Gravitating dyons in Vaidya geometry
NASA Astrophysics Data System (ADS)
Tripathi, Buddhi Vallabh; Nandan, Hemwati; Dehnen, Heinz; Purohit, K. D.
2014-03-01
Gravitating monopoles and dyons in Einstein-Yang-Mills (EYM) or Einstein-Yang-Mills-Higgs (EYMH) systems have been extensively studied for various curved space-times, including those of black holes. We construct dyonic solutions of the EYMH theory in Vaidya space-time using a set of generalized Julia-Zee ansatz for the fields. It is found that the dyonic charge is static in nature and it does not contribute to the energy of the null dust.
Dyons of One-Half Monopole Charge
NASA Astrophysics Data System (ADS)
Teh, Rosy; Wong, Khai-Ming
We would like to present some exact SU(2) Yang-Mills-Higgs dyon solutions of one-half monopole charge. These static dyon solutions satisfy the first order Bogomol'nyi equations and are characterized by a parameter, m. They are axially symmetric. The gauge potentials and the electromagnetic fields possess a string singularity along the negative z-axis and hence they possess infinite energy density along the line singularity. However the net electric charges of these dyons which varies with the parameter m are finite.
Dyons in topological field theories
NASA Astrophysics Data System (ADS)
Temple-Raston, M.
1991-10-01
We examine a class of topological field theories defined by Lagrangians that under certain conditions can be written as the sum of two characteristic numbers or winding numbers. Therefore, the action or the energy is a topological invariant and stable under perturbations. The sufficient conditions required for stability take the form of first-order field equations, analogous to the self-duality and Bogomol'nyi equations in Yang-Mills(-Higgs) theory. Solutions to the first-order equations automatically satisfy the full field equations. We show the existence of nontrivial, nonsingular, minimum energy spherically symmetric dyon solutions and that they are stable. We also discuss evidence for a dual field theory to Yang-Mills-Higgs in topological field theory. The existence of dual field theories and electric monopoles is predicted by Montonen and Olive.
Supersymmetrization of Quaternion Dirac Equation for Generalized Fields of Dyons
NASA Astrophysics Data System (ADS)
Rawat, A. S.; Rawat, Seema; Li, Tianjun; Negi, O. P. S.
2012-10-01
The quaternion Dirac equation in presence of generalized electromagnetic field has been discussed in terms of two gauge potentials of dyons. Accordingly, the supersymmetry has been established consistently and thereafter the one, two and component Dirac Spinors of generalized quaternion Dirac equation of dyons for various energy and spin values are obtained for different cases in order to understand the duality invariance between the electric and magnetic constituents of dyons.
On holography of Julia-Zee dyon
NASA Astrophysics Data System (ADS)
Allahbakhshi, Davood
2011-09-01
The holographic dual of self gravitating Julia-Zee dyon is discussed. It is shown that the dual field theory is generally a field theory with a vortex condensate. The vacuum expectation values of the dual operators, as functions of the sources in the field theory, are studied in a class of bulk solutions. In these solutions the sign of the vacuum expectation values of the dual operators change, by changing the sources in the model.
NASA Astrophysics Data System (ADS)
Ng, Ban-Loong; Teh, Rosy; Wong, Khai-Ming
2015-04-01
Recently we have reported on the coexistence of a finite energy SU(2) Yang-Mills-Higgs particle of one-half topological charge and a 't Hooft-Polyakov monopole of opposite charges. In this paper, we show that this purely magnetic solution can be extended into one and a half dyons solution by introducing electric charge into the system. This configuration possesses finite energy, angular momentum and magnetic dipole moment and is able to rotate when external magnetic field is switched on. Similar to the one-half dyon and monopole-antimonopole pair dyons solutions, when electric charge parameter η is non-vanishing, the physical quantities like total energy, magnetic dipole moment, dipole separation, and electric charge of this solution increase exponentially fast to infinity as the Higgs self-coupling constant λ approaches zero. For non-vanishing λ, these quantities possess a critical value as η approaches one. However, for larger values of λ, the magnetic dipoles moment and dipole separation decrease with increasing η which certainly differ from the norm.
Generalization of Schwinger-Zwanziger Dyon to Quaternion
NASA Astrophysics Data System (ADS)
Negi, O. P. S.; Dehnen, H.; Karnatak, Gaurav; Bisht, P. S.
2011-06-01
Postulating the existence of magnetic monopole in electromagnetism and Heavisidian monopoles in gravitational interactions, a unified theory of gravi-electromagnetism has been developed on generalizing the Schwinger-Zwanziger formulation of dyon to quaternion in simple and consistent manner. Starting with the four Lorentz like forces on different charges, we have generalized the Schwinger-Zwanziger quantization parameters in order to obtain the angular momentum for unified fields of dyons and gravito-dyons (i.e. Gravi-electromagnetism). Taking the unified charge as quaternion, we have reformulated manifestly covariant and consistent theory for the dynamics of four charges namely electric, magnetic, gravitational and Heavisidian associated with gravi electromagnetism.
Counting all dyons in {N} = 4 string theory
NASA Astrophysics Data System (ADS)
Dabholkar, Atish; Gomes, João; Murthy, Sameer
2011-05-01
For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I ≡ gcd( Q ∧ P) is an invariant of the U-duality group. We propose the microscopic theory for computing the spectrum of all dyons for all values of I, generalizing earlier results that exist only for the simplest case of I = 1. Our derivation uses a combination of arguments from duality, 4d-5d lift, and a careful analysis of fermionic zero modes. The resulting degeneracy agrees with the black hole degeneracy for large charges and with the degeneracy of field-theory dyons for small charges. It naturally satisfies several physical requirements including integrality and duality invariance. As a byproduct, we also derive the microscopic (0 , 4) superconformal field theory relevant for computing the spectrum of five-dimensional Strominger-Vafa black holes in ALE backgrounds and count the resulting degeneracies.
Holography and AdS4 self-gravitating dyons
NASA Astrophysics Data System (ADS)
Lugo, A. R.; Moreno, E. F.; Schaposnik, F. A.
2010-11-01
We present a self-gravitating dyon solution of the Einstein-Yang-Mills-Higgs equations of motion in asymptotically AdS space. The back reaction of gauge and Higgs fields on the space-time geometry leads to the metric of an asymptotically AdS black hole. Using the gauge/gravity correspondence we analyze relevant properties of the finite temperature quantum field theory defined on the boundary. In particular we identify an order operator, characterize a phase transition of the dual theory on the border and also compute the expectation value of the finite temperature Wilson loop.
MONOPOLES AND DYONS IN THE PURE EINSTEIN YANG MILLS THEORY
HOSOTANI,Y.; BJORAKER,J.
1999-08-16
In the pure Einstein-Yang-Mills theory in four dimensions there exist monopole and dyon solutions. The spectrum of the solutions is discrete in asymptotically flat or de Sitter space, whereas it is continuous in asymptotically anti-de Sitter space. The solutions are regular everywhere and specified with their mass, and non-Abelian electric and magnetic charges. In asymptotically anti-de Sitter space a class of monopole solutions have no node in non-Abelian magnetic fields, and are stable against spherically symmetric perturbations.
Quaternion-Octonion Analyticity for Abelian and Non-Abelian Gauge Theories of Dyons
NASA Astrophysics Data System (ADS)
Bisht, P. S.; Negi, O. P. S.
2008-06-01
Einstein-Schrödinger (ES) non-symmetric theory has been extended to accommodate the Abelian and non-Abelian gauge theories of dyons in terms of the quaternion-octonion metric realization. Corresponding covariant derivatives for complex, quaternion and octonion spaces in internal gauge groups are shown to describe the consistent field equations and generalized Dirac equation of dyons. It is also shown that quaternion and octonion representations extend the so-called unified theory of gravitation and electromagnetism to the Yang-Mill’s fields leading to two SU(2) gauge theories of internal spaces due to the presence of electric and magnetic charges on dyons.
Holographic phase transition from dyons in an AdS black hole background
NASA Astrophysics Data System (ADS)
Lugo, A. R.; Moreno, E. F.; Schaposnik, F. A.
2010-03-01
We construct a dyon solution for a Yang-Mills-Higgs theory in a 4 dimensional Schwarzschild-anti-de Sitter black hole background with temperature T. We then apply the AdS/CFT correspondence to describe the strong coupling regime of a 2 + 1 quantum field theory which undergoes a phase transition exhibiting the condensation of a composite charge operator below a critical temperature T c .
Classical Geometrodynamics with Zorn Vector-Matrix Algebra for Gravito-Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2015-08-01
Describing the properties of split octonions and their connection with the 2 × 2 Zorn vector-matrix, we have reformulated generalized linear gravitational field equations in terms of split octonions in consistent and symmetrical manner. Starting with 2 × 2 Zorn vector-matrix algebra, we have written the generalized gravito-Heavisidian (GH) potential, field and current equations of gravito-dyons in terms of split octonions. Accordingly, we have obtained the gravitational analogues of generalized Dirac-Maxwell's and Proca-Maxwell's equations for linear gravito-Heavisidian (GH) field of gravito-dyons in the case of split octonionic representation. We have made an attempt to write the Poynting theorem in terms of split octonions which is analogous to the work-energy theorem of classical mechanics reproducing the continuity equation. Accordingly, we have described some fundamental laws of physics, i.e. the conservation of energy and momentum for the case of classical geometro-dynamics which exhibits linear gravitational theory of gravito-dyons.
A remark on the asymptotic form of BPS multi-dyon solutions and their conserved charges
NASA Astrophysics Data System (ADS)
Constantinidis, C. P.; Ferreira, L. A.; Luchini, G.
2015-12-01
We evaluate the gauge invariant, dynamically conserved charges, recently obtained from the integral form of the Yang-Mills equations, for the BPS multi-dyon solutions of a Yang-Mills-Higgs theory associated to any compact semi-simple gauge group G. Those charges are shown to correspond to the eigenvalues of the next-to-leading term of the asymptotic form of the Higgs field at spatial infinity, and so coinciding with the usual topological charges of those solutions. Such results show that many of the topological charges considered in the literature are in fact dynamical charges, which conservation follows from the global properties of classical Yang-Mills theories encoded into their integral dynamical equations. The conservation of those charges can not be obtained from the differential form of Yang-Mills equations.
Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots
NASA Astrophysics Data System (ADS)
Kholodenko, Arkady L.
2016-08-01
Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang-Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric-magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada's results by carefully analyzing and classifying all dynamically generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].
Magnetic monopoles and dyons revisited: a useful contribution to the study of classical mechanics
NASA Astrophysics Data System (ADS)
dos Santos, Renato P.
2015-05-01
Graduate-level physics curricula in many countries around the world, as well as senior-level undergraduate ones in some major institutions, include classical mechanics courses, mostly based on Goldstein’s textbook masterpiece. During the discussion of central force motion, however, the Kepler problem is virtually the only serious application presented. In this paper, we present another problem that is also soluble, namely the interaction of Schwinger’s dual-charged (dyon) particles. While the electromagnetic interaction of magnetic monopoles and electric charges was studied in detail some 40 years ago, we consider that a pedagogical discussion of it from an essentially classical mechanics point of view is a useful contribution for students. Following a path that generalizes Kepler’s problem and Rutherford scattering, we show that they exhibit remarkable properties such as stable non-planar orbits, as well as rainbow and glory scattering, which are not present in the ordinary scattering of two singly charged particles. Moreover, it can be extended further to the relativistic case and to a semi-classical quantization, which can also be included in the class discussion.
On the stability of dyons and dyonic black holes in Einstein-Yang-Mills theory
NASA Astrophysics Data System (ADS)
Nolan, Brien C.; Winstanley, Elizabeth
2016-02-01
We investigate the stability of four-dimensional dyonic soliton and black hole solutions of {su}(2) Einstein-Yang-Mills theory in anti-de Sitter space. We prove that, in a neighbourhood of the embedded trivial (Schwarzschild-)anti-de Sitter solution, there exist non-trivial dyonic soliton and black hole solutions of the field equations which are stable under linear, spherically symmetric, perturbations of the metric and non-Abelian gauge field.
Optical knots and contact geometry I. From Arnol'd inequality to Ranada's dyons
NASA Astrophysics Data System (ADS)
Kholodenko, Arkady L.
2016-06-01
Recently there had been a great deal of activity associated with various schemes of designing both analytic and experimental methods describing knotted structures in electrodynamics and in hydrodynamics. The majority of works in electrodynamics were inspired by the influential paper by Ranada (Lett Math Phys 18:97-106, 1989) and its subsequent refinements. In this work and in its companion we analyze Ranada's results using methods of contact geometry and topology. Not only our analysis allows us to reproduce his major results but in addition, it provides opportunities for considerably extending the catalog of the known/obtained knot types. In addition, it allows to reinterpret both the electric and magnetic charges purely geometrically thus opening the possibility of treatment of masses and charges in Yang-Mills and gravitational fields purely geometrically.
Quaternion analysis for generalized electromagnetic fields of dyons in an isotropic medium
NASA Astrophysics Data System (ADS)
Singh, Jivan; Bisht, P. S.; Negi, O. P. S.
2007-07-01
Quaternion analysis of time-dependent Maxwell's equations in the presence of electric and magnetic charges has been developed and the solutions for the classical problem of moving charges (electric and magnetic) are obtained in a unique, simple and consistent manner.
NASA Astrophysics Data System (ADS)
Zeng, Xiao-Xiong; Liu, Xiong-Wei; Yang, Shu-Zheng
2008-12-01
Hawking radiation of particles with electric and magnetic charges from the Einstein Maxwell-Dilaton Axion black hole is derived via the anomaly cancellation method, initiated by Robinson and Wilczek and elaborated by Banerjee and Kulkarni recently. We reconstruct the electromagnetic field tensor to redefine the gauge potential and equivalent charge corresponding to the source with electric and magnetic charges. We only adopt the covariant gauge and gravitational anomalies to discuss the near-horizon quantum anomaly in the dragging coordinate frame. Our result shows that Hawking radiation in this case also can be reproduced from the viewpoint of anomaly.
Dyons and dyonic black holes in su (N ) Einstein-Yang-Mills theory in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Shepherd, Ben L.; Winstanley, Elizabeth
2016-03-01
We present new spherically symmetric, dyonic soliton and black hole solutions of the su (N ) Einstein-Yang-Mills equations in four-dimensional asymptotically anti-de Sitter spacetime. The gauge field has nontrivial electric and magnetic components and is described by N -1 magnetic gauge field functions and N -1 electric gauge field functions. We explore the phase space of solutions in detail for su (2 ) and su (3 ) gauge groups. Combinations of the electric gauge field functions are monotonic and have no zeros; in general the magnetic gauge field functions may have zeros. The phase space of solutions is extremely rich, and we find solutions in which the magnetic gauge field functions have more than fifty zeros. Of particular interest are solutions for which the magnetic gauge field functions have no zeros, which exist when the negative cosmological constant has sufficiently large magnitude. We conjecture that at least some of these nodeless solutions may be stable under linear, spherically symmetric, perturbations.
Generalized Gravi—Electromagnetism
NASA Astrophysics Data System (ADS)
Bisht, P. S.; Karnatak, Gaurav; Negi, O. P. S.
2010-06-01
A self consistant and manifestly covariant theory for the dynamics of four charges (masses) (namely electric, magnetic, gravitational, Heavisidian) has been developed in simple, compact and consistent manner. Starting with an invariant Lagrangian density and its quaternionic representation, we have obtained the consistent field equation for the dynamics of four charges. It has been shown that the present reformulation reproduces the dynamics of individual charges (masses) in the absence of other charge (masses) as well as the generalized theory of dyons (gravito-dyons) in the absence gravito-dyons (dyons).
Dual number coefficient octonion algebra, field equations and conservation laws
NASA Astrophysics Data System (ADS)
Chanyal, B. C.; Chanyal, S. K.
2016-08-01
Starting with octonion algebra, we develop the dual number coefficient octonion (DNCO) algebra having sixteen components. DNCO forms of generalized potential, field and current equations are discussed in consistent manner. We have made an attempt to write the DNCO form of generalized Dirac-Maxwell's equations in presence of electric and magnetic charges (dyons). Accordingly, we demonstrate the work-energy theorem of classical mechanics reproducing the continuity equation for dyons in terms of DNCO algebra. Further, we discuss the DNCO form of linear momentum conservation law for dyons.
A new approach on electromagnetism with dual number coefficient octonion algebra
NASA Astrophysics Data System (ADS)
Chanyal, Bhupesh Chandra; Chanyal, Sunil Kumar; Bektaş, Özcan; Yüce, Salim
2016-08-01
Dual number coefficient octonion (DNCO) is one of the kind of octonion, it has 16 components with an additional dual unit ɛ. Starting with DNCO algebra, we develop the generalized electromagnetic field equations of dyons regarding the DNCOS spaces, which has two octonionic space-times namely the octonionic internal space-time and the octonionic external space-time. Besides, the generalized four-potential components of dyons have been expressed with respect to the dual octonion form. Furthermore, we obtain the symmetrical form of Dirac-Maxwell equations, and the generalized potential wave equations for dyons in terms of the dual octonion. Finally, we conclude that dual octonion formulation is compact and simpler like octonion formulation.
Extremal dyonic black holes in D=4 Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Chen, Chiang-Mei; Gal'Tsov, Dmitri V.; Orlov, Dmitry G.
2008-11-01
We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton theory with higher curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. In the same theory without the Gauss-Bonnet term the extremal dyon solutions exist only for discrete values of the dilaton coupling constant a. We show that the Gauss-Bonnet term acts as a dyon hair tonic enlarging the allowed values of a to continuous domains in the plane (a,qm) where qm is the magnetic charge. In the limit of the vanishing curvature coupling (a large magnetic charge) the dyon solutions obtained tend to the Reissner-Nordström solution but not to the extremal dyons of the Einstein-Maxwell-dilaton theory. Both solutions have the same dependence of the horizon radius in terms of charges. The entropy of new dyonic black holes interpolates between the Bekenstein-Hawking value in the limit of the large magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice this value for the vanishing magnetic charge. Although an expression for the entropy can be obtained analytically using purely local near-horizon solutions, its interpretation as the black hole entropy is legitimate only once the global black hole solution is known to exist, and we obtain numerically the corresponding conditions on the parameters. Thus, a purely local analysis is insufficient to fully understand the entropy of the curvature-corrected black holes. We also find dyon solutions which are not asymptotically flat, but approach the linear dilaton background at infinity. They describe magnetic black holes on the electric linear dilaton background.
Perturbative tests of non-perturbative counting
NASA Astrophysics Data System (ADS)
Dabholkar, Atish; Gomes, João
2010-03-01
We observe that a class of quarter-BPS dyons in mathcal{N} = 4 theories with charge vector ( Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd( Q∧ P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.
Meta-stable Supersymmetry Breaking in an N = 1 Perturbed Seiberg-Witten Theory
Sasaki, Shin; Arai, Masato; Montonen, Claus; Okada, Nobuchika
2008-11-23
In this contribution, we discuss the possibility of meta-stable supersymmetry (SUSY) breaking vacua in a perturbed Seiberg-Witten theory with Fayet-Iliopoulos (FI) term. We found meta-stable SUSY breaking vacua at the degenerated dyon and monopole singular points in the moduli space at the nonperturbative level.
Multi-branch structure for electrically charged four-pole axially symmetric system of solutions
NASA Astrophysics Data System (ADS)
Soltanian, Amin; Teh, Rosy; Wong, Khai-Ming
2016-01-01
Dyon solutions with axial symmetry in Yang-Mills-Higgs theory, including monopole-antimonopole pairs (MAP), monopole-antimonopole chains (MAC) and vortex-rings are introduced previously. The previously studied cases include at most a bifurcation for MAP systems and two for MAC dyon solutions. Here, for the case of ϕ-winding number n = 4, a rich set of solutions including nine branches and four bifurcations, has been obtained for electrically charged four-pole MAC solutions. Also, the transition between two different charge configurations at a lower energy bifurcating branch is detected for the first time. This study also improves and completes some aspects of a previous study on the electrically neutral case. In the case of n = 3, in addition to previously found bifurcation, another bifurcation at small values of Higgs self-coupling constant λ, has been obtained here.
The price of an electroweak monopole
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, Nick E.; You, Tevong
2016-05-01
In a recent paper, Cho, Kim and Yoon (CKY) have proposed a version of the SU (2) × U (1) Standard Model with finite-energy monopole and dyon solutions. The CKY model postulates that the effective U(1) gauge coupling →∞ very rapidly as the Englert-Brout-Higgs vacuum expectation value →0, but in a way that is incompatible with LHC measurements of the Higgs boson H → γγ decay rate. We construct generalisations of the CKY model that are compatible with the H → γγ constraint, and calculate the corresponding values of the monopole and dyon masses. We find that the monopole mass could be < 5.5 TeV, so that it could be pair-produced at the LHC and accessible to the MoEDAL experiment.
NASA Astrophysics Data System (ADS)
Navarro-Lérida, Francisco; Tchrakian, D. H.
2015-05-01
We study spherically symmetric finite energy solutions of two Higgs-Chern-Simons-Yang-Mills-Higgs (HCS-YMH) models in 3+1 dimensions, one with gauge group SO(5) and the other with SU(3). The Chern-Simons (CS) densities are defined in terms of both the Yang-Mills (YM) and Higgs fields and the choice of the two gauge groups is made so that they do not vanish. The solutions of the SO(5) model carry only electric charge and zero magnetic charge, while the solutions of the SU(3) model are dyons carrying both electric and magnetic charges like the Julia-Zee (JZ) dyon. Unlike the latter, however, the electric charge in both models receives an important contribution from the CS dynamics. We pay special attention to the relation between the energies and charges of these solutions. In contrast with the electrically charged JZ dyon of the Yang-Mills-Higgs (YMH) system, whose mass is larger than that of the electrically neutral (magnetic monopole) solutions, the masses of the electrically charged solutions of our HCS-YMH models can be smaller than their electrically neutral counterparts in some parts of the parameter space. To establish this is the main task of this work, which is performed by constructing the HCS-YMH solutions numerically. In the case of the SU(3) HCS-YMH, we have considered the question of angular momentum and it turns out that it vanishes.
Magnetic Half-Monopole Solutions
NASA Astrophysics Data System (ADS)
Teh, Rosy; Lim, Kok-Geng; Koh, Pin-Wai
2009-07-01
We present exact SU(2) Yang-Mills-Higgs monopole solutions of one half topological charge. These non-Abelian solutions possess gauge potentials which are singular along either the positive or the negative z-axis and common magnetic fields that are singular only at the origin where the half-monopole is located. These half-monopoles are actually a half Wu-Yang monopole and they can possess a finite point electric charge and become half-dyons. They do not necessarily satisfy the first order Bogomol'nyi equations and they possess infinite energy density at r = 0.
A Chern-Simons-Yang-Mills-Higgs system in 3+1 dimensions
NASA Astrophysics Data System (ADS)
Navarro-Lérida, Francisco; Radu, Eugen; Tchrakian, D. H.
2014-10-01
We study spherically symmetric solutions of an SO(5) Chern-Simons-Yang-Mills-Higgs system in 3+1 dimensions. The Chern-Simons densities are defined in terms of both Yang-Mills fields and a five-component isomultiplet Higgs. The SO(3) × SO(2) solutions are analyzed in a systematic way, by employing numerical methods. These finite energy configurations possess both electric and magnetic global charges, differing radically, however, from Julia-Zee dyons. When two or more of these Chern-Simons densities are present in the Lagrangian, solutions with vanishing electric charge but nonvanishing electrostatic potential may exist.
The classical double copy for Taub-NUT spacetime
NASA Astrophysics Data System (ADS)
Luna, Andrés; Monteiro, Ricardo; O'Connell, Donal; White, Chris D.
2015-11-01
The double copy is a much-studied relationship between gauge theory and gravity amplitudes. Recently, this was generalised to an infinite family of classical solutions to Einstein's equations, namely stationary Kerr-Schild geometries. In this paper, we extend this to the Taub-NUT solution in gravity, which has a double Kerr-Schild form. The single copy of this solution is a dyon, whose electric and magnetic charges are related to the mass and NUT charge in the gravity theory. Finally, we find hints that the classical double copy extends to curved background geometries.
Kepler unbound: Some elegant curiosities of classical mechanics
NASA Astrophysics Data System (ADS)
MacKay, Niall J.; Salour, Sam
2015-01-01
We explain two exotic systems of classical mechanics: the McIntosh-Cisneros-Zwanziger ("MICZ") Kepler system, of motion of a charged particle in the presence of a modified dyon; and Gibbons and Manton's description of the slow motion of well-separated solitonic ("BPS") monopoles using Taub-NUT space. Each system is characterized by the conservation of a Laplace-Runge-Lenz vector, and we use elementary vector techniques to show that each obeys a subtly different variation on Kepler's three laws for the Newton-Coulomb two-body problem, including a new modified Kepler third law for BPS monopoles.
Cho decomposition of electrically charged one-half monopole
NASA Astrophysics Data System (ADS)
Ng, Ban-Loong; Teh, Rosy; Wong, Khai-Ming
2014-03-01
Recently we have carried out some work on the Cho decomposition of the electrically neutral, finite energy one-half monopole solution of the SU(2) Yang-Mills-Higgs field theory. In this paper, we performed the decomposition of the electrically charged solution using the same numerical procedure. The gauge potential of the one-half dyon solution is decomposed into Abelian and non-Abelian components. The semi-infinite string singularity in the gauge potential is a contribution of the Higgs field and hence topological in nature. The string singularity cannot be cancelled by the non-Abelian components of the gauge potential. However, the string singularity is integrable and the energy of the solution is finite. By decomposing the magnetic fields and covariant derivatives of the Higgs field into three isospin space directions, we are able to provide conclusive evidence that the constructed one-half dyon is certainly a non-BPS solution even in the limit of vanishing Higgs self-coupling constant and electric charge. Furthermore, we found that the time component of gauge function is parallel to the Higgs field in isospace only at large distances, elsewhere they are non-parallel.
Framed BPS states, moduli dynamics, and wall-crossing
NASA Astrophysics Data System (ADS)
Lee, Sungjay; Yi, Piljin
2011-04-01
We formulate supersymmetric low energy dynamics for BPS dyons in strongly-coupled N = 2 Seiberg-Witten theories, and derive wall-crossing formulae thereof. For BPS states made up of a heavy core state and n probe (halo) dyons around it, we derive a reliable supersymmetric moduli dynamics with 3 n bosonic coordinates and 4 n fermionic superpartners. Attractive interactions are captured via a set of supersymmetric potential terms, whose detail depends only on the charges and the special Kähler data of the underlying N = 2 theories. The small parameters that control the approximation are not electric couplings but the mass ratio between the core and the probe, as well as the distance to the marginal stability wall where the central charges of the probe and of the core align. Quantizing the dynamics, we construct BPS bound states and derive the primitive and the semi-primitive wall-crossing formulae from the first principle. We speculate on applications to line operators and Darboux coordinates, and also about extension to supergravity setting.
Supersymmetric N=2 gauge theory with arbitrary gauge group
NASA Astrophysics Data System (ADS)
Kuchiev, Michael Yu.
2010-10-01
A new universal model to implement the Seiberg-Witten approach to low-energy properties of the supersymmetric N=2 gauge theory with an arbitrary compact simple gauge group, classical or exceptional, is suggested. It is based on the hyperelliptic curve, whose genus equals the rank of the gauge group. The weak and strong coupling limits are reproduced. The magnetic and electric charges of light dyons, which are present in the proposed model comply with recent predictions derived from the general properties of the theory. The discrete chiral symmetry is implemented, the duality condition is reproduced, and connections between monodromies at weak and strong coupling are established. It is found that the spectra of monopoles and dyons are greatly simplified when vectors representing the scalar and dual fields in the Cartan algebra are aligned along the Weyl vector. This general feature of the theory is used for an additional verification of the model. The model predicts the identical analytic structures of the coupling constants for the theories based on the SU(r+1) and Sp(2r) gauge groups.
Preon Model and Family Replicated E_6 Unification
NASA Astrophysics Data System (ADS)
Das, Chitta Ranjan; Laperashvili, Larisa V.
2008-02-01
Previously we suggested a new preon model of composite quark-leptons and bosons with the 'flipped' E6 × ˜E6 gauge symmetry group. We assumed that preons are dyons having both hyper-electric g and hyper-magnetic ˜g charges, and these preons-dyons are confined by hyper-magnetic strings which are an N = 1 supersymmetric non-Abelian flux tubes created by the condensation of spreons near the Planck scale. In the present paper we show that the existence of the three types of strings with tensions Tk = kT0 (k = 1,2,3) producing three (and only three) generations of composite quark-leptons, also provides three generations of composite gauge bosons ('hyper-gluons') and, as a consequence, predicts the family replicated [E6]3 unification at the scale ~1017 GeV. This group of unification ha! s the possibility of breaking to the group of symmetry: [SU(3)C]3 × [SU(2)L]3 × [U(1)Y]3 × [U(1)(B-L)]3 which undergoes the breakdown to the Standard Model at lower energies. Some predictive advantages of the family replicated gauge groups of symmetry are briefly discussed.
Cho decomposition of electrically charged one-half monopole
Ng, Ban-Loong; Teh, Rosy; Wong, Khai-Ming
2014-03-05
Recently we have carried out some work on the Cho decomposition of the electrically neutral, finite energy one-half monopole solution of the SU(2) Yang-Mills-Higgs field theory. In this paper, we performed the decomposition of the electrically charged solution using the same numerical procedure. The gauge potential of the one-half dyon solution is decomposed into Abelian and non-Abelian components. The semi-infinite string singularity in the gauge potential is a contribution of the Higgs field and hence topological in nature. The string singularity cannot be cancelled by the non-Abelian components of the gauge potential. However, the string singularity is integrable and the energy of the solution is finite. By decomposing the magnetic fields and covariant derivatives of the Higgs field into three isospin space directions, we are able to provide conclusive evidence that the constructed one-half dyon is certainly a non-BPS solution even in the limit of vanishing Higgs self-coupling constant and electric charge. Furthermore, we found that the time component of gauge function is parallel to the Higgs field in isospace only at large distances, elsewhere they are non-parallel.
Seiberg-Witten and 'Polyakov-like' Magnetic Bion Confinements are Continuously Connected
Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.
2012-06-01
We study four-dimensional N = 2 supersymmetric pure-gauge (Seiberg-Witten) theory and its N = 1 mass perturbation by using compactification on S{sup 1} x R{sup 3}. It is well known that on R{sup 4} (or at large S{sup 1} size L) the perturbed theory realizes confinement through monopole or dyon condensation. At small S{sup 1}, we demonstrate that confinement is induced by a generalization of Polyakov's three-dimensional instanton mechanism to a locally four-dimensional theory - the magnetic bion mechanism - which also applies to a large class of nonsupersymmetric theories. Using a large- vs. small-L Poisson duality, we show that the two mechanisms of confinement, previously thought to be distinct, are in fact continuously connected.
NASA Astrophysics Data System (ADS)
Vieira, H. S.; Bezerra, V. B.
2016-10-01
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr-Newman-Kasuya spacetime (dyon black hole) and a Reissner-Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein-Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied.
The Theory of High Energy Collision Processes - Final Report DOE/ER/40158-1
Wu, Tai, T.
2011-09-15
In 1984, DOE awarded Harvard University a new Grant DE-FG02-84ER40158 to continue their support of Tai Tsun Wu as Principal Investigator of research on the theory of high energy collision processes. This Grant was renewed and remained active continuously from June 1, 1984 through November 30, 2007. Topics of interest during the 23-year duration of this Grant include: the theory and phenomenology of collision and production processes at ever higher energies; helicity methods of QED and QCD; neutrino oscillations and masses; Yang-Mills gauge theory; Beamstrahlung; Fermi pseudopotentials; magnetic monopoles and dyons; cosmology; classical confinement; mass relations; Bose-Einstein condensation; and large-momentum-transfer scattering processes. This Final Report describes the research carried out on Grant DE-FG02-84ER40158 for the period June 1, 1984 through November 30, 2007. Two books resulted from this project and a total of 125 publications.
Dirac's Dream - the Search for the Magnetic Monopole
Pinfold, James L.
2010-11-24
I first quickly summarize the history of the Magnetic Monopole leading to the quantum theory of magnetic charge that started with a 1931 paper by Paul Dirac who showed that the existence of magnetic monopoles was consistent with Maxwell's equations only if electric charges are quantized. Next I will briefly review the status of monopole searches. Last, but not least I discuss in more detail the MoEDAL experiment--the latest accelerator experiment designed to search for direct production of magnetic monopoles or dyons (particles with electric and magnetic charge) and other highly ionizing particles - such as heavy (pseudo-) stable particles with conventional electric charge - at the LHC. The MoEDAL experiment employs nuclear track-etch detectors deployed in the VELO vertex region of the LHCb experiment.
Non-Abelian duality and confinement: From N=2 to N=1 supersymmetric QCD
Shifman, M.; Yung, A.
2011-05-15
Recently, we discovered and discussed non-Abelian duality in the quark vacua of N=2 super-Yang-Mills theory with the U(N) gauge group and N{sub f} flavors (N{sub f}>N). Both theories from the dual pair support non-Abelian strings, which confine monopoles. Now we introduce an N=2-breaking deformation, a mass term {mu}A{sup 2} for the adjoint fields. Starting from a small deformation, we eventually make it large, which enforces complete decoupling of the adjoint fields. We show that the above non-Abelian duality fully survives in the limit of N=1 supersymmetric QCD (SQCD), albeit some technicalities change. For instance, non-Abelian strings which used to be Bogomol'nyi-Prasad-Sommerfield saturated in the N=2 limit, cease to be saturated in N=1 SQCD. Our duality is a distant relative of Seiberg's duality in N=1 SQCD. Both share some common features, but have many drastic distinctions. This is due to the fact that Seiberg's duality apply to the monopole rather than quark vacua. More specifically, in our theory we deal with N
Marginal stability and the metamorphosis of Bogomol'nyi-Prasad-Sommerfield states
Ritz, Adam; Shifman, Mikhail; Vainshtein, Arkady; Voloshin, Mikhail
2001-03-15
We discuss the restructuring of the BPS spectrum which occurs on certain submanifolds of the moduli or parameter space -- the curves of the marginal stability (CMS) -- using quasiclassical methods. We argue that in general a ''composite'' BPS soliton swells in coordinate space as one approaches the CMS and that, as a bound state of two ''primary'' solitons, its dynamics in this region is determined by nonrelativistic supersymmetric quantum mechanics. Near the CMS the bound state has a wave function which is highly spread out. Precisely on the CMS the bound state level reaches the continuum, the composite state delocalizes in coordinate space, and restructuring of the spectrum can occur. We present a detailed analysis of this behavior in a two-dimensional N=2 Wess-Zumino model with two chiral fields, and then discuss how it arises in the context of ''composite'' dyons near weak coupling CMS curves in N=2 supersymmetric gauge theories. We also consider cases where some states become massless on the CMS.
Enhancement of plasma burn-through simulation and validation in JET
NASA Astrophysics Data System (ADS)
Kim, Hyun-Tae; Fundamenski, W.; Sips, A. C. C.; Contributors, EFDA-JET
2012-10-01
In this paper, new models for a plasma burn-through simulation using the DYON code are introduced in detail, and the quantitative validation of the simulation results against JET data is presented for the first time. In order to calculate the particle confinement time, a dynamic effective connection length model including an eddy current effect is used assuming ambipolar transonic transport and the Bohm diffusion model for parallel and perpendicular particle losses, respectively. Plasma-surface interaction effects are treated with an impurity sputtering yield and an exponential saturation model of the deuterium recycling coefficient. The rate and power coefficients in the Atomic Data and Analysis Structure (ADAS) package are adopted to solve energy and particle balance. The neutral screening effects are taken into account according to particle species, and the sophisticated energy and particle balances are presented. The new burn-through simulation shows good agreement against carbon-wall JET data. This indicates that the burn-through simulation can be applied to investigate the key aspect of physics in plasma burn-through and to perform a predictive simulation for ITER start-up.
On the Møller Energy Associated with Black Holes
NASA Astrophysics Data System (ADS)
Saltı, Mustafa; Aydogdu, Oktay
2006-12-01
In this paper, we consider both Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of Møller in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) associated with a general black hole model which includes several well-known black holes. To calculate the special cases of energy distribution, here we consider eight different types of black hole models such as anti-de Sitter Cmetric with spherical topology, charged regular black hole, conformal scalar dyon black hole, dyadosphere of a charged black hole, regular black hole, charged topological black hole, charged massless black hole with a scalar field, and the Schwarzschild-de Sitter space-time. Our teleparallel gravitational result is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in teleparallel equivalent of general relativity but also in any teleparallel model. This paper also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is the powerful concept to calculate energy distribution in a given space-time.
NASA Astrophysics Data System (ADS)
Tze, Chia-Hsiung; Nam, Soonkeon
1989-08-01
Exploiting the unique connection between the division algebras of the complex numbers ( C), quaternions ( H), octonions ( Ω) and the essential Hopf maps S2 n - 1 → Sn with n = 2, 4, 8, we study Sn - 2 -membrane solitons in three D-dimensional KP(1) σ-models with a Hopf term, (D, K) = (3, C), (7, H), and (15, Ω). We present a comprehensive analysis of their topological phase entanglements. Extending Polyakov's approach to Fermi-Bose transmutations to higher dimensions, we detail a geometric regularization of Gauss' linking coefficient, its connections to the self-linking, twisting, writhing numbers of the Feynman paths of the solitons in their thin membrane limit. Alternative forms of the Hopf invariant show the latter as an Aharonov-Bohm-Berry phase of topologically massive, rank ( n - 1) antisymmetric tensor U(1) gauge fields coupled to the Sn - 2 -membranes. Via a K-bundle formulation of the dynamics of electrically and magnetically charged extended objects these phases are shown to induce a dyon-like structure on these membranes. We briefly discuss the connections to harmonic mappings, higher dimensional monopoles and instantons. We point out the relevance of the Gauss-Bonnet-Chern theorem on the connection between spin and statistics. By way of the topology of the infinite groups of sphere mappings Sn → Sn, n = 2, 4, 8, we also analyze the implications of the Hopf phases on the fractional spin and statistics of the membranes.
Spontaneous Symmetry Breaking in Presence of Electric and Magnetic Charges
NASA Astrophysics Data System (ADS)
Pushpa; Bisht, P. S.; Negi, O. P. S.
2011-06-01
Starting with the definition of quaternion gauge theory, we have undertaken the study of SU(2) e × SU(2) m × U(1) e × U(1) m in terms of the simultaneous existence of electric and magnetic charges along with their Yang-Mills counterparts. As such, we have developed the gauge theory in terms of four coupling constants associated with four-gauge symmetry SU(2) e × SU(2) m × U(1) e × U(1) m . Accordingly, we have made an attempt to obtain the abelian and non-Abelian gauge structures for the particles carrying simultaneously the electric and magnetic charges (namely dyons). Starting from the Lagrangian density of two SU(2)× U(1) gauge theories responsible for the existence of electric and magnetic charges, we have discussed the consistent theory of spontaneous symmetry breaking and Higgs mechanism in order to generate the masses. From the symmetry breaking, we have generated the two electromagnetic fields, the two massive vector W ± and Z 0 bosons fields and the Higgs scalar fields.
Angular momentum, g-value, and magnetic flux of gyration states
Arunasalam, V.
1991-10-01
Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i{sub Z}. According to Richard P. Feynman (and also Frank Wilczek) L = (rx{mu}v) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = i{Dirac h} L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L{sub Z} = {Dirac h}/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint.
Vlachonikolou, Georgia; Gkolfakis, Paraskevas; Sioulas, Athanasios D; Papanikolaou, Ioannis S; Melissaratou, Anastasia; Moustafa, Giannis-Aimant; Xanthopoulou, Eleni; Tsilimidos, Gerasimos; Tsironi, Ioanna; Filippidis, Paraskevas; Malli, Chrysoula; Dimitriadis, George D; Triantafyllou, Konstantinos
2016-01-01
AIM To measure the compliance of an Academic Hospital staff with a colorectal cancer (CRC) screening program using fecal immunochemical test (FIT). METHODS All employees of “Attikon” University General Hospital aged over 50 years were thoroughly informed by a team of physicians and medical students about the study aims and they were invited to undergo CRC screening using two rounds of FIT (DyoniFOB® Combo H, DyonMed SA, Athens, Greece). The tests were provided for free and subjects tested positive were subsequently referred for colonoscopy. One year after completing the two rounds, participants were asked to be re-screened by means of the same test. RESULTS Among our target population consisted of 211 employees, 59 (27.9%) consented to participate, but only 41 (19.4%) and 24 (11.4%) completed the first and the second FIT round, respectively. Female gender was significantly associated with higher initial participation (P = 0.005) and test completion - first and second round - (P = 0.004 and P = 0.05) rates, respectively. Physician’s (13.5% vs 70.2%, P < 0.0001) participation and test completion rates (7.5% vs 57.6%, P < 0.0001 for the first and 2.3% vs 34%, P < 0.0001 for the second round) were significantly lower compared to those of the administrative/technical staff. Similarly, nurses participated (25.8% vs 70.2%, P = 0.0002) and completed the first test round (19.3% vs 57.6%, P = 0.004) in a significant lower rate than the administrative/technical staff. One test proved false positive. No participant repeated the test one year later. CONCLUSION Despite the well-organized, guided and supervised provision of the service, the compliance of the Academic Hospital personnel with a FIT-based CRC screening program was suboptimal, especially among physicians. PMID:27574556
Extending the Standard Model with Confining and Conformal Dynamics
NASA Astrophysics Data System (ADS)
McRaven, John Emory
would leave very little of its energy in the calorimeter, so while detecting the presence of a heavy stable state would be easy, measuring the strength of the detecting it would require accurate measurements of missing energy, or the ability to identify it in the muon tracker. We then study the phenomenology of a 4D model of electroweak symmetry breaking through the condensation of magnetic monopoles. A new generation of fermions with magnetic charges in addition to electric charges is introduced. The dyons condense and break the electroweak symmetry. The magnetic coupling is inversely proportional to the electric coupling, causing it to be strong. The processes involving magnetic couplings thus provide interesting phenomenology to study. We primarily study the processes involving di-photon production and compare it to early LHC results. Finally, we calculate triangle anomalies for fermions with non-canonical scaling dimensions. The most well known example of such fermions (aka unfermions) occurs in Seiberg duality where the matching of anomalies (including mesinos with scaling dimensions between 3/2 and 5/2) is a crucial test of duality. By weakly gauging the non-local action for an unfermion, we calculate the one-loop three-current amplitude. Despite the fact that there are more graphs with more complicated propagators and vertices, we find that the calculation can be completed in a way that nearly parallels the usual case. We show that the anomaly factor for fermionic unparticles is independent of the scaling dimension and identical to that for ordinary fermions. This can be viewed as a confirmation that unparticle actions correctly capture the physics of conformal fixed point theories like Banks-Zaks or SUSY QCD.
NASA Astrophysics Data System (ADS)
2014-02-01
On 5 - 6 June 2013, an extended session of the all-institute seminar was held at the Russian Federation State Scientific Center 'Alikhanov Institute for Theoretical and Experimental Physics' (ITEP). It was devoted to the 100th anniversary of the birth of Academician Isaak Yakovlevich Pomeranchuk, the founder of the Theory Department of ITEP. The announced agenda of the session on the ITEP website http://www.itep.ru/rus/Pomeranchuk100.html contained the following reports: (1) Gershtein S S (SRC 'Institute for High Energy Physics', Protvino, Moscow region) "I Ya Pomeranchuk and the large accelerator";(2) Keldysh L V (Lebedev Physical Institute, RAS (FIAN), Moscow) "Dynamic tunneling";(3) Vaks V G (National Research Centre 'Kurchatov Institute' (NRC KI), Moscow) "Brief reminiscences";(4) Smilga A V (Laboratoire Physique Subatomique et des technologies associées, Université de Nantes, France) "Vacuum structure in 3D supersymmetric gauge theories";(5) Khriplovich I B (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Gravitational four-fermion interaction and early Universe dynamics";(6) Dremin I M (FIAN, Moscow) "Elastic scattering of hadrons";(7) Belavin A A (Landau Institute of Theoretical Physics, RAS, Moscow) "Correlators in minimal string models";(8) Voloshin M B (Theoretical Physics Institute, University of Minnesota, USA) "Exotic quarkonium";(9) Nekrasov N A (Institut des hautes études scientifiques (IHES), France) "BPS/CFT correspondence";(10) Zarembo K (Uppsala Universitet, Sweden) "Exact results in supersymmetric theories and AdS/CFT correspondence";(11) Gorsky A S (ITEP, Moscow) "Baryon as a dyon instanton";(12) Blinnikov S I (ITEP, Moscow) "Mirror substance and other models for dark matter";(13) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Test-tube Universe";(14) Kancheli O V (ITEP, Moscow) "50 years of reggistics";(15) Shevchenko V I (NRC KI) "In search of the chiral magnetic effect";(16) Kirilin V P (ITEP, Moscow) "Anomalies and
NASA Astrophysics Data System (ADS)
2014-02-01
On 5 - 6 June 2013, an extended session of the all-institute seminar was held at the Russian Federation State Scientific Center 'Alikhanov Institute for Theoretical and Experimental Physics' (ITEP). It was devoted to the 100th anniversary of the birth of Academician Isaak Yakovlevich Pomeranchuk, the founder of the Theory Department of ITEP. The announced agenda of the session on the ITEP website http://www.itep.ru/rus/Pomeranchuk100.html contained the following reports: (1) Gershtein S S (SRC 'Institute for High Energy Physics', Protvino, Moscow region) "I Ya Pomeranchuk and the large accelerator";(2) Keldysh L V (Lebedev Physical Institute, RAS (FIAN), Moscow) "Dynamic tunneling";(3) Vaks V G (National Research Centre 'Kurchatov Institute' (NRC KI), Moscow) "Brief reminiscences";(4) Smilga A V (Laboratoire Physique Subatomique et des technologies associées, Université de Nantes, France) "Vacuum structure in 3D supersymmetric gauge theories";(5) Khriplovich I B (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Gravitational four-fermion interaction and early Universe dynamics";(6) Dremin I M (FIAN, Moscow) "Elastic scattering of hadrons";(7) Belavin A A (Landau Institute of Theoretical Physics, RAS, Moscow) "Correlators in minimal string models";(8) Voloshin M B (Theoretical Physics Institute, University of Minnesota, USA) "Exotic quarkonium";(9) Nekrasov N A (Institut des hautes études scientifiques (IHES), France) "BPS/CFT correspondence";(10) Zarembo K (Uppsala Universitet, Sweden) "Exact results in supersymmetric theories and AdS/CFT correspondence";(11) Gorsky A S (ITEP, Moscow) "Baryon as a dyon instanton";(12) Blinnikov S I (ITEP, Moscow) "Mirror substance and other models for dark matter";(13) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Test-tube Universe";(14) Kancheli O V (ITEP, Moscow) "50 years of reggistics";(15) Shevchenko V I (NRC KI) "In search of the chiral magnetic effect";(16) Kirilin V P (ITEP, Moscow) "Anomalies and
NASA Astrophysics Data System (ADS)
. Saturation effects in diffractive scattering at LHC By Oleg Selugin. A nonperturbative expansion method in QCD and R-related quantities By Igor Solovtsov. Z-scaling and high multiplicity particle Production in bar pp/pp & AA collisions at Tevatron and RHIC By Mikhail Tokarev. Scaling behaviour of the reactionsdd - > p↑ /3H and pd - > pd with pT at energy I-2 GeV By Yuri Uzikov. [ADS Note: Title formula can not be rendered correctly in ASCII.] CP violation, rare decays, CKM: Precision Measurements of the Mass of the Top Quark at CDF (Precision Top Mass Measurements at CDF) By Daniel Whiteson. Measurement of the Bs Oscillation at CDF By Luciano Ristori. The Bs mixing phase at LHCb By J. J. van Hunen. ATLAS preparations for precise measurements of semileptonic rare B decays By K. Toms. Hadron spectroscopy & exotics: Searches for radial excited states of charmonium in experiments using cooled antiproton beams By M. Yu. Barabanov. Retardation effects in the rotating string model By Fabien Buisseret and Claude Semay. Final results from VEPP-2M (CMD-2 and SND) By G. V. Fedotovich. Heavy Quark Physics: Prospects for B physics measurements using the CMS detector at the LHC By Andreev Valery. Heavy flavour production at HERA-B By Andrey Bogatyrev. B-Meson subleading form factors in the Heavy Quark Effective Theory (HQET) By Frederic Jugeau. Beyond the Standard Model: Monopole Decay in a Variable External Field By Andrey Zayakin. Two-Loop matching coefficients for the strong coupling in the MSSM By Mihaila Luminita. Test of lepton flavour violation at LHC By Hidaka Keisho. Looking at New Physics through 4 jets and no ET By Maity Manas. Are Preons Dyons? Naturalness of Three Generations By Das Chitta Ranjan. SUSY Dark Matter at Linear Collider By Sezen Sekmen, Mehmet Zeyrek. MSSM light Higgs boson scenario and its test at hadron colliders By Alexander Belyaev. Antiscalar Approach to Gravity and Standard Model By E. Mychelkin. GRID distributed analysis in high energy physics: PAX