as atypical for Down syndrome. He presented at 9 years of age because of pervasive behavioral problems and obesity. He was brachycephalic with a flattened nasal bridge, but he lacked other characteristics of trisomy 21. Because of lack of phenotypic evidence of Down syndrome, a repeat karyotype was obtained and showed 47,XY, +der(21)t(5;21)(p15.1; q22.1), incorporating partial trisomies of both chromosomes 5 and 21. Mother had a balanced translocation, 46, XX,t(5;21)(p15.1; q22.1); 8 other relatives were examined. The translocation originated from the maternal great-grandmother, but only the propositus and his mentally retarded aunt had a similar phenotye and the derivative chromosome. Fluorescence in situ hybridization showed absence of band 21q22.2 in the derivative chromosome of the propositus and his aunt, indicating that neither had trisomy for the Down syndrome critical region. These cases represent a unique double partial trisomy of chromosome arms 5p and 21q that occurred because of 3:1 malsegregation of a reciprocal translocation. These cases further demonstrate that phenotypic discordance with cytogenetic results dictate further investigation using advanced cytogenetic hybridization.

  1. Hospitalization due to alcohol and drug abuse in first- and second-generation immigrants: a follow-up study in Sweden.

    PubMed

    Leão, Teresa Saraiva; Johansson, Leena-Maria; Sundquist, Kristina

    2006-01-01

    The detrimental effects of substance abuse on the individual and on society are well known. Health care resources must target where they are most needed. This study investigated (1) whether the increased risk of being hospitalized for alcohol abuse and drug abuse among certain immigrant groups is present in the next generation and (2) whether having one parent born in the host country (i.e., Sweden) has a protective effect on the risk of being hospitalized for alcohol abuse and drug abuse among second-generation immigrants. In total, 2,243,546 persons aged 20-39 years were followed from 1 January 1992 until 31 December 1999 for first hospital admission due to alcohol abuse or drug abuse. A Cox regression model was used to estimate hazard ratios for each diagnosis group. When the Swedish majority population was used as reference, the highest risks of alcohol abuse and drug abuse were found among first- and second-generation Finns, after adjustment for income. Among second-generation Finns with one parent born in Sweden, the increased risk of being hospitalized for alcohol abuse and drug abuse was lower than among second-generation Finns with both parents born in Finland. Health care resources need to target certain groups of first- and second-generation immigrants.

  2. Low-frequency guided waves in a fluid-filled borehole: Simultaneous effects of generation and scattering due to multiple fractures

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit

    2017-03-01

    Low-frequency, axially-symmetric guided waves which propagate along a fluid-filled borehole (tube waves) are studied in order to characterize the hydraulic fractures intersecting the borehole. We formulate a new equation for the total tube wavefield, which includes simultaneous effects of (1) tube-wave scattering (reflection and transmission) due to wave propagation across hydraulic fractures, and (2) tube-wave generation due to incident plane P waves. The fracture is represented by the nonwelded interface boundary conditions. We use an appropriate form of the representation theorem in order to correctly handle the multiple scattering due to nonwelded interfaces. Our approach can implement any model that has so far been developed. We consider a recent model which includes simultaneous effects of fluid viscosity, dynamic fluid flow, and fracture compliance. The derived equation offers a number of important insights. We recognize that the effective generation amplitude contains the simultaneous effect of both tube-wave generation and scattering. This leads to a new physical understanding indicating that the tube waves are scattered immediately after generation. We show that this scattering is nonlinear with respect to interface compliance. This physical mechanism can be implicitly accounted for by considering more realistic boundary conditions. We also illustrate the application of the new equation in order to predict the complex signature of the total tube wavefield, including generation and scattering at multiple hydraulic fractures. A new formulation for focusing analyses is also derived in order to image and characterize the hydraulic fractures. The obtained results and discussions are important for interpretation, modeling, and imaging using low-frequency guided waves, in the presence of multiple fractures along a cylindrical inclusion.

  3. Contributions to the theory of a two-scale homogeneous dynamo experiment.

    PubMed

    Rädler, Karl-Heinz; Brandenburg, Axel

    2003-02-01

    The principle of the two-scale dynamo experiment at the Forschungszentrum Karlsruhe is closely related to that of the Roberts dynamo working with a simple fluid flow which is, with respect to proper Cartesian coordinates x, y, and z, periodic in x and y and independent of z. A modified Roberts dynamo problem is considered with a flow more similar to that in the experimental device. Solutions are calculated numerically, and on this basis an estimate of the excitation condition of the experimental dynamo is given. The modified Roberts dynamo problem is also considered in the framework of the mean-field dynamo theory, in which the crucial induction effect of the fluid motion is an anisotropic alpha effect. Numerical results are given for the dependence of the mean-field coefficients on the fluid flow rates. The excitation condition of the dynamo is also discussed within this framework. The behavior of the dynamo in the nonlinear regime, i.e., with backreaction of the magnetic field on the fluid flow, depends on the effect of the Lorentz force on the flow rates. The quantities determining this effect are calculated numerically. The results for the mean-field coefficients and the quantities describing the backreaction provide corrections to earlier results, which were obtained under simplifying assumptions.

  4. The pDynamo Program for Molecular Simulations using Hybrid Quantum Chemical and Molecular Mechanical Potentials.

    PubMed

    Field, Martin J

    2008-07-01

    The pDynamo program has been developed for the simulation of molecular systems using hybrid quantum chemical (QC) and molecular mechanical (MM) potentials. pDynamo is written in a mixture of the computer languages Python and C and is a successor to the previous version of Dynamo, now denoted fDynamo, that was written in Fortran 90 (J. Comput. Chem. 2000, 21, 1088). The current version of Dynamo has a similar range of functionality to the older one but extends it in some significant ways, including the addition of a density functional theory QC capability. This paper gives a general description of pDynamo and outlines some of the advantages and disadvantages that have been encountered in switching computer languages. Some technical aspects of the implementation of pDynamo's algorithms are also discussed and illustrated with the results of example calculations. pDynamo is available on the Web at the address http://www.pdynamo.org and is released under the CeCILL license which is equivalent to the GNU general public license but conforms to the principles of French law.

  5. A Theoretical Study of the Build-up of the Sun’s Polar Magnetic Field by using a 3D Kinematic Dynamo Model

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal; Choudhuri, Arnab Rai; Miesch, Mark S.

    2017-01-01

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  6. Implications of the Deep Cycle 23/24 Minimum for our Understanding of the Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Feynman, J.; Ruzmaikin, A.

    2011-12-01

    When the cycle 23/24 minimum is considered in the light of the existing record of 1,500 years of solar output proxies, it can be understood as a typical minimum of a periodic modulation of the amplitude of the 11-year solar cycle, which we call the Centennial Gleissberg Cycle (CGC). This 90-100 year amplitude variation has been well established by earlier studies (Gleissberg, 1965, Siscoe, 1980, Silverman and Feynman, 1980, Sonnett, 1982) and is present at least 80% of the time since 450 AD. It consists of a series of about nine or ten 11-year cycles with amplitudes that gradually rise and then fall (Feynman and Fougere, 1988). Previous well-established deep minima took place about 1710, 1810 (Dalton Minimum) and 1910. Because of this record a minimum about 2010 was not unexpected (e.g. Silverman, 1992). The CGC was also seen in auroral observations from 450 AD to 1450 AD. It thus appears that the magnetic field generated by the solar dynamo has a quasi-periodic variation of about 100 years, the cause of which demands future study. In this talk we will review the evidence that the peculiar behavior noticed during 23/24 minimum was a CGC minimum. We will describe the CGC and develop criteria to distinguish it from Grand Minima such as the Maunder Minimum. When these criteria are applied to the observations, the CGC hypothesis is clearly favored. We will discuss possible models of non-linear dynamos that can explain the origin of the CGC.

  7. Mitigation of Sri Lanka Island Effects in Colombo Sounding Data during DYNAMO

    NASA Astrophysics Data System (ADS)

    Ciesielski, P. E.; Johnson, R. H.; Yoneyama, K.

    2013-12-01

    During the Dynamics of the MJO (DYNAMO) field campaign, upper-air soundings were launched at Colombo, Sri Lanka as part of the enhanced northern sounding array (NSA) of the experiment. The Colombo soundings were affected at low-levels by diurnal heating of this large island and by flow blocking due to elevated terrain to the east of the Colombo site. Because of the large spacing between sounding sites, these small-scale effects are aliased onto the larger scale impacting analyses and atmospheric budgets over the DYNAMO NSA. To mitigate these local island effects on the large-scale budgets, a procedure was designed which uses ECMWF-analyzed fields in the vicinity of Sri Lanka to estimate open-ocean conditions (i.e, as if this island were not present). These 'unperturbed' ECMWF fields at low-levels are then merged with observed Colombo soundings. This procedure effectively mutes the blocking effects and large diurnal cycle observed in the low-level Colombo fields. In westerly flow regimes, adjusted Colombo winds increase the low-level westerlies by 2-3 m/s with a similar increase of the low-level easterlies in easterly flow regimes. In general, over the NSA the impact of the adjusted Colombo winds results in more low-level divergence (convergence), more mid-level subsidence (rising motion) and reduced (increased) rainfall during the westerly (easterly) wind regimes. In comparison to independent TRMM rainfall estimates, both the mean budget-derived rainfall and its temporal correlation are improved by using the adjusted Colombo soundings. In addition, use of the 'unperturbed' fields result in a more realistic moisture budget analyses, both in its diurnal cycle and during the build-up phase of the November MJO when a gradual deepening of apparent drying was observed. Overall, use of the adjusted Colombo soundings appears to have a beneficial impact on the NSA analyses and budgets.

  8. Variational data assimilation for the initial-value dynamo problem.

    PubMed

    Li, Kuan; Jackson, Andrew; Livermore, Philip W

    2011-11-01

    The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical

  9. Wreathes of Magnetism Built by Dynamos Without Tachoclines

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin

    2009-05-01

    When stars like our Sun are young, they rotate much more rapidly than the Sun currently does. Young, rapidly rotating suns also appear to have substantial magnetic activity and perhaps strong axisymmetric magnetic fields. We explore the complex coupling between rotation, convection and magnetism in rapidly rotating suns with 3-D MHD simulations using the anelastic spherical harmonic (ASH) code. We find that substantial organized global-scale magnetic fields are realized by dynamo action in these systems. In the bulk of the convection zone, global-scale wreathes of magnetism arise and coexist with the strongly turbulent convection. This is a great surprise, as these simulations do not include tachoclines of shear and penetration. The tachocline is a crucial ingredient in many solar dynamo theories, and to date, global simulations of the solar dynamo have required a tachocline to achieve global-scale organization of magnetic field. Here we will explore how such wreathes might be built in rapidly rotating suns, how they are maintained in the midst of the convection zone, and how they undergo cycles of activity, where the fields wax and wane in strength and can even change in global polarity. This research was carried out with support by the NASA HelioPhysics Theory program and with additional support for Brown by the NASA GSRP program. This thesis research has been done in collaboration with Matthew K. Browning (CITA, Toronto), Allan Sacha Brun (CEA-Saclay, France), Mark S. Miesch (HAO, Boulder), Nicholas J. Nelson and Juri Toomre (both University of Colorado, Boulder).

  10. The Magnetic Furnace: Intense Core Dynamos in B Stars

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle C.; Brun, Allan Sacha; Toomre, Juri

    2016-10-01

    The dynamo action achieved in the convective cores of main-sequence massive stars is explored here through three-dimensional (3D) global simulations of convective core dynamos operating within a young 10 {M}⊙ B-type star, using the anelastic spherical harmonic code. These simulations capture the inner 65% of this star by radius, encompassing the convective nuclear-burning core (about 23% by radius) and a portion of the overlying radiative envelope. Eight rotation rates are considered, ranging from 0.05% to 16% of the surface breakup velocity, thereby capturing both convection that barely senses the effects of rotation and other situations in which the Coriolis forces are prominent. The vigorous dynamo action realized within all of these turbulent convective cores builds magnetic fields with peak strengths exceeding a megagauss, with the overall magnetic energy (ME) in the faster rotators reaching super-equipartition levels compared to the convective kinetic energy (KE). The core convection typically involves turbulent columnar velocity structures roughly aligned with the rotation axis, with magnetic fields threading through these rolls and possessing complex linkages throughout the core. The very strong fields are able to coexist with the flows without quenching them through Lorentz forces. The velocity and magnetic fields achieve such a state by being nearly co-aligned, and with peak magnetic islands being somewhat displaced from the fastest flows as the intricate evolution proceeds. As the rotation rate is increased, the primary force balance shifts from nonlinear advection balancing Lorentz forces to a magnetostrophic balance between Coriolis and Lorentz forces.

  11. Solar Cycle Characteristics and Their Relationship with Dynamo Theory

    NASA Astrophysics Data System (ADS)

    Otkidychev, P. A.; Popova, H.; Popov, V.

    2015-12-01

    We try to establish the correlation between different parameters of “butterfly-diagrams” derived from the analysis of solar observational data for the 12-23 solar activity cycles and the values in the models of α-Ω­dynamo using RGO - NASA/Marshall data set. We have ascertained that there is a linear relationship between S and BT/L for all the investigated cycles, where S is the mean area of the sunspots (umbrae), B is the mean magnetic field strength, T is duration of a cycle and L is the mean latitude of the sunspots in a cycle.

  12. Feedback of a small-scale magnetic dynamo.

    PubMed

    Nazarenko, S V; Falkovich, G E; Galtier, S

    2001-01-01

    We develop a WKB approach to the rapid distortion theory for magnetohydrodynamic turbulence with large magnetic Prandtl number. Within this theory, we study the growth of small-scale magnetic fluctuations in a large-scale velocity field being initially a pure strain. We show that the magnetic Lorentz force excites a secondary flow in the form of counterrotating vortices on the periphery of the magnetic spot. Those vortices slow down stretching of the magnetic spot and thus provide a negative feedback for a small-scale magnetic dynamo.

  13. New dynamical mean-field dynamo theory and closure approach.

    PubMed

    Blackman, Eric G; Field, George B

    2002-12-23

    We develop a new nonlinear mean field dynamo theory that couples field growth to the time evolution of the magnetic helicity and the turbulent electromotive force, E. We show that the difference between kinetic and current helicities emerges naturally as the growth driver when the time derivative of E is coupled into the theory. The solutions predict significant field growth in a kinematic phase and a saturation rate/strength that is magnetic Reynolds number dependent/independent in agreement with numerical simulations. The amplitude of early time oscillations provides a diagnostic for the closure.

  14. Determining the alpha dynamo parameter in incompressible homogeneous magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; Lantz, S. R.

    1983-01-01

    Alpha, an important parameter in dynamo theory, is proportional to either the kinetic, current, magnetic, or velocity helicity of the fluctuating magnetic field and fluctuating velocity field. The particular helicity to which alpha is proportional depends on the assumptions used in deriving the first order smoothed equations that describe the alpha effect. In two cases, when alpha is proportional to either the magnetic helicity or velocity helicity, alpha is determined experimentally from two point measurements of the fluctuating fields in incompressible, homogeneous turbulence having arbitrary symmetry. For the other two possibilities, alpha is determined if the turbulence is isotropic.

  15. Dynamo Dominated Accretion and Energy Flow: The Mechanism of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.; Li, H.

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. We suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. We believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-α clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. We believe we have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described here are: 1) the Rossby vortex mechanism of the accretion disk viscosity, and 2) the mechanism of the α - Ω dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the α - Ω dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity. The predicted form of the emission of both the flux and the magnetic energy density is a force-free magnetic helix extending axially from the disk a distance depending upon its winding number and radius of its flux surfaces, a distance of Mpc's. This

  16. Prediction of Ocean Circulation Associated with the MJO during CINDY/DYNAMO by a Global Coupled Model

    NASA Astrophysics Data System (ADS)

    Shinoda, T.; Ridout, J. A.; Flatau, M. K.; Reynolds, C. A.

    2015-12-01

    A global coupled prediction system is used to predict the ocean circulation associated with the MJO during the CINDY/DYNAMO field campaign. The ocean component of the system is HYCOM (Hybrid Coordinate Ocean Model) that uses exceptionally high horizontal resolution (1/12°) to accurately simulate the ocean circulation. The atmospheric component is NAVGEM (NAVy Global Environmental Model) with the resolution of T359L50, in which a new convection scheme is recently implemented. During the field campaign, three active episodes of large-scale convection and anomalous surface zonal winds associated with the MJO propagated eastward across the tropical Indian Ocean. Our model prediction primarily focuses on the second MJO event in November, which was particularly well monitored by the DYNAMO observational network. The model was initialized on November 1st, and integrated for 40 days, which includes the period of the initiation of MJO convection in the central Indian Ocean in late November. The model is able to predict the initiation of MJO convection, which is associated with the large-scale strong westerly winds generated near the equator. These westerlies drove strong oceanic equatorial jets in the entire tropical Indian Ocean. The timing and strength of the equatorial jet predicted by the model is consistent with those observed by the CINDY/DYNAMO moorings. Also, the spatial pattern of equatorial and off-equatorial ocean circulations in late November agrees with satellite-derived surface currents reasonably well. The impact of air-sea coupling on the prediction of equatorial westerly wind events is further discussed based on the comparison of coupled and uncoupled model simulations.

  17. Effect of width, amplitude and position of a CMB hot spot on core convection and dynamo action

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Wicht, J.; Hori, K.

    2015-10-01

    Within the fluid iron cores of terrestrial planets, convection and hence the generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, like the thermal footprint of a giant impact or hot mantle plumes will reduce locally the heat flux through the core mantle boundary (CMB) and thereby weaken core convection and affect the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary size, amplitude and position affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric and axisymmetric (EAA) zonal flows. For pure hydrodynamic models the EAA symmetry scales almost linearly with its respective amplitude and size, whereas self-consistent dynamo simulations typically either suppress or drastically enhance EAA depending mainly on the length scale of the heat flux anomaly. Our results suggest, that the horizontal extent of the anomaly should be on the order of the outer core radius to significantly affect flow and field symmetries. As an implication to Mars, the study concludes that an ancient core field modified by a CMB heat flux anomaly is not able to heteroge- neously magnetise the crust to the present-day level of north-south asymmetry.

  18. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light

  19. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light

  20. Vertical Air Motion Estimates from W-band Radar Doppler Spectra Observed during DYNAMO

    NASA Astrophysics Data System (ADS)

    Williams, C. R.; Gibson, J. S.; Fairall, C. W.

    2014-12-01

    During the DYNAMO field campaign, a vertically pointing NOAA W-band (94 GHz) radar was mounted on the R/V Revelle to sample a wide range of clouds from shallow warm clouds to high cirrus clouds. The Doppler velocity spectra often contained multiple peak structures. In warm clouds, multiple peaks were due to cloud droplets and drizzle droplets in the same radar pulse volume. And in rainfall beneath well-defined reflectivity dim-bands near the melting layer, the multiple peaks were due to Mie scattering signatures from raindrops larger than 1.6 mm. This presentation will describe a method of identifying multiple peaks in Doppler spectra and then determining if the multiple peaks were due to cloud and drizzle droplets or due to large raindrops exciting a Mie scattering signature. In both cases, the multiple peak structure provides a signature to estimate vertical air motion. For spectra containing cloud droplets, the symmetric peak is a tracer used to estimate the air motion. For spectra with asymmetric shapes and large downward Doppler velocities, the Mie scattering notch is used to estimate the air motion. Examples of the retrieval procedure will be provided at the conference.

  1. The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, T. S.; Price, D. J.; Federrath, C.

    2016-05-01

    Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small- scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of starforming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning method may be used to achieve ∇ • B = 0 to machine precision, albeit at significant computational expense.

  2. Dynamo action in dissipative, forced, rotating MHD turbulence

    NASA Astrophysics Data System (ADS)

    Shebalin, John V.

    2016-06-01

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  3. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  4. Small Scale Dynamo Magnetism And the Heating of the Quiet Sun Solar Atmosphere.

    NASA Astrophysics Data System (ADS)

    Amari, T.

    2015-12-01

    The longstanding problem of the solar atmosphere heating has been addressed by many theoretical studies. Two specific mechanisms have been shown to play a key role in those : magnetic reconnection and waves. On the other hand the necessity of treating together chromosphere and corona has also been been stressed, with debates going on about the possibility of heating coronal plasma by energetic phenomena observed in the chromosphere,based on many key observations such as spicules, tornadoes…. We present some recent results about the modeling of quiet Sun heating in which magnetic fields are generated by a subphotospheric fluid dynamo which is connected to granulation. The model shows a topologically complex magnetic field of 160 G on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations.Those generated magnetic fields emerge into the chromosphere, providing the required energy flux and then small-scale eruptions releasing magnetic energy and driving sonic motions. Some of the more energetic eruptions can affect the very low corona only.It is also found that taking into account a vertical weak network magnetic field then allows to provide energy higher in the corona, while leaving unchanged the physics of chromospheric eruptions. The coronal heating mechanism rests on the eventual dissipation of Alfven waves generated inside the chromosphere and carrying upwards an adequate energy flux, while more energetic phenomena contribute only weakly to the heating of the corona.

  5. Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-05-01

    We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.

  6. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah

    2015-08-01

    We study a system of a highly stratified turbulent plasma. In such a system, when the magnetic Reynolds number is large enough and there is a background field of suitable strength, a new effect will play role in con- centrating magnetic fields such that it leads to the formation of magnetic spots and bipolar regions. This effect is due to the fact that the turbu- lent pressure is suppressed by the large-scale magnetic field, which adds a negative term to the total mean-field (effective) pressure. This leads to an instability, which is known as the negative effective magnetic pressure instability (NEMPI). Direct numerical simulations (DNS) of isothermally forced turbulence have shown that NEMPI leads to the formation of spots in the presence of an imposed field. Our main aim now is to use NEMPI to explain the formation of active regions and sunspots. To achieve this goal, we need to move progressively to more realistic models. Here we extend our model by allowing the magnetic field to be generated by a dy- namo. A dynamo plays an important role in solar activity. Therefore, it is of interest to investigate NEMPI in the presence of dynamo-generated magnetic fields. Mean-field simulations (MFS) of such systems in spheri- cal geometry have shown how these two instabilities work in concert. In fact NEMPI will be activated as long as the strength of the magnetic field generated by the dynamo is in a proper range (for more detail see Jab- bari et al. 2013). In our new study, we use DNS to investigate a similar system. The turbulence is forced in the entire spherical shell, but the forc- ing is made helical in the lower 30% of the shell, similar to the model of Mitra et al. (2014). We perform simulations using the Pencil Code for different density contrasts and other input parameters. We applied ver- tical field boundary conditions in the r direction. The results show that, when the stratification is high enough, intense bipolar regions form and as time passes, they expand

  7. Measurements of the MHD dynamo in the quasi-single-helicity reversed-field pinch.

    PubMed

    Piovesan, P; Craig, D; Marrelli, L; Cappello, S; Martin, P

    2004-12-03

    The first experimental study of the MHD dynamo in a quasi-single-helicity (QSH) reversed-field pinch toroidal plasma is presented. In QSH plasmas, a dominant wave number appears in the velocity fluctuation spectrum. This velocity component extends throughout the plasma volume and couples with magnetic fluctuations to produce a significant MHD dynamo electric field. The narrowing of the velocity fluctuation spectrum and the single-mode character of the dynamo are features predicted by theory and computation, but only now are observed in experiment.

  8. Spectroscopic Observation of Fluctuation-Induced Dynamo in the Edge of the Reversed-Field Pinch

    SciTech Connect

    Fontana, P. W.; Den Hartog, D. J.; Fiksel, G.; Prager, S. C.

    2000-07-17

    The fluctuation-induced dynamo has been investigated by direct measurement of v(tilde sign) and b(tilde sign) in the edge of a reversed-field pinch and is found to be significant in balancing Ohm's law. The velocity fluctuations producing the dynamo emf have poloidal mode number m=0 , consistent with MHD calculations and in contrast with the core m=1 dynamo. The velocity fluctuations exhibit the parity relative to their resonant surface predicted by linear MHD theory. (c) 2000 The American Physical Society.

  9. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  10. Convection-driven spherical shell dynamos at varying Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Käpylä, M. J.; Olspert, N.; Warnecke, J.; Brandenburg, A.

    2017-02-01

    Context. Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims: We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusion. Methods: We perform three-dimensional simulations of stratified fully compressible magnetohydrodynamic convection in rotating spherical wedges at various thermal and magnetic Prandtl numbers (from 0.25 to 2 and from 0.25 to 5, respectively). Differential rotation and large-scale magnetic fields are produced self-consistently. Results: We find that for high thermal diffusivity, the rotation profiles show a monotonically increasing angular velocity from the bottom of the convection zone to the top and from the poles toward the equator. For sufficiently rapid rotation, a region of negative radial shear develops at mid-latitudes as the thermal diffusivity is decreased, corresponding to an increase of the Prandtl number. This coincides with and results in a change of the dynamo mode from poleward propagating activity belts to equatorward propagating ones. Furthermore, the clearly cyclic solutions disappear at the highest magnetic Reynolds numbers and give way to irregular sign changes or quasi-stationary states. The total (mean and fluctuating) magnetic energy increases as a function of the magnetic Reynolds number in the range studied here (5-151), but the energies of the mean magnetic fields level off at high magnetic Reynolds numbers. The differential rotation is strongly affected by the magnetic fields and almost vanishes at the highest magnetic Reynolds numbers. In some of our most turbulent cases, however, we find that two regimes are possible, where either differential rotation is strong and mean magnetic fields are relatively weak, or vice versa. Conclusions: Our simulations indicate a strong nonlinear feedback of magnetic fields on differential rotation, leading to qualitative changes in the behaviors of large

  11. SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Clune, T.; Vriesema, J.; Gutmann, G.

    2013-12-01

    Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy, natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately, dynamo models based upon PS methods face a number of daunting challenges, which include exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism, and improving the scalability of global memory transposes. Although these issues are a concern for most models, solutions for PS methods tend to require far more pervasive changes to underlying data and control structures. Further, improvements in performance in one model are difficult to transfer to other models, resulting in significant duplication of effort across the research community. We have developed an extensible software framework for pseudospectral methods called SpF that is intended to enable extreme scalability and optimal performance. High-level abstractions provided by SpF unburden applications of the responsibility of managing domain decomposition and load balance while reducing the changes in code required to adapt to new computing architectures. The key design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint numerical 'kernels' that can be performed entirely in-processor. The granularity of domain-decomposition provided by SpF is only constrained by the data-locality requirements of these kernels. SpF builds on top of optimized vendor libraries for common numerical operations such as transforms, matrix solvers, etc., but can also be configured to use open source alternatives for portability. SpF includes several alternative schemes for global data redistribution and is expected to serve as an ideal testbed for further research into optimal approaches for different network architectures. In this presentation, we will describe the basic architecture of SpF as well as preliminary performance data and experience with adapting legacy dynamo codes

  12. Local measurements of tearing mode flows and the magnetohydrodynamic dynamo in the Madison Symmetric Torus reversed-field pinch

    SciTech Connect

    Ennis, D. A.; Gangadhara, S.; Den Hartog, D. J.; Ebrahimi, F.; Fiksel, G.; Prager, S. C.; Craig, D.; Anderson, J. K.

    2010-08-15

    The first localized measurements of tearing mode flows in the core of a hot plasma are presented using nonperturbing measurements of the impurity ion flow. Emission from charge exchange recombination is collected by a novel high optical throughput duo spectrometer providing localized ({+-}1 cm) measurements of C{sup +6} impurity ion velocities resolved to <500 m/s with high bandwidth (100 kHz). Poloidal tearing mode flows in the Madison Symmetric Torus reversed-field pinch are observed to be localized to the mode resonant surface with a radial extent much broader than predicted by linear magnetohydrodynamic (MHD) theory but comparable to the magnetic island width. The relative poloidal flow amplitudes among the dominant core modes do not reflect the proportions of the magnetic amplitudes. The largest correlated flows are associated with modes having smaller magnetic amplitudes resonant near the midradius. The MHD dynamo due to these flows on the magnetic axis is measured to be adequate to balance the mean Ohm's law during reduced tearing activity and is significant but does not exclude other dynamo mechanisms from contributing during a surge in reconnection activity.

  13. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less

  14. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  15. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  16. Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity

    NASA Technical Reports Server (NTRS)

    DeLuca, E. E.; Wagner, William J. (Technical Monitor)

    2001-01-01

    We have investigated the generation of magnetic fields in the Sun using two-dimensional and three-dimensional numerical simulations. The results of our investigations have been presented at scientific meetings and published.

  17. Up and down cascade in a dynamo model: spontaneous symmetry breaking.

    PubMed

    Blanter, E M; Narteau, C; Shnirman, M G; Le Mouël, J L

    1999-05-01

    A multiscale turbulent model of dynamo is proposed. A secondary magnetic field is generated from a primary field by a flow made of turbulent helical vortices (cyclones) of different ranges, and amplified by an up and down cascade mechanism. The model displays symmetry breakings of different ranges although the system construction is completely symmetric. Large-scale symmetry breakings for symmetric conditions of the system evolution are investigated for all kinds of cascades: pure direct cascade, pure inverse cascade, and up and down cascade. It is shown that long lived symmetry breakings of high scales can be obtained only in the case of the up and down cascade. The symmetry breakings find expression in intervals of constant polarity of the secondary field (called chrons of the geomagnetic field). Long intervals of constant polarity with quick reversals are obtained in the model; conditions for such a behavior are investigated. Strong variations of the generated magnetic field during intervals of constant polarity are also observed in the model. Possible applications of the model to geodynamo modeling and various directions of future investigation are briefly discussed.

  18. On MHD rotational transport, instabilities and dynamo action in stellar radiation zones

    NASA Astrophysics Data System (ADS)

    Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.

    2009-04-01

    Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.

  19. Starspots, stellar cycles and stellar flares: Lessons from solar dynamo models

    NASA Astrophysics Data System (ADS)

    Choudhuri, Arnab Rai

    2017-01-01

    In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars: (i) data pertaining to stellar cycles from Ca H/K emission over many years; (ii) X-ray data indicating hot coronal activity; (iii) starspot data (especially about giant polar spots); and (iv) data pertaining to stellar superflares. Then we describe the current status of solar dynamo modelling—giving an introduction to the flux transport dynamo model, the currently favoured model for the solar cycle. While an extrapolation of this model to solar-like stars can explain some aspects of observational data, some other aspects of the data still remain to be theoretically explained. It is not clear right now whether we need a different kind of dynamo mechanism for stars having giant starspots or producing very strong superflares.

  20. New improved reconstruction of solar activity over 3 millennia: Evidence for distinct solar dynamo modes

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya; Kovaltsov, Gennady; Hulot, Gauthier.; Gallet, Yves; Roth, Raphael; Licht, Alexis; Joos, Fortunat; Th, E.; Khokhlov, A.; Kovaltsov, Gennady A.

    The solar magnetic dynamo can operate in distinct modes - a main general mode, a Grand minimum mode corresponding to an inactive Sun, and a possible Grand maximum mode corresponding to an unusually active Sun, as e.g., observed recently. The reality of such mode separation has recently been the subject of much debate, with different theoretical speculations discussed. Here we present the first adjustment-free physical reconstruction of solar activity over the past three millennia, using the latest carbon cycle, (14) C production and archeomagnetic field models. This new improved reconstruction shows that the solar dynamo process indeed switches between different modes, either corresponding to different regimes of the dynamo or to changes in the driving parameters. These results provide important constraints for both dynamo models of Sun-like stars and investigations of possible solar influence on Earth’s climate.

  1. The DYNAMO Simulation Language--An Alternate Approach to Computer Science Education.

    ERIC Educational Resources Information Center

    Bronson, Richard

    1986-01-01

    Suggests the use of computer simulation of continuous systems as a problem solving approach to computer languages. Outlines the procedures that the system dynamics approach employs in computer simulations. Explains the advantages of the special purpose language, DYNAMO. (ML)

  2. Not much helicity is needed to drive large-scale dynamos.

    PubMed

    Pietarila Graham, Jonathan; Blackman, Eric G; Mininni, Pablo D; Pouquet, Annick

    2012-06-01

    Understanding the in situ amplification of large-scale magnetic fields in turbulent astrophysical rotators has been a core subject of dynamo theory. When turbulent velocities are helical, large-scale dynamos that substantially amplify fields on scales that exceed the turbulent forcing scale arise, but the minimum sufficient fractional kinetic helicity f(h,C) has not been previously well quantified. Using direct numerical simulations for a simple helical dynamo, we show that f(h,C) decreases as the ratio of forcing to large-scale wave numbers k(F)/k(min) increases. From the condition that a large-scale helical dynamo must overcome the back reaction from any nonhelical field on the large scales, we develop a theory that can explain the simulations. For k(F)/k(min)≥8 we find f(h,C)≲3%, implying that very small helicity fractions strongly influence magnetic spectra for even moderate-scale separation.

  3. Historic and paleomagnetic secular variation and the earth's core dynamo process.

    NASA Astrophysics Data System (ADS)

    Lund, S. P.; Olson, P.

    1987-06-01

    This paper attempts to summarize briefly the recent and ongoing efforts of the geomagnetism and paleomagnetism community to understand both the earth's magnetic-field secular variation, and its implications for the core dynamo process.

  4. Stellar Evidence Of A Solar Dynamo In Transition

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis; Egeland, Ricky; van Saders, Jennifer

    2016-08-01

    Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation-age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro 2). I will review detailed evolutionary modeling of the Kepler observations and discuss recent efforts to expand the sample and minimize systematic uncertainties. This will provide the context for multiple lines of evidence that the Sun is in a transitional evolutionary phase, and that its magnetic cycle may represent a special case of stellar dynamo theory.

  5. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    NASA Astrophysics Data System (ADS)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  6. Short Communication: Investigating a Chain of HIV Transmission Events Due to Homosexual Exposure and Blood Transfusion Based on a Next Generation Sequencing Method.

    PubMed

    Zhao, Qi; Zhang, Chen; Jiang, Yan; Wen, Yujie; Pan, Pinliang; Li, Yang; Zhang, Guiyun; Zhang, Lei; Qiu, Maofeng

    2015-12-01

    This study investigates a chain of HIV transmission events due to homosexual exposure and blood transfusion in China. The MiSeq platform, a next generation sequencing (NGS) system, was used to obtain genetic details of the HIV-1 env region (336 base pairs). Evolutionary analysis combined with epidemiologic evidence suggests a transmission chain from patient T3 to T2 through homosexual exposure and subsequently to T1 through blood transfusion. More importantly, a phylogenetic study suggested a likely genetic bottleneck for HIV in homosexual transmission from T3 to T2, while T1 inherited the majority of variants from T2. The result from the MiSeq platform is consistent with findings from the epidemiologic survey. The MiSeq platform is a powerful tool for tracing HIV transmissions and intrapersonal evolution.

  7. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    DTIC Science & Technology

    2014-12-01

    CONVECTION ON SURFACE FLUXES OBSERVED DURING LASP/DYNAMO 2011 by Matthew S. Cushanick December 2014 Thesis Advisor: Qing Wang Second Reader...December 2014 Master’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS IMPACT OF CONVECTION ON SURFACE FLUXES OBSERVED DURING LASP/DYNAMO 2011 6...analyzed here to examine the impact of t ropical convection and its associated cold pool in modifying surface exchange of momentum and energy. Analysis

  8. Non-linear regimes in mean-field full-sphere dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.

    2017-04-01

    The mean-field dynamo model is employed to study the non-linear dynamo regimes in a fully convective star of mass 0.3 M⊙ rotating with period of 10 d. For intermediate value of parameter of the turbulent magnetic Prandl number, PmT = 3, we found the oscillating dynamo regimes with period about 40 yr. The higher PmT results to longer dynamo periods. If the large-scale flows is fixed, we find that the dynamo transits from axisymmetric to non-axisymmetric regimes for the overcritical parameter of the α-effect. The change of dynamo regime occurs because of the non-axisymmetric non-linear α-effect. The situation persists in the fully non-linear dynamo models with regards for the magnetic feedback on the angular momentum balance and the heat transport in the star. It is found that the large-scale magnetic field quenches the latitudinal shear in the bulk of the star. However, the strong radial shear operates in the subsurface layer of the star. In the non-linear case, the profile of the angular velocity inside the star become close to the spherical surfaces. This supports the equator-ward migration of the axisymmetric magnetic field dynamo waves. It was found that the magnetic configuration of the star dominates by the regular non-axisymmetric mode m = 1. As a result of the differential rotation, it forms the Yin Yang magnetic polarity pattern with the strong (>500 G) poloidal magnetic field in polar regions.

  9. Dynamo currents representing geomagnetic L variation demonstrated by a multi-layer ionospheric model

    NASA Astrophysics Data System (ADS)

    Xu, W.-Y.; Tschu, K.-K.; Matsushita, S.

    1984-05-01

    A multi-layer ionospheric model and lunar (2,2) tidal mode have been used to calculate dynamo current systems representing lunar geomagnetic semidiurnal variations. Since both the height variation of the ionospheric conductivities and latitudinal dependence of the height of the conductivity peaks have been taken into account, the dynamo current systems agree with equivalent ones (estimated from geomagnetic data) better than those for a thin shell model of the ionospheric conductivity, especially in the polar region.

  10. Spatial fluctuation enhancement and nonradiative-recombination-center generation due to high Si-doping into GaAs/AlAs short-period-superlattices

    NASA Astrophysics Data System (ADS)

    Kobori, H.; Shigetani, A.; Umezu, I.; Sugimura, A.

    2006-04-01

    Through the time-resolved photoluminescence (TR-PL) measurement for excitons, we have studied the enhancement of spatial fluctuation (SF) and the generation of nonradiative-recombination-centers (NRC) due to high Si-doping into GaAs/AlAs short-period-superlattices (SPS's). We have carried out the exciton transport analysis according to Krivorotov et al. [I.N. Krivorotov, T. Chang, G.D. Gilliland, L.P. Fu, K.K. Bajaj, Phys. Rev. B 58 (1998) 10687]. From this analysis, we have obtained the temperature dependence of the exciton diffusivity, the concentration of the NRC and the average distant between adjacent localized states of excitons. The temperature dependence of the exciton diffusivity is found to be given by the sum of the temperature-independent contribution and the activation-type contribution. For the exciton diffusivity in undoped GaAs/AlAs SPS's, only the activation-type contribution has been observed. Therefore, we point out the possibility that the temperature-independent contribution comes from the tunneling through the impurities. In this experiment, the activation energy and the concentration of the NRC are found to be larger than those of undoped GaAs/AlAs SPS's. We infer that high Si-doping into GaAs/AlAs SPS causes the enhancement of the SF and the generation of NRC.

  11. Spoke-like differential rotation in a convective dynamo with a coronal envelope

    SciTech Connect

    Warnecke, Jörn; Käpylä, Petri J.; Brandenburg, Axel; Mantere, Maarit J.

    2013-12-01

    We report on the results of four convective dynamo simulations with an outer coronal layer. The magnetic field is self-consistently generated by the convective motions beneath the surface. Above the convection zone, we include a polytropic layer that extends to 1.6 solar radii. The temperature increases in this region to ≈8 times the value at the surface, corresponding to ≈1.2 times the value at the bottom of the spherical shell. We associate this region with the solar corona. We find solar-like differential rotation with radial contours of constant rotation rate, together with a near-surface shear layer. This non-cylindrical rotation profile is caused by a non-zero latitudinal entropy gradient that offsets the Taylor-Proudman balance through the baroclinic term. The meridional circulation is multi-cellular with a solar-like poleward flow near the surface at low latitudes. In most of the cases, the mean magnetic field is oscillatory with equatorward migration in two cases. In other cases, the equatorward migration is overlaid by stationary or even poleward migrating mean fields.

  12. Ionospheric dynamo theory for production of far ultraviolet emissions on Uranus

    SciTech Connect

    Hudson, M.K.; Warren, J.A. ); Clarke, J.T. )

    1989-06-01

    A model is presented to explain diffuse FUV emissions from the outer planets, specifically Uranus, in excess of those diffuse emissions that are currently explainable by scattering of sunlight and/or excitation by photoelectrons. These electroglow emissions in H Ly {alpha} and H{sub 2} bands, which occur in the sunlit hemisphere slightly above the homopause, appear to require particle excitation in the 10- to 50-eV range. The authors propose an in situ mechanism for accelerating photoelectrons (and ions) involving neutral wind dynamo generation of field-aligned currents analogous to what occurs in the Earth's equatorial E and F regions. Sufficiently strong field-aligned currents are found in the model calculation for Uranus to produce a potential drop of {approximately} 100 eV or greater between the F peak and homopause, concentrated at lower altitudes, and capable in principle of accelerating photoelectrons (and ions) to the 10- to 50-eV energies required to explain the observed emissions. The fact that the excitation and ionization cross sections are larger than elastic scattering cross sections in an H{sub 2} atmosphere at these energies makes in situ acceleration feasible for the production of UV on the outer planets.

  13. Ionospheric dynamo theory for production of far ultraviolet emissions on Uranus

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Warren, J. A.; Clarke, J. T.

    1989-01-01

    A model is presented to explain diffuse FUV emissions from the outer planets, specifically Uranus, in excess of those diffuse emissions that are currently explainable by scattering of sunlight and/or excitation by photoelectrons. These electroglow emissions in H Ly-alpha and H2 bands, which occur in the sunlit hemisphere slightly above the homopause, appear to require particle excitation in the 10- to 50-eV range. An in situ mechanism for accelerating photoelectrons (and ions is proposed, involving neutral wind dynamo generation of field-aligned currents analogous to what occurs in the earth's equatorial E and F regions. Sufficiently strong field-aligned currents are found in the model calculation for Uranus to produce a potential drop of about 100 eV or greater between the F peak and homopause, concentrated at lower altitudes, and capable in principle of accelerating photoelectrons (and ions) to the 10- to 50-eV energies required to explain the observed emissions. The fact that the excitation and ionization cross sections are larger than elastic scattering cross sections in an H2 atmosphere at these energies makes in situ acceleration feasible for the production of UV on the outer planets.

  14. Variational data assimilation for a forced, inertia-free magnetohydrodynamic dynamo model

    NASA Astrophysics Data System (ADS)

    Li, Kuan; Jackson, Andrew; Livermore, Philip W.

    2014-12-01

    Variational data assimilation (4DVar) is a powerful technique for tuning dynamic models to observations, in order not only to forecast future time evolution of the system, but to make inferences about quantities that are otherwise unconstrained by observation. We apply this technique, well-grounded in meteorology and oceanography, to the Earth's core where incompressible fluid motions in an electrically conducting medium are responsible for magnetic field generation. Our dynamic model's momentum equation neglects inertia such that the entire evolution depends only on the structure of the initial magnetic field; time evolution of the system is solely governed by the equation of magnetic induction. Nevertheless the dynamic system encompasses the effects of rotation, Lorentz forces and viscosity and aims to mimic a reasonable force-balance in the Earth's core. Building on the work of Li et al., in order to optimize the data-fit subject to the dynamics, we further develop the mathematical structure of the adjoint equations of the system. We address the feasibility of recovering 3-D spatial properties of the system using only time-varying 2-D observations of different character. Using closed-loop testing, we demonstrate the retrievability of the initial state (and thus the entire trajectory) of the system over convective timescales, when sampling in regions in which magnetic induction dominates over diffusion. The results suggest the possibility of retrieving the entire trajectory of the dynamo system of the Earth using the 400-yr model of secular variation gufm1.

  15. The Atmospheric Dynamics of Alpha Tau (K5 III) -- Clues to Understanding the Magnetic Dynamo

    NASA Technical Reports Server (NTRS)

    Carpenter Kenneth G.

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for (alpha) Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from Alpha Tau can be consistently understood via a model of upward-traveling Alfven waves in a gravitationally stratified atmosphere. These wakes cause non-thermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant .4lf\\en wave heating. We discuss implications of this interpretation for understanding the nature of magnetic dynamos operating in late-type giants.

  16. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

    SciTech Connect

    Pinto, Rui F.; Brun, Allan Sacha; Grappin, Roland

    2011-08-20

    We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

  17. Overview of Aircraft Observations in DYNAMO: Emerging Science in MJO

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Kerns, B. W.; Jorgensen, D. P.; Zappa, C. J.; Delanoe, J.; Viltard, N.; Fontaine, E.

    2012-12-01

    The Madden-Julian Oscillation (MJO) is known to have a major impact on global weather systems such as heat waves, tropical cyclones, and winter storms. The intraseasonal/planetary time/spatial scales make MJO a critical link between the global weather and climate systems. However, the current global weather and climate models have little skill in predictions of MJO. One of the most challenging problems in predicting MJO is the initiation of large-scale convective activity associated with MJO over the tropical Indian Ocean. The lack of observations has been a main obstacle until recently. The Dynamics of MJO (DYNAMO) field campaign has collected unprecedented observations from airborne, land and ship based platforms from October 2011-February 2012. Here we provide an overview of the aircraft observations in DYNAMO, which captured the second MJO initiation event from November-December 2011. The NOAA WP-3D aircraft was stationed in Diego Garcia and the French Falcon aircraft at the Gan Island in the Maldives. Observations from the two aircraft provide a unique data set of three-dimensional structure of convective cloud systems and their environment from the flight level, airborne Doppler radar, ocean surface imaging, and GPS dropsonde data. This overview will focus on some key aspects of the aircraft observations that contribute directly to better understanding of convective cloud systems and their interaction with the environmental moisture and the ocean during MJO initiation over the tropical Indian Ocean: 1) Large-scale structure of water vapor and wind fields during convectively suppressed, onset, and active phases of MJO. Vertical cross sections of low-mid tropospheric water vapor, temperature, and wind from the GPS dropsondes deployed from the WP-3D aircraft during its long transect flights provided an important link between the four monitoring sites, Diego Garcia, Gan Island, R/V Revelle, and R/V Mari, in DYNAMO. 2) Convective clouds systems and their

  18. A GLOBAL GALACTIC DYNAMO WITH A CORONA CONSTRAINED BY RELATIVE HELICITY

    SciTech Connect

    Prasad, A.; Mangalam, A. E-mail: mangalam@iiap.res.in

    2016-01-20

    We present a model for a global axisymmetric turbulent dynamo operating in a galaxy with a corona that treats the parameters of turbulence driven by supernovae and by magneto-rotational instability under a common formalism. The nonlinear quenching of the dynamo is alleviated by the inclusion of small-scale advective and diffusive magnetic helicity fluxes, which allow the gauge-invariant magnetic helicity to be transferred outside the disk and consequently to build up a corona during the course of dynamo action. The time-dependent dynamo equations are expressed in a separable form and solved through an eigenvector expansion constructed using the steady-state solutions of the dynamo equation. The parametric evolution of the dynamo solution allows us to estimate the final structure of the global magnetic field and the saturated value of the turbulence parameter α{sub m}, even before solving the dynamical equations for evolution of magnetic fields in the disk and the corona, along with α-quenching. We then solve these equations simultaneously to study the saturation of the large-scale magnetic field, its dependence on the small-scale magnetic helicity fluxes, and the corresponding evolution of the force-free field in the corona. The quadrupolar large-scale magnetic field in the disk is found to reach equipartition strength within a timescale of 1 Gyr. The large-scale magnetic field in the corona obtained is much weaker than the field inside the disk and has only a weak impact on the dynamo operation.

  19. Tsunami generation and associated waves in the water column and seabed due to an asymmetric earthquake motion within an anisotropic substratum

    NASA Astrophysics Data System (ADS)

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad; Attarnejad, Reza

    2016-10-01

    In this paper, closed-form integral expressions are derived to describe how surface gravity waves (tsunamis) are generated when general asymmetric ground displacement (due to earthquake rupturing), involving both horizontal and vertical components of motion, occurs at arbitrary depth within the interior of an anisotropic subsea solid beneath the ocean. In addition, we compute the resultant hydrodynamic pressure within the seawater and the elastic wavefield within the seabed at any position. The method of potential functions and an integral transform approach, accompanied by a special contour integration scheme, are adopted to handle the equations of motion and produce the numerical results. The formulation accounts for any number of possible acoustic-gravity modes and is valid for both shallow and deep water situations as well as for any focal depth of the earthquake source. Phase and group velocity dispersion curves are developed for surface gravity (tsunami mode), acoustic-gravity, Rayleigh, and Scholte waves. Several asymptotic cases which arise from the general analysis are discussed and compared to existing solutions. The role of effective parameters such as hypocenter location and frequency of excitation is examined and illustrated through several figures which show the propagation pattern in the vertical and horizontal directions. Attention is directed to the unexpected contribution from the horizontal ground motion. The results have important application in several fields such as tsunami hazard prediction, marine seismology, and offshore and coastal engineering. In a companion paper, we examine the effect of ocean stratification on the appearance and character of internal and surface gravity waves.

  20. Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Wicht, Johannes; Hori, Kumiko

    2015-12-01

    Within the fluid iron cores of terrestrial planets, convection and the resulting generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, such as the thermal footprint of a giant impact or hot mantle plumes, will locally reduce the heat flux through the core mantle boundary (CMB), thereby weakening core convection and affecting the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary sizes, amplitudes, and positions affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric, axisymmetric (EAA) zonal flows. For purely hydrodynamic models, the EAA symmetry scales almost linearly with the CMB amplitude and size, whereas self-consistent dynamo simulations typically reveal either suppressed or drastically enhanced EAA symmetry depending mainly on the horizontal extent of the heat flux anomaly. Our results suggest that the length scale of the anomaly should be on the same order as the outer core radius to significantly affect flow and field symmetries. As an implication to Mars and in the range of our model, the study concludes that an ancient core field modified by a CMB heat flux anomaly is not able to heterogeneously magnetise the crust to the present-day level of north-south asymmetry on Mars. The resulting magnetic fields obtained using our model either are not asymmetric enough or, when they are asymmetric enough, show rapid polarity inversions, which are incompatible with thick unidirectional magnetisation.

  1. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    DOE PAGES

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive (IDCD) theory is used to predict the toroidal current evolution in the HIT-SI experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  2. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive theory is used to predict the toroidal current evolution in the helicity injected torus with steady inductive helicity injection (HIT-SI) experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  3. Consideration of an ionospheric wind dynamo driven by a planetary wave with a two-day period

    NASA Astrophysics Data System (ADS)

    Ito, R.; Kato, S.; Tsuda, T.

    1986-01-01

    The dynamo current induced by the two-day wave is examined and the resulting geomagnetic variation at ground-level is estimated. Two types of wind models are used in the calculation; they are symmetric and antisymmetric atmospheric normal modes. Results due to the antisymmetric wind model seem consistent with the observed geomagnetic variations. In this case, the center of the current vortex lies near the equator, and the total current is about 50,000 A. Induced geomagnetic variation at ground-level is about + or 10 at 35 deg N, and the relationship between the southward and eastward components agrees with observation. It is also suggested that the latitude of focus of the Sq current is moved with a range of + or - 5 deg by the antisymmetric two-day wave current.

  4. TURBULENT DYNAMOS IN SPHERICAL SHELL SEGMENTS OF VARYING GEOMETRICAL EXTENT

    SciTech Connect

    Mitra, Dhrubaditya; Tavakol, Reza; Brandenburg, Axel; Moss, David E-mail: brandenb@nordita.org

    2009-05-20

    We use three-dimensional direct numerical simulations of the helically forced magnetohydrodynamic equations in spherical shell segments in order to study the effects of changes in the geometrical shape and size of the domain on the growth and saturation of large-scale magnetic fields. We inject kinetic energy along with kinetic helicity in spherical domains via helical forcing using Chandrasekhar-Kendall functions. We take perfect conductor boundary conditions for the magnetic field to ensure that no magnetic helicity escapes the domain boundaries. We find dynamo action giving rise to magnetic fields at scales larger than the characteristic scale of the forcing. The magnetic energy exceeds the kinetic energy over dissipative timescales, similar to that seen earlier in Cartesian simulations in periodic boxes. As we increase the size of the domain in the azimuthal direction, we find that the nonlinearly saturated magnetic field organizes itself in long-lived cellular structures with aspect ratios close to unity. These structures tile the domain along the azimuthal direction, thus resulting in very small longitudinally averaged magnetic fields for large domain sizes. The scales of these structures are determined by the smallest scales of the domain, which in our simulations is usually the radial scale. We also find that increasing the meridional extent of the domains produces little qualitative change, except a marginal increase in the large-scale field. We obtain qualitatively similar results in Cartesian domains with similar aspect ratios.

  5. Dynamos at extreme magnetic Prandtl numbers: insights from shell models

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra K.; Kumar, Rohit

    2016-12-01

    We present an MHD shell model suitable for computation of various energy fluxes of magnetohydrodynamic turbulence for very small and very large magnetic Prandtl numbers $\\mathrm{Pm}$; such computations are inaccessible to direct numerical simulations. For small $\\mathrm{Pm}$, we observe that both kinetic and magnetic energy spectra scale as $k^{-5/3}$ in the inertial range, but the dissipative magnetic energy scales as $k^{-11/3}\\exp(-k/k_\\eta)$. Here, the kinetic energy at large length scale feeds the large-scale magnetic field that cascades to small-scale magnetic field, which gets dissipated by Joule heating. The large-$\\mathrm{Pm}$ dynamo has a similar behaviour except that the dissipative kinetic energy scales as $k^{-13/3}$. For this case, the large-scale velocity field transfers energy to the large-scale magnetic field, which gets transferred to small-scale velocity and magnetic fields; the energy of the small-scale magnetic field also gets transferred to the small-scale velocity field, and the energy thus accumulated is dissipated by the viscous force.

  6. Ion Heating Anisotropy during Dynamo Activity in the MST RFP

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Chapman, J. T.; Craig, D.; Fiksel, G.; Fontana, P. W.

    1999-11-01

    MHD dynamo activity is large in the MST Reversed-Field Pinch during sawtooth crashes, and small otherwise. During a sawtooth crash, ion temperature increases rapidly to a level several times as high as the temperature between sawteeth, which itself can be larger than the electron temperature. Several theories have been developed to explain this ion heating, some indicating a possible asymmetry in perpendicular to parallel heating [C. G. Gimblett, Europhys. Lett. 11, 541 (1990); Z. Yoshida, Nucl. Fusion 31, 386 (1991); N. Mattor, P. W. Terry, and S. C. Prager, Comments Plasma Phys. Controlled Fusion 15, 65 (1992)]. In standard MST discharges, impurity ion temperature measured perpendicular to the magnetic field (T_⊥) is higher than impurity ion temperature parallel to the magnetic field (T_allel) during a sawtooth crash. Throughout the rest of the sawtooth cycle, T_⊥ <= T_allel. This is in contrast to results obtained on the EXTRAP-T2 RFP which showed T_⊥ < T_allel throughout the discharge [K. Sasaki et al., Plasma Phys. Control. Fusion 39, 333 (1997)

  7. Stellar Evidence That the Solar Dynamo May Be in Transition

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.; Egeland, Ricky; van Saders, Jennifer

    2016-07-01

    Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation-age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro ˜ 2). We compile published chromospheric activity measurements for the sample of Kepler asteroseismic targets that were used to establish the new rotation-age relations. We use these data along with a sample of well-characterized solar analogs from the Mount Wilson HK survey to develop a qualitative scenario connecting the evolution of chromospheric activity to a fundamental shift in the character of differential rotation. We conclude that the Sun may be in a transitional evolutionary phase, and that its magnetic cycle might represent a special case of stellar dynamo theory.

  8. Structures and Lagrangian statistics of the Taylor-Green dynamo

    NASA Astrophysics Data System (ADS)

    Homann, H.; Ponty, Y.; Krstulovic, G.; Grauer, R.

    2014-07-01

    The evolution of a Taylor-Green forced magnetohydrodynamic system showing dynamo activity is analyzed via direct numerical simulations. The statistical properties of the velocity and magnetic fields in Eulerian and Lagrangian coordinates are found to change between the kinematic, nonlinear and saturated regime. Fluid element (tracer) trajectories change from chaotic quasi-isotropic (kinematic phase) to mean magnetic field aligned (saturated phase). The probability density functions (PDFs) of the magnetic field change from strongly non-Gaussian in the kinematic to quasi-Gaussian PDFs in the saturated regime so that their flatness give a precise handle on the definition of the limiting points of the three regimes. Also the statistics of the kinetic and magnetic fluctuations along fluid trajectories changes. All this goes along with a dramatic increase of the correlation time of the velocity and magnetic fields experienced by tracers, significantly exceeding one turbulent large-eddy turn-over time. A remarkable consequence is an intermittent scaling regime of the Lagrangian magnetic field structure functions at unusually long time scales.

  9. Understanding Solar Torsional Oscillations from Global Dynamo Models

    NASA Astrophysics Data System (ADS)

    Guerrero, G.; Smolarkiewicz, P. K.; de Gouveia Dal Pino, E. M.; Kosovichev, A. G.; Mansour, N. N.

    2016-09-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  10. Neutrino lighthouse powered by Sagittarius A* disk dynamo

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.

    2016-07-01

    We show that the subset of high-energy neutrino events detected by IceCube which correlate with the Galactic center (within uncertainties of their reconstructed arrival directions) could originate in the collisions of protons accelerated by the Sagittarius A* disk dynamo. Under very reasonable assumptions on source parameters, we demonstrate that the supermassive black hole at the center of the Galaxy could launch protons and nuclei with multi-PeV energies. Acceleration of these particles in a period of seconds up to Lorentz factors of ˜1 07.5 is possible by means of the Blandford-Znajek mechanism, which wires the spinning magnetosphere of Sagittarius A* as a Faraday unipolar inductor. During the acceleration process, the ˜PeV progenitors of ˜50 TeV neutrinos radiate curvature photons in the keV energy range. We show that IceCube neutrino astronomy with photon tagging on the Chandra X-Ray Observatory could provide a valuable probe for the Blandford-Znajek acceleration mechanism. We also argue that EeV neutrinos, which may be produced in a similar fashion during the merging of binary black holes, could become the smoking gun for particle acceleration in a one-shot boost.

  11. BIPOLAR MAGNETIC SPOTS FROM DYNAMOS IN STRATIFIED SPHERICAL SHELL TURBULENCE

    SciTech Connect

    Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Mitra, Dhrubaditya; Rogachevskii, Igor

    2015-06-01

    Recent work by Mitra et al. (2014) has shown that in strongly stratified forced two-layer turbulence with helicity and corresponding large-scale dynamo action in the lower layer, and nonhelical turbulence in the upper, a magnetic field occurs in the upper layer in the form of sharply bounded bipolar magnetic spots. Here we extend this model to spherical wedge geometry covering the northern hemisphere up to 75° latitude and an azimuthal extent of 180°. The kinetic helicity and therefore also the large-scale magnetic field are strongest at low latitudes. For moderately strong stratification, several bipolar spots form that eventually fill the full longitudinal extent. At early times, the polarity of spots reflects the orientation of the underlying azimuthal field, as expected from Parker’s Ω-shaped flux loops. At late times their tilt changes such that there is a radial field of opposite orientation at different latitudes separated by about 10°. Our model demonstrates the spontaneous formation of spots of sizes much larger than the pressure scale height. Their tendency to produce filling factors close to unity is argued to be reminiscent of highly active stars. We confirm that strong stratification and strong scale separation are essential ingredients behind magnetic spot formation, which appears to be associated with downflows at larger depths.

  12. Logarithmic violation of scaling in anisotropic kinematic dynamo model

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2016-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.

  13. Pre-explosion dynamo in the cores of massive stars

    NASA Astrophysics Data System (ADS)

    Soker, Noam; Gilkis, Avishai

    2017-01-01

    We propose a speculative scenario where dynamo amplification of magnetic fields in the core convective shells of massive stars, tens of years to hours before they explode, leads to envelope expansion and enhanced mass-loss rate, resulting in pre-explosion outbursts (PEOs). The convective luminosity in the burning shells of carbon, neon, oxygen, and then silicon, are very high. Based on the behaviour of active main-sequence stars, we speculate that the convective shells can trigger magnetic activity with a power of about 0.001 times the convective luminosity. Magnetic flux tubes might buoy outward and deposit their energy in the outer parts of the envelope. This in turn might lead to the expansion of the envelope and to an enhanced mass-loss rate. If a close binary companion is present, mass transfer might take place and lead to an energetic outburst. The magnetic activity requires minimum core rotation and that the stochastic magnetic activity be on its high phase. Only in rare cases these conditions are met, accounting for that only the minority of core collapse supernovae experience PEO. Such a pre-explosion magnetic activity might have implications for the explosion mechanism itself.

  14. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times

    NASA Astrophysics Data System (ADS)

    Huang, C.

    2013-12-01

    Perturbed electric fields in the earth's ionosphere, resulting from the penetration electric fields from high latitudes and/or from the dynamo mechanism driven by the neutral disturbances, occurr in the storm periods. In general, the identification of the penetration electric fields is easier than that of the dynamo electric fields. At times, the latter becomes unperceivable or difficult to identify. This is an interesting problem which motivates a model study to investigate the possible reasons. Model runs made with the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR/TIEGCM) will be presented. Theoretical studies of ionospheric responses to geomagnetic storms with model simulations indicate that the intensities of disturbance dynamo electric fields are highly dependent on various parameters such as solar activities, seasonal effects and universal times, etc. When geomagnetic storms commence at 01~07 UT in summer solstices with low solar fluxes, the disturbance dynamo electric fields become very small. As compared with the general daily variations, they seem to be unperceivable. This phenomenon can be explained by the model results which show that the positive charge accumulation at low latitudes will be weakened when the equatward neutral disturbances penetrate into the opposite hemisphere in the storm time. For other cases, the magnitudes of the dynamo electric fields are relatively larger under the same geomagnetic activity.

  15. Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Nore, C.; Stefani, F.; Gerbeth, G.; Léorat, J.; Herreman, W.; Luddens, F.; Guermond, J.-L.

    2012-05-01

    Numerical simulations of the kinematic induction equation are performed on a model configuration of the Cadarache von-Kármán-sodium dynamo experiment. The effect of a localized axisymmetric distribution of relative permeability μr that represents soft iron material within the conducting fluid flow is investigated. The critical magnetic Reynolds number Rmc for dynamo action of the first non-axisymmetric mode roughly scales like Rmcμr - Rmc∞∝μ-1/2r, i.e. the threshold decreases as μr increases. This scaling law suggests a skin effect mechanism in the soft iron discs. More important with regard to the Cadarache dynamo experiment, we observe a purely toroidal axisymmetric mode localized in the high-permeability discs which becomes dominant for large μr. In this limit, the toroidal mode is close to the onset of dynamo action with a (negative) growth rate that is rather independent of the magnetic Reynolds number. We qualitatively explain this effect by paramagnetic pumping at the fluid/disc interface and propose a simplified model that quantitatively reproduces numerical results. The crucial role of the high-permeability discs in the mode selection in the Cadarache dynamo experiment cannot be inferred from computations using idealized pseudo-vacuum boundary conditions (H × n = 0).

  16. The galactic dynamo, the helical force free field and the emissions of AGN

    SciTech Connect

    Colgate, S.; Li, Hui

    1997-05-01

    We present a theory relating the central galactic black hole (BH) formation to the galactic dynamo through an accretion disk. The associated AGN emissions and the collimated radio sources are then a result of the dynamo process. A unified theory of quasar and BL-Lac formation (hereafter AGN) starts with the collapse of damped Lyman-alpha clouds, presumably proto-galaxies, which then evolve to a central disk and black hole, (BH). An alpha - omega dynamo forms in this accretion disk where the augmentation of the poloidal field from the toroidal field depends upon star disk collisions. The winding number of the inner most orbit of the disk is so large, tilde 10 to the 11th power that the total gain of the dynamo is semi-infinite, and the original seed field of no consequence. The total magnetic flux produced is tilde 10000 times that of the galaxy, sufficient to explain the much larger flux of clusters. The semi-infinite gain of the dynamo implies that the field saturates at the dynamic stress so that most of the free energy of formation of the BH is carried off as magnetic energy in the form of a magnetic helix. The dissipation of this magnetic energy leads to the unique emission spectrum of AGN as well as the equally startling collimated radio and optical sources.

  17. Global-Scale Stellar Dynamos and Wreathes of Magnetism in Rapidly Rotating Suns Without Tachoclines

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin

    2009-01-01

    When our sun was young it rotated much more rapidly than it currently does. Observations of young, rapidly rotating stars indicate that they possess substantial magnetic activity and strong axisymmetric magnetic fields. We conduct simulations of dynamo action in more rapidly rotating suns with the 3-D MHD anelastic spherical harmonic (ASH) code to explore the complex coupling between rotation, convection and magnetism. We find that substantial organized global-scale magnetic fields are achieved by dynamo action in these systems. Wreathes of magnetism are built in the midst of the convection zone, coexisting with the intensely turbulent convection. This is a great surprise, as many solar dynamo theories have indicated that a tachocline of penetration and shear at the base of the convection zone is a crucial ingredient for organized dynamo action, whereas these simulations do not include such tachoclines. The dynamos achieved in these rapidly rotating stars can undergo cycles of activity, with fields waxing and waning in strength and even changing polarity. This research was carried out with support by the NASA HelioPhysics Theory program and with additional support for Brown by the NASA GSRP program. This thesis research has been done in collaboration with Matthew K. Browning (CITA, Toronto), Allan Sacha Brun (CEA-Saclay, France), Mark S. Miesch (HAO, Boulder) and Juri Toomre (University of Colorado, Boulder).

  18. Small-scale dynamo magnetism as the driver for heating the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques

    2015-06-01

    The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.

  19. Small-scale dynamo magnetism as the driver for heating the solar atmosphere.

    PubMed

    Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques

    2015-06-11

    The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.

  20. Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.

    2017-04-01

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.

  1. Suppression of a laminar kinematic dynamo by a prescribed large-scale shear

    NASA Astrophysics Data System (ADS)

    Sood, Aditi; Hollerbach, Rainer; Kim, Eun-jin

    2016-10-01

    We numerically solve the magnetic induction equation in a spherical shell geometry, with a kinematically prescribed axisymmetric flow that consists of a superposition of a small-scale helical flow and a large-scale shear flow. The small-scale flow is chosen to be a local analog of the classical Roberts cells, consisting of strongly helical vortex rolls. The large-scale flow is a shearing motion in either the radial or the latitudinal directions. In the absence of large-scale shear, the small-scale flow operates very effectively as a dynamo, in agreement with previous results. Adding increasingly large shear flows strongly suppresses the dynamo efficiency, indicating that shear is not always a favorable ingredient in dynamo action.

  2. Fast dynamos with finite resistivity in steady flows with stagnation points

    NASA Technical Reports Server (NTRS)

    Lau, Yun-Tung; Finn, John M.

    1993-01-01

    Results are presented of a kinematic fast dynamo problem for two classes of steady incompressible flows: the ABC flow and the spatially aperiodic flow of Lau and Finn (1992). The numerical method used to find the solutions is described, together with convergence studies with respect to the time step and the number of points N of the spatial grid. It is shown that the growth rate and frequency can be extrapolated to N = infinity. Results are presented indicating that fast kinematic dynamos can exist in both these flows and that chaotic flow is a necessary condition. It was found that, for the ABC flow with A = B = C, there are two dynamo modes: an oscillating mode and a purely growing mode.

  3. Two-fluid effects and shear in large-scale dynamos

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Bhattacharjee, Amitava

    2016-10-01

    In recent times, two-fluid effects (especially the Hall term) have been increasingly explored in space and astrophysical plasmas. The large-scale and small-scale dynamos with the Hall term were explored in and. Here, we consider the role of shear (and rotation) in conjunction with the Hall term. It was recently shown, by means of a resistive MHD analysis, that the turbulent resistivity becomes tensorial in nature with negative off-diagonal components. However, the Hall term leads to additional couplings, and introduces on-diagonal contributions which can make the diagonal terms negative and drive dynamo growth. Lastly, electron inertia (a hitherto unconsidered two-fluid effect) is shown to further enhance the possibility of a turbulent anti-diffusivity, and thereby drive the large-scale dynamo. DOE Grant No. DE-AC02-09CH-11466 and NSF Grant No. AGS-1338944.

  4. The cross-over to magnetostrophic convection in planetary dynamo systems

    NASA Astrophysics Data System (ADS)

    Aurnou, J. M.; King, E. M.

    2017-03-01

    Global scale magnetostrophic balance, in which Lorentz and Coriolis forces comprise the leading-order force balance, has long been thought to describe the natural state of planetary dynamo systems. This argument arises from consideration of the linear theory of rotating magnetoconvection. Here we test this long-held tenet by directly comparing linear predictions against dynamo modelling results. This comparison shows that dynamo modelling results are not typically in the global magnetostrophic state predicted by linear theory. Then, in order to estimate at what scale (if any) magnetostrophic balance will arise in nonlinear dynamo systems, we carry out a simple scaling analysis of the Elsasser number Λ, yielding an improved estimate of the ratio of Lorentz and Coriolis forces. From this, we deduce that there is a magnetostrophic cross-over length scale, LX≈(Λo2/ R mo)D , where Λo is the linear (or traditional) Elsasser number, Rmo is the system scale magnetic Reynolds number and D is the length scale of the system. On scales well above LX, magnetostrophic convection dynamics should not be possible. Only on scales smaller than LX should it be possible for the convective behaviours to follow the predictions for the magnetostrophic branch of convection. Because LX is significantly smaller than the system scale in most dynamo models, their large-scale flows should be quasi-geostrophic, as is confirmed in many dynamo simulations. Estimating Λo≃1 and Rmo≃103 in Earth's core, the cross-over scale is approximately 1/1000 that of the system scale, suggesting that magnetostrophic convection dynamics exists in the core only on small scales below those that can be characterized by geomagnetic observations.

  5. Linking Geomagentic Data to Dynamo Models via Variational Data Assimilation

    NASA Astrophysics Data System (ADS)

    Dimitrova, L. L.; Egbert, G. D.; Kuang, W.; Jiang, W.; Tangborn, A.

    2011-12-01

    The increased resolution and accuracy of both the geomagnetic field models and observations in recent years has resulted in increased efforts to link theory to data via data assimilation (DA) techniques similar to those previously developed in the atmospheric and oceanic communities . If applied to the geomagnetic field, DA has potential to improve both models and observations: geodynamics models can be assessed and improved based on observational constraints to better understand the physics of the core dynamics; the improved models can then be used to (1)constrain "hidden" components of the state of the geodynamo that are not directly observable, (2)more accurately forecast the geomagnetic fields and (3) hindcast and improve past geomagnetic field models. DA methods can be broadly divided into two approaches: sequential and variational. In sequential DA, observations are combined with the current model state to produce a new state estimate, which is then used as the initial state for the next model forecast. As such, sequential DA leads to discontinuous model state, and observations can influence only the future model state. Variational DA differs from sequential DA in that the goal is a global adjustment of the model trajectory to fit simultaneously all the data. Thus in the variational approach, observations at a later time could influence the model solution at an earlier time. Both sequential and variational DA has been applied to simplified dynamic models (e.g.Sun et al. [2007], Fournier et al. [2007]), and sequential DA has been applied to full dynamo models (e.g. Liu et al. [2007], Kuang et al. [2008]). However, since the best data is from recent years, sequential schemes can't readily project this data backwards in time. We present an update to our ongoing efforts to implement modern variational DA methods (based on theory of representers, potentially allowing for weak constraint DA) for the Modular Scalable Self-consistent Three-dimensional (Mo

  6. Navy Global Predictions for the Dynamo Time Period

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Ridout, J. A.; Flatau, M. K.; Chen, J.; Richman, J. G.; Jensen, T. G.; Shriver, J. F.

    2014-12-01

    The performance of 30-day simulations of the Navy Global Environmental Model (NAVGEM) is evaluated under several metrics. The time period of interest is the DYNAMO (Dynamics of Madden Julian Oscillation) field experiment period, starting late October 2011. The NAVGEM experiments are run at an effective 37-km resolution with several different SST configurations. The in the first set of experiments, the initial SST analysis, provided by the NCODA (Navy Coupled Ocean Data Assimilation) system, is either held fixed to the initial value (fixed SST) or updated every 6 hours. These forecasts are compared with forecasts in which the SST is updated with 3-h analyses from the Hybrid Coordinate Ocean Model (HYCOM), and forecasts in which NAVGEM is interactively coupled to HYCOM. Experiments are also performed with different physical parameterization options. The extended integrations are verified using observed OLR, TRMM precipitation estimates, and global analyses. The use of fixed SSTs is clearly sub-optimal. Biases in monthly mean fields are far more pronounced in the simulations where the SST is held fixed as compared to those in simulations where updated SST analyses are used. Biases in the monthly mean fields are further reduced when NAVGEM is coupled to HYCOM. Differences in SST can "migrate" to substantial changes in the time-mean land-surface temperatures, illustrating the substantial impact of SSTs over the full domain. Concerning the simulation of the MJO, some improvement is noted when the system is fully coupled, although the simulations still exhibit deficiencies such as eastward propagation that is too slow, and difficulty propagating over the maritime continent. Simulations that are started every 5 days indicate that the NAVGEM uncoupled system has difficulty predicting MJO initiation, but simulations started when the MJO is active in the Indian Ocean are able to capture eastward propagation characteristics. The coupled NAVGEM-HYCOM system shows ability to

  7. The reconstruction of solar activity in the context of solar dynamo modeling

    NASA Astrophysics Data System (ADS)

    Sokoloff, D.

    2017-01-01

    We discuss problems of interpretation of sunspot data for use in solar dynamo modelling. The variety of the current sunspot reconstructions of archival data creates substantial difficulties for such an endeavour. We suggest a possible strategy to avoid these problems. The point is that we have to accept the possibility of several solar activity reconstructions that are contradictory in detail, and have to compare several possible reconstructions with dynamo models. The point is that a given reconstruction may not cover all the time interval of interest because this reconstruction requires information unavailable at earlier or later times.

  8. The quasi-biennial cycle of solar activity and dynamo theory

    NASA Astrophysics Data System (ADS)

    Popova, E. P.; Yukhina, N. A.

    2013-10-01

    We have investigated the behavior of dynamo waves within the framework of a nonlinear αω-dynamo by taking into account the thickness of the convective zone, turbulent diffusivity, and meridional circulation. We show that there exists a regime in the model where short and longer patterns are simultaneously observed in the butterfly diagrams for the magnetic field. This regime is similar to the mixed cycle of the Sun, when fast quasi-biennial oscillations are observed against the background of the 22-year cycle.

  9. Data acquisition in a high-speed rotating frame for New Mexico Institute of Mining and Technology liquid sodium αω dynamo experiment

    NASA Astrophysics Data System (ADS)

    Si, Jiahe; Colgate, Stirling A.; Li, Hui; Martinic, Joe; Westpfahl, David

    2013-10-01

    New Mexico Institute of Mining and Technology liquid sodium αω-dynamo experiment models the magnetic field generation in the universe as discussed in detail by Colgate, Li, and Pariev [Phys. Plasmas 8, 2425 (2001)]. To obtain a quasi-laminar flow with magnetic Reynolds number Rm ˜ 120, the dynamo experiment consists of two co-axial cylinders of 30.5 cm and 61 cm in diameter spinning up to 70 Hz and 17.5 Hz, respectively. During the experiment, the temperature of the cylinders must be maintained to 110 °C to ensure that the sodium remains fluid. This presents a challenge to implement a data acquisition (DAQ) system in such high temperature, high-speed rotating frame, in which the sensors (including 18 Hall sensors, 5 pressure sensors, and 5 temperature sensors, etc.) are under the centrifugal acceleration up to 376g. In addition, the data must be transmitted and stored in a computer 100 ft away for safety. The analog signals are digitized, converted to serial signals by an analog-to-digital converter and a field-programmable gate array. Power is provided through brush/ring sets. The serial signals are sent through ring/shoe sets capacitively, then reshaped with cross-talk noises removed. A microcontroller-based interface circuit is used to decode the serial signals and communicate with the data acquisition computer. The DAQ accommodates pressure up to 1000 psi, temperature up to more than 130 °C, and magnetic field up to 1000 G. First physics results have been analyzed and published. The next stage of the αω-dynamo experiment includes the DAQ system upgrade.

  10. Giant impacts, heterogeneous mantle heating and a past hemispheric dynamo on Mars

    NASA Astrophysics Data System (ADS)

    Monteux, Julien; Amit, Hagay; Choblet, Gael; Langlais, Benoît; Tobie, Gabriel

    2015-04-01

    The martian surface exhibits a strong dichotomy in elevation, crustal thickness and magnetization between the southern and northern hemispheres. A giant impact has been proposed as an explanation for the formation of the Northern Lowlands on Mars. Such an impact probably led to strong and deep mantle heating which may have had implications on the magnetic evolution of the planet. We model the effects of such an impact on the martian magnetic field by imposing an impact induced thermal heterogeneity, and the subsequent heat flux heterogeneity, on the martian core-mantle boundary (CMB). The CMB heat flux lateral variations as well as the reduction in the mean CMB heat flux are determined by the size and geographic location of the impactor. A polar impactor leads to a north-south hemispheric magnetic dichotomy that is stronger than an east-west dichotomy created by an equatorial impactor. The amplitude of the hemispheric magnetic dichotomy is mostly controlled by the horizontal Rayleigh number Rah which represents the vigor of the convection driven by the lateral variations of the CMB heat flux. We show that, for a given Rah, an impact induced CMB heat flux heterogeneity is more efficient than a synthetic degree-1 CMB heat flux heterogeneity in generating strong hemispheric magnetic dichotomies. Large Rah values are needed to get a dichotomy as strong as the observed one, favoring a reversing paleo-dynamo for Mars. Our results imply that an impactor radius of ~ 1000 km could have recorded the magnetic dichotomy observed in the martian crustal field only if very rapid post-impact magma cooling took place.

  11. Giant impacts, heterogeneous mantle heating and a past hemispheric dynamo on Mars

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Amit, H.; Choblet, G.; Langlais, B.; Tobie, G.

    2015-10-01

    The martian surface exhibits a strong dichotomy in elevation, crustal thickness and magnetization between the southern and northern hemispheres. A giant impact has been proposed as an explanation for the for-mation of the Northern Lowlands on Mars. Such an impact probably led to strong and deep mantle heat-ing which may have had implications on the magnetic evolution of the planet. We model the effects of such an impact on the martian magnetic field by imposing an impact induced thermal heterogeneity, and the sub-sequent heat flux heterogeneity, on the martian core- mantle boundary(CMB). The CMB heat flux lateral variations as well as the reduction in the mean CMB heat flux are determined by the size and geographic location of the impactor. A polar impactor leads to a north-south hemispheric magnetic dichotomy that is stronger than an east-west dichotomy created by an equatorial impactor. The amplitude of the hemispheric magnetic dichotomy is mostly controlled by the horizontal Rayleigh number Rah which represents the vigor of the convection driven by the lateral variations of the CMB heat flux. We show that, for a given Rah, an impact induced CMB heat flux heterogeneity is more efficient than a synthetic degree-1 CMB heat flux heterogeneity in generating strong hemispheric magnetic dichotomies. Large Rah values are needed to get a dichotomy as strong as the observed one, favoring a reversing paleo-dynamo for Mars. Our results imply that an impactor radius of˜1000 km could have recorded the magnetic dichotomy observed in the mar- tian crustal field only if very rapid post-impact magma cooling took place.

  12. Evidence of a Partitioned Dynamo Reversal Process from Paleomagnetic Recordings in Tahitian Lavas

    NASA Astrophysics Data System (ADS)

    Hoffman, K. A.; Mochizuki, N.

    2012-12-01

    Lavas erupted at the Society hotspot during the Matuyama-Brunhes (M-B) reversal record transitional field behavior containing two tight, subhorizontal paleodirectional groups that when averaged are antipodal at the 95% confidence level, and thus correlate to antipodal clustered virtual geomagnetic poles (VGPs). These observations--data obtained from two published records of the M-B transition from distinct sections of a succession of flows on Tahiti--are associated with a time when the strength of the axial dipole was significantly reduced. One cluster was recorded by lavas that were not erupted in succession, involving a directional rebound, suggesting that significant time had passed during this volcanic activity. Time spent during the formation of the antipodal cluster is unknown, yet it resides in the same location as VGP clusters from four other transitional events obtained from Society hotspot lavas. Calculated VGPs at the Society hotspot for both "polarities" of the 400-year averaged historic field--less the axial dipole term--are found in the cluster locations. These findings offer strong support for a two-tiered dynamo process in which nearly the entire axial dipole component undergoes both demise and regeneration quasi-independently from that of the remainder of the field--the proposed Shallow Core Generated (SCOR) field--the pattern of which being tied to long-held physical conditions of the lower-most mantle. Apart from polarity reversal, such fixed magnetic features along the core-mantle boundary would also significantly influence the long-term pattern of global paleosecular variation and likely impose strict site-dependent limits on the utility of the geocentric axial dipole (GAD) hypothesis.Clustered Matuyama-Brunhes transitional VGPs reported from the Punaruu Valley (in red), along with the VGP associated with each sign ("polarity") of the 400-year mean historic NAD-field (in yellow) calculated from model gulm1 for the site of the Society hotspot.

  13. Magnetic Field Generation on Super-Earths and Sub-Earths

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Vlada; Breuer, Doris

    2010-05-01

    The last 15 years of astronomical observation have revealed a universe filled with planets. The observational techniques still limit the possibility to detect smaller, Earth-sized planets. New missions such as Kepler and Corot, next generation telescopes such as Darwin and TPF, and improved techniques in radial velocity measurements will lower this limit and make it possible to even detect Earth-sized planets in the near future. We study the ability of planets with different masses to generate a magnetic dynamo. For this we [1] investigate the thermal evolution and convection of planets with Earth-like composition and structure of sizes ranging from 0.1 to 10 Earth masses (Mearth). Important is that we include the pressure dependence of viscosity into our parameterized 1D boundary layer and spherical 2D/3D models, with the scope to understand how the pressure-viscosity coupling changes the convection in the mantles of Super-Earths, and less massive planets, which we termed Sub-Earths. We then look how this influences magnetic dynamos on those planets. We observe that the pressure dependence of viscosity becomes an important factor for the mantle convection of planets with masses larger than 1Mearth - resulting in a sluggish convection regime in the lower mantle for Earth-sized planets. Depending on activation volume we observe with growing planetary mass the formation of a conductive lid over the core mantle boundary (CMB), termed low-lid, where convection velocities cease and where heat transport is only due to conduction. The sluggish convection and the formation of the low-lid reduce the convective vigour throughout the mantle. This leads to much lower core cooling in comparison to non-pressure-dependent viscosity models. We find using our parameterized 1D convection models that the low-lid insulates the core and thus affects the potential growth of an inner core and the ratio of CMB heat flux to critical heat flux. This on the other hand influences the

  14. Direct observational evidence for disturbance dynamo on the daytime low-latitude ionosphere: A case study based on the 28 June 2013 space weather event

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Shreedevi, P. R.; Choudhary, R. K.; Pant, Tarun Kumar; Chakrabarty, D.; Sunda, S.; Mukherjee, S.; Bhardwaj, Anil

    2016-10-01

    A case of the westward disturbance dynamo (DD) electric field, influencing the daytime equatorial and low-latitude ionosphere, during a geomagnetic storm that occurred on 28-29 June 2013 is presented. The GPS total electron content (TEC) observations from a network of stations in the Indian equatorial, low and middle latitude regions along with the radio beacon TEC, ionosonde, and magnetic field observations are used to study the storm time behavior of the ionosphere. Negative ionospheric storm effects were seen over the low and middle latitudes during the storm time due to the presence of a westward DD electric field. Observations show that the suppression of the equatorial ionization anomaly (EIA) from the morning hours itself on 29 June 2013 took place due to the prevailing westward DD electric field, providing evidence for the model calculations by Balan et al. (2013). Simulations using the GITM model also agree well with our results. The present study gains importance as the direct observational evidences for disturbance dynamo effects on the daytime low-latitude ionosphere and the EIA are sparse, as it has been difficult to delineate it from the compositional disturbances.

  15. Transport and frictional properties of core samples from Taiwan Chelungpu-fault Drilling Project and its association with the heat generation due to frictional heating

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Mizoguchi, K.; Takahashi, M.; Masuda, K.; Hirono, T.; Lin, W.; Soh, W.; Song, S.

    2006-12-01

    Taiwan Chelungpu-fault Drilling Project (TCDP) was started from 2002 to investigate the faulting mechanism of the 1999 Chi-Chi earthquake. TCDP was succeeded in penetrating the Chelungpu fault and recovered core samples from two holes, Hole A and Hole B. In Hole B, three fault zones, FZB1136 (1134-1137 m), FZB1194 (1194-1197 m), and FZB1243 (1242-1244 m), were recognized in the core samples (Hirono et al., 2006). Micro- textual observation and rock magnetic analyses of fault zones implied the evidence of heat generation, though the temperature did not reach the melting point. Borehole temperature measurement in Hole A observed the very low temperature anomaly around the fault zone (Kano et al., 2006). These results suggest the low degree of the frictional heating due to very low friction during the slip. The possible low friction might be explained by the slip within clay rich fault gouge with low shear strength. The other possible mechanisms are dynamic weakening behaviors of the fault zone, such as thermal pressurization and elast-hydrodynamic lubrication. To demonstrate the assumptions, the transport properties and the strength of the fault rocks are measured using core samples. Core samples of three fault zones in Hole B (FZB1136, FZB1194, and FZB1243) are selected for our laboratory experiments. Permeability and specific storage for fault rocks were measured under high confining pressure up to 100 MPa. Nitrogen gas was used as a pore fluid, and gas permeability was transformed to water permeability from gas permeability dependence on pore pressure of Klinkenberg equation. In FZB1136, permeability for fault breccia showed around 10-16 m2 at 1km depth which is similar value to that for host rock of siltstone and fracture rocks. In FZB1194, permeability of black fault gouge was about 10^{-15} m2, is larger than surrounding rocks. Frictional tests were also conducted using fault gouge samples with less than 100 μm of grain size. Tests are performed under the

  16. Powering Earth’s dynamo with magnesium precipitation from the core

    NASA Astrophysics Data System (ADS)

    O'Rourke, Joseph G.; Stevenson, David J.

    2016-01-01

    Earth’s global magnetic field arises from vigorous convection within the liquid outer core. Palaeomagnetic evidence reveals that the geodynamo has operated for at least 3.4 billion years, which places constraints on Earth’s formation and evolution. Available power sources in standard models include compositional convection (driven by the solidifying inner core’s expulsion of light elements), thermal convection (from slow cooling), and perhaps heat from the decay of radioactive isotopes. However, recent first-principles calculations and diamond-anvil cell experiments indicate that the thermal conductivity of iron is two or three times larger than typically assumed in these models. This presents a problem: a large increase in the conductive heat flux along the adiabat (due to the higher conductivity of iron) implies that the inner core is young (less than one billion years old), but thermal convection and radiogenic heating alone may not have been able to sustain the geodynamo during earlier epochs. Here we show that the precipitation of magnesium-bearing minerals from the core could have served as an alternative power source. Equilibration at high temperatures in the aftermath of giant impacts allows a small amount of magnesium (one or two weight per cent) to partition into the core while still producing the observed abundances of siderophile elements in the mantle and avoiding an excess of silicon and oxygen in the core. The transport of magnesium as oxide or silicate from the cooling core to underneath the mantle is an order of magnitude more efficient per unit mass as a source of buoyancy than inner-core growth. We therefore conclude that Earth’s dynamo would survive throughout geologic time (from at least 3.4 billion years ago to the present) even if core radiogenic heating were minimal and core cooling were slow.

  17. On the possibility of an alpha-sq omega-type dynamo in a thin layer inside the sun

    NASA Technical Reports Server (NTRS)

    Choudhuri, Arnab Rai

    1990-01-01

    If the solar dynamo operates in a thin layer of 10,000-km thickness at the interface between the convection zone and the radiative core, using the facts that the dynamo should have a period of 22 years and a half-wavelength of 40 deg in the theta-direction, it is possible to impose restrictions on the values which various dynamo parameters are allowed to have. It is pointed out that the dynamo should be of alpha-sq omega nature, and kinematical calculations are presented for free dynamo waves and for dynamos in thin rectangular slabs with appropriate boundary conditions. An alpha-sq omega dynamo is expected to produce a significant poloidal field which does not leak to the solar surface. It is found that the turbulent diffusity eta and alpha-coefficient are restricted to values within about a factor of 10, the median values being eta of about 10 to the 10th sq cm/sec and alpha of about 10 cm/sec. On the basis of mixing length theory, it is pointed out that such values imply a reasonable turbulent velocity of the order 30 m/s, but rather small turbulent length scales like 300 km.

  18. Time history of the Martian dynamo from crater magnetic field analysis

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Robbins, Stuart; Manga, Michael; Halekas, Jasper S.; Frey, Herbert V.

    2013-07-01

    impacts simultaneously reset both the surface age and the magnetization of the entire depth of crust over areas comparable to the final size of the resulting craters. These properties make large impact craters (>300 km in diameter) ideal "magnetic markers" for constraining the history of the Martian core dynamo. However, the relationship between crustal magnetization and magnetic field measured in orbit is nonunique, making the measured magnetic field signature of an impact crater only a proxy for the magnetization (or lack thereof) below. Using Monte Carlo Fourier domain modeling of subsurface magnetization, we calculate probability distributions of the magnetic field signatures of partially and completely demagnetized craters. We compare these distributions to measured magnetic field signatures of 41 old impact craters on Mars larger than 300 km in diameter and calculate probabilities of their magnetization state. We compare these probabilities to cratering densities and absolute model ages and in this manner arrive at a robust time history of Martian large-crater magnetization and hence of the Martian dynamo. We conclude that the most likely scenario was a Mars dynamo active when the oldest detectable basins formed, ceasing before the Hellas and Utopia impacts, between 4.0 and 4.1 Ga (in model age) and not thereafter restarting. The Mars atmosphere was thereafter exposed directly to erosion by the solar wind, significantly altering the path of climate evolution. Further improvements to the history of the Martian dynamo will require better crater age estimates and lower altitude magnetic field data.

  19. Time history of the Martian dynamo from crater magnetic field analysis

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Robbins, S. J.; Manga, M.; Halekas, J. S.; Frey, H.

    2013-12-01

    Large impacts simultaneously reset both the surface age and the magnetization of the entire depth of crust over areas comparable to the final size of the resulting craters. These properties make large impact craters (>300 km in diameter) ideal 'magnetic markers' for constraining the history of the Martian core dynamo. However the relationship between crustal magnetization and magnetic field measured in orbit is non-unique, making the measured magnetic field signature of an impact crater only a proxy for the magnetization (or lack thereof) below. Using Monte Carlo Fourier domain modeling of subsurface magnetization, we calculate probability distributions of the magnetic field signatures of partially and completely demagnetized craters. We compare these distributions to measured magnetic field signatures of 41 old impact craters on Mars larger than 300 km in diameter and calculate probabilities of their magnetization state. We compare these probabilities to cratering densities and absolute model ages and in this manner arrive at a robust time-history of Martian large crater magnetization and hence of the Martian dynamo. We conclude that the most likely scenario was a Mars dynamo active when the oldest detectable basins formed, ceasing before the Hellas and Utopia impacts, between 4.0 and 4.1 Ga (in model age) and not thereafter restarting. The Mars atmosphere was thereafter exposed directly to erosion by the solar wind, significantly altering the path of climate evolution. Further improvements to the history of the Martian dynamo will require better crater age estimates and lower altitude magnetic field data.

  20. Impact of a Realistic Density Stratification on a Simple Solar Dynamo Calculation

    NASA Astrophysics Data System (ADS)

    Cardoso, Elisa; Lopes, Ilídio

    2012-09-01

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.