Sample records for dysfunction insulin resistance

  1. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS failed to improve palmitate-induced insulin-resistance. • Mitochondrial dysfunction by lipid metabolites would induce insulin-resistance.« less

  2. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  3. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    USDA-ARS?s Scientific Manuscript database

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  4. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  5. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    PubMed Central

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  6. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. © 2016 International Society for Neurochemistry.

  7. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance.

    PubMed

    Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica

    2006-12-01

    Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.

  8. Celastrol attenuates mitochondrial dysfunction and inflammation in palmitate-mediated insulin resistance in C3A hepatocytes.

    PubMed

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji; Tan, Joo Shun; Mohamad Rosdi, Mohamad Norisham

    2017-03-15

    Accumulating evidence indicates that mitochondrial dysfunction-induced inflammation is among the convergence points for the greatest hallmarks of hepatic insulin resistance. Celastrol, an anti-inflammatory compound from the root of Tripterygium Wilfordii has been reported to mitigate insulin resistance and inflammation in animal disease models. Nevertheless, the specific mechanistic actions of celastrol in modulating such improvements at the cellular level remain obscure. The present study sought to explore the mechanistic roles of celastrol upon insulin resistance induced by palmitate in C3A human hepatocytes. The hepatocytes exposed to palmitate (0.75mM) for 48h exhibited reduced both basal and insulin-stimulated glucose uptake, mitochondrial dysfunction, leading to increased mitochondrial oxidative stress with diminished fatty acid oxidation. Elevated expressions of nuclear factor-kappa B p65 (NF-κB p65), c-Jun NH(2)-terminal kinase (JNK) signaling pathways and the amplified release of pro-inflammatory cytokines including IL-8, IL-6, TNF-α and CRP were observed following palmitate treatment. Consistently, palmitate reduced and augmented phosphorylated Tyrosine-612 and Serine-307 of insulin receptor substrate-1 (IRS-1) proteins, respectively in hepatocytes. However, celastrol at the optimum concentration of 30nM was able to reverse these deleterious occasions and protected the cells from mitochondrial dysfunction and insulin resistance. Importantly, we presented evidence for the first time that celastrol efficiently prevented palmitate-induced insulin resistance in hepatocytes at least, via improved mitochondrial functions and insulin signaling pathways. In summary, the present investigation underlines a conceivable mechanism to elucidate the cytoprotective potential of celastrol in attenuating mitochondrial dysfunction and inflammation against the development of hepatic insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Endothelial dysfunction in metabolic and vascular disorders.

    PubMed

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  10. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    PubMed Central

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  11. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  12. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sex-specific incidence rates and risk factors of insulin resistance and β-cell dysfunction: a decade follow-up in a Middle Eastern population.

    PubMed

    Derakhshan, A; Tohidi, M; Hajebrahimi, M A; Saadat, N; Azizi, F; Hadaegh, F

    2017-02-01

    To examine the incidence of and risk factors for insulin resistance and β-cell dysfunction in a representative Iranian population over a median follow-up of 9.2 years. In total, 3662 people (1528 men) without known diabetes with a baseline homeostasis model assessment of insulin resistance (HOMA-IR) level < 75th percentile and, when β-cell dysfunction was the outcome of interest, 3664 people (1530 men) with a homeostasis model assessment of β-cell function (HOMA-β) level ≥ 25th percentile were included in the study (HOMA-IR < 2.20 and HOMA-β ≥ 64.3 among men, and HOMA-IR < 2.39 and HOMA-β ≥ 81.7 among women). The incidence rates of insulin resistance and β-cell dysfunction were 56.3 and 33.6/1000 person-years among men and 48.6 and 50.3/1000 person-years among women, respectively. Applying multivariable Cox regression in both sexes, fasting insulin, triglyceride/HDL cholesterol ratio and lower education were positive predictors of insulin resistance, whereas age was a negative predictor. Moreover, fasting plasma glucose, waist-to-height ratio, wrist circumference and lower hip circumference were significantly associated with incident insulin resistance only among women (all P < 0.05). Considering β-cell dysfunction in both sexes, age and fasting plasma glucose increased the risk, whereas 2-h post-challenge plasma glucose was a positive predictor only among men, and waist-to-height ratio and triglyceride/HDL cholesterol ratio were negative predictors only among women (all P < 0.05). Modifiable risk factors are related to the incidence of insulin resistance and β-cell dysfunction, which can be prevented with proper strategies although the difference between men and women should be taken into account. © 2016 Diabetes UK.

  14. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. © 2013.

  15. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  16. Insulin Signaling and Heart Failure

    PubMed Central

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  17. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible causes for the observed reduction in mitochondrial capacity. PMID:20573749

  18. Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages.

    PubMed

    Neth, Bryan J; Craft, Suzanne

    2017-01-01

    Metabolic dysfunction is a well-established feature of Alzheimer's disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.

  19. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Insulin resistance and the metabolism of branched-chain amino acids in humans.

    PubMed

    Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal

    2012-07-01

    Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.

  1. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    PubMed

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic syndrome.

  2. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  3. Nutrient-Induced Inflammation in Polycystic Ovary Syndrome: Role in the Development of Metabolic Aberration and Ovarian Dysfunction.

    PubMed

    González, Frank

    2015-07-01

    A pathophysiology paradigm shift has emerged with the discovery that polycystic ovary syndrome (PCOS) is a proinflammatory state. Despite the dogma that the compensatory hyperinsulinemia of insulin resistance is the promoter of hyperandrogenism, physiological insulin infusion has no effect on androgen levels in PCOS. The dogma also does not explain the cause of hyperandrogenism and ovarian dysfunction in the 30 to 50% of women with PCOS who are of normal weight and lack insulin resistance. Inflammation is the underpinning of insulin resistance in obesity and type 2 diabetes, and may also be the cause of insulin resistance when present in PCOS. The origin of inflammation in PCOS has been ascribed to excess abdominal adiposity or frank obesity. However, nutrients such as glucose and saturated fat can incite inflammation from circulating mononuclear cells (MNC) of women with PCOS independent of excess adiposity and insulin resistance, and can also promote atherogenesis. Hyperandrogenism activates MNC in the fasting state to increase MNC sensitivity to nutrients, and is a potential mechanism for initiating inflammation in PCOS. However, chronic ovarian androgen suppression does not reduce inflammation in normal-weight women with PCOS. Direct exposure of ovarian theca cells to proinflammatory stimuli in vitro increases androgen production. These findings may be corroborated in vivo with anti-inflammatory therapy to normal-weight insulin-sensitive women with PCOS without abdominal adiposity to observe for amelioration of ovarian dysfunction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    PubMed

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  5. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice

    PubMed Central

    Nohara, Kazunari; Waraich, Rizwana S.; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S.; Karsenty, Gérard; Burcelin, Rémy

    2013-01-01

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension. PMID:23612996

  6. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages

    PubMed Central

    Neth, Bryan J.; Craft, Suzanne

    2017-01-01

    Metabolic dysfunction is a well-established feature of Alzheimer’s disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets. PMID:29163128

  7. Endothelial dysfunction occurs independently of adipose tissue inflammation and insulin resistance in ovariectomized Yucatan miniature-swine.

    PubMed

    Jurrissen, Thomas J; Olver, T Dylan; Winn, Nathan C; Grunewald, Zachary I; Lin, Gabriela S; Hiemstra, Jessica A; Edwards, Jenna C; Gastecki, Michelle L; Welly, Rebecca J; Emter, Craig A; Vieira-Potter, Victoria J; Padilla, Jaume

    2018-01-02

    In rodents, experimentally-induced ovarian hormone deficiency increases adiposity and adipose tissue (AT) inflammation, which is thought to contribute to insulin resistance and increased cardiovascular disease risk. However, whether this occurs in a translationally-relevant large animal model remains unknown. Herein, we tested the hypothesis that ovariectomy would promote visceral and perivascular AT (PVAT) inflammation, as well as subsequent insulin resistance and peripheral vascular dysfunction in female swine. At sexual maturity (7 months of age), female Yucatan mini-swine either remained intact (control, n = 9) or were ovariectomized (OVX, n = 7). All pigs were fed standard chow (15-20 g/kg), and were euthanized 6 months post-surgery. Uterine mass and plasma estradiol levels were decreased by ∼10-fold and 2-fold, respectively, in OVX compared to control pigs. Body mass, glucose homeostasis, and markers of insulin resistance were not different between control and OVX pigs; however, OVX animals exhibited greater plasma triglycerides and triglyceride:HDL ratio. Ovariectomy enhanced visceral adipocyte expansion, although this was not accompanied by brachial artery PVAT adipocyte expansion, AT inflammation in either depot, or increased systemic inflammation assessed by plasma C-reactive protein concentrations. Despite the lack of AT inflammation and insulin resistance, OVX pigs exhibited depressed brachial artery endothelial-dependent vasorelaxation, which was rescued with blockade of endothelin receptor A. Together, these findings indicate that in female Yucatan mini-swine, increased AT inflammation and insulin resistance are not required for loss of ovarian hormones to induce endothelial dysfunction.

  8. Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.

    PubMed

    Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-02-01

    Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats. © 2017 Society for Endocrinology.

  9. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Relationship between hyperglycemia, hormone disturbances, and clinical evolution in severely hyperglycemic post surgery critically ill children: an observational study

    PubMed Central

    2014-01-01

    Background To study hormonal changes associated with severe hyperglycemia in critically ill children and the relationship with prognosis and length of stay in intensive care. Methods Observational study in twenty-nine critically ill children with severe hyperglycemia defined as 2 blood glucose measurements greater than 180 mg/dL. Severity of illness was assessed using pediatric index of mortality (PIM2), pediatric risk of mortality (PRISM) score, and pediatric logistic organ dysfunction (PELOD) scales. Blood glucose, glycosuria, insulin, C-peptide, cortisol, corticotropin, insulinlike growth factor-1, growth hormone, thyrotropin, thyroxine, and treatment with insulin were recorded. β-cell function and insulin sensitivity and resistance were determined on the basis of the homeostatic model assessment (HOMA), using blood glucose and C-peptide levels. Results The initial blood glucose level was 249 mg/dL and fell gradually to 125 mg/dL at 72 hours. Initial β-cell function (49.2%) and insulin sensitivity (13.2%) were low. At the time of diagnosis of hyperglycemia, 50% of the patients presented insulin resistance and β-cell dysfunction, 46% presented isolated insulin resistance, and 4% isolated β-cell dysfunction. β-cell function improved rapidly but insulin resistance persisted. Initial glycemia did not correlate with any other factor, and there was no relationship between glycemia and mortality. Patients who died had higher cortisol and growth hormone levels at diagnosis. Length of stay was correlated by univariate analysis, but not by multivariate analysis, with C-peptide and glycemic control at 24 hours, insulin resistance, and severity of illness scores. Conclusions Critically ill children with severe hyperglycemia initially present decreased β-cell function and insulin sensitivity. Nonsurvivors had higher cortisol and growth hormone levels and developed hyperglycemia later than survivors. PMID:24628829

  11. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

    PubMed Central

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald

    2014-01-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75–81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.—Vernochet, C., Damilano, F., Mourier, A., Bezy, O., Mori, M. A., Smyth, G., Rosenzweig, A., Larsson, N.-G., Kahn, C. R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. PMID:25005176

  12. Combination therapy for treatment or prevention of atherosclerosis: Focus on the lipid-RAAS interaction☆

    PubMed Central

    Koh, Kwang Kon; Han, Seung Hwan; Oh, Pyung Chun; Shin, Eak Kyun; Quon, Michael J.

    2010-01-01

    Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by ~30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin–angiotensin–aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance. PMID:19800624

  13. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. PMID:26108677

  14. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2011-03-01

    Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans. Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (S(I)) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively. Lipid infusion reduced S(I), which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × S(I)), indicating that PBA prevented lipid-induced β-cell dysfunction. These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.

  15. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    PubMed

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  17. Intrinsic Frequency and the Single Wave Biopsy

    PubMed Central

    Petrasek, Danny; Pahlevan, Niema M.; Tavallali, Peyman; Rinderknecht, Derek G.; Gharib, Morteza

    2015-01-01

    Insulin resistance is the hallmark of classical type II diabetes. In addition, insulin resistance plays a central role in metabolic syndrome, which astonishingly affects 1 out of 3 adults in North America. The insulin resistance state can precede the manifestation of diabetes and hypertension by years. Insulin resistance is correlated with a low-grade inflammatory condition, thought to be induced by obesity as well as other conditions. Currently, the methods to measure and monitor insulin resistance, such as the homeostatic model assessment and the euglycemic insulin clamp, can be impractical, expensive, and invasive. Abundant evidence exists that relates increased pulse pressure, pulse wave velocity (PWV), and vascular dysfunction with insulin resistance. We introduce a potential method of assessing insulin resistance that relies on a novel signal-processing algorithm, the intrinsic frequency method (IFM). The method requires a single pulse pressure wave, thus the term “ wave biopsy.” PMID:26183600

  18. Vascular Function, Insulin Action and Exercise: An Intricate Interplay

    PubMed Central

    Zheng, Chao; Liu, Zhenqi

    2015-01-01

    Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action and the vasculature contributes to exercise-mediated insulin sensitization in muscle. PMID:25735473

  19. Protective effects of dark chocolate on endothelial function and diabetes.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio

    2013-11-01

    Relationship between cocoa consumption and cardiovascular disease, particularly focusing on clinical implications resulting from the beneficial effects of cocoa consumption on endothelial function and insulin resistance. This could be of clinical relevance and may suggest the mechanistic explanation for the reduced risk of cardiovascular events reported in the different studies after cocoa intake. Increasing evidence supports a protective effect of cocoa consumption against cardiovascular disease. Cocoa and flavonoids from cocoa have been described to improve endothelial function and insulin resistance. A proposed mechanism could be considered in the improvement of the endothelium-derived vasodilator nitric oxide by enhancing nitric oxide synthesis or by decreasing nitric oxide breakdown. The endothelium plays a pivotal role in the arterial homeostasis, and insulin resistance is the most important pathophysiological feature in various prediabetic and diabetic states. Reduced nitric oxide bioavailability with endothelial dysfunction is considered the earliest step in the pathogenesis of atherosclerosis. Further, insulin resistance could account, at least in part, for the endothelial dysfunction. Endothelial dysfunction has been considered an important and independent predictor of future development of cardiovascular risk and events. Cocoa and flavonoids from cocoa might positively modulate these mechanisms with a putative role in cardiovascular protection.

  20. Interventions for the metabolic dysfunction in polycystic ovary syndrome.

    PubMed

    Bozdag, Gurkan; Yildiz, Bulent O

    2013-08-01

    Polycystic ovary syndrome (PCOS) is associated with metabolic disturbances including obesity, insulin resistance, diabetes and dyslipidemia. Cardiometabolic risk should be assessed at regular intervals starting from diagnosis. A comprehensive clinical evaluation includes determination of body mass index, waist circumference, blood pressure and measurement of serum lipid and glucose levels in all women with PCOS. A standard 2-h 75g oral glucose tolerance test is required for women with a body mass index over 25kg/m(2) and with other risk factors for glucose intolerance. No long-term data are available for the risk or benefit of any medical intervention for metabolic dysfunction of PCOS. For the initial management of metabolic dysfunction in PCOS, available guidelines recommend lifestyle intervention which improves androgen excess and insulin resistance without significant effect on glucose intolerance or dyslipidemia. Pharmacological interventions include insulin sensitizing agents and statins. Metformin is the most commonly prescribed insulin sensitizer in PCOS. Available randomized controlled trials suggest that metformin improves insulin resistance without any effect on body mass index, fasting glucose or lipid levels. Short term use of statins alone or in combination with metformin decreases total cholesterol, low-density lipoprotein-cholesterol and triglycerides in PCOS patients with dyslipidemia. Low dose oral contraception in PCOS appears not to be associated with clinically significant metabolic dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Leptin, Insulin, and Cinnamon Polyphenols Attenuate Glial Swelling and Mitochondrial Dysfunction in Ischemic Injury

    USDA-ARS?s Scientific Manuscript database

    Obesity is a major risk factor for stroke, and tissue injury following a stroke may be more severe in the obese. A key feature of obesity is increased serum levels of obesity-related hormones including leptin and insulin, indicating a state of resistance to these hormones. Insulin resistance is gen...

  2. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    PubMed

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin resistance, hyperglycaemia, endothelial dysfunction and oxidative stress. C. oil prevented development of thrombotic complications associated with insulin resistance perhaps by modulating genes involved in lipid and glucose metabolism. Further studies are required to confirm these findings.

  3. Lipid-induced metabolic dysfunction in skeletal muscle.

    PubMed

    Muoio, Deborah M; Koves, Timothy R

    2007-01-01

    Insulin resistance is a hallmark of type 2 diabetes and commonly observed in other energy-stressed settings such as obesity, starvation, inactivity and ageing. Dyslipidaemia and 'lipotoxicity'--tissue accumulation of lipid metabolites-are increasingly recognized as important drivers of insulin resistant states. Mounting evidence suggests that lipid-induced metabolic dysfunction in skeletal muscle is mediated in large part by stress-activated serine kinases that interfere with insulin signal transduction. However, the metabolic and molecular events that connect lipid oversupply to stress kinase activation and glucose intolerance are as yet unclear. Application of transcriptomics and targeted mass spectrometry-based metabolomics tools has led to our finding that insulin resistance is a condition in which muscle mitochondria are persistently burdened with a heavy lipid load. As a result, high rates of beta-oxidation outpace metabolic flux through the TCA cycle, leading to accumulation of incompletely oxidized acyl-carnitine intermediates. In contrast, exercise training enhances mitochondrial performance, favouring tighter coupling between beta-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high fat diet. The exercise-activated transcriptional co-activator, PGC1alpha, plays a key role in co-ordinating metabolic flux through these two intersecting metabolic pathways, and its suppression by overfeeding may contribute to obesity-associated mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from mitochondrial lipid stress and a resultant disconnect between beta-oxidation and TCA cycle activity. Understanding this 'disconnect' and its molecular basis may lead to new therapeutic targets for combating metabolic disease.

  4. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction*

    PubMed Central

    Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E.; Accili, Domenico

    2016-01-01

    Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo. The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure. PMID:26917725

  5. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    PubMed

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    PubMed

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction

    PubMed Central

    Stoeckel, Luke E.; Arvanitakis, Zoe; Gandy, Sam; Small, Dana; Kahn, C. Ronald; Pascual-Leone, Alvaro; Pawlyk, Aaron; Sherwin, Robert; Smith, Philip

    2016-01-01

    Scientific evidence has established several links between metabolic and neurocognitive dysfunction, and epidemiologic evidence has revealed an increased risk of Alzheimer’s disease and vascular dementia in patients with diabetes. In July 2015, the National Institute of Diabetes, Digestive, and Kidney Diseases gathered experts from multiple clinical and scientific disciplines, in a workshop entitled “The Intersection of Metabolic and Neurocognitive Dysfunction”, to clarify the state-of-the-science on the mechanisms linking metabolic dysfunction, and insulin resistance and diabetes in particular, to neurocognitive impairment and dementia. This perspective is intended to serve as a summary of the opinions expressed at this meeting, which focused on identifying gaps and opportunities to advance research in this emerging area with important public health relevance. PMID:27303627

  8. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  9. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  10. The relationship between insulin resistance and endothelial dysfunction in obese adolescents.

    PubMed

    Brar, Preneet Cheema; Patel, Payal; Katz, Stuart

    2017-05-24

    Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.

  11. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    PubMed Central

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-01

    Background & objectives: Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation & conclusions: High fructose feeding to rats and hamsters led to the development of insulin resistance, hyperglycaemia, endothelial dysfunction and oxidative stress. C. oil prevented development of thrombotic complications associated with insulin resistance perhaps by modulating genes involved in lipid and glucose metabolism. Further studies are required to confirm these findings. PMID:26205026

  12. Effect of berberine on insulin resistance in women with polycystic ovary syndrome: study protocol for a randomized multicenter controlled trial.

    PubMed

    Li, Yan; Ma, Hongli; Zhang, Yuehui; Kuang, Hongying; Ng, Ernest Hung Yu; Hou, Lihui; Wu, Xiaoke

    2013-07-18

    Insulin resistance and hyperinsulinemia play a key role in the pathogenesis of polycystic ovary syndrome (PCOS), which is characterized by hyperandrogenism, ovulatory dysfunction, and presence of polycystic ovaries on pelvic scanning. Insulin resistance is significantly associated with the long-term risks of metabolic syndrome and cardiovascular disease. Berberine has effects on insulin resistance but its use in women with PCOS has not been fully investigated. In this paper, we present a research design evaluating the effects of berberine on insulin resistance in women with PCOS. This is a multicenter, randomized, placebo-controlled and double-blind trial. A total of 120 patients will be enrolled in this study and will be randomized into two groups. Berberine or placebo will be taken orally for 12 weeks. The primary outcome is the whole body insulin action assessed with the hyperinsulinemic-euglycemic clamp. We postulate that women with PCOS will have improved insulin resistance following berberine administration. This study is registered at ClinicalTrials.gov, NCT01138930.

  13. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.

    PubMed

    Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth

    2015-08-15

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.

  14. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

    PubMed Central

    Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J.; Nautiyal, Manisha; Mathew, Justin T.; Williams, Caroline M.; Cusi, Kenneth

    2015-01-01

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD. PMID:26058864

  15. Insulin resistance, β-cell dysfunction and differences in curves of plasma glucose and insulin in the intermediate points of the standard glucose tolerance test in adults with cystic fibrosis.

    PubMed

    Cano Megías, Marta; González Albarrán, Olga; Guisado Vasco, Pablo; Lamas Ferreiro, Adelaida; Máiz Carro, Luis

    2015-02-01

    diabetes has become a co-morbidity with a negative impact on nutritional status, lung function and survival in cystic fibrosis. To identify any changes in intermediate points after a 2-hour oral glucose tolerance test (OGTT), pancreatic β-cell dysfunction, and insulin resistance in cystic fibrosis-related diabetes. It was carried out a retrospective analysis in a cohort of 64 patients affected of cystic fibrosis, older than 14 years, using the first pathological OGTT. Peripheral insulin resistance was measured using the homeostasis model assessment for insulin resistance (HOMA- IR), and pancreatic β-cell function was calculated according to Wareham. Time to maximum plasma insulin and glucose levels and area under the curve (AUC0-120) were also measured. Twenty-eight women and 36 men with a mean age of 26.8 years were enrolled, of whom 26.7% had normal glucose tolerance (NGT), 18.3% cystic fibrosis-related diabetes without fasting hyperglycemia (CFRD w/o FPG), 10% indeterminate (INDET), and 45% impaired glucose tolerance (IGT). HOMA-IR values were not significantly different between the diagnostic categories. Patients with any pathological change had worse β cell function, with a significant delay in insulin secretion, although there were no differences in total insulin production (AUC0-120). Time to maximum glucose levels was significantly shorter in NGT patients as compared to other categories, with glucose AUC0-120 being higher in the different diagnostic categories as compared to NGT. In over half the cases, peak blood glucose levels during a standard OGTT are reached in the intermediate time points, rather than at the usual time of 120minutes. Patients with cystic fibrosis and impaired glucose metabolism have a delayed insulin secretion during the standard OGTT due to loss of first-phase insulin secretion, with no differences in total insulin production. Absence of significant changes in HOMA-IR suggests that β-cell dysfunction is the main pathogenetic mechanism. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  16. PATHOPHYSIOLOGY AND TREATMENT OF TYPE 2 DIABETES: PERSPECTIVES ON THE PAST, PRESENT AND FUTURE

    PubMed Central

    Kahn, Steven E.; Cooper, Mark E.; Del Prato, Stefano

    2014-01-01

    Normal regulation of glucose metabolism is determined by a feedback loop involving the islet β-cell and insulin-sensitive tissues in which tissue sensitivity to insulin determines the magnitude of the β-cell response. When insulin resistance is present, the β-cell maintains normal glucose tolerance by increasing insulin output. It is only when the β-cell is incapable of releasing sufficient insulin in the presence of insulin resistance that glucose levels rise. While β-cell dysfunction has a clear genetic component, environmental changes play a vital role. Modern approaches have also informed regarding the importance of hexoses, amino acids and fatty acids in determining insulin resistance and β-cell dysfunction as well as the potential role of alterations in the microbiome. A number of new treatment approaches have been developed, but more effective therapies that slow the progressive loss of β-cell function are needed. Recent clinical trials have provided important information regarding approaches to prevent and treat type 2 diabetes as well as some of the adverse effects of these interventions. However, additional long-term studies of medications and bariatric surgery are required in order to identify novel approaches to prevention and treatment, thereby reducing the deleterious impact of type 2 diabetes. PMID:24315620

  17. Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction

    PubMed Central

    Padilla, Jaume; Park, Young-Min; Welly, Rebecca J.; Scroggins, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Jenkins, Nathan T.; Crissey, Jacqueline M.; Zidon, Terese; Morris, E. Matthew; Meers, Grace M. E.; Thyfault, John P.

    2015-01-01

    Ovariectomized rodents model human menopause in that they rapidly gain weight, reduce spontaneous physical activity (SPA), and develop metabolic dysfunction, including insulin resistance. How contrasting aerobic fitness levels impacts ovariectomy (OVX)-associated metabolic dysfunction is not known. Female rats selectively bred for high and low intrinsic aerobic fitness [high-capacity runners (HCR) and low-capacity runners (LCR), respectively] were maintained under sedentary conditions for 39 wk. Midway through the observation period, OVX or sham (SHM) operations were performed providing HCR-SHM, HCR-OVX, LCR-SHM, and LCR-OVX groups. Glucose tolerance, energy expenditure, and SPA were measured before and 4 wk after surgery, while body composition via dual-energy X-ray absorptiometry and adipose tissue distribution, brown adipose tissue (BAT), and skeletal muscle phenotype, hepatic lipid content, insulin resistance via homeostatic assessment model of insulin resistance and AdipoIR, and blood lipids were assessed at death. Remarkably, HCR were protected from OVX-associated increases in adiposity and insulin resistance, observed only in LCR. HCR rats were ∼30% smaller, had ∼70% greater spontaneous physical activity (SPA), consumed ∼10% more relative energy, had greater skeletal muscle proliferator-activated receptor coactivator 1-alpha, and ∼40% more BAT. OVX did not increase energy intake and reduced SPA to the same extent in both HCR and LCR. LCR were particularly affected by an OVX-associated reduction in resting energy expenditure and experienced a reduction in relative BAT; resting energy expenditure correlated positively with BAT across all animals (r = 0.6; P < 0.001). In conclusion, despite reduced SPA following OVX, high intrinsic aerobic fitness protects against OVX-associated increases in adiposity and insulin resistance. The mechanism may involve preservation of resting energy expenditure. PMID:25608751

  18. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

    PubMed

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald

    2014-10-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.

  19. The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2009-11-01

    Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overweight and obese nondiabetic men. Each subject underwent four separate studies, 4-6 wk apart, in random order: 1) SAL, 1-wk placebo followed by intravenous (iv) infusion of saline for 48 h; 2) IH, 1-wk placebo followed by iv infusion of intralipid plus heparin for 48 h to raise plasma NEFA approximately twofold; 3) IH + SS, 1-wk sodium salicylate (4.5 g/day) followed by 48-h IH infusion; and 4) SS, 1-wk oral sodium salicylate followed by 48-h saline infusion. After 48-h saline or lipid infusion, insulin secretion and sensitivity were assessed by hyperglycemic clamp and euglycemic hyperinsulinemic clamp, respectively, in sequential order. Insulin sensitivity was reduced by lipid infusion (IH = 67% of SAL) and was not improved by salicylate (IH + SS = 56% of SAL). Lipid infusion also reduced the disposition index (P < 0.05), which was not prevented by sodium salicylate. Salicylate reduced insulin clearance. These data suggest that oral sodium salicylate at this dose impairs insulin clearance but does not ameliorate lipid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

  20. Review of the pathophysiological aspects involved in urological disease associated with metabolic syndrome.

    PubMed

    Sáenz Medina, J; Carballido Rodríguez, J

    2016-06-01

    Metabolic syndrome is a constellation of disorders that includes insulin resistance, central obesity, arterial hypertension and hyperlipidaemia. These disorders can have implications for the genitourinary apparatus. To conduct a review on the pathophysiological aspects that explain the relationship between metabolic syndrome and sexual dysfunction, lower urinary tract syndrome, prostate cancer and stone disease. We performed a qualitative, narrative literature review through a literature search on PubMed of articles published between 1997 and 2015, using the terms pathophysiology, metabolic syndrome, endothelial dysfunction, lipotoxicity, mitochondrial dysfunction, kidney stones, hypogonadism, erectile dysfunction, lower urinary tract syndrome and prostate cancer. Metabolic syndrome constitutes an established complex of symptoms, defined as the presence of insulin resistance, central obesity, hypertension and hyperlipidaemia. Endothelial dysfunction secondary to lipotoxicity generates an inflammatory state, which involves renal cell metabolism, vascularisation of the pelvis and androgen production. These facts explain the relationship between metabolic syndrome, nephrolithiasis, lower urinary tract syndrome, hypogonadism and erectile dysfunction in men. Strategies such as proper diet, regular exercise, insulin treatment, testosterone-replacement therapy, therapy with antioxidants and free-radical inhibitors and urological treatments classically used for lower urinary tract syndrome have shown promising results in this syndrome. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus

    PubMed Central

    Zhang, Yuehui; Sun, Xue; Sun, Xiaoyan; Meng, Fanci; Hu, Min; Li, Xin; Li, Wei; Wu, Xiao-Ke; Brännström, Mats; Shao, Ruijin; Billig, Håkan

    2016-01-01

    Peripheral insulin resistance and hyperandrogenism are the primary features of polycystic ovary syndrome (PCOS). However, how insulin resistance and hyperandrogenism affect uterine function and contribute to the pathogenesis of PCOS are open questions. We treated rats with insulin alone or in combination with human chorionic gonadotropin (hCG) and showed that peripheral insulin resistance and hyperandrogenism alter uterine morphology, cell phenotype, and cell function, especially in glandular epithelial cells. These defects are associated with an aberration in the PI3K/Akt signaling pathway that is used as an indicator for the onset of insulin resistance in classical metabolic tissues. Concomitantly, increased GSK3β (Ser-9) phosphorylation and decreased ERK1/2 phosphorylation in rats treated with insulin and hCG were also observed. We also profiled the expression of glucose transporter (Glut) isoform genes in the uterus under conditions of insulin resistance and/or hyperandrogenism. Finally, we determined the expression pattern of glycolytic enzymes and intermediates during insulin resistance and hyperandrogenism in the uterus. These findings suggest that the PI3K/Akt and MAPK/ERK signaling pathways play a role in the onset of uterine insulin resistance, and they also suggest that changes in specific Glut isoform expression and alterations to glycolytic metabolism contribute to the endometrial dysfunction observed in PCOS patients. PMID:27461373

  2. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    PubMed

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the inflammatory dysfunction in obesity. The effect of obesity on the percentage of monocytes was previously observed in class II and III obese individuals who presented other alterations in addition to insulin resistance. In this study we observed that insulin-resistant obese individuals, but not insulin-sensitive ones, had an increased percentage of CD14(+) CD16(+) monocytes. This fact shows that a dysfunction of the monocyte percentage in class I obese individuals is only seen when this condition is associated with insulin resistance. Copyright © 2016 John Wiley & Sons, Ltd.

  3. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    PubMed

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  4. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    PubMed

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  5. Treatment of prediabetes

    PubMed Central

    Kanat, Mustafa; DeFronzo, Ralph A; Abdul-Ghani, Muhammad A

    2015-01-01

    Progression of normal glucose tolerance (NGT) to overt diabetes is mediated by a transition state called impaired glucose tolerance (IGT). Beta cell dysfunction and insulin resistance are the main defects in type 2 diabetes mellitus (type 2 DM) and even normoglycemic IGT patients manifest these defects. Beta cell dysfunction and insulin resistance also contribute to the progression of IGT to type 2 DM. Improving insulin sensitivity and/or preserving functions of beta-cells can be a rational way to normalize the GT and to control transition of IGT to type 2 DM. Loosing weight, for example, improves whole body insulin sensitivity and preserves beta-cell function and its inhibitory effect on progression of IGT to type 2 DM had been proven. But interventions aiming weight loss usually not applicable in real life. Pharmacotherapy is another option to gain better insulin sensitivity and to maintain beta-cell function. In this review, two potential treatment options (lifestyle modification and pharmacologic agents) that limits the IGT-type 2 DM conversion in prediabetic subjects are discussed. PMID:26464759

  6. Increased lipolysis, diminished adipose tissue insulin sensitivity and impaired B-cell function relative to adipose tissue insulin sensitivity in obese youth with impaired glucose tolerance (IGT)

    USDA-ARS?s Scientific Manuscript database

    Despite evidence of insulin resistance and B-cell dysfunction in glucose metabolism in youth with prediabetes, the relationship between adipose tissue insulin sensitivity (ATIS) and B-cell function remains unknown. We investigated whole-body lipolysis, ATIS and B-cell function relative to ATIS [adip...

  7. Adipokines and insulin action: A sensitive issue.

    PubMed

    Knights, Alexander J; Funnell, Alister Pw; Pearson, Richard Cm; Crossley, Merlin; Bell-Anderson, Kim S

    2014-04-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease.

  8. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  9. Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans.

    PubMed

    Gemmink, Anne; Bosma, Madeleen; Kuijpers, Helma J H; Hoeks, Joris; Schaart, Gert; van Zandvoort, Marc A M J; Schrauwen, Patrick; Hesselink, Matthijs K C

    2016-05-01

    In contrast to insulin-resistant individuals, insulin-sensitive athletes possess high intramyocellular lipid content (IMCL), good mitochondrial function and high perilipin 5 (PLIN5) levels, suggesting a role for PLIN5 in benign IMCL storage. We hypothesised a role for PLIN5 in modulating fasting-mediated insulin resistance. Twelve men were fasted for 60 h, before and after which muscle biopsies were taken and stained for lipid droplets (LDs), PLIN5 and laminin. Confocal microscopy images were analysed for LD size, number, PLIN5 association and subcellular distribution. Fasting elevated IMCL content 2.8-fold and reduced insulin sensitivity (by 55%). Individuals with the most prominent increase in IMCL showed the least reduction in insulin sensitivity (r = 0.657; p = 0.028) and mitochondrial function (r = 0.896; p = 0.006). During fasting, PLIN5 gene expression or PLIN5 protein content in muscle homogenates was unaffected, microscopy analyses revealed that the fraction of PLIN5 associated with LDs (PLIN5+) increased significantly (+26%) upon fasting, suggesting PLIN5 redistribution. The significant increase in LD number (+23%) and size (+23%) upon fasting was entirely accounted for by PLIN5+ LDs, not by LDs devoid of PLIN5. Also the association between IMCL storage capacity and insulin resistance and mitochondrial dysfunction was only apparent for PLIN5+ LDs. Fasting results in subcellular redistribution of PLIN5 and promotes the capacity to store excess fat in larger and more numerous PLIN5-decorated LDs. This associates with blunting of fasting-induced insulin resistance and mitochondrial dysfunction, suggesting a role for PLIN5 in the modulation of fasting-mediated lipotoxicity. trialregister.nl NTR 2042.

  10. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance.

    PubMed

    Luan, Bing; Zhao, Jian; Wu, Haiya; Duan, Baoyu; Shu, Guangwen; Wang, Xiaoying; Li, Dangsheng; Jia, Weiping; Kang, Jiuhong; Pei, Gang

    2009-02-26

    Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.

  11. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  12. Mechanisms linking brain insulin resistance to Alzheimer's disease

    PubMed Central

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  13. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  14. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism

    PubMed Central

    Chen, Yanyan; Wu, Xiafang; Wu, Ruirui; Sun, Xiance; Yang, Boyi; Wang, Yi; Xu, Yuanyuan

    2016-01-01

    Changes in profile of lipids and adipokines have been reported in patients with thyroid dysfunction. But the evidence is controversial. The present study aimed to explore the relationships between thyroid function and the profile of lipids and adipokines. A cross-sectional study was conducted in 197 newly diagnosed hypothyroid patients, 230 newly diagnosed hyperthyroid patients and 355 control subjects. Hypothyroid patients presented with significantly higher serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDLC), fasting insulin, resistin and leptin than control (p < 0.05). Hyperthyroid patients presented with significantly lower serum levels of high-density lipoprotein cholesterol, LDLC and leptin, as well as higher levels of fasting insulin, resistin, adiponectin and homeostasis model insulin resistance index (HOMA-IR) than control (p < 0.05). Nonlinear regression and multivariable linear regression models all showed significant associations of resistin or adiponectin with free thyroxine and association of leptin with thyroid-stimulating hormone (p < 0.001). Furthermore, significant correlation between resistin and HOMA-IR was observed in the patients (p < 0.001). Thus, thyroid dysfunction affects the profile of lipids and adipokines. Resistin may serve as a link between thyroid dysfunction and insulin resistance. PMID:27193069

  15. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice

    USDA-ARS?s Scientific Manuscript database

    Circadian disruption has become a significant factor contributing to the epidemics of obesity and insulin resistance. However, interventions to treat metabolic dysfunctions induced by circadian disruptions are limited. The ovarian hormone, estrogen, produces important antiobesity and antidiabetic ef...

  16. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.

    PubMed

    Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-03-20

    The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Childhood and adolescent obesity and long-term cognitive consequences during aging.

    PubMed

    Wang, Jun; Freire, Daniel; Knable, Lindsay; Zhao, Wei; Gong, Bing; Mazzola, Paolo; Ho, Lap; Levine, Samara; Pasinetti, Giulio M

    2015-04-01

    The prevalence of childhood/adolescent obesity and insulin resistance has reached an epidemic level. Obesity's immediate clinical impacts have been extensively studied; however, current clinical evidence underscores the long-term implications. The current study explored the impacts of brief childhood/adolescent obesity and insulin resistance on cognitive function in later life. To mimic childhood/adolescent obesity and insulin resistance, we exposed 9-week-old C57BL/6J mice to a high-fat diet for 15 weeks, after which the mice exhibited diet-induced obesity and insulin resistance. We then put these mice back on a normal low-fat diet, after which the mice exhibited normal body weight and glucose tolerance. However, a spatial memory test in the forms of the Morris water maze (MWM) and contextual fear conditioning at 85 weeks of age showed that these mice had severe deficits in learning and long-term memory consolidation. Mechanistic investigations identified increased expression of histone deacetylases 5, accompanied by reduced expression of brain-derived neurotrophic factor, in the brains 61 weeks after the mice had been off the high-fat diet. Electrophysiology studies showed that hippocampal slices isolated from these mice are more susceptible to synaptic impairments compared with slices isolated from the control mice. We demonstrated that a 15-week occurrence of obesity and insulin resistance during childhood/adolescence induces irreversible epigenetic modifications in the brain that persist following restoration of normal metabolic homeostasis, leading to brain synaptic dysfunction during aging. Our study provides experimental evidence that limited early-life exposure to obesity and insulin resistance may have long-term deleterious consequences in the brain, contributing to the onset/progression of cognitive dysfunction during aging. © 2014 Wiley Periodicals, Inc.

  18. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander?

    PubMed

    Brøns, Charlotte; Grunnet, Louise Groth

    2017-02-01

    Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver. © 2017 European Society of Endocrinology.

  19. Regulation of malonyl-CoA-acyl carrier protein transacylase network in umbilical cord blood affected by intrauterine hyperglycemia.

    PubMed

    Zhang, Yong; Ye, Jianping; Fan, Jianxia

    2017-09-26

    Gestational diabetes mellitus (GDM) has been shown to be associated with high risk of diabetes in offspring. However, the mechanisms involved in the insulin resistance in offspring are still unclear. Mitochondrial dysfunction is related with insulin resistance. In mitochondria, malonyl-CoA-acyl carrier protein transacylase (MCAT) is the key enzyme of mitochondrial fatty acid synthesis and is estimated to contribute to insulin resistance. In this study, we aimed to examine the role of MCAT and its network in the umbilical cord blood in GDM-induced offspring insulin resistance. We isolated lymphocytes from umbilical cord vein blood in 6 GDM patients and 6 controls and examined the differences of RNA by RNA sequencing. qRT-PCR and western blot were used to measure mRNA and protein changes. Bisulfite genomic sequencing PCR was applied to detect DNA methylation. We found more than 400 genes were differentially regulated in the lymphocytes of umbilical cord blood from GDM patients and these genes were mainly enriched in immune system and endocrine system, which relate to mitochondrial dysfunction and insulin resistance. MCAT closely related with PTPN1 (Protein Tyrosine Phosphatase, Non-Receptor Type1) and STAT5A (Signal Transducer And Activator of Transcription 5A), which were all increased in umbilical cord blood from GDM patients. Increase in MCAT may be due to decreased MCAT DNA methylation. MCAT and its network with PTPN1, STAT5A are regulated in umbilical cord blood affected by maternal intrauterine hyperglycemia.

  20. Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction.

    PubMed

    Liu, Yilin; Steinbusch, Laura K M; Nabben, Miranda; Kapsokalyvas, Dimitris; van Zandvoort, Marc; Schönleitner, Patrick; Antoons, Gudrun; Simons, Peter J; Coumans, Will A; Geomini, Amber; Chanda, Dipanjan; Glatz, Jan F C; Neumann, Dietbert; Luiken, Joost J F P

    2017-06-01

    Dietary fat overconsumption leads to myocardial lipid accumulation through mechanisms that are incompletely resolved. Previously, we identified increased translocation of the fatty acid transporter CD36 from its endosomal storage compartment to the sarcolemma as the primary mechanism of excessive myocellular lipid import. Here, we show that increased CD36 translocation is caused by alkalinization of endosomes resulting from inhibition of proton pumping activity of vacuolar-type H + -ATPase (v-ATPase). Endosomal alkalinization was observed in hearts from rats fed a lard-based high-fat diet and in rodent and human cardiomyocytes upon palmitate overexposure, and appeared as an early lipid-induced event preceding the onset of insulin resistance. Either genetic or pharmacological inhibition of v-ATPase in cardiomyocytes exposed to low palmitate concentrations reduced insulin sensitivity and cardiomyocyte contractility, which was rescued by CD36 silencing. The mechanism of palmitate-induced v-ATPase inhibition involved its dissociation into two parts: the cytosolic V 1 and the integral membrane V 0 subcomplex. Interestingly, oleate also inhibits v-ATPase function, yielding triacylglycerol accumulation but not insulin resistance. In conclusion, lipid oversupply increases CD36-mediated lipid uptake that directly impairs v-ATPase function. This feeds forward to enhanced CD36 translocation and further increased lipid uptake. In the case of palmitate, its accelerated uptake ultimately precipitates into cardiac insulin resistance and contractile dysfunction. © 2017 by the American Diabetes Association.

  1. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  2. MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease.

    PubMed

    Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke; O'Reilly, Michael W

    2017-09-01

    Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. © 2017 The authors.

  3. MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease

    PubMed Central

    Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke

    2017-01-01

    Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. PMID:28566439

  4. ROLE OF CENTRAL NERVOUS SYSTEM INSULIN RESISTANCE IN FETAL ALCOHOL SPECTRUM DISORDERS

    PubMed Central

    de la Monte, Suzanne M; Wands, Jack R

    2011-01-01

    Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental retardation in the USA. Ethanol impairs neuronal survival and function by two major mechanisms: 1) it inhibits insulin signaling required for viability, metabolism, synapse formation, and acetylcholine production; and 2) it functions as a neurotoxicant, causing oxidative stress, DNA damage and mitochondrial dysfunction. Ethanol inhibition of insulin signaling is mediated at the insulin receptor (IR) level and caused by both impaired receptor binding and increased activation of phosphatases that reverse IR tyrosine kinase activity. As a result, insulin activation of PI3K-Akt, which mediates neuronal survival, motility, energy metabolism, and plasticity, is impaired. The neurotoxicant effects of ethanol promote DNA damage, which could contribute to mitochondrial dysfunction and oxidative stress. Therefore, chronic in utero ethanol exposure produces a dual state of CNS insulin resistance and oxidative stress, which we postulate plays a major role in ethanol neurobehavioral teratogenesis. We propose that many of the prominent adverse effects of chronic prenatal exposure to ethanol on CNS development and function may be prevented or reduced by treatment with peroxisome-proliferated activated receptor (PPAR) agonists which enhance insulin sensitivity by increasing expression and function of insulin-responsive genes, and reducing cellular oxidative stress. PMID:21063035

  5. Non-alcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in essential hypertension.

    PubMed

    Fallo, F; Dalla Pozza, A; Sonino, N; Lupia, M; Tona, F; Federspil, G; Ermani, M; Catena, C; Soardo, G; Di Piazza, L; Bernardi, S; Bertolotto, M; Pinamonti, B; Fabris, B; Sechi, L A

    2009-11-01

    Insulin resistance is recognized as the pathophysiological hallmark of non-alcoholic fatty liver disease (NAFLD). A relation between insulin sensitivity and left ventricular morphology and function has been reported in essential hypertension, where a high prevalence of NAFLD has been recently found. We investigated the inter-relationship between left ventricular morphology/function, metabolic parameters and NAFLD in 86 never-treated essential hypertensive patients subdivided in two subgroups according to the presence (n = 48) or absence (n = 38) of NAFLD at ultrasonography. The two groups were similar as to sex, age and blood pressure levels. No patient had diabetes mellitus, obesity, hyperlipidemia, or other risk factors for liver disease. Body mass index, waist circumference, triglycerides, glucose, insulin, homeostasis model of assessment index for insulin resistance (HOMA-IR), aspartate aminotransferase and alanine aminotransferase were higher and adiponectin levels were lower in patients with NAFLD than in patients without NAFLD, and were associated with NAFLD at univariate analysis. Patients with NAFLD had similar prevalence of left ventricular hypertrophy compared to patients without NAFLD, but a higher prevalence of diastolic dysfunction (62.5 vs 21.1%, P < 0.001), as defined by E/A ratio <1 and E-wave deceleration time >220 ms. Diastolic dysfunction (P = 0.040) and HOMA-IR (P = 0.012) remained independently associated with NAFLD at backward multivariate analysis. Non-alcoholic fatty liver disease was associated with insulin resistance and abnormalities of left ventricular diastolic function in a cohort of patients with essential hypertension, suggesting a concomitant increase of metabolic and cardiac risk in this condition.

  6. Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects.

    PubMed

    Aguer, Céline; Harper, Mary-Ellen

    2012-12-01

    During the development of type 2 diabetes mellitus, skeletal muscle is a major site of insulin resistance. The latter has been linked to mitochondrial dysfunction and impaired fatty acid oxidation. Some hormones like insulin, thyroid hormones and adipokines (e.g., leptin, adiponectin) have positive effects on muscle mitochondrial bioenergetics through their direct or indirect effects on mitochondrial biogenesis, mitochondrial protein expression, mitochondrial enzyme activities and/or AMPK pathway activation--all of which can improve fatty acid oxidation. It is therefore not surprising that treatment with these hormones has been proposed to improve muscle and whole body insulin sensitivity. However, treatment of diabetic patients with leptin and adiponectin has no effect on muscle mitochondrial bioenergetics showing resistance to these hormones during type 2 diabetes. Furthermore, treatment with most thyroid hormones has unexpectedly revealed negative effects on muscle insulin sensitivity. Future research should focus on development of agents that improve metabolic dysfunction downstream of hormone receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Prokineticin Receptor‐1 Is a New Regulator of Endothelial Insulin Uptake and Capillary Formation to Control Insulin Sensitivity and Cardiovascular and Kidney Functions

    PubMed Central

    Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.

    2013-01-01

    Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary recruitment and insulin uptake and improved heart and kidney function and insulin resistance. Conclusions We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders. PMID:24152983

  8. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria

    PubMed Central

    Coletta, Dawn K.

    2011-01-01

    Insulin resistance in skeletal muscle is a prominent feature of obesity and type 2 diabetes. The association between mitochondrial changes and insulin resistance is well known. More recently, there is growing evidence of a relationship between inflammation, extracellular remodeling, and insulin resistance. The intent of this review is to propose a potentially novel mechanism for the development of insulin resistance, focusing on the underappreciated connections among inflammation, extracellular remodeling, cytoskeletal interactions, mitochondrial function, and insulin resistance in human skeletal muscle. Several sources of inflammation, including expansion of adipose tissue resulting in increased lipolysis and alterations in pro- and anti-inflammatory cytokines, contribute to the insulin resistance observed in obesity and type 2 diabetes. In the experimental model of lipid oversupply, an inflammatory response in skeletal muscle leads to altered expression extracellular matrix-related genes as well as nuclear encoded mitochondrial genes. A similar pattern also is observed in “naturally” occurring insulin resistance in muscle of obese nondiabetic individuals and patients with type 2 diabetes mellitus. More recently, alterations in proteins (including α-actinin-2, desmin, proteasomes, and chaperones) involved in muscle structure and function have been observed in insulin-resistant muscle. Some of these cytoskeletal proteins are mechanosignal transducers that allow muscle fibers to sense contractile activity and respond appropriately. The ensuing alterations in expression of genes coding for mitochondrial proteins and cytoskeletal proteins may contribute to the mitochondrial changes observed in insulin-resistant muscle. These changes in turn may lead to a reduction in fat oxidation and an increase in intramyocellular lipid, which contributes to the defects in insulin signaling in insulin resistance. PMID:21862724

  9. Insulin resistance is associated with cognition among HIV-1-infected patients: the Hawaii Aging With HIV cohort.

    PubMed

    Valcour, Victor G; Sacktor, Ned C; Paul, Robert H; Watters, Michael R; Selnes, Ola A; Shiramizu, Bruce T; Williams, Andrew E; Shikuma, Cecilia M

    2006-12-01

    To determine if insulin resistance (IR) is associated with lower cognitive performance among HIV-1-infected adults and to determine if advanced age magnifies risk. Cross-sectional analysis within the Hawaii Aging With HIV Cohort. We calculated the homeostasis model assessment of insulin resistance (HOMA-IR) among 145 cohort participants. Values were compared to concurrent neuropsychological test performance and cognitive diagnoses. Hypertension, body mass index (BMI), and non-Caucasian self-identity were directly related to insulin resistance (IR); however, age, CD4 lymphocyte count, and rates of treatment with HAART were not. In logistic regression analyses and stratifying cognition status on a 3-tiered scale (normal, minor cognitive motor disorder (MCMD), and HIV-associated dementia (HAD)), we identified an increased risk of meeting a higher diagnostic category as HOMA-IR increased (OR, 1.12; 95% CI: 1.003 to 1.242 per unit of HOMA-IR, P = 0.044). In linear regression models and among nondiabetic participants, an increasing degree of IR was associated with lower performance on neuropsychological summary scores. IR is associated with cognitive dysfunction in this contemporary HIV-1 cohort enriched with older individuals. Metabolic dysfunction may contribute to the multifactorial pathogenesis of cognitive impairment in the era of HAART.

  10. Intrahepatic vascular changes in non-alcoholic fatty liver disease: Potential role of insulin-resistance and endothelial dysfunction.

    PubMed

    Pasarín, Marcos; Abraldes, Juan G; Liguori, Eleonora; Kok, Beverley; La Mura, Vincenzo

    2017-10-07

    Metabolic syndrome is a cluster of several clinical conditions characterized by insulin-resistance and high cardiovascular risk. Non-alcoholic fatty liver disease is the liver expression of the metabolic syndrome, and insulin resistance can be a frequent comorbidity in several chronic liver diseases, in particular hepatitis C virus infection and/or cirrhosis. Several studies have demonstrated that insulin action is not only relevant for glucose control, but also for vascular homeostasis. Insulin regulates nitric oxide production, which mediates to a large degree the vasodilating, anti-inflammatory and antithrombotic properties of a healthy endothelium, guaranteeing organ perfusion. The effects of insulin on the liver microvasculature and the effects of IR on sinusoidal endothelial cells have been studied in animal models of non-alcoholic fatty liver disease. The hypotheses derived from these studies and the potential translation of these results into humans are critically discussed in this review.

  11. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a primary cause of diabetic nephropathy, retinopathy and neuropathy and poor bone blood flow is associated with bone loss. Therefore, we also hypothesize that dysfunction of the bone vascular endothelium contributes to the bone fragility observed in T2D. The most important consequence of our-dual hypothesis is the public health significance. Namely, identification of the proximal cause of T2D and associated bone complications allows pursuit of the appropriate therapeutic target to treat and prevent T2D. If our hypothesis that reduced bone blood flow is an early event in the pathogenesis of T2D and diabetic bone fragility is correct, then the endothelium of the bone vasculature should be a therapeutic target. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance

    PubMed Central

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A.; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-01-01

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions. PMID:28629187

  13. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    PubMed Central

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  14. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance.

    PubMed

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-06-19

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout ( Ghrelin -/- ) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.

  15. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    PubMed

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  16. Medical implications of obesity in horses--lessons for human obesity.

    PubMed

    Johnson, Philip J; Wiedmeyer, Charles E; Messer, Nat T; Ganjam, Venkataseshu K

    2009-01-01

    There is growing recognition that obesity is common and represents a significant detriment to the health of companion animals in a manner similar to that by which it is affecting the human population. As is the case for other species, obesity appears to promote insulin resistance in horses and it is through this pathophysiological process that many of the adverse medical consequences of obesity are being characterized. Equine medical conditions that have been described in the context of obesity and insulin resistance differ from those in humans. Chronic human conditions that have been attributed to obesity and insulin resistance, such as atherosclerosis and diabetes mellitus, are rarely described in obese horses. Significant current interest is centered on the recognition that insulin resistance plays a role in the pathogenesis of laminitis, a potentially severe and debilitating cause of lameness in the equine species. Other equine medical conditions that are more likely in obese, insulin-resistant individuals include hyperlipemia (hepatic lipidosis) and developmental orthopedic disease (osteochondrosis). Pituitary pars intermedia dysfunction (equine Cushing's syndrome) represents another common endocrinopathic condition of older horses associated with insulin resistance. This review presents an introductory overview of the present understanding of obesity and insulin resistance and how these conditions may be associated with disease conditions in horses. © Diabetes Technology Society

  17. Medical Implications of Obesity in Horses—Lessons for Human Obesity

    PubMed Central

    Johnson, Philip J.; Wiedmeyer, Charles E.; Messer, Nat T.; Ganjam, Venkataseshu K.

    2009-01-01

    There is growing recognition that obesity is common and represents a significant detriment to the health of companion animals in a manner similar to that by which it is affecting the human population. As is the case for other species, obesity appears to promote insulin resistance in horses and it is through this pathophysiological process that many of the adverse medical consequences of obesity are being characterized. Equine medical conditions that have been described in the context of obesity and insulin resistance differ from those in humans. Chronic human conditions that have been attributed to obesity and insulin resistance, such as atherosclerosis and diabetes mellitus, are rarely described in obese horses. Significant current interest is centered on the recognition that insulin resistance plays a role in the pathogenesis of laminitis, a potentially severe and debilitating cause of lameness in the equine species. Other equine medical conditions that are more likely in obese, insulin-resistant individuals include hyperlipemia (hepatic lipidosis) and developmental orthopedic disease (osteochondrosis). Pituitary pars intermedia dysfunction (equine Cushing's syndrome) represents another common endocrinopathic condition of older horses associated with insulin resistance. This review presents an introductory overview of the present understanding of obesity and insulin resistance and how these conditions may be associated with disease conditions in horses. PMID:20046661

  18. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    PubMed

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P < 0.001). Fasting insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P < 0.001 for both variables). There were significant inverse correlations between resting calf blood flow and fasting insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  19. Regulation of malonyl-CoA-acyl carrier protein transacylase network in umbilical cord blood affected by intrauterine hyperglycemia

    PubMed Central

    Zhang, Yong; Ye, Jianping; Fan, Jianxia

    2017-01-01

    Background Gestational diabetes mellitus (GDM) has been shown to be associated with high risk of diabetes in offspring. However, the mechanisms involved in the insulin resistance in offspring are still unclear. Mitochondrial dysfunction is related with insulin resistance. In mitochondria, malonyl-CoA-acyl carrier protein transacylase (MCAT) is the key enzyme of mitochondrial fatty acid synthesis and is estimated to contribute to insulin resistance. In this study, we aimed to examine the role of MCAT and its network in the umbilical cord blood in GDM-induced offspring insulin resistance. Methods We isolated lymphocytes from umbilical cord vein blood in 6 GDM patients and 6 controls and examined the differences of RNA by RNA sequencing. qRT-PCR and western blot were used to measure mRNA and protein changes. Bisulfite genomic sequencing PCR was applied to detect DNA methylation. Results We found more than 400 genes were differentially regulated in the lymphocytes of umbilical cord blood from GDM patients and these genes were mainly enriched in immune system and endocrine system, which relate to mitochondrial dysfunction and insulin resistance. MCAT closely related with PTPN1 (Protein Tyrosine Phosphatase, Non-Receptor Type1) and STAT5A (Signal Transducer And Activator of Transcription 5A), which were all increased in umbilical cord blood from GDM patients. Increase in MCAT may be due to decreased MCAT DNA methylation. Conclusion MCAT and its network with PTPN1, STAT5A are regulated in umbilical cord blood affected by maternal intrauterine hyperglycemia. PMID:29088862

  20. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    PubMed

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  1. THE EFFECT OF ADRENAL MEDULLECTOMY ON METABOLIC RESPONSES TO CHRONIC INTERMITTENT HYPOXIA

    PubMed Central

    Shin, Mi-Kyung; Han, Woobum; Bevans-Fonti, Shannon; Jun, Jonathan C.; Punjabi, Naresh M.; Polotsky, Vsevolod Y.

    2014-01-01

    Obstructive sleep apnea causes intermittent hypoxia (IH) and is associated with insulin resistance and type 2 diabetes. IH increases plasma catecholamine levels, which may increase insulin resistance and suppress insulin secretion. The objective of this study was to determine if adrenal medullectomy (MED) prevents metabolic dysfunction in IH. MED or sham surgery was performed in 60 male C57BL/6J mice, which were then exposed to IH or control conditions (intermittent air) for 6 weeks. IH increased plasma epinephrine and norepinephrine levels, increased fasting blood glucose and lowered basal and glucose-stimulated insulin secretion. MED decreased baseline epinephrine and prevented the IH induced increase in epinephrine, whereas the norepinephrine response remained intact. MED improved glucose tolerance in mice exposed to IH, attenuated the impairment in basal and glucose-stimulated insulin secretion, but did not prevent IH-induced fasting hyperglycemia or insulin resistance. We conclude that the epinephrine release from the adrenal medulla during IH suppresses insulin secretion causing hyperglycemia. PMID:25179887

  2. How does brain insulin resistance develop in Alzheimer's disease?

    PubMed

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  3. Endothelial function varies according to insulin resistance disease type.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A

    2007-05-01

    We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.

  4. Epigenetics: The missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes

    PubMed Central

    Gilbert, Elizabeth R.; Liu, Dongmin

    2012-01-01

    Type 2 diabetes (T2D) is a growing health problem worldwide. While peripheral insulin resistance is common during obesity and aging in both animals and people, progression to T2D is largely due to insulin secretory dysfunction and significant apoptosis of functional β-cells, leading to an inability to compensate for insulin resistance. It is recognized that environmental factors and nutrition play an important role in the pathogenesis of diabetes. However, our knowledge surrounding molecular mechanisms by which these factors trigger β-cell dysfunction and diabetes is still limited. Recent discoveries raise the possibility that epigenetic changes in response to environmental stimuli may play an important role in the development of diabetes. In this paper, we review emerging knowledge regarding epigenetic mechanisms that may be involved in β-cell dysfunction and pathogenesis of diabetes, including the role of nutrition, oxidative stress and inflammation. We will mainly focus on the role of DNA methylation and histone modifications but will also briefly review data on miRNA effects on the pancreatic islets. Further studies aimed at better understanding how epigenetic regulation of gene expression controls β-cell function may reveal potential therapeutic targets for prevention and treatment of diabetes. PMID:22810088

  5. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice.

    PubMed

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong; Xie, Zhonglin

    2012-11-15

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD(+) levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity.

  6. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice

    PubMed Central

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong

    2012-01-01

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD+ levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity. PMID:22967499

  7. Peripheral insulin resistance rather than beta cell dysfunction accounts for geographical differences in impaired fasting blood glucose among sub-Saharan African individuals: findings from the RODAM study.

    PubMed

    Meeks, Karlijn A C; Stronks, Karien; Adeyemo, Adebowale; Addo, Juliet; Bahendeka, Silver; Beune, Erik; Owusu-Dabo, Ellis; Danquah, Ina; Galbete, Cecilia; Henneman, Peter; Klipstein-Grobusch, Kerstin; Mockenhaupt, Frank P; Osei, Kwame; Schulze, Matthias B; Spranger, Joachim; Smeeth, Liam; Agyemang, Charles

    2017-05-01

    The aim of this study was to assess the extent to which insulin resistance and beta cell dysfunction account for differences in impaired fasting blood glucose (IFBG) levels in sub-Saharan African individuals living in different locations in Europe and Africa. We also aimed to identify determinants associated with insulin resistance and beta cell dysfunction among this population. Data from the cross-sectional multicentre Research on Obesity and Diabetes among African Migrants (RODAM) study were analysed. Participants included Ghanaian individuals without diabetes, aged 18-96 years old, who were residing in Amsterdam (n = 1337), Berlin (n = 502), London (n = 961), urban Ghana (n = 1309) and rural Ghana (n = 970). Glucose and insulin were measured in fasting venous blood samples. Anthropometrics were assessed during a physical examination. Questionnaires were used to assess demographics, physical activity, smoking status, alcohol consumption and energy intake. Insulin resistance and beta cell function were determined using homeostatic modelling (HOMA-IR and HOMA-B, respectively). Logistic regression analysis was used to study the contribution of HOMA-IR and inverse HOMA-B (beta cell dysfunction) to geographical differences in IFBG (fasting glucose 5.6-6.9 mmol/l). Multivariate linear regression analysis was used to identify determinants associated with HOMA-IR and inverse HOMA-B. IFBG was more common in individuals residing in urban Ghana (OR 1.41 [95% CI 1.08, 1.84]), Amsterdam (OR 3.44 [95% CI 2.69, 4.39]) and London (OR 1.58 [95% CI 1.20 2.08), but similar in individuals living in Berlin (OR 1.00 [95% CI 0.70, 1.45]), compared with those in rural Ghana (reference population). The attributable risk of IFBG per 1 SD increase in HOMA-IR was 69.3% and in inverse HOMA-B was 11.1%. After adjustment for HOMA-IR, the odds for IFBG reduced to 0.96 (95% CI 0.72, 1.27), 2.52 (95%CI 1.94, 3.26) and 1.02 (95% CI 0.78, 1.38) for individuals in Urban Ghana, Amsterdam and London compared with rural Ghana, respectively. In contrast, adjustment for inverse HOMA-B had very minor impact on the ORs of IFBG. In multivariate analyses, BMI (β = 0.17 [95% CI 0.11, 0.24]) and waist circumference (β = 0.29 [95%CI 0.22, 0.36]) were most strongly associated with higher HOMA-IR, whereas inverse HOMA-B was most strongly associated with age (β = 0.20 [95% CI 0.16, 0.23]) and excess alcohol consumption (β = 0.25 [95% CI 0.07, 0.43]). Our findings suggest that insulin resistance, rather than beta cell dysfunction, is more important in accounting for the geographical differences in IFBG among sub-Saharan African individuals. We also show that BMI and waist circumference are important factors in insulin resistance in this population.

  8. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty

    PubMed Central

    Stout, Michael B.; Justice, Jamie N.; Nicklas, Barbara J.; Kirkland, James L.

    2016-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. PMID:27927801

  9. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials.

    PubMed

    Unfer, V; Carlomagno, G; Dante, G; Facchinetti, F

    2012-07-01

    Polycystic ovary syndrome (PCOS) affects 5%-10% of women in reproductive age, and it is the most common cause of infertility due to ovarian dysfunction and menstrual irregularity. Several studies have reported that insulin resistance is common in PCOS women, regardless of the body mass index. The importance of insulin resistance in PCOS is also suggested by the fact that insulin-sensitizing compounds have been proposed as putative treatments to solve the hyperinsulinemia-induced dysfunction of ovarian response to endogenous gonadotropins. Rescuing the ovarian response to endogenous gonadotropins reduces hyperandrogenemia and re-establishes menstrual cyclicity and ovulation, increasing the chance of a spontaneous pregnancy. Among the insulin-sensitizing compounds, there is myo-inosiol (MYO). Previous studies have demonstrated that MYO is capable of restoring spontaneous ovarian activity, and consequently fertility, in most patients with PCOS. With the present review, we aim to provide an overview on the clinical outcomes of the MYO use as a treatment to improve ovarian function and metabolic and hormonal parameters in women with PCOS.

  10. β-Cell Hyperplasia Induced by Hepatic Insulin Resistance

    PubMed Central

    Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel

    2009-01-01

    OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656

  11. Elevated hepatic 11β-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia

    PubMed Central

    Chapagain, Ananda; Caton, Paul W.; Kieswich, Julius; Andrikopoulos, Petros; Nayuni, Nanda; Long, Jamie H.; Harwood, Steven M.; Webster, Scott P.; Raftery, Martin J.; Thiemermann, Christoph; Walker, Brian R.; Seckl, Jonathan R.; Corder, Roger; Yaqoob, Muhammad Magdi

    2014-01-01

    Insulin resistance and associated metabolic sequelae are common in chronic kidney disease (CKD) and are positively and independently associated with increased cardiovascular mortality. However, the pathogenesis has yet to be fully elucidated. 11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyzes intracellular regeneration of active glucocorticoids, promoting insulin resistance in liver and other metabolic tissues. Using two experimental rat models of CKD (subtotal nephrectomy and adenine diet) which show early insulin resistance, we found that 11βHSD1 mRNA and protein increase in hepatic and adipose tissue, together with increased hepatic 11βHSD1 activity. This was associated with intrahepatic but not circulating glucocorticoid excess, and increased hepatic gluconeogenesis and lipogenesis. Oral administration of the 11βHSD inhibitor carbenoxolone to uremic rats for 2 wk improved glucose tolerance and insulin sensitivity, improved insulin signaling, and reduced hepatic expression of gluconeogenic and lipogenic genes. Furthermore, 11βHSD1−/− mice and rats treated with a specific 11βHSD1 inhibitor (UE2316) were protected from metabolic disturbances despite similar renal dysfunction following adenine experimental uremia. Therefore, we demonstrate that elevated hepatic 11βHSD1 is an important contributor to early insulin resistance and dyslipidemia in uremia. Specific 11βHSD1 inhibitors potentially represent a novel therapeutic approach for management of insulin resistance in patients with CKD. PMID:24569863

  12. Adiposity and metabolic dysfunction in polycystic ovary syndrome.

    PubMed

    Sam, Susan

    2015-02-01

    Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-age women and is associated with a high risk for metabolic disorders. Adiposity and insulin resistance are two prevalent conditions in PCOS and the likely culprits for the heightened metabolic risk. Up to 60% of women with PCOS are considered to be overweight or obese, and even among non-obese women with PCOS there is an increased accumulation of adipose tissue in abdominal depots. Insulin resistance in PCOS is unique and independent of obesity, as even non-obese women with this condition are frequently insulin resistant. However, obesity substantially aggravates the insulin resistance and the metabolic and reproductive abnormalities in women with PCOS. Recently, it has been shown that many aspects of adipose tissue function in PCOS are abnormal, and these abnormalities likely predispose to development of insulin resistance even in the absence of obesity. This review provides an overview of these abnormalities and their impact on development of metabolic disorders. At the end, an overview of the therapeutic options for management of adiposity and its complications in PCOS are discussed.

  13. Treatment with a Catalytic Superoxide Dismutase (SOD) Mimetic Improves Liver Steatosis, Insulin Sensitivity, and Inflammation in Obesity-Induced Type 2 Diabetes

    PubMed Central

    Delmastro-Greenwood, Meghan M.; Marré, Meghan L.; O’Connor, Erin C.; Novak, Elizabeth A.; Vincent, Garret; Mollen, Kevin P.; Lee, Sojin; Dong, H. Henry; Piganelli, Jon D.

    2017-01-01

    Oxidative stress and persistent inflammation are exaggerated through chronic over-nutrition and a sedentary lifestyle, resulting in insulin resistance. In type 2 diabetes (T2D), impaired insulin signaling leads to hyperglycemia and long-term complications, including metabolic liver dysfunction, resulting in non-alcoholic fatty liver disease (NAFLD). The manganese metalloporphyrin superoxide dismustase (SOD) mimetic, manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnP), is an oxidoreductase known to scavenge reactive oxygen species (ROS) and decrease pro-inflammatory cytokine production, by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. We hypothesized that targeting oxidative stress-induced inflammation with MnP would assuage liver complications and enhance insulin sensitivity and glucose tolerance in a high-fat diet (HFD)-induced mouse model of T2D. During 12 weeks of feeding, we saw significant improvements in weight, hepatic steatosis, and biomarkers of liver dysfunction with redox modulation by MnP treatment in HFD-fed mice. Additionally, MnP treatment improved insulin sensitivity and glucose tolerance, while reducing serum insulin and leptin levels. We attribute these effects to redox modulation and inhibition of hepatic NF-κB activation, resulting in diminished ROS and pro-inflammatory cytokine production. This study highlights the importance of controlling oxidative stress and secondary inflammation in obesity-mediated insulin resistance and T2D. Our data confirm the role of NF-κB-mediated inflammation in the development of T2D, and demonstrate the efficacy of MnP in preventing the progression to disease by specifically improving liver pathology and hepatic insulin resistance in obesity. PMID:29104232

  14. Circulating osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction.

    PubMed

    Pepene, Carmen Emanuela; Ilie, Ioana Rada; Marian, Ioan; Duncea, Ileana

    2011-01-01

    There is plenty of evidence that osteoprotegerin (OPG) is linked to subclinical vascular damage and predicts cardiovascular disease in high-risk populations. Our aim is to investigate the relationships of OPG/free soluble receptor activator of nuclear factor κB ligand (sRANKL) to insulin resistance, brachial artery flow-mediated vasodilation (FMD), and the carotid artery intima-media thickness (CIMT) in polycystic ovary syndrome (PCOS), a disorder characterized by hyperandrogenism, impaired glucose control, and endothelial injury. A cross-sectional, observational study. Hormonal and metabolic profiles, FMD, CIMT, serum OPG, and ampli-sRANKL were assessed in 64 young PCOS patients and 20 controls of similar age. Body composition was measured by dual energy X-ray absorptiometry. OPG was significantly lower in PCOS and related negatively to free testosterone and positively to estradiol (E(2)) levels. In multivariate analysis, OPG but not ampli-sRANKL correlated positively to fasting insulin, insulin sensitivity indices, and FMD. Neither OPG nor ampli-sRANKL was associated with CIMT. Significantly lower adjusted FMD values were demonstrated in women in the upper OPG quartile group (>2.65 pmol/l) compared with all other quartile groups together (P=0.012). In PCOS, multiple regression analysis retained E(2)/sex hormone-binding globulin ratio, fat mass, and homeostasis model assessment of insulin resistance as independent predictors of OPG. In PCOS, circulating OPG is related to both endothelial dysfunction and insulin resistance, independent of obesity and androgen excess, suggesting OPG as a useful biomarker of these effects. Further studies are needed to evaluate OPG in relation to cardiovascular events and cardiovascular mortality in PCOS.

  15. MicroRNA‑29a is involved lipid metabolism dysfunction and insulin resistance in C2C12 myotubes by targeting PPARδ.

    PubMed

    Wu, Peng; Wang, Qianyi; Jiang, Cuilian; Chen, Chen; Liu, Yun; Chen, Yajun; Zeng, Yu

    2018-06-01

    MicroRNA‑29a (miR‑29a) expression has been reported to be closely associated with skeletal muscle insulin resistance and type 2 diabetes. The present study investigated the effect of miR‑29a on palmitic acid (PA)‑induced lipid metabolism dysfunction and insulin resistance in C2C12 myotubes via overexpressing or silencing of miR‑29a expression. Mouse C2C12 myoblasts were cultured, differentiated and transfected with miR‑29a or miR‑29a inhibitor lentiviral with or without subsequent palmitic acid (PA) treatment. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were performed to assess the mRNA and protein levels of related genes, respectively. PA treatment increased the expression of miR‑29a in a time‑ and dose‑ dependent manner. miR‑29a silencing improved insulin‑induced glucose uptake and increased glucose transporter‑4 (GLUT4) transportation to the plasma membrane by upregulating its target peroxisome proliferator‑activated receptor δ (PPARδ). Furthermore, it was observed that miR‑29a regulated the expression of genes associated with lipid metabolism, including pyruvate dehydrogenase kinase isoform, mitochondrial uncoupling protein (UCP)2, UCP3, long chain specific acyl‑CoA dehydrogenase, mitochondrial and fatty acid transport protein 2. The results confirmed that silencing miR‑29a induced a decrease in glucose transport and affected lipid metabolism in PA‑treated C2C12 cells, and therefore may be involved in insulin resistance by targeting PPARδ in skeletal muscle. Therefore, the inhibition of miR‑29a may be a potential novel strategy for treating insulin resistance and type 2 diabetes.

  16. Comparison of β-cell dysfunction and insulin resistance correlating obesity with type 2 diabetes: A cross-sectional study.

    PubMed

    Liu, Jia; Wang, Ying; Hu, Yanjin; Leng, Song; Wang, Guang

    2016-07-01

    To assess the contribution of β-cell dysfunction and insulin resistance to type 2 diabetes (T2D) in obese and non-obese Chinese people. In this cross-sectional study, we recruited 1384 newly diagnosed T2D patients and 1712 healthy controls. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-IR). β-cell function was estimated by homeostasis model assessment of β-cell function (HOMA-β) and 60min insulinogenic index (IGI60). We compared the insulin resistance and β-cell function of obese and non-obese Chinese patients with and without T2D. 50.18% of control participants and 62.28% of T2D patients were obese (BMI≥25kg/m(2)). HOMA-IR, HOMA-β and IGI60 were significantly higher in obese than non-obese, irrespective of T2D. Non-obese T2D patients had significantly greater HOMA-IR, and lower HOMA-β and IGI60 than non-obese control participants. The obese T2D group had lower HOMA-β and IGI60 than the obese control group. There was no significant difference in HOMA-IR between the obese T2D and obese control groups. Multivariate logistic regression analysis revealed that HOMA-IR was associated with T2D only in non-obese group, and HOMA-β and IGI60 were associated with T2D in both non-obese and obese groups. HOMA-β and IGI60 were associated with T2D in obese and non-obese patients, but HOMA-IR was associated with T2D in non-obese Chinese. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes.

    PubMed

    Mackenzie, Richard Wa; Elliott, Bradley T

    2014-01-01

    Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose transport activity in skeletal muscle, ie, the contraction-stimulated pathway reliant on Ca(2+)/5'-monophosphate-activated protein kinase (AMPK)-dependent mechanisms and an insulin-dependent pathway activated via upregulation of serine/threonine protein kinase Akt/PKB. Metformin is an established treatment for type 2 diabetes due to its ability to increase peripheral glucose uptake while reducing hepatic glucose production in an AMPK-dependent manner. Peripheral insulin action is reduced in type 2 diabetics whereas AMPK signaling remains largely intact. This paper firstly reviews AMPK and its role in glucose uptake and then focuses on a novel mechanism known to operate via an insulin-dependent pathway. Inositol hexakisphosphate (IP6) kinase 1 (IP6K1) produces a pyrophosphate group at the position of IP6 to generate a further inositol pyrophosphate, ie, diphosphoinositol pentakisphosphate (IP7). IP7 binds with Akt/PKB at its pleckstrin homology domain, preventing interaction with phosphatidylinositol 3,4,5-trisphosphate, and therefore reducing Akt/PKB membrane translocation and insulin-stimulated glucose uptake. Novel evidence suggesting a reduction in IP7 production via IP6K1 inhibition represents an exciting therapeutic avenue in the treatment of insulin resistance. Metformin-induced activation of AMPK is a key current intervention in the management of type 2 diabetes. However, this treatment does not seem to improve peripheral insulin resistance. In light of this evidence, we suggest that inhibition of IP6K1 may increase insulin sensitivity and provide a novel research direction in the treatment of insulin resistance.

  18. Metabolic dysfunction in obstructive sleep apnea: A critical examination of underlying mechanisms

    PubMed Central

    MESARWI, Omar A.; SHARMA, Ellora V.; JUN, Jonathan C.; POLOTSKY, Vsevolod Y.

    2015-01-01

    It has recently become clear that obstructive sleep apnea (OSA) is an independent risk factor for the development of metabolic syndrome, a disorder of defective energy storage and use. Several mechanisms have been proposed to explain this finding, drawing upon the characteristics that define OSA. In particular, intermittent hypoxia, sleep fragmentation, elevated sympathetic tone, and oxidative stress – all consequences of OSA – have been implicated in the progression of poor metabolic outcomes in OSA. In this review we examine the evidence to support each of these disease manifestations of OSA as a unique risk for metabolic dysfunction. Tissue hypoxia and sleep fragmentation are each directly connected to insulin resistance and hypertension, and each of these also may increase sympathetic tone, resulting in defective glucose homeostasis, excessive lipolysis, and elevated blood pressure. Oxidative stress further worsens insulin resistance and in turn, metabolic dysfunction also increases oxidative stress. However, despite many studies linking each of these individual components of OSA to the development of metabolic syndrome, there are very few reports that actually provide a coherent narrative about the mechanism underlying metabolic dysfunction in OSA. PMID:26412981

  19. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress.

    PubMed

    Carvajal, Karla; Balderas-Villalobos, Jaime; Bello-Sanchez, Ma Dolores; Phillips-Farfán, Bryan; Molina-Muñoz, Tzindilu; Aldana-Quintero, Hugo; Gómez-Viquez, Norma L

    2014-11-01

    Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reversal of endothelial dysfunction in aorta of streptozotocin-nicotinamide-induced type-2 diabetic rats by S-Allylcysteine.

    PubMed

    Brahmanaidu, Parim; Uddandrao, V V Sathibabu; Sasikumar, Vadivukkarasi; Naik, Ramavat Ravindar; Pothani, Suresh; Begum, Mustapha Sabana; Rajeshkumar, M Prasanna; Varatharaju, Chandrasekar; Meriga, Balaji; Rameshreddy, P; Kalaivani, A; Saravanan, Ganapathy

    2017-08-01

    Dietary measures and plant-based therapies as prescribed by native systems of medicine have gained attraction among diabetics with claims of efficacy. The present study investigated the effects of S-Allylcysteine (SAC) on body weight gain, glucose, insulin, insulin resistance, and nitric oxide synthase in plasma and argininosuccinate synthase (AS) and argininosuccinate lyase (ASL), lipid peroxides and antioxidant enzymes in aorta of control and streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats. Changes in body weight, glucose, insulin, insulin resistance, and antioxidant profiles of aorta and mRNA expressions of nitric oxide synthase, AS, and ASL were observed in experimental rats. SAC (150 mg/kg b.w) showed its therapeutic effects similar to gliclazide in decreasing glucose, insulin resistance, lipid peroxidation, and increasing body weight; insulin, antioxidant enzymes, and mRNA levels of nitric oxide synthase, argininosuccinate synthase, and argininosuccinate lyase genes in STZ-NA rats. Histopathologic studies also revealed the protective nature of SAC on aorta. In conclusion, garlic and its constituents mediate the anti-diabetic potential through mitigating hyperglycemic status, changing insulin resistance by alleviating endothelial dysregulation in both plasma and tissues.

  1. Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase–Dependent Manner in Diabetic Mice

    PubMed Central

    Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519

  2. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    PubMed

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  3. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  4. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men.

    PubMed

    Brøns, Charlotte; Jensen, Christine B; Storgaard, Heidi; Hiscock, Natalie J; White, Andrew; Appel, Julie S; Jacobsen, Stine; Nilsson, Emma; Larsen, Claus M; Astrup, Arne; Quistorff, Bjørn; Vaag, Allan

    2009-05-15

    A high-fat, high-calorie diet is associated with obesity and type 2 diabetes. However, the relative contribution of metabolic defects to the development of hyperglycaemia and type 2 diabetes is controversial. Accumulation of excess fat in muscle and adipose tissue in insulin resistance and type 2 diabetes may be linked with defective mitochondrial oxidative phosphorylation. The aim of the current study was to investigate acute effects of short-term fat overfeeding on glucose and insulin metabolism in young men. We studied the effects of 5 days' high-fat (60% energy) overfeeding (+50%) versus a control diet on hepatic and peripheral insulin action by a hyperinsulinaemic euglycaemic clamp, muscle mitochondrial function by (31)P magnetic resonance spectroscopy, and gene expression by qrt-PCR and microarray in 26 young men. Hepatic glucose production and fasting glucose levels increased significantly in response to overfeeding. However, peripheral insulin action, muscle mitochondrial function, and general and specific oxidative phosphorylation gene expression were unaffected by high-fat feeding. Insulin secretion increased appropriately to compensate for hepatic, and not for peripheral, insulin resistance. High-fat feeding increased fasting levels of plasma adiponectin, leptin and gastric inhibitory peptide (GIP). High-fat overfeeding increases fasting glucose levels due to increased hepatic glucose production. The increased insulin secretion may compensate for hepatic insulin resistance possibly mediated by elevated GIP secretion. Increased insulin secretion precedes the development of peripheral insulin resistance, mitochondrial dysfunction and obesity in response to overfeeding, suggesting a role for insulin per se as well GIP, in the development of peripheral insulin resistance and obesity.

  5. Sex differences in the effects of androgens acting in the central nervous system on metabolism

    PubMed Central

    Morford, Jamie; Mauvais-Jarvis, Franck

    2016-01-01

    One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor. PMID:28179813

  6. Genes, Diet and Type 2 Diabetes Mellitus: A Review

    PubMed Central

    Dedoussis, George V.Z.; Kaliora, Andriana C.; Panagiotakos, Demosthenes B.

    2007-01-01

    Diabetes mellitus is widely recognized as one of the leading causes of death and disability. While insulin insensitivity is an early phenomenon partly related to obesity, pancreatic β-cell function declines gradually over time even before the onset of clinical hyperglycemia. Several mechanisms have been proposed to be responsible for insulin resistance, including increased non-esterified fatty acids, inflammatory cytokines, adipokines, and mitochondrial dysfunction, as well as glucotoxicity, lipotoxicity, and amyloid formation for β-cell dysfunction. Moreover, the disease has a strong genetic component, although only a handful of genes have been identified so far. Diabetic management includes diet, exercise and combinations of antihyperglycemic drug treatment with lipid-lowering, antihypertensive, and antiplatelet therapy. Since many persons with type 2 diabetes are insulin resistant and overweight, nutrition therapy often begins with lifestyle strategies to reduce energy intake and increase energy expenditure through physical activity. These strategies should be implemented as soon as diabetes or impaired glucose homoeostasis (pre-diabetes) is diagnosed. PMID:17565412

  7. The Effects of Gymnema sylvestre in High-Fat Diet-Induced Metabolic Disorders.

    PubMed

    Kim, Hyeon-Jeong; Kim, Sanghwa; Lee, Ah Young; Jang, Yoonjeong; Davaadamdin, Orkhonselenge; Hong, Seong-Ho; Kim, Jun Sung; Cho, Myung-Haing

    2017-01-01

    This study used an integrated approach to investigate the effects of Gymnema sylvestre (GS) extract as a functional dietary supplement with a high-fat diet. This approach examined insulin resistance, the dysfunction of adipose tissue, and liver steatosis. Male C57BL/6J mice were fed a normal chow or high-fat diet (HFD) for the acute and chronic study, in addition to GS in different doses (100, 250 and 500[Formula: see text]mg/kg body weight). Their body composition changes, serum lipid and glucose parameters, adipose and liver tissue histology, and gene expression were measured. It was found that GS significantly suppressed the increase of body weight, serum levels of lipid, insulin and leptin, and adipose tissue, and liver inflammation. GS also demonstrated hypoglycemic effects due to the amylase inhibition activity. Our results support the existence of a relationship between the HFD induced insulin resistance, adipose dysfunction and liver steatosis. In conclusion, GS works as a functional dietary supplement with preventative effects against metabolic disorder.

  8. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.

    PubMed

    Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L

    2017-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.

  9. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  10. Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium.

    PubMed

    Xu, Xiaoshan; Chen, Yupeng; Song, Junna; Hou, Fangjie; Ma, Xuelian; Liu, Baolin; Huang, Fang

    2018-06-01

    Mangiferin is a naturally occurring glucosylxanthone with beneficial effects on glucose and lipid homeostasis. This study investigates the potential therapeutic effect of Mangiferin in perivascular adipose tissue (PVAT) and whether it contributes to regulating insulin action in the endothelium. Palmitate challenge evoked ROS-associated endoplasmic reticulum stress (ER stress) and NLRP3 inflammasome activation in PVAT. The conditioned medium from PA-stimulated PVAT was prepared to induce endothelial insulin resistance, and improved endothelium-dependent vasodilation in response to insulin was detected in vitro and in vivo. Mangiferin treatment enhanced LKB1-dependent AMPK activity and suppressed ER stress with downregulation of TXNIP induction, leading to the inhibition of NLRP3 inflammasome activation evidenced by attenuated NLRP3 and cleaved caspase-1 expression as well as reduced IL-1β secretion. Moreover, Mangiferin restored insulin-mediated Akt and eNOS phosphorylations with increased NO production, immunohistochemistry examination of adipocytes, and endothelial tissue in high-fat diet-fed mice also showed that oral administration of Mangiferin inhibited ER stress and NLRP3 induction in PVAT, and then effectively prevented insulin resistance in the vessel endothelium. Taken together, these results revealed that Mangiferin suppressed ER stress-associated NLRP3 inflammasome activation in PVAT through regulation of AMPK activity, which prevented endothelial insulin resistance. These findings suggested that the amelioration of PVAT dysfunction may be a therapeutic strategy for the prevention of endothelial insulin resistance.

  11. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study.

    PubMed

    Nakamura, Risa; Okura, Tsuyoshi; Fujioka, Yohei; Sumi, Keisuke; Matsuzawa, Kazuhiko; Izawa, Shoichiro; Ueta, Etsuko; Kato, Masahiko; Taniguchi, Shin-Ichi; Yamamoto, Kazuhiro

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis.

  12. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study

    PubMed Central

    Nakamura, Risa; Okura, Tsuyoshi; Fujioka, Yohei; Sumi, Keisuke; Matsuzawa, Kazuhiko; Izawa, Shoichiro; Ueta, Etsuko; Kato, Masahiko; Taniguchi, Shin-ichi; Yamamoto, Kazuhiro

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis. PMID:28654680

  13. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  14. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress. PMID:24651118

  15. [Changes of insulin resistance and islet beta cells function in subjects with high-normal blood pressure].

    PubMed

    Xu, Ling-Ling; Xiang, Hong-Ding; Zhang, Li-Hong; Chen, Wei; Fang, Jing-Hui

    2009-08-01

    To investigate the changes of insulin resistance and islet beta cells function in subjects with euglycemia and high-normal blood pressure. Total 423 subjects were divided into normal blood pressure group and high-normal blood pressure group. Body height, weight, waist and hip circumference, and biochemical data were measured. Homeostasis model assessment of insulin resistance (HOMA-IR), insulin sensitivity index (ISI)-composite, and first-phase (1 PH) Stumvoll index were calculated. Results Waist circumference, total cholesterol, triglyceride, low-density lipoprotein cholesterol, HOMA-IR were significantly higher and IPH Stumvoll index and ISI-composite were significantly lower in high-normal blood pressure group than in normal blood pressure group (P < 0.05). Systolic blood pressure (SBP) was positively correlated with HOMA-IR (r = 0.122) and negatively correlated with 1PH Stumvoll index (r = -0. 159) and ISI-composite (r = -0.131) (P < 0.05). SBP and triglyceride were independent factors for IPH Stumvoll index. Insulin resistance and islet dysfunction may exist in subjects with high-normal blood pressure.

  16. Enhancement of Glucose Uptake by Meso-Dihydroguaiaretic Acid through GLUT4 Up-Regulation in 3T3-L1 Adipocytes.

    PubMed

    Lee, Anna; Choi, Kyeong-Mi; Jung, Won-Beom; Jeong, Heejin; Kim, Ga-Yeong; Lee, Ju Hyun; Lee, Mi Kyeong; Hong, Jin Tae; Roh, Yoon-Seok; Sung, Sang-Hyun; Yoo, Hwan-Soo

    2017-08-28

    Type 2 diabetes is characterized by insulin resistance, which leads to increased blood glucose levels. Adipocytes are involved in the development of insulin resistance, resulting from the dysfunction of the insulin signaling pathway. In this study, we investigated whether meso -dihydroguaiaretic acid (MDGA) may modulate glucose uptake in adipocytes, and examined its mechanism of action. MDGA enhanced adipogenesis through up-regulation of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α in 3T3-L1 adipocytes partially differentiated with sub-optimal concentrations of insulin. MDGA also increased glucose uptake by stimulating expression and translocation of glucose transporter 4 (GLUT4) in adipocytes. These results suggest that MDGA may increase GLUT4 expression and its translocation by promoting insulin sensitivity, leading to enhanced glucose uptake.

  17. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats.

    PubMed

    Xia, Tongjia; Zhang, Xue; Wang, Youmin; Deng, Datong

    2018-05-21

    This study aimed to investigate the effect of maternal hypothyroidism during pregnancy on thyroid function of the fetal rat. Female Sprague-Dawley rats were randomized into two groups. PTU group received propylthiouracil (PTU) in drinking water for 6 weeks (n = 90), normal group received drinking normal water (n = 50). The pregnant rats were obtained and had a cesarean-section to get at gestational age of 8.5 d, 13d and 21 d, following blood samples and skeletal muscle were obtained from fetal rats. Levels of thyroid hormone, insulin, mitochondrial protein and adipokines were detected using ELISA. Western blotting was performed to analyze mitochondria and insulin signal transduction-related protein in fetal rat skeletal muscle. Immunostaining of periodic acid-Schiff (PAS) and Oil Red O was used to observe accumulation of muscle glycogen and lipid in the fetal rat. The results showed that levels of thyroid hormone, insulin, insulin signal transduction-related protein, mitochondrial protein and adipokines increased with the fetus developed, but had no statistical differences in PTU the group compared to the normal group. In conclusion, pregnant rats with hypothyroidism have not an influence on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats. ©2018 The Author(s).

  18. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  19. Polycystic ovary syndrome, adipose tissue and metabolic syndrome.

    PubMed

    Delitala, Alessandro P; Capobianco, Giampiero; Delitala, Giuseppe; Cherchi, Pier Luigi; Dessole, Salvatore

    2017-09-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder that affects women of reproductive age and is characterized by ovulatory dysfunction and/or androgen excess or polycystic ovaries. Women with PCOS present a number of systemic symptoms in addition to those related to the reproductive system. It has been associated with functional derangements in adipose tissue, metabolic syndrome, type 2 diabetes, and an increased risk of cardiovascular disease (CVD). A detailed literature search on Pubmed was done for articles about PCOS, adipokines, insulin resistance, and metabolic syndrome. Original articles, reviews, and meta-analysis were included. PCOS women are prone to visceral fat hypertrophy in the presence of androgen excess and the presence of these conditions is related to insulin resistance and worsens the PCO phenotype. Disturbed secretion of many adipocyte-derived substances (adipokines) is associated with chronic low-grade inflammation and contributes to insulin resistance. Abdominal obesity and insulin resistance stimulate ovarian and adrenal androgen production, and may further increase abdominal obesity and inflammation, thus creating a vicious cycle. The high prevalence of metabolic disorders mainly related to insulin resistance and CVD risk factors in women with PCOS highlight the need for early lifestyle changes for reducing metabolic risks in these patients.

  20. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function.

    PubMed

    Item, Flurin; Wueest, Stephan; Lemos, Vera; Stein, Sokrates; Lucchini, Fabrizio C; Denzler, Rémy; Fisser, Muriel C; Challa, Tenagne D; Pirinen, Eija; Kim, Youngsoo; Hemmi, Silvio; Gulbins, Erich; Gross, Atan; O'Reilly, Lorraine A; Stoffel, Markus; Auwerx, Johan; Konrad, Daniel

    2017-09-07

    Nonalcoholic fatty liver disease is one of the most prevalent metabolic disorders and it tightly associates with obesity, type 2 diabetes, and cardiovascular disease. Reduced mitochondrial lipid oxidation contributes to hepatic fatty acid accumulation. Here, we show that the Fas cell surface death receptor (Fas/CD95/Apo-1) regulates hepatic mitochondrial metabolism. Hepatic Fas overexpression in chow-fed mice compromises fatty acid oxidation, mitochondrial respiration, and the abundance of mitochondrial respiratory complexes promoting hepatic lipid accumulation and insulin resistance. In line, hepatocyte-specific ablation of Fas improves mitochondrial function and ameliorates high-fat-diet-induced hepatic steatosis, glucose tolerance, and insulin resistance. Mechanistically, Fas impairs fatty acid oxidation via the BH3 interacting-domain death agonist (BID). Mice with genetic or pharmacological inhibition of BID are protected from Fas-mediated impairment of mitochondrial oxidation and hepatic steatosis. We suggest Fas as a potential novel therapeutic target to treat obesity-associated fatty liver and insulin resistance.Hepatic steatosis is a common disease closely associated with metabolic syndrome and insulin resistance. Here Item et al. show that Fas, a member of the TNF receptor superfamily, contributes to mitochondrial dysfunction, steatosis development, and insulin resistance under high fat diet.

  1. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    PubMed Central

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID:27895819

  2. Iron metabolism and the polycystic ovary syndrome.

    PubMed

    Escobar-Morreale, Héctor F

    2012-10-01

    The polycystic ovary syndrome (PCOS) is associated with insulin resistance and abnormal glucose tolerance. Iron overload may lead also to insulin resistance and diabetes. Serum ferritin levels are increased in PCOS, especially when glucose tolerance is abnormal, suggesting mild iron overload. Factors contributing to potential iron overload in PCOS include the iron sparing effect of chronic menstrual dysfunction, insulin resistance, and a decrease in hepcidin leading to increased iron absorption. Enhancement of erythropoiesis by androgen excess is unlikely, because soluble transferrin receptor levels are not increased in PCOS. Future venues of research should address the long-term effects of PCOS treatment on iron overload and, conversely, the possible effects of iron lowering strategies on the glucose tolerance of patients with PCOS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Out of the frying pan: dietary saturated fat influences nonalcoholic fatty liver disease.

    PubMed

    Parks, Elizabeth; Yki-Järvinen, Hannele; Hawkins, Meredith

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by excess accumulation of fat in the liver. In some cases, NAFLD is also accompanied by insulin resistance, resulting in metabolic dysfunction. Dietary fat content probably influences both NAFLD and insulin resistance; however, the immediate effects of fat consumption have not been fully explored. In this issue of the JCI, Hernández et al. evaluated hepatic glucose and lipid metabolism in humans and mice following a single oral dose of saturated fat. This one bolus of fat resulted in a measurable increase in insulin resistance, hepatic triglycerides, and gluconeogenesis. In mice, the saturated fat bolus resulted in the induction of several NAFLD-associated genes. Together, the results of this study indicate that saturated fat intake has immediate effects on metabolic function.

  4. New therapeutic options for the metabolic syndrome: what's next?

    PubMed

    Flordellis, Christodoulos S; Ilias, Ioannis; Papavassiliou, Athanasios G

    2005-08-01

    The metabolic syndrome (MSX), characterized by obesity, insulin resistance, dyslipidemia and hypertension, increases the risk of cardiovascular morbidity and mortality. It has recently been hypothesized that MSX and type 2 diabetes are caused by triglyceride and long-chain fatty acid accumulation in liver, muscle, pancreatic islets and selected brain areas. This lipocentric approach is integrated with analysis of inflammation associated with end-organ damage, including the vascular wall. Genes and proteins contributing to insulin resistance, beta cell dysfunction and vascular wall damage have been identified. Transcription factors and coactivators, including peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 are crucial in mediating insulin resistance and accelerating vascular wall inflammation, and represent promising therapeutic targets. New pharmacological strategies include dual PPARalpha/gamma agonists, drugs with pleiotropic effects or combination therapies.

  5. [Significance of insulin resistance in the pathogenesis of sarcopenia and chronic heart failure in elderly hypertensive patients].

    PubMed

    Gorshunova, N K; Medvedev, N V

    2016-01-01

    To determine the pathogenic role of insulin resistance in the formation of involutive sarcopenia and chronic heart failure (CHF) were examined 88 elderly patients with arterial hypertension (AH) and 32 elderly patients without cardiovascular disease by methods of carbohydrate metabolism and the level of brain natriuretic peptide precursor evaluation, muscle mass and strength measuring, echocardiography, 6 minute walking test. It was found that in the group of hypertensive patients with low mass and muscle strength significantly increased indices of insulin resistance and more expressed signs of the left ventricle myocardial dysfunction and functional class of heart failure, probably as a result of disorders of energy homeostasis, resulting from the deterioration of glucose into the muscle cells of the heart and skeletal muscles.

  6. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  7. Defective Insulin Signalling, Mediated by Inflammation, Connects Obesity to Alzheimer Disease; Relevant Pharmacological Therapies and Preventive Dietary Interventions.

    PubMed

    Rodriguez-Casado, Arantxa; Toledano-Díaz, Adolfo; Toledano, Adolfo

    2017-01-01

    Recent evidence suggests that obesity, besides being a risk factor for cardiovascular events, also increases the risk of Alzheimer's disease. Insulin resistance is common in all cases of obesity and appears to be the linkage between both diseases. Obesity, often associated with excessive fat and sugar intake, represents a preclinical stage toward insulin resistance during which nutrition intervention is likely to have maximum effect. In this way, healthy lifestyles lifetime to prevent obesity-related modifiable risk factors such as inflammation, oxidative stress and metabolic disorders could be simultaneously beneficial for preserving cognition and controlling the Alzheimer's disease. This review relates extensive research literature on facts linking nutrients and dietary patterns to obesity and Alzheimer's disease. In addition briefly presents molecular mechanisms involved in obesity- induced insulin resistance and the contribution of peripheral inflammatory and defective insulin signalling pathways, as well as ectopic lipids accumulation to Alzheimer's development through brain inflammation, neuronal insulin resistance, and cognitive dysfunction seen in Alzheimer's disease. The work relates current and emerging pharmacological and non-pharmacological therapies for the management of obesity, insulin resistance and Alzheimer's considering them as disorders with common molecular features. The findings of this review validate the importance of some nutritional interventions as possible approach to prevent or delay simultaneously progression of Alzheimer's disease and obesity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Central arterial stiffness and diastolic dysfunction are associated with insulin resistance and abdominal obesity in young women but polycystic ovary syndrome does not confer additional risk.

    PubMed

    Rees, E; Coulson, R; Dunstan, F; Evans, W D; Blundell, H L; Luzio, S D; Dunseath, G; Halcox, J P; Fraser, A G; Rees, D A

    2014-09-01

    Are arterial stiffness, carotid intima-media thickness and diastolic dysfunction increased in young women with polycystic ovary syndrome (PCOS) independently of the effects of obesity? Insulin resistance and central obesity are associated with subclinical cardiovascular dysfunction in young women, but a diagnosis of PCOS does not appear to confer additional risk at this age. Some studies have shown that young women with PCOS may have increased measures of cardiovascular risk, including arterial stiffness, carotid intima-media thickness and myocardial dysfunction. However, it is difficult to establish how much of this risk is due to PCOS per se and how much is due to obesity and insulin resistance, which are common in PCOS and themselves associated with greater vascular risk. This cross-sectional study comprised 84 women with PCOS and 95 healthy volunteers, aged 16-45 years. The study was conducted in a university hospital. Subjects underwent a comprehensive assessment of body composition (including computed tomography (CT) assessment of visceral fat; VF), measurements of arterial stiffness (aortic pulse wave velocity; aPWV), common carotid intima-media thickness (ccIMT), diastolic function (longitudinal tissue velocity; e':a') and endocrinological measures. A sample size of 80 in each group gave 80% power for detecting a difference of 0.45 m/s in aPWV or a difference of 0.25 in e':a'. After adjustment for age and body mass index (BMI), PCOS subjects had a greater insulin response (insulin area under the curve-IAUC) following glucose challenge (adjusted difference [AD] 35 900 pmol min/l, P < 0.001) and higher testosterone (AD 0.57 nmol/l, P < 0.001) and high molecular weight adiponectin than controls (AD 3.01 µg/ml, P = 0.02), but no significant differences in aPWV (AD -0.13 m/s, P = 0.33), ccIMT (AD -0.01 mm, P = 0.13), or e':a' (AD -0.01, P = 0.86) were observed. After adjustment for age, height and central pulse pressure, e':a' and aPWV were associated with logVF and IAUC. ccIMT was not related to logVF. The relationships between e':a' or aPWV and insulin resistance were only partly attenuated by adjusting for logVF. There was no significant relationship between aPWV or e':a' and either testosterone or adiponectin. The study recruited young women meeting the Rotterdam criteria for PCOS diagnosis; hence our findings may not be generalizable to older patients or those meeting other definitions of the syndrome. Biochemical hyperandrogenism was based solely on measurement of total testosterone. Cases and controls were not matched in advance for age and BMI, although the influence of these variables on the cardiovascular outcome measures was adjusted for. This study shows that central arterial stiffness and diastolic dysfunction are not increased in young women with PCOS, whereas they are associated with both insulin resistance and central obesity. Obesity thus represents the greatest modifiable risk factor for cardiovascular disease in young women with PCOS and lifestyle measures which target weight reduction are critical. This study received no specific grant support from any funding body. The authors have no conflicts of interest to declare. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology.

    PubMed

    Kamat, Pradip K; Kalani, Anuradha; Rai, Shivika; Tota, Santosh Kumar; Kumar, Ashok; Ahmad, Abdullah S

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.

  10. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.

    PubMed

    Lefort, Natalie; Glancy, Brian; Bowen, Benjamin; Willis, Wayne T; Bailowitz, Zachary; De Filippis, Elena A; Brophy, Colleen; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J

    2010-10-01

    The contribution of mitochondrial dysfunction to skeletal muscle insulin resistance remains elusive. Comparative proteomics are being applied to generate new hypotheses in human biology and were applied here to isolated mitochondria to identify novel changes in mitochondrial protein abundance present in insulin-resistant muscle. Mitochondria were isolated from vastus lateralis muscle from lean and insulin-sensitive individuals and from obese and insulin-resistant individuals who were otherwise healthy. Respiration and reactive oxygen species (ROS) production rates were measured in vitro. Relative abundances of proteins detected by mass spectrometry were determined using a normalized spectral abundance factor method. NADH- and FADH(2)-linked maximal respiration rates were similar between lean and obese individuals. Rates of pyruvate and palmitoyl-DL-carnitine (both including malate) ROS production were significantly higher in obesity. Mitochondria from obese individuals maintained higher (more negative) extramitochondrial ATP free energy at low metabolic flux, suggesting that stronger mitochondrial thermodynamic driving forces may underlie the higher ROS production. Tandem mass spectrometry identified protein abundance differences per mitochondrial mass in insulin resistance, including lower abundance of complex I subunits and enzymes involved in the oxidation of branched-chain amino acids (BCAA) and fatty acids (e.g., carnitine palmitoyltransferase 1B). We provide data suggesting normal oxidative capacity of mitochondria in insulin-resistant skeletal muscle in parallel with high rates of ROS production. Furthermore, we show specific abundance differences in proteins involved in fat and BCAA oxidation that might contribute to the accumulation of lipid and BCAA frequently associated with the pathogenesis of insulin resistance.

  11. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.

    PubMed

    Carreras, Alba; Zhang, Shelley X L; Almendros, Isaac; Wang, Yang; Peris, Eduard; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea.

  12. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes?

    PubMed

    Dayeh, Tasnim; Ling, Charlotte

    2015-10-01

    β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.

  15. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    PubMed

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway

    PubMed Central

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M.

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases. PMID:28598969

  17. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway.

    PubMed

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M; Waraich, Rizwana Sanaullah

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases.

  18. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats.

    PubMed

    Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.

  19. Cardiometabolic Risk in PCOS: More than a Reproductive Disorder

    PubMed Central

    Torchen, Laura C.

    2018-01-01

    Purpose of Review Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well-established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. Recent Findings Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. Summary PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed. PMID:29128916

  20. Cardiometabolic Risk in PCOS: More than a Reproductive Disorder.

    PubMed

    Torchen, Laura C

    2017-11-11

    Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed.

  1. NO-Rich Diet for Lifestyle-Related Diseases

    PubMed Central

    Kobayashi, Jun; Ohtake, Kazuo; Uchida, Hiroyuki

    2015-01-01

    Decreased nitric oxide (NO) availability due to obesity and endothelial dysfunction might be causally related to the development of lifestyle-related diseases such as insulin resistance, ischemic heart disease, and hypertension. In such situations, instead of impaired NO synthase (NOS)-dependent NO generation, the entero-salivary nitrate-nitrite-NO pathway might serve as a backup system for NO generation by transmitting NO activities in the various molecular forms including NO and protein S-nitrosothiols. Recently accumulated evidence has demonstrated that dietary intake of fruits and vegetables rich in nitrate/nitrite is an inexpensive and easily-practicable way to prevent insulin resistance and vascular endothelial dysfunction by increasing the NO availability; a NO-rich diet may also prevent other lifestyle-related diseases, including osteoporosis, chronic obstructive pulmonary disease (COPD), and cancer. This review provides an overview of our current knowledge of NO generation through the entero-salivary pathway and discusses its safety and preventive effects on lifestyle-related diseases. PMID:26091235

  2. Adipose tissue oxygenation is associated with insulin sensitivity independently of adiposity in obese men and women.

    PubMed

    Goossens, Gijs H; Vogel, Max A A; Vink, Roel G; Mariman, Edwin C; van Baak, Marleen A; Blaak, Ellen E

    2018-04-23

    Adipose tissue (AT) dysfunction contributes to the pathophysiology of insulin resistance and type 2 diabetes. Previous studies have shown that altered AT oxygenation affects adipocyte functionality, but it remains to be elucidated whether altered AT oxygenation is more strongly related to obesity or insulin sensitivity. In the present study, we tested the hypothesis that AT oxygenation is associated with insulin sensitivity rather than adiposity in humans. Thirty-five lean and obese individuals (21 men and 14 women, aged 40-65 years) with either normal or impaired glucose metabolism participated in a cross-sectional single-centre study. We measured abdominal subcutaneous AT oxygenation, body composition and insulin sensitivity. AT oxygenation was higher in obese insulin resistant as compared to obese insulin sensitive (IS) individuals with similar age, body mass index and body fat percentage, both in men and women. No significant differences in AT oxygenation were found between obese IS and lean IS men. Moreover, AT oxygenation was positively associated with insulin resistance (r = 0.465; P = .005), even after adjustment for age, sex and body fat percentage (standardized β = 0.479; P = .005). In conclusion, abdominal subcutaneous AT oxygenation is associated with insulin sensitivity both in men and women, independently of adiposity. AT oxygenation may therefore be a promising target to improve insulin sensitivity. © 2018 John Wiley & Sons Ltd.

  3. Clinical trial to assess the effect of physical exercise on endothelial function and insulin resistance in pregnant women

    PubMed Central

    2009-01-01

    Background Preeclampsia (PE) is a common maternal disease that complicates 5 to 10% of pregnancies and remains as the major cause of maternal and neonatal mortality. Cost-effective interventions aimed at preventing the development of preeclampsia are urgently needed. However, the pathogenesis of PE is not well known. Multiple mechanisms such as oxidative stress, endothelial dysfunction and insulin resistance may contribute to its development. Regular aerobic exercise recovers endothelial function; improves insulin resistance and decreases oxidative stress. Therefore the purpose of this clinical trial is to determine the effect of regular aerobic exercise on endothelial function, on insulin resistance and on pregnancy outcome. Methods and design 64 pregnant women will be included in a blind, randomized clinical trial, and parallel assignment. The exercise group will do regular aerobic physical exercise: walking (10 minutes), aerobic exercise (30 minutes), stretching (10 minutes) and relaxation exercise (10 minutes) in three sessions per week. Control group will do the activities of daily living (bathing, dressing, eating, and walking) without counselling from a physical therapist. Trial registration NCT00741312. PMID:19919718

  4. Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance?

    PubMed

    Ittichaicharoen, Jitjiroj; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-04-01

    Salivary gland dysfunction in several systemic diseases has been shown to decrease the quality of life in patients. In non-insulin dependent diabetes mellitus (NIDDM), inadequate salivary gland function has been evidenced to closely associate with this abnormal glycemic control condition. Although several studies demonstrated that NIDDM has a positive correlation with impaired salivary gland function, including decreased salivary flow rate, some studies demonstrated contradictory findings. Moreover, the changes of the salivary gland function in pre-diabetic stage known as insulin resistance are still unclear. The aim of this review is to comprehensively summarize the current evidence from in vitro, in vivo and clinical studies regarding the relationship between NIDDM and salivary gland function, as well as the correlation between obesity and salivary gland function. Consistent findings as well as controversial reports and the mechanistic insights regarding the effect of NIDDM and obesity-insulin resistance on salivary gland function are also presented and discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hyperleptinaemia rather than fasting hyperinsulinaemia is associated with obesity following hypothalamic damage in children.

    PubMed

    Shaikh, M Guftar; Grundy, Richard G; Kirk, Jeremy M W

    2008-12-01

    Obesity following hypothalamic damage is often severe and resistant to lifestyle changes. Disruption of hypothalamic feedback mechanisms that maintain energy homeostasis may be responsible for this intractable obesity. Adipocytokines including insulin and leptin are also known to be important regulators of appetite and weight. To investigate the role of insulin, leptin, adiponectin and resistin in the aetiology of hypothalamic obesity (HO). This was a cross-sectional study of three groups of children, those with HO, congenital hypopituitarism (CH) and simple obesity (SO). A total of 69 children (HO=28, CH=18, SO=23) had leptin, resistin, adiponectin and insulin measured. Although fasting hyperinsulinaemia and insulin resistance were demonstrated, no differences in insulin or insulin resistance were seen between the groups. The HO group, however, had higher levels of leptin, adiponectin and resistin, which persisted even after adjusting for fat mass, compared with the other groups (P<0.05). No differences in fasting hyperinsulinaemia or insulin resistance were seen between the groups; however, leptin levels are elevated, even after adjusting for fat mass, suggesting that an element of leptin resistance is associated with HO. This is consistent with the inability of leptin to act on the hypothalamus, either due to transport across the blood-brain barrier or dysfunctional receptors. The lack of response to leptin may be more important in the development of obesity in these individuals, and the fasting hyperinsulinaemia is a result of the increased adipose tissue rather than the cause of the weight gain.

  6. Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects.

    PubMed

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji

    2017-08-22

    Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.

  7. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges.

    PubMed

    Jeanes, Yvonne M; Reeves, Sue

    2017-06-01

    Women with polycystic ovary syndrome (PCOS) have a considerable risk of metabolic dysfunction. This review aims to present contemporary knowledge on obesity, insulin resistance and PCOS with emphasis on the diagnostic and methodological challenges encountered in research and clinical practice. Variable diagnostic criteria for PCOS and associated phenotypes are frequently published. Targeted searches were conducted to identify all available data concerning the association of obesity and insulin resistance with PCOS up to September 2016. Articles were considered if they were peer reviewed, in English and included women with PCOS. Obesity is more prevalent in women with PCOS, but studies rarely reported accurate assessments of adiposity, nor split the study population by PCOS phenotypes. Many women with PCOS have insulin resistance, though there is considerable variation reported in part due to not distinguishing subgroups known to have an impact on insulin resistance as well as limited methodology to measure insulin resistance. Inflammatory markers are positively correlated with androgen levels, but detailed interactions need to be identified. Weight management is the primary therapy; specific advice to reduce the glycaemic load of the diet and reduce the intake of pro-inflammatory SFA and advanced glycation endproducts have provided promising results. It is important that women with PCOS are educated about their increased risk of metabolic complications in order to make timely and appropriate lifestyle modifications. Furthermore, well-designed robust studies are needed to evaluate the mechanisms behind the improvements observed with dietary interventions.

  8. Contributions of dysglycemia, obesity and insulin resistance to impaired endothelium-dependent vasodilation in humans

    PubMed Central

    Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ

    2011-01-01

    Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061

  9. Best methods for identification and treatment of PCOS.

    PubMed

    Artini, P G; Di Berardino, O M; Simi, G; Papini, F; Ruggiero, M; Monteleone, P; Cela, V

    2010-02-01

    The polycystic ovarian syndrome (PCOS) includes a wide spectrum of clinical symptoms and signs. Three different diagnostic classifications have been proposed to define this disease. The first one, published in 1990, known as the "NIH criteria" requires the simultaneous presence of hyperandrogenism and menstrual dysfunction in order to diagnose PCOS. Later on, in 2003, an expert panel met in Rotterdam and added to the previous criteria the presence of polycystic ovarian morphology detected by transvaginal ultrasonography. The later classification broadened the spectrum of PCOS and also included women with oligomenorrhea and PCO without hyperandrogenism or hyperandrogenism and PCO without menstrual dysfunction. Finally, the Androgen Excess Society, published in 2006 new diagnostic criteria which required the presence of clinical or biochemical hyperandrogenism, with either PCO or menstrual dysfunction to diagnose PCOS. This review focuses on the diagnostic techniques and methods of treatment for PCOS patients. Special attention is given to the role of insulin resistance and the potential utility of insulin sensitizers in management of the syndrome. The benefit and utmost importance of lifestyle modification for the long-term health of these women is stressed as well. It is hoped that some clarity in this regard will allow more women to not only be diagnosed and managed properly for their presenting symptoms (hirsutism, irregular menses, etc.), but also to be educated and managed for the continuing health risk of insulin resistance throughout their lives.

  10. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.

    PubMed

    Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang

    2017-09-01

    Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese Mice

    PubMed Central

    Martin, Josiane Morais; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Alves, Vander Silva; Fabricio, Gabriel Sergio; Pavanello, Audrei; Franco, Claudinéia Conationi da Silva; Ribeiro, Tatiane Aparecida; Visentainer, Jesuí Vergílio; Banafé, Elton Guntendeorfer; Martin, Clayton Antunes; Mathias, Paulo Cezar de Freitas

    2016-01-01

    Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g−1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model. PMID:28050167

  12. Impaired Cardiolipin Biosynthesis Prevents Hepatic Steatosis and Diet-Induced Obesity

    PubMed Central

    Cole, Laura K.; Mejia, Edgard M.; Vandel, Marilyne; Sparagna, Genevieve C.; Claypool, Steven M.; Dyck-Chan, Laura; Klein, Julianne

    2016-01-01

    Mitochondria are the nexus of energy metabolism, and consequently their dysfunction has been implicated in the development of metabolic complications and progression to insulin resistance and type 2 diabetes. The unique tetra-acyl phospholipid cardiolipin (CL) is located in the inner mitochondrial membrane, where it maintains mitochondrial integrity. Here we show that knockdown of Tafazzin (TAZ kd), a CL transacylase, in mice results in protection against the development of obesity, insulin resistance, and hepatic steatosis. We determined that hypermetabolism protected TAZ kd mice from weight gain. Unexpectedly, the large reduction of CL in the heart and skeletal muscle of TAZ kd mice was not mirrored in the liver. As a result, TAZ kd mice exhibited normal hepatic mitochondrial supercomplex formation and elevated hepatic fatty acid oxidation. Collectively, these studies identify a key role for hepatic CL remodeling in regulating susceptibility to insulin resistance and as a novel therapeutic target for diet-induced obesity. PMID:27495222

  13. Central insulin and leptin-mediated autonomic control of glucose homeostasis

    PubMed Central

    Marino, Joseph S.; Xu, Yong; Hill, Jennifer W.

    2016-01-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. PMID:21489811

  14. Central insulin and leptin-mediated autonomic control of glucose homeostasis.

    PubMed

    Marino, Joseph S; Xu, Yong; Hill, Jennifer W

    2011-07-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. When aging-onset diabetes is coming across with Alzheimer disease: comparable pathogenesis and therapy.

    PubMed

    Tang, Jun; Pei, Yijin; Zhou, Guangji

    2013-08-01

    Diabetes mellitus is a metabolic disorder that is characterized by high blood glucose because of the insulin-resistance and insulin-deficiency in Type 2, while the insulin deficiency due to destruction of islet cells in the pancreas in Type 1. The development of Type 2 diabetes is caused by a combination of lifestyle and genetic factors. Aging patients with diabetes are at increased risk of developing cognitive and memory dysfunctions, which is one of the significant symptoms of Alzheimer disease (AD). Also, over 2/3 of AD patients were clinically indentified with impairment of glucose. Cognitive dysfunction would be associated with poor self-care ability in diabetes patients. This review will briefly summarize the current knowledge of the pathogenesis of these two diseases and highlight similarities in their pathophysiologies. Furthermore, we will shortly discuss recent progress in the insulin-targeted strategy, aiming to explore the inner linkage between these two diseases in aging populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Spectrum of metabolic dysfunction in relationship with hyperandrogenemia in obese adolescent girls with polycystic ovary syndrome.

    PubMed

    Alemzadeh, Ramin; Kichler, Jessica; Calhoun, Mariaelena

    2010-06-01

    Polycystic ovary syndrome (PCOS) in adult women is associated with increased risk of metabolic syndrome (MS) and atherosclerosis. We evaluated the spectrum of metabolic dysfunction in relationship with hyperandrogenemia (HA) in adolescent girls with PCOS. Ovulatory function, acne, hirsutism (HS), body mass index (BMI), body composition, fasting lipids, glucose, insulin, free testosterone (FT), high-sensitivity C-reactive protein (hs-CRP), and HbA1c were evaluated in 103 girls. The homeostatic assessment model equations (HOMA-IR and HOMA-%B) were used for determination of insulin resistance and beta-cell function respectively. The oligo-ovulation (Oligo)+HA+HS (n=44), Oligo+HA (n=28), and Oligo+HS (n=31) phenotypes had similar BMI. However, hyperandrogenemic phenotypes had higher prevalence of acanthosis nigricans (AN) and acne (P<0.01) and higher insulin, HOMA-IR, HOMA-%B, HbA1c, and hs-CRP levels than Oligo+HS group (P<0.01). Serum FT was correlated with HOMA-IR (r=0.38, P<0.01), HOMA-%B (r=0.49, P<0.01), hs-CRP (r=0.42, P<0.01), AN (r=0.39, P<0.01), and HbA1c (r=0.27, P<0.01). Furthermore, 34% of girls met diagnostic criteria for MS displaying higher BMI, FT, HOMA-%B, HOMA-IR, hs-CRP, and HbA1c than subjects without MS (P<0.01). Using combined HOMA-IR>or=4.0 and hs-CRP>3.0 cut-off values, 71.4% of MS versus 23.5% non-MS group were considered at risk of diabetes and atherosclerosis (P<0.0001). Hyperandrogenemic PCOS phenotypes have greatest degree of insulin resistance and inflammation. The use of insulin resistance and inflammatory markers may help identify adolescent girls with PCOS at risk of cardiometabolic syndrome.

  17. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice.

    PubMed

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H Henry

    2016-07-08

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice*

    PubMed Central

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H. Henry

    2016-01-01

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. PMID:27226540

  19. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    PubMed

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.

  20. Activity of xanthine oxidase in plasma correlates with indices of insulin resistance and liver dysfunction in Japanese patients with type 2 diabetes mellitus and metabolic syndrome: A pilot exploratory study.

    PubMed

    Sunagawa, Sumito; Shirakura, Takashi; Hokama, Noboru; Kozuka, Chisayo; Yonamine, Masato; Namba, Toyotaka; Morishima, Satoko; Nakachi, Sawako; Nishi, Yukiko; Ikema, Tomomi; Okamoto, Shiki; Matsui, Chieko; Hase, Naoki; Tamura, Mizuho; Shimabukuro, Michio; Masuzaki, Hiroaki

    2018-06-03

    There is a controversy whether hyperuricemia is an independent risk for cardiometabolic diseases. Serum level of uric acid is affected by a wide variety of factors involved in its production and excretion. On the other hand, evidence has accumulated that locally and systemically activated xanthine oxidase (XO), a rate limiting enzyme for production of uric acid, is linked to metabolic derangement in humans and rodents. We therefore explored the clinical implication of plasma XO activity in patients with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). We enrolled 60 patients with T2DM and MetS. MetS was defined according to the 2005 International Diabetes Federation guidelines. Plasma XO activity was measured by highly sensitive fluorometric assay measuring the conversion of pterin to isoxanthopterin, and explored associations between the value of plasma XO activity and metabolic parameters. Value of plasma XO activity was correlated with indices of insulin resistance and level of circulating liver transaminases. On the other hand, level of serum uric acid was not correlated with indices of insulin resistance. The value of plasma XO activity was not correlated with serum uric acid level. Plasma XO activity correlates with indices of insulin resistance and liver dysfunction in Japanese patients with T2DM and MetS. Through assessing the plasma XO activity, patients demonstrating normal level of serum uric acid with higher activity of XO can be screened, thereby possibly providing a clue to uncover metabolic risks in T2DM and MetS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  2. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  3. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  4. Autophagy and its link to type II diabetes mellitus

    PubMed Central

    Yang, Jai-Sing; Lu, Chi-Cheng; Kuo, Sheng-Chu; Hsu, Yuan-Man; Tsai, Shih-Chang; Chen, Shih-Yin; Chen, Yng-Tay; Lin, Ying-Ju; Huang, Yu-Chuen; Chen, Chao-Jung; Lin, Wei-De; Liao, Wen-Lin; Lin, Wei-Yong; Liu, Yu-Huei; Sheu, Jinn-Chyuan; Tsai, Fuu-Jen

    2017-01-01

    Autophagy, a double-edged sword for cell survival, is the research object on 2016 Nobel Prize in Physiology or Medicine. Autophagy is a molecular mechanism for maintaining cellular physiology and promoting survival. Defects in autophagy lead to the etiology of many diseases, including diabetes mellitus (DM), cancer, neurodegeneration, infection disease and aging. DM is a metabolic and chronic disorder and has a higher prevalence in the world as well as in Taiwan. The character of diabetes mellitus is hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and failure of producing insulin on pancreatic beta cells. In T2DM, autophagy is not only providing nutrients to maintain cellular energy during fasting, but also removes damaged organelles, lipids and miss-folded proteins. In addition, autophagy plays an important role in pancreatic beta cell dysfunction and insulin resistance. In this review, we summarize the roles of autophagy in T2DM. PMID:28612706

  5. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    PubMed

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  6. Neural, Hormonal, and Cognitive Correlates of Metabolic Dysfunction and Emotional Reactivity.

    PubMed

    Wolf, Tovah; Tsenkova, Vera; Ryff, Carol D; Davidson, Richard J; Willette, Auriel A

    2018-06-01

    Prediabetes and type 2 diabetes (i.e., hyperglycemia) are characterized by insulin resistance. These problems with energy metabolism may exacerbate emotional reactivity to negatively valenced stimuli and related phenomena such as predisposition toward negative affect, as well as cognitive deficits. Higher emotional reactivity is seen with hyperglycemia and insulin resistance. However, it is largely unknown how metabolic dysfunction correlates with related neural, hormonal, and cognitive outcomes. Among 331 adults from the Midlife in the United States study, eye-blink response (EBR) we cross sectionally examined to gauge reactivity to negative, positive, or neutrally valenced pictures from international affect picture system stimuli proximal to an acoustic startle probe. Increased EBR to negative stimuli was considered an index of stress reactivity. Frontal alpha asymmetry, a biomarker of negative affect predisposition, was determined using resting electroencephalography. Baseline urinary cortisol output was collected. Cognitive performance was gauged using the Brief Test of Adult Cognition by telephone. Fasting glucose and insulin characterized hyperglycemia or the homeostatic model assessment of insulin resistance. Higher homeostatic model assessment of insulin resistance corresponded to an increased startle response, measured by EBR magnitude, for negative versus positive stimuli (R = 0.218, F(1,457) = 5.48, p = .020, euglycemia: M(SD) = .092(.776), hyperglycemia: M(SD) = .120(.881)). Participants with hyperglycemia versus euglycemia showed greater right frontal alpha asymmetry (F(1,307) = 6.62, p = .011, euglycemia: M(SD) = .018(.167), hyperglycemia: M(SD) = -.029(.160)), and worse Brief Test of Adult Cognition by telephone arithmetic performance (F(1,284) = 4.25, p = .040, euglycemia: M(SD) = 2.390(1.526), hyperglycemia: M(SD) = 1.920(1.462)). Baseline urinary cortisol (log10 μg/12 hours) was also dysregulated in individuals with hyperglycemia (F(1,324) = 5.09, p = .025, euglycemia: M(SD) = 1.052 ± .332, hyperglycemia: M(SD) = .961 (.362)). These results suggest that dysmetabolism is associated with increased emotional reactivity, predisposition toward negative affect, and specific cognitive deficits.

  7. The Contribution of Singlet Oxygen to Insulin Resistance

    PubMed Central

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses. PMID:29081894

  8. The Contribution of Singlet Oxygen to Insulin Resistance.

    PubMed

    Onyango, Arnold N

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.

  9. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment.

    PubMed

    Smitka, Kvido; Marešová, Dana

    2015-01-01

    Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as "adipokines" including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and progranulin (PGRN) which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.

  10. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline

    PubMed Central

    Talbot, Konrad; Wang, Hoau-Yan; Kazi, Hala; Han, Li-Ying; Bakshi, Kalindi P.; Stucky, Andres; Fuino, Robert L.; Kawaguchi, Krista R.; Samoyedny, Andrew J.; Wilson, Robert S.; Arvanitakis, Zoe; Schneider, Julie A.; Wolf, Bryan A.; Bennett, David A.; Trojanowski, John Q.; Arnold, Steven E.

    2012-01-01

    While a potential causal factor in Alzheimer’s disease (AD), brain insulin resistance has not been demonstrated directly in that disorder. We provide such a demonstration here by showing that the hippocampal formation (HF) and, to a lesser degree, the cerebellar cortex in AD cases without diabetes exhibit markedly reduced responses to insulin signaling in the IR→IRS-1→PI3K signaling pathway with greatly reduced responses to IGF-1 in the IGF-1R→IRS-2→PI3K signaling pathway. Reduced insulin responses were maximal at the level of IRS-1 and were consistently associated with basal elevations in IRS-1 phosphorylated at serine 616 (IRS-1 pS616) and IRS-1 pS636/639. In the HF, these candidate biomarkers of brain insulin resistance increased commonly and progressively from normal cases to mild cognitively impaired cases to AD cases regardless of diabetes or APOE ε4 status. Levels of IRS-1 pS616 and IRS-1 pS636/639 and their activated kinases correlated positively with those of oligomeric Aβ plaques and were negatively associated with episodic and working memory, even after adjusting for Aβ plaques, neurofibrillary tangles, and APOE ε4. Brain insulin resistance thus appears to be an early and common feature of AD, a phenomenon accompanied by IGF-1 resistance and closely associated with IRS-1 dysfunction potentially triggered by Aβ oligomers and yet promoting cognitive decline independent of classic AD pathology. PMID:22476197

  11. Insulin resistance and β-cell function influence postprandial blood glucose levels in Japanese patients with gestational diabetes mellitus.

    PubMed

    Kusunoki, Yoshiki; Katsuno, Tomoyuki; Nakae, Rie; Watanabe, Kahori; Ochi, Fumihiro; Tokuda, Masaru; Akagami, Takafumi; Miuchi, Masayuki; Miyagawa, Jun-ichiro; Namba, Mitsuyoshi

    2015-01-01

    The aim of this study in patients with gestational diabetes mellitus (GDM) was to evaluate the relationship of insulin resistance and secretion to area-under-the-sensor glucose concentration-time curve from before to 120 min postmeal (CGM-AUC(0-120 min)) as determined with continuous glucose monitoring (CGM). Immunoreactive insulin and HbA1c were determined in 22 Japanese patients with GDM undergoing a 75 g oral glucose tolerance test. Patients underwent CGM within 3 weeks of receiving a diagnosis of GDM. HbA1c (NGSP) was 5.5 ± 0.4%, BMI was 24.8 ± 5.3 kg/m(2), mean sensor glucose by CGM was 94.2 ± 10.3 mg/dL, standard deviation was 17.5 ± 4.4 mg/dL, and CGM-AUC(0-120 min) was 204.2 ± 23.8 h mg/dL. The insulin resistance indices the homeostasis model assessment ratio (HOMA-R), quantitative insulin sensitivity check index (QUICKI), and the Matsuda Index were correlated with CGM-AUC(0-120 min). The disposition index (DI), which was used to evaluate insulin secretion, was negatively correlated with CGM-AUC(0-120 min). Not only insulin resistance but also beta cell dysfunction contributes to postprandial hyperglycemia in Japanese patients with GDM.

  12. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats.

    PubMed

    Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-01

    Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.

  13. Renal function is impaired in normotensive chronic HCV patients: role of insulin resistance.

    PubMed

    Sciacqua, Angela; Perticone, Maria; Tassone, Eliezer J; Cimellaro, Antonio; Caroleo, Benedetto; Miceli, Sofia; Andreucci, Michele; Licata, Anna; Sesti, Giorgio; Perticone, Francesco

    2016-06-01

    Renal dysfunction is an independent predictor for cardiovascular morbidity and mortality. We investigated whether chronic hepatitis C virus (HCV) infection and the related insulin resistance/hyperinsulinemia influence renal function in comparison with a group of healthy subjects and with another group with metabolic syndrome. We enrolled 130 newly diagnosed HCV outpatients matched for age and gender with 130 patients with metabolic syndrome and 130 healthy subjects. Renal function was evaluated by calculation of glomerular filtration rate (e-GFR, mL/min/1.73 m(2)) using the CKD-EPI equation. The following laboratory parameters were measured: fasting plasma glucose and insulin, total, LDL- and HDL-cholesterol, triglyceride, creatinine, and HOMA to evaluate insulin sensitivity. HCV patients with respect to both healthy subjects and metabolic syndrome patients have a decreased e-GFR: 86.6 ± 16.1 vs 120.2 ± 23.1 mL/min/1.73 m(2) (P < 0.0001) and 94.9 ± 22.6 mL/min/1.73 m(2) (P = 0.003), respectively. Regarding biochemical variables, HCV patients, in comparison with healthy subjects, have a higher triglyceride level, creatinine, fasting insulin and HOMA (3.4 ± 1.4 vs 2.6 ± 1.3; P < 0.0001). At linear regression analysis, the correlation between e-GFR and HOMA is similar in the metabolic syndrome (r = -0.555, P < 0.0001) and HCV (r = -0.527, P < 0.0001) groups. At multiple regression analysis, HOMA is the major determinant of e-GFR in both groups, accounting for, respectively, 30.8 and 27.8 % of its variation in the metabolic syndrome and HCV. In conclusion, we demonstrate that HCV patients have a significant reduction of e-GFR and that insulin resistance is the major predictor of renal dysfunction.

  14. Diastolic dysfunction is associated with insulin resistance, but not with aldosterone level in normotensive offspring of hypertensive families.

    PubMed

    Zizek, Bogomir; Poredos, Pavel; Trojar, Andrej; Zeljko, Tadej

    2008-01-01

    We investigated left ventricular (LV) morphology and function in association with insulin level/insulin resistance (IR) and aldosterone level in normotensive offspring of subjects with essential hypertension (familial trait, FT). The study encompassed 76 volunteers of whom 44 were normotensive with FT (aged 28-39 years) and 32 age-matched controls without FT. LV mass and function were measured using conventional echocardiography and tissue Doppler imaging. LV diastolic function was reported as peak septal annular velocities (E(m) and E(m)/A(m) ratio) in tissue Doppler imaging. Fasting insulin and aldosterone were determined. In subjects with FT, the LV mass was higher than in controls (92.14 +/- 24.02 vs. 70.08 +/- 20.58 g; p < 0.001). The study group had a worse LV diastolic function than control subjects (lower E(m) and E(m)/A(m) ratio; p < 0.001). In subjects with FT, the E(m)/A(m) ratio was independently associated with IR (partial p = 0.029 in multivariate model, R(2) = 0.51), but not with LV mass. The aldosterone level was comparable in both groups. In normotensive individuals with FT, LV morphological and functional abnormalities were found. LV dysfunction but not an increase in LV mass is associated with IR. The aldosterone level is probably not responsible for the development of early hypertensive heart disease. (c) 2008 S. Karger AG, Basel.

  15. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock.

    PubMed

    Wang, Hao; Guan, Yuxia; Widlund, Anne Lykkegaard; Becker, Lance B; Baur, Joseph A; Reilly, Patrick M; Sims, Carrie A

    2014-12-01

    Hemorrhagic shock (HS) may contribute to organ failure, by profoundly altering mitochondrial function. Resveratrol (RSV), a naturally occurring polyphenol, has been shown to promote mitochondrial function and regulate glucose homeostasis in diabetes. We hypothesized that RSV during resuscitation would ameliorate HS-induced mitochondrial dysfunction and improve hyperglycemia following acute blood loss. With the use a decompensated HS model, male Long-Evans rats (n = 6 per group) were resuscitated with lactated Ringer's solution with or without RSV (30 mg/kg) and were killed before hemorrhage (sham), at severe shock, following resuscitation, and 18 hours after resuscitation. At each time point, the liver and kidney mitochondria were isolated to assess individual respiratory complexes (CI, CII, and CIV) and the production of reactive oxygen species (ROS). Blood samples were assayed for glucose, insulin, corticosterone, total glucagon-like peptide (GLP-1), glucagon, and serum cytokine levels. The Homeostatic Model Assessment-Insulin Resistance index was used to quantify insulin resistance. RSV supplementation following HS significantly improved mitochondrial function and decreased mitochondrial ROS production in both liver and kidney. RSV-treated animals had significantly lower blood glucose levels following resuscitation when compared with sham animals (116.0 ± 20.2 mg/dL vs. 227.7 ± 8.3 mg/dL, p < 0.05) or those resuscitated with lactated Ringer's solution (116.0 ± 20.2 mg/dL vs. 359.0 ± 79.5 mg/dL, p < 0.05). RSV supplementation was associated with significantly decreased plasma insulin levels (1.0 ± 0.4 ng/mL vs. 6.5 ± 3.7 ng/mL, p < 0.05), increased total GLP-1 levels (385.8 ± 56.6 ng/mL vs. 187.3 ± 11.1 ng/mL, p < 0.05), and a lower natural Log Homeostatic Model Assessment-Insulin Resistance index (1.30 ± 0.42 vs. 4.18 ± 0.68, p < 0.05) but had minimal effect on plasma corticosterone, glucagon, or cytokine levels. Resuscitation with RSV restores mitochondrial function and decreases insulin resistance but may be associated with increased hypoglycemia. The observed antiglycemic effects of RSV may be mediated by decreased mitochondrial ROS and increased GLP-1 secretion.

  16. Arteriolar insulin resistance in a rat model of polycystic ovary syndrome.

    PubMed

    Sara, Levente; Antal, Peter; Masszi, Gabriella; Buday, Anna; Horvath, Eszter M; Hamar, Peter; Monos, Emil; Nadasy, Gyorgy L; Varbiro, Szabolcs

    2012-02-01

    To investigate the vascular dysfunction caused by insulin resistance in polycystic ovary syndrome (PCOS) and the effectiveness of vitamin D in an animal model. Controlled experimental animal study. Animal laboratory at a university research institute. Thirty female Wistar rats. Rats were divided into groups at age 21-28 weeks. Twenty of them were subjected to dihydrotestosterone (DHT) treatment (83 μg/d); ten of them also received parallel vitamin D treatment (120 ng/100 g/wk). Oral glucose tolerance tests with insulin level measurements were performed. Gracilis arterioles were tested for their contractility as well as their nitric oxide (NO)-dependent and insulin-induced dilation using pressure arteriography. Several physiologic parameters, glucose metabolism, and pressure arteriography. DHT treatment increased the passive diameter of resistance arterioles, lowered norepinephrine-induced contraction (30.1 ± 4.7% vs. 8.7 ± 3.6%) and reduced acetylcholine-induced (122.0 ± 2.9% vs. 48.0 ± 1.4%) and insulin-induced (at 30 mU/mL: 21.7 ± 5.3 vs. 9.8 ± 5.6%) dilation. Vitamin D treatment restored insulin relaxation and norepinephrine-induced contractility; in contrast, it failed to alter NO-dependent relaxation. In DHT-treated rats, in addition to metabolically proven insulin resistance, decreased insulin-induced vasorelaxation was observed and was improved by vitamin D treatment without affecting NO-dependent relaxation. The reduction in insulin-induced dilation of arterioles is an important as yet undescribed pathway of vascular damage in PCOS and might explain the clinical effectiveness of vitamin D treatment. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  18. Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone

    PubMed Central

    Wood, Richard J.; O'Neill, Elizabeth C.

    2012-01-01

    The prevalence of Type II Diabetes mellitus (T2DM) is increasing rapidly and will continue to be a major healthcare expenditure burden. As such, identification of effective lifestyle treatments is paramount. Skeletal muscle and bone display metabolic and functional disruption in T2DM. Skeletal muscle in T2DM is characterized by insulin resistance, impaired glycogen synthesis, impairments in mitochondria, and lipid accumulation. Bone quality in T2DM is decreased, potentially due to the effects of advanced glycation endproducts on collagen, impaired osteoblast activity, and lipid accumulation. Although exercise is widely recognized as an important component of treatment for T2DM, the focus has largely been on aerobic exercise. Emerging research suggests that resistance training (strength training) may impose potent and unique benefits in T2DM. The purpose of this review is to examine the role of resistance training in treating the dysfunction in skeletal muscle and the potential role for resistance training in treating the associated dysfunction in bone. PMID:22474580

  19. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress.

    PubMed

    Balakumar, M; Raji, L; Prabhu, D; Sathishkumar, C; Prabu, P; Mohan, V; Balasubramanyam, M

    2016-12-01

    In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.

  20. Diet-induced obesity alters memory consolidation in female rats.

    PubMed

    Zanini, P; Arbo, B D; Niches, G; Czarnabay, D; Benetti, F; Ribeiro, M F; Cecconello, A L

    2017-10-15

    Obesity is a multifactorial disease characterized by the abnormal or excessive fat accumulation, which is caused by an energy imbalance between consumed and expended calories. Obesity leads to an inflammatory response that may result in peripheral and central metabolic changes, including insulin and leptin resistance. Insulin and leptin resistance have been associated with metabolic and cognitive dysfunctions. Obesity and some neurodegenerative diseases that lead to dementia affect mainly women. However, the effects of diet-induced obesity on memory consolidation in female rats are poorly understood. Therefore, the aim of this study was to evaluate the effect of a hypercaloric diet on the object recognition memory of female rats and on possible related metabolic changes. The animals submitted to the hypercaloric diet presented a higher food intake in grams and in calories, resulting in increased weight gain and liposomatic index in comparison with the animals exposed to the control diet. These animals presented a memory deficit in the object recognition test and increased serum levels of glucose and leptin. However, no significant differences were found in the serum levels of insulin, TNF-α and IL-1β, in the index of insulin resistance (HOMA), in the hippocampal levels of insulin, TNF-α and IL-1β, as well as on Akt expression or activation in the hippocampus. Our findings indicate that adult female rats submitted to a hypercaloric diet present memory consolidation impairment, which could be associated with diet-induced weight gain and leptin resistance, even without the development of insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Endothelial function in youth: A biomarker modulated by adiposity-related insulin resistance

    USDA-ARS?s Scientific Manuscript database

    To investigate the physical and metabolic determinants of endothelial dysfunction, an early marker of subclinical atherosclerosis, in normal weight and overweight adolescents with and without type 2 diabetes mellitus. A cross-sectional study of 81 adolescents: 21 normal weight, 25 overweight with no...

  2. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  3. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.

  4. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction.

    PubMed

    Karasawa, Hiroshi; Takaishi, Kiyosumi; Kumagae, Yoshihiro

    2011-03-01

    An obesity-induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high-fat diet-induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity-induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8-12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity-induced diabetes in GTG-treated mice is attributable to the inability of their pancreatic β-cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity-induced diabetes after GTG treatment might be a valuable tool for investigating obesity-induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic β-cells to secrete insulin.

  5. Combined Vildagliptin and Metformin Exert Better Cardioprotection than Monotherapy against Ischemia-Reperfusion Injury in Obese-Insulin Resistant Rats

    PubMed Central

    Apaijai, Nattayaporn; Chinda, Kroekkiat; Palee, Siripong; Chattipakorn, Siriporn; Chattipakorn, Nipon

    2014-01-01

    Background Obese-insulin resistance caused by long-term high-fat diet (HFD) consumption is associated with left ventricular (LV) dysfunction and increased risk of myocardial infarction. Metformin and vildagliptin have been shown to exert cardioprotective effects. However, the effect of these drugs on the hearts under obese-insulin resistance with ischemia-reperfusion (I/R) injury is unclear. We hypothesized that combined vildagliptin and metformin provide better protective effects against I/R injury than monotherapy in obese-insulin resistant rats. Methodology Male Wistar rats were fed either HFD or normal diet. Rats in each diet group were divided into 4 subgroups to receive vildagliptin, metformin, combined vildagliptin and metformin, or saline for 21 days. Ischemia due to left anterior descending artery ligation was allowed for 30-min, followed by 120-min reperfusion. Metabolic parameters, heart rate variability (HRV), LV function, infarct size, mitochondrial function, calcium transient, Bax and Bcl-2, and Connexin 43 (Cx43) were determined. Rats developed insulin resistance after 12 weeks of HFD consumption. Vildagliptin, metformin, and combined drugs improved metabolic parameters, HRV, and LV function. During I/R, all treatments improved LV function, reduced infarct size and Bax, increased Bcl-2, and improved mitochondrial function in HFD rats. However, only combined drugs delayed the time to the first VT/VF onset, reduced arrhythmia score and mortality rate, and increased p-Cx43 in HFD rats. Conclusion Although both vildagliptin and metformin improved insulin resistance and attenuate myocardial injury caused by I/R, combined drugs provided better outcomes than single therapy by reducing arrhythmia score and mortality rate. PMID:25036861

  6. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits

    PubMed Central

    Chatterjee, Shreyasi; Mudher, Amritpal

    2018-01-01

    Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease. PMID:29950970

  7. Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance.

    PubMed

    Connelly, Margery A; Wolak-Dinsmore, Justyna; Dullaart, Robin P F

    2017-05-01

    Branched chain amino acids (BCAA) may be involved in the pathogenesis of insulin resistance and are associated with type 2 diabetes mellitus (T2DM) development. Adipokines such as leptin and adiponectin influence insulin resistance and reflect adipocyte dysfunction. We examined the extent to which the association of BCAA with insulin resistance is attributable to altered leptin and adiponectin levels in individuals with varying degrees of glucose tolerance. BCAA were measured by nuclear magnetic resonance, whereas leptin and adiponectin were measured by immunoassay, in subjects with normal fasting glucose (n = 30), impaired fasting glucose (n = 25), and T2DM (n = 15). Insulin resistance was estimated by homeostasis model assessment (HOMAir). BCAA were higher in men than in women (P < 0.001) and tended to be higher in T2DM subjects (P = 0.10) compared to subjects with normal or impaired fasting glucose. In univariate regression analysis, BCAA were correlated with HOMAir (r = 0.46; P < 0.001) and inversely with adiponectin (r = -0.53; P < 0.001) but not with leptin (r = -0.08; P > 0.05). Multivariable linear regression analysis, adjusting for age, sex, T2DM, and body mass index (BMI), demonstrated that BCAA were positively associated with HOMAir (β = 0.242, P = 0.023). When BCAA, leptin, and adiponectin were included together, the positive relationship of HOMAir with BCAA (β = 0.275, P = 0.012) remained significant. Insulin resistance was associated with BCAA. This association remained after adjusting for age, sex, T2DM, BMI, as well as leptin and adiponectin. It is unlikely that the relationship of insulin resistance with BCAA is to a major extent attributable to effects of leptin and adiponectin.

  8. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury.

    PubMed

    Constantinou, Caterina; Apidianakis, Yiorgos; Psychogios, Nikolaos; Righi, Valeria; Mindrinos, Michael N; Khan, Nadeem; Swartz, Harold M; Szeto, Hazel H; Tompkins, Ronald G; Rahme, Laurence G; Tzika, A Aria

    2016-02-01

    Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes.

  9. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome.

    PubMed

    Cabandugama, Peminda K; Gardner, Michael J; Sowers, James R

    2017-01-01

    In the United States, more than 50 million people have blood pressure at or above 120/80 mm Hg. All components of cardiorenal metabolic syndrome (CRS) are linked to metabolic abnormalities and obesity. A major driver for CRS is obesity. Current estimates show that many of those with hypertension and CRS show some degree of systemic and cardiovascular insulin resistance. Several pathophysiologic factors participate in the link between hypertension and CRS. This article updates recent literature with a focus on the function of insulin resistance, obesity, and renin angiotensin aldosterone system-mediated oxidative stress on endothelial dysfunction and the pathogenesis of hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Urine albumin to creatinine ratio: A marker of early endothelial dysfunction in youth

    USDA-ARS?s Scientific Manuscript database

    The urine albumin-to-creatinine ratio (UACR) is a useful predictor of cardiovascular (CV) events in adults. Its relationship to vascular function in children is not clear. We investigated whether UACR was related to insulin resistance and endothelial function, a marker of subclinical atherosclerosis...

  11. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo

    USDA-ARS?s Scientific Manuscript database

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demo...

  12. Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    We previously showed that parenteral nutrition (PN) compared with formula feeding results in hepatic insulin resistance and steatosis in neonatal pigs. The current aim was to test whether the route of feeding (intravenous [IV] vs enteral) rather than other feeding modalities (diet, pattern) had cont...

  13. Metabolic Disturbance in PCOS: Clinical and Molecular Effects on Skeletal Muscle Tissue

    PubMed Central

    Silva Dantas, Wagner; Gualano, Bruno; Patrocínio Rocha, Michele; Roberto Grimaldi Barcellos, Cristiano; dos Reis Vieira Yance, Viviane; Miguel Marcondes, José Antonio

    2013-01-01

    Polycystic ovary syndrome is a complex hormonal disorder affecting the reproductive and metabolic systems with signs and symptoms related to anovulation, infertility, menstrual irregularity and hirsutism. Skeletal muscle plays a vital role in the peripheral glucose uptake. Since PCOS is associated with defects in the activation and pancreatic dysfunction of β-cell insulin, it is important to understand the molecular mechanisms of insulin resistance in PCOS. Studies of muscle tissue in patients with PCOS reveal defects in insulin signaling. Muscle biopsies performed during euglycemic hyperinsulinemic clamp showed a significant reduction in glucose uptake, and insulin-mediated IRS-2 increased significantly in skeletal muscle. It is recognized that the etiology of insulin resistance in PCOS is likely to be as complicated as in type 2 diabetes and it has an important role in metabolic and reproductive phenotypes of this syndrome. Thus, further evidence regarding the effect of nonpharmacological approaches (e.g., physical exercise) in skeletal muscle of women with PCOS is required for a better therapeutic approach in the management of various metabolic and reproductive problems caused by this syndrome. PMID:23844380

  14. Metabolic disturbance in PCOS: clinical and molecular effects on skeletal muscle tissue.

    PubMed

    Dantas, Wagner Silva; Gualano, Bruno; Rocha, Michele Patrocínio; Barcellos, Cristiano Roberto Grimaldi; dos Reis Vieira Yance, Viviane; Marcondes, José Antonio Miguel

    2013-01-01

    Polycystic ovary syndrome is a complex hormonal disorder affecting the reproductive and metabolic systems with signs and symptoms related to anovulation, infertility, menstrual irregularity and hirsutism. Skeletal muscle plays a vital role in the peripheral glucose uptake. Since PCOS is associated with defects in the activation and pancreatic dysfunction of β-cell insulin, it is important to understand the molecular mechanisms of insulin resistance in PCOS. Studies of muscle tissue in patients with PCOS reveal defects in insulin signaling. Muscle biopsies performed during euglycemic hyperinsulinemic clamp showed a significant reduction in glucose uptake, and insulin-mediated IRS-2 increased significantly in skeletal muscle. It is recognized that the etiology of insulin resistance in PCOS is likely to be as complicated as in type 2 diabetes and it has an important role in metabolic and reproductive phenotypes of this syndrome. Thus, further evidence regarding the effect of nonpharmacological approaches (e.g., physical exercise) in skeletal muscle of women with PCOS is required for a better therapeutic approach in the management of various metabolic and reproductive problems caused by this syndrome.

  15. Insulin resistance adds to endothelial dysfunction in hypertensive patients and in normotensive offspring of subjects with essential hypertension.

    PubMed

    Zizek, B; Poredos, P

    2001-02-01

    To evaluate whether endothelium-dependent (nitric oxide-mediated) dilation of the brachial artery (BA) is impaired in patients being treated for essential hypertension (EH), and whether this abnormality can be detected in normotensive offspring of subjects with EH (familial trait, FT); and to investigate the interrelationship between flow-mediated vasodilation (FMD) and hyperinsulinaemia/insulin resistance. Cross-sectional study. Angiology department at a teaching hospital. The study encompassed 172 subjects, of whom 46 were treated hypertonics aged 40-55 (49) years, and 44 age-matched, normotensive volunteers as controls. We also investigated 41 normotonics with FT aged 20-30 (25) years and 41 age-and sex-matched controls without FT. Using high-resolution ultrasound, BA diameters at rest, during reactive hyperaemia (endothelium-dependent dilation) and after sublingual glyceryl trinitrate (GTN) application (endothelium-independent dilation) were measured. In hypertonics FMD was significantly lower than in controls [2.4 (2.9) vs. 7.4 (2.5)%; P < 0.00005], as was GTN-induced dilation [12.1 (4.3) vs. 16.1 (4.6)%; P=0.0007]. In subjects with FT, FMD was also decreased compared with the control group [5.8 (4.1) vs. 10.0 (3.0)%; P < 0.00005]. The response to GTN was comparable in both groups of young subjects. FMD was negatively related to insulin concentration in all subjects studied (P < 0.00005). In treated patients with EH, flow-mediated dilation of the BA as well as endothelium-independent dilation are decreased. In individuals with FT the endothelial function of the peripheral arteries is also altered in the absence of elevated blood pressure. Endothelial dysfunction is related to hyperinsulinaemia/insulin resistance, which could be one of the pathogenetic determinants of EH and its complications.

  16. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    PubMed

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  17. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology.

    PubMed

    Renu, Kaviyarasi; Madhyastha, Harishkumar; Madhyastha, Radha; Maruyama, Masugi; Arunachlam, Sankarganesh; V G, Abilash

    2018-03-01

    Exposure to arsenic in drinking water can stimulate a diverse number of diseases that originate from impaired lipid metabolism in adipose and glucose metabolism, leading to insulin resistance. Arsenic inhibits differentiation of adipocyte and mediates insulin resistance with diminutive information on arsenicosis on lipid storage and lipolysis. This review focused on different mechanisms and pathways involved in adipogenesis and lipolysis in adipose tissue during arsenic-induced diabetes. Though arsenic is known to cause type2 diabetes through different mechanisms, the role of adipose tissue in causing type2 diabetes is still unclear. With the existing literature, this review exhibits the effect of arsenic on adipose tissue and its signalling events such as SIRT3- FOXO3a signalling pathway, Ras -MAP -AP-1 cascade, PI(3)-K-Akt pathway, endoplasmic reticulum stress protein, C/EBP homologous protein (CHOP10) and GPCR pathway with role of adipokines. There is a need to elucidate the different types of adipokines which are involved in arsenic-induced diabetes. The exhibited information brings to light that arsenic has negative effects on a white adipose tissue (WAT) by decreasing adipogenesis and enhancing lipolysis. Some of the epidemiological studies show that arsenic would causes obesity. Few studies indicate that arsenic might induces lipodystrophy condition. Further research is needed to evaluate the mechanistic link between arsenic and adipose tissue dysfunction which leads to insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Truncation of POC1A associated with short stature and extreme insulin resistance.

    PubMed

    Chen, Jian-Hua; Segni, Maria; Payne, Felicity; Huang-Doran, Isabel; Sleigh, Alison; Adams, Claire; Savage, David B; O'Rahilly, Stephen; Semple, Robert K; Barroso, Inês

    2015-10-01

    We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health. © 2015 Society for Endocrinology.

  19. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance.

    PubMed

    Barber, Thomas M; Dimitriadis, George K; Andreou, Avgi; Franks, Stephen

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a common condition that typically develops in reproductive-age women. The cardinal clinical and biochemical characteristics of PCOS include reproductive dysfunction and hyperandrogenic features. PCOS is also strongly associated with obesity based on data from epidemiological and genetic studies. Accordingly, PCOS often becomes manifest in those women who carry a genetic predisposition to its development, and who also gain weight. The role of weight gain and obesity in the development of PCOS is mediated at least in part, through worsening of insulin resistance. Compensatory hyperinsulinaemia that develops in this context disrupts ovarian function, with enhanced androgen production and arrest of ovarian follicular development. Insulin resistance also contributes to the strong association of PCOS with adverse metabolic risk, including dysglycaemia, dyslipidaemia and fatty liver. Conversely, modest weight loss of just 5% body weight with improvement in insulin sensitivity, frequently results in clinically meaningful improvements in hyperandrogenic, reproductive and metabolic features. Future developments of novel therapies for obese women with PCOS should focus on promotion of weight loss and improvement in insulin sensitivity. In this context, therapies that complement lifestyle changes such as dietary modification and exercise, particularly during the maintenance phase of weight loss are important. Putative novel targets for therapy in PCOS include human brown adipose tissue. © 2016 Royal College of Physicians.

  20. Microcirculatory Improvement Induced by Laparoscopic Sleeve Gastrectomy Is Related to Insulin Sensitivity Retrieval.

    PubMed

    Ministrini, Stefano; Fattori, Chiara; Ricci, Maria Anastasia; Bianconi, Vanessa; Paltriccia, Rita; Boni, Marcello; Paganelli, Maria Teresa; Vaudo, Gaetano; Lupattelli, Graziana; Pasqualini, Leonella

    2018-05-12

    Microvascular dysfunction is a potential factor explaining the association of obesity, insulin resistance, and vascular damage in morbidly obese subjects. The purpose of the study was to evaluate possible determinants of microcirculatory improvement 1 year after laparoscopic sleeve gastrectomy (LSG) intervention. Thirty-seven morbidly obese subjects eligible for bariatric surgery were included in the study. Post-occlusive reactive hyperemia (PORH) of the forearm skin was measured as area of hyperemia (AH) by laser-Doppler flowmetry before LSG and after a 1-year follow-up. After intervention, we observed a significant reduction in BMI, HOMA index, HbA1c, and a significant increase of AH in all patients after surgery; this variation was significant only in those patients having insulin resistance or prediabetes/diabetes. Although significant correlation between the increase of AH and the reduction of both BMI, HOMA index, and HbA1c was observed, BMI was the only independent predictor of AH variation after LSG at the linear regression analysis. Our study shows that LSG intervention is correlated with a significant improvement in the microvascular function of morbidly obese subjects; this improvement seems to be related to the baseline degree of insulin-resistance and to the retrieval of insulin-sensitivity post-intervention.

  1. Nutritional management in women with polycystic ovary syndrome: A review study.

    PubMed

    Faghfoori, Zeinab; Fazelian, Siavash; Shadnoush, Mahdi; Goodarzi, Reza

    2017-11-01

    Polycystic ovary syndrome (PCOS) is endocrine disorder in women of reproductive age, which leads to reproductive, hormonal and metabolic abnormalities. Due to the presence of insulin resistance, PCOS increases the risk of chronic diseases like type 2 diabetes, hypertension, lipid disorders, cardiovascular diseases and malignancies such as breast and endometrial cancer. The actual cause of this syndrome is unknown but environmental factors such as dietary habits play an important role in prevention and treatment and lifestyle modifications are the most important therapeutic strategies in these patients. The approach of the diet therapy in these patients must be to reach specific goals such as improving insulin resistance, metabolic and reproductive functions that will be possible through the design of low-calorie diet to achieve weight loss or maintaining a healthy weight, limit the intake of simple sugars and refined carbohydrates and intake foods with a low glycemic index, reduction of saturated and trans fatty acids and attention to possible deficiencies such as vitamin D, chromium and omega-3. Given the prevalence of overweight and obesity and insulin resistance, a relatively low reduction in weight, about 5%, can improve problems such as insulin resistance, high levels of androgens, reproductive system dysfunctions and fertility in these women. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  2. Periodontitis aggravated pancreatic β-cell dysfunction in diabetic mice through interleukin-12 regulation on Klotho.

    PubMed

    Liu, Yihua; Zhang, Qiuli

    2016-05-01

    Recent studies have shown that periodontitis can contribute to adipose tissue inflammation and subsequent systemic insulin resistance in the obese rat model. However, the related inflammatory mechanism is not yet clear. The present study aims to investigate the effects of periodontitis on the function of pancreatic β-cells with pro-inflammatory cytokines-related immune mechanism in a mouse model. C57BL/6-db/db and inbred C57BL/6 mice were chosen here to establish a mouse model with periodontitis, which was induced by ligatures for 8 weeks. Glucose-stimulated insulin secretion was introduced to evaluate the function of pancreatic islets and β-cells. Serum levels of pro-inflammatory cytokines and Klotho were also measured, and the correlation between immunostimulation and Klotho level was deeply investigated in vitro. Pancreatic β-cell failure, with insulin resistance, was observed in db/db mice, while periodontitis could aggravate β-cell dysfunction-related features. Serum levels of interleukin (IL)-12 and Klotho showed a negatively synergistic change, whereas the expression of Klotho was also inhibited under IL-12 treatment in MIN6 β-cells or isolated islets. Furthermore, IL-12-induced immune stimulation and also decreased insulin secretion were proven to be reversed by Klotho overexpression. Periodontitis aggravated pancreatic β-cell failure in diabetic mice. Further in vitro studies showed IL-12 regulation on Klotho, while Klotho also acted as an inhibitor on IL-12, indicating the potential of Klotho for preserving pancreatic β-cell function in diabetes.

  3. Insulin Resistance and Body Fat Distribution in South Asian Men Compared to Caucasian Men

    PubMed Central

    Lin, Ping; Seenivasan, Thanalakshmi; Livingston, Edward H.; Snell, Peter G.; Grundy, Scott M.

    2007-01-01

    Objective South Asians are susceptible to insulin resistance even without obesity. We examined the characteristics of body fat content, distribution and function in South Asian men and their relationships to insulin resistance compared to Caucasians. Research Design and Methods Twenty-nine South Asian and 18 Caucasian non-diabetic men (age 27±3 and 27±3 years, respectively) underwent euglycemic-hyperinsulinemic clamp for insulin sensitivity, underwater weighing for total body fat, MRI of entire abdomen for intraperitoneal (IP) and subcutaneous abdominal (SA) fat and biopsy of SA fat for adipocyte size. Results Compared to Caucasians, in spite of similar BMI, South Asians had higher total body fat (22±6 and 15±4% of body weight; p-value<0.0001), higher SA fat (3.5±1.9 and 2.2±1.3 kg, respectively; p-value = 0.004), but no differences in IP fat (1.0±0.5 and 1.0±0.7 kg, respectively; p-value = 0.4). SA adipocyte cell size was significantly higher in South Asians (3491±1393 and 1648±864 µm2; p-value = 0.0001) and was inversely correlated with both glucose disposal rate (r-value = −0.57; p-value = 0.0008) and plasma adiponectin concentrations (r-value = −0.71; p-value<0.0001). Adipocyte size differences persisted even when SA was matched between South Asians and Caucasians. Conclusions Insulin resistance in young South Asian men can be observed even without increase in IP fat mass and is related to large SA adipocytes size. Hence ethnic excess in insulin resistance in South Asians appears to be related more to excess truncal fat and dysfunctional adipose tissue than to excess visceral fat. PMID:17726542

  4. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome.

    PubMed

    Zhang, Bingjie; Wang, Jing; Shen, Shanmei; Liu, Jiayi; Sun, Jie; Gu, Tianwei; Ye, Xiao; Zhu, Dalong; Bi, Yan

    2018-01-01

    Women with polycystic ovary syndrome (PCOS) show high prevalence of glucose intolerance. This study aimed to investigate the association of androgen excess with glucose intolerance in PCOS. A total of 378 women with PCOS participated in the study. Free androgen index (FAI) was selected as indicator of hyperandrogenism. Insulin sensitivity was assessed by 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and Matsuda insulin sensitivity index (ISI M ); β -cell function was assessed by disposition index (DI). We found that women with glucose intolerance had higher FAI levels compared to women with normal glucose tolerance (NGT) (prediabetes 6.2, T2DM 7.9 versus NGT 5.0, resp.; p < 0.001). Furthermore, there was a direct association between FAI levels and frequency of glucose intolerance (OR = 2.480, 95% CI 1.387-4.434), even after adjusting for age, BMI, waist circumference, hypertension, fasting insulin, testosterone, SHBG, and family history of diabetes. In addition, with FAI increase, glycosylated hemoglobin (HbA1c), plasma glucose concentrations, and serum insulin levels increased, while insulin sensitivity and β -cell function decreased. Our results suggested that androgen excess indicated by high FAI levels might serve as indicator of glucose intolerance, as it might promote insulin resistance and β -cell dysfunction in women with PCOS.

  5. Association of Common Genetic Variants in the MAP4K4 Locus with Prediabetic Traits in Humans

    PubMed Central

    Ketterer, Caroline; Heni, Martin; Machicao, Fausto; Guilherme, Adilson; Grallert, Harald; Schulze, Matthias B.; Boeing, Heiner; Stefan, Norbert; Fritsche, Andreas; Czech, Michael P.; Häring, Hans-Ulrich

    2012-01-01

    Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is expressed in all diabetes-relevant tissues and mediates cytokine-induced insulin resistance. We investigated whether common single nucleotide polymorphisms (SNPs) in the MAP4K4 locus associate with glucose intolerance, insulin resistance, impaired insulin release, or elevated plasma cytokines. The best hit was tested for association with type 2 diabetes. Subjects (N = 1,769) were recruited from the Tübingen Family (TÜF) study for type 2 diabetes and genotyped for tagging SNPs. In a subgroup, cytokines were measured. Association with type 2 diabetes was tested in a prospective case-cohort study (N = 2,971) derived from the EPIC-Potsdam study. Three SNPs (rs6543087, rs17801985, rs1003376) revealed nominal and two SNPs (rs11674694, rs11678405) significant associations with 2-hour glucose levels. SNPs rs6543087 and rs11674694 were also nominally associated with decreased insulin sensitivity. Another two SNPs (rs2236936, rs2236935) showed associations with reduced insulin release, driven by effects in lean subjects only. Three SNPs (rs11674694, rs13003883, rs2236936) revealed nominal associations with IL-6 levels. SNP rs11674694 was significantly associated with type 2 diabetes. In conclusion, common variation in MAP4K4 is associated with insulin resistance and β-cell dysfunction, possibly via this gene’s role in inflammatory signalling. This variation’s impact on insulin sensitivity may be more important since its effect on insulin release vanishes with increasing BMI. PMID:23094072

  6. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation.

    PubMed

    Granata, Riccarda; Gallo, Davide; Luque, Raul M; Baragli, Alessandra; Scarlatti, Francesca; Grande, Cristina; Gesmundo, Iacopo; Córdoba-Chacón, Jose; Bergandi, Loredana; Settanni, Fabio; Togliatto, Gabriele; Volante, Marco; Garetto, Stefano; Annunziata, Marta; Chanclón, Belén; Gargantini, Eleonora; Rocchietto, Stefano; Matera, Lina; Datta, Giacomo; Morino, Mario; Brizzi, Maria Felice; Ong, Huy; Camussi, Giovanni; Castaño, Justo P; Papotti, Mauro; Ghigo, Ezio

    2012-08-01

    The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.

  7. Consequences of Lipid Droplet Coat Protein Downregulation in Liver Cells

    PubMed Central

    Bell, Ming; Wang, Hong; Chen, Hui; McLenithan, John C.; Gong, Da-Wei; Yang, Rong-Zee; Yu, Daozhan; Fried, Susan K.; Quon, Michael J.; Londos, Constantine; Sztalryd, Carole

    2008-01-01

    OBJECTIVE—Accumulation of intracellular lipid droplets (LDs) in non-adipose tissues is recognized as a strong prognostic factor for the development of insulin resistance in obesity. LDs are coated with perilipin, adipose differentiation–related protein, tail interacting protein of 47 kd (PAT) proteins that are thought to regulate LD turnover by modulating lipolysis. Our hypothesis is that PAT proteins modulate LD metabolism and therefore insulin resistance. RESEARCH DESIGN AND METHODS—We used a cell culture model (murine AML12 loaded with oleic acid) and small interfering RNA to directly assess the impact of PAT proteins on LD accumulation, lipid metabolism, and insulin action. PAT proteins associated with excess fat deposited in livers of diet-induced obese (DIO) mice were also measured. RESULTS—Cells lacking PAT proteins exhibited a dramatic increase in LD size and a decrease in LD number. Further, the lipolytic rate increased by ∼2- to 2.5-fold in association with increased adipose triglyceride lipase (ATGL) at the LD surface. Downregulation of PAT proteins also produced insulin resistance, as indicated by decreased insulin stimulation of Akt phosphorylation (P < 0.001). Phosphoinositide-dependent kinase-1 and phosphoinositide 3-kinase decreased, and insulin receptor substrate-1 307 phosphorylation increased. Increased lipids in DIO mice livers were accompanied by changes in PAT composition but also increased ATGL, suggesting a relative PAT deficiency. CONCLUSIONS—These data establish an important role for PAT proteins as surfactant at the LD surface, packaging lipids in smaller units and restricting access of lipases and thus preventing insulin resistance. We suggest that a deficiency of PAT proteins relative to the quantity of ectopic fat could contribute to cellular dysfunction in obesity and type 2 diabetes. PMID:18487449

  8. Application of an in vivo hepatic triacylglycerol production method in the setting of a high fat diet in mice

    USDA-ARS?s Scientific Manuscript database

    High fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Changes in TAG metabolism contribute to the development of hepatic steatosis including changes in production rate from de novo lipogenes...

  9. ‘‘Omics’’ of Selenium Biology: A Prospective Study of Plasma Proteome Network Before and After Selenized-Yeast Supplementation in Healthy Men

    USDA-ARS?s Scientific Manuscript database

    Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan,Chagas, and Kashin–Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associate...

  10. Polycystic ovary syndrome and anti-Müllerian hormone: role of insulin resistance, androgens, obesity and gonadotrophins.

    PubMed

    Cassar, Samantha; Teede, Helena J; Moran, Lisa J; Joham, Anju E; Harrison, Cheryce L; Strauss, Boyd J; Stepto, Nigel K

    2014-12-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine disorder associated with insulin resistance, hyperandrogenism, obesity, altered gonadotrophin release and anovulatory infertility. Anti-Müllerian hormone (AMH) has been proposed as a marker of ovarian function and fertility. Across a cohort of lean and overweight women with and without PCOS, we investigated the association of AMH with insulin resistance and body composition using gold standard measures. A secondary aim was to examine whether AMH was useful to determine PCOS status. Cross-sectional study. A total of 22 lean and 21 overweight women with PCOS and 19 lean and 16 overweight non-PCOS healthy controls were recruited. PCOS was diagnosed based on the Rotterdam criteria. Euglycaemic-hyperinsulinaemic clamp for assessing insulin resistance, dual energy X-ray absorptiometry and computed tomography for assessing adiposity, and blood sampling for the assessment of androgens, gonadotrophins and AMH. Anti-Müllerian hormone levels were increased in women with PCOS (P <0·001) regardless of adiposity, with this increase associated with testosterone (P <0·001) rather than insulin resistance (P = 0·79), adiposity (P = 0·98) or gonadotrophins. In assessing the ability of AMH to predict PCOS, a value of 30 pmol/l or higher indicated 79% of women with PCOS were correctly identified as having the condition. Anti-Müllerian hormone appears primarily related to androgen status suggesting a direct and predominant role of androgens in the pathophysiology of reproductive dysfunction in PCOS. As AMH reflects PCOS status, it may also be useful in PCOS diagnosis. © 2014 John Wiley & Sons Ltd.

  11. Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance.

    PubMed

    Victor, Victor M; Rocha, Milagros; Bañuls, Celia; Alvarez, Angeles; de Pablo, Carmen; Sanchez-Serrano, Maria; Gomez, Marcelino; Hernandez-Mijares, Antonio

    2011-10-01

    Insulin resistance is a feature of polycystic ovary syndrome (PCOS) and is related to mitochondrial and endothelial function. We tested whether hyperandrogenic insulin-resistant women with PCOS, who have an increased risk of vascular disease, display impaired leukocyte-endothelium interactions, and mitochondrial dysfunction. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 43 lean reproductive-age women with PCOS and 39 controls subjects. We evaluated anthropometric and metabolic parameters, adhesion molecules, and interactions between leukocytes and human umbilical vein endothelial cells. Mitochondrial function was studied by assessing mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels (GSH), and the oxidized glutathione (GSSG)/GSH ratio in polymorphonuclear cells. Impairment of mitochondrial function was observed in the PCOS patients, evident in a decrease in oxygen consumption, an increase in reactive oxygen species production, a decrease in the GSH/GSSG ratio and GSH levels, and an undermining of the membrane potential. PCOS was related to a decrease in polymorphonuclear cell rolling velocity and an increase in rolling flux and adhesion. Increases in IL-6 and TNFα and adhesion molecules (vascular cell adhesion molecule-1 and E-selectin) were also observed. This study supports the hypothesis of an association between insulin resistance and an impaired endothelial and mitochondrial oxidative metabolism. The evidence obtained shows that the inflammatory state related to insulin resistance in PCOS induces a leukocyte-endothelium interaction. These findings may explain the increased risk of vascular disease in women with PCOS.

  12. Risk factors of diabetes in North Indians with metabolic syndrome.

    PubMed

    Pratyush, Daliparthy D; Tiwari, Shalbha; Singh, Saurabh; Singh, Surya K

    2016-01-01

    Metabolic syndrome progresses to diabetes and determinants of this progression like hyperinsulinemia, hypertriglyceridemia and genetic factors have been speculative. The present study was aimed at quantifying the insulin resistance and influence of family history of diabetes in subjects with metabolic syndrome developing prediabetes and diabetes. Consecutive subjects attending the endocrine clinic were evaluated for metabolic syndrome as per definition of International Diabetes Federation, 2005. The family history of diabetes in their first degree relatives was ascertained and Homeostasis model assessment of Insulin resistance (HOMA-IR), Homeostasis model assessment for beta cell function (HOMA-B) and Quantitative insulin sensitivity check index (QUICKI) were calculated in 163 subjects enrolled. HOMA-IR was higher (p<0.05) but HOMA-B and QUICKI were lower (p<0.0001) in subjects with metabolic syndrome+prediabetes or diabetes compared to metabolic syndrome with normal glucose tolerance. HOMA-B was lower and prevalence of prediabetes and diabetes was higher in metabolic syndrome subjects with family history of diabetes than in those without such family history (p<0.05). subjects with metabolic syndrome having prediabetes and diabetes had more severe insulin resistance than those with metabolic syndrome only. Beta cell dysfunction was remarkable and prevalence of prediabetes was high in metabolic syndrome subjects with family history of diabetes. Both the severity of the insulin resistance and family history of diabetes are therefore proposed to be determinants of diminished Beta cell function leading to diabetes in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  13. Testosterone and the metabolic syndrome.

    PubMed

    Muraleedharan, Vakkat; Jones, T Hugh

    2010-10-01

    Metabolic syndrome and testosterone deficiency in men are closely Linked. Epidemiological studies have shown that Low testosterone Levels are associated with obesity, insulin resistance and an adverse Lipid profile in men. Conversely in men with metabolic syndrome and type 2 diabetes have a high prevalence of hypogonadism. Metabolic syndrome and Low testosterone status are both independently associated with increased all-cause and cardiovascular mortality. Observational and experimental data suggest that physiological replacement of testosterone produces improvement in insulin resistance, obesity, dyslipidae-mia and sexual dysfunction along with improved quality of Life. However, there are no Long-term interventional studies to assess the effect of testosterone replacement on mortality in men with Low testosterone Levels. This article reviews the observational and interventional clinical data in relation to testosterone and metabolic syndrome.

  14. Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55.

    PubMed

    Collison, Kate S; Saleh, Soad M; Bakheet, Razan H; Al-Rabiah, Rana K; Inglis, Angela L; Makhoul, Nadine J; Maqbool, Zakia M; Zaidi, Marya Zia; Al-Johi, Mohammed A; Al-Mohanna, Futwan A

    2009-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance. It is also a predisposing factor for type 2 diabetes. Dietary factors are believed to contribute to all three diseases. NAFLD is characterized by increased intrahepatic fat and mitochondrial dysfunction, and its etiology may be attributed to excessive fructose intake. Consumption of high fructose corn syrup-55 (HFCS-55) stands at up to 15% of the average total daily energy intake in the United States, and is linked to weight gain and obesity. The aim of this study was to establish whether HFCS-55 could contribute to the pathogenesis of NAFLD, by examining the effects of HFCS-55 on hepatocyte lipogenesis, insulin signaling, and cellular function, in vitro and in vivo. Exposure of hepatocytes to HFCS-55 caused a significant increase in hepatocellular triglyceride (TG) and lipogenic proteins. Basal production of reactive oxygen metabolite (ROM) was increased, together with a decreased capacity to respond to an oxidative challenge. HFCS-55 induced a downregulation of the insulin signaling pathway, as indicated by attenuated (ser473)phosphorylation of AKT1. The c-Jun amino-terminal kinase (JNK), which is intimately linked to insulin resistance, was also activated; and this was accompanied by an increase in endoplasmic reticulum (ER) stress and intracellular free calcium perturbation. Hepatocytes exposed to HFCS-55 exhibited mitochondrial dysfunction and released cytochrome C (CytC) into the cytosol. Hepatic steatosis and mitochondrial disruption was induced in vivo by a diet enriched with 20% HFCS 55; accompanied by hypoadiponectinemia and elevated fasting serum insulin and retinol-binding protein-4 (RBP4) levels. Taken together our findings indicate a potential mechanism by which HFCS-55 may contribute to the pathogenesis of NAFLD.

  15. Hyperinsulinemia fails to augment ET-1 action in the skeletal muscle vascular bed in vivo in humans

    PubMed Central

    Lteif, Amale A.; Fulford, Angie D.; Considine, Robert V.; Gelfand, Inessa; Baron, Alain D.; Mather, Kieren J.

    2008-01-01

    Endogenous endothelin action is augmented in human obesity and type 2 diabetes and contributes to endothelial dysfunction and impairs insulin-mediated vasodilation in humans. We hypothesized that insulin resistance-associated hyperinsulinemia could preferentially drive endothelin-mediated vasoconstriction. We applied hyperinsulinemic-euglycemic clamps with higher insulin dosing in obese subjects than lean subjects (30 vs. 10 mU·m−2·min−1, respectively), with the goal of matching insulin's nitric oxide (NO)-mediated vascular effects. We predicted that, under these circumstances, insulin-stimulated endothelin-1 (ET-1) action (assessed with the type A endothelin receptor antagonist BQ-123) would be augmented in proportion to hyperinsulinemia. NO bioactivity was assessed using the nitric oxide synthase inhibitor NG-monomethyl-l-arginine. Insulin-mediated vasodilation and insulin-stimulated NO bioavailability were well matched across groups by this approach. As expected, steady-state insulin levels were approximately threefold higher in obese than lean subjects (109.2 ± 10.2 pmol/l vs. 518.4 ± 84.0, P = 0.03). Despite this, the augmentation of insulin-mediated vasodilation by BQ-123 was not different between groups. ET-1 flux across the leg was not augmented by insulin alone but was increased with the addition of BQ-123 to insulin (P = 0.01 BQ-123 effect, P = not significant comparing groups). Endothelin antagonism augmented insulin-stimulated NO bioavailability and NOx flux, but not differently between groups and not proportional to hyperinsulinemia. These findings do not support the hypothesis that insulin resistance-associated hyperinsulinemia preferentially drives endothelin-mediated vasoconstriction. PMID:18957616

  16. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes

    PubMed Central

    Peiris, Heshan; Duffield, Michael D.; Fadista, Joao; Kashmir, Vinder; Genders, Amanda J.; McGee, Sean L.; Martin, Alyce M.; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A.; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Busciglio, Jorge; Coskun, Pinar E.; Becker, Ann; Belichenko, Pavel V.; Mobley, William C.; Ryan, Michael T.; Chan, Jeng Yie; Laybutt, D. Ross; Coates, P. Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A.; Keating, Damien J.

    2016-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D. PMID:27195491

  17. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    PubMed

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  18. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance.

    PubMed

    Barber, Thomas M; Dimitriadis, George K; Andreou, Avgi; Franks, Stephen

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common condition that typically develops in reproductive-age women. The cardinal clinical and biochemical characteristics of PCOS include reproductive dysfunction and hyperandrogenic features. PCOS is also strongly associated with obesity based on data from epidemiological and genetic studies. Accordingly, PCOS often becomes manifest in those women who carry a genetic predisposition to its development, and who also gain weight. The role of weight gain and obesity in the development of PCOS is mediated at least in part, through worsening of insulin resistance. Compensatory hyperinsulinaemia that develops in this context disrupts ovarian function, with enhanced androgen production and arrest of ovarian follicular development. Insulin resistance also contributes to the strong association of PCOS with adverse metabolic risk, including dysglycaemia, dyslipidaemia and fatty liver. Conversely, modest weight loss of just 5% body weight with improvement in insulin sensitivity, frequently results in clinically meaningful improvements in hyperandrogenic, reproductive and metabolic features. Future developments of novel therapies for obese women with PCOS should focus on promotion of weight loss and improvement in insulin sensitivity. In this context, therapies that complement lifestyle changes such as dietary modification and exercise, particularly during the maintenance phase of weight loss are important. Putative novel targets for therapy in PCOS include human brown adipose tissue. © Royal College of Physicians 2015. All rights reserved.

  19. Branched-chain amino acids in metabolic signalling and insulin resistance.

    PubMed

    Lynch, Christopher J; Adams, Sean H

    2014-12-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.

  20. Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet-Induced Obese Mice.

    PubMed

    Maessen, Dionne E; Brouwers, Olaf; Gaens, Katrien H; Wouters, Kristiaan; Cleutjens, Jack P; Janssen, Ben J; Miyata, Toshio; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-04-01

    Obesity is associated with an increased risk for the development of type 2 diabetes and vascular complications. Advanced glycation end products are increased in adipose tissue and have been associated with insulin resistance, vascular dysfunction, and inflammation of adipose tissue. Here, we report that delayed intervention with pyridoxamine (PM), a vitamin B6 analog that has been identified as an antiglycating agent, protected against high-fat diet (HFD)-induced body weight gain, hyperglycemia, and hypercholesterolemia, compared with mice that were not treated. In both HFD-induced and db/db obese mice, impaired glucose metabolism and insulin resistance were prevented by PM supplementation. PM inhibited the expansion of adipose tissue and adipocyte hypertrophy in mice. In addition, adipogenesis of murine 3T3-L1 and human Simpson-Golabi-Behmel Syndrome preadipocytes was dose- and time-dependently reduced by PM, as demonstrated by Oil Red O staining and reduced expression of adipogenic differentiation genes. No ectopic fat deposition was found in the liver of HFD mice. The high expression of proinflammatory genes in visceral adipose tissue of the HFD group was significantly attenuated by PM. Treatment with PM partially prevented HFD-induced mild vascular dysfunction. Altogether, these findings highlight the potential of PM to serve as an intervention strategy in obesity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model.

    PubMed

    Ti, Yun; Xie, Guo-lu; Wang, Zhi-hao; Bi, Xiao-lei; Ding, Wen-yuan; Wang, Jia; Jiang, Gui-Hua; Bu, Pei-Li; Zhang, Yun; Zhong, Ming; Zhang, Wei

    2011-11-01

    Tribbles 3 (TRB3) is associated with insulin resistance, an important trigger in the development of diabetic cardiomyopathy (DCM). We sought to determine whether TRB3 plays a major role in modulating DCM and the mechanisms involved. The type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated the characteristics of type 2 DCM by serial echocardiography and metabolite tests, Western blot analysis for TRB3 expression, and histopathologic analyses of cardiomyocyte density, lipids accumulation, cardiac inflammation, and fibrosis area. We then used gene silencing to investigate the role of TRB3 in the pathophysiologic features of DCM. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, aberrant lipids deposition, cardiac inflammation, fibrosis, and TRB3 overexpression. We found that the silencing of TRB3 ameliorated metabolic disturbance and insulin resistance; myocardial hypertrophy, lipids accumulation, inflammation, fibrosis, and elevated collagen I-to-III content ratio in DCM rats were significantly decreased. These anatomic findings were accompanied by significant improvements in cardiac function. Furthermore, with TRB3 gene silencing, the inhibited phosphorylation of Akt was restored and the increased phosphorylation of extracellular signal-regulated kinase 1/2 and Jun NH(2)-terminal kinase in DCM was significantly decreased. TRB3 gene silencing may exert a protective effect on DCM by improving selective insulin resistance, implicating its potential role for treatment of human DCM.

  2. Alcohol consumption, mediating biomarkers, and risk of type 2 diabetes among middle-aged women.

    PubMed

    Beulens, Joline W J; Rimm, Eric B; Hu, Frank B; Hendriks, Henk F J; Mukamal, Kenneth J

    2008-10-01

    The purpose of this study was to investigate whether adiponectin concentrations and biomarkers of inflammation, endothelial dysfunction, and insulin resistance mediate the association between alcohol consumption and diabetes. In a nested case-control study of 705 women with incident diabetes and 787 matched control subjects, we examined the adjusted relationship between baseline alcohol consumption and risk of diabetes before and after adjustment for markers of inflammation/endothelial dysfunction (C-reactive protein, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, tumor necrosis factor-alpha receptor 2, and interleukin-6), fasting insulin, and adiponectin concentrations. Alcohol consumption was associated with a decreased risk of diabetes (odds ratio per 12.5 g/day increment in alcohol use 0.58; 95% CI 0.49-0.69; P < 0.001). Adjustment for BMI attenuated the association by 25%. None of the markers of inflammation or fasting insulin appeared to account for >2% of the observed relationship. Without adjustment for BMI, these biomarkers individually explained slightly more of the association, but <10% in all cases. Adiponectin accounted for 25% in a fully adjusted model and for 29% without adjustment for BMI. In this population of women, alcohol consumption was inversely associated with risk of type 2 diabetes. Adiponectin appeared to be a mediator of this association, but circulating biomarkers of inflammation, endothelial dysfunction, and fasting insulin did not explain this association. These results suggest that further research is needed into the potentially mediating roles of other biomarkers affected by alcohol consumption.

  3. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice.

    PubMed

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Akbarpour, Mahzad; Maccari, Rosanna; Ottanà, Rosaria

    2017-09-01

    Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity.

    PubMed

    Morrow, Ryan M; Picard, Martin; Derbeneva, Olga; Leipzig, Jeremy; McManus, Meagan J; Gouspillou, Gilles; Barbat-Artigas, Sébastien; Dos Santos, Carlos; Hepple, Russell T; Murdock, Deborah G; Wallace, Douglas C

    2017-03-07

    Diabetes is associated with impaired glucose metabolism in the presence of excess insulin. Glucose and fatty acids provide reducing equivalents to mitochondria to generate energy, and studies have reported mitochondrial dysfunction in type II diabetes patients. If mitochondrial dysfunction can cause diabetes, then we hypothesized that increased mitochondrial metabolism should render animals resistant to diabetes. This was confirmed in mice in which the heart-muscle-brain adenine nucleotide translocator isoform 1 (ANT1) was inactivated. ANT1-deficient animals are insulin-hypersensitive, glucose-tolerant, and resistant to high fat diet (HFD)-induced toxicity. In ANT1-deficient skeletal muscle, mitochondrial gene expression is induced in association with the hyperproliferation of mitochondria. The ANT1-deficient muscle mitochondria produce excess reactive oxygen species (ROS) and are partially uncoupled. Hence, the muscle respiration under nonphosphorylating conditions is increased. Muscle transcriptome analysis revealed the induction of mitochondrial biogenesis, down-regulation of diabetes-related genes, and increased expression of the genes encoding the myokines FGF21 and GDF15. However, FGF21 was not elevated in serum, and FGF21 and UCP1 mRNAs were not induced in liver or brown adipose tissue (BAT). Hence, increased oxidation of dietary-reducing equivalents by elevated muscle mitochondrial respiration appears to be the mechanism by which ANT1-deficient mice prevent diabetes, demonstrating that the rate of mitochondrial oxidation of calories is important in the etiology of metabolic disease.

  5. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat

    PubMed Central

    Warren, Blair E.; Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Clanachan, Alexander S.; Affolter, Andreas; Hersberger, Martin; Zaugg, Michael

    2014-01-01

    Although evidence that type 2 diabetes mellitus (T2DM) is accompanied by mitochondrial dysfunction in skeletal muscle has been accumulating, a causal link between mitochondrial dysfunction and the pathogenesis of the disease remains unclear. Our study focuses on an early stage of the disease to determine whether mitochondrial dysfunction contributes to the development of T2DM. The fructose-fed (FF) rat was used as an animal model of early T2DM. Mitochondrial respiration and acylcarnitine species were measured in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscle. Although FF rats displayed characteristic signs of T2DM, including hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, mitochondrial content was preserved in both muscles from FF rats. The EDL muscle had reduced complex I and complex I and II respiration in the presence of pyruvate but not glutamate. The decrease in pyruvate-supported respiration was due to a decrease in pyruvate dehydrogenase activity. Accumulation of C14:1 and C14:2 acylcarnitine species and a decrease in respiration supported by long-chain acylcarnitines but not acetylcarnitine indicated dysfunctional β-oxidation in the EDL muscle. In contrast, the soleus muscle showed preserved mitochondrial respiration, pyruvate dehydrogenase activity, and increased fatty acid oxidation, as evidenced by overall reduced acylcarnitine levels. Aconitase activity, a sensitive index of reactive oxygen species production in mitochondria, was reduced exclusively in EDL muscle, which showed lower levels of the antioxidant enzymes thioredoxin reductase and glutathione peroxidase. Here, we show that the glycolytic EDL muscle is more prone to an imbalance between energy supply and oxidation caused by insulin resistance than the oxidative soleus muscle. PMID:24425766

  6. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms

    PubMed Central

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications. PMID:26447102

  7. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.

  8. Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small heterodimer partner (SHP) in mouse models.

    PubMed

    Kim, Y D; Kim, Y H; Cho, Y M; Kim, D K; Ahn, S W; Lee, J M; Chanda, D; Shong, M; Lee, C H; Choi, H S

    2012-05-01

    IL-6 is a proinflammatory cytokine associated with the pathogenesis of hepatic diseases. Metformin is an anti-diabetic drug used for the treatment of type 2 diabetes, and orphan nuclear receptor small heterodimer partner (SHP, also known as NR0B2), a transcriptional co-repressor, plays an important role in maintaining metabolic homeostasis. Here, we demonstrate that metformin-mediated activation of AMP-activated protein kinase (AMPK) increases SHP protein production and regulates IL-6-induced hepatic insulin resistance. We investigated metformin-mediated SHP production improved insulin resistance through the regulation of an IL-6-dependent pathway (involving signal transducer and activator of transcription 3 [STAT3] and suppressor of cytokine signalling 3 [SOCS3]) in both Shp knockdown and Shp null mice. IL-6-induced STAT3 transactivation and SOCS3 production were significantly repressed by metformin, adenoviral constitutively active AMPK (Ad-CA-AMPK), and adenoviral SHP (Ad-SHP), but not in Shp knockdown, or with the adenoviral dominant negative form of AMPK (Ad-DN-AMPK). Chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP) and protein localisation studies showed that SHP inhibits DNA binding of STAT3 on the Socs3 gene promoter via interaction and colocalisation within the nucleus. Upregulation of inflammatory genes and downregulation of hepatic insulin signalling by acute IL-6 treatment were observed in wild-type mice but not in Shp null mice. Finally, chronic IL-6 exposure caused hepatic insulin resistance, leading to impaired insulin tolerance and elevated gluconeogenesis, and these phenomena were aggravated in Shp null mice. Our results demonstrate that SHP upregulation by metformin may prevent hepatic disorders by regulating the IL-6-dependent pathway, and that this pathway can help to ameliorate the pathogenesis of cytokine-mediated metabolic dysfunction.

  9. Endothelial function in young women with polycystic ovary syndrome (PCOS): Implications of body mass index (BMI) and insulin resistance.

    PubMed

    El-Kannishy, Ghada; Kamal, Shaheer; Mousa, Amany; Saleh, Omayma; Badrawy, Adel El; Farahaty, Reham El; Shokeir, Tarek

    2010-01-01

    Evidence regarding endothelial function in both obese and nonobese women with PCOS is contradictory. It is unknown whether obese women with PCOS carry an increased risk related to body mass index (BMI). To identify endothelial function and investigate its relationship to body mass index and insulin resistance in young women with PCOS. Twenty-two obese women with PCOS (BMI 35.2 ± 3.2) as well as fourteen lean women (BMI 22.8 ± 2.1)with PCOS were included in the study. Fasting serum insulin, blood glucose were estimated and HOMA and Quicki index were calculated. All patients were subjected to ultrasound recording of brachial artery diameter at rest and after reactive hyperemia (FMD) for assessment of endothelial function. Ten age matched healthy females with normal BMI were chosen as a control group. There were higher basal insulin levels with lower Quicki index and higher HOMA index in women with PCOS than normal group, but the differences were significant only between obese PCOS subgroup and control. On the other hand, FMD was significantly and equally decreased in both groups of women with PCOS, compared with control subjects (3.7 ± 3.2% in the nonobese subgroup and 3.5 ± 2.8% in the obese one vs. 10.6 ± 4.1% in control subjects, P, 0.001). FMD was not correlated with BMI nor insulin resistance indices. Endothelial dysfunction is already present in young women with PCOS. In this patient group, it cannot be attributed to insulin resistance or obesity. © 2010 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  10. [Contribution of leptin in the development of insulin resistance in pregnant women with obesity].

    PubMed

    Tarasenko, K

    2014-03-01

    The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.

  11. Dietary Omega-3 Fatty Acid Deficiency and High Fructose intake in the Development of Metabolic Syndrome Brain, Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Simopoulos, Artemis P.

    2013-01-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  12. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    PubMed

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The effect of Chinese Jinzhida recipe on the hippocampus in a rat model of diabetes-associated cognitive decline

    PubMed Central

    2013-01-01

    Background To investigate the effects of treatment with Multi component Chinese Medicine Jinzhida (JZD) on behavioral deficits in diabetes-associated cognitive decline (DACD) rats and verify our hypothesis that JZD treatment improves cognitive function by suppressing the endoplasmic reticulum stress (ERS) and improving insulin signaling transduction in the rats’ hippocampus. Methods A rat model of type 2 diabetes mellitus (T2DM) was established using high fat diet and streptozotocin (30 mg/kg, ip). Insulin sensitivity was evaluated by the oral glucose tolerance test and the insulin tolerance test. After 7 weeks, the T2DM rats were treated with JZD. The step-down test and Morris water maze were used to evaluate behavior in T2DM rats after 5 weeks of treatment with JZD. Levels of phosphorylated proteins involved in the ERS and in insulin signaling transduction pathways were assessed by Western blot for T2DM rats’ hippocampus. Results Compared to healthy control rats, T2DM rats initially showed insulin resistance and had declines in acquisition and retrieval processes in the step-down test and in spatial memory in the Morris water maze after 12 weeks. Performance on both the step-down test and Morris water maze tasks improved after JZD treatment. In T2DM rats, the ERS was activated, and then inhibited the insulin signal transduction pathways through the Jun NH2-terminal kinases (JNK) mediated. JZD treatment suppressed the ERS, increased insulin signal transduction, and improved insulin resistance in the rats’ hippocampus. Conclusions Treatment with JZD improved cognitive function in the T2DM rat model. The possible mechanism for DACD was related with ERS inducing the insulin signal transduction dysfunction in T2DM rats’ hippocampus. The JZD could reduce ERS and improve insulin signal transduction and insulin resistance in T2DM rats’ hippocampus and as a result improved the cognitive function. PMID:23829668

  14. Paternal Metabolic and Cardiovascular Risk Factors for Fetal Growth Restriction

    PubMed Central

    Hillman, Sara; Peebles, Donald M.; Williams, David J.

    2013-01-01

    OBJECTIVE Fathers of low–birth weight offspring are more likely to have type 2 diabetes and cardiovascular disease in later life. We investigated whether paternal insulin resistance and cardiovascular risk factors were evident at the time that fetal growth–restricted offspring were born. RESEARCH DESIGN AND METHODS We carried out a case-control study of men who fathered pregnancies affected by fetal growth restriction, in the absence of recognized fetal disease (n = 42), compared with men who fathered normal–birth weight offspring (n = 77). All mothers were healthy, nonsmoking, and similar in age, BMI, ethnicity, and parity. Within 4 weeks of offspring birth, all fathers had measures of insulin resistance (HOMA index), blood pressure, waist circumference, endothelial function (flow-mediated dilatation), lipid profile, weight, and smoking habit. Comparison was made using multivariable logistical regression analysis. RESULTS Fathers of fetal growth–restricted offspring [mean (SD) 1.8th (2.2) customized birth centile] were more likely to have insulin resistance, hypertension, central adiposity, and endothelial dysfunction and to smoke cigarettes compared with fathers of normal grown offspring. After multivariable analysis, paternal insulin resistance and smoking remained different between the groups. Compared with fathers of normal grown offspring, men who fathered pregnancies affected by fetal growth restriction had an OR 7.68 (95% CI 2.63–22.40; P < 0.0001) of having a 1-unit higher log HOMA-IR value and 3.39 (1.26–9.16; P = 0.016) of being a smoker. CONCLUSIONS Men who recently fathered growth-restricted offspring have preclinical evidence of the insulin resistance syndrome and are more likely to smoke than fathers of normal grown offspring. Paternal lifestyle may influence heritable factors important for fetal growth. PMID:23315598

  15. IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies

    PubMed Central

    Hardaway, Aimalie L; Podgorski, Izabela

    2013-01-01

    Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies. PMID:23795967

  16. IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies.

    PubMed

    Hardaway, Aimalie L; Podgorski, Izabela

    2013-06-01

    Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.

  17. Testosterone and the metabolic syndrome

    PubMed Central

    Muraleedharan, Vakkat; Jones, T. Hugh

    2010-01-01

    Metabolic syndrome and testosterone deficiency in men are closely Linked. Epidemiological studies have shown that Low testosterone Levels are associated with obesity, insulin resistance and an adverse Lipid profile in men. Conversely in men with metabolic syndrome and type 2 diabetes have a high prevalence of hypogonadism. Metabolic syndrome and Low testosterone status are both independently associated with increased all-cause and cardiovascular mortality. Observational and experimental data suggest that physiological replacement of testosterone produces improvement in insulin resistance, obesity, dyslipidae-mia and sexual dysfunction along with improved quality of Life. However, there are no Long-term interventional studies to assess the effect of testosterone replacement on mortality in men with Low testosterone Levels. This article reviews the observational and interventional clinical data in relation to testosterone and metabolic syndrome. PMID:23148165

  18. Effect of metabolic abnormalities on endothelial dysfunction in normotensive offspring of subject with hypertension.

    PubMed

    Žižek, B; Žižek, D; Bedenčič, K; Jerin, A; Poredoš, P

    2013-08-01

    Essential hypertension (EH) is often accompanied by hyperinsulinemia/insulin resistance (IR) and deranged adiponectin secretion. IR may in turn be associated with endothelial dysfunction and increased levels of asymmetric dimethylarginine (ADMA). Therefore, we aimed to determine metabolic abnormalities in normotensive offspring of subjects with essential hypertension (familial trait-FT) and to examine their relations to endothelium-dependent vasodilation of the brachial artery (BA). We included 77 subjects, 38 were normotensive individuals with FT aged 28-39 (mean 33) years and 39 age-matched Controls without FT. Insulin, adiponectin and ADMA plasma levels were determined by radioimmunoassay. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperemia (flow-mediated dilation-FMD) were measured. Subjects with FT had higher insulin and lower adiponectin levels than controls (13.65±6.70 vs. 7.09±2.20 mE/L; P<0.001 and 13.60±5.98 vs. 17.27±7.17 mg/L respectively; P<0.05). Insulin and adiponectin levels were negatively interrelated (r=-0.33, P=0.003). ADMA levels were comparable in both groups. The study group had worse FMD than Controls (6.11±3.28 vs. 10.20±2.07%; P<0.001). IR was independently associated with FMD (partial R2=0.23, P<0.001). Increased insulin and decreased adiponectin levels along with endothelial dysfunction are present in normotensive subjects with FT. IR and hypoadiponectinemia are interrelated, but only hyperinsulinemia has an independent adverse influence on endothelial function. Results of our study did not confirm the role of ADMA in pathogenesis of evolving hypertension.

  19. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.

  20. Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training.

    PubMed

    Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; Dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Antunes, Hanna Karen Moreira

    2016-01-01

    Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation.

  1. Disconnect Between Adipose Tissue Inflammation and Cardiometabolic Dysfunction in Ossabaw Pigs

    PubMed Central

    Vieira-Potter, Victoria J.; Lee, Sewon; Bayless, David S.; Scroggins, Rebecca J.; Welly, Rebecca J.; Fleming, Nicholas J.; Smith, Thomas N.; Meers, Grace M.; Hill, Michael A.; Rector, R. Scott; Padilla, Jaume

    2015-01-01

    Objective The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease due to its size and susceptibility to atherosclerosis, among other characteristics. Here we investigated the relationship between adipose tissue inflammation and metabolic dysfunction in this model. Methods Young female Ossabaw pigs were fed a western-style high-fat diet (HFD) (n=4) or control low-fat diet (LFD) (n=4) for a period of 9 months and compared for cardiometabolic outcomes and adipose tissue inflammation. Results The HFD-fed “OBESE” pigs were 2.5 times heavier (p<0.001) than LFD-fed “LEAN” pigs and developed severe obesity. HFD-feeding caused pronounced dyslipidemia, hypertension, insulin resistance (systemic and adipose) as well as induction of inflammatory genes, impairments in vasomotor reactivity to insulin and atherosclerosis in the coronary arteries. Remarkably, visceral, subcutaneous and perivascular adipose tissue inflammation (via FACS analysis and RT-PCR) was not increased in OBESE pigs, nor were circulating inflammatory cytokines. Conclusions These findings reveal a disconnect between adipose tissue inflammation and cardiometabolic dysfunction induced by western diet feeding in the Ossabaw pig model. PMID:26524201

  2. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Desinia B.

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk ormore » following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These effects were largely reversible upon one week recovery. • Ozone exposure did not cause liver or muscle insulin resistance. • Subchronic ozone exposure led to decrease in serum insulin. • Ozone severely impaired beta cell insulin secretion in response to glucose.« less

  3. Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders123

    PubMed Central

    Santaren, Ingrid D; Watkins, Steven M; Liese, Angela D; Wagenknecht, Lynne E; Rewers, Marian J; Haffner, Steven M; Lorenzo, Carlos

    2014-01-01

    Background: Growing evidence suggests that dairy consumption is associated with lower type 2 diabetes risk. However, observational studies have reported inconsistent results, and few have examined dairy's association with the underlying disorders of insulin resistance and β-cell dysfunction. Objective: We investigated the association of the dairy fatty acid biomarkers pentadecanoic acid (15:0) and trans-palmitoleic acid (trans 16:1n−7) with type 2 diabetes traits by evaluating 1) prospective associations with incident diabetes after 5 y of follow-up and 2) cross-sectional associations with directly measured insulin resistance and β-cell dysfunction. Design: The study analyzed 659 adults without diabetes at baseline from the triethnic multicenter Insulin Resistance Atherosclerosis Study (IRAS). Diabetes status was assessed by using oral-glucose-tolerance tests. Frequently sampled intravenous-glucose-tolerance tests measured insulin sensitivity (SI) and β-cell function [disposition index (DI)]. Serum fatty acids were quantified by using gas chromatography. Logistic and linear regression models were adjusted for demographic, lifestyle, and dietary variables. Results: Serum 15:0 was a significant biomarker for total dairy intake in the IRAS cohort. It was associated with a decreased incident diabetes risk (OR: 0.73, P = 0.02) and was positively associated with log SI (β: 0.84, P = 0.03) and log DI (β: 2.21, P = 0.02) in fully adjusted models. trans 16:1n−7 was a marker of total partially hydrogenated dietary fat intake and was not associated with outcomes in fully adjusted models. Conclusions: Serum 15:0, a marker of short-term intake of this fatty acid, was inversely associated with diabetes risk in this multiethnic cohort. This study may contribute to future recommendations regarding the benefits of dairy products on type 2 diabetes risk. PMID:25411288

  4. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    PubMed

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression

    PubMed Central

    Mallinson, Joanne E.; Marimuthu, Kanagaraj; Murton, Andrew; Selby, Anna; Smith, Kenneth; Constantin‐Teodosiu, Dumitru; Rennie, Michael J.

    2015-01-01

    Key points Statins cause muscle‐specific side effects, most commonly muscle aches/weakness (myalgia), particularly in older people. Furthermore, evidence has linked statin use to increased risk of type 2 diabetes. However, the mechanisms involved are unknown.This is the first study to measure muscle protein turnover rates and insulin sensitivity in statin myalgic volunteers and age‐matched, non‐statin users under controlled fasting and fed conditions using gold standard methods.We demonstrate in older people that chronic statin myalgia is not associated with deficits in muscle strength and lean mass or the dysregulation of muscle protein turnover compared to non‐statin users. Furthermore, there were no between‐group differences in blood or muscle inflammatory markers.Statin users did, however, show blunting of muscle power output at the onset of dynamic exercise, increased abdominal adiposity, whole body and leg insulin resistance, and clear differential expression of muscle genes linked to mitochondrial dysfunction and apoptosis, which warrant further investigation. Abstract Statins are associated with muscle myalgia and myopathy, which probably reduce habitual physical activity. This is particularly relevant to older people who are less active, sarcopaenic and at increased risk of statin myalgia. We hypothesised that statin myalgia would be allied to impaired strength and work capacity in older people, and determined whether differences aligned with divergences in lean mass, protein turnover, insulin sensitivity and the molecular regulation of these processes. Knee extensor strength and work output during 30 maximal isokinetic contractions were assessed in healthy male volunteers, nine with no statin use (control 70.4 ± 0.7 years) and nine with statin myalgia (71.5 ± 0.9 years). Whole body and leg glucose disposal, muscle myofibrillar protein synthesis (MPS) and leg protein breakdown (LPB) were measured during fasting (≈5 mU l−1 insulin) and fed (≈40 mU l−1 insulin + hyperaminoacidaemia) euglyceamic clamps. Muscle biopsies were taken before and after each clamp. Lean mass, MPS, LPB and strength were not different but work output during the initial three isokinetic contractions was 19% lower (P < 0.05) in statin myalgic subjects due to a delay in time to reach peak power output. Statin myalgic subjects had reduced whole body (P = 0.05) and leg (P < 0.01) glucose disposal, greater abdominal adiposity (P < 0.05) and differential expression of 33 muscle mRNAs (5% false discovery rate (FDR)), six of which, linked to mitochondrial dysfunction and apoptosis, increased at 1% FDR. Statin myalgia was associated with impaired muscle function, increased abdominal adiposity, whole body and leg insulin resistance, and evidence of mitochondrial dysfunction and apoptosis. PMID:25620655

  6. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    PubMed

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  7. Serum resistin correlates with central obesity but weakly with insulin resistance in Chinese children and adolescents.

    PubMed

    Li, M; Fisette, A; Zhao, X-Y; Deng, J-Y; Mi, J; Cianflone, K

    2009-04-01

    Resistin has been linked with obesity and hypothesized as a potential marker of insulin resistance in addition to being linked with acute inflammation. However, these links are still highly controversial in humans. Our goal was to examine resistin levels in relation to obesity, insulin resistance and inflammation markers in a large population of Asian children and adolescents. Children and adolescents (n=3472) aged 6-18 years, boys (n=1765) and girls (n=1707), were assessed for body size parameters, pubertal development, blood lipids, glucose, insulin, resistin, C-reactive protein (CRP), adiponectin and complement C3 (C3) levels. Resistin increased with central obesity in both genders but not with simple adiposity in boys. Several markers associated with central obesity correlated in a gender-specific fashion with plasma resistin. Waist circumference, fat-mass percentage, waist-to-height ratio and body mass index (BMI) positively correlated with resistin in both genders. Blood lipids such as triglycerides, nonesterified fatty acids (NEFA) and low-density lipoprotein cholesterol, diastolic and systolic blood pressure correlated positively with resistin in boys. NEFA, high-density lipoprotein cholesterol (negatively) and inflammation markers, such as CRP and C3, positively correlated with resistin in girls. There was no correlation between resistin and adiponectin, and no association of adiponectin with resistin quintiles in either boys or girls. In both boys and girls, resistin tended to decrease with age, with girls having higher levels than boys. Few indices of insulin resistance were linked with plasma resistin in either gender. In this population, plasma resistin levels are a weak biochemical marker of metabolic dysfunction defined by central obesity, adiposity and inflammation and does not predict insulin resistance. Only a small proportion of resistin variation can be explained by factors related to metabolic syndrome, suggesting that resistin is not strongly implicated in a concentration-dependent fashion in any of the examined pathologies.

  8. Review of gestational diabetes mellitus effects on vascular structure and function.

    PubMed

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.

  9. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats.

    PubMed

    Miller, Desinia B; Snow, Samantha J; Henriquez, Andres; Schladweiler, Mette C; Ledbetter, Allen D; Richards, Judy E; Andrews, Debora L; Kodavanti, Urmila P

    2016-09-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. Published by Elsevier Inc.

  10. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats☆,☆☆

    PubMed Central

    Miller, Desinia B.; Snow, Samantha J.; Henriquez, Andres; Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L.; Kodavanti, Urmila P.

    2017-01-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. PMID:27368153

  11. Clinical and biochemical characteristics of polycystic ovary syndrome in Korean women.

    PubMed

    Chae, Soo Jin; Kim, Jin Ju; Choi, Young Min; Hwang, Kyu Ri; Jee, Byung Chul; Ku, Seung Yup; Suh, Chang Suk; Kim, Seok Hyun; Kim, Jung Gu; Moon, Shin Yong

    2008-08-01

    We investigated the differences in anthropometrical, hormonal and insulin resistance parameters according to the subtype of polycystic ovary syndrome (PCOS) in Korean women. We recruited 166 women with PCOS and retrospectively recruited 277 controls. PCOS was diagnosed by irregular menstruation (IM), polycystic ovary (PCO) and hyperandrogenism (HA). Subjects were divided into four subgroups: the IM/HA/PCO group (n = 87, 52.4%), the IM/PCO group (n = 52, 31.3%), the IM/HA group (n = 23, 13.9%) and the HA/PCO group (n = 4, 2.4%). Clinical and biochemical variables were compared among the PCOS subgroups. The IM/HA/PCO and IM/HA groups showed higher body mass index (P < 0.001) and waist-to-hip ratio (P < 0.001) than the IM/PCO group. The IM/HA group had higher triglyceride levels than the other groups (P < 0.001). Higher fasting insulin (P < 0.001) and postprandial 2 h insulin (P < 0.01) were noted in the IM/HA/PCO group and the IM/HA group, compared with the IM/PCO group. Women with PCOS showed lower sex hormone-binding globulin (P < 0.001) and higher systolic blood pressure (BP) (P = 0.004), diastolic BP (P = 0.001), fasting insulin (P < 0.001), postprandial 2 h insulin (P < 0.001), homeostatic model for insulin resistance (P < 0.001) and clinical and biochemical parameters of metabolic syndrome (P < 0.05) compared with subjects without PCOS. Women with PCOS without HA are common in Korea and are less likely to have metabolic dysfunction, insulin resistance and elevated BP. PCOS without HA may be a mild phenotype of PCOS. Therefore, women with PCOS in Korea could have a reduced likelihood of having metabolic syndrome compared with women of other ethnicities.

  12. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    PubMed Central

    Saito, Isao; Hitsumoto, Shinichi; Maruyama, Koutatsu; Nishida, Wataru; Eguchi, Eri; Kato, Tadahiro; Kawamura, Ryoichi; Takata, Yasunori; Onuma, Hiroshi; Osawa, Haruhiko; Tanigawa, Takeshi

    2015-01-01

    Background Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR) and Gutt’s insulin sensitivity index (ISI). Pulse was recorded for 5 min, and time-domain heart rate variability (HRV) indices were calculated: the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive difference (RMSSD). Power spectral analysis provided frequency domain measures of HRV: high frequency (HF) power, low frequency (LF) power, and the LF:HF ratio. Results Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10). Conclusions Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals. PMID:26277879

  13. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    PubMed Central

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-01-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes. PMID:25367288

  14. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    NASA Astrophysics Data System (ADS)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  15. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice.

    PubMed

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-04

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  16. Branched-chain amino acids in metabolic signalling and insulin resistance

    PubMed Central

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  17. Gene expression profiling of 3T3-L1 adipocytes exposed to phloretin.

    PubMed

    Hassan, Meryl; El Yazidi, Claire; Malezet-Desmoulins, Christiane; Amiot, Marie-Josèphe; Margotat, Alain

    2010-07-01

    Adipocyte dysfunction plays a major role in the outcome of obesity, insulin resistance and related cardiovascular complications. Thus, considerable efforts are underway in the pharmaceutical industry to find molecules that target the now well-documented pleiotropic functions of adipocyte. We previously reported that the dietary flavonoid phloretin enhances 3T3-L1 adipocyte differentiation and adiponectin expression at least in part through PPAR gamma activation. The present study was designed to further characterize the molecular mechanisms underlying the phloretin-mediated effects on 3T3-L1 adipocytes using microarray technology. We show that phloretin positively regulates the expression of numerous genes involved in lipogenesis and triglyceride storage, including GLUT4, ACSL1, PEPCK1, lipin-1 and perilipin (more than twofold). The expression of several genes encoding adipokines, in addition to adiponectin and its receptor, is positively or negatively regulated in a way that suggests a possible reduction in systemic insulin resistance and obesity-associated inflammation. Improvement of insulin sensitivity is also suggested by the overexpression of genes associated with insulin signal transduction, such as CAP, PDK1 and Akt2. Many of these genes are PPAR gamma targets, confirming the involvement of PPAR gamma pathway in the phloretin effects on adipocytes. In light of these microarray data, it is reasonable to assume that phloretin may be beneficial for reducing insulin resistance, in a similar way to the thiazolidinedione class of antidiabetic drugs. (c) 2010 Elsevier Inc. All rights reserved.

  18. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis.

    PubMed

    García-Lezana, Teresa; Raurell, Imma; Bravo, Miren; Torres-Arauz, Manuel; Salcedo, María Teresa; Santiago, Alba; Schoenenberger, Andreu; Manichanh, Chaysavanh; Genescà, Joan; Martell, María; Augustin, Salvador

    2018-04-01

    Portal hypertension (PH) drives most of the clinical complications in chronic liver diseases. However, its progression in nonalcoholic steatohepatitis (NASH) and its association with the intestinal microbiota (IM) have been scarcely studied. Our aim was to investigate the role of the IM in the mechanisms leading to PH in early NASH. The experimental design was divided in two stages. In stage 1, Sprague-Dawley rats were fed for 8 weeks a high-fat, high-glucose/fructose diet (HFGFD) or a control diet/water (CD). Representative rats were selected as IM donors for stage 2. In stage 2, additional HFGFD and CD rats underwent intestinal decontamination, followed by IM transplantation with feces from opposite-diet donors (heterologous transplant) or autologous fecal transplant (as controls), generating four groups: CD-autotransplanted, CD-transplanted, HFGFD-autotransplanted, HFGFD-transplanted. After IM transplantation, the original diet was maintained for 12-14 days until death. HFGFD rats developed obesity, insulin resistance, NASH without fibrosis but with PH, intrahepatic endothelial dysfunction, and IM dysbiosis. In HFGFD rats, transplantation with feces from CD donors caused a significant reduction of PH to levels comparable to CD without significant changes in NASH histology. The reduction in PH was due to a 31% decrease of intrahepatic vascular resistance compared to the HFGFD-autotransplanted group (P < 0.05). This effect occurs through restoration of the sensitivity to insulin of the hepatic protein kinase B-dependent endothelial nitric oxide synthase signaling pathway. The IM exerts a direct influence in the development of PH in rats with diet-induced NASH and dysbiosis; PH, insulin resistance, and endothelial dysfunction revert when a healthy IM is restored. (Hepatology 2018;67:1485-1498). © 2017 by the American Association for the Study of Liver Diseases.

  19. Serum vascular endothelial growth factor B is elevated in women with polycystic ovary syndrome and can be decreased with metformin treatment.

    PubMed

    Cheng, Feifei; Zhao, Lu; Wu, Yuanyuan; Huang, Tiantian; Yang, Gangyi; Zhang, Zhanyu; Wu, Yijia; Jia, Fang; Wu, Jinlin; Chen, Chen; Liu, Dongfang

    2016-03-01

    To determine serum vascular endothelial growth factor B (VEGF-B) levels in polycystic ovary syndrome, their association with insulin resistance and β-cell dysfunction, and the effect of metformin on serum VEGF-B levels. A cross-sectional, interventional study. We recruited 103 women with polycystic ovary syndrome and 96 age-matched healthy controls. Serum VEGF-B levels were determined in all participants, and 44 polycystic ovary syndrome patients randomly received metformin. We measured VEGF-B levels in healthy controls and women with polycystic ovary syndrome before and after metformin treatment. Women with polycystic ovary syndrome had higher serum VEGF-B levels, which decreased with metformin treatment. In the lean and overweight/obese groups, patients with polycystic ovary syndrome had higher plasma VEGF-B levels than did healthy controls (P < 0·05). VEGF-B levels were correlated with body mass index, body fat percentage, M values, homeostasis model assessment of insulin resistance and β-cell function indices. A multiple linear regression analysis showed that VEGF-B level was associated with M values after adjusting for age, body mass index, serum sex hormones and serum lipids in women with polycystic ovary syndrome. Serum VEGF-B is significantly higher in women with polycystic ovary syndrome and is closely and positively related to insulin resistance. Metformin treatment reduces VEGF-B levels and ameliorates insulin resistance. © 2015 John Wiley & Sons Ltd.

  20. The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging.

    PubMed

    Toledo, Frederico G S; Goodpaster, Bret H

    2013-10-15

    Mitochondria within skeletal muscle have been implicated in insulin resistance of obesity and type 2 diabetes mellitus as well as impaired muscle function with normal aging. Evaluating the potential of interventions to improve mitochondria is clearly relevant to the prevention or treatment of metabolic diseases and age-related dysfunction. This review provides an overview and critical evaluation of the effects of weight loss and exercise interventions on skeletal muscle mitochondria, along with implications for insulin resistance, obesity, type 2 diabetes and aging. The available literature strongly suggests that the lower mitochondrial capacity associated with obesity, type 2 diabetes and aging is not an irreversible lesion. However, weight loss does not appear to affect this response, even when the weight loss is extreme. In contrast, increasing physical activity improves mitochondrial content and perhaps the function of individual mitochondrion. Despite the consistent effect of exercise to improve mitochondrial capacity, studies mechanistically linking mitochondria to insulin resistance, reductions in intramyocellular lipid or improvement in muscle function remain inconclusive. In summary, studies of diet and exercise training have advanced our understanding of the link between mitochondrial oxidative capacity and insulin resistance in obesity, type 2 diabetes and aging. Nevertheless, additional inquiry is necessary to establish the significance and clinical relevance of those perturbations, which could lead to targeted therapies for a myriad of conditions and diseases involving mitochondria. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Elovl6 Deficiency Improves Glycemic Control in Diabetic db/db Mice by Expanding β-Cell Mass and Increasing Insulin Secretory Capacity.

    PubMed

    Zhao, Hui; Matsuzaka, Takashi; Nakano, Yuta; Motomura, Kaori; Tang, Nie; Yokoo, Tomotaka; Okajima, Yuka; Han, Song-Iee; Takeuchi, Yoshinori; Aita, Yuichi; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Sekiya, Motohiro; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi

    2017-07-01

    Dysfunctional fatty acid (FA) metabolism plays an important role in the pathogenesis of β-cell dysfunction and loss of β-cell mass in type 2 diabetes (T2D). Elovl6 is a microsomal enzyme that is responsible for converting C16 saturated and monounsaturated FAs into C18 species. We previously showed that Elovl6 played a critical role in the development of obesity-induced insulin resistance by modifying FA composition. To further define its role in T2D development, we assessed the effects of Elovl6 deletion in leptin receptor-deficient C57BL/KsJ db / db mice, a model of T2D. The db / db ; Elovl6 -/- mice had a markedly increased β-cell mass with increased proliferation and decreased apoptosis, an adaptive increase in insulin, and improved glycemic control. db / db islets were characterized by a prominent elevation of oleate (C18:1n-9), cell stress, and inflammation, which was completely suppressed by Elovl6 deletion. As a mechanistic ex vivo experiment, isolated islets from Elovl6 -/- mice exhibited reduced susceptibility to palmitate-induced inflammation, endoplasmic reticulum stress, and β-cell apoptosis. In contrast, oleate-treated islets resulted in impaired glucose-stimulated insulin secretion with suppressed related genes irrespective of the Elovl6 gene. Taken together, Elovl6 is a fundamental factor linking dysregulated lipid metabolism to β-cell dysfunction, islet inflammation, and β-cell apoptosis in T2D, highlighting oleate as the potential culprit of β-cell lipotoxicity. © 2017 by the American Diabetes Association.

  2. Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation

    PubMed Central

    He, Jintian; Dong, Li; Xu, Wen; Bai, Kaiwen; Lu, Changhui; Wu, Yanan; Huang, Qiang; Zhang, Lili; Wang, Tian

    2015-01-01

    Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P < 0.05) concentrations of insulin in the serum, higher (P < 0.05) HOMA-IR and total cholesterol, triglycerides (TG), non-esterified fatty acid (NEFA) in the liver, and lower (P < 0.05) enzyme activities (hepatic lipase [HL], lipoprotein lipase [LPL], total lipase [TL]) and concentration of glycogen in the liver than the NBW group. TB supplementation decreased (P < 0.05) the concentrations of insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P < 0.05) enzyme activities (HL, LPL, and TL) and concentration of glycogen in the liver of the IT group. The mRNA expression for insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P < 0.05) affected in the liver by IUGR, which was efficiently (P < 0.05) attenuated by diets supplemented with TB. TB supplementation has therapeutic potential for attenuating insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets. PMID:26317832

  3. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition.

    PubMed

    Krishnan, Anuradha; Abdullah, Tasduq Sheikh; Mounajjed, Taofic; Hartono, Stella; McConico, Andrea; White, Thomas; LeBrasseur, Nathan; Lanza, Ian; Nair, Sreekumaran; Gores, Gregory; Charlton, Michael

    2017-06-01

    The sequence of events that lead to inflammation and fibrosing nonalcoholic steatohepatitis (NASH) is incompletely understood. Hence, we investigated the chronology of whole body, tissue, and cellular events that occur during the evolution of diet-induced NASH. Male C57Bl/6 mice were assigned to a fast-food (FF; high calorie, high cholesterol, high fructose) or standard-chow (SC) diet over a period of 36 wk. Liver histology, body composition, mitochondrial respiration, metabolic rate, gene expression, and hepatic lipid content were analyzed. Insulin resistance [homeostasis model assessment-insulin resistance (HOMA-IR)] increased 10-fold after 4 wk. Fibrosing NASH was fully established by 16 wk. Total hepatic lipids increased by 4 wk and remained two- to threefold increased throughout. Hepatic triglycerides declined from sixfold increase at 8 wk to threefold increase by 36 wk. In contrast, hepatic cholesterol levels steadily increased from baseline at 8 wk to twofold by 36 wk. The hepatic immune cell population altered over time with macrophages persisting beyond 16 wk. Mitochondrial oxygen flux rates of FF mice diet were uniformly lower with all the tested substrates (13-276 pmol·s -1 ·ml -1 per unit citrate synthase) than SC mice (17-394 pmol·s -1 ·ml -1 per unit citrate synthase) and was accompanied by decreased mitochondrial:nuclear gene copy number ratios after 4 wk. Metabolic rate was lower in FF mice. Mitochondrial glutathione was significantly decreased at 24 wk in FF mice. Expression of dismutases and catalase was also decreased in FF mice. The evolution of NASH in the FF diet-induced model is multiphasic, particularly in terms of hepatic lipid composition. Insulin resistance precedes hepatic inflammation and fibrosis. Mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent. Collectively, these observations provide a unique overview of the sequence of changes that coevolve with the histological evolution of NASH. NEW & NOTEWORTHY This study demonstrates in a first of kind longitudinal analysis, the evolution of nonalcoholic steatohepatitis (NASH) on a fast-food diet-induced model. Key findings include 1 ) hepatic lipid composition changes in a multiphasic fashion as NASH evolves; 2 ) insulin resistance precedes hepatic inflammation and fibrosis, answering a longstanding chicken-and-egg question regarding the relationship of insulin resistance to liver histology in NASH; and 3 ) mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent. Copyright © 2017 the American Physiological Society.

  4. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial.

    PubMed

    Zhao, Yong; Jiang, Zhaoshun; Zhao, Tingbao; Ye, Mingliang; Hu, Chengjin; Zhou, Huimin; Yin, Zhaohui; Chen, Yana; Zhang, Ye; Wang, Shanfeng; Shen, Jie; Thaker, Hatim; Jain, Summit; Li, Yunxiang; Diao, Yalin; Chen, Yingjian; Sun, Xiaoming; Fisk, Mary Beth; Li, Heng

    2013-07-09

    The prevalence of type 2 diabetes (T2D) is increasing worldwide and creating a significant burden on health systems, highlighting the need for the development of innovative therapeutic approaches to overcome immune dysfunction, which is likely a key factor in the development of insulin resistance in T2D. It suggests that immune modulation may be a useful tool in treating the disease. In an open-label, phase 1/phase 2 study, patients (N=36) with long-standing T2D were divided into three groups (Group A, oral medications, n=18; Group B, oral medications+insulin injections, n=11; Group C having impaired β-cell function with oral medications+insulin injections, n=7). All patients received one treatment with the Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, briefly co-cultures them with adherent cord blood-derived multipotent stem cells (CB-SCs), and returns the educated autologous cells to the patient's circulation. Clinical findings indicate that T2D patients achieve improved metabolic control and reduced inflammation markers after receiving Stem Cell Educator therapy. Median glycated hemoglobin (HbA1C) in Group A and B was significantly reduced from 8.61%±1.12 at baseline to 7.25%±0.58 at 12 weeks (P=2.62E-06), and 7.33%±1.02 at one year post-treatment (P=0.0002). Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) demonstrated that insulin sensitivity was improved post-treatment. Notably, the islet beta-cell function in Group C subjects was markedly recovered, as demonstrated by the restoration of C-peptide levels. Mechanistic studies revealed that Stem Cell Educator therapy reverses immune dysfunctions through immune modulation on monocytes and balancing Th1/Th2/Th3 cytokine production. Clinical data from the current phase 1/phase 2 study demonstrate that Stem Cell Educator therapy is a safe approach that produces lasting improvement in metabolic control for individuals with moderate or severe T2D who receive a single treatment. In addition, this approach does not appear to have the safety and ethical concerns associated with conventional stem cell-based approaches. ClinicalTrials.gov number, NCT01415726.

  5. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.

    PubMed

    Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas

    2013-12-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.

  6. Genetic Disruption of SOD1 Gene Causes Glucose Intolerance and Impairs β-Cell Function

    PubMed Central

    Muscogiuri, Giovanna; Salmon, Adam B.; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L.; Reyna, Sara M.; Weir, Gordon; DeFronzo, Ralph A.; Van Remmen, Holly; Musi, Nicolas

    2013-01-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow–fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction. PMID:24009256

  7. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.

    PubMed

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H; Manuel, Justin; Möller, Andreas; Bowtell, David D; Mynatt, Randall L; Ghosh, Sujoy; Floyd, Z Elizabeth

    2015-11-01

    Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. © 2015 The Obesity Society.

  8. Male hypogonadism and metabolic syndrome.

    PubMed

    Naifar, M; Rekik, N; Messedi, M; Chaabouni, K; Lahiani, A; Turki, M; Abid, M; Ayedi, F; Jamoussi, K

    2015-06-01

    The role of androgens in cardiovascular disease is still controversial in men. In this study, we investigated metabolic disorders in Tunisian hypogonadal men compared with healthy controls. Forty hypogonadal men and 80 control subjects were enrolled. Patients with a history of pre-existing panhypopituitarism, thyroid dysfunction or inflammatory disease were excluded. Glycaemia, glycated haemoglobin (HbA1c), high-sensitive C-reactive protein (hsCRP), lipid profile, insulin, testosterone and gonadotrophins were measured. Insulin resistance was assessed by homoeostasis model assessment of insulin resistance (Homa IR). Waist circumference, body mass index and blood pressure were significantly higher in patients compared with controls. Glycemia, HbA1c, fasting serum insulin and Homa IR were significantly increased among hypogonadal men. In univariate analysis, testosterone levels were inversely correlated with body mass index, waist circumference, blood pressure, glycaemia, HbA1C, insulin, Homa IR and hsCRP. In multivariate analysis including all significant variables, initial testosterone level was the only independent risk factor for developing dyslipidaemia. With logistic regression, male hypogonadism was an independent risk factor for MS (P < 0.001). We conclude that low testosterone level plays a central role in the development of metabolic syndrome. Further prospective data are required to establish the causative link. © 2014 Blackwell Verlag GmbH.

  9. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    PubMed Central

    Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O’Connor, Jason C.; Xu, Yong; Liu, Meilian; Dong, Lily Q.

    2017-01-01

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction. PMID:29087318

  10. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    PubMed

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  11. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.

    PubMed

    Rebolledo, O R; Marra, C A; Raschia, A; Rodriguez, S; Gagliardino, J J

    2008-11-01

    The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, alpha-tocopherol, beta-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic beta-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

  12. Gastrointestinal dysfunction in liver cirrhosis

    PubMed Central

    Kalaitzakis, Evangelos

    2014-01-01

    Patients with liver cirrhosis exhibit several features of gut dysfunction which may contribute to the development of cirrhosis complications as well as have an impact on nutritional status and health-related quality of life. Gastrointestinal symptoms are common in cirrhosis and their pathophysiology probably involves factors related to liver disease severity, psychological distress, and gut dysfunction (e.g., increased gastric sensitivity to distension and delayed gut transit). They may lead to reduced food intake and, thus, may contribute to the nutritional status deterioration in cirrhotic patients. Although tense ascites appears to have a negative impact on meal-induced accommodation of the stomach, published data on gastric accommodation in cirrhotics without significant ascites are not unanimous. Gastric emptying and small bowel transit have generally been shown to be prolonged. This may be related to disturbances in postprandial glucose, insulin, and ghrelin levels, which, in turn, appear to be associated to insulin resistance, a common finding in cirrhosis. Furthermore, small bowel manometry disturbances and delayed gut transit may be associated with the development of small bowel bacterial overgrowth. Finally, several studies have reported intestinal barrier dysfunction in patients with cirrhosis (especially those with portal hypertension), which is related to bacterial translocation and permeation of intestinal bacterial products, e.g., endotoxin and bacterial DNA, thus potentially being involved in the pathogenesis of complications of liver cirrhosis. PMID:25356031

  13. Chromium Enhances Insulin Responsiveness via AMPK

    PubMed Central

    Hoffman, Nolan J.; Penque, Brent A.; Habegger, Kirk M.; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S.

    2014-01-01

    Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5′ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. PMID:24725432

  14. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo.

    PubMed

    Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho

    2014-09-26

    Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Phenotypic expression of polycystic ovary syndrome in South Asian women.

    PubMed

    Mehta, Jaya; Kamdar, Vikram; Dumesic, Daniel

    2013-03-01

    Polycystic ovary syndrome (PCOS) occurs in 6% to 10% of women and, as the most common worldwide endocrinopathy of reproductive-aged women, is linked to a constellation of reproductive and metabolic abnormalities, including anovulatory infertility, hirsutism, acne, and insulin resistance in association with metabolic syndrome. Despite a genetic component to PCOS, ethnicity plays an important role in the phenotypic expression of PCOS, with South Asian PCOS women having more severe reproductive and metabolic symptoms than other ethnic groups. South Asians with PCOS seek medical care at an earlier age for reproductive abnormalities; have a higher degree of hirsutism, infertility, and acne; and experience lower live birth rates following in vitro fertilization than do whites with PCOS. Similarly, South Asians with PCOS have a higher prevalence of insulin resistance and metabolic syndrome than do other PCOS-related ethnic groups of a similar body mass index. Inheritance of PCOS appears to have a complex genetic basis, including genetic differences based on ethnicity, which interact with lifestyle and other environmental factors to affect PCOS phenotypic expression. Obstetricians and Gynecologists, Family Physicians Learning Objectives: After completing this CME activity, physicians should be better able to state an ethnic difference in reproductive dysfunction between South Asian and white women with polycystic ovary syndrome (PCOS), state an ethnic difference in metabolic dysfunction between South Asian and white women with PCOS, identify a genetic abnormality found in South Asian women with PCOS, and list 2 environmental factors that predispose South Asian women to metabolic dysfunction.

  16. Cyanidin-3-O-glucoside ameliorates palmitate-induced insulin resistance by modulating IRS-1 phosphorylation and release of endothelial derived vasoactive factors.

    PubMed

    Fratantonio, Deborah; Cimino, Francesco; Molonia, Maria Sofia; Ferrari, Daniela; Saija, Antonella; Virgili, Fabio; Speciale, Antonio

    2017-03-01

    Increased plasma levels of free fatty acids, including palmitic acid (PA), cause insulin resistance in endothelium characterized by a decreased synthesis of insulin-mediated vasodilator nitric oxide (NO), and by an increased production of the vasoconstrictor protein, endothelin-1. Several in vitro and in vivo studies suggest that anthocyanins, natural phenols commonly present in food and vegetables from Mediterranean Diet, exert significant cardiovascular health-promoting activities. These effects are possibly mediated by a positive regulation of the transcription factor Nrf2 and activation of cellular antioxidant and cytoprotective genes. The present study examined, at a molecular level, the effects of cyanidin-3-O-glucoside (C3G), a widely distributed anthocyanin, on PA-induced endothelial dysfunction and insulin resistance in human umbilical vein endothelial cells (HUVECs). Our results indicate that C3G pretreatment effectively reverses the effects of PA on PI3K/Akt axis, and restores eNOS expression and NO release, altered by PA. We observed that these effects were exerted by changes on the phosphorylation of IRS-1 on specific serine and tyrosine residues modulated by PA through the modulation of JNK and IKK activity. Furthermore, silencing Nrf2 transcripts demonstrated that the protective effects of C3G are directly related to the activation of Nrf2. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hypovitaminosis D and Associated Cardiometabolic Risk in Women with PCOS.

    PubMed

    Mishra, Sanjukta; Das, Ashok Kumar; Das, Swarnalata

    2016-05-01

    Women with Polycystic Ovary Syndrome (PCOS) frequently suffer from metabolic disturbances like insulin resistance, hypertension and atherogenic dyslipidemia. Accumulating evidences suggest that Vitamin D deficiency is common in PCOS and may be associated with metabolic and endocrinal dysfunctions in PCOS. Thus women with PCOS may be at elevated risk of cardiovascular disease. Present study aims to evaluate Vitamin D status and to assess its association with metabolic and endocrinal dysregulations in women with PCOS, which might help in early identification and prevention of future symptomatic cardiac disease. A total of 44 women with PCOS, diagnosed by Rotterdam criteria and 45 healthy control without PCOS, were evaluated for Vitamin D and cardiometabolic risk factors, including fasting plasma glucose, insulin resistance, dyslipidemia, hs-CRP. That apart, several endocrinal parameters of hyperandrogenism were also examined. Several correlation studies were determined to establish the role of Vitamin D as a cardiometabolic risk factor in PCOS. Results were expressed as mean±SD and were statistically analysed using SPSS software version 16, unpaired student's t-test and Pearson's correlation coefficient. We found lower levels of Vitamin D, which was statistically significant as compared to healthy controls. Hyperinsulinemia, rise in insulin resistance and marked dyslipidemia was observed in the present study. Another relevant finding was significant correlation of Vitamin D with insulin and Homeostatic Model of Assessment- Insulin Resistance Index (HOMA-IR). Hypovitaminosis D was prevalent in PCOS. This was related to metabolic and hormonal disorders in PCOS. Possibly this combined with impaired fasting glucose, IR and dyslipidemia, could account for Cardio vascular risks in PCOS. Further prospective observational studies and randomized control trials are required to explore the above hypothesis.

  18. Mono-2-ethylhexyl phthalate associated with insulin resistance and lower testosterone levels in a young population.

    PubMed

    Chen, Szu-Ying; Hwang, Jing-Shiang; Sung, Fung-Chang; Lin, Chien-Yu; Hsieh, Chia-Jung; Chen, Pau-Chung; Su, Ta-Chen

    2017-06-01

    Phthalates are commonly used as plasticizers and are reported to associate with testicular dysfunction or insulin resistance in different studies, but the concurrent relationship between phthalate exposure, testosterone levels, and insulin resistance in the young population is not well understood. We recruited 786 subjects aged 12-30 years from a population-based sample of Taiwanese adolescents and young adults from 2006 to 2008. Generalized additive models were used to evaluate glucose homeostasis and testicular function in relation to seven urinary phthalate metabolites among adolescents (aged 12-20) and young adults (aged 20-30) in Taiwan. We observed a trend toward a decrease in male testosterone and an increase in urinary mono-2-ethylhexyl phthalate (MEHP) levels across four quartiles of homeostasis model assessment of insulin resistance (HOMA-IR). After adjusting for potential covariates, generalized additive models further showed that log-transformed insulin and HOMA-IR were raised by 0.055 [95% confidence interval (CI), 0.027-0.082] and 0.056 (95% CI, 0.027-0.084), respectively, with a one-unit increase in log-transformed MEHP in young adults. In male adults (aged 22-30), the log-testosterone levels were reduced by 0.018 (95% CI, 0.001-0.036), with a one-unit of increase in log-transformed MEHP. Such relationships were not observed in adolescents. In conclusion, this study demonstrated age-related associations of urinary MEHP metabolites with impaired metabolic homeostasis of glucose that were only observed in young adults. In addition, MEHP exposure was concurrently associated with lower testosterone levels in young, male adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Roles of Primary Cilia in Cardiovascular System

    DTIC Science & Technology

    2015-10-01

    defect, oral facial syndrome, obesity , hypertension and others [60]. Primary cilia can be activated by bending through perfusing cells with fluid...synthase, was found to be elevated in PKD patients [125]. The correlation between hypertension and kidney volume occurs in the early childhood stages...involvement of centrosome and basal body dysfunction in the pathogenesis of obesity , insulin resistance, and type 2 diabetes. Diabetes 2005; 54(5

  20. [Pathogenic mechanisms of proatherogenic changes in pregnant women with concomitant obesity].

    PubMed

    Tarasenko, K V; Mamontova, T V

    2013-12-01

    The concentration of insulin, high sensitivity C-reactive protein (CRP) and indices of lipid metabolism (concentrations of triacylglycerols, total cholesterol, cholesterol of low density lipoproteins and cholesterol of very low density lipoproteins) in women with concomitant obesity in the second trimester of pregnancy were studied. Changes of the lipid profile in the pregnant women with concomitant obesity indicate development of type IV hyperlipoproteinemia. Concentrations of insulin and CRP in the blood serum of the pregnant women with obesity were respectively 92.1% and 62.5% higher than in the control group. On the basis of literature data and our own research it was concluded that the complex of the metabolic changes (insulin resistance, dislipidemia, endothelial dysfunction, systemic inflammation) in pregnant women with obesity promotes development of proatherogenic changes.

  1. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats

    PubMed Central

    Blesson, Chellakkan S.; Chinnathambi, Vijayakumar; Kumar, Sathish

    2017-01-01

    Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P < 0.01; glycemia Δ area under the curve 342 ± 28 in LP vs 155 ± 23 in controls, mmol/L * 120 minutes) without any change in insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)–3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis. PMID:28324067

  2. Treatments for diabetes mellitus type II: New perspectives regarding the possible role of calcium and cAMP interaction.

    PubMed

    Carvalho, Diego Soares; de Almeida, Alexandre Aparecido; Borges, Aurélio Ferreira; Campos, Vannucci

    2018-07-05

    Diabetes mellitus (DM) is among the top ten causes of death worldwide. It is considered to be one of the major global epidemics of the 21st century, with a significant impact on public health budgets. DM is a metabolic disorder with multiple etiologies. Its pathophysiology is marked by dysfunction of pancreatic β-cells which compromises the synthesis and secretion of insulin along with resistance to insulin action in peripheral tissues (muscle and adipose). Subjects presenting insulin resistance in DM type 2 often also exhibit increased insulin secretion and hyperinsulinemia. Insulin secretion is controlled by several factors such as nutrients, hormones, and neural factors. Exocytosis of insulin granules has, as its main stimulus, increased intracellular calcium ([Ca +2 ]i) and it is further amplified by cyclic AMP (cAMP). In the event of this hyperfunction, it is very common for β-cells to go into exhaustion leading to failure or death. Several animal studies have demonstrated pleiotropic effects of L-type Ca 2+ channel blockers (CCBs). In animal models of obesity and diabetes, treatment with CCBs promoted restoration of insulin secretion, glycemic control, and reduction of pancreatic β-cell apoptosis. In addition, hypertensive individuals treated with CCBs presented a lower incidence of DM when compared with other antihypertensive agents. In this review, we propose that pharmacological manipulation of the Ca 2+ /cAMP interaction system could lead to important targets for pharmacological improvement of insulin secretion in DM type 2. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Comparison of β-Cell Function Between Overweight/Obese Adults and Adolescents Across the Spectrum of Glycemia.

    PubMed

    Chen, Melinda E; Chandramouli, Aaditya G; Considine, Robert V; Hannon, Tamara S; Mather, Kieren J

    2018-02-01

    Type 2 diabetes is a growing health problem among both adults and adolescents. To better understand the differences in the pathogenesis of diabetes between these groups, we examined differences in β-cell function along the spectrum of glucose tolerance. We evaluated 89 adults and 50 adolescents with normal glucose tolerance (NGT), dysglycemia, or type 2 diabetes. Oral glucose tolerance test results were used for C-peptide and insulin/glucose minimal modeling. Model-derived and direct measures of insulin secretion and insulin sensitivity were compared across glycemic stages and between age-groups at each stage. In adolescents with dysglycemia, there was marked insulin resistance (insulin sensitivity index: adolescents, median [interquartile range] 1.8 [1.1-2.4] × 10 -4 ; adults, 5.0 [2.3-9.9]; P = 0.01). The nature of β-cell dysfunction across stages of dysglycemia differed between the groups. We observed higher levels of secretion among adolescents than adults (total insulin secretion: NGT, 143 [103-284] × 10 -9 /min adolescent vs. 106 [71-127], P = 0.001); adults showed stepwise impairments in static insulin secretion (NGT, 7.5 [4.0-10.3] × 10 -9 /min; dysglycemia, 5.0 [2.3-9.9]; type 2 diabetes, 0.7 [0.1-2.45]; P = 0.003), whereas adolescents showed diabetes-related impairment in dynamic secretion (NGT, 1,905 [1,630-3,913] × 10 -9 ; dysglycemia, 2,703 [1,323-3,637]; type 2 diabetes, 1,189 [269-1,410]; P = 0.001). Adults and adolescents differ in the underlying defects leading to dysglycemia, and in the nature of β-cell dysfunction across stages of dysglycemia. These results may suggest different approaches to diabetes prevention in youths versus adults. © 2017 by the American Diabetes Association.

  4. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-06-01

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. © FASEB.

  5. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    PubMed

    Baum, Petra; Petroff, David; Classen, Joseph; Kiess, Wieland; Blüher, Susann

    2013-01-01

    To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children. Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give rise to dysfunction of the peripheral autonomic nerves resembling that observed in normal-weight diabetic children and adolescents.

  6. Diabetes and sexual dysfunction: current perspectives

    PubMed Central

    Maiorino, Maria Ida; Bellastella, Giuseppe; Esposito, Katherine

    2014-01-01

    Diabetes mellitus is one of the most common chronic diseases in nearly all countries. It has been associated with sexual dysfunction, both in males and in females. Diabetes is an established risk factor for sexual dysfunction in men, as a threefold increased risk of erectile dysfunction was documented in diabetic men, as compared with nondiabetic men. Among women, evidence regarding the association between diabetes and sexual dysfunction are less conclusive, although most studies have reported a higher prevalence of female sexual dysfunction in diabetic women as compared with nondiabetic women. Female sexual function appears to be more related to social and psychological components than to the physiological consequence of diabetes. Hyperglycemia, which is a main determinant of vascular and microvascular diabetic complications, may participate in the pathogenetic mechanisms of sexual dysfunction in diabetes. Moreover, diabetic people may present several clinical conditions, including hypertension, overweight and obesity, metabolic syndrome, cigarette smoking, and atherogenic dyslipidemia, which are themselves risk factors for sexual dysfunction, both in men and in women. The adoption of healthy lifestyles may reduce insulin resistance, endothelial dysfunction, and oxidative stress – all of which are desirable achievements in diabetic patients. Improved well-being may further contribute to reduce and prevent sexual dysfunction in both sexes. PMID:24623985

  7. Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD

    PubMed Central

    Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248

  8. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury.

    PubMed

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A

    2017-09-01

    What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; <13.13 mIU ml -1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR has a confounding effect on sublesional microvascular endothelium-mediated cutaneous perfusion responses to provocation. Preservation of endothelial sensitivity to its agonists appears to be an important modifiable risk factor to optimize cutaneous perfusion in the lower extremities of persons with SCI. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and Insulin Resistance

    PubMed Central

    Perfield, James W.; Lee, Yunkyoung; Shulman, Gerald I.; Samuel, Varman T.; Jurczak, Michael J.; Chang, Eugene; Xie, Chen; Tsichlis, Phillip N.; Obin, Martin S.; Greenberg, Andrew S.

    2011-01-01

    OBJECTIVE Obesity-associated low-grade systemic inflammation resulting from increased adipose mass is strongly related to the development of insulin resistance and type 2 diabetes as well as other metabolic complications. Recent studies have demonstrated that the obese metabolic state can be improved by ablating certain inflammatory signaling pathways. Tumor progression locus 2 (TPL2), a kinase that integrates signals from Toll receptors, cytokine receptors, and inhibitor of κ-B kinase-β is an important regulator of inflammatory pathways. We used TPL2 knockout (KO) mice to investigate the role of TPL2 in mediating obesity-associated inflammation and insulin resistance. RESEARCH DESIGN AND METHODS Male TPL2KO and wild-type (WT) littermates were fed a low-fat diet or a high-fat diet to investigate the effect of TPL2 deletion on obesity, inflammation, and insulin sensitivity. RESULTS We demonstrate that TPL2 deletion does not alter body weight gain or adipose depot weight. However, hyperinsulinemic euglycemic clamp studies revealed improved insulin sensitivity with enhanced glucose uptake in skeletal muscle and increased suppression of hepatic glucose output in obese TPL2KO mice compared with obese WT mice. Consistent with an improved metabolic phenotype, immune cell infiltration and inflammation was attenuated in the adipose tissue of obese TPL2KO mice coincident with reduced hepatic inflammatory gene expression and lipid accumulation. CONCLUSIONS Our results provide the first in vivo demonstration that TPL2 ablation attenuates obesity-associated metabolic dysfunction. These data suggest TPL2 is a novel target for improving the metabolic state associated with obesity. PMID:21346175

  10. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    PubMed

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P < 0·05). Single-unit analysis showed that vasoconstrictor neurons were characterized by elevated firing rate and probability and incidence of multiple spikes (P < 0·01 for all parameters). Women with PCOS also had impaired endothelial function (RHI: 1·77 ± 0·14 vs 2·18 ± 0·14, P < 0·05). HRV did not differ between the groups. Women with PCOS have increased sympathetic drive and impaired endothelial function independent of obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  11. [Chronic mild inflammation links obesity, metabolic syndrome, atherosclerosis and diabetes].

    PubMed

    Andel, M; Polák, J; Kraml, P; Dlouhý, P; Stich, V

    2009-01-01

    Chronic low grade inflammation is relatively new concept in metabolic medicine. This concept describes the relations between the inflammation and adipose tissue, insulin resistence, atherosclerosis and type 2 diabetes mellitus. Macrophages and lymphocytes deposed in adipose tissue produce proinflammatory cytokines which directly or through the CRP liver secretion are targeting endothelial cells, hepatocytes and beta cells of Langerhans islets of pancreas. The dysfunction of these cells follows often further disturbances and in case of beta cells - the cell death. The connection between the adipose tissue insulin resistence, atherosclerosis and type 2 diabetes was earlier described with endocrine and metabolic descriptors. The concept of chronic low grade inflammation creates also another description of multilateral connections in metabolic syndome. The salicylates and the drugs related to them seem to have some glucose lowering properties. The recent development in the field ofchronic low grade inflammation represents also certain therapeutic hope for antiinflammatory intervention in type 2 diabetes.

  12. Diabetes and cardiovascular disease: pathophysiology of a life-threatening epidemic.

    PubMed

    King, R J; Grant, P J

    2016-05-01

    Diabetes is associated with the development of premature cardiovascular disease (CVD), which relates to the clustering of risk factors such as dyslipidaemia, hypertension, obesity and hyperglycaemia in the presence of insulin resistance. In addition, diabetes is associated with an inflammatory and pro-thrombotic environment, exacerbating the development of atherothrombosis. Insulin resistance and hyperglycaemia both contribute to the development of endothelial cell dysfunction and increased oxidative stress, culminating in accelerated atherosclerosis. Clot formation and function are also directly affected by insulin resistance and hyperglycaemia, with increased levels of coagulation factors and anti-fibrinolytic proteins and a fibrin network that is more resistant to lysis, coupled with increased platelet activation.It is well recognised that the intensification of glycaemic control leads to a reduction in microvascular complications in type 1 and type 2 diabetes; however, the same is less clear with macrovascular disease. Several randomised studies have attempted to address the effect of short-, medium- and long-term glycaemic control on cardiovascular outcomes, with mixed results. The overall interpretation of these trials suggests that intensive glycaemic control in patients with a relatively short duration of diabetes, without very poor control and with no CVD, might be safe and associated with fewer cardiovascular events.This review will summarise the effects of hyperglycaemia on the development of atherothrombosis and examine key cardiovascular outcome trials following intensive glucose control.

  13. Skeletal muscle mitochondrial health and spinal cord injury.

    PubMed

    O'Brien, Laura C; Gorgey, Ashraf S

    2016-10-18

    Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.

  14. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    PubMed Central

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  15. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.

    PubMed

    Wang, Mei; Li, Sen; Wang, Fubaihui; Zou, Jinhui; Zhang, Yanfeng

    2018-06-01

    Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type‑ІІ diabetes mellitus. The activity of ERK and AMPK, and the function of islet β‑cells were observed to be improved in experimental mice treated with aerobic exercise. Furthermore, blood lipid metabolism and insulin resistance were improved by treatment with aerobic exercise. Body weight and glucose concentration of serology was markedly improved in mouse models of type‑ІІ diabetes mellitus. Furthermore, TLR‑4 inhibition markedly promoted ERK and AMPK expression levels and activity. Thus, these results indicate that aerobic exercise may improve blood lipid metabolism, insulin resistance and glucose plasma concentration in mouse models of type‑ІІ diabetes mellitus. Thus indicating aerobic exercise is beneficial for improvement of blood lipid and insulin resistance via the TLR‑4‑mediated ERK/AMPK signaling pathway in the progression of type‑ІІ diabetes mellitus.

  16. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction.

    PubMed

    Komiya, Chikara; Tsuchiya, Kyoichiro; Shiba, Kumiko; Miyachi, Yasutaka; Furuke, Shunsaku; Shimazu, Noriko; Yamaguchi, Shinobu; Kanno, Kazuo; Ogawa, Yoshihiro

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD) related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob) obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.

  17. Angiopoietin-2 and soluble Tie-2 receptor plasma levels in children with obstructive sleep apnea and obesity.

    PubMed

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Smith, Dale L; Philby, Mona F; Koren, Dorit; Kheirandish-Gozal, Leila

    2017-06-01

    Obstructive sleep apnea (OSA) is a prevalent condition, especially in children with obesity, and is associated with increased risk for metabolic syndrome (MetS). Angiopoietins have been identified as potential biomarkers of endothelial dysfunction and MetS. In adults, angiopoietin-2 (Ang-2) and its soluble receptor (sTie-2) are associated with diabetes, hypertension, and obesity and could be increased in children with OSA and obesity, particularly those with evidence of cardiometabolic alterations. One hundred twenty-six children (7.4 ± 2.0 years) were consecutively recruited and underwent overnight polysomnography, as well as endothelial function and BMI z score assessments and a fasting blood draw the morning after the sleep study. In addition to lipid profile, glucose and insulin levels, and homeostatic model assessment of insulin resistance (HOMA-IR), Ang-2 and sTie-2 concentrations were determined. Children with obesity and OSA had significantly elevated plasma Ang-2 and sTie-2 levels compared to corresponding controls with and without obesity. Furthermore, endothelial function (Tmax) and HOMA-IR were linearly and independently associated with Ang-2 and sTie-2 levels. In a small subset of children (n = 14), treatment of OSA by adenotonsillectomy resulted in reductions of Ang-2 and sTie-2 (P < 0.01). Ang-2 and sTie-2 plasma levels are increased in pediatric OSA and obesity, particularly when endothelial dysfunction or insulin resistance is detectable, and appear to decrease upon OSA treatment. © 2017 The Obesity Society.

  18. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Chromium enhances insulin responsiveness via AMPK.

    PubMed

    Hoffman, Nolan J; Penque, Brent A; Habegger, Kirk M; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S

    2014-05-01

    Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Endoplasmic Reticulum Stress and Obesity.

    PubMed

    Yilmaz, Erkan

    2017-01-01

    In recent years, the world has seen an alarming increase in obesity and closely associated with insulin resistance which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) play in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably other causes for obesity-related insulin resistance and inflammation. One of these appears to be endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.

  1. Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats

    NASA Technical Reports Server (NTRS)

    Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.

    2002-01-01

    We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.

  2. Insulin Resistance-Associated Interhemispheric Functional Connectivity Alterations in T2DM: A Resting-State fMRI Study

    PubMed Central

    Xia, Wenqing; Wang, Shaohua; Spaeth, Andrea M.; Rao, Hengyi; Wang, Pin; Yang, Yue; Huang, Rong; Cai, Rongrong; Sun, Haixia

    2015-01-01

    We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM) by using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR) among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG) and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR) negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients. PMID:26064945

  3. An Arg for Gly substitution at position 31 in the insulin receptor, linked to insulin resistance, inhibits receptor processing and transport.

    PubMed

    van der Vorm, E R; van der Zon, G C; Möller, W; Krans, H M; Lindhout, D; Maassen, J A

    1992-01-05

    In a patient with Leprechaunism, we have characterized a new mutation in the insulin receptor substituting Arg for Gly at position 31. The proband, the mother, and the maternal grandfather were heterozygous for the mutation. Fibroblasts of the proband show a strongly reduced number of high affinity insulin receptors on the cell surface, whereas fibroblasts of the healthy mother and grandfather show moderately reduced insulin receptor numbers. In the other family members neither the binding defect nor the Arg31 mutation was found. The Arg31-mutant receptor was overexpressed in Chinese hamster ovary cells. In these cells the mutant alpha beta-proreceptor was not proteolytically cleaved and no transport to the cell surface took place. The proreceptor was unable to bind insulin and to undergo autophosphorylation. In addition, the proreceptor was not recognized by monoclonal antibodies directed against conformation-dependent epitopes. These findings suggest that the Gly31 to Arg31 mutant is involved in the insulin receptor dysfunction seen in the Leprechaun patient. The mutation seems to alter the conformation of the receptor in such way that the transport of the proreceptor to the Golgi compartment, where proteolytical processing occurs, is inhibited.

  4. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    PubMed Central

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  5. Type 2 diabetes mellitus and exercise impairment.

    PubMed

    Reusch, Jane E B; Bridenstine, Mark; Regensteiner, Judith G

    2013-03-01

    Limitations in physical fitness, a consistent finding in individuals with both type I and type 2 diabetes mellitus, correlate strongly with cardiovascular and all-cause mortality. These limitations may significantly contribute to the persistent excess cardiovascular mortality affecting this group. Exercise impairments in VO2 peak and VO2 kinetics manifest early on in diabetes, even with good glycemic control and in the absence of clinically apparent complications. Subclinical cardiac dysfunction is often present but does not fully explain the observed defect in exercise capacity in persons with diabetes. In part, the cardiac limitations are secondary to decreased perfusion with exercise challenge. This is a reversible defect. Similarly, in the skeletal muscle, impairments in nutritive blood flow correlate with slowed (or inefficient) exercise kinetics and decreased exercise capacity. Several correlations highlight the likelihood of endothelial-specific impairments as mediators of exercise dysfunction in diabetes, including insulin resistance, endothelial dysfunction, decreased myocardial perfusion, slowed tissue hemoglobin oxygen saturation, and impairment in mitochondrial function. Both exercise training and therapies targeted at improving insulin sensitivity and endothelial function improve physical fitness in subjects with type 2 diabetes. Optimization of exercise functions in people with diabetes has implications for diabetes prevention and reductions in mortality risk. Understanding the molecular details of endothelial dysfunction in diabetes may provide specific therapeutic targets for the remediation of this defect. Rat models to test this hypothesis are under study.

  6. The enteroinsular axis and endocrine pancreatic function in chronic alcohol consumers: evidence for early beta-cell hypofunction.

    PubMed

    Patto, R J; Russo, E K; Borges, D R; Neves, M M

    1993-09-01

    Chronic alcohol consumers may have, as judged by functional criteria, exocrine as well as endocrine pancreatic dysfunction, the latter represented by a decreased insulin response to an oral glucose load. To investigate whether this decreased insulin response was due to an ethanol-induced beta-cell dysfunction or to an ethanol-induced dysfunction of the enteroinsular axis, we determined glucose, insulin, and C-peptide plasma concentrations following an oral and an intravenous glucose load in 16 healthy volunteer nonalcohol consumers and in 10 chronic alcohol consumers. In each group, total integrated response for glucose did not significantly change whether glucose was given orally or intravenously, indicating isoglycemic glucose loads. The total integrated response values for insulin in the alcoholic group following both glucose loads as well as C-peptide plasma concentrations were significantly lower than in the control group. Moreover, in both groups the insulin TIR values following the oral glucose load were significantly greater than the values obtained following the intravenous glucose load, indicating an incretin effect. These results indicate that the decreased insulin response observed in alcoholics was not caused by a dysfunction of the enteroinsular axis because it also occurred following an intravenous glucose load, but by an ethanol-induced beta-cell dysfunction because C-peptide and insulin were proportionally decreased in this group.

  7. Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: possible role of its antioxidant action.

    PubMed

    Ando, Katsuyuki; Matsui, Hiromitsu; Fujita, Megumi; Fujita, Toshiro

    2010-01-01

    It is well known that high salt intake induces hypertension and cardiovascular damage, while dietary potassium supplementation counteracts these harmful effects. Actually, the protective effect of potassium is strengthened with excess salt as compared with salt depletion. Although the precise mechanisms have not been fully elucidated, in our previous reports, the antihypertensive effect of dietary potassium was accompanied by sympathetic nerve inhibition in salt-sensitive hypertension. Also, potassium supplement suppressed salt-induced insulin resistance. These effects of dietary potassium can explain its cardio- and vasculo-protective action in addition to the potassium supplementation induced decreased salt-induced rise in blood pressure. On the other hand, salt-sensitive hypertension is associated with reactive oxygen species (ROS) overproduction. Moreover, sympathoexcitation can be induced by central ROS upregulation and insulin resistance can be caused by ROS excess in the target organs of insulin, such as skeletal muscle. Conversely, the seemingly different actions of potassium can be explained by the antioxidant effect of dietary potassium; in our recent studies, potassium supplementation inhibits salt-induced progress of cardiac diastolic dysfunction and vascular neointima formation by cuff placement around arteries, associated with the inhibition of regional ROS overproduction, in salt-sensitive hypertension. Thus, it is possible that dietary potassium protects against salt-induced cardiovascular damage by the reduction of ROS generation and by central sympatholytic action and amelioration of insulin resistance induced through its antioxidant effect.

  8. FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic parameters in patients with euthyroidism and hypothyroidism

    PubMed Central

    Gökmen, Fatma Yahyaoğlu; Ahbab, Süleyman; Ataoğlu, Hayriye Esra; Türker, Betül Çavuşoğlu; Çetin, Faik; Türker, Fatih; Mamaç, Rabia Yahyaoğlu; Yenigün, Mustafa

    2016-01-01

    OBJECTIVE: This study was performed to evaluate the effects of metabolic parameters and thyroid dysfunction on the development of non-alcoholic fatty liver disease (NAFLD). METHODS: The current study evaluated a total of 115 patients, 75 female and 40 male. Physical examination and anthropometric measurements were applied to all participants. Hypothyroidism was considered at a thyroid stimulating hormone level ≥ 4.1 mIU/L. Patients with euthyroidism and patients with hypothyroidism were compared. Abdominal ultrasonography was used to diagnose non-alcoholic fatty liver disease. The participants were further compared with regard to the presence of non-alcoholic fatty liver disease. Logistic regression modeling was performed to identify the relationship between non-alcoholic fatty liver disease and independent variables, such as metabolic parameters and insulin resistance. RESULTS: Non-alcoholic fatty liver disease was identified in 69 patients. The mean waist circumference, body mass index, fasting plasma insulin, HOMA-IR (p<0.001) and FT3/FT4 ratio (p=0.01) values were significantly higher in the patients with NAFLD compared to those without it. Multivariate regression analysis revealed that FT3/FT4 ratio, waist circumference and insulin resistance were independent risk factors for non-alcoholic fatty liver disease. CONCLUSION: Insulin resistance, enlarged waist circumference, elevated body mass index, higher FT3/FT4 ratio and hypertriglyceridemia are independent risk factors for NADLF, whereas hypothyroidism is not directly related to the condition. PMID:27166773

  9. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  10. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy.

    PubMed

    Du, Pengchao; Fan, Baoxia; Han, Huirong; Zhen, Junhui; Shang, Jin; Wang, Xiaojie; Li, Xiang; Shi, Weichen; Tang, Wei; Bao, Chanchan; Wang, Ziying; Zhang, Yan; Zhang, Bin; Wei, Xinbing; Yi, Fan

    2013-08-01

    An increasing number of clinical and animal model studies indicate that activation of the innate immune system and inflammatory mechanisms are important in the pathogenesis of diabetic nephropathy. Nucleotide-binding oligomerization domain containing 2 (NOD2), a member of the NOD-like receptor family, plays an important role in innate immune response. Here we explore the contribution of NOD2 to the pathogenesis of diabetic nephropathy and found that it was upregulated in kidney biopsies from diabetic patients and high-fat diet/streptozotocin-induced diabetic mice. Further, NOD2 deficiency ameliorated renal injury in diabetic mice. In vitro, NOD2 induced proinflammatory response and impaired insulin signaling and insulin-induced glucose uptake in podocytes. Moreover, podocytes treated with high glucose, advanced glycation end-products, tumor necrosis factor-α, or transforming growth factor-β (common detrimental factors in diabetic nephropathy) significantly increased NOD2 expression. NOD2 knockout diabetic mice were protected from the hyperglycemia-induced reduction in nephrin expression. Further, knockdown of NOD2 expression attenuated high glucose-induced nephrin downregulation in vitro, supporting an essential role of NOD2 in mediating hyperglycemia-induced podocyte dysfunction. Thus, NOD2 is one of the critical components of a signal transduction pathway that links renal injury to inflammation and podocyte insulin resistance in diabetic nephropathy.

  11. Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion.

    PubMed

    Rattanavichit, Yupaporn; Chukijrungroat, Natsasi; Saengsirisuwan, Vitoon

    2016-12-01

    The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT 1 R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr 989 (44%), Akt Ser 473 (30%), and AS160 Ser 588 (43%), and increases in insulin-stimulated IRS-1 Ser 307 (78%), JNK Thr 183 /Tyr 185 (69%), and p38 MAPK Thr 180 /Tyr 182 (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities. Copyright © 2016 the American Physiological Society.

  12. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial

    PubMed Central

    2013-01-01

    Background The prevalence of type 2 diabetes (T2D) is increasing worldwide and creating a significant burden on health systems, highlighting the need for the development of innovative therapeutic approaches to overcome immune dysfunction, which is likely a key factor in the development of insulin resistance in T2D. It suggests that immune modulation may be a useful tool in treating the disease. Methods In an open-label, phase 1/phase 2 study, patients (N = 36) with long-standing T2D were divided into three groups (Group A, oral medications, n = 18; Group B, oral medications + insulin injections, n = 11; Group C having impaired β-cell function with oral medications + insulin injections, n = 7). All patients received one treatment with the Stem Cell Educator therapy in which a patient’s blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, briefly co-cultures them with adherent cord blood-derived multipotent stem cells (CB-SCs), and returns the educated autologous cells to the patient’s circulation. Results Clinical findings indicate that T2D patients achieve improved metabolic control and reduced inflammation markers after receiving Stem Cell Educator therapy. Median glycated hemoglobin (HbA1C) in Group A and B was significantly reduced from 8.61% ± 1.12 at baseline to 7.25% ± 0.58 at 12 weeks (P = 2.62E-06), and 7.33% ± 1.02 at one year post-treatment (P = 0.0002). Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) demonstrated that insulin sensitivity was improved post-treatment. Notably, the islet beta-cell function in Group C subjects was markedly recovered, as demonstrated by the restoration of C-peptide levels. Mechanistic studies revealed that Stem Cell Educator therapy reverses immune dysfunctions through immune modulation on monocytes and balancing Th1/Th2/Th3 cytokine production. Conclusions Clinical data from the current phase 1/phase 2 study demonstrate that Stem Cell Educator therapy is a safe approach that produces lasting improvement in metabolic control for individuals with moderate or severe T2D who receive a single treatment. In addition, this approach does not appear to have the safety and ethical concerns associated with conventional stem cell-based approaches. Trial registration ClinicalTrials.gov number, NCT01415726 PMID:23837842

  13. Abnormal Glucose Metabolism and High-Energy Expenditure in Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Malin, Steven K.; Barnes, Jarrod W.; Tian, Liping; Kirwan, John P.; Dweik, Raed A.

    2017-01-01

    Rationale: Insulin resistance has emerged as a potential mechanism related to the pathogenesis of idiopathic pulmonary arterial hypertension (IPAH). However, direct measurements of insulin and glucose metabolism have not been performed in patients with IPAH to date. Objectives: To perform comprehensive metabolic phenotyping of humans with IPAH. Methods: We assessed plasma insulin and glucose, using an oral glucose tolerance test and estimated insulin resistance, and β-cell function in 14 patients with IPAH and 14 control subjects matched for age, sex, blood pressure, and body mass index. Body composition (dual-energy X-ray absorptiometry), inflammation (CXC chemokine ligand 10, endothelin-1), physical fitness (6-min walk test), and energy expenditure (indirect calorimetry) were also assessed. Measurements and Main Results: Patients with IPAH had a higher rate of impaired glucose tolerance (57 vs. 14%; P < 0.05) and reduced glucose-stimulated insulin secretion compared with matched control subjects (IPAH: 1.31 ± 0.76 μU/ml⋅mg/dl vs. control subjects: 2.21 ± 1.27 μU/ml⋅mg/dl; P < 0.05). Pancreatic β-cell function was associated with circulating endothelin-1 (r = –0.71, P < 0.01) and CXC chemokine ligand 10 (r = –0.56, P < 0.05). Resting energy expenditure was elevated in IPAH (IPAH: 32 ± 3.4 vs. control subjects: 28.8 ± 2.9 kcal/d/kg fat-free mass; P < 0.05) and correlated with the plasma glucose response (r = 0.51, P < 0.01). Greater insulin resistance was associated with reduced 6-minute walk distance (r = 0.55, P < 0.05). Conclusions: Independent of age, sex, blood pressure, and body mass index, patients with IPAH have glucose intolerance, decreased insulin secretion in response to glucose, and elevated resting energy expenditure. These abnormalities are associated with circulating markers of inflammation and vascular dysfunction. PMID:27922752

  14. Fitness, adiposopathy, and adiposity are independent predictors of insulin sensitivity in middle-aged men without diabetes.

    PubMed

    Huth, Claire; Pigeon, Étienne; Riou, Marie-Ève; St-Onge, Josée; Arguin, Hélène; Couillard, Erick; Dubois, Marie-Julie; Marette, André; Tremblay, Angelo; Weisnagel, S John; Lacaille, Michel; Mauriège, Pascale; Joanisse, Denis R

    2016-09-01

    Adiposopathy, or sick fat, refers to adipose tissue dysfunction that can lead to several complications such as dyslipidemia, insulin resistance, and hyperglycemia. The relative contribution of adiposopathy in predicting insulin resistance remains unclear. We investigated the relationship between adiposopathy, as assessed as a low plasma adiponectin/leptin ratio, with anthropometry, body composition (hydrostatic weighing), insulin sensitivity (hyperinsulinemic-euglycemic clamp), inflammation, and fitness level (ergocycle VO2max, mL/kgFFM/min) in 53 men (aged 34-53 years) from four groups: sedentary controls without obesity (body mass index [BMI] <25 kg/m(2)), sedentary with obesity (BMI > 30 kg/m(2)), sedentary with obesity and glucose intolerance, and endurance trained active without obesity. The adiponectin/leptin ratio was the highest in trained men (4.75 ± 0.82) and the lowest in glucose intolerant subjects with obesity (0.27 ± 0.06; ANOVA p < 0.0001) indicating increased adiposopathy in those with obesity. The ratio was negatively associated with adiposity (e.g., waist circumference, r = -0.59, p < 0.01) and positively associated with VO2max (r = 0.67, p < 0.01) and insulin sensitivity (M/I, r = 0.73, p < 0.01). Multiple regression analysis revealed fitness as the strongest independent predictor of insulin sensitivity (partial R (2) = 0.61). While adiposopathy was also an independent and significant contributor (partial R (2) = 0.10), waist circumference added little power to the model (partial R (2) = 0.024). All three variables remained significant independent predictors when trained subjects were excluded from the model. Plasma lipids were not retained in the model. We conclude that low fitness, adiposopathy, as well as adiposity (and in particular abdominal obesity) are independent contributors to insulin resistance in men without diabetes.

  15. Omega-3 fatty acids attenuate constitutive and insulin-induced CD36 expression through a suppression of PPAR α/γ activity in microvascular endothelial cells.

    PubMed

    Madonna, Rosalinda; Salerni, Sara; Schiavone, Deborah; Glatz, Jan F; Geng, Yong-Jian; De Caterina, Raffaele

    2011-09-01

    Microvascular dysfunction occurs in insulin resistance and/or hyperinsulinaemia. Enhanced uptake of free fatty acids (FFA) and oxidised low-density lipoproteins (oxLDL) may lead to oxidative stress and microvascular dysfunction interacting with CD36, a PPARα/γ-regulated scavenger receptor and long-chain FFA transporter. We investigated CD36 expression and CD36-mediated oxLDL uptake before and after insulin treatment in human dermal microvascular endothelial cells (HMVECs), ± different types of fatty acids (FA), including palmitic, oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. Insulin (10(-8) and 10(-7) M) time-dependently increased DiI-oxLDL uptake and CD36 surface expression (by 30 ± 13%, p<0.05 vs. untreated control after 24 hours incubation), as assessed by ELISA and flow cytometry, an effect that was potentiated by the PI3-kinase inhibitor wortmannin and reverted by the ERK1/2 inhibitor PD98059 and the PPARα/γ antagonist GW9662. A ≥ 24 hour exposure to 50 μM DHA or EPA, but not other FA, blunted both the constitutive (by 23 ± 3% and 29 ± 2%, respectively, p<0.05 for both) and insulin-induced CD36 expressions (by 45 ± 27 % and 12 ± 3 %, respectively, p<0.05 for both), along with insulin-induced uptake of DiI-oxLDL and the downregulation of phosphorylated endothelial nitric oxide synthase (P-eNOS). At gel shift assays, DHA reverted insulin-induced basal and oxLDL-stimulated transactivation of PPRE and DNA binding of PPARα/γ and NF-κB. In conclusion, omega-3 fatty acids blunt the increased CD36 expression and activity promoted by high concentrations of insulin. Such mechanisms may be the basis for the use of omega-3 fatty acids in diabetic microvasculopathy.

  16. Resistance to Aerobic Exercise Training Causes Metabolic Dysfunction and Reveals Novel Exercise-Regulated Signaling Networks

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.

    2013-01-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057

  17. Insulin resistance, diabetes mellitus and thyroid dysfunction in patients with palmoplantar pustulosis: a case-controlled study.

    PubMed

    Ataş, Hatice; Gönül, Müzeyyen

    2017-06-01

    Palmoplantar pustulosis (PPP) is a chronic pustular inflammatory skin disease; however, its pathogenesis is not well understood. Several factors, such as genetics, tobacco use and autoimmune issues, may contribute to this disease. This research was conducted to investigate the relationships between insulin resistance, thyroid disease and PPP. Thirty-three patients with PPP and 27 age- and gender-matched controls were analysed for their smoking histories, thyroid function tests, anti-thyroid peroxidase antibody (anti-TPO) levels, fasting glucose, fasting insulin levels and the homeostatic model assessment (HOMA) index for insulin resistance. We found significant differences between the PPP and control groups according to their tobacco use and anti-TPO levels ( p = 0.009 and p = 0.009, respectively). The proportion of tobacco use was 90% in the PPP patients and 63% in the controls. Gender and tobacco use were predictive risk factors for PPP in the multivariate analysis ( OR = 141.7, p < 0.0001 and OR = 147.6, p = 0.006, respectively). An anti-TPO level > 35 U/ml and the presence of a thyroid abnormality were independent risk factors in the univariate, but not the multivariate analysis ( OR = 4.2, p = 0.025 and OR = 5.4, p = 0.004, respectively). A moderate correlation between the gender and anti-TPO level was found ( r = 0.361, p = 0.039); however, the fasting glucose, insulin and HOMA index were not significant between the PPP and control groups. Female gender and smoking were the most important risk factors for PPP; however, the increase in the anti-TPO level may be related to the predominance of females afflicted with this disease. Additional studies are necessary to clarify the relationships between PPP, thyroid disease and diabetes mellitus.

  18. Visceral adiposity index as a predictor of clinical severity and therapeutic outcome of PCOS.

    PubMed

    Zheng, Sai-Hua; Li, Xue-Lian

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disease which often accompany with abnormal fat distribution. Visceral adiposity has association with abnormal lipid metabolic, pro-inflammatory activity, insulin resistance (IR) and hyperandrogenism. Increased visceral adiposity raises the risk of metabolic syndrome, type 2 diabetes and cardiovascular (CV) events, and aggravates ovulatory dysfunction and hyperandrogenism in PCOS women. Visceral adiposity index (VAI), a simple surrogate maker of visceral adipose dysfunction and visceral adiposity, is a predictor of IR, and link hyperinsulinemia, hyperandrogenism and anovulation. This review aims to discuss the visceral adiposity situation in PCOS women, and suggests that VAI may be a useful predictor of clinical severity and therapeutic outcome of PCOS.

  19. Selective Insulin-like Growth Factor Resistance Associated with Heart Hemorrhages and Poor Prognosis in a Novel Preclinical Model of the Hematopoietic Acute Radiation Syndrome.

    PubMed

    Kenchegowda, Doreswamy; Legesse, Betre; Hritzo, Bernadette; Olsen, Cara; Aghdam, Saeed; Kaur, Amandeep; Culp, William; Derrien-Colemyn, Alexandrine; Severson, Grant; Moroni, Maria

    2018-05-29

    Although bone marrow aplasia has been considered for the past decades as the major contributor of radiation-induced blood disorders, cytopenias alone are insufficient to explain differences in the prevalence of bleeding. In this study, the minipig was used as a novel preclinical model of hematopoietic acute radiation syndrome to assess if factors other than platelet counts correlated with bleeding and survival. We sought to determine whether radiation affected the insulin-like growth factor-1 (IGF-1) pathway, a growth hormone with cardiovascular and radioprotective features. Gottingen and Sinclair minipigs were exposed to ionizing radiation at hematopoietic doses. The smaller Gottingen minipig strain was more sensitive to radiation; differences in IGF-1 levels were minimal, suggesting that increased sensitivity could depend on weak response to the hormone. Radiation caused IGF-1 selective resistance by inhibiting the anti-inflammatory anti-oxidative stress IRS/PI3K/Akt but not the pro-inflammatory MAPK kinase pathway, shifting IGF-1 signaling towards a pro-oxidant, pro-inflammatory environment. Selective IGF-1 resistance associated with hemorrhages in the heart, poor prognosis, increase in C-reactive protein and NADPH oxidase 2, uncoupling of endothelial nitric oxide synthase, inhibition of nitric oxide (NO) synthesis and imbalance between the vasodilator NO and the vasoconstrictor endothelin-1 molecules. Selective IGF-1 resistance is a novel mechanism of radiation injury, associated with a vicious cycle amplifying reactive oxygen species-induced damage, inflammation and endothelial dysfunction. In the presence of thrombocytopenia, selective inhibition of IGF-1 cardioprotective function may contribute to the development of hemostatic disorders. This finding may be particularly relevant for individuals with low IGF-1 activity, such as the elderly or those with cardiometabolic dysfunctions.

  20. Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: Manganese and selenium interest in Algerian participants with dysthyroidism.

    PubMed

    Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed

    2015-10-01

    The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of real target therapy in thyroid dysfunction. The publisher would like to apologise for any inconvenience caused. [corrected].

  1. "Omics" of Selenium Biology: A Prospective Study of Plasma Proteome Network Before and After Selenized-Yeast Supplementation in Healthy Men.

    PubMed

    Sinha, Indu; Karagoz, Kubra; Fogle, Rachel L; Hollenbeak, Christopher S; Zea, Arnold H; Arga, Kazim Y; Stanley, Anne E; Hawkes, Wayne C; Sinha, Raghu

    2016-04-01

    Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan, Chagas, and Kashin-Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associated with mutations in genes encoding for selenoproteins. Selenium biology is complex, and a systems biology approach to study global metabolomics, genomics, and/or proteomics may provide important clues to examining selenium-responsive markers in circulation. In the current investigation, we applied a global proteomics approach on plasma samples collected from a previously conducted, double-blinded placebo controlled clinical study, where men were supplemented with selenized-yeast (Se-Yeast; 300 μg/day, 3.8 μmol/day) or placebo-yeast for 48 weeks. Proteomic analysis was performed by iTRAQ on 8 plasma samples from each arm at baseline and 48 weeks. A total of 161 plasma proteins were identified in both arms. Twenty-two proteins were significantly altered following Se-Yeast supplementation and thirteen proteins were significantly changed after placebo-yeast supplementation in healthy men. The differentially expressed proteins were involved in complement and coagulation pathways, immune functions, lipid metabolism, and insulin resistance. Reconstruction and analysis of protein-protein interaction network around selected proteins revealed several hub proteins. One of the interactions suggested by our analysis, PHLD-APOA4, which is involved in insulin resistance, was subsequently validated by Western blot analysis. Our systems approach illustrates a viable platform for investigating responsive proteomic profile in 'before and after' condition following Se-Yeast supplementation. The nature of proteins identified suggests that selenium may play an important role in complement and coagulation pathways, and insulin resistance.

  2. Understanding the High Prevalence of Diabetes in U.S. South Asians Compared With Four Racial/Ethnic Groups: The MASALA and MESA Studies

    PubMed Central

    Kanaya, Alka M.; Herrington, David; Vittinghoff, Eric; Ewing, Susan K.; Liu, Kiang; Blaha, Michael J.; Dave, Swapna S.; Qureshi, Fareeha; Kandula, Namratha R.

    2014-01-01

    OBJECTIVE We compared South Asians with four other racial/ethnic groups in the U.S. to determine whether sociodemographic, lifestyle, or metabolic factors could explain the higher diabetes prevalence and whether insulin resistance and β-cell dysfunction occurred at younger ages and/or lower adiposity levels compared with other groups. RESEARCH DESIGN AND METHODS We performed a cross-sectional analysis of two community-based cohorts, the Mediators of Atherosclerosis in South Asians Living in America (MASALA) study and the Multi-Ethnic Study of Atherosclerosis (MESA); all participants had no known cardiovascular disease and were between 44 and 84 years of age. We compared 799 South Asians with 2,611 whites, 1,879 African Americans, 1,493 Latinos, and 801 Chinese Americans. Type 2 diabetes was classified by fasting plasma glucose ≥126 mg/dL or use of a diabetes medication. Insulin resistance was estimated by the homeostasis model assessment (HOMA) and β-cell function was measured by the HOMA-β model. RESULTS South Asians had significantly higher age-adjusted prevalence of diabetes (23%) than the MESA ethnic groups (6% in whites, 18% in African Americans, 17% in Latinos, and 13% in Chinese Americans). This difference increased further after adjustment for potential confounders. HOMA of insulin resistance (HOMA-IR) levels were significantly higher and HOMA-β levels were lower among South Asians compared with all other racial/ethnic groups after adjustment for age and adiposity. CONCLUSIONS The higher prevalence of diabetes in South Asians is not explained by traditionally measured risk factors. South Asians may have lower β-cell function and an inability to compensate adequately for higher glucose levels from insulin resistance. PMID:24705613

  3. Impaired glucose metabolism in subjects with the Williams-Beuren syndrome: A five-year follow-up cohort study

    PubMed Central

    Lunati, Maria Elena; Bedeschi, Maria Francesca; Resi, Veronica; Grancini, Valeria; Palmieri, Eva; Salera, Simona; Lalatta, Faustina; Pugliese, Giuseppe

    2017-01-01

    Objective The Williams-Beuren syndrome (WS) is associated with impaired glucose metabolism (IGM) early in adulthood. However, the pathophysiology of IGM remains poorly defined, due to the lack of longitudinal studies investigating the contribution of β-cell dysfunction and impaired insulin sensitivity. This study aimed at assessing incidence of IGM and the underlying mechanisms in WS adults. Methods This observational, longitudinal (5-year), cohort study enrolled thirty-one consecutive WS subjects attending a tertiary referral center. An oral glucose tolerance test (OGTT) was performed yearly and used to classify patients as normal or IGM, including impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) and diabetes mellitus (DM), and to calculate surrogate measures of insulin secretion and/or sensitivity. Results IGM patients were 18 (58.1%, three DM) at baseline and 19 (61.3%, five DM) at end-of-follow-up. However, 13 individuals changed category of glucose homeostasis in both directions during follow-up (8 progressors, 5 regressors) and 18 did not (8 non-progressors, 10 non-regressors). New cases of IGM and DM were 11.1 and 2.53 per 100 persons-year, respectively, and were treated non-pharmacologically. In the whole cohort and, to a higher extent, in progressors, indices of early-phase insulin secretion and insulin sensitivity decreased significantly from baseline to end-of-follow-up, with concurrent reduction of the oral disposition index and insulin secretion-sensitivity index-2 (ISSI-2), compensating insulin secretion for the level of insulin resistance. No baseline measure independently predicted progression, which correlated with change from baseline in ISSI-2. Compared with patients with normal glucose homeostasis, IGT subjects had impaired insulin sensitivity, whereas insulin secretion was reduced only in those with IFG+IGT or DM. Conclusions IGM incidence is high in young adults with WS, suggesting the need of early screening and timed intervention. As in classical type 2 diabetes, impaired insulin sensitivity and β-cell dysfunction contribute, in this sequence, to progression to IGM and DM. PMID:29053727

  4. Cognitive patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors.

    PubMed

    Miralbell, Júlia; López-Cancio, Elena; López-Oloriz, Jorge; Arenillas, Juan Francisco; Barrios, Maite; Soriano-Raya, Juan José; Galán, Amparo; Cáceres, Cynthia; Alzamora, Maite; Pera, Guillem; Toran, Pere; Dávalos, Antoni; Mataró, Maria

    2013-01-01

    Risk factors for vascular cognitive impairment (VCI) are the same as traditional risk factors for cerebrovascular disease (CVD). Early identification of subjects at higher risk of VCI is important for the development of effective preventive strategies. In addition to traditional vascular risk factors (VRF), circulating biomarkers have emerged as potential tools for early diagnoses, as they could provide in vivo measures of the underlying pathophysiology. While VRF have been consistently linked to a VCI profile (i.e., deficits in executive functions and processing speed), the cognitive correlates of CVD biomarkers remain unclear. In this population-based study, the aim was to study and compare cognitive patterns in relation to VRF and circulating biomarkers of CVD. The Barcelona-AsIA Neuropsychology Study included 747 subjects older than 50, without a prior history of stroke or coronary disease and with a moderate to high vascular risk (mean age, 66 years; 34.1% women). Three cognitive domains were derived from factoral analysis: visuospatial skills/speed, verbal memory and verbal fluency. Multiple linear regression was used to assess relationships between cognitive performance (multiple domains) and a panel of circulating biomarkers, including indicators of inflammation, C-reactive protein (CRP) and resistin, endothelial dysfunction, asymmetric dimethylarginine (ADMA), thrombosis, plasminogen activator inhibitor 1 (PAI-1), as well as traditional VRF, metabolic syndrome and insulin resistance (homeostatic model assessment for insulin resistance index). Analyses were adjusted for age, gender, years of education and depressive symptoms. Traditional VRF were related to lower performance in verbal fluency, insulin resistance accounted for lower performance in visuospatial skills/speed and the metabolic syndrome predicted lower performance in both cognitive domains. From the biomarkers of CVD, CRP was negatively related to verbal fluency performance and increasing ADMA levels were associated with lower performance in verbal memory. Resistin and PAI-1 did not relate to cognitive function performance. Vascular risk factors, and markers of inflammation and endothelial dysfunction predicted lower performance in several cognitive domains. Specifically, cognitive functions associated with CRP are typically affected in VCI and overlap those related to VRF. ADMA indicated a dissociation in the cognitive profile involving verbal memory. These findings suggest that inflammation and endothelial dysfunction might play a role in the predementia cognitive impairment stages. Copyright © 2013 S. Karger AG, Basel.

  5. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer's Disease Biology: Characterization of Putative Cognates for Therapeutic Applications.

    PubMed

    Jha, Niraj Kumar; Jha, Saurabh Kumar; Kumar, Dhiraj; Kejriwal, Noopur; Sharma, Renu; Ambasta, Rashmi K; Kumar, Pravir

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative process primarily characterized by amyloid-β (Aβ) agglomeration, neuroinflammation, and cognitive dysfunction. The prominent cause for dementia is the deposition of Aβ plaques and tau-neurofibrillary tangles that hamper the neuronal organization and function. Aβ pathology further affects numerous signaling cascades that disturb the neuronal homeostasis. For instance, Aβ deposition is responsible for altered expression of insulin encoding genes that lead to insulin resistance, and thereby affecting insulin signaling pathway and glucose metabolism in the brain. As a result, the common pathology of insulin resistance between Type-2 diabetes mellitus and AD has led AD to be proposed as a form of diabetes and termed 'Type-3 diabetes'. Since accumulation of Aβ is the prominent cause of neuronal toxicity in AD, its clearance is the prime requisite for therapeutic prospects. This purpose is expertly fulfilled by the potential role of Aβ degrading enzymes such as insulin degrading enzyme (IDE) and Neprilysin (NEP). Therefore, their molecular study is important to uncover the proteolytic and regulatory mechanism of Aβ degradation. Herein, (i) In silico sequential and structural analysis of IDE and NEP has been performed to identify the molecular entities for proteolytic degradation of Aβ in the AD brain, (ii) to analyze their catalytic site to demonstrate the enzymatic action played by IDE and NEP, (iii) to identify their structural homologues that could behave as putative partners of IDE and NEP with similar catalytic action and (iv) to illustrate various IDE- and NEP-mediated therapeutic approaches and factors for clearing Aβ in AD.

  6. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with amore » high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.« less

  7. The importance of speckle tracking echocardiography in the early detection of left ventricular dysfunction in patients with polycystic ovary syndrome.

    PubMed

    Demirelli, Selami; Degirmenci, Husnu; Ermis, Emrah; Inci, Sinan; Nar, Gokay; Ayhan, Mehmet Emin; Fırtına, Serdar; Hamur, Hikmet; Durmaz, Senay Arikan

    2015-10-19

    Polycystic ovary syndrome (PCOS) is characterized by hormonal and metabolic abnormalities and is thought to increase a risk for cardiovascular diseases. In this study we use speckle tracking echocardiography (STE) to evaluate left ventricular (LV) dysfunction in the early period of the disease. We enrolled 31 patients with PCOS and 32 healthy volunteers as a control group. The participants' ages ranged between 18 and 40 years. PCOS was diagnosed according to the Rotterdam criteria. LV strain (LS) and strain rate (SR) were evaluated using apical two-chamber (2C), three-chamber (3C), and four-chamber (4C) imaging. Global LS and SR were calculated as average of three apical views. The waist-to-hip ratio, homeostasis model assessment-insulin resistance (HOMA-IR), and fasting insulin and triglyceride levels were higher in the PCOS group than in the controls (p=0.001, p=0.001, p=0.001, and p=0.005, respectively). In the PCOS group, the mitral A wave, deceleration time (DT), and isovolumetric relaxation time (IVRT) were significantly higher than in the controls (all p<0.05). The LV global longitudinal strain (GLS) and global longitudinal SR systolic (GLSRS) were significantly lower in the PCOS patient group (both p= 0.001). There were strong negative correlations between GLS and both fasting insulin (r=-0.64) and DT (r=-0.62) (both p<0.05). The study demonstrated that PCOS patients had decreased LV function using STE. Therefore, STE imaging appears to be useful for the early detection of subclinical LV dysfunction in patients with PCOS.

  8. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy

    PubMed Central

    Zhang, Yu; Sun, Xinghui; Icli, Basak

    2017-01-01

    Chronic, low-grade systemic inflammation and impaired microvascular function are critical hallmarks in the development of insulin resistance. Accordingly, insulin resistance is a major risk factor for type 2 diabetes and cardiovascular disease. Accumulating studies demonstrate that restoration of impaired function of the diabetic macro- and microvasculature may ameliorate a range of cardiovascular disease states and diabetes-associated complications. In this review, we focus on the emerging role of microRNAs (miRNAs), noncoding RNAs that fine-tune target gene expression and signaling pathways, in insulin-responsive tissues and cell types important for maintaining optimal vascular homeostasis and preventing the sequelae of diabetes-induced end organ injury. We highlight current pathophysiological paradigms of miRNAs and their targets involved in regulating the diabetic microvasculature in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury. We provide an update of the potential use of circulating miRNAs diagnostically in type I or type II diabetes. Finally, we discuss emerging delivery platforms for manipulating miRNA expression or function as the next frontier in therapeutic intervention to improve diabetes-associated microvascular dysfunction and its attendant clinical consequences. PMID:28323921

  9. β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass

    PubMed Central

    Peyot, Marie-Line; Pepin, Emilie; Lamontagne, Julien; Latour, Martin G.; Zarrouki, Bader; Lussier, Roxane; Pineda, Marco; Jetton, Thomas L.; Madiraju, S.R. Murthy; Joly, Erik; Prentki, Marc

    2010-01-01

    OBJECTIVE C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about β-cell failure in these mice. RESEARCH DESIGN AND METHODS DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced β-cell mass or function and studied islet metabolism and signaling. RESULTS HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced β-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca2+ was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS β-Cell failure in HDR mice is not due to reduced β-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca2+ and lipid signaling, as well as free cholesterol deposition. PMID:20547980

  10. Endothelial dysfunction in normoglycaemic first-degree relatives of type 2 diabetes mellitus complicated with hyperuricaemia.

    PubMed

    Zhang, Junxia; Xiang, Lin; Zhang, Bilin; Cheng, Yangyang

    2017-03-01

    To reveal the effect of hyperuricaemia on endothelial function in normoglycaemic first-degree relatives of type 2 diabetes mellitus. In all, 40 first-degree relatives of type 2 diabetes mellitus with hyperuricaemia, 40 first-degree relatives of type 2 diabetes mellitus with normouricaemia and 35 healthy subjects without diabetic family history were recruited in this study. Anthropometric parameters as well as blood pressure, blood lipids, fasting blood glucose, fasting insulin, C-reactive protein, tumour necrosis factor-α and interleukin-6 were measured. Insulin resistance was assessed with homoeostasis model assessment index-insulin resistance index. To assess endothelial function, high-resolution ultrasonography was used for measuring flow- and nitroglycerine-mediated brachial artery vasodilation. When compared with control, flow-mediated dilation was lower in first-degree relatives with or without hyperuricaemia (both p < 0.001). When compared with first-degree relative subjects with normouricaemia, there were lower flow-mediated dilation ( p < 0.001) and higher levels of uric acid ( p < 0.001), fasting blood glucose ( p < 0.001), C-reactive protein ( p = 0.001), tumour necrosis factor-α ( p < 0.001) and interleukin-6 ( p < 0.001) in first-degree relative subjects with hyperuricaemia. Flow-mediated dilation was found to be negatively related to uric acid ( r = -0.597, p < 0.001). Stepwise multiple regressions demonstrated that uric acid was a significant determinant of flow-mediated dilation independent of other variables in first-degree relatives of type 2 diabetes mellitus (β = -0.677, p < 0.001; confidence interval: -0.010 to -0.006). Further endothelial dysfunction is found in normoglycaemic first-degree relatives of type 2 diabetes mellitus complicated with hyperuricaemia.

  11. Severe hypertriglyceridaemia in horses and ponies with endocrine disorders.

    PubMed

    Dunkel, B; Wilford, S A; Parkinson, N J; Ward, C; Smith, P; Grahame, L; Brazil, T; Schott, H C

    2014-01-01

    Severe hypertriglyceridaemia in horses and ponies with endocrine disorders has been reported anecdotally but has not been documented in the literature. To describe historical and clinicopathological findings as well as progression and outcome in horses and ponies with severe hypertriglyceridaemia (serum triglyceride concentration >5.65 mmol/l) secondary to an endocrine disorder that were otherwise apparently healthy. Cases from 6 participating institutions were identified and case details extracted from the medical records. Case details of 3 horses and 4 ponies were available. Presenting complaints included weight loss despite good appetite in 4 animals, while in 3 hypertriglyceridaemia was identified incidentally. All animals were bright and alert and showed a normal or increased appetite. Serum triglyceride concentrations ranged from 10.5 to 60.3 mmol/l. Other abnormalities included hyperglycaemia in 6 animals, suspected insulin resistance and mild to severe increases in hepatic enzyme activities. In 2 animals, moderate hepatic lipidosis was confirmed histologically. Three horses and 3 ponies were diagnosed with pituitary pars intermedia dysfunction based on clinical signs and basal adrenocorticotropic hormone (ACTH) concentrations or dexamethasone suppression test results. In 5 of these, type 2 diabetes mellitus was also confirmed, while one pony suffered from type 2 diabetes mellitus without concurrent pituitary pars intermedia dysfunction. Laboratory abnormalities improved in 4 animals with treatment (pergolide and/or insulin), in one horse specific treatment was not attempted, and in 2 ponies treatment was impaired by the owner or only partly effective. In one of the latter cases, biochemical abnormalities persisted for 7 years without apparent ill effects. Horses and ponies may develop severe hypertriglyceridaemia secondary to endocrine disorders that are associated with insulin resistance. Hypertriglyceridaemia can resolve with treatment of the endocrinopathy. Although biochemical evidence of hepatic compromise was present, clinical abnormalities were not noted in these animals. © 2013 EVJ Ltd.

  12. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh) Mice

    PubMed Central

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J.

    2017-01-01

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR)+/−-insulin receptor substrate-1 (IRS-1)+/− double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver. PMID:28556799

  13. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/--IRS-1+/- Double Heterozygous (IR-IRS1dh) Mice.

    PubMed

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J

    2017-05-30

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR) +/- -insulin receptor substrate-1 (IRS-1) +/- double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  14. Older Subjects with β-cell Dysfunction have an Accentuated Incretin Release.

    PubMed

    Garduno-Garcia, José de Jesús; Gastaldelli, Amalia; DeFronzo, Ralph A; Lertwattanarak, Raweewan; Holst, Jens J; Musi, Nicolas

    2018-04-16

    Insulin secretion declines with age and this contributes to the increased risk of developing impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older subjects. Insulin secretion is regulated by the incretin hormones glucagon-like peptide (GLP) 1 and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is reduced in older subjects, and that this decline is associated with β-cell dysfunction. 40 young (25±3 y) and 53 older (74±7 y) lean non-diabetic subjects underwent a 2 h oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided in 3 groups: young normal glucose tolerant (Y-NGT, n=40), older with NGT (O-NGT, n=32), and older with IGT (O-IGT, n=21). Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15-30 min. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. Matsuda index, early phase ISR (0-30min) and parameters of β-cell function were reduced in O-IGT vs. Y-NGT, but not in O-NGT. GLP-1 concentrations were elevated in both older groups [GLP-1_AUC0-120 was 2.8±0.1 in Y-NGT, 3.8±0.5 in O-NGT, and 3.7±0.4 nmol/l∙120 min in O-IGT (P<0.05)] while GIP secretion was elevated in O-NGT vs. Y-NGT [GIP_AUC0-120 was 4.7±0.3 in Y-NGT, 6.0±0.4 in O-NGT, and 4.8±0.3 nmol/l∙120 min in O-IGT (P<0.05)]. Aging is associated with an exaggerated GLP-1 secretory response. However, this was not sufficient to increase insulin first phase release in O-IGT and overcome insulin resistance.

  15. Triglycerides as an early pathophysiological marker of endothelial dysfunction in nondiabetic women with a previous history of gestational diabetes.

    PubMed

    Sokup, Alina; Góralczyk, Barbara; Góralczyk, Krzysztof; Rość, Danuta

    2012-02-01

    To investigate whether baseline triglyceride levels are associated with early glucose dysregulation and/or cardiovascular risk in women with a previous history of gestational diabetes. Prospective postpregnancy cohort study. Polish university hospitals. Participants included 125 women with previous gestational diabetes and 40 women with normal glucose regulation during pregnancy. All women were studied 2-24 months (mean 12 ± 10 months) after the index pregnancy. Women with previous gestational diabetes were divided into tertiles in accordance with baseline triglyceride levels. We assessed glucose regulation (oral glucose tolerance test), insulin resistance (homeostasis model assessment), markers of endothelial dysfunction (soluble: intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, tissue plasminogen activator antigen, von Willebrand factor antigen), fibrinolysis (plasminogen activator inhibitor antigen), inflammation (high-sensitivity C-reactive protein) and lipid levels. Women with previous gestational diabetes (78% normal glucose regulation, 22% impaired glucose tolerance) had a high cardiometabolic risk profile compared with control women (100% normal glucose regulation). Baseline triglycerides >0.83 mmol/l were associated with a higher prevalence of impaired glucose tolerance, higher high-sensitivity C-reactive protein and triglyceride/high-density lipoprotein-cholesterol ratio. Triglycerides >1.22 mmol/l were associated with higher body fat indexes, higher insulin resistance, higher levels of endothelial dysfunction biomarkers, higher plasminogen activator inhibitor antigen and dyslipidemia. Only E-selectin was independently associated with triglyceride levels. Baseline triglyceride levels are a cardiovascular risk marker as well as a pathophysiological parameter independently associated with endothelial dysfunction in nondiabetic women with previous gestational diabetes at 2-24 months after an index pregnancy. Normalization of triglycerides should be included in preventive therapy after a pregnancy complicated by gestational diabetes. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  16. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

    PubMed

    Sun, Yu B Y; Qu, Xinli; Howard, Victor; Dai, Lie; Jiang, Xiaoyun; Ren, Yi; Fu, Ping; Puelles, Victor G; Nikolic-Paterson, David J; Caruana, Georgina; Bertram, John F; Sleeman, Mark W; Li, Jinhua

    2015-08-01

    Signaling by TGF-β/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target.

  17. The association between circulating irisin levels and different phenotypes of polycystic ovary syndrome.

    PubMed

    Zhang, L; Fang, X; Li, L; Liu, R; Zhang, C; Liu, H; Tan, M; Yang, G

    2018-05-21

    The diagnosis of polycystic ovary syndrome (PCOS) is based on a combination of various clinical phenotypes in each patient. However, insulin resistance (IR) and dysmetabolism are not included in the diagnostic criteria of PCOS. Therefore, the definition of PCOS is controversial. The objective of this study is to investigate whether some PCOS phenotypes can be predicted by a circulating biomarker related to IR and metabolic dysfunction in PCOS women. One hundred and seventeen women with PCOS and 95 healthy women were recruited for this study. All individuals were assessed by the phenotypic and metabolic characteristics related to PCOS. A euglycemic-hyperinsulinemic clamp was performed to assess insulin sensitivity. Circulating irisin concentrations were determined with ELISA. In our PCOS cohort, 65.8% of individuals were found to have hyperandrogenism. 83.8% had chronic oligoanovulation, and 80.3% of subjects showed polycystic ovaries. According to the diagnostic criteria of PCOS, 30.8% of PCOS subjects were diagnosed with the classic phenotype. In addition, 65.8% of PCOS women had insulin resistance. Serum irisin levels were significantly higher in PCOS women compared with healthy women. However, PCOS women with a normoandrogenic phenotype had similar circulating irisin levels as healthy women. PCOS women with the normoandrogenic phenotype had a low homeostasis model assessment of insulin resistance (HOMA-IR) and higher M-values than PCOS women with other phenotypes. Circulating irisin levels were associated with hyperandrogenism, but not with oligoanovulation or PCO morphology. Circulating irisin may allow physicians to establish which women merit screening by a biomarker for PCOS.

  18. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    PubMed

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Cellular fibronectin response to supervised moderate aerobic training in patients with type 2 diabetes

    PubMed Central

    Alghadir, Ahmad H.; Gabr, Sami A.; Al-Eisa, Einas

    2016-01-01

    [Purpose] Physical activity is one of the most pivotal targets for the prevention and management of vascular complications, especially endothelial dysfunctions. Cellular fibronectin is an endothelium-derived protein involved in subendothelial matrix assembly. Its plasma levels reflect matrix alterations and vessel wall destruction in patients with type II diabetes. This study investigated the influence of 12 weeks of supervised aerobic training on cellular fibronectin and its relationship with insulin resistance and body weight in type II diabetic subjects. [Subjects and Methods] This study included 50 men with type II diabetes who had a mean age of 48.8 ± 14.6 years and were randomly divided into two groups: an aerobic exercise group (12 weeks, three 50 minutes sessions per week) and control group. To examine changes in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile, 5 ml of blood was taken from the brachial vein of patients before and 48 hours after completion of the exercise period and after 12 hours of fasting at rest. Data analysis was performed using the SPSS-16 software with the independent and paired t-tests. [Results] A significant decrease was observed in body mass index and body fat percentage in the experimental group. Compared with the control group, the aerobic exercise group showed a significant decrease in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile after 12 weeks of aerobic exercise. The change in cellular fibronectin showed positive significant correlation with body mass index, diabetic biomarkers, and physical activity level. [Conclusion] The results showed that supervised aerobic exercise as a stimulus can change the levels of cellular fibronectin as matrix metalloproteinase protein a long with improvement of insulin sensitivity and glycosylated hemoglobin in order to prevent cardiovascular diseases in men with diabetes PMID:27190433

  20. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed Central

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-01-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a “diffuse sensory organ” that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this “pan-endocrine illness” is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364

  1. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    PubMed

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular abnormalities and restores the normal life expectancy.

  2. Mechanisms of disease: inflammasome activation and the development of type 2 diabetes

    PubMed Central

    Grant, Ryan W.; Dixit, Vishwa D.

    2013-01-01

    Over the recent past, the importance of aberrant immune cell activation as one of the contributing mechanisms to the development of insulin-resistance and type 2 diabetes (T2D) has been recognized. Among the panoply of pro-inflammatory cytokines that are linked to chronic metabolic diseases, new data suggests that interleukin-1β (IL-1β) may play an important role in initiating and sustaining inflammation-induced organ dysfunction in T2D. Therefore, factors that control secretion of bioactive IL-1β have therapeutic implications. In this regard, the identification of multiprotein scaffolding complexes, “inflammasomes,” has been a great advance in our understanding of this process. The secretion of bioactive IL-1β is predominantly controlled by activation of caspase-1 through assembly of a multiprotein scaffold, “inflammasome” that is composed of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) ASC (apoptosis associated speck-like protein containing a CARD) and procaspase-1. The NLRP3 inflammasome appears to be an important sensor of metabolic dysregulation and controls obesity-associated insulin resistance and pancreatic beta cell dysfunction. Initial clinical “proof of concept” studies suggest that blocking IL-1β may favorably modulate factors related to development and treatment of T2D. However, this potential therapeutic approach remains to be fully substantiated through phase-II clinical studies. Here, we outline the new immunological mechanisms that link metabolic dysfunction to the emergence of chronic inflammation and discuss the opportunities and challenges of future therapeutic approaches to dampen NLRP3 inflammasome activation or IL-1β signaling for controlling type 2 diabetes. PMID:23483669

  3. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome.

    PubMed

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-07-01

    Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-%beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. Not applicable.

  4. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  5. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  6. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases

    PubMed Central

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases. PMID:25674026

  7. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases.

    PubMed

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases.

  8. Iatrogenic lipodystrophy in HIV patients - the need for very-low-fat diets.

    PubMed

    McCarty, M F

    2003-01-01

    In HIV patients, chronic treatment with protease inhibitors often precipitates a peripheral lipodystrophy associated with insulin resistance syndrome and premature coronary disease. In vitro studies demonstrate that these drugs can compromise the ability of adipocytes to store triglycerides; in vivo, peripheral subcutaneous adipocytes appear to be most affected, such that body fat often redistributes to visceral or truncal adipose stores. Dysfunction of peripheral subcutaneous adipocytes - ordinarily quite efficient for storing fat - can be expected to give rise to an excessive flux of free fatty acids (FFAs) following fatty meals; chronic overexposure of tissues to FFAs is a likely explanation for the insulin resistance syndrome associated with lipodystrophy. These considerations suggest that a very-low-fat diet - less than 15% fat calories - may ameliorate the cardiovascular risk associated with lipodystrophy; such diets are known to have a favorable effect on the insulin sensitivity of healthy subjects. Very-low-fat whole-food vegan diets are particularly recommendable in this context, as they may help to shrink visceral fat depots while markedly reducing LDL cholesterol. Appropriate adjunctive measures may include aerobic exercise training - beneficial both for insulin sensitivity and weight control - as well as administration of statins or policosanol, and of fibrates or fish oil, to decrease LDL and triglycerides, respectively. Despite perceptions to the contrary, very-low-fat diets can meet with good compliance in well-motivated subjects given appropriate instruction.

  9. Intermittent injections of osteocalcin reverse autophagic dysfunction and endoplasmic reticulum stress resulting from diet-induced obesity in the vascular tissue via the NFκB-p65-dependent mechanism.

    PubMed

    Zhou, Bo; Li, Huixia; Liu, Jiali; Xu, Lin; Zang, Weijin; Wu, Shufang; Sun, Hongzhi

    2013-06-15

    The osteoblast-specific secreted molecule osteocalcin behaves as a hormone-regulating glucose and lipid metabolism, but the role of osteocalcin in cardiovascular disease (CVD) is not fully understood. In the present study, we investigated the effect of osteocalcin on autophagy and endoplasmic reticulum (ER) stress secondary to diet-induced obesity in the vascular tissue of mice and in vascular cell models and clarified the intracellular events responsible for osteocalcin-mediated effects. The evidences showed that intermittent injections of osteocalcin in mice fed the high-fat diet were associated with a reduced body weight gain, decreased blood glucose and improved insulin sensitivity compared with mice fed the high-fat diet receiving vehicle. Simultaneously, the administration of osteocalcin not only attenuated autophagy and ER stress but also rescued impaired insulin signaling in vascular tissues of mice fed a high-fat diet. Consistent with these results in vivo, the addition of osteocalcin reversed autophagy and ER stress and restored defective insulin sensitivity in vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) in the presence of tunicamycin or in knockout XBP-1 (a transcription factor which mediates ER stress response) cells or in Atg7(-/-) cells. The protective effects of osteocalcin were nullified by suppression of Akt, mammalian target of rapamycin (mTOR) or nuclear factor kappa B (NFκB), suggesting that osteocalcin inhibits autophagy, ER stress and improves insulin signaling in the vascular tissue and cells under insulin resistance in a NFκB-dependent manner, which may be a promising therapeutic strategies of cardiovascular dysfunction secondary to obesity.

  10. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  11. Antibody-Mediated Extreme Insulin Resistance: A Report of Three Cases.

    PubMed

    Kim, Han Na; Fesseha, Betiel; Anzaldi, Laura; Tsao, Allison; Galiatsatos, Panagis; Sidhaye, Aniket

    2018-01-01

    Type 2 diabetes mellitus is characterized by relative insulin deficiency and insulin resistance. Features suggesting severe insulin resistance include acanthosis nigricans, hyperandrogenism, weight loss, and recurrent hospital admissions for diabetic ketoacidosis. In rare circumstances, hyperglycemia persists despite administration of massive doses of insulin. In these cases, it is important to consider autoimmune etiologies for insulin resistance, such as type B insulin resistance and insulin antibody-mediated extreme insulin resistance, which carry high morbidity and mortality if untreated. Encouragingly, immunomodulatory regimens have recently been published that induce remission at high rates. We describe 3 cases of extreme insulin resistance mediated by anti-insulin receptor autoantibodies or insulin autoantibodies. All cases were effectively treated with an immunomodulatory regimen. Although cases of extreme insulin resistance are rare, it is important to be aware of autoimmune causes, recognize suggestive signs and symptoms, and pursue appropriate diagnostic evaluation. Prompt treatment with immunomodulators is key to restoring euglycemia in patients with autoimmune etiologies of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Insulin resistance and subclinical abnormalities of global and regional left ventricular function in patients with aortic valve sclerosis.

    PubMed

    Utsunomiya, Hiroto; Yamamoto, Hideya; Kunita, Eiji; Hidaka, Takayuki; Kihara, Yasuki

    2014-04-27

    Insulin resistance, as a key mediator of metabolic syndrome, is thought to be associated with pathogenesis of calcific aortic valve disease and altered left ventricular (LV) function and structure. However, in patients with aortic valve sclerosis (AVS), the association between insulin resistance and subclinical impairment of LV function is not fully elucidated. We studied 57 patients (mean age 70 ± 8 years, 22 women) with asymptomatic AVS but normal LV ejection fraction in echocardiography. LV longitudinal and circumferential strain and strain rate was analyzed using two-dimensional speckle tracking echocardiography. Patients with uncontrolled hypertension and diabetes mellitus, chronic kidney disease, and concomitant coronary artery disease were excluded. They were divided into the insulin-resistant group (AVS+IR; N = 28) and no insulin-resistant group (AVS-IR; N = 29) according to the median value of homeostatic model assessment index. Computed tomography scans were also performed to measure the aortic valve calcium score and the visceral adipose tissue (VAT) area. In addition, age- and sex- adjusted 28 control subjects were recruited for the comparison. There were no significant differences in LV ejection fraction or mass index among the groups. The AVS+IR group had a higher aortic valve calcium score (median 94 versus 21, P = 0.022) and a larger VAT area (113 ± 42 cm2 versus 77 ± 38 cm2, P = 0.001) than the AVS-IR group. Notably, LV global longitudinal strain, strain rate (SR), and early diastolic SR were significantly lower in the AVS+IR group than in the AVS-IR group and in control subjects (strain: -16.2 ± 1.6% versus -17.2 ± 1.2% and -18.9 ± 0.8%; SR: -1.18 ± 0.26 s(-1) versus -1.32 ± 0.21 s(-1) and -1.52 ± 0.08 s(-1); early diastolic SR: -1.09 ± 0.23 s(-1) versus -1.23 ± 0.18 s(-1) and -1.35 ± 0.12 s(-1); P < 0.05 for all comparison), whereas circumferential function were not significantly different. Multiple linear regression analyses revealed insulin resistance as an independent determinant of LV longitudinal strain (P = 0.017), SR (P = 0.047), and early diastolic SR (P = 0.049) regardless of LV mass index or VAT area. Insulin resistance is a powerful independent predictor of subclinical LV dysfunction regardless of concomitant visceral obesity and LV hypertrophy. Thus, it may be a novel therapeutic target to prevent subsequent heart failure in patients with AVS.

  13. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched-chain amino acids as a unique insulin-sensitizing strategy for patients with HCV-associated insulin resistance. PMID:20419831

  14. Comparison of Insulin Resistance and β-Cell Dysfunction Between the Young and the Elderly in Normal Glucose Tolerance and Prediabetes Population: A Prospective Study.

    PubMed

    Chen, G; Shi, L; Cai, L; Lin, W; Huang, H; Liang, J; Li, L; Lin, L; Tang, K; Chen, L; Lu, J; Bi, Y; Wang, W; Ning, G; Wen, J

    2017-02-01

    Insulin resistance and β-cell function are different between the young and elderly diabetes individuals, which are not well elaborated in the nondiabetic persons. The aims of this study were to compare insulin resistance and β-cell function between young and old adults from normal glucose tolerance (NGT) to prediabetes [which was subdivided into isolated impaired fasting glucose (i-IFG), isolated impaired glucose tolerance (i-IGT), and a combination of both (IFG/IGT)], and compare the prevalence of diabetes mellitus (DM) in the above prediabetes subgroups between different age groups after 3 years. A total of 1 374 subjects aged below 40 or above 60 years old with NGT or prediabetes were finally included in this study. Insulin resistance and β-cell function from homeostasis model assessment (HOMA) and interactive, 24-variable homeostatic model of assessment (iHOMA2) were compared between different age groups. The rate of transition to diabetes between different age groups in all pre-diabetes subgroups was also compared. Compared with the old groups, young i-IFG and IFG/IGT groups exhibit higher log HOMA-IR and log HOMA2-S, whereas the young i-IGT groups experienced comparable log HOMA-IR and log HOMA2-S when compared with old i-IFG and IFG/IGT groups. Three prediabetes subgroups all had similar log HOMA-B and log HOMA2-B between different age groups. In addition, the prevalence of diabetes in young i-IFG was statistically higher than that in old i-IFG after 3 years. Age is negatively related to log HOMA2-B in both age groups. Considering an age-related deterioration of β-cell function, young i-IFG, young i-IGT, and young IFG/IGT all suffered a greater impairment in insulin secretion than the old groups. Young i-IFG and IFG/IGT have more severe insulin resistance than the old groups. In addition, young i-IFG characterized with a higher incidence of DM than the old i-IFG. These disparities highlight that the prevention to slow progression from prediabetes to type 2 diabetes should be additionally focused in young prediabetes individuals, especially young i-IFG. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    PubMed

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin improves cognitive functions in HFD-induced obese mice.

  16. Analyte Flux at a Biomaterial–Tissue Interface over Time: Implications for Sensors for Type 1 and 2 Diabetes Mellitus

    PubMed Central

    Ekberg, Neda Rajamand; Brismar, Kerstin; Malmstedt, Jonas; Hedblad, Mari-Anne; Adamson, Ulf; Ungerstedt, Urban; Wisniewski, Natalie

    2010-01-01

    Objective The very presence of an implanted sensor (a foreign body) causes changes in the adjacent tissue that may alter the analytes being sensed. The objective of this study was to investigate changes in glucose availability and local tissue metabolism at the sensor–tissue interface in patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Method Microdialysis was used to model implanted sensors. Capillary glucose and subcutaneous (sc) microdialysate analytes were monitored in five T1DM and five T2DM patients. Analytes included glucose, glycolysis metabolites (lactate, pyruvate), a lipolysis metabolite (glycerol), and a protein degradation byproduct (urea). On eight consecutive days, four measurements were taken during a period of steady state blood glucose. Results Microdialysate glucose and microdialysate-to-blood-glucose ratio increased over the first several days in all patients. Although glucose recovery eventually stabilized, the lactate levels continued to rise. These trends were explained by local inflammatory and microvascular changes observed in histological analysis of biopsy samples. Urea concentrations mirrored glucose trends. Urea is neither produced nor consumed in sc tissue, and so the initially increasing urea trend is explained by increased local capillary presence during the inflammatory process. Pyruvate in T2DM microdialysate was significantly higher than in T1DM, an observation that is possibly explained by mitochondrial dysfunction in T2DM. Glycerol in T2DM microdialysate (but not in T1DM) was higher than in healthy volunteers, which is likely explained by sc insulin resistance (insulin is a potent antilipolytic hormone). Urea was also higher in microdialysate of patients with diabetes mellitus compared to healthy volunteers. Urea is a byproduct of protein degradation, which is known to be inhibited by insulin. Therefore, insulin deficiency or resistance may explain the higher urea levels. To our knowledge, this is the first histological evaluation of a human tissue biopsy containing an implanted glucose monitoring device. Conclusions Monitoring metabolic changes at a material–tissue interface combined with biopsy histology helped to formulate an understanding of physiological changes adjacent to implanted glucose sensors. Microdialysate glucose trends were similar over 1-week in T1DM and T2DM; however, differences in other analytes indicated wound healing and metabolic activities in the two patient groups differ. We propose explanations for the specific observed differences based on differential insulin insufficiency/resistance and mitochondrial dysfunction in T1DM versus T2DM. PMID:20920426

  17. Analyte flux at a biomaterial-tissue interface over time: implications for sensors for type 1 and 2 diabetes mellitus.

    PubMed

    Ekberg, Neda Rajamand; Brismar, Kerstin; Malmstedt, Jonas; Hedblad, Mari-Anne; Adamson, Ulf; Ungerstedt, Urban; Wisniewski, Natalie

    2010-09-01

    The very presence of an implanted sensor (a foreign body) causes changes in the adjacent tissue that may alter the analytes being sensed. The objective of this study was to investigate changes in glucose availability and local tissue metabolism at the sensor-tissue interface in patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Microdialysis was used to model implanted sensors. Capillary glucose and subcutaneous (sc) microdialysate analytes were monitored in five T1DM and five T2DM patients. Analytes included glucose, glycolysis metabolites (lactate, pyruvate), a lipolysis metabolite (glycerol), and a protein degradation byproduct (urea). On eight consecutive days, four measurements were taken during a period of steady state blood glucose. Microdialysate glucose and microdialysate-to-blood-glucose ratio increased over the first several days in all patients. Although glucose recovery eventually stabilized, the lactate levels continued to rise. These trends were explained by local inflammatory and microvascular changes observed in histological analysis of biopsy samples. Urea concentrations mirrored glucose trends. Urea is neither produced nor consumed in sc tissue, and so the initially increasing urea trend is explained by increased local capillary presence during the inflammatory process. Pyruvate in T2DM microdialysate was significantly higher than in T1DM, an observation that is possibly explained by mitochondrial dysfunction in T2DM. Glycerol in T2DM microdialysate (but not in T1DM) was higher than in healthy volunteers, which is likely explained by sc insulin resistance (insulin is a potent antilipolytic hormone). Urea was also higher in microdialysate of patients with diabetes mellitus compared to healthy volunteers. Urea is a byproduct of protein degradation, which is known to be inhibited by insulin. Therefore, insulin deficiency or resistance may explain the higher urea levels. To our knowledge, this is the first histological evaluation of a human tissue biopsy containing an implanted glucose monitoring device. Monitoring metabolic changes at a material-tissue interface combined with biopsy histology helped to formulate an understanding of physiological changes adjacent to implanted glucose sensors. Microdialysate glucose trends were similar over 1-week in T1DM and T2DM; however, differences in other analytes indicated wound healing and metabolic activities in the two patient groups differ. We propose explanations for the specific observed differences based on differential insulin insufficiency/resistance and mitochondrial dysfunction in T1DM versus T2DM. © 2010 Diabetes Technology Society.

  18. Early pancreatic dysfunction after resection in trauma: An 18-year report from a Level I trauma center.

    PubMed

    Mansfield, Nicole; Inaba, Kenji; Berg, Regan; Beale, Elizabeth; Benjamin, Elizabeth; Lam, Lydia; Matsushima, Kazuhide; Demetriades, Demetrios

    2017-03-01

    Early pancreatic dysfunction after resection in trauma has not been well characterized. The objective of this study was to examine the incidence and clinical impact of new-onset endocrine and exocrine dysfunction after pancreatic resection for trauma. All patients sustaining a pancreatic injury from 1996 to 2013 were identified. Patients with preinjury diabetes were excluded. Survivors were divided into three groups according to the extent of anatomic resection-distal, proximal, or total pancreatectomy. Clinical demographics and outcome data were abstracted. Blood glucose levels, hemoglobin A1c, and insulin requirements were used to assess endocrine pancreatic function. Reported steatorrhea, diarrhea, or supplemental pancreatic enzyme requirements were used to assess exocrine pancreatic function. During the study period, 331 pancreatic injuries were identified, of which 109 (33%) required resection and 84 survived to hospital discharge. Four were excluded. Of 80 cases analyzed, 73 (91%) underwent distal pancreatectomy, 7 (9%) proximal pancreatectomy, and none a total pancreatectomy. The distal resection group was predominantly male (88%), median age 24 years, and mean BMI 27 (kg/m). Thirty-eight (52%) required insulin postoperatively, with the greatest proportion (47%) requiring insulin for ≤1 day; no patients were discharged on insulin. The proximal resection group was predominantly male (86%), median age 31 years, and mean BMI 32 (kg/m). Six of seven required insulin postoperatively and two of seven were insulin dependent at time of hospital discharge. For both distal and proximal resections, none had evidence of exocrine dysfunction or received pancreatic enzyme supplementation at discharge. Exocrine dysfunction after distal or proximal pancreatectomy for trauma is rare. The incidence of early onset endocrine dysfunction after traumatic distal pancreatectomy is also rare; however, it can be seen after proximal resection. Therapeutic study, level IV.

  19. Contemporary approaches to the management of polycystic ovary syndrome

    PubMed Central

    Pasquali, Renato

    2018-01-01

    Polycystic ovary syndrome (PCOS) is a common disorder in women in their reproductive years and is characterized by androgen excess, ovulatory dysfunction, and polycystic ovarian morphology. It is also associated with several metabolic abnormalities, particularly insulin resistance and obesity, which play an important role in the pathophysiology of PCOS and, in particular, negatively influence ovarian function and fertility. This review article summarizes the available treatment for women with PCOS. Specifically, current and potentially new therapies are discussed. PMID:29619209

  20. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis.

    PubMed

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism.

  1. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis

    PubMed Central

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism. PMID:27213061

  2. TREATMENT OF METABOLIC ALTERATIONS IN POLYCYSTIC OVARY SYNDROME.

    PubMed

    Păvăleanu, Ioana; Gafiţanu, D; Popovici, Diana; Duceac, Letiţia Doina; Păvăleanu, Maricica

    2016-01-01

    Polycystic ovary syndrome is a common endocrinopathy characterized by oligo ovulation or anovulation, signs of androgen excess and multiple small ovarian cysts. It includes various metabolic abnormalities: insulin resistance, hyperinsulinemia, impaired glucose tolerance, visceral obesity, inflammation and endothelial dysfunction, hypertension and dyslipidemia. All these metabolic abnormalities have long-term implications. Treatment should be individualized and must not address a single sign or symptom. Studies are still needed to determine the benefits and the associated risks of the medication now available to practitioners.

  3. High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice.

    PubMed

    Burchfield, James G; Kebede, Melkam A; Meoli, Christopher C; Stöckli, Jacqueline; Whitworth, P Tess; Wright, Amanda L; Hoffman, Nolan J; Minard, Annabel Y; Ma, Xiuquan; Krycer, James R; Nelson, Marin E; Tan, Shi-Xiong; Yau, Belinda; Thomas, Kristen C; Wee, Natalie K Y; Khor, Ee-Cheng; Enriquez, Ronaldo F; Vissel, Bryce; Biden, Trevor J; Baldock, Paul A; Hoehn, Kyle L; Cantley, James; Cooney, Gregory J; James, David E; Fazakerley, Daniel J

    2018-04-13

    Obesity is associated with metabolic dysfunction, including insulin resistance and hyperinsulinemia, and with disorders such as cardiovascular disease, osteoporosis, and neurodegeneration. Typically, these pathologies are examined in discrete model systems and with limited temporal resolution, and whether these disorders co-occur is therefore unclear. To address this question, here we examined multiple physiological systems in male C57BL/6J mice following prolonged exposure to a high-fat/high-sucrose diet (HFHSD). HFHSD-fed mice rapidly exhibited metabolic alterations, including obesity, hyperleptinemia, physical inactivity, glucose intolerance, peripheral insulin resistance, fasting hyperglycemia, ectopic lipid deposition, and bone deterioration. Prolonged exposure to HFHSD resulted in morbid obesity, ectopic triglyceride deposition in liver and muscle, extensive bone loss, sarcopenia, hyperinsulinemia, and impaired short-term memory. Although many of these defects are typically associated with aging, HFHSD did not alter telomere length in white blood cells, indicating that this diet did not generally promote all aspects of aging. Strikingly, glucose homeostasis was highly dynamic. Glucose intolerance was evident in HFHSD-fed mice after 1 week and was maintained for 24 weeks. Beyond 24 weeks, however, glucose tolerance improved in HFHSD-fed mice, and by 60 weeks, it was indistinguishable from that of chow-fed mice. This improvement coincided with adaptive β-cell hyperplasia and hyperinsulinemia, without changes in insulin sensitivity in muscle or adipose tissue. Assessment of insulin secretion in isolated islets revealed that leptin, which inhibited insulin secretion in the chow-fed mice, potentiated glucose-stimulated insulin secretion in the HFHSD-fed mice after 60 weeks. Overall, the excessive calorie intake was accompanied by deteriorating function of numerous physiological systems. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance

    PubMed Central

    Fazakerley, Daniel J; Chaudhuri, Rima; Yang, Pengyi; Maghzal, Ghassan J; Thomas, Kristen C; Krycer, James R; Humphrey, Sean J; Parker, Benjamin L; Fisher-Wellman, Kelsey H; Meoli, Christopher C; Hoffman, Nolan J; Diskin, Ciana; Burchfield, James G; Cowley, Mark J; Kaplan, Warren; Modrusan, Zora; Kolumam, Ganesh; Yang, Jean YH; Chen, Daniel L; Samocha-Bonet, Dorit; Greenfield, Jerry R; Hoehn, Kyle L

    2018-01-01

    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance. PMID:29402381

  5. Short-term intensive insulin therapy in type 2 diabetes mellitus: a systematic review and meta-analysis.

    PubMed

    Kramer, Caroline Kaercher; Zinman, Bernard; Retnakaran, Ravi

    2013-09-01

    Studies have shown that, when implemented early in the course of type 2 diabetes mellitus, treatment with intensive insulin therapy for 2-3 weeks can induce a glycaemic remission, wherein patients are able to maintain normoglycaemia without any anti-diabetic medication. We thus did a systematic review and meta-analysis of interventional studies to assess the effect of short-term intensive insulin therapy on the pathophysiological defects underlying type 2 diabetes mellitus (pancreatic β-cell dysfunction and insulin resistance) and identify clinical predictors of remission. We identified studies published between 1950 and Nov 19, 2012, which assessed the effect of intensive insulin therapy on β-cell function or insulin resistance, or both, or assessed long-term drug-free glycaemic remission in adults aged 18 years or older with newly diagnosed type 2 diabetes mellitus. We calculated pooled estimates by random-effects model. This study is registered with International Prospective Register of Systematic Reviews, number CRD42012002829. We identified 1645 studies of which seven fulfilled inclusion criteria (n=839 participants). Five studies were non-randomised. A pooled analysis of the seven studies showed a post-intensive insulin therapy increase in Homeostasis Model Assessment of β-cell function as compared with baseline (1·13, 95% CI 1·02 to 1·25) and a decrease in Homeostasis Model Assessment of Insulin Resistance (-0·57, -0·84 to -0·29). In the four studies that assessed glycaemic remission (n=559 participants), the proportion of participants in drug-free remission was about 66·2% (292 of 441 patients) after 3 months of follow-up, about 58·9% (222 of 377 patients) after 6 months, about 46·3% (229 of 495 patients) after 12 months, and about 42·1% (53 of 126 patients) after 24 months. Patients who achieved remission had higher body-mass index than those who did not achieve remission (1·06 kg/m(2), 95% CI 0·55 to 1·58) and lower fasting plasma glucose (-0·59 mmol/L, 95% CI -1·11 to -0·07) at baseline. Short-term intensive insulin therapy can improve the underlying pathophysiology in early type 2 diabetes mellitus, and thus might provide a treatment strategy for modifying the natural history of diabetes. None. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. "Non alcoholic fatty liver disease and eNOS dysfunction in humans".

    PubMed

    Persico, Marcello; Masarone, Mario; Damato, Antonio; Ambrosio, Mariateresa; Federico, Alessandro; Rosato, Valerio; Bucci, Tommaso; Carrizzo, Albino; Vecchione, Carmine

    2017-03-07

    NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD.

  7. Restoration of Autophagy in Endothelial Cells from Patients with Diabetes Mellitus Improves Nitric Oxide Signaling

    PubMed Central

    Fetterman, Jessica L.; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A.; Berk, Brittany D.; Duess, Mai-Ann; Farb, Melissa G.; Gokce, Noyan; Shirihai, Orian S.; Hamburg, Naomi M.; Vita, Joseph A.

    2016-01-01

    Background Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. Methods and Results We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n=45) and non-diabetic controls (n=41). p62 levels were higher in cells from diabetics (34.2±3.6 vs. 20.0±1.6, P=0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (−21±5% vs. 64±22%, P=0.003) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P=0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P=0.01) in cells from diabetics to a lesser extent than in cells from controls (P=0.04), suggesting ongoing, but inadequate autophagic clearance. Conclusion Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. PMID:26926601

  8. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A

    2016-04-01

    Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome?

    PubMed

    Abbott, D H; Barnett, D K; Bruns, C M; Dumesic, D A

    2005-01-01

    The aetiology of polycystic ovary syndrome (PCOS) remains unknown. This familial syndrome is prevalent among reproductive-aged women and its inheritance indicates a dominant regulatory gene with incomplete penetrance. However, promising candidate genes have proven unreliable as markers for the PCOS phenotype. This lack of genetic linkage may represent both extreme heterogeneity of PCOS and difficulty in establishing a universally accepted PCOS diagnosis. Nevertheless, hyperandrogenism is one of the most consistently expressed PCOS traits. Animal models that mimic fetal androgen excess may thus provide unique insight into the origins of the PCOS syndrome. Many female mammals exposed to androgen excess in utero or during early post-natal life typically show masculinized and defeminized behaviour, ovulatory dysfunction and virilized genitalia, although behavioural and ovulatory dysfunction can coexist without virilized genitalia based upon the timing of androgen excess. One animal model shows particular relevance to PCOS: the prenatally androgenized female rhesus monkey. Females exposed to androgen excess early in gestation exhibit hyperandrogenism, oligomenorrhoea and enlarged, polyfollicular ovaries, in addition to LH hypersecretion, impaired embryo development, insulin resistance accompanying abdominal obesity, impaired insulin response to glucose and hyperlipidaemia. Female monkeys exposed to androgen excess late in gestation mimic these programmed changes, except for LH and insulin secretion defects. In utero androgen excess may thus variably perturb multiple organ system programming and thereby provide a single, fetal origin for a heterogeneous adult syndrome.

  10. Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    PubMed Central

    Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel

    2015-01-01

    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662

  11. A randomized, double-blind, placebo-controlled, crossover trial evaluating the effect of intranasal insulin on cognition and mood in individuals with treatment-resistant major depressive disorder.

    PubMed

    Cha, Danielle S; Best, Michael W; Bowie, Christopher R; Gallaugher, Laura Ashley; Woldeyohannes, Hanna O; Soczynska, Joanna K; Lewis, Gary; MacQueen, Glenda; Sahakian, Barbara J; Kennedy, Sidney H; Lui, Jane P; Mansur, Rodrigo B; McIntyre, Roger S

    2017-03-01

    Cognitive dysfunction in major depressive disorder (MDD) is identified as a primary therapeutic target; no current treatment is approved for the treatment of cognitive dysfunction in MDD. We examined whether intranasal insulin offered a beneficial effect across measures of cognitive function in adults with MDD. Thirty-five adults (18-65 years of age: 47.09±9.89) meeting criteria for a major depressive episode as per the Diagnostic and Statistical Manual (DSM)-IV-Treatment Revised were included in this randomized, double blind, placebo-controlled, crossover design study. Subjects were not stratified based on baseline cognitive deficit. Subjects were randomized to 4 weeks of either intranasal insulin 40 International Units (IU) taken four times a day (i.e., morning, afternoon, evening, and before bed) (QID) (n=19) or placebo (n=16). No between group differences were observed in change from baseline on total Montgomery Åsberg Depression Rating Scale (MADRS) score (25.98±2.81), in either of the Positive or Negative subscales of the Positive and Negative Affect Schedule (PANAS), or on a global index of neurocognition. The possibility of practice and/or carry over effect could not be excluded. Methodological refinement (e.g., stratification of subjects based on baseline cognitive deficit) may have augmented assay sensitivity. Intranasal insulin did not demonstrate statistically significant improvements on overall mood, aspects of emotional processing, neurocognitive function, or self-reported quality of life patient reported outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  13. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension.

    PubMed

    Han, Tianshu; Lan, Li; Qu, Rongge; Xu, Qian; Jiang, Ruyue; Na, Lixin; Sun, Changhao

    2017-10-01

    Although hyperuricemia and insulin resistance significantly correlated, their temporal sequence and how the sequence influence on future risk of hypertension are largely unknown. This study assessed temporal relationship between uric acid and insulin resistance and its impact on future risk of hypertension by examining a longitudinal cohort including 8543 subjects aged 20 to 74 years from China, with an average follow-up of 5.3 years. Measurements of fasting uric acid, as well as fasting and 2-hour serum glucose and insulin, were obtained at baseline and follow-up. Indicators of hepatic and peripheral insulin resistance were calculated. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between uric acid and insulin resistance and its impact on follow-up hypertension. After adjusting for covariates, the cross-lagged path coefficients ( β 1 values) from baseline uric acid to follow-up insulin resistance indices were significantly greater than path coefficients ( β 2 values) from baseline insulin resistance indices to follow-up uric acid ( β 1 =0.110 versus β 2 =0.017; P <0.001, for hepatic insulin resistance; β 1 =-0.208 versus β 2 =-0.021; P <0.001, for peripheral insulin resistance). The path coefficients from baseline uric acid to follow-up insulin resistance indices in the hypertensive group were significantly greater than that in the normotensive group ( P <0.001 for the difference of β 1 values in the 2 groups). Insulin resistance partially mediated the effect of uric acid on subsequent hypertension, and the mediation effect of peripheral insulin resistance was significantly greater than that of hepatic insulin resistance (31.3% versus 13.2%; P <0.001, for the difference of mediation effects). These findings provide evidence that higher uric acid levels probably precede insulin resistance, and peripheral insulin resistance likely plays a more important role in the development of hypertension than hepatic insulin resistance does. © 2017 American Heart Association, Inc.

  14. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    PubMed

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration < 20 μU/mL were assigned to the insulin-sensitive group, whereas horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin < 1.0 × 10 -4 L•min -1 •mU -1 were assigned to the insulin-resistant group. All horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  15. Long-term high-fat-diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent and muscle-type specific manner

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction is thought to play a crucial role in the etiology of insulin resistance, in which skeletal muscle is the main tissue contributor. Sex differences in skeletal muscle insulin and antioxidant responses to high-fat-diet (HFD) feeding have been described. The aim of this study was to elucidate whether there is a sex dimorphism in the effects of HFD feeding on skeletal muscle mitochondrial biogenesis and on the adiponectin signaling pathway, as well as the influence of the muscle type (oxidative or glycolytic). Methods Gastrocnemius and soleus muscles of male and female Wistar rats of 2 months of age fed with a high-fat-diet (HFD) or a low fat diet for 26 weeks were used. Mitochondrial biogenesis and oxidative damage markers, oxidative capacity and antioxidant defences were analyzed. Serum insulin sensitivity parameters and the levels of proteins involved in adiponectin signaling pathway were also determined. Results HFD feeding induced mitochondrial biogenesis in both sexes, but to a higher degree in male rats. Although HFD female rats showed greater antioxidant protection and maintained a better insulin sensitivity profile than their male counterparts, both sexes showed an impaired response to adiponectin, which was more evident in gastrocnemius muscle. Conclusions We conclude that HFD rats may induce skeletal muscle mitochondrial biogenesis as an attempt to compensate the deleterious consequences of adiponectin and insulin resistance on oxidative metabolism, and that the effects of HFD feeding are sex-dependent and muscle-type specific. PMID:22353542

  16. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology.

    PubMed

    Capuani, Barbara; Della-Morte, David; Donadel, Giulia; Caratelli, Sara; Bova, Luca; Pastore, Donatella; De Canio, Michele; D'Aguanno, Simona; Coppola, Andrea; Pacifici, Francesca; Arriga, Roberto; Bellia, Alfonso; Ferrelli, Francesca; Tesauro, Manfredi; Federici, Massimo; Neri, Anna; Bernardini, Sergio; Sbraccia, Paolo; Di Daniele, Nicola; Sconocchia, Giuseppe; Orlandi, Augusto; Urbani, Andrea; Lauro, Davide

    2015-05-01

    Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications. Copyright © 2015 the American Physiological Society.

  17. Cellular Insulin Resistance Disrupts Leptin-Mediated Control of Neuronal Signaling and Transcription

    PubMed Central

    Nazarians-Armavil, Anaies; Menchella, Jonathan A.

    2013-01-01

    Central resistance to the actions of insulin and leptin is associated with the onset of obesity and type 2 diabetes mellitus, whereas leptin and insulin signaling is essential for both glucose and energy homeostasis. Although it is known that leptin resistance can lead to attenuated insulin signaling, whether insulin resistance can lead to or exacerbate leptin resistance is unknown. To investigate the molecular events underlying crosstalk between these signaling pathways, immortalized hypothalamic neuronal models, rHypoE-19 and mHypoA-2/10, were used. Prolonged insulin exposure was used to induce cellular insulin resistance, and thereafter leptin-mediated regulation of signal transduction and gene expression was assessed. Leptin directly repressed agouti-related peptide mRNA levels but induced urocortin-2, insulin receptor substrate (IRS)-1, IRS2, and IR transcription, through leptin-mediated phosphatidylinositol 3-kinase/Akt activation. Neuronal insulin resistance, as assessed by attenuated Akt phosphorylation, blocked leptin-mediated signal transduction and agouti-related peptide, urocortin-2, IRS1, IRS2, and insulin receptor synthesis. Insulin resistance caused a substantial decrease in insulin receptor protein levels, forkhead box protein 1 phosphorylation, and an increase in suppressor of cytokine signaling 3 protein levels. Cellular insulin resistance may cause or exacerbate neuronal leptin resistance and, by extension, obesity. It is essential to unravel the effects of neuronal insulin resistance given that both peripheral, as well as the less widely studied central insulin resistance, may contribute to the development of metabolic, reproductive, and cardiovascular disorders. This study provides improved understanding of the complex cellular crosstalk between insulin-leptin signal transduction that is disrupted during neuronal insulin resistance. PMID:23579487

  18. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly highlight the reversible nature of this abnormality. PMID:18165437

  19. Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity.

    PubMed

    Sangeetha, Kadapakkam Nandabalan; Sujatha, Sundaresan; Muthusamy, Velusamy Shanmuganathan; Anand, Singaravel; Shilpa, Kusampudi; Kumari, Posa Jyothi; Sarathkumar, Baskaran; Thiyagarajan, Gopal; Lakshmi, Baddireddi Subhadra

    2017-01-01

    Non-insulin dependent diabetes mellitus, also known as Type 2 diabetes is a polygenic disorder leading to abnormalities in the carbohydrate and lipid metabolism. The major contributors in the pathophysiology of type 2 diabetes (T2D) include resistance to insulin action, β cell dysfunction, an abnormality in glucose metabolism and storage, visceral obesity and to some extent inflammation and oxidative stress. Insulin resistance, along with a defect in insulin secretion by the pancreatic β cells is instrumental towards progression to hyperglycemia. Increased incidence of obesity is also a major contributing factor in the escalating rates of type 2 diabetes. Drug discovery efforts are therefore crucially dependent on identifying individual molecular targets and validating their relevance to human disease. The current review discusses bioactive compounds from medicinal plants offering enhanced therapeutic potential for the combined patho-physiology of diabetes and obesity. We have demonstrated that 3β-taraxerol a pentacyclic triterpenoid (14-taraxeren-3-ol) isolated from the ethyl acetate extract of Mangifera indica, chlorogenic acid isolated from the methanol extract of Cichorium intybus, methyl tetracosanoate from the methanol extract of Costus pictus and vitalboside A derived from methanolic extract of Syzygium cumini exhibited significant effects on insulin stimulated glucose uptake causing insulin sensitizing effects on 3T3L1 adipocytes (an in vitro model mimicking adipocytes). Whereas, (3β)-stigmast-5-en-3-ol isolated from Adathoda vasica and Aloe emodin isolated from Cassia fistula showed significant insulin mimetic effects favoring glucose uptake in L6 myotubes (an in vitro model mimicking skeletal muscle cells). These extracts and molecules showed glucose uptake through activation of PI3K, an important insulin signaling intermediate. Interestingly, cinnamic acid isolated from the hydro-alcohol extract of Cinnamomum cassia was found to activate glucose transport in L6 myotubes through the involvement of GLUT4 via the PI3K-independent pathway. However, the activation of glucose storage was effective in the presence of 3β-taraxerol and aloe emodin though inhibition of GSK3β activity. Therefore, the mechanism of improvement of glucose and lipid metabolism exhibited by the small molecules isolated from our lab is discussed. However, Obesity is a major risk factor for type-2 diabetes leading to destruction of insulin receptors causing insulin resistance. Identification of compounds with dual activity (anti-diabetic and antiadipogenic activity) is of current interest. The protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of the insulin and leptin-signaling pathway is of significance in target definition and discovery.

  20. Identification of subjects with insulin resistance and beta-cell dysfunction using alternative definitions of the metabolic syndrome.

    PubMed

    Hanley, Anthony J G; Wagenknecht, Lynne E; D'Agostino, Ralph B; Zinman, Bernard; Haffner, Steven M

    2003-11-01

    Recently, the metabolic syndrome (MetS) has attracted much attention as a risk cluster for cardiovascular disease. Although it is believed that individuals with the MetS have insulin resistance (IR), there are few data using direct measures of IR such as glucose clamps or frequently sampled intravenous glucose tolerance tests (FSIGTTs). We examined associations of MetS with FSIGTT-derived measures of insulin sensitivity and secretion among nondiabetic subjects in the Insulin Resistance Atherosclerosis Study. Two sets of MetS criteria were evaluated: those from the 1999 World Health Organization (WHO) and the 2001 National Cholesterol Education Program (NCEP). Both WHO and NCEP MetS definitions were significantly associated with risk of being in the lowest quartile of directly measured insulin sensitivity (P < 0.0001 for all subjects as well as within ethnic subgroups). However, the associations with WHO-MetS were stronger for all subjects combined (WHO: odds ratio [OR] = 10.2; 95% CI 7.5-13.9; NCEP: OR = 4.6; 3.4-6.2) and in separate analyses of non-Hispanic whites, blacks, and Hispanics. WHO and NCEP MetS definitions were also significantly associated with risk of being in the lowest quartile of insulin sensitivity-adjusted acute insulin response (AIR) and disposition index (DI; all P < 0.01), although the associations were generally weaker than those for insulin sensitivity and there was no difference between the two definitions in all subjects combined (low AIR, WHO: OR = 1.7, 1.2-2.4; NCEP: OR = 1.7, 1.2-2.5). There were, however, a number of ethnic differences, including a stronger association of NCEP-MetS with low AIR among blacks. WHO-MetS was significantly more sensitive than NCEP-MetS in detecting low insulin sensitivity (65.4 vs. 45.6%, respectively; P < 0.0001), with no significant differences in specificity between the definitions (84.4 vs. 84.6%; P = 0.91), although WHO-MetS had a larger area under the receiver operating characteristic curve (75% vs. 65%; P < 0.0001). In conclusion, although both the WHO and NCEP MetS criteria identify nondiabetic individuals with low insulin sensitivity, the associations were notably stronger using the WHO definition. The definitions are generally less useful for identifying those with low AIR or DI, although NCEP-MetS seems to differentiate black subjects with insulin secretion defects.

  1. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Levels of eicosapentaenoic acid in obese schoolchildren with and without insulin resistance.

    PubMed

    Sánchez Meza, Karmina; Tene Pérez, Carlos Enrique; Sánchez Ramírez, Carmen Alicia; Muñiz Valencia, Roberto; Del Toro Equihua, Mario

    2014-09-12

    Obesity in children is now an increasing health risk worldwide in which the insulin-resistance can be present. Studies have linked a diet rich in n-3 fatty acids with a lower prevalence of insulin-resistance. To compare the levels of eicosapentaenoic acid among obese children with and without insulin-resistance. In 56 randomly school-age children with obesity, insulin-resistance was determined by the homeostasis model assessment for insulin-resistance index and the serum levels of eicosapentaenoic acid were determined by gas chromatography. Insulin-resistance was established when the index was >6.0, non- insulin- resistance when that index was within the range of 1.4-5.9. The serum levels of eicosapentaenoic acid were compared with the Kruskal-Wallis and Mann-Whitney U tests, as needed. No differences in age or sex were identified among the groups studied. The anthropometric parameters were significantly higher in the group of children with insulin-resistance than in the other two groups. The children with insulin- resistance had significantly lower levels of eicosapentaenoic acid than the non- insulin-resistance group [12.4% area under the curve vs. 37.4%, p = 0.031], respectively. Obese primary school-aged children with insulin-resistance had lower plasma levels of eicosapentaenoic acid. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. A small amount of dietary carbohydrate can promote the HFD-induced insulin resistance to a maximal level.

    PubMed

    Mei, Shuang; Yang, Xuefeng; Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1-25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level.

  4. A Small Amount of Dietary Carbohydrate Can Promote the HFD-Induced Insulin Resistance to a Maximal Level

    PubMed Central

    Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J.; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1–25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level. PMID:25055153

  5. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome

    PubMed Central

    O’Reilly, Michael W.; Kempegowda, Punith; Walsh, Mark; Taylor, Angela E.; Manolopoulos, Konstantinos N.; Allwood, J. William; Semple, Robert K.; Hebenstreit, Daniel; Dunn, Warwick B.; Tomlinson, Jeremy W.

    2017-01-01

    Context: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder occurring in up to 10% of women of reproductive age. PCOS is associated with insulin resistance and cardiovascular risk. Androgen excess is a defining feature of PCOS and has been suggested as causally associated with insulin resistance; however, mechanistic evidence linking both is lacking. We hypothesized that adipose tissue is an important site linking androgen activation and metabolic dysfunction in PCOS. Methods: We performed a human deep metabolic in vivo phenotyping study examining the systemic and intra-adipose effects of acute and chronic androgen exposure in 10 PCOS women, in comparison with 10 body mass index–matched healthy controls, complemented by in vitro experiments. Results: PCOS women had increased intra-adipose concentrations of testosterone (P = 0.0006) and dihydrotestosterone (P = 0.01), with increased expression of the androgen-activating enzyme aldo-ketoreductase type 1 C3 (AKR1C3) (P = 0.04) in subcutaneous adipose tissue. Adipose glycerol levels in subcutaneous adipose tissue microdialysate supported in vivo suppression of lipolysis after acute androgen exposure in PCOS (P = 0.04). Mirroring this, nontargeted serum metabolomics revealed prolipogenic effects of androgens in PCOS women only. In vitro studies showed that insulin increased adipose AKR1C3 expression and activity, whereas androgen exposure increased adipocyte de novo lipid synthesis. Pharmacologic AKR1C3 inhibition in vitro decreased de novo lipogenesis. Conclusions: These findings define an intra-adipose mechanism of androgen activation that contributes to adipose remodeling and a systemic lipotoxic metabolome, with intra-adipose androgens driving lipid accumulation and insulin resistance in PCOS. AKR1C3 represents a promising therapeutic target in PCOS. PMID:28645211

  6. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome.

    PubMed

    O'Reilly, Michael W; Kempegowda, Punith; Walsh, Mark; Taylor, Angela E; Manolopoulos, Konstantinos N; Allwood, J William; Semple, Robert K; Hebenstreit, Daniel; Dunn, Warwick B; Tomlinson, Jeremy W; Arlt, Wiebke

    2017-09-01

    Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder occurring in up to 10% of women of reproductive age. PCOS is associated with insulin resistance and cardiovascular risk. Androgen excess is a defining feature of PCOS and has been suggested as causally associated with insulin resistance; however, mechanistic evidence linking both is lacking. We hypothesized that adipose tissue is an important site linking androgen activation and metabolic dysfunction in PCOS. We performed a human deep metabolic in vivo phenotyping study examining the systemic and intra-adipose effects of acute and chronic androgen exposure in 10 PCOS women, in comparison with 10 body mass index-matched healthy controls, complemented by in vitro experiments. PCOS women had increased intra-adipose concentrations of testosterone (P = 0.0006) and dihydrotestosterone (P = 0.01), with increased expression of the androgen-activating enzyme aldo-ketoreductase type 1 C3 (AKR1C3) (P = 0.04) in subcutaneous adipose tissue. Adipose glycerol levels in subcutaneous adipose tissue microdialysate supported in vivo suppression of lipolysis after acute androgen exposure in PCOS (P = 0.04). Mirroring this, nontargeted serum metabolomics revealed prolipogenic effects of androgens in PCOS women only. In vitro studies showed that insulin increased adipose AKR1C3 expression and activity, whereas androgen exposure increased adipocyte de novo lipid synthesis. Pharmacologic AKR1C3 inhibition in vitro decreased de novo lipogenesis. These findings define an intra-adipose mechanism of androgen activation that contributes to adipose remodeling and a systemic lipotoxic metabolome, with intra-adipose androgens driving lipid accumulation and insulin resistance in PCOS. AKR1C3 represents a promising therapeutic target in PCOS. Copyright © 2017 Endocrine Society

  7. Exploring metabolic dysfunction in chronic kidney disease

    PubMed Central

    2012-01-01

    Impaired kidney function and chronic kidney disease (CKD) leading to kidney failure and end-stage renal disease (ESRD) is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD) risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS), with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid receptor. Insight into the multiple factors altered in CKD may provide useful information on disease pathogenesis, clinical assessment and treatment rationale such as potential pharmacological, nutritional and exercise therapies. PMID:22537670

  8. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.

    PubMed

    Tsuchida, Takuma; Shiraishi, Muneshige; Ohta, Tetsuya; Sakai, Kaoru; Ishii, Shinichi

    2012-07-01

    Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation.

    PubMed

    Kasai, Kazuo; Ohara-Imaizumi, Mica; Takahashi, Noriko; Mizutani, Shin; Zhao, Shengli; Kikuta, Toshiteru; Kasai, Haruo; Nagamatsu, Shinya; Gomi, Hiroshi; Izumi, Tetsuro

    2005-02-01

    The monomeric small GTPase Rab27a is specifically localized on both secretory granules and lysosome-related organelles. Although natural mutations of the Rab27a gene in human Griscelli syndrome and in ashen mice cause partial albinism and immunodeficiency reflecting the dysfunction of lysosome-related organelles, phenotypes resulting from the defective exocytosis of secretory granules have not been reported. To explore the roles of Rab27a in secretory granules, we analyzed insulin secretion profiles in ashen mice. Ashen mice showed glucose intolerance after a glucose load without signs of insulin resistance in peripheral tissues or insulin deficiency in the pancreas. Insulin secretion from isolated islets was decreased specifically in response to high glucose concentrations but not other nonphysiological secretagogues such as high K+ concentrations, forskolin, or phorbol ester. Neither the intracellular Ca2+ concentration nor the dynamics of fusion pore opening after glucose stimulation were altered. There were, however, marked reductions in the exocytosis from insulin granules predocked on the plasma membrane and in the replenishment of docked granules during glucose stimulation. These results provide the first genetic evidence to our knowledge for the role of Rab27a in the exocytosis of secretory granules and suggest that the Rab27a/effector system mediates glucose-specific signals for the exocytosis of insulin granules in pancreatic beta cells.

  10. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  11. Impaired coactivator activity of the Gly{sub 482} variant of peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) on mitochondrial transcription factor A (Tfam) promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yon-Sik; Hong, Jung-Man; Lim, Sunny

    2006-06-09

    Mitochondrial dysfunction may cause diabetes or insulin resistance. Peroxisome proliferation-activated receptor-{gamma} (PPAR-{gamma}) coactivator-1 {alpha} (PGC-1{alpha}) increases mitochondrial transcription factor A (Tfam) resulting in mitochondrial DNA content increase. An association between a single nucleotide polymorphism (SNP), G1444A(Gly482Ser), of PGC-1{alpha} coding region and insulin resistance has been reported in some ethnic groups. In this study, we investigated whether a change of glycine to serine at codon 482 of PGC-1{alpha} affected the Tfam promoter activity. The cDNA of PGC-1{alpha} variant bearing either glycine or serine at 482 codon was transfected into Chang human hepatocyte cells. The PGC-1{alpha} protein bearing glycine had impaired coactivatormore » activity on Tfam promoter-mediated luciferase. We analyzed the PGC-1{alpha} genotype G1444A and mitochondrial DNA (mtDNA) copy number from 229 Korean leukocyte genomic DNAs. Subjects with Gly/Gly had a 20% lower amount of peripheral blood mtDNA than did subjects with Gly/Ser and Ser/Ser (p < 0.05). No correlation was observed between diabetic parameters and PGC-1{alpha} genotypes in Koreans. These results suggest that PGC-1{alpha} variants with Gly/Gly at 482nd amino acid may impair the Tfam transcription, a regulatory function of mitochondrial biogenesis, resulting in dysfunctional mtDNA replication.« less

  12. Metabolic syndrome, insulin resistance, and chronic allograft dysfunction.

    PubMed

    Porrini, Esteban; Delgado, Patricia; Torres, Armando

    2010-12-01

    Metabolic syndrome (MS) is a cluster of cardiovascular (CV) risk factors (hypertension, dyslipidemia, obesity, and glucose homeostasis alterations), and insulin resistance (IR) is suggested to be a common pathogenic background. In the general population, MS and IR have been proven to be risk factors for diabetes, CV disease, and chronic kidney disease. In the renal transplant setting, few studies have analyzed the relevance of MS and IR. According to the few data available, the prevalence of MS in renal transplant patients has been described as 22.6% at 12 months, 37.7% at 36 months, and 64% at 6 years after transplantation. Importantly, MS has been shown to be an independent risk factor for chronic allograft dysfunction (CAD), graft failure, new-onset diabetes, and CV disease. Also, persistent hyperinsulinemia during the first posttransplant year has been related to an increase in glomerular filtration rate, probably reflecting glomerular hyperfiltration as observed in prediabetes and early type 2 diabetes. Importantly, prediabetes (impaired fasting glucose and impaired glucose tolerance), a state hallmarked by IR, proved to be highly frequent among stable renal transplant recipients (30%), which is nearly three times its incidence in the general population. Posttransplant IR has been associated with subclinical atheromatosis as assessed by carotid intima-media thickness, and with chronic subclinical inflammation. In conclusion, MS and IR are important modifiable risk factors in renal transplant recipients, and prompt interventions to avoid its deleterious effects at the metabolic, CV, and graft function levels are needed.

  13. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance.

    PubMed

    Oikonomou, Evangelos; Mourouzis, Konstantinos; Fountoulakis, Petros; Papamikroulis, Georgios Angelos; Siasos, Gerasimos; Antonopoulos, Alexis; Vogiatzi, Georgia; Tsalamadris, Sotiris; Vavuranakis, Manolis; Tousoulis, Dimitris

    2018-05-01

    Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.

  14. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  15. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome

    PubMed Central

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-01-01

    STUDY QUESTION Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? SUMMARY ANSWER Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. WHAT IS KNOWN ALREADY Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. STUDY DESIGN, SIZE, DURATION We conducted a prospective cross-sectional study of 120 women between the ages of 22–44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. MAIN RESULTS AND THE ROLE OF CHANCE Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-%beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. LIMITATIONS, REASONS FOR CAUTION Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). WIDER IMPLICATIONS OF THE FINDINGS The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable. PMID:24813197

  16. Age and body weight effects on glucose and insulin tolerance in colony cats maintained since weaning on high dietary carbohydrate.

    PubMed

    Backus, R C; Cave, N J; Ganjam, V K; Turner, J B M; Biourge, V C

    2010-12-01

    High dietary carbohydrate is suggested to promote development of diabetes mellitus in cats. Glucose tolerance, insulin sensitivity, and insulin secretion were assessed in young [0.8-2.3 (median = 1.1) years, n = 13] and mature [4.0-7.0 (median 5.8) years, n = 12] sexually intact females of a large (n ≅ 700) feline colony in which only dry-type diets (35% metabolizable energy as carbohydrate) were fed from weaning. Insulin sensitivity was assessed from the 'late-phase' (60-120 min) plasma insulin response of intravenous glucose tolerance tests (IVGTTs) and from fractional change in glycaemia from baseline 15 min after an insulin bolus (0.1 U/kg, i.v.). Insulin secretion was assessed from the 'early-phase' (0-15 min) plasma insulin response of IVGTTs. Compared to the young cats, the mature cats had greater body weights [2.3-3.8 (median = 2.9) vs. 3.0-6.3 (median = 4.0) kg, p < 0.01], greater late-phase insulin responses (p < 0.05), lower insulin-induced glycaemic changes (p = 0.06), lower early-phase insulin responses (p < 0.05), and non-significantly different rates of glucose disposal. The late-phase insulin response was correlated with body weight and age (p < 0.05). When group assignments were balanced for body weight, the age-group differences and correlations became non-significant. The findings indicate that body weight gain is more likely than dry-type diets to induce the pre-diabetic conditions of insulin resistance and secretion dysfunction. © 2010 The Authors. Journal of Animal Physiology and Animal Nutrition © 2010 Blackwell Verlag GmbH.

  17. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach

    PubMed Central

    Vadillo-Ortega, Felipe; Caballero, Augusto Enrique; Ibarra-González, Isabel; Herrera-Rosas, Arturo; Serratos-Canales, María Fabiola; León-Hernández, Mireya; González-Chávez, Antonio; Mummidi, Srinivas; Duggirala, Ravindranath

    2018-01-01

    Background Structural equation modeling (SEM) can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD), family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1) If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines would be related to non-alcoholic fatty disease that will induce insulin resistance. 2) If a positive family history of obesity and type 2 diabetes are the major determinants of the metabolomic profile, there would be higher concentration of amino acids and acylcarnitines in patients with this background that will induce obesity and NAFLD which in turn will induce insulin resistance. Methods/Results 137 normoglycemic subjects, mean age (SD) of 30.61 (8.6) years divided in three groups: BMI<25 with absence of NAFLD (G1), n = 82; BMI>30 with absence of NAFLD (G2), n = 24; and BMI>30 with NAFLD (G3), n = 31. Family history of obesity (any) was present in 53%. Both models were adjusted in SEM. Family history of obesity predicted obesity but could not predict acylcarnitines and amino acid concentrations (effect size <0.2), but did predict obesity phenotype. Conclusion Family history of obesity is the major predictor of obesity, and the metabolic abnormalities on amino acids, acylcarnitines, inflammation, insulin resistance, and NAFLD. PMID:29466466

  18. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach.

    PubMed

    Romero-Ibarguengoitia, Maria Elena; Vadillo-Ortega, Felipe; Caballero, Augusto Enrique; Ibarra-González, Isabel; Herrera-Rosas, Arturo; Serratos-Canales, María Fabiola; León-Hernández, Mireya; González-Chávez, Antonio; Mummidi, Srinivas; Duggirala, Ravindranath; López-Alvarenga, Juan Carlos

    2018-01-01

    Structural equation modeling (SEM) can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD), family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1) If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines would be related to non-alcoholic fatty disease that will induce insulin resistance. 2) If a positive family history of obesity and type 2 diabetes are the major determinants of the metabolomic profile, there would be higher concentration of amino acids and acylcarnitines in patients with this background that will induce obesity and NAFLD which in turn will induce insulin resistance. 137 normoglycemic subjects, mean age (SD) of 30.61 (8.6) years divided in three groups: BMI<25 with absence of NAFLD (G1), n = 82; BMI>30 with absence of NAFLD (G2), n = 24; and BMI>30 with NAFLD (G3), n = 31. Family history of obesity (any) was present in 53%. Both models were adjusted in SEM. Family history of obesity predicted obesity but could not predict acylcarnitines and amino acid concentrations (effect size <0.2), but did predict obesity phenotype. Family history of obesity is the major predictor of obesity, and the metabolic abnormalities on amino acids, acylcarnitines, inflammation, insulin resistance, and NAFLD.

  19. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials.

    PubMed

    Consitt, L A; Clark, B C

    2018-01-01

    The age-related loss of skeletal muscle (sarcopenia) is a major health concern as it is associated with physical disability, metabolic impairments, and increased mortality. The coexistence of sarcopenia with obesity, termed 'sarcopenic obesity', contributes to skeletal muscle insulin resistance and the development of type 2 diabetes, a disease prevalent with advancing age. Despite this knowledge, the mechanisms contributing to sarcopenic obesity remain poorly understood, preventing the development of targeted therapeutics. This article will discuss the clinical and physiological consequences of sarcopenic obesity and propose myostatin as a potential candidate contributing to this condition. A special emphasis will be placed on examining the role of myostatin signaling in impairing both skeletal muscle growth and insulin signaling. In addition, the role of myostatin in regulating muscle-to fat cross talk, further exacerbating metabolic dysfunction in the elderly, will be highlighted. Lastly, we discuss how this knowledge has implications for the design of myostatin-inhibitor clinical trials.

  20. Molecular Mechanisms of Insulin Resistance in Chronic Kidney Disease

    PubMed Central

    Thomas, Sandhya S.; Zhang, Liping; Mitch, William E.

    2015-01-01

    Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identifies the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to activation of different, E3 ubiquitin ligases which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD. PMID:26444029

  1. Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats.

    PubMed

    Chen, Yong-song; Zhu, Xu-xin; Zhao, Xiao-yun; Xing, Han-ying; Li, Yu-guang

    2008-02-05

    Under an insulin resistance (IR) state, overproduction of reactive oxygen species (ROS) may be playing a major role in the pathogenesis of endothelial dysfunction, hypertension and atherosclerosis. Recently, increasing attention has been drawn to the beneficial effects of heme oxygenase-1 (HO-1) in the cardiovascular system. This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states. Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test. Then the IR rat models (n = 44) were further randomized into 3 subgroups, namely, the IR control group (n = 26, in which 12 were sacrificed immediately and evaluated for all study measures), a hemin treated IR group (n = 10) and a zinc protoporphyrin-IX (ZnPP-IX) treated IR group (n = 8) that were fed with a high-fat diet. Rats with standardized chow diet were used as the normal control group (n = 12). The rats in IR control group, hemin treated IR group and ZnPP-IX treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline, hemin (inducer of HO-1, 30 micromol/kg) or ZnPP-IX (inhibitor of HO-1, 10 micromol/kg) for 4 weeks. Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks. Systolic arterial blood pressure (SABP) was measured by tail-cuffed microphotoelectric plethysmography. The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), blood glucose (BG), insulin, total cholesterol (TC) and triglyceride (TG) in serum, and the levels of total antioxidant capacity (TAOC), malondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured. The expression of HO-1 mRNA and HO-1 protein in aortal tissue were detected by semi-quantitative RT-PCR and Western blot. The vasoreactive tensometry was performed with thoracic aortic rings (TARs). Compared with the normal control group, the levels of SABP, BG, insulin, TC, TG, NO, iNOS and MDA were higher, while the levels of CO, TAOC, SOD and eNOS were lower in IR control rats. After treatment of IR rats for 4 weeks a more intensive expression of HO-1 mRNA and HO-1 protein were observed in hemin treated IR group compared with the normal control group. And compared with 4-week IR control rats, the levels of CO, TAOC, SOD and eNOS were increased, while the levels of SABP and iNOS activity were lower in the hemin treated IR group. Administration of hemin in IR rats appeared to improve the disordered vasorelaxation of TARs to acetylcholine (ACh). Alternatively, the reverse results of SABP, CO, TAOC, SOD, iNOS and vasorelaxation responses to ACh were observed in IR rats with administration of ZnPP-IX. The endothelial dysfunction in the aorta is present in the IR state. The protective effects of HO-1 against aortic endothelial dysfunction may be due to its antioxidation and regulative effect of vasoactive substances. It is proposed that hemin, inducer of HO-1, could be a potential therapeutic option for vascular dysfunction in IR states.

  2. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  3. Promising Diabetes Therapy Based on the Molecular Mechanism for Glucose Toxicity: Usefulness of SGLT2 Inhibitors as well as Incretin-Related Drugs.

    PubMed

    Kaneto, Hideaki; Obata, Atsushi; Shimoda, Masashi; Kimura, Tomohiko; Hirukawa, Hidenori; Okauchi, Seizo; Matsuoka, Taka-Aki; Kaku, Kohei

    2016-01-01

    Pancreatic β-cell dysfunction and insulin resistance are the main characteristics of type 2 diabetes. Chronic exposure of β-cells to hyperglycemia leads to the deterioration of β-cell function. Such phenomena are well known as pancreatic β-cell glucose toxicity. MafA, a strong transactivator of insulin gene, is particularly important for the maintenance of mature β-cell function, but its expression level is significantly reduced under diabetic conditions which is likely associated with β-cell failure. Reduction of incretin receptor expression level in β-cells in diabetes is also likely associated with β-cell failure. On the other hand, incretin-related drugs and sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising diabetes therapy based on the mechanism for pancreatic β-cell glucose toxicity. Indeed, it was shown that incretin-related drugs exerted protective effects on β-cells through the augmentation of IRS-2 expression especially in the presence of pioglitazone. It was also shown that incretin-related drug and/or pioglitazone exerted more protective effects on β-cells at the early stage of diabetes compared to the advanced stage. SGLT2 inhibitors, new hypoglycemic agents, also exert beneficial effects for the protection of pancreatic β-cells as well as for the reduction of insulin resistance in various insulin target tissues. Taken together, it is important to select appropriate therapy based on the molecular mechanism for glucose toxicity.

  4. JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity.

    PubMed

    Litwak, Sara A; Pang, Lokman; Galic, Sandra; Igoillo-Esteve, Mariana; Stanley, William J; Turatsinze, Jean-Valery; Loh, Kim; Thomas, Helen E; Sharma, Arpeeta; Trepo, Eric; Moreno, Christophe; Gough, Daniel J; Eizirik, Decio L; de Haan, Judy B; Gurzov, Esteban N

    2017-12-01

    The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function. © 2017 by the American Diabetes Association.

  5. Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation.

    PubMed

    Morimoto, S; Sosa, T C; Calzada, L; Reyes-Castro, L A; Díaz-Díaz, E; Morales, A; Nathanielsz, P W; Zambrano, E

    2012-12-01

    Diabetes predisposition is determined by pancreatic islet insulin secretion and insulin resistance. We studied female rat offspring exposed to low-protein maternal diet (50% control protein diet) in pregnancy and/or lactation at postnatal days 36, 110 and 450. Rats were fed either control 20% casein diet (C) or restricted diet (R - 10% casein) during pregnancy. After delivery, mothers received either C or R diet until weaning to provide four offspring groups: CC, RR, CR and RC (first letter denoting maternal pregnancy diet and the second lactation diet). Serum glucose, insulin and homeostatic model assessment (HOMA) were measured. Pancreatic islets were isolated and in vitro insulin secretion quantified in low glucose (5 mM) and high glucose (11 mM). Serum glucose, insulin and HOMA were similar in all groups at 36 and 110 postnatal days. HOMA was only higher in RR at 450 postnatal days. Only CC demonstrated differences in glucose sensitivity of β-cells to high and low doses at the three ages studied. At 36 days, RR, CR and RC and at 450 days RR and RC groups did not show glucose-stimulated insulin secretion differences between low and high glucose. Aging-associated glucose-stimulated insulin secretion loss was affected by maternal dietary history, indicating that developmental programming must be considered a major factor in aging-related development of predisposition to later-life dysfunctional insulin metabolism. Female offspring islets' insulin secretion was higher than previously reported in males.

  6. Redox implications in adipose tissue (dys)function—A new look at old acquaintances

    PubMed Central

    Jankovic, Aleksandra; Korac, Aleksandra; Buzadzic, Biljana; Otasevic, Vesna; Stancic, Ana; Daiber, Andreas; Korac, Bato

    2015-01-01

    Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow. PMID:26177468

  7. Endurance, interval sprint, and resistance exercise training: impact on microvascular dysfunction in type 2 diabetes

    PubMed Central

    Laughlin, M. Harold

    2015-01-01

    Type 2 diabetes (T2D) alters capillary hemodynamics, causes capillary rarefaction in skeletal muscle, and alters endothelial and vascular smooth muscle cell phenotype, resulting in impaired vasodilatory responses. These changes contribute to altered blood flow responses to physiological stimuli, such as exercise and insulin secretion. T2D-induced microvascular dysfunction impairs glucose and insulin delivery to skeletal muscle (and other tissues such as skin and nervous), thereby reducing glucose uptake and perpetuating hyperglycemia and hyperinsulinemia. In patients with T2D, exercise training (EX) improves microvascular vasodilator and insulin signaling and attenuates capillary rarefaction in skeletal muscle. EX-induced changes subsequently augment glucose and insulin delivery as well as glucose uptake. If these adaptions occur in a sufficient amount of tissue, and skeletal muscle in particular, chronic exposure to hyperglycemia and hyperinsulinemia and the risk of microvascular complications in all vascular beds will decrease. We postulate that EX programs that engage as much skeletal muscle mass as possible and recruit as many muscle fibers within each muscle as possible will generate the greatest improvements in microvascular function, providing that the duration of the stimulus is sufficient. Primary improvements in microvascular function occur in tissues (skeletal muscle primarily) engaged during exercise, and secondary improvements in microvascular function throughout the body may result from improved blood glucose control. We propose that the added benefit of combined resistance and aerobic EX programs and of vigorous intensity EX programs is not simply “more is better.” Rather, we believe the additional benefit is the result of EX-induced adaptations in and around more muscle fibers, resulting in more muscle mass and the associated microvasculature being changed. Thus, to acquire primary and secondary improvements in microvascular function and improved blood glucose control, EX programs should involve upper and lower body exercise and modulate intensity to augment skeletal muscle fiber recruitment. Under conditions of limited mobility, it may be necessary to train skeletal muscle groups separately to maximize whole body skeletal muscle fiber recruitment. PMID:26408541

  8. The Whitening of Brown Fat and Its Implications for Weight Management in Obesity.

    PubMed

    Shimizu, Ippei; Walsh, Kenneth

    2015-06-01

    Systemic inflammation resulting from dysfunction of white adipose tissue (WAT) accelerates the pathologies of diabetes and cardiovascular diseases. In contrast to WAT, brown adipose tissue (BAT) is abundant in mitochondria that produce heat by uncoupling respiratory chain process of ATP synthesis. Besides BAT's role in thermogenesis, accumulating evidence has shown that it is involved in regulating systemic metabolism. Studies have analyzed the "browning" processes of WAT as a means to combat obesity, whereas few studies have focused on the impact and molecular mechanisms that contribute to obesity-linked BAT dysfunction--a process that is associated with the "whitening" of this tissue. Compared to WAT, a dense vascular network is required to support the high energy consumption of BAT. Recently, vascular rarefaction was shown to be a significant causal factor in the whitening of BAT in mouse models. Vascular insufficiency leads to mitochondrial dysfunction and loss in BAT and contributes to systemic insulin resistance. These data suggest that BAT "whitening," resulting from vascular dysfunction, can impact obesity and obesity-linked diseases. Conversely, agents that promote BAT function could have utility in the treatment of these conditions.

  9. Insulin resistance and subclinical abnormalities of global and regional left ventricular function in patients with aortic valve sclerosis

    PubMed Central

    2014-01-01

    Background Insulin resistance, as a key mediator of metabolic syndrome, is thought to be associated with pathogenesis of calcific aortic valve disease and altered left ventricular (LV) function and structure. However, in patients with aortic valve sclerosis (AVS), the association between insulin resistance and subclinical impairment of LV function is not fully elucidated. Methods We studied 57 patients (mean age 70 ± 8 years, 22 women) with asymptomatic AVS but normal LV ejection fraction in echocardiography. LV longitudinal and circumferential strain and strain rate was analyzed using two-dimensional speckle tracking echocardiography. Patients with uncontrolled hypertension and diabetes mellitus, chronic kidney disease, and concomitant coronary artery disease were excluded. They were divided into the insulin-resistant group (AVS+IR; N = 28) and no insulin-resistant group (AVS-IR; N = 29) according to the median value of homeostatic model assessment index. Computed tomography scans were also performed to measure the aortic valve calcium score and the visceral adipose tissue (VAT) area. In addition, age- and sex- adjusted 28 control subjects were recruited for the comparison. Results There were no significant differences in LV ejection fraction or mass index among the groups. The AVS+IR group had a higher aortic valve calcium score (median 94 versus 21, P = 0.022) and a larger VAT area (113 ± 42 cm2 versus 77 ± 38 cm2, P = 0.001) than the AVS-IR group. Notably, LV global longitudinal strain, strain rate (SR), and early diastolic SR were significantly lower in the AVS+IR group than in the AVS-IR group and in control subjects (strain: -16.2 ± 1.6% versus -17.2 ± 1.2% and -18.9 ± 0.8%; SR: -1.18 ± 0.26 s-1 versus -1.32 ± 0.21 s-1 and -1.52 ± 0.08 s-1; early diastolic SR: -1.09 ± 0.23 s-1 versus -1.23 ± 0.18 s-1 and -1.35 ± 0.12 s-1; P < 0.05 for all comparison), whereas circumferential function were not significantly different. Multiple linear regression analyses revealed insulin resistance as an independent determinant of LV longitudinal strain (P = 0.017), SR (P = 0.047), and early diastolic SR (P = 0.049) regardless of LV mass index or VAT area. Conclusions Insulin resistance is a powerful independent predictor of subclinical LV dysfunction regardless of concomitant visceral obesity and LV hypertrophy. Thus, it may be a novel therapeutic target to prevent subsequent heart failure in patients with AVS. PMID:24767168

  10. Evaluation of type 2 diabetic mellitus animal models via interactions between insulin and mitogen‑activated protein kinase signaling pathways induced by a high fat and sugar diet and streptozotocin.

    PubMed

    Zhuo, Juncheng; Zeng, Qiaohuang; Cai, Dake; Zeng, Xiaohui; Chen, Yuxing; Gan, Haining; Huang, Xuejun; Yao, Nan; Huang, Dane; Zhang, Chengzhe

    2018-04-01

    Type 2 diabetic mellitus (T2DM), which is characterized by insulin resistance (IR), hyperglycemia and hyperlipidemia, is a comprehensive dysfunction of metabolism. The insulin receptor (INSR)/phosphoinositide 3‑kinase (PI3K)/AKT signaling pathway is well acknowledged as a predominant pathway associated with glucose uptake; however, the effect of streptozotocin (STZ) plus a high fat and sugar diet (HFSD) on the proteins associated with this pathway requires further elucidation. In order to explore this effect, a T2DM rat model was constructed to investigate T2DM pathogenesis and potential therapeutic advantages. Rats were randomly divided into control and model groups, including normal diet (ND) and HFSD types. ND types were administered intraperitoneal (IP) injections of STZ (35 mg/kg) or a combination of STZ and alloxan monohydrate (AON) (40 mg/kg), whereas HFSD types were composed of HFSD pre‑given, post‑given and simul‑given groups, and were modeled as follows: IP or intramuscular (IM) injection of STZ (35 mg/kg) or a combination of STZ and AON (40 mg/kg). Results indicated that, compared with controls, blood glucose, insulin, homeostatic model assessment‑insulin resistance and total triglyceride were significantly elevated in groups with HFSD and modeling agents (P<0.05 or P<0.01), whereas total cholesterol and low‑density lipoprotein levels were significantly elevated in groups simultaneously administered HFSD and modeling agents (P<0.05 or P<0.01), in addition to downregulation of the expression of insulin signaling pathway proteins in the liver, including INSR, PI3K, AKT1, phosphatidylinositol-5-phosphate 4‑kinase type‑2α (PIP5Kα) and glucose transporter (GLUT)2, and increased expression of inflammatory factors, including p38, tumor necrosis factor (TNF)α and interleukin (IL)6. Furthermore, compared with other two HFSD types including pre‑given and post‑given group, the simul‑given group that received IM injection with STZ exhibited decreased expression levels of major insulin signal pathway proteins INSR, PI3K, AKT1, PIP5Kα, GLUT2 or GLUT4 in the liver and pancreas (P<0.05 or P<0.01), whereas the opposite was observed in the skeletal muscle. In addition, the protein expression levels of phosphorylated‑p38, p38, IL6 and TNFα in the simul‑given group that received IM injection with STZ were increased (P<0.05 or P<0.01), and histopathology also indicated inflammation in pancreas and liver. The present findings suggest that a low dose of STZ may partially impair the β cells of the pancreas, whereas long‑term excess intake of HFSD may increase lipid metabolites, inhibit the insulin signaling pathway and activate the mitogen‑activated protein kinase p38 signaling pathway. The combined action of STZ and AON may result in insulin resistance, which ultimately results in abnormalities in glucose and lipid metabolism. The present model, analogue to T2DM onset of humans, evaluated the medical effect on metabolic dysfunction and provides an insight into the underlining mechanism of IR.

  11. Visceral adiposity index as an indicator of cardiometabolic risk in patients treated for craniopharyngioma.

    PubMed

    Ferraù, Francesco; Spagnolo, Federica; Cotta, Oana Ruxandra; Cannavò, Laura; Alibrandi, Angela; Russo, Giuseppina Tiziana; Aversa, Tommaso; Trimarchi, Francesco; Cannavò, Salvatore

    2017-11-01

    Craniopharyngioma is associated with metabolic alterations leading to increased cardiovascular mortality. Recently, the visceral adiposity index has been proposed as a marker of visceral adipose tissue dysfunction and of the related cardiometabolic risk. The role of the visceral adiposity index has never been explored in craniopharyngioma patients. We assessed the cardiometabolic risk on the basis of the visceral adiposity index in craniopharyngioma patients. We evaluated data of 24 patients treated for craniopharyngioma in a single-centre. We investigated the relationship among patients' clinical and biochemical features, cardiovascular risk -assessed by the Framingham and the atherosclerotic cardiovascular disease risk scores-, visceral adiposity index and adipose tissue dysfunction severity. Increased visceral adiposity index was found in 8 patients (33%). Adipose tissue dysfunction resulted to be severe, moderate or mild in 5, 2 and 1 cases. Increased visceral adiposity index significantly correlated with the occurrence of metabolic syndrome (p 0.027), IRI (p 0.001), triglycerides (p < 0.001), HOMA-IR (p < 0.001) and with lower ISI-Matsuda (p 0.005) and HDL-cholesterol (p < 0.001). Higher degree of adipose tissue dysfunction associated with increased insulin resistance. No gender difference was found for visceral adiposity index, adipose tissue dysfunction severity, and cardiovascular risk scores. Patients with adulthood onset craniopharyngioma showed higher Framingham risk score (p 0.004), atherosclerotic cardiovascular disease 10-year (p < 0.001) and lifetime (p 0.018) risk scores than those with childhood onset disease. Visceral adiposity index is increased in one third of our patients with craniopharyngioma, even if metabolic syndrome does not occur. Increased visceral adiposity index and adipose tissue dysfunction severity correlate with insulin sensitivity parameters, do not correlate with Framingham or atherosclerotic cardiovascular disease risk scores, and are not influenced by gender and age of disease onset.

  12. Obesity and heart failure.

    PubMed

    De Pergola, Giovanni; Nardecchia, Adele; Giagulli, Vito Angelo; Triggiani, Vincenzo; Guastamacchia, Edoardo; Minischetti, Manuela Castiglione; Silvestris, Franco

    2013-03-01

    Epidemiological studies have recently shown that obesity, and abdominal obesity in particular, is an independent risk factor for the development of heart failure (HF). Higher cardiac oxidative stress is the early stage of heart dysfunction due to obesity, and it is the result of insulin resistance, altered fatty acid and glucose metabolism, and impaired mitochondrial biogenesis. Extense myocyte hypertrophy and myocardial fibrosis are early microscopic changes in patients with HF, whereas circumferential strain during the left ventricular (LV) systole, LV increase in both chamber size and wall thickness (LV hypertrophy), and LV dilatation are the early macroscopic and functional alterations in obese developing heart failure. LV hypertrophy leads to diastolic dysfunction and subendocardial ischemia in obesity, and pericardial fat has been shown to be significantly associated with LV diastolic dysfunction. Evolving abnormalities of diastolic dysfunction may include progressive hypertrophy and systolic dysfunction, and various degrees of eccentric and/or concentric LV hypertrophy may be present with time. Once HF is established, overweight and obese have a better prognosis than do their lean counterparts with the same level of cardiovascular disease, and this phenomenon is called "obesity paradox". It is mainly due to lower muscle protein degradation, brain natriuretic peptide circulating levels and cardio-respiratory fitness than normal weight patients with HF.

  13. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    PubMed Central

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  14. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer’s disease mouse model

    PubMed Central

    Chan, Elizabeth S.; Shetty, Mahesh Shivarama; Sajikumar, Sreedharan; Chen, Christopher; Soong, Tuck Wah; Wong, Boon-Seng

    2016-01-01

    The apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for Alzheimer’s disease (AD). The AD brain was shown to be insulin resistant at end stage, but the interplay between insulin signaling, ApoE4 and Aβ across time, and their involvement in memory decline is unclear. To investigate insulin response in the ageing mouse hippocampus, we crossed the human ApoE-targeted replacement mice with the mutant human amyloid precursor protein (APP) mice (ApoExAPP). While hippocampal Aβ levels were comparable between ApoE3xAPP and ApoE4xAPP mice at 26 weeks, insulin response was impaired in the ApoE4xAPP hippocampus. Insulin treatment was only able to stimulate insulin signaling and increased AMPA-GluR1 phosphorylation in forskolin pre-treated hippocampal slices from ApoE3xAPP mice. In ApoE4xAPP mice, insulin dysfunction was also associated with poorer spatial memory performance. Using dissociated hippocampal neuron in vitro, we showed that insulin response in ApoE3 and ApoE4 neurons increased AMPA receptor-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes and GluR1-subunit insertion. Pre-treatment of ApoE3 neurons with Aβ42 did not affect insulin-mediated GluR1 subunit insertion. However, impaired insulin sensitivity observed only in the presence of ApoE4 and Aβ42, attenuated GluR1-subunit insertion. Taken together, our results suggest that ApoE4 enhances Aβ inhibition of insulin-stimulated AMPA receptor function, which accelerates memory impairment in ApoE4xAPP mice. PMID:27189808

  15. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke manifest coronary vasomotor abnormalities. Insulin-sensitizing thiazolidinedione therapy normalized these abnormalities. These results suggest an association between insulin resistance and abnormal coronary vasomotor function, a relationship that requires confirmation in larger studies.

  16. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes

    PubMed Central

    Fu, Zhuo; Gilbert, Elizabeth R.; Liu, Dongmin

    2014-01-01

    Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5′ flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox-1(PDX-1), MafA, and B-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling-dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes. PMID:22974359

  17. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women.

    PubMed

    Nasri, Khadijeh; Razavi, Maryamsadat; Rezvanfar, Mohammad Reza; Mashhadi, Esmat; Chehrei, Ali; Mohammadbeigi, Abolfazl

    2015-01-01

    To investigate the relationship between mid-gestational serum uric acid and birth weight in diabetic pregnant women with or without insulin resistance. In a prospective cohort study, fasting uric acid, blood glucose, and serum insulin were measured in 247 pregnant women between 20-22 weeks of gestational period. Insulin resistance was estimated using the homeostasis model assessment-insulin resistance (HOMA-IR). Stratification analysis and independent t-test was used to assess the association between uric acid and birth weights regarding to insulin resistance. The means of the mid-gestational serum uric acid concentrations were not significantly different in women with and without insulin resistance. But stratification analysis showed that there was a significant difference between uric acid concentration and macrosomic birth in diabetic women without insulin resistance. Higher mid - gestation serum uric acid concentration, even if it does not exceed the normal range, is accompanied by lower birth weight only in non-insulin resistance women. Insulin resistance could have a negative confounding effect on hyperuriemia and birth weight.

  18. Metabolic syndrome and insulin resistance in obese adolescents.

    PubMed

    Gobato, Amanda Oliva; Vasques, Ana Carolina J; Zambon, Mariana Porto; Barros Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-03-01

    To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  19. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  20. Potential effect of exercise in ameliorating insulin resistance at transcriptome level.

    PubMed

    Hu, Zhigang; Zhou, Lei; He, Tingting

    2017-10-24

    Insulin resistance can lead to the pathogenesis of type 2 diabetes and exercise can increase insulin sensitivity. And different exercises may have different influences on the mitigation of insulin resistance. It's still unclear how exercise affects inherited insulin resistance at transcriptome level. The purpose of our study was to analyze the potential effects of exercise in ameliorating insulin resistance at transcriptome level. Herein, we analyzed two skeletal muscle transcriptome profiles, including gene profiles between inherited insulin resistant patients and matched healthy controls, and between trained and sedentary subjects (young and old subjects, respectively). Analysis of differentially expressed genes revealed that 12 genes (SGK1, LOC101929876, MYL5, COL6A3, MLF1, LUM, MSTN, COL1A2, COL3A1, IL32, IRS2 and ID1) associated with insulin resistance were reversed by exercise in young subjects, while six genes (MSTN, CFHR1, PFKFB3, IL32, RGCC and NMRK2) were identified in old subjects, suggesting that those genes play potential roles in insulin resistance response to exercise. In addition, we observed that two insulin resistance-related genes, MSTN and IL32, were identified in muscle cells of both young and old subjects, indicating their important roles in the mechanisms behind the beneficial effects of exercise on humans with inherited insulin resistance. Several pathways were also identified, such as "collagen metabolic process", "focal adhesion" and "negative regulation of myoblast differentiation". Taken together, our findings provide novel markers in insulin resistant patients and exercise, and some valuable information for future functional studies on how exercise ameliorating insulin resistance.

  1. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  2. SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells.

    PubMed

    Arora, Amita; Dey, Chinmoy Sankar

    2014-09-01

    SIRT2 is primarily a cytoplasmic protein deacetylase and is abundantly expressed in metabolically active tissues like adipocytes and brain. However, its role, if any, in regulating insulin signaling in skeletal muscle cells, is not known. We have examined the role of SIRT2 in insulin-mediated glucose disposal in normal and insulin resistant C2C12 skeletal muscle cells in vitro. SIRT2 was over expressed in insulin resistant skeletal muscle cells. Pharmacological inhibition of SIRT2 increased insulin-stimulated glucose uptake and improved phosphorylation of Akt and GSK3β in insulin resistant cells. Knockdown of endogenous SIRT2 and over expression of catalytically-inactive SIRT2 mutant under insulin-resistant condition showed similar amelioration of insulin sensitivity. Our results suggest that down-regulation of SIRT2 improved insulin sensitivity in skeletal muscle cells under insulin-resistant condition. Previously it has been reported that down-regulation of SIRT1 and SIRT3 in C2C12 cells results in impairment of insulin signaling and induces insulin resistance. However, we have observed an altogether different role of SIRT2 in skeletal muscle. This implicates a differential regulation of insulin resistance by sirtuins which otherwise share a conserved catalytic domain. The study significantly directs towards future approaches in targeting inhibition of SIRT2 for therapeutic treatment of insulin resistance which is the major risk factor in Type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. L-Arginine Modulates Glucose and Lipid Metabolism in Obesity and Diabetes.

    PubMed

    Hu, Shengdi; Han, Meng; Rezaei, Arash; Li, Defa; Wu, Guoyao; Ma, Xi

    2017-01-01

    Type 2 diabetes has become a global public health problem affecting approximately 380 million people throughout the world. It can cause many complications and lead to greater mortality. At present, there is no available medicine for effectively preventing diabetes. L-arginine, a functional amino acid, the precursor of nitric oxide, plays a crucial role in maintenance, reproduction, growth, anti-aging and immunity for animals. Growing clinical evidence indicates that dietary L-arginine supplementation can reduce obesity, decrease arterial blood pressure, resist oxidation and normalize endothelial dysfunction to bring about remission of type 2 diabetes. The potential molecular mechanism may play a role in modulating glucose homeostasis, promoting lipolysis, maintaining hormone levels, ameliorating insulin resistance, and fetal programing in early stages. The possible signaling pathway of the beneficial effects of L-arginine likely involves L-arginine-nitric oxide pathway through which cell signal protein can be activated. Accumulating studies have indicated that L-arginine may have potential to prevent and/or relieve type 2 diabetes via restoring insulin sensitivity in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. What is metabolic syndrome, and why are children getting it?

    PubMed Central

    Weiss, Ram; Bremer, Andrew A; Lustig, Robert H

    2013-01-01

    Metabolic syndrome comprises a cluster of cardiovascular risk factors (hypertension, altered glucose metabolism, dyslipidemia, and abdominal obesity) that occur in obese children. However, metabolic syndrome can also occur in lean individuals, suggesting that obesity is a marker for the syndrome, not a cause. Metabolic syndrome is difficult to define, due to its nonuniform classification and reliance on hard cutoffs in the evaluation of disorders with non-Gaussian distributions. Defining the syndrome is even more difficult in children, owing to racial and pubertal differences and lack of cardiovascular events. Lipid partitioning among specific fat depots is associated with insulin resistance, which can lead to mitochondrial overload and dysfunctional subcellular energy use and drive the various elements of metabolic syndrome. Multiple environmental factors, in particular a typical Western diet, drive mitochondrial overload, while other changes in Western society, such as stress and sleep deprivation, increase insulin resistance and the propensity for food intake. These culminate in an adverse biochemical phenotype, including development of altered glucose metabolism and early atherogenesis during childhood and early adulthood. PMID:23356701

  5. [Clinical implications of polycystic ovary syndrome].

    PubMed

    Dravecká, Ingrid

    Polycystic ovary syndrome (PCOS) is a heterogeneous and complex endocrine disease which among the female population belongs to the most widespread endocrinopathies and it is the most frequent cause of hyperthyroidism, anticoagulation and infertility. Insulin resistance is one of the important diabetology factors impacting hyperglycaemia in a majority of women with PCOS (60-80 %). Clinical expressions of PCOS include reproduction disorders, metabolic characteristics and psychological implications. Reproduction disorders include hyperthyroidism, menstruation cycle disorders, infertility and pregnancy complications as well as early abortions, gestational diabetes and pregnancy induced hypertension. Long-term metabolic risks of PCOS include type 2 diabetes mellitus, dyslipidemia, arterial hypertension and endothelial dysfunction. The available data confirms higher incidence of cardiovascular diseases in women with PCOS. In particular among obese women PCOS is more frequently associated with non-alcoholic hepatic steatosis, sleep apnoea syndrome and endometrial cancer. The literature includes some controversial data about the relationship between PCOS and autoimmunity. Women with PCOS are more prone to suffer from insufficient confidence with higher incidence of anxiety, depression, bipolar disorder and eating disorders. autoimmunity - diabetes mellitus - pregnancy - insulin resistance - metabolic syndrome - menstrual disorders - polycystic ovary syndrome.

  6. Polycystic ovarian syndrome: clinical and biological diagnosis.

    PubMed

    Bachelot, Anne

    2016-12-01

    Polycystic ovary syndrome (PCOS) is the most common ovarian disorder associated with androgen excess in women, which justifies the growing interest of endocrinologists. This syndrome leads to clinical hyperandrogenism and/or a biological dysovulation and infertility. Its diagnosis is based on consensual diagnostic criteria, but which are likely to change in the near future with the rise of the interest of new markers such as AMH. Diagnostic tools of PCOS are also discussed, with emphasis on the laboratory evaluation of androgens and other potential biomarkers of ovarian and metabolic dysfunctions. The exact etiology of PCOS is unknown and is likely multifactorial. Many studies indicate that PCOS results from originally ovarian abnormalities. In some patients, secondary hyperinsulinemia with insulin resistance plays a role in the pathophysiology. In addition, the relevant impact of metabolic issues, specifically insulin resistance and obesity, on the pathogenesis of PCOS, and the susceptibility to develop earlier than expected glucose intolerance states, including type 2 diabetes, has supported the notion that these aspects should be considered when defining the PCOS phenotype and planning potential therapeutic strategies in an affected subject.

  7. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity

    PubMed Central

    Gaspar, Renato Simões

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation. PMID:28053690

  8. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity.

    PubMed

    Gaspar, Renato Simões; Trostchansky, Andrés; Paes, Antonio Marcus de Andrade

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.

  9. The Effects of Insulin Resistance on Individual Tissues: An Application of a Mathematical Model of Metabolism in Humans.

    PubMed

    Pearson, Taliesin; Wattis, Jonathan A D; King, John R; MacDonald, Ian A; Mazzatti, Dawn J

    2016-06-01

    Whilst the human body expends energy constantly, the human diet consists of a mix of carbohydrates and fats delivered in a discontinuous manner. To deal with this sporadic supply of energy, there are transport, storage and utilisation mechanisms, for both carbohydrates and fats, around all tissues of the body. Insulin-resistant states such as type 2 diabetes and obesity are characterised by reduced efficiency of these mechanisms. Exactly how these insulin-resistant states develop, for example whether there is an order in which tissues become insulin resistant, is an active area of research with the hope of gaining a better overall understanding of insulin resistance. In this paper, we use a previously derived system of 12 first-order coupled differential equations that describe the transport between, and storage in, different tissues of the human body. We briefly revisit the derivation of the model before parametrising the model to account for insulin resistance. We then solve the model numerically, separately simulating each individual tissue as insulin resistant, and discuss and compare these results, drawing three main conclusions. The implications of these results are in accordance with biological intuition. First, insulin resistance in a tissue creates a knock-on effect on the other tissues in the body, whereby they attempt to compensate for the reduced efficiency of the insulin-resistant tissue. Second, insulin resistance causes a fatty liver, and the insulin resistance of tissues other than the liver can cause fat to accumulate in the liver. Finally, although insulin resistance in individual tissues can cause slightly reduced skeletal muscle metabolic flexibility, it is when the whole body is insulin resistant that the biggest effect on skeletal muscle flexibility is seen.

  10. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine

    PubMed Central

    Palmer, Allyson K.; Kirkland, James L.

    2016-01-01

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669

  11. Polycystic ovary syndrome.

    PubMed

    Azziz, Ricardo; Carmina, Enrico; Chen, ZiJiang; Dunaif, Andrea; Laven, Joop S E; Legro, Richard S; Lizneva, Daria; Natterson-Horowtiz, Barbara; Teede, Helena J; Yildiz, Bulent O

    2016-08-11

    Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.

  12. [SKIN PATHOLOGY IN DIABETES MELLITUS: CLINICAL AND PATHOPHYSIOLOGICAL CORRELATIONS (REVIEW)].

    PubMed

    Kochet, K; Lytus, I; Svistunov, I; Sulaieva, O

    2017-12-01

    Skin pathology is registered in vast majority of patients with diabetes mellitus (DM). Despite the abundance of publications on dermatological problems in DM, there is still a number of gaps to be discussed in terms of pathophysiological mechanisms. The goal of this review was to assess the mechanisms of development of different skin pathologies under DM. One of the key pathogenic mechanisms of skin lesions in diabetes is hyperglycemia and the effects of the advanced glycation end products, inducing oxidative stress, endothelial dysfunction and inflammation; that in its turn can accelerate the mechanisms of skin aging, the development of diabetic dermopathy and scleredema diabeticorum. Imbalance of growth factors, cytokines and hormones under insulin resistance, is associated with increased proliferation of keratinocytes, fibroblasts and sebocytes, mast cell dysfunction and melanogenesis disorders in acanthosis nigricans, acrochordons, acne and inflammatory dermatitis in diabetic patients. In addition, authors discuss the role of dendritic cells and macrophages dysfunction in impairment of peripheral tolerance and diabetic wounds pathogenesis in patients with DM.

  13. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity.

    PubMed

    Arruda, Ana Paula; Pers, Benedicte M; Parlakgül, Güneş; Güney, Ekin; Inouye, Karen; Hotamisligil, Gökhan S

    2014-12-01

    Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.

  14. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study.

    PubMed

    Meigs, James B; Larson, Martin G; Fox, Caroline S; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J

    2007-10-01

    Systemic oxidative stress causes insulin resistance in rodents. We tested the hypothesis that oxidative stress and insulin resistance are associated in humans. We used cross-sectional data from 2,002 nondiabetic subjects of the community-based Framingham Offspring Study. We measured insulin resistance with the homeostasis model and defined categorical insulin resistance as homeostasis model assessment of insulin resistance (HOMA-IR) > 75th percentile. We measured oxidative stress using the ratio of urine 8-epi-prostaglandin F2alpha (8-epi-PGF2alpha) to creatinine and used age- and sex-adjusted regression models to test the association of oxidative stress with insulin resistance in individuals without diabetes and among subgroups at elevated risk of diabetes. Across 8-epi-PGF2alpha/creatinine tertiles, the prevalence of insulin resistance increased (18.0, 27.5, and 29.4% for the first, second, and third tertiles, respectively; P < 0.0001), as did mean levels of HOMA-IR (3.28, 3.83, and 4.06 units; P < 0.0001). The insulin resistance-oxidative stress association was attenuated by additional adjustment for BMI (P = 0.06 across tertiles for insulin resistance prevalence; P = 0.004 for mean HOMA-IR). Twenty-six percent of participants were obese (BMI > or = 30 kg/m2), 39% had metabolic syndrome (according to the Adult Treatment Panel III definition), and 37% had impaired fasting glucose (IFG) (fasting glucose 5.6-6.9 mmol/l). Among 528 obese participants, respectively, insulin resistance prevalence was 41.3, 60.6, and 54.2% across 8-epi-PGF2alpha/creatinine tertiles (P = 0.005); among 781 subjects with metabolic syndrome, insulin resistance prevalence was 41.3, 56.7, and 51.7% (P = 0.0025); and among 749 subjects with IFG, insulin resistance prevalence was 39.6, 47.2, and 51.6% (P = 0.04). Systemic oxidative stress is associated with insulin resistance in individuals at average or elevated risk of diabetes even after accounting for BMI.

  15. Antioxidant treatment prevents the development of fructose-induced abdominal adipose tissue dysfunction.

    PubMed

    Fariña, Juan Pablo; García, María Elisa; Alzamendi, Ana; Giovambattista, Andrés; Marra, Carlos Alberto; Spinedi, Eduardo; Gagliardino, Juan José

    2013-07-01

    In the present study, we tested the effect of OS (oxidative stress) inhibition in rats fed on an FRD [fructose-rich diet; 10% (w/v) in drinking water] for 3 weeks. Normal adult male rats received a standard CD (commercial diet) or an FRD without or with an inhibitor of NADPH oxidase, APO (apocynin; 5 mM in drinking water; CD-APO and FRD-APO). We thereafter measured plasma OS and metabolic-endocrine markers, AAT (abdominal adipose tissue) mass and cell size, FA (fatty acid) composition (content and release), OS status, LEP (leptin) and IRS (insulin receptor substrate)-1/IRS-2 mRNAs, ROS (reactive oxygen species) production, NADPH oxidase activity and LEP release by isolated AAT adipocytes. FRD-fed rats had larger AAT mass without changes in body weight, and higher plasma levels of TAG (triacylglycerol), FAs, TBARS (thiobarbituric acid-reactive substance) and LEP. Although no significant changes in glucose and insulin plasma levels were observed in these animals, their HOMA-IR (homoeostasis model assessment of insulin resistance) values were significantly higher than those of CD. The AAT from FRD-fed rats had larger adipocytes, higher saturated FA content, higher NADPH oxidase activity, greater ROS production, a distorted FA content/release pattern, lower insulin sensitivity together with higher and lower mRNA content of LEP and IRS-1-/2 respectively, and released a larger amount of LEP. The development of all the clinical, OS, metabolic, endocrine and molecular changes induced by the FRD were significantly prevented by APO co-administration. The fact that APO treatment prevented both changes in NADPH oxidase activity and the development of all the FRD-induced AAT dysfunctions in normal rats strongly suggests that OS plays an important role in the FRD-induced MS (metabolic syndrome) phenotype.

  16. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice.

    PubMed

    Sasaki, Rie; Nishimura, Natsumi; Hoshino, Hiromi; Isa, Yasuka; Kadowaki, Maho; Ichi, Takahito; Tanaka, Akihito; Nishiumi, Shin; Fukuda, Itsuko; Ashida, Hitoshi; Horio, Fumihiko; Tsuda, Takanori

    2007-12-03

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine expression is one of the most important targets for the prevention of obesity and improvement of insulin sensitivity. In this study, we have demonstrated that anthocyanin (cyanidin 3-glucoside; C3G) which is a pigment widespread in the plant kingdom, ameliorates hyperglycemia and insulin sensitivity due to the reduction of retinol binding protein 4 (RBP4) expression in type 2 diabetic mice. KK-A(y) mice were fed control or control +0.2% of a C3G diet for 5 weeks. Dietary C3G significantly reduced blood glucose concentration and enhanced insulin sensitivity. The adiponectin and its receptors expression were not responsible for this amelioration. C3G significantly upregulated the glucose transporter 4 (Glut4) and downregulated RBP4 in the white adipose tissue, which is accompanied by downregulation of the inflammatory adipocytokines (monocyte chemoattractant protein-1 and tumor necrosis factor-alpha) in the white adipose tissue of the C3G group. These findings indicate that C3G has significant potency in an anti-diabetic effect through the regulation of Glut4-RBP4 system and the related inflammatory adipocytokines.

  17. Effects of High Glucose Levels and Glycated Serum on GIP Responsiveness in the Pancreatic Beta Cell Line HIT-T15.

    PubMed

    Puddu, Alessandra; Sanguineti, Roberta; Montecucco, Fabrizio; Viviani, Giorgio Luciano

    2015-01-01

    Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone produced in the gastrointestinal tract that stimulates glucose dependent insulin secretion. Impaired incretin response has been documented in diabetic patients and was mainly related to the inability of the pancreatic beta cells to secrete insulin in response to GIP. Advanced Glycation End Products (AGEs) have been shown to play an important role in pancreatic beta cell dysfunction. The aim of this study is to investigate whether the exposure to AGEs can induce GIP resistance in the pancreatic beta cell line HIT-T15. Cells were cultured for 5 days in low (CTR) or high glucose (HG) concentration in the presence of AGEs (GS) to evaluate the expression of GIP receptor (GIPR), the intracellular signaling activated by GIP, and secretion of insulin in response to GIP. The results showed that incubation with GS alone altered intracellular GIP signaling and decreased insulin secretion as compared to CTR. GS in combination with HG reduced the expression of GIPR and PI3K and abrogated GIP-induced AKT phosphorylation and GIP-stimulated insulin secretion. In conclusion, we showed that treatment with GS is associated with the loss of the insulinotropic effect of GIP in hyperglycemic conditions.

  18. Emerging links between type 2 diabetes and Alzheimer’s disease

    PubMed Central

    Sridhar, Gumpeny R; Lakshmi, Gumpeny; Nagamani, Gumpeny

    2015-01-01

    Type 2 diabetes mellitus and Alzheimer’s disease are both associated with increasing age, and each increases the risk of development of the other. Epidemiological, clinical, biochemical and imaging studies have shown that elevated glucose levels and diabetes are associated with cognitive dysfunction, the most prevalent cause of which is Alzheimer’s disease. Cross sectional studies have clearly shown such an association, whereas longitudinal studies are equivocal, reflecting the many complex ways in which the two interact. Despite the dichotomy, common risk and etiological factors (obesity, dyslipidemia, insulin resistance, and sedentary habits) are recognized; correction of these by lifestyle changes and pharmacological agents can be expected to prevent or retard the progression of both diseases. Common pathogenic factors in both conditions span a broad sweep including chronic hyperglycemia per se, hyperinsulinemia, insulin resistance, acute hypoglycemic episodes, especially in the elderly, microvascular disease, fibrillar deposits (in brain in Alzheimer’s disease and in pancreas in type 2 diabetes), altered insulin processing, inflammation, obesity, dyslipidemia, altered levels of insulin like growth factor and occurrence of variant forms of the protein butyrylcholinesterase. Of interest not only do lifestyle measures have a protective effect against the development of cognitive impairment due to Alzheimer’s disease, but so do some of the pharmacological agents used in the treatment of diabetes such as insulin (especially when delivered intranasally), metformin, peroxisome proliferator-activated receptors γ agonists, glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes must be recognized as a risk for development of Alzheimer’s disease; clinicians must ensure preventive care be given to control and postpone both conditions, and to identify cognitive impairment early to manage it appropriately. PMID:26069723

  19. Elimination of the NLRP3-ASC Inflammasome Protects against Chronic Obesity-Induced Pancreatic Damage

    PubMed Central

    Youm, Yun-Hee; Adijiang, Ayinuer; Vandanmagsar, Bolormaa; Burk, David; Ravussin, Anthony

    2011-01-01

    Clinical evidence that the blockade of IL-1β in type-2 diabetic patients improves glycemia is indicative of an autoinflammatory mechanism that may trigger adiposity-driven pancreatic damage. IL-1β is a key contributor to the obesity-induced inflammation and subsequent insulin resistance, pancreatic β-cell dysfunction, and the onset of type 2 diabetes. Our previous studies demonstrated that the ceramides activate the Nod-like receptor family, pyrin domain containing 3 (Nlrp3) inflammasome to cause the generation of mature IL-1β and ablation of the Nlrp3 inflammasome in diet-induced obesity improves insulin signaling. However, it remains unclear whether the posttranslational processing of active IL-1β in pancreas is regulated by the NLRP3 inflammasome or whether the alternate mechanisms play a dominant role in chronic obesity-induced pancreatic β-cell exhaustion. Here we show that loss of ASC, a critical adaptor required for the assembly of the NLRP3 and absent in melanoma 2 inflammasome substantially improves the insulin action. Surprisingly, despite lower insulin resistance in the chronically obese NLRP3 and ASC knockout mice, the insulin levels were substantially higher when the inflammasome pathway was eliminated. The obesity-induced increase in maturation of pancreatic IL-1β and pancreatic islet fibrosis was dependent on the NLRP3 inflammasome activation. Furthermore, elimination of NLRP3 inflammasome protected the pancreatic β-cells from cell death caused by long-term high-fat feeding during obesity with significant increase in the size of the islets of Langerhans. Collectively, this study provides direct in vivo evidence that activation of the NLRP3 inflammasome in diet-induced obesity is a critical trigger in causing pancreatic damage and is an important mechanism of progression toward type 2 diabetes. PMID:21862613

  20. Lymphocyte roles in metabolic dysfunction: of men and mice

    PubMed Central

    Ip, Blanche C.; Hogan, Andrew E.; Nikolajczyk, Barbara S.

    2015-01-01

    Type 2 diabetes (T2D) is a metabolic disease associated with obesity-related insulin resistance (IR) and chronic inflammation. Animal studies indicate IR can be caused and/or exacerbated by systemic/tissue-specific alterations in lymphocyte differentiation and function. Human studies also indicate obesity and/or inflammation promotes IR. Nevertheless, clinical trials with anti-inflammatory therapies have yielded modest impacts on established T2D. Unlike mouse models where obesity is predominantly associated with IR, 20–25% of obese people are metabolically healthy with high insulin sensitivity. The uncoupling of obesity from IR in humans but not in animal models advocates for a more comprehensive understanding of mediators/mechanisms in human obesity-promoted IR, and better integration of knowledge from human studies into animal experiments to efficiently pursue T2D prevention and treatment. PMID:25573740

  1. Increased CD19+CD24+CD27+ B regulatory cells are associated with insulin resistance in patients with type I Hashimoto's thyroiditis.

    PubMed

    Yang, Min; Du, Changji; Wang, Yinping; Liu, Jun

    2017-06-01

    Hashimoto's thyroiditis (HT) is characterized by dysregulated immune responses and is commonly associated with insulin resistance. However, the mechanism of insulin resistance in HT remains to be fully elucidated. The aim of the present study was to investigate the correlation between the percentage of B regulatory lymphocytes (Bregs) and insulin resistance in patients with HT but with normal thyroid function (type I). A total of 59 patients with type I HT and 38 healthy volunteers were enrolled in the study. An oral glucose tolerance test was performed to measure insulin secretion and assess β‑cell functions. Flow cytometry was performed to examine the percentages of lymphocyte populations. The patients with HT exhibited normal fasting and postprandial glucose and fasting insulin secretion, but increased secretion of early‑phase and total insulin. The patients with HT also had insufficient β‑cell compensation for insulin resistance, indicated by a reduced disposition index, in the fasting state. An elevation in the percentage of CD19+CD24+CD27+ Bregs was also observed, which correlated positively with insulin secretion and insulin resistance in the fasting state. The patients with type I HT had postprandial insulin resistance and insufficient β‑cell compensation for fasting insulin resistance. Therefore, the increase in CD19+CD24+CD27+ Bregs was closely associated with fasting insulin secretion. These results provide novel insight into the mechanism of insulin resistance in HT.

  2. State of the Art Review: Emerging Therapies: The Use of Insulin Sensitizers in the Treatment of Adolescents with Polycystic Ovary Syndrome (PCOS)

    PubMed Central

    2011-01-01

    PCOS, a heterogeneous disorder characterized by cystic ovarian morphology, androgen excess, and/or irregular periods, emerges during or shortly after puberty. Peri- and post-pubertal obesity, insulin resistance and consequent hyperinsulinemia are highly prevalent co-morbidities of PCOS and promote an ongoing state of excess androgen. Given the relationship of insulin to androgen excess, reduction of insulin secretion and/or improvement of its action at target tissues offer the possibility of improving the physical stigmata of androgen excess by correction of the reproductive dysfunction and preventing metabolic derangements from becoming entrenched. While lifestyle changes that concentrate on behavioral, dietary and exercise regimens should be considered as first line therapy for weight reduction and normalization of insulin levels in adolescents with PCOS, several therapeutic options are available and in wide use, including oral contraceptives, metformin, thiazolidenediones and spironolactone. Overwhelmingly, the data on the safety and efficacy of these medications derive from the adult PCOS literature. Despite the paucity of randomized control trials to adequately evaluate these modalities in adolescents, their use, particularly that of metformin, has gained popularity in the pediatric endocrine community. In this article, we present an overview of the use of insulin sensitizing medications in PCOS and review both the adult and (where available) adolescent literature, focusing specifically on the use of metformin in both mono- and combination therapy. PMID:21899727

  3. State of the Art Review: Emerging Therapies: The Use of Insulin Sensitizers in the Treatment of Adolescents with Polycystic Ovary Syndrome (PCOS).

    PubMed

    Geller, David H; Pacaud, Danièle; Gordon, Catherine M; Misra, Madhusmita

    2011-08-26

    PCOS, a heterogeneous disorder characterized by cystic ovarian morphology, androgen excess, and/or irregular periods, emerges during or shortly after puberty. Peri- and post-pubertal obesity, insulin resistance and consequent hyperinsulinemia are highly prevalent co-morbidities of PCOS and promote an ongoing state of excess androgen. Given the relationship of insulin to androgen excess, reduction of insulin secretion and/or improvement of its action at target tissues offer the possibility of improving the physical stigmata of androgen excess by correction of the reproductive dysfunction and preventing metabolic derangements from becoming entrenched. While lifestyle changes that concentrate on behavioral, dietary and exercise regimens should be considered as first line therapy for weight reduction and normalization of insulin levels in adolescents with PCOS, several therapeutic options are available and in wide use, including oral contraceptives, metformin, thiazolidenediones and spironolactone. Overwhelmingly, the data on the safety and efficacy of these medications derive from the adult PCOS literature. Despite the paucity of randomized control trials to adequately evaluate these modalities in adolescents, their use, particularly that of metformin, has gained popularity in the pediatric endocrine community. In this article, we present an overview of the use of insulin sensitizing medications in PCOS and review both the adult and (where available) adolescent literature, focusing specifically on the use of metformin in both mono- and combination therapy.

  4. Insulin resistance and associated factors: a cross-sectional study of bank employees.

    PubMed

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria Del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-04-01

    Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals.

  5. Insulin resistance and associated factors: a cross-sectional study of bank employees

    PubMed Central

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-01-01

    OBJECTIVE: Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. METHODS: A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. RESULTS: It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. CONCLUSION: The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals. PMID:28492722

  6. Sexual dimorphism in interleukin 17A and adipocytokines and their association with insulin resistance among obese adolescents in Yogyakarta, Indonesia.

    PubMed

    Susilowati, Rina; Sulistyoningrum, Dian Caturini; Witari, Ni Putu Diah; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina

    2016-12-01

    Pro-inflammatory cytokines interleukin 17A (IL-17), leptin, and adiponectin have been associated with obesity and insulin resistance. Moreover, differences in sex and ethnicity as well as plasma concentration of adipocytokines and cytokines have been associated with the risk of insulin resistance. This study was conducted to elucidate whether sex differences exist in the risk of insulin resistance in Indonesian adolescents and to determine how plasma leptin, adiponectin, and IL-17 predict insulin resistance. The study participants were 69 obese-overweight boys, 53 obese-overweight girls, 59 non-obese boys, and 50 non-obese girls aged 15-18 years. Insulin resistance was determined using the homeostatic model assessment of insulin resistance index. Plasma IL-17, leptin, and adiponectin were measured using ELISA. Data were analysed using one-way ANOVA and linear regression analysis. Odd ratios [ORs; 95% confidence intervals (CIs)] were analysed to estimate the risk of insulin resistance; the significance level was set at 95%. The OR (95% CI) for insulin resistance was higher in obese-overweight boys than in obese-overweight girls. The plasma IL-17 was higher in boys, whereas plasma adiponectin and leptin were significantly higher in girls. In all participants, obesity status and plasma leptin were the most efficient predictors of insulin resistance, whereas the IL-17 could not significantly predict insulin resistance. Sexual dimorphism exists in IL17 as well as leptin and adiponectin in adolescents. Plasma IL-17 cannot be used to predict insulin resistance in adolescents of both sex.

  7. Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines.

    PubMed

    Dimitriadis, Georgios K; Kyrou, Ioannis; Randeva, Harpal S

    2016-01-01

    Polycystic Ovary Syndrome (PCOS) is a complex heterogeneous disorder and the most common endocrinopathy amongst women of reproductive age. It is characterized by androgen excess, chronic anovulation and an altered cardiometabolic profile. PCOS is linked to impaired adipose tissue (AT) physiology and women with this disorder present with greater risk for insulin resistance (IR), hyperinsulinemia, central adiposity, nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) than matched for age and body mass index (BMI) women without PCOS. Hyperandrogenaemia appears to be driving adipocyte hypertrophy observed in PCOS under the influence of a hyperinsulinaemic state. Changes in the function of adipocytes have an impact on the secretion of adipokines, adipose tissue-derived proinflammatory factors promoting susceptibility to low grade inflammation. In this article, we review the existing knowledge on the interplay between hyperandrogenaemia, insulin resistance, impaired adipocyte biology, adipokines and chronic low-grade inflammation in PCOS. In PCOS, more than one mechanisms have been suggested in the development of a chronic low-grade inflammation state with the most prevalent being that of a direct effect of the immune system on adipose tissue functions as previously reported in obese women without PCOS. Despite the lack of conclusive evidence regarding a direct mechanism linking hyperandrogenaemia to pro-inflammation in PCOS, there have been recent findings indicating that hyperandrogenaemia might be involved in chronic inflammation by exerting an effect on adipocytes morphology and attributes. Increasing evidence suggests that there is an important connection and interaction between proinflammatory pathways, hyperinsulinemia, androgen excess and adipose tissue hypertrophy and, dysfunction in PCOS. While lifestyle changes and individualized prescription of insulin-sensitizing drugs are common in managing PCOS, further studies are warranted to eventually identify an adipokine that could serve as an indirect marker of adipocyte dysfunction in PCOS, used as a reliable and pathognomic sign of metabolic alteration in this syndrome.

  8. Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity.

    PubMed

    Ojo, Babajide; Simenson, Ashley J; O'Hara, Crystal; Wu, Lei; Gou, Xin; Peterson, Sandra K; Lin, Daniel; Smith, Brenda J; Lucas, Edralin A

    2017-08-01

    Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat-high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (-16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P<0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.

  9. N-acyl Taurines and Acylcarnitines Cause an Imbalance in Insulin Synthesis and Secretion Provoking β Cell Dysfunction in Type 2 Diabetes.

    PubMed

    Aichler, Michaela; Borgmann, Daniela; Krumsiek, Jan; Buck, Achim; MacDonald, Patrick E; Fox, Jocelyn E Manning; Lyon, James; Light, Peter E; Keipert, Susanne; Jastroch, Martin; Feuchtinger, Annette; Mueller, Nikola S; Sun, Na; Palmer, Andrew; Alexandrov, Theodore; Hrabe de Angelis, Martin; Neschen, Susanne; Tschöp, Matthias H; Walch, Axel

    2017-06-06

    The processes contributing to β cell dysfunction in type 2 diabetes (T2D) are uncertain, largely because it is difficult to access β cells in their intact immediate environment. We examined the pathophysiology of β cells under T2D progression directly in pancreatic tissues. We used MALDI imaging of Langerhans islets (LHIs) within mouse tissues or from human tissues to generate in situ-omics data, which we supported with in vitro experiments. Molecular interaction networks provided information on functional pathways and molecules. We found that stearoylcarnitine accumulated in β cells, leading to arrest of insulin synthesis and energy deficiency via excessive β-oxidation and depletion of TCA cycle and oxidative phosphorylation metabolites. Acetylcarnitine and an accumulation of N-acyl taurines, a group not previously detected in β cells, provoked insulin secretion. Thus, β cell dysfunction results from enhanced insulin secretion combined with an arrest of insulin synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    PubMed

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  12. Insulin Dynamics in Young Women with Polycystic Ovary Syndrome and Normal Glucose Tolerance across Categories of Body Mass Index

    PubMed Central

    Manco, Melania; Castagneto-Gissey, Lidia; Arrighi, Eugenio; Carnicelli, Annamaria; Brufani, Claudia; Luciano, Rosa; Mingrone, Geltrude

    2014-01-01

    Background Evidence favours insulin resistance and compensatory hyperinsulinemia as the predominant, perhaps primary, defects in polycystic ovary syndrome (PCOS). The aim of the present study was to evaluate insulin metabolism in young women with PCOS but normal glucose tolerance as compared with age, body mass index and insulin resistance-matched controls to answer the question whether women with PCOS hypersecrete insulin in comparison to appropriately insulin resistance-matched controls. Research Design and Methods Sixty-nine cases were divided according to their body mass index (BMI) in normal-weight (N = 29), overweight (N = 24) and obese patients (N = 16). Controls were 479 healthy women (age 16–49 y). Whole body Insulin Sensitivity (WBISI), fasting, and total insulin secretion were estimated following an oral glucose tolerance test (C-peptide deconvolution method). Results Across classes of BMI, PCOS patients had greater insulin resistance than matched controls (p<0.0001 for all the comparisons), but they showed higher fasting and total insulin secretion than their age, BMI and insulin resistance-matched peers (p<0.0001 for all the comparisons). Conclusion Women with PCOS show higher insulin resistance but also larger insulin secretion to maintain normal glucose homeostasis than age-, BMI- and insulin resistance-matched controls. PMID:24705280

  13. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings weremore » normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.« less

  14. De Novo Lipogenesis Maintains Vascular Homeostasis through Endothelial Nitric-oxide Synthase (eNOS) Palmitoylation*♦

    PubMed Central

    Wei, Xiaochao; Schneider, Jochen G.; Shenouda, Sherene M.; Lee, Ada; Towler, Dwight A.; Chakravarthy, Manu V.; Vita, Joseph A.; Semenkovich, Clay F.

    2011-01-01

    Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease. PMID:21098489

  15. Effect of postprandial insulinemia and insulin resistance on measurement of arterial stiffness (augmentation index).

    PubMed

    Greenfield, Jerry R; Samaras, Katherine; Chisholm, Donald J; Campbell, Lesley V

    2007-01-02

    Arterial stiffness, specifically augmentation index (AIx), is an independent predictor of cardiovascular risk. Previous studies suggest that insulin infusion decreases AIx and that this response is attenuated in insulin resistance. Whether physiological postprandial insulinemia similarly affects AIx measurements, and whether insulin resistance modifies this response, has not been studied. Seven relatively insulin-resistant and seven insulin-sensitive postmenopausal women received low-carbohydrate and high-carbohydrate high-fat meals on separate days. Glucose and insulin levels were measured for 360-min following meal consumption. AIx was measured by radial artery applanation tonometry at regular intervals postprandially. Postprandial increases in glucose and insulin were greater following the high-carbohydrate high-fat meal in both insulin-sensitive and insulin-resistant subjects. AIx decreased in both groups following both meals. In insulin-sensitive subjects, the postprandial reduction (incremental area above the curve) in AIx was greater following the high-carbohydrate vs. low-carbohydrate high-fat meal (-6821+/-1089 vs. -3797+/-1171% x min, respectively, P=0.009). In contrast, in insulin-resistant subjects, postprandial AIx responses were similar following the meals, suggesting that insulin resistance is associated with impaired postprandial arterial relaxation. This study demonstrates that the carbohydrate content of a meal, and, hence, the magnitude of the postprandial glucose and insulin responses it elicits, are important determinants of postprandial AIx measurements. The further observation that insulin resistance modified this effect raises the possibility that this phenomenon is a contributor to increased cardiovascular risk in insulin resistance. The results indicate that future studies of AIx need to control for the effects of these potentially confounding variables and that measurement of AIx should be standardized with respect to meals.

  16. Human primary myoblast cell cultures from non-diabetic insulin resistant subjects retain defects in insulin action.

    PubMed Central

    Thompson, D B; Pratley, R; Ossowski, V

    1996-01-01

    Insulin resistance is a predictor of the development of noninsulin-dependent diabetes mellitus (NIDDM) in humans. It is unclear whether insulin resistance is a primary defect leading to NIDDM or the result of hyperinsulinemia and hyperglycemia. To determine if insulin resistance is the result of extrinsic factors such as hyperinsulinemia primary skeletal muscle cell cultures were established from muscle biopsies from Pima Indians with differing in vivo insulin sensitivities. These cell cultures expressed a variety of muscle-specific phenotypes including the proteins alpha-actinin and myosin, muscle-specific creatine kinase activity, and RNA encoding GLUT4, MYF5, MYOD1, and MYOGENIN. Labeled glucose was used to measure the insulin-stimulated conversion of glucose to glycogen in these cultures. The in vivo rates of insulin-stimulated glycogen production (insulin resistance) were correlated with in vitro measures of glycogen production (P = 0.007, r = 0.58). This defect in insulin action is stable in a uniform culture environment and is retained over time. The retention of insulin resistance in myoblast derived cell cultures is consistent with the expression of an underlying biochemical defect in insulin resistant skeletal muscle. PMID:8941652

  17. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin resistance could be a potential mechanism to prevent further lipotoxicity.

  18. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    PubMed

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  19. [Convenience clinic redefine polycystic ovary syndrome (Stein-Leventhal)].

    PubMed

    Zárate-Treviño, Arturo; Hernández-Valencia, Marcelino; Morán, Carlos; Manuel, Leticia; Saucedo, Renata

    2014-04-01

    In 1935 during a medical meeting behalf in New Orleans was presents a study that included seven cases of women that suffered menstrual dysfunctions, hirsutism and sterility, for laparotomy the description of the ovaries had a pearly white color and it was hypertrophic, the cuneiform resection in both ovaries resulted in correction of the menstrual dysfunction and two of them got pregnancy later on, receiving the name of polycystic ovary syndrome (PCOS). The technological advance facilitates the hormonal analyses demonstrating the hyperandrogenism existence and the mechanism of the anovulation, the PCOS showed to be heterogeneous, reason why it was hindered to define it, this advanced the current trend to question the existence of the PCOS and to accept the convenience, either to change the name or to redefine it, leaving it as a simple syndrome with several phenotypes. The endocrine component includes abnormal secretion of insulin and consequently outlying resistance to this hormone, likewise is hyperandrogenism, dislipoproteinemia and obesity. The hormonal exams are unnecessary for the diagnostic and treatment; it is convenient to demonstrate for sonography the ovarian growth. Other dysfunctions like the congenital suprarenal hyperplasia, hyperprolactinemia and hypotiroidism should be discarded. The treatment should be individualized with relationship to the reason of the consultation and the patients age. It has not been demonstrated that the sensibilitizers use to the insulin avoids long term cardiovascular illness and diabetes. Therefore, the phenotype is heterogeneous with a fickle metabolic component and for it has arisen the restlessness of a better definition of the SPO.

  20. Free fatty acids are associated with metabolic syndrome and insulin resistance but not inflammation in systemic lupus erythematosus.

    PubMed

    Ormseth, M J; Swift, L L; Fazio, S; Linton, M F; Raggi, P; Solus, J F; Oeser, A; Bian, A; Gebretsadik, T; Shintani, A; Stein, C M

    2013-01-01

    Free fatty acids (FFAs) are implicated in the pathogenesis of insulin resistance and atherosclerosis. Inflammatory cytokines promote lipolysis and increase FFAs, a cause of endothelial dysfunction and increased atherosclerosis risk. We hypothesized that increased inflammation is associated with increased FFAs, resulting in insulin resistance and atherosclerosis in patients with systemic lupus erythematosus (SLE). We measured clinical variables, serum FFAs, homeostasis model assessment for insulin resistance (HOMA), inflammatory cytokines, markers of endothelial activation, cholesterol concentrations and coronary artery calcium in 156 patients with SLE and 90 controls. We compared FFAs in patients with SLE and controls using Wilcoxon rank sum tests and further tested for the independent association between FFAs and disease status with adjustment for age, race and sex using multivariable regression models. We assessed the relationship between FFAs and continuous variables of interest using Spearman correlation and multivariable regression analysis. Levels of FFAs were higher in patients with SLE than controls (0.55 mmol/l (0.37-0.71) vs 0.44 mmol/l (0.32-0.60), P = 0.02). Levels of FFAs remained significantly higher among patients with SLE after adjustment for age, race and sex (P = 0.03) but not after further adjustment for body mass index (P = 0.13). FFA levels did not differ according to the usage of current immunosuppressive medications in univariate and adjusted analysis (all P > 0.05). Among patients with SLE, concentrations of FFAs were higher among those with metabolic syndrome compared to those without (0.66 mmol/l (0.46-0.81) vs 0.52 mmol/l (0.35-0.66), P < 0.001). FFAs were positively correlated with insulin resistance (HOMA) (rho = 0.23, P = 0.004, P adjusted = 0.006) and triglyceride levels (rho = 0.22, P = 0.01, P adjusted = 0.004). FFAs were not associated with inflammatory cytokines (IL-6, TNF-α) (all P > 0.05) but were positively associated with levels of E-selectin (rho = 0.33, P = < 0.001, P adjusted = 0.001) and ICAM-1 (rho = 0.35, P < 0.001, P adjusted = 0.001). FFAs were correlated with coronary artery calcium score (rho = 0.20, P = 0.01) but this was attenuated after adjustment for age, race and sex (P = 0.33). From our study we concluded that FFAs are elevated in patients with SLE, particularly those with metabolic syndrome. FFAs in patients with SLE are not associated with markers of generalized inflammation but are associated with insulin resistance and markers of endothelial activation.

  1. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  2. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  3. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1.

    PubMed

    Wei, Jie; Ding, Dongxiao; Wang, Tao; Liu, Qiong; Lin, Yi

    2017-12-01

    Bisphenol A (BPA) can disrupt glucose homeostasis and impair pancreatic islet function; however, the mechanisms behind these effects are poorly understood. Male mice (4 wk old) were treated with BPA (50 or 500 μg/kg/d) for 8 wk. Whole-body glucose homeostasis, pancreatic islet morphology and function, and miR-338-mediated molecular signal transduction analyses were examined. We showed that BPA treatment led to a disruption of glucose tolerance and a compensatory increase of pancreatic islets insulin secretion and pancreatic and duodenal homeobox 1 ( Pdx1 ) expression in mice. Inhibition of Pdx1 reduced glucose-stimulated insulin secretion and ATP production in the islets of BPA-exposed mice. Based on primary pancreatic islets, we also confirmed that miR-338 regulated Pdx1 and thus contributed to BPA-induced insulin secretory dysfunction from compensation to decompensation. Short-term BPA exposure downregulated miR-338 through activation of G-protein-coupled estrogen receptor 1 (Gpr30), whereas long-term BPA exposure upregulated miR-338 through suppression of glucagon-like peptide 1 receptor (Glp1r). Taken together, our results reveal a molecular mechanism, whereby BPA regulates Gpr30/Glp1r to mediate the expression of miR-338, which acts to control Pdx1-dependent insulin secretion. The Gpr30/Glp1r-miR-338-Pdx1 axis should be represented as a novel mechanism by which BPA induces insulin secretory dysfunction in pancreatic islets.-Wei, J., Ding, D., Wang, T., Liu, Q., Lin, Y. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1. © FASEB.

  4. Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity

    PubMed Central

    Sangeetha, Kadapakkam Nandabalan; Sujatha, Sundaresan; Muthusamy, Velusamy Shanmuganathan; Anand, Singaravel; Shilpa, Kusampudi; kumari, Posa Jyothi; Sarathkumar, Baskaran; Thiyagarajan, Gopal; Lakshmi, Baddireddi Subhadra

    2017-01-01

    Non-insulin dependent diabetes mellitus, also known as Type 2 diabetes is a polygenic disorder leading to abnormalities in the carbohydrate and lipid metabolism. The major contributors in the pathophysiology of type 2 diabetes (T2D) include resistance to insulin action, β cell dysfunction, an abnormality in glucose metabolism and storage, visceral obesity and to some extent inflammation and oxidative stress. Insulin resistance, along with a defect in insulin secretion by the pancreatic β cells is instrumental towards progression to hyperglycemia. Increased incidence of obesity is also a major contributing factor in the escalating rates of type 2 diabetes. Drug discovery efforts are therefore crucially dependent on identifying individual molecular targets and validating their relevance to human disease. The current review discusses bioactive compounds from medicinal plants offering enhanced therapeutic potential for the combined patho-physiology of diabetes and obesity. We have demonstrated that 3β-taraxerol a pentacyclic triterpenoid (14-taraxeren-3-ol) isolated from the ethyl acetate extract of Mangifera indica, chlorogenic acid isolated from the methanol extract of Cichorium intybus, methyl tetracosanoate from the methanol extract of Costus pictus and vitalboside A derived from methanolic extract of Syzygium cumini exhibited significant effects on insulin stimulated glucose uptake causing insulin sensitizing effects on 3T3L1 adipocytes (an in vitro model mimicking adipocytes). Whereas, (3β)-stigmast-5-en-3-ol isolated from Adathoda vasica and Aloe emodin isolated from Cassia fistula showed significant insulin mimetic effects favoring glucose uptake in L6 myotubes (an in vitro model mimicking skeletal muscle cells). These extracts and molecules showed glucose uptake through activation of PI3K, an important insulin signaling intermediate. Interestingly, cinnamic acid isolated from the hydro-alcohol extract of Cinnamomum cassia was found to activate glucose transport in L6 myotubes through the involvement of GLUT4 via the PI3K-independent pathway. However, the activation of glucose storage was effective in the presence of 3β-taraxerol and aloe emodin though inhibition of GSK3β activity. Therefore, the mechanism of improvement of glucose and lipid metabolism exhibited by the small molecules isolated from our lab is discussed. However, Obesity is a major risk factor for type-2 diabetes leading to destruction of insulin receptors causing insulin resistance. Identification of compounds with dual activity (anti-diabetic and antiadipogenic activity) is of current interest. The protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of the insulin and leptin-signaling pathway is of significance in target definition and discovery. PMID:29379255

  5. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    PubMed

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  6. Fanconi Anemia Links Reactive Oxygen Species to Insulin Resistance and Obesity

    PubMed Central

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A.; Rose, Susan R.; Davies, Stella M.

    2012-01-01

    Abstract Aims: Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Results: Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. Innovation: These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. Conclusion: ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR. Antioxid. Redox Signal. 00, 000–000. PMID:22482891

  7. [Placental atherosclerosis and markers of endothelial dysfunction in infants born to mothers with gestational diabetes].

    PubMed

    López Morales, Cruz Mónica; Brito Zurita, Olga Rosa; González Heredia, Ricardo; Cruz López, Miguel; Méndez Padrón, Araceli; Matute Briseño, Juan Antonio

    2016-08-05

    The pathophysiology of gestational diabetes itself causes hyperstimulation of adipose tissue and of the placenta cells increasing the production of inflammatory cytokines, which cause changes in the tissues exposed such as the placenta and foetus. Therefore, the objective of this study was to compare metabolic markers and endothelial dysfunction in umbilical cord blood, as well as to determine the presence of atherosclerosis in the placentas of newborn infants of patients with gestational diabetes and in patients with normally progressing pregnancies. An analytical cross-sectional study was carried out in 84 patients, obtaining data such as age, smoking and weight gain in pregnancy; the gestational age of the newborns was determined by Capurro, and their weight and destination subsequent to birth, the placentas were also collected in order to look for atherosclerosis through histological studies and glucose, insulin, VLDL-C, HDL-C, triglycerides, cholesterol, fibrinogen, PCR and markers of endothelial dysfunction (adiponectin, VCAM-1, ICAM-1 and IL-6) were determined in blood samples obtained from the umbilical cord. Placental atherosclerosis presented in 28.94% of the group with gestational diabetes compared to 10.52% of the group with normally progressing pregnancies (P=.044); differences were found in glucose, cholesterol, triglycerides, fibrinogen, HOMA-IR, PCR-us, HDL-C, not in VLDL-C. Twenty-one point five percent of the newborns of the gestational diabetes patients required hospitalization, against 5.2% in the control group, Pregnancies that involve diabetes have higher proportion of atherosclerosis, hospitalization of the newborn, insulin resistance, as well as elevation of markers associated with inflammation and endothelial dysfunction in umbilical cord blood. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  8. Dietary patterns and the insulin resistance phenotype among non-diabetic adults

    USDA-ARS?s Scientific Manuscript database

    Background: Information on the relation between dietary patterns derived by cluster analysis and insulin resistance is scarce. Objective: To compare insulin resistance phenotypes, including waist circumference, body mass index, fasting and 2-hour post-challenge insulin, insulin sensitivity index (I...

  9. Insulin resistance: definition and consequences.

    PubMed

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  10. Inflammation in Polycystic Ovary Syndrome: Underpinning of insulin resistance and ovarian dysfunction

    PubMed Central

    González, Frank

    2012-01-01

    Chronic low-grade inflammation has emerged as a key contributor to the pathogenesis of Polycystic Ovary Syndrome (PCOS). A dietary trigger such as glucose is capable of inciting oxidative stress and an inflammatory response from mononuclear cells (MNC) of women with PCOS, and this phenomenon is independent of obesity. This is important because MNC-derived macrophages are the primary source of cytokine production in excess adipose tissue, and also promote adipocyte cytokine production in a paracrine fashion. The proinflammatory cytokine tumor necrosis factor-α (TNFα) is a known mediator of insulin resistance. Glucose-stimulated TNFα release from MNC along with molecular markers of inflammation are associated with insulin resistance in PCOS. Hyperandrogenism is capable of activating MNC in the fasting state, thereby increasing MNC sensitivity to glucose; and this may be a potential mechanism for promoting diet-induced inflammation in PCOS. Increased abdominal adiposity is prevalent across all weight classes in PCOS, and this inflamed adipose tissue contributes to the inflammatory load in the disorder. Nevertheless, glucose ingestion incites oxidative stress in normal weight women with PCOS even in the absence of increased abdominal adiposity. In PCOS, markers of oxidative stress and inflammation are highly correlated with circulating androgens. Chronic suppression of ovarian androgen production does not ameliorate inflammation in normal weight women with the disorder. Furthermore, in vitro studies have demonstrated the ability of pro-inflammatory stimuli to upregulate the ovarian theca cell steroidogenic enzyme responsible for androgen production. These findings support the contention that inflammation directly stimulates the polycystic ovary to produce androgens. PMID:22178787

  11. Apo A1 Mimetic Rescues the Diabetic Phenotype of HO-2 Knockout Mice via an Increase in HO-1 Adiponectin and LKBI Signaling Pathway

    PubMed Central

    Cao, Jian; Puri, Nitin; Sodhi, Komal; Bellner, Lars; Abraham, Nader G.; Kappas, Attallah

    2012-01-01

    Insulin resistance, with adipose tissue dysfunction, is one of the hallmarks of metabolic syndrome. We have reported a metabolic syndrome-like phenotype in heme oxygenase (HO)-2 knockout mice, which presented with concurrent HO-1 deficiency and were amenable to rescue by an EET analog. Apo A-I mimetic peptides, such as L-4F, have been shown to induce HO-1 expression and decrease oxidative stress and adiposity. In this study we aimed to characterize alleviatory effects of HO-1 induction (if any) on metabolic imbalance observed in HO-2 KO mice. In this regard, HO-2(−/−) mice were injected with 2 mg/kg/day L-4F, or vehicle, i.p., for 6 weeks. As before, compared to WT animals, the HO-2 null mice were obese, displayed insulin resistance, and had elevated blood pressure. These changes were accompanied by enhanced tissue (hepatic) oxidative stress along with attenuation of HO-1 expression and activity and reduced adiponectin, pAMPK, and LKB1 expression. Treatment with L-4F restored HO-1 expression and activity and increased adiponectin, LKB1, and pAMPK in the HO-2(−/−) mice. These alterations resulted in a decrease in blood pressure, insulin resistance, blood glucose, and adiposity. Taken together, our results show that a deficient HO-1 response, in a state with reduced HO-2 basal levels, is accompanied by disruption of metabolic homeostasis which is successfully restored by an HO-1 inducer. PMID:22577519

  12. Left Ventricular Function Across the Spectrum of Body Mass Index in African Americans: The Jackson Heart Study.

    PubMed

    Patel, Vivek G; Gupta, Deepak K; Terry, James G; Kabagambe, Edmond K; Wang, Thomas J; Correa, Aldolfo; Griswold, Michael; Taylor, Herman; Carr, John Jeffrey

    2017-03-01

    This study sought to assess whether body mass index (BMI) was associated with subclinical left ventricular (LV) systolic dysfunction in African-American individuals. Higher BMI is a risk factor for cardiovascular disease, including heart failure. Obesity disproportionately affects African Americans; however, the association between higher BMI and LV function in African Americans is not well understood. Peak systolic circumferential strain (ECC) was measured by tagged cardiac magnetic resonance in 1,652 adult African-American participants of the Jackson Heart Study between 2008 and 2012. We evaluated the association between BMI and ECC in multivariate linear regression and restricted cubic spline analyses adjusted for prevalent cardiovascular disease, conventional cardiovascular risk factors, LV mass, and ejection fraction. In exploratory analyses, we also examined whether inflammation, insulin resistance, or volume of visceral adipose tissue altered the association between BMI and ECC. The proportions of female, nonsmokers, diabetic, and hypertensive participants rose with increase in BMI. In multivariate-adjusted models, higher BMI was associated with worse ECC (β = 0.052; 95% confidence interval: 0.028 to 0.075), even in the setting of preserved LV ejection fraction. Higher BMI was also associated with worse ECC when accounting for markers of inflammation (C-reactive protein, E-selection, and P-selectin), insulin resistance, and volume of visceral adipose tissue. Higher BMI is significantly associated with subclinical LV dysfunction in African Americans, even in the setting of preserved LV ejection fraction. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.

    PubMed

    Patel, Vaibhav B; Mori, Jun; McLean, Brent A; Basu, Ratnadeep; Das, Subhash K; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M; Grant, Maria B; Lopaschuk, Gary D; Oudit, Gavin Y

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Attenuating type 2 diabetes with postpartum interventions following gestational diabetes mellitus.

    PubMed

    Wasalathanthri, Sudharshani

    2015-05-15

    Women with a history of gestational diabetes should be screened during and after the postpartum period because of a high risk for developing type 2 diabetes mellitus. Although differences exist between guidelines practiced throughout various parts of the world, all recommend the use of cutoffs for fasting and/or post-load plasma glucose to diagnose diabetes or pre-diabetes. The use of these glycemic parameters could be optimized when a trend is observed, rather than considering them as isolated values at various time points. As the presence of insulin resistance and beta-cell dysfunction start before glycemic changes are evident, the estimation of insulin sensitivity and beta-cell function by Homeostatic Model Assessment is suggested for women who have additional risk factors for diabetes, such as obesity. Disease-modifying lifestyle intervention should be the first-line strategy to prevent or delay the onset of diabetes in women with a history of gestational diabetes mellitus. Intensive lifestyle interventions are designed to decrease caloric intake and increase physical activity in order to reduce body weight and fat, which will in turn reduce insulin resistance. This article also reviews unique problems of postpartum women, which should be considered when designing and implementing an intervention. Innovative "out of the box" thinking is appreciated, as continued adherence to a program is a challenge to both the women and the health care personnel who deal with them.

  15. Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease.

    PubMed

    Muoio, Deborah M; Koves, Timothy R

    2007-10-01

    Dyslipidemia and intramuscular accumulation of fatty acid metabolites are increasingly recognized as core features of obesity and type 2 diabetes. Emerging evidence suggests that normal physiological adaptations to a heavy lipid load depend on the coordinated actions of broad transcriptional regulators such as the peroxisome proliferator activated receptors (PPARs) and PPAR gamma coactivator 1 alpha (PGC1 alpha). The application of transcriptomics and targeted metabolic profiling tools based on mass spectrometry has led to our finding that lipid-induced insulin resistance is a condition in which upregulation of PPAR-targeted genes and high rates of beta-oxidation are not supported by a commensurate upregulation of tricarboxylic acid (TCA) cycle activity. In contrast, exercise training enhances mitochondrial performance, favoring tighter coupling between beta-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high-fat diet. The exercise-activated transcriptional coactivator, PGC1 alpha, plays a key role in coordinating metabolic flux through these 2 intersecting metabolic pathways, and its suppression by overfeeding may contribute to diet-induced mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from a mitochondrial disconnect between beta-oxidation and TCA cycle activity. Understanding of this "disconnect" and its molecular basis may lead to new therapeutic approaches to combatting metabolic disease.

  16. Sustained βAR Stimulation Mediates Cardiac Insulin Resistance in a PKA-Dependent Manner

    PubMed Central

    Denkaew, Tananat; Phosri, Sarawuth; Pinthong, Darawan; Parichatikanond, Warisara; Shimauchi, Tsukasa; Nishida, Motohiro

    2016-01-01

    Insulin resistance is a condition in which cells are defective in response to the actions of insulin in tissue glucose uptake. Overstimulation of β-adrenergic receptors (βARs) leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, the mechanisms by which sustained βAR stimulation affects insulin resistance in the heart are incompletely understood. In this study, we demonstrate that sustained βAR stimulation resulted in the inhibition of insulin-induced glucose uptake, and a reduction of insulin induced glucose transporter (GLUT)4 expression that were mediated by the β2AR subtype in cardiomyocytes and heart tissue. Overstimulation of β2AR inhibited the insulin-induced translocation of GLUT4 to the plasma membrane of cardiomyocytes. Additionally, βAR mediated cardiac insulin resistance by reducing glucose uptake and GLUT4 expression via the cAMP-dependent and protein kinase A-dependent pathways. Treatment with β-blockers, including propranolol and metoprolol antagonized isoproterenol-mediated insulin resistance in the heart. The data in this present study confirm a critical role for protein kinase A in βAR-mediated insulin resistance. PMID:26652903

  17. Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells

    PubMed Central

    González, Marcelo; Rojas, Susana; Avila, Pía; Cabrera, Lissette; Villalobos, Roberto; Palma, Carlos; Aguayo, Claudio; Peña, Eduardo; Gallardo, Victoria; Guzmán-Gutiérrez, Enrique; Sáez, Tamara; Salsoso, Rocío; Sanhueza, Carlos; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2015-01-01

    Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2 •–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2 •– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4 level. Insulin and tempol blocked the high D-glucose–increased p42/44mapk phosphorylation. Vascular dysfunction caused by high D-glucose is likely attenuated by insulin through the L-arginine/NO and O2 •–/NADPH oxidase pathways. These findings are of interest for better understanding vascular dysfunction in states of foetal insulin resistance and hyperglycaemia. PMID:25875935

  18. Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice.

    PubMed

    Regnier, Shane M; Kirkley, Andrew G; Ye, Honggang; El-Hashani, Essam; Zhang, Xiaojie; Neel, Brian A; Kamau, Wakanene; Thomas, Celeste C; Williams, Ayanna K; Hayes, Emily T; Massad, Nicole L; Johnson, Daniel N; Huang, Lei; Zhang, Chunling; Sargis, Robert M

    2015-03-01

    Environmental endocrine disruptors are implicated as putative contributors to the burgeoning metabolic disease epidemic. Tolylfluanid (TF) is a commonly detected fungicide in Europe, and previous in vitro and ex vivo work has identified it as a potent endocrine disruptor with the capacity to promote adipocyte differentiation and induce adipocytic insulin resistance, effects likely resulting from activation of glucocorticoid receptor signaling. The present study extends these findings to an in vivo mouse model of dietary TF exposure. After 12 weeks of consumption of a normal chow diet supplemented with 100 parts per million TF, mice exhibited increased body weight gain and an increase in total fat mass, with a specific augmentation in visceral adipose depots. This increased adipose accumulation is proposed to occur through a reduction in lipolytic and fatty acid oxidation gene expression. Dietary TF exposure induced glucose intolerance, insulin resistance, and metabolic inflexibility, while also disrupting diurnal rhythms of energy expenditure and food consumption. Adipose tissue endocrine function was also impaired with a reduction in serum adiponectin levels. Moreover, adipocytes from TF-exposed mice exhibited reduced insulin sensitivity, an effect likely mediated through a specific down-regulation of insulin receptor substrate-1 expression, mirroring effects of ex vivo TF exposure. Finally, gene set enrichment analysis revealed an increase in adipose glucocorticoid receptor signaling with TF treatment. Taken together, these findings identify TF as a novel in vivo endocrine disruptor and obesogen in mice, with dietary exposure leading to alterations in energy homeostasis that recapitulate many features of the metabolic syndrome.

  19. Insulin resistance and self-perceived scholastic competence in inner-city, overweight and obese, African American children.

    PubMed

    Fyfe, Molly; Raman, Aarthi; Sharma, Sushma; Hudes, Mark L; Fleming, Sharon E

    2011-01-10

    scholastic competence is a predictor of future achievement, yet there is little research about health factors that influence the development of self-perceived scholastic competence (SPSC). This study examined the relationship of insulin resistance and body fatness with SPSC in low-income, overweight and obese, African American children. data were analyzed from a convenience sample of 9-10years old African American children (89 boys and 113 girls) enrolled in a type 2 diabetes prevention study. Health variables analyzed for their influence on SPSC (Harter scale) included insulin resistance (Homeostatic model-derived insulin sensitivity, HOMA-IR) and body fatness (% body fat). Adjustments were made for self-esteem (Global Self Worth). there was a significant gender by insulin resistance interaction effect on the child's SPSC, so separate regression models were developed for each gender. In boys, neither insulin resistance nor body fatness was related to SPSC. In girls, however, insulin resistance was negatively related to SPSC scores, and the significance of the relationship increased further after adjusting for body fatness. Body fatness alone was not significantly related to SPSC in girls, but after adjusting for insulin resistance, body fatness was positively related to SPSC. Thus, insulin resistance and body fatness mutually suppressed SPSC in girls. high SPSC was associated with lower insulin resistance and, with insulin resistance held constant, with higher body fatness in girls but not in boys. These relationships were not influenced by self-esteem in these children. 2010 Elsevier Inc. All rights reserved.

  20. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

Top