ERIC Educational Resources Information Center
Montuoro, Paul; Mainhard, Tim
2017-01-01
Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression follows I[superscript 3] theory or General Aggression…
Rett'S syndrome : a case report.
Gupta, V
2001-01-01
Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists.
USDA-ARS?s Scientific Manuscript database
The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, we determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to two years post-injury. Biopsies were collected from the m. vastus lateralis...
Minocycline attenuates cardiac dysfunction in tumor-burdened mice.
Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E
2016-11-01
Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rantell, Angie; Apostolidis, Apostolos; Anding, Ralf; Kirschner-Hermanns, Ruth; Cardozo, Linda
2017-04-01
The aim of this paper is to review the literature on the effect of lower urinary tract symptoms (LUTS) on sexual function and dysfunction. At the International Consultation on Incontinence-Research Society (ICI-RS) in 2015, a multidisciplinary group presented a literature search of what is known about the effect of lower urinary tract dysfunction (LUTD) on sexual function (SF) in men and women. Wider discussions regarding knowledge gaps and ideal research methodology ensued. A body of evidence supports associations between LUTS/urinary incontinence on SF in both men and women, but the true prevalence of the impact of LUTD on SF remains largely unknown. There is still reluctance among health care professionals (HCP's) to discuss SF with patients and often patients who are not asked will not volunteer their problems. A significant knowledge gap in this area remains. Education among HCP's on assessment and treatment of sexual dysfunction and communication skills are essential to encourage, and engage patients with HCP's. Neurourol. Urodynam. 36:949-952, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation
Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania
2016-01-01
The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915
RETT'S SYNDROME : A CASE REPORT
Gupta, Vinay
2001-01-01
Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists. PMID:21407847
Trotti, Lynn Marie
2017-09-01
Idiopathic hypersomnia (IH) is a chronic neurologic disorder of daytime sleepiness, accompanied by long sleep times, unrefreshing sleep, difficulty in awakening, cognitive dysfunction, and autonomic symptoms. The cause is unknown; a genetic predisposition is suggested. Autonomic, inflammatory, or immune dysfunction has been proposed. Diagnosis involves a clinical history and objective testing. There are no approved treatments for IH, but modafinil is typically considered first-line. A substantial fraction of patients with IH are refractory or intolerant to standard treatments, and different treatment strategies using novel therapeutics are necessary. Even with current treatment options, quality of life and safety may remain impaired. Copyright © 2017 Elsevier Inc. All rights reserved.
Law, Yuk M; Keller, Bradley B; Feingold, Brian M; Boyle, Gerard J
2005-02-15
The usefulness of B-type natriuretic peptide (BNP) levels to assess ventricular dysfunction in children and the congenital heart disease population remains largely unknown. We retrospectively analyzed 62 patients with or without known heart disease who had plasma BNP measured for the investigation of new or severity grading of known ventricular dysfunction. BNP levels were significantly higher in patients with ventricular dysfunction (mean 623 +/- 146 pg/ml, range 5 to 5,000) than in patients without ventricular dysfunction (mean 22 +/- 5 pg/ml, range 5 to 63; p <0.01). Using a cutoff of 40 pg/ml, BNP levels detected heart disease associated with ventricular dysfunction at a sensitivity of 85%, specificity of 81%, positive predictive value of 92%, and negative predictive value of 68%. The degree of BNP elevation was also associated with the severity of heart failure and high ventricular filling pressures. Plasma BNP elevation can be a reliable test in children and young adults with various kinds of congenital heart disease resulting in ventricular dysfunction.
USDA-ARS?s Scientific Manuscript database
Despite evidence of insulin resistance and B-cell dysfunction in glucose metabolism in youth with prediabetes, the relationship between adipose tissue insulin sensitivity (ATIS) and B-cell function remains unknown. We investigated whole-body lipolysis, ATIS and B-cell function relative to ATIS [adip...
Li, Jing; Liu, Bin; Yan, Lu-nan; Lau, Wan-yee
2015-02-01
Chronic liver allograft dysfunction is the leading cause of patient morbidity and late allograft loss after liver transplantation. The pathogenesis of chronic liver allograft dysfunction remains unknown. Recent studies have demonstrated that CXCL4 and its variant CXCL4L1 are involved in organ damage induced through inflammatory and immune responses throughout all stages of liver transplantation. CXCL4 and CXCL4L1 are low-molecular-weight proteins that have been implicated in hematopoiesis, angiostasis, organ fibrogenesis, mitogenesis, tumor growth and metastasis. The purpose of this review is to discuss the current status and future developments of research into the roles of CXCL4 and CXCL4L1 in the pathogenesis of chronic liver allograft dysfunction. The potential utilization of CXCL4 and CXCL4L1 as therapeutic targets for chronic liver allograft dysfunction will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Blood-Testis Barrier and Male Sexual Dysfunction following Spinal Cord Injury
2014-10-01
antigenic sperm and sperm cell-containing compartments within the testis. We also demonstrated that once failed, the BTB remains permeable, essentially...input into the male sexual organs. SCI-dependent male infertility is characterized by a significant reduction in numbers and quality of functional... sperm . The mechanism(s) underlying this deficit has previously been unknown. My laboratory has explored the effects of spinal trauma on tissues that
Tong, Xiaoping; Ao, Yan; Faas, Guido C; Nwaobi, Sinifunanya E; Xu, Ji; Haustein, Martin D; Anderson, Mark A; Mody, Istvan; Olsen, Michelle L; Sofroniew, Michael V; Khakh, Baljit S
2014-05-01
Huntington's disease (HD) is characterized by striatal medium spiny neuron (MSN) dysfunction, but the underlying mechanisms remain unclear. We explored roles for astrocytes, in which mutant huntingtin is expressed in HD patients and mouse models. We found that symptom onset in R6/2 and Q175 HD mouse models was not associated with classical astrogliosis, but was associated with decreased Kir4.1 K(+) channel functional expression, leading to elevated in vivo striatal extracellular K(+), which increased MSN excitability in vitro. Viral delivery of Kir4.1 channels to striatal astrocytes restored Kir4.1 function, normalized extracellular K(+), ameliorated aspects of MSN dysfunction, prolonged survival and attenuated some motor phenotypes in R6/2 mice. These findings indicate that components of altered MSN excitability in HD may be caused by heretofore unknown disturbances of astrocyte-mediated K(+) homeostasis, revealing astrocytes and Kir4.1 channels as therapeutic targets.
Walsh, Lauren K.; Restaino, Robert M.; Neuringer, Martha; Manrique, Camila; Padilla, Jaume
2017-01-01
Postprandial hyperglycemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. Herein we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, 1 hour, and 2 hours post an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized crossover design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycemia under the placebo condition (−32% at 1 hr and −28% at 2 hr post oral glucose load; p<0.05 from baseline) but not under the TUDCA condition (−4% at 1 hr and +0.3% at 2 hr post oral glucose load; p>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and TBARs remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycemia. PMID:27503949
Enhanced negative feedback responses in remitted depression.
Santesso, Diane L; Steele, Katherine T; Bogdan, Ryan; Holmes, Avram J; Deveney, Christen M; Meites, Tiffany M; Pizzagalli, Diego A
2008-07-02
Major depressive disorder (MDD) is characterized by hypersensitivity to negative feedback that might involve frontocingulate dysfunction. MDD patients exhibit enhanced electrophysiological responses to negative internal (errors) and external (feedback) cues. Whether this dysfunction extends to remitted depressed (RD) individuals with a history of MDD is currently unknown. To address this issue, we examined the feedback-related negativity in RD and control participants using a probabilistic punishment learning task. Despite equivalent behavioral performance, RD participants showed larger feedback-related negativities to negative feedback relative to controls; group differences remained after accounting for residual anxiety and depressive symptoms. The present findings suggest that abnormal responses to negative feedback extend to samples at increased risk for depressive episodes in the absence of current symptoms.
ACOG Practice Bulletin No. 194: Polycystic Ovary Syndrome.
2018-06-01
Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. Its etiology remains unknown, and treatment is largely symptom based and empirical. PCOS has the potential to cause substantial metabolic sequelae, including an increased risk of diabetes and cardiovascular disease, and these factors should be considered when determining long-term treatment. The purpose of this document is to examine the best available evidence for the diagnosis and clinical management of PCOS.
ACOG Practice Bulletin No. 194 Summary: Polycystic Ovary Syndrome.
2018-06-01
Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. Its etiology remains unknown, and treatment is largely symptom based and empirical. PCOS has the potential to cause substantial metabolic sequelae, including an increased risk of diabetes and cardiovascular disease, and these factors should be considered when determining long-term treatment. The purpose of this document is to examine the best available evidence for the diagnosis and clinical management of PCOS.
Melduni, Rowlens M.; Cullen, Michael W.
2013-01-01
The role of left ventricular (LV) diastolic dysfunction in predicting atrial fibrillation (AF) recurrence after successful electrical cardioversion is largely unknown. Studies suggest that there may be a link between abnormal LV compliance and the initial development, and recurrence of AF after electrical cardioversion. Although direct-current cardioversion (DCCV) is a well-established and highly effective method to convert AF to sinus rhythm, it offers little else beyond immediate rate control because it does not address the underlying cause of AF. Preservation of sinus rhythm after successful cardioversion still remains a challenge for clinicians. Despite the use of antiarrhythmic drugs and serial cardioversions, the rate of AF recurrence remains high in the first year. Current evidence suggests that diastolic dysfunction, which is associated with atrial volume and pressure overload, may be a mechanism underlying the perpetuating cycle of AF recurrence following successful electrical cardioversion. Diastolic dysfunction is considered to be a defect in the ability of the myofibrils, which have shortened against a load in systole to eject blood into the high-pressure aorta, to rapidly or completely return to their resting length. Consequently, LV filling is impaired and the non-compliant left ventricle is unable to fill at low pressures. As a result, left atrial and pulmonary vein pressure rises, and electrical and structural remodeling of the atrial myocardium ensues, creating a vulnerable substrate for AF. In this article, we review the current evidence highlighting the association of LV diastolic dysfunction with AF recurrence after successful electrical cardioversion and provide an approach to the management of LV diastolic dysfunction to prevent AF recurrence. PMID:23525127
Thompson, W. G.
1984-01-01
One third to one half of cases of dyspepsia remain unexplained. The cause of nonulcer dyspepsia is unknown, but aerophagia, esophageal dysfunction, pyloroduodenal dysmotility and the irritable bowel syndrome may be important factors in some patients. The symptoms are often affected by diet and emotion. History-taking and endoscopy are the most discriminating diagnostic tests. Unexplained dyspepsia tends to be a lifelong disease with few, if any, sequelae. Nevertheless, reassurance and treatment with a placebo, such as an antacid or simethicone, provide effective and safe relief for many patients. PMID:6365298
ROHHAD in a 9-year-old boy — clinical case.
Kot, Karolina; Moszczyńska, Elżbieta; Lecka-Ambroziak, Agnieszka; Migdał, Marek; Szalecki, Mieczysław
2016-01-01
ROHHAD syndrome (Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation) is characterized by rapid-onset obesity in young children, hypoventilation, and hypothalamic and autonomic dysfunction. The exact aetiology of the disease remains unknown, and the number of reported cases seems to be underestimated. We present the case of a nine-year-old male patient suspected of ROHHAD due to weight gain since early childhood, decreased height velocity, hypoventilation, hypodipsia, excessive perspiration, and pyrexial episodes. The presented symptoms, and laboratory and imaging findings met the criteria of ROHHAD syndrome. ROHHAD should be considered in differential diagnosis for obesity in children. Early identification of the disease prevents potential complications specific for the syndrome, in particular a life-threatening cardio-pulmonary arrest. Patients with ROHHAD require regular follow-up by a multidisciplinary team.
Vascular dysfunction in preeclampsia.
Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T
2014-01-01
Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.
Tong, Xiaoping; Ao, Yan; Faas, Guido C.; Nwaobi, Sinifunanya E.; Xu, Ji; Haustein, Martin D.; Anderson, Mark A.; Mody, Istvan; Olsen, Michelle L.; Sofroniew, Michael V.; Khakh, Baljit S.
2014-01-01
Huntington's disease (HD) is characterized by striatal medium spiny neuron (MSN) dysfunction, but the underlying mechanisms remain unclear. We explored roles for astrocytes, which display mutant huntingtin in HD patients and mouse models. We found that symptom onset in R6/2 and Q175 HD mouse models is not associated with classical astrogliosis, but is associated with decreased Kir4.1 K+ channel functional expression, leading to elevated in vivo levels of striatal extracellular K+, which increased MSN excitability in vitro. Viral delivery of Kir4.1 channels to striatal astrocytes restored Kir4.1 function, normalized extracellular K+, recovered aspects of MSN dysfunction, prolonged survival and attenuated some motor phenotypes in R6/2 mice. These findings indicate that components of altered MSN excitability in HD may be caused by heretofore unknown disturbances of astrocyte–mediated K+ homeostasis, revealing astrocytes and Kir4.1 channels as novel therapeutic targets. PMID:24686787
Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis
Naikawadi, Ram P.; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L.; Green, Gary; La, Janet L.; Rock, Jason R.; Looney, Mark R.; Wolters, Paul J.
2016-01-01
Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction. PMID:27699234
ERBB2 Deficiency Alters an E2F-1-Dependent Adaptive Stress Response and Leads to Cardiac Dysfunction
Perry, Marie-Claude; Dufour, Catherine R.; Eichner, Lillian J.; Tsang, David W. K.; Deblois, Geneviève; Muller, William J.
2014-01-01
The tyrosine kinase receptor ERBB2 is required for normal development of the heart and is a potent oncogene in breast epithelium. Trastuzumab, a monoclonal antibody targeting ERBB2, improves the survival of breast cancer patients, but cardiac dysfunction is a major side effect of the drug. The molecular mechanisms underlying how ERBB2 regulates cardiac function and why trastuzumab is cardiotoxic remain poorly understood. We show here that ERBB2 hypomorphic mice develop cardiac dysfunction that mimics the side effects observed in patients treated with trastuzumab. We demonstrate that this phenotype is related to the critical role played by ERBB2 in cardiac homeostasis and physiological hypertrophy. Importantly, genetic and therapeutic reduction of ERBB2 activity in mice, as well as ablation of ERBB2 signaling by trastuzumab or siRNAs in human cardiomyocytes, led to the identification of an impaired E2F-1-dependent genetic program critical for the cardiac adaptive stress response. These findings demonstrate the existence of a previously unknown mechanistic link between ERBB2 and E2F-1 transcriptional activity in heart physiology and trastuzumab-induced cardiac dysfunction. PMID:25246633
BP180 dysfunction triggers spontaneous skin inflammation in mice.
Zhang, Yang; Hwang, Bin-Jin; Liu, Zhen; Li, Ning; Lough, Kendall; Williams, Scott E; Chen, Jinbo; Burette, Susan W; Diaz, Luis A; Su, Maureen A; Xiao, Shengxiang; Liu, Zhi
2018-06-04
BP180, also known as collagen XVII, is a hemidesmosomal component and plays a key role in maintaining skin dermal/epidermal adhesion. Dysfunction of BP180, either through genetic mutations in junctional epidermolysis bullosa (JEB) or autoantibody insult in bullous pemphigoid (BP), leads to subepidermal blistering accompanied by skin inflammation. However, whether BP180 is involved in skin inflammation remains unknown. To address this question, we generated a BP180-dysfunctional mouse strain and found that mice lacking functional BP180 (termed Δ NC16A ) developed spontaneous skin inflammatory disease, characterized by severe itch, defective skin barrier, infiltrating immune cells, elevated serum IgE levels, and increased expression of thymic stromal lymphopoietin (TSLP). Severe itch is independent of adaptive immunity and histamine, but dependent on increased expression of TSLP by keratinocytes. In addition, a high TSLP expression is detected in BP patients. Our data provide direct evidence showing that BP180 regulates skin inflammation independently of adaptive immunity, and BP180 dysfunction leads to a TSLP-mediated itch. The newly developed mouse strain could be a model for elucidation of disease mechanisms and development of novel therapeutic strategies for skin inflammation and BP180-related skin conditions.
McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y
2016-11-01
Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection
Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.
2011-01-01
Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630
Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease?
Whyte, Lauren S; Lau, Adeline A; Hemsley, Kim M; Hopwood, John J; Sargeant, Timothy J
2017-03-01
Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD. © 2016 International Society for Neurochemistry.
[Infantile autism and mirror neurons].
Cornelio-Nieto, J O
2009-02-27
Infantile autism is a disorder that is characterised by alterations affecting reciprocal social interactions, abnormal verbal and non-verbal communication, poor imaginative activity and a restricted repertoire of activities and interests. The causes of autism remain unknown, but there are a number of different approaches that attempt to explain the neurobiological causes of the syndrome. A recent theory that has been considered is that of a dysfunction in the mirror neuron system (MNS). The MNS is a neuronal complex, originally described in monkeys and also found in humans, that is related with our movements and which offers specific responses to the movements and intended movements of other subjects. This system is believed to underlie processes of imitation and our capacity to learn by imitation. It is also thought to play a role in language acquisition, in expressing the emotions, in understanding what is happening to others and in empathy. Because these functions are altered in children with autism, it has been suggested that there is some dysfunction present in the MNS of those with autism. Dysfunction of the MNS could account for the symptoms that are observed in children with autism.
Jing, Tong; Ya-Shu, Kuang; Xue-Jun, Wang; Han-Jing, Hou; Yan, Lai; Yi-An, Yao; Fei, Chen; Xue-Bo, Liu
2017-01-01
Background Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. Aim The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 (Sirt6) mRNA -incorporated EMPs on endothelial dysfunction. Methods EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv-Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. Results The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. Conclusion The Sirt6 mRNA-carrying EMPs may ameliorate endothelial dysfunction in diabetic patients. PMID:29371988
Jing, Tong; Ya-Shu, Kuang; Xue-Jun, Wang; Han-Jing, Hou; Yan, Lai; Yi-An, Yao; Fei, Chen; Xue-Bo, Liu
2017-12-26
Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 ( Sirt6 ) mRNA -incorporated EMPs on endothelial dysfunction. EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv- Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. The Sirt6 mRNA -carrying EMPs may ameliorate endothelial dysfunction in diabetic patients.
Mechanisms of right heart disease in pulmonary hypertension (2017 Grover Conference Series).
Asosingh, Kewal; Erzurum, Serpil
2018-01-01
Current dogma is that pathological hypertrophy of the right ventricle is a direct consequence of pulmonary vascular remodeling. However, progression of right ventricle dysfunction is not always lung-dependent. Increased afterload caused by pulmonary vascular remodeling initiates the right ventricle hypertrophy, but determinants leading to adaptive or maladaptive hypertrophy and failure remain unknown. Ischemia in a hypertrophic right ventricle may directly contribute to right heart failure. Rapidly enlarging cardiomyocytes switch from aerobic to anaerobic energy generation resulting in cell growth under relatively hypoxic conditions. Cardiac muscle reacts to an increased afterload by over-activation of the sympathetic system and uncoupling and downregulation of β-adrenergic receptors. Recent studies suggest that β blocker therapy in PH is safe, well tolerated, and preserves right ventricle function and cardiac output by reducing right ventricular glycolysis. Fibrosis, an evolutionary conserved process in host defense and wound healing, is dysregulated in maladaptive cardiac tissue contributing directly to right ventricle failure. Despite several mechanisms having been suggested in right heart disease, the causes of maladaptive cardiac remodeling remain unknown and require further research.
Pathological anxiety in animals.
Ohl, Frauke; Arndt, Saskia S; van der Staay, F Josef
2008-01-01
Selective breeding programmes in domestic and laboratory animals generally focus on physiological and/or anatomical characteristics. However, selection may have an (unintended) impact on other characteristics and may lead to dysfunctional behaviour that can affect biological functioning and, as a consequence, compromise welfare and quality of life. In this review it is proposed that various behavioural dysfunctions in animals are due to pathological anxiety. Although several approaches have been undertaken to specify the diagnostic criteria of pathological anxiety as a behavioural disorder in animals, the causal aetiology largely remains unknown. This is mainly due to the fact that integrated concepts, combining the behavioural syndrome and (neuro-) physiological processes, are widely lacking. Moreover, even the term anxiety itself represents a poorly defined concept or category. A definition is suggested and the potential causes of pathological anxiety are explored with a plea for developing adequate diagnostic tools and therapies to fight pathological anxiety in animals based on insight from scientific research.
Cardiometabolic Risk in PCOS: More than a Reproductive Disorder
Torchen, Laura C.
2018-01-01
Purpose of Review Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well-established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. Recent Findings Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. Summary PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed. PMID:29128916
Cardiometabolic Risk in PCOS: More than a Reproductive Disorder.
Torchen, Laura C
2017-11-11
Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed.
Moreno-Beltrán, Blas; Guerra-Castellano, Alejandra; Del Conte, Rebecca; García-Mauriño, Sofía M.; Díaz-Moreno, Sofía; González-Arzola, Katiuska; Santos-Ocaña, Carlos; Velázquez-Campoy, Adrián; De la Rosa, Miguel A.; Turano, Paola; Díaz-Moreno, Irene
2017-01-01
Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects. PMID:28348229
Li, Peng; Chen, Geng-Rong; Wang, Fu; Xu, Ping; Liu, Li-Ying; Yin, Ya-Ling; Wang, Shuang-Xi
2016-01-01
It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-β1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-β1. PMID:26697498
Apostolidis, Apostolos; Rantell, Angie; Anding, Ralf; Kirschner-Hermanns, Ruth; Cardozo, Linda
2017-04-01
To discuss available data on the links between LUTD and sexual dysfunction, what is still unknown about the causative effect of disease processes on sexual function (SF), and to suggest proposals for further research. At the 2015 International Consultation on Incontinence-Research Society (ICI-RS), a multi-disciplinary group presented a literature search of what is known about the effect of LUTD on SF in men and women. Wider discussions regarding knowledge gaps, and ideal research methodology ensued and are presented. The underlying mechanisms of the impact of LUTD on SF remain largely unknown. Risk factors for the metabolic syndrome may cause both LUTS and ED in men, and their improvement may improve both conditions. In women, neurovascular changes may be common in LUTD and FSD. Successful LUTS management results in FSD improvement, but the mechanisms are ill understood. Gaps in standardization of sexual dysfunction terminology, variations of assessment, and treatment in clinical practice and research make most studies not comparable. The sensitive knowledge and subjective nature of the problem present challenges and often result in neglecting it. Neurovascular and hormonal factors, but also indirect effects may link LUTD to SD in both sexes, but the evidence is not robust and the mechanisms unclear. There is a need for defining the terminology and standardizing outcomes assessed in clinical trials. The multifactorial nature of SF in both sexes makes trial design challenging and "real world" studies may prove more beneficial for patients' outcomes and clinicians' understanding. © 2017 Wiley Periodicals, Inc.
Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo
2016-01-01
Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression. PMID:26887636
Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L. H.; Leu, Steve; Chan, Julie Y. H.
2016-01-01
Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M2-, M3-muscarinic and P2X1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE. PMID:27703194
Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L H; Leu, Steve; Chan, Julie Y H
2016-10-05
Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M 2 -, M 3 -muscarinic and P2X 1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE.
Huang, Zhe; Huang, Shue; Cong, Hongliang; Li, Zheng; Li, Junjuan; Keller, Kathleen L; Shearer, Gregory C; Kris-Etherton, Penny M; Wu, Shouling; Gao, Xiang
2017-08-01
Background: Several lipid-related hormones and peptides, such as glucagon-like peptide-1 and leptin, are involved in the regulation of taste and smell function. However, to our knowledge, it remains unknown whether these chemosensory functions are associated with lipid profiles. Objective: We examined the cross-sectional association between taste and smell dysfunction and blood cholesterol concentrations. Methods: With the use of a questionnaire, we assessed chronic smell and taste dysfunction in 12,627 Chinese participants (10,418 men and 2209 women; mean age: 54.4 y) who did not take hypolipidemic agents. Participants were categorized into 3 groups based on the number of smell and taste dysfunctions, ranging from 0 (best) to 2 (worst). A general linear model was used to test differences in serum concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides (TGs) across groups with different smell and taste status after adjusting for age, sex, education, occupation, smoking, drinking, obesity, and history of cardiovascular disease, cancer, and head injury. Results: The prevalence of smell and taste dysfunction was 2.4% and 1.2%, respectively. Worse smell and taste dysfunction was associated with higher total cholesterol concentrations ( P -trend = 0.005). No significant differences were observed in LDL cholesterol, HDL cholesterol, and TG concentrations across groups with different numbers of chemosensory dysfunctions ( P -trend > 0.1 for all). The associations between chemosensory dysfunction and total cholesterol concentrations were more pronounced in participants aged ≤60 y and in those who were nonsmokers relative to their counterparts ( P -interaction < 0.05 for all). Conclusions: In this large cross-sectional study, chemosensory dysfunction was associated with higher serum total cholesterol concentrations among Chinese adults. Prospective studies are needed to investigate the temporal relation between these chemosensory dysfunctions and hypercholesterolemia. © 2017 American Society for Nutrition.
A Dopamine Hypothesis of Autism Spectrum Disorder.
Pavăl, Denis
2017-01-01
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. While several theories have emerged, the pathogenesis of ASD remains unknown. Although studies report dopamine signaling abnormalities in autistic patients, a coherent dopamine hypothesis which could link neurobiology to behavior in ASD is currently lacking. In this paper, we present such a hypothesis by proposing that autistic behavior arises from dysfunctions in the midbrain dopaminergic system. We hypothesize that a dysfunction of the mesocorticolimbic circuit leads to social deficits, while a dysfunction of the nigrostriatal circuit leads to stereotyped behaviors. Furthermore, we discuss 2 key predictions of our hypothesis, with emphasis on clinical and therapeutic aspects. First, we argue that dopaminergic dysfunctions in the same circuits should associate with autistic-like behavior in nonautistic subjects. Concerning this, we discuss the case of PANDAS (pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections) which displays behaviors similar to those of ASD, presumed to arise from dopaminergic dysfunctions. Second, we argue that providing dopamine modulators to autistic subjects should lead to a behavioral improvement. Regarding this, we present clinical studies of dopamine antagonists which seem to have improving effects on autistic behavior. Furthermore, we explore the means of testing our hypothesis by using neuroreceptor imaging, which could provide comprehensive evidence for dopamine signaling dysfunctions in autistic subjects. Lastly, we discuss the limitations of our hypothesis. Along these lines, we aim to provide a dopaminergic model of ASD which might lead to a better understanding of the ASD pathogenesis. © 2017 S. Karger AG, Basel.
Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang
2016-06-01
Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. © 2016 International Society for Neurochemistry.
Jurrissen, Thomas J; Olver, T Dylan; Winn, Nathan C; Grunewald, Zachary I; Lin, Gabriela S; Hiemstra, Jessica A; Edwards, Jenna C; Gastecki, Michelle L; Welly, Rebecca J; Emter, Craig A; Vieira-Potter, Victoria J; Padilla, Jaume
2018-01-02
In rodents, experimentally-induced ovarian hormone deficiency increases adiposity and adipose tissue (AT) inflammation, which is thought to contribute to insulin resistance and increased cardiovascular disease risk. However, whether this occurs in a translationally-relevant large animal model remains unknown. Herein, we tested the hypothesis that ovariectomy would promote visceral and perivascular AT (PVAT) inflammation, as well as subsequent insulin resistance and peripheral vascular dysfunction in female swine. At sexual maturity (7 months of age), female Yucatan mini-swine either remained intact (control, n = 9) or were ovariectomized (OVX, n = 7). All pigs were fed standard chow (15-20 g/kg), and were euthanized 6 months post-surgery. Uterine mass and plasma estradiol levels were decreased by ∼10-fold and 2-fold, respectively, in OVX compared to control pigs. Body mass, glucose homeostasis, and markers of insulin resistance were not different between control and OVX pigs; however, OVX animals exhibited greater plasma triglycerides and triglyceride:HDL ratio. Ovariectomy enhanced visceral adipocyte expansion, although this was not accompanied by brachial artery PVAT adipocyte expansion, AT inflammation in either depot, or increased systemic inflammation assessed by plasma C-reactive protein concentrations. Despite the lack of AT inflammation and insulin resistance, OVX pigs exhibited depressed brachial artery endothelial-dependent vasorelaxation, which was rescued with blockade of endothelin receptor A. Together, these findings indicate that in female Yucatan mini-swine, increased AT inflammation and insulin resistance are not required for loss of ovarian hormones to induce endothelial dysfunction.
Autonomic dysfunction in muscular dystrophy: a theoretical framework for muscle reflex involvement
Smith, Scott A.; Downey, Ryan M.; Williamson, Jon W.; Mizuno, Masaki
2014-01-01
Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy. PMID:24600397
A twin study of erectile dysfunction.
Fischer, Mary E; Vitek, Mary Ellen; Hedeker, Don; Henderson, William G; Jacobsen, Steven J; Goldberg, Jack
2004-01-26
The extent of genetic influence on erectile dysfunction (ED) is unknown. This study determines the contribution of heredity to ED in a sample of middle-aged men. A classical twin study was conducted in the Vietnam Era Twin Registry, a national sample of male-male pairs (mean birth year, 1949) who served on active duty during the Vietnam era (1965-1975). A 1999 male health survey was completed by 890 monozygotic (MZ) and 619 dizygotic (DZ) pairs. The prevalence and heritability of 2 self-report indicators of ED, difficulty in having an erection and in maintaining an erection, are estimated. The prevalence of difficulty in having an erection is 23.3% and in maintaining an erection is 26.7%. Twin correlations for dysfunction in having an erection are 0.35 (95% confidence interval [CI], 0.28-0.41) in MZ and 0.17 (95% CI, 0.09-0.27) in DZ pairs. For dysfunction in maintaining an erection, the twin correlations in MZ and DZ pairs are 0.39 (95% CI, 0.32-0.45) and 0.18 (95% CI, 0.09-0.27), respectively. The estimated heritability of liability for dysfunction in having an erection is 35% and in maintaining an erection is 42%. The heritable influence on ED remained significant after adjustment for ED risk factors. The present study demonstrates an ED-specific genetic component that is independent of genetic influences from numerous ED risk factors. The results suggest that future molecular genetic studies to identify ED-related polymorphisms are warranted.
Xu, Xiao-juan; Liu, Liang; Yao, Shu-kun
2016-01-01
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort associated with abnormal bowel habits. Diarrhea-predominant IBS (IBS-D) is a major subtype of IBS, the predominant manifestations of which are abdominal pain and diarrhea. The pathogenesis of IBS-D remained unknown until recently. The effects of psychosocial stress, central hypervigilance, neuroendocrine abnormality, disturbed gastrointestinal motility, mucosal immune activation, intestinal barrier dysfunction, visceral hypersensitivity (VH), altered gut flora, and genetic susceptibility may be involved in its development. Recently, increased attention has been placed on the neural-immune-endocrine network mechanism in IBS-D, especially the role of various neuroendocrine mediators. As a member of the neurotrophin family, nerve growth factor (NGF) has diverse biological effects, and participates in the pathogenesis of many diseases. Basic studies have demonstrated that NGF is associated with inflammatory- and stress-related VH, as well as stress-related intestinal barrier dysfunction. The aim of this study is to summarize recent literature and discuss the role of NGF in the pathophysiology of IBS-D, especially in VH and intestinal barrier dysfunction, as well as its potential as a therapeutic target in IBS-D.
PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction
Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen
2016-01-01
Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092
Hypoglycaemia and hypoxic-ischaemic encephalopathy.
Boardman, James P; Hawdon, Jane M
2015-04-01
The transition from fetal to neonatal life requires metabolic adaptation to ensure that energy supply to vital organs and systems is maintained after separation from the placental circulation. Under normal conditions, this is achieved through the mobilization and use of alternative cerebral fuels (fatty acids, ketone bodies, and lactate) when blood glucose concentration falls. Severe hypoxia-ischaemia is associated with impaired metabolic adaptation, and animal and human data suggest that levels of hypoglycaemia that are tolerated under normal conditions can be harmful in association with hypoxia-ischaemia. The optimal target blood glucose level for ensuring adequate energy provision in hypoxic-ischaemic encephalopathy (HIE) remains unknown. However, recent data support guidance to maintain a blood glucose concentration of 2.5 mmol/L or more in neonates with signs of acute neurological dysfunction, which includes those with HIE, and this is higher than the accepted threshold of 2 mmol/L in infants without signs of neurological dysfunction or hyperinsulinism. © The Authors. Journal compilation © 2015 Mac Keith Press.
Chujo, Moeko; Yoshida, Shiori; Ota, Anri; Murata, Kousaku
2014-01-01
Saccharomyces cerevisiae normally cannot assimilate mannitol, a promising brown macroalgal carbon source for bioethanol production. The molecular basis of this inability remains unknown. We found that cells capable of assimilating mannitol arose spontaneously from wild-type S. cerevisiae during prolonged culture in mannitol-containing medium. Based on microarray data, complementation analysis, and cell growth data, we demonstrated that acquisition of mannitol-assimilating ability was due to spontaneous mutations in the genes encoding Tup1 or Cyc8, which constitute a general corepressor complex that regulates many kinds of genes. We also showed that an S. cerevisiae strain carrying a mutant allele of CYC8 exhibited superior salt tolerance relative to other ethanologenic microorganisms; this characteristic would be highly beneficial for the production of bioethanol from marine biomass. Thus, we succeeded in conferring the ability to assimilate mannitol on S. cerevisiae through dysfunction of Tup1-Cyc8, facilitating production of ethanol from mannitol. PMID:25304510
Cytoskeletal Role in the Contractile Dysfunction of Hypertrophied Myocardium
NASA Astrophysics Data System (ADS)
Tsutsui, Hiroyuki; Ishihara, Kazuaki; Cooper, George
1993-04-01
Cardiac hypertrophy in response to systolic pressure loading frequently results in contractile dysfunction of unknown cause. In the present study, pressure loading increased the microtubule component of the cardiac muscle cell cytoskeleton, which was responsible for the cellular contractile dysfunction observed. The linked microtubule and contractile abnormalities were persistent and thus may have significance for the deterioration of initially compensatory cardiac hypertrophy into congestive heart failure.
Can We Define and Characterize the Aging Lower Urinary Tract?—ICI-RS 2015
Vahabi, Bahareh; Wagg, Adrian S.; Rosier, Peter F.W.M.; Rademakers, Kevin L.J.; Denys, Marie-Astrid; Pontari, Michel; Lovick, Thelma; Valentini, Francoise A.; Nelson, Pierre P.; Andersson, Karl-Erik; Fry, Christopher H.
2017-01-01
The prevalence of lower urinary tract (LUT) symptoms increases with age but the etiology is unknown. This article aims to identify research directions that clarify the basis of this association. The initial question is whether biological age is the variable of interest or a time-dependent accumulation of factors that impact on LUT function at rates that differ between individuals. In particular, the accumulation of conditions or agents due to inflammatory states or tissue ischemia is important. Much of the above has been concerned with changes to bladder function and morphology. However, the outflow tract function is also affected, in particular changes to the function of external sphincter skeletal muscle and associated sacral motor nerve control. Nocturia is a cardinal symptom of LUT dysfunction and is more prevalent with aging. Urine production is determined by diurnal changes to the production of certain hormones as well as arterial blood pressure and such diurnal rhythms are blunted in subjects with nocturia, but the causal links remain to be elucidated. Changes to the central nervous control of LUT function with age are also increasingly recognized, whether in mid-brain/ brainstem regions that directly affect LUT function or in higher centers that determine psychosocial and emotional factors impinging on the LUT. In particular, the linkage between increasing white matter hyperintensities and LUT dysfunction during aging is recognized but not understood. Overall, a more rational approach is being developed to link LUT dysfunction with factors that accumulate with age, however, the precise causal pathways remain to be characterized. PMID:28444710
Melatonin and male reproductive health: relevance of darkness and antioxidant properties.
Rocha, C S; Rato, L; Martins, A D; Alves, M G; Oliveira, P F
2015-01-01
The pineal hormone melatonin controls several physiological functions that reach far beyond the regulation of the circadian rhythm. Moreover, it can be produced in extra-pineal organs such as reproductive organs. The role of melatonin in the mammalian seasonal and circadian rhythm is well known. Nevertheless, its overall effect in male reproductive physiology remains largely unknown. Melatonin is a very powerful endogenous antioxidant that can also be exogenously taken safely. Interestingly, its antioxidant properties have been consistently reported to improve the male reproductive dysfunctions associated with pathological conditions and also with the exposure to toxicants. Nevertheless, the exact molecular mechanisms by which melatonin exerts its action in the male reproductive system remain a matter of debate. Herein, we propose to present an up-to-date overview of the melatonin effects in the male reproductive health and debate future directions to disclose possible sites of melatonin action in male reproductive system. We will discuss not only the role of melatonin during darkness and sleep but also the importance of the antioxidant properties of this hormone to male fertility. Since melatonin readily crosses the physiological barriers, such as the blood-testis barrier, and has a very low toxicity, it appears as an excellent candidate in the prevention and/or treatment of the multiple male reproductive dysfunctions associated with various pathologies.
Reduced corticomotor excitability and motor skills development in children born preterm
Pitcher, Julia B; Schneider, Luke A; Burns, Nicholas R; Drysdale, John L; Higgins, Ryan D; Ridding, Michael C; Nettelbeck, Theodore J; Haslam, Ross R; Robinson, Jeffrey S
2012-01-01
The mechanisms underlying the altered neurodevelopment commonly experienced by children born preterm, but without brain lesions, remain unknown. While individuals born the earliest are at most risk, late preterm children also experience significant motor, cognitive and behavioural dysfunction from school age, and reduced income and educational attainment in adulthood. We used transcranial magnetic stimulation and functional assessments to examine corticomotor development in 151 children without cerebral palsy, aged 10–13 years and born after gestations of 25–41 completed weeks. We hypothesized that motor cortex and corticospinal development are altered in preterm children, which underpins at least some of their motor dysfunction. We report for the first time that every week of reduced gestation is associated with a reduction in corticomotor excitability that remains evident in late childhood. This reduced excitability was associated with poorer motor skill development, particularly manual dexterity. However, child adiposity, sex and socio-economic factors regarding the child's home environment soon after birth were also powerful influences on development of motor skills. Preterm birth was also associated with reduced left hemisphere lateralization, but without increasing the likelihood of being left handed per se. These corticomotor findings have implications for normal motor development, but also raise questions regarding possible longer term consequences of preterm birth on motor function. PMID:22966161
Infectious Causes of Encephalitis and Meningoencephalitis in Thailand, 2003–2005
Campbell, Angela P.; Supawat, Krongkaew; Liamsuwan, Sahas; Chotpitayasunondh, Tawee; Laptikulthum, Somsak; Viriyavejakul, Akravudh; Tantirittisak, Tasanee; Tunlayadechanont, Supoch; Visudtibhan, Anannit; Vasiknanonte, Punnee; Janjindamai, Supachai; Boonluksiri, Pairoj; Rajborirug, Kiatsak; Watanaveeradej, Veerachai; Khetsuriani, Nino; Dowell, Scott F.
2015-01-01
Acute encephalitis is a severe neurologic syndrome. Determining etiology from among ≈100 possible agents is difficult. To identify infectious etiologies of encephalitis in Thailand, we conducted surveillance in 7 hospitals during July 2003–August 2005 and selected patients with acute onset of brain dysfunction with fever or hypothermia and with abnormalities seen on neuroimages or electroencephalograms or with cerebrospinal fluid pleocytosis. Blood and cerebrospinal fluid were tested for >30 pathogens. Among 149 case-patients, median age was 12 (range 0–83) years, 84 (56%) were male, and 15 (10%) died. Etiology was confirmed or probable for 54 (36%) and possible or unknown for 95 (64%). Among confirmed or probable etiologies, the leading pathogens were Japanese encephalitis virus, enteroviruses, and Orientia tsutsugamushi. No samples were positive for chikungunya, Nipah, or West Nile viruses; Bartonella henselae; or malaria parasites. Although a broad range of infectious agents was identified, the etiology of most cases remains unknown. PMID:25627940
Cardiac angiogenic imbalance leads to peripartum cardiomyopathy.
Patten, Ian S; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R; Rhee, Julie S; Mitchell, John; Mahmood, Feroze; Hess, Philip; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S Ananth; Arany, Zoltan
2012-05-09
Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.
Port, Russell G; Gandal, Michael J; Roberts, Timothy P L; Siegel, Steven J; Carlson, Gregory C
2014-01-01
Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD.
Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C
2012-11-07
Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.
Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H.; Barnett, Nigel L.; Kirk, Joshua K.; Lee, SoRa; Coorey, Nathan J.; Killingsworth, Murray; Sherman, Larry S.; Gillies, Mark C.
2014-01-01
Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium derived factor. Intravitreal injection of cilliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the central nervous system associated with glial dysfunction. PMID:23136411
Cardiac Angiogenic Imbalance Leads to Peri-partum Cardiomyopathy
Patten, Ian S.; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R.; Rhee, Julie S.; Mitchell, John; Mahmood, Feroze; Hess, Phil; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D.; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S. Ananth; Arany, Zoltan
2012-01-01
Peri-partum cardiomyopathy (PPCM) is a frequently fatal disease that affects women near delivery, and occurs more frequently in women with pre-eclampsia and/or multiple gestation. The etiology of PPCM, or why it associates with pre-eclampsia, remains unknown. We show here that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble Flt1 (sFlt1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by sub-clinical cardiac dysfunction, the extent of which correlates with circulating levels of sFlt1. Exogenous sFlt1 alone caused diastolic dysfunction in wildtype mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFlt1. These data strongly suggest that PPCM is in large part a vascular disease, caused by excess anti-angiogenic signaling in the peri-partum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM. PMID:22596155
Xiong, Ruo-Hong; Wen, Shi-Lei; Wang, Qiang; Zhou, Hong-Ying; Feng, Shi
2018-01-01
Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.
Sato, Takeshi; Muroya, Koji; Hanakawa, Junko; Iwano, Reiko; Asakura, Yumi; Tanaka, Yukichi; Murayama, Kei; Ohtake, Akira; Hasegawa, Tomonobu; Adachi, Masanori
2015-12-01
Pearson marrow-pancreas syndrome (PS) is a rare mitochondrial disorder. Impaired mitochondrial respiratory chain complexes (MRCC) differ among individuals and organs, which accounts for variable clinical pictures. A subset of PS patients develop 3-methylglutaconic aciduria (3-MGA-uria), but the characteristic symptoms and impaired MRCC remain unknown. Our patient, a girl, developed pancytopenia, hyperlactatemia, steatorrhea, insulin-dependent diabetes mellitus, liver dysfunction, Fanconi syndrome, and 3-MGA-uria. She died from cerebral hemorrhage at 3 years of age. We identified a novel 5.4-kbp deletion of mitochondrial DNA. The enzymatic activities of MRCC I and IV were markedly reduced in the liver and muscle and mildly reduced in skin fibroblasts and the heart. To date, urine organic acid analysis has been performed on 29 PS patients, including our case. Eight patients had 3-MGA-uria, while only one patient did not. The remaining 20 patients were not reported to have 3-MGA-uria. In this paper, we included these 20 patients as PS patients without 3-MGA-uria. PS patients with and without 3-MGA-uria have similar manifestations. Only a few studies have examined the enzymatic activities of MRCC. No clinical characteristics distinguish between PS patients with and without 3-MGA-uria. The correlation between 3-MGA-uria and the enzymatic activities of MRCC remains to be elucidated. • The clinical characteristics of patients with Pearson marrow-pancreas syndrome and 3-methylglutaconic aciduria remain unknown. • No clinical characteristics distinguish between Pearson marrow-pancreas syndrome patients with and without 3-methylglutaconic aciduria.
Halder, Ajay; Jose, Ruby; Vijayselvi, Reeta
2014-01-01
Preceding the use of World Health Organization (WHO) near-miss approach in our institute for the surveillance of Severe Maternal Outcome (SMO), we pilot-tested the tool on maternal death cases that took place over the last 10 years in order to establish its feasibility and usefulness at the institutional level. This was a retrospective review of maternal deaths in Christian Medical College Vellore, India, over a decade. Cases were recorded and analyzed using the WHO near-miss tool. The International Classification of Diseases, 10(th) Revision was used to define and classify maternal mortality. There were 98,139 total births and 212 recorded maternal deaths. Direct causes of mortality constituted 46.96% of total maternal deaths, indirect causes constituted 51.40%, and unknown cases constituted 1.9%. Nonobstetrical cause (48.11%) is the single largest group. Infections (19.8%) other than puerperal sepsis remain an important group, with pulmonary tuberculosis, scrub typhus, and malaria being the leading ones. According to the WHO near-miss criteria, cardiovascular and respiratory dysfunctions are the most frequent organ dysfunctions. Incidence of coagulation dysfunction is seen highest in obstetrical hemorrhage (64%). All women who died had at least one organ dysfunction; 90.54% mothers had two- and 38.52% had four- or more organ involvement. The screening questions of the WHO near-miss tool are particularly instrumental in obtaining a comprehensive assessment of the problem beyond the International Classification of Diseases-Maternal Mortality and establish the need for laboratory-based identification of organ dysfunctions and prompt availability of critical care facilities. The process indicators, on the other hand, inquire about the basic interventions that are more or less widely practiced and therefore give no added information at the institutional level.
Can we define and characterize the aging lower urinary tract?-ICI-RS 2015.
Vahabi, Bahareh; Wagg, Adrian S; Rosier, Peter F W M; Rademakers, Kevin L J; Denys, Marie-Astrid; Pontari, Michel; Lovick, Thelma; Valentini, Francoise A; Nelson, Pierre P; Andersson, Karl-Erik; Fry, Christopher H
2017-04-01
The prevalence of lower urinary tract (LUT) symptoms increases with age but the etiology is unknown. This article aims to identify research directions that clarify the basis of this association. The initial question is whether biological age is the variable of interest or a time-dependent accumulation of factors that impact on LUT function at rates that differ between individuals. In particular, the accumulation of conditions or agents due to inflammatory states or tissue ischemia is important. Much of the above has been concerned with changes to bladder function and morphology. However, the outflow tract function is also affected, in particular changes to the function of external sphincter skeletal muscle and associated sacral motor nerve control. Nocturia is a cardinal symptom of LUT dysfunction and is more prevalent with aging. Urine production is determined by diurnal changes to the production of certain hormones as well as arterial blood pressure and such diurnal rhythms are blunted in subjects with nocturia, but the causal links remain to be elucidated. Changes to the central nervous control of LUT function with age are also increasingly recognized, whether in mid-brain/brainstem regions that directly affect LUT function or in higher centers that determine psycho-social and emotional factors impinging on the LUT. In particular, the linkage between increasing white matter hyperintensities and LUT dysfunction during aging is recognized but not understood. Overall, a more rational approach is being developed to link LUT dysfunction with factors that accumulate with age, however, the precise causal pathways remain to be characterized. Neurourol. Urodynam. 36:854-858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment.
Escobar-Morreale, Héctor F
2018-05-01
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in premenopausal women. Heterogeneous by nature, PCOS is defined by a combination of signs and symptoms of androgen excess and ovarian dysfunction in the absence of other specific diagnoses. The aetiology of this syndrome remains largely unknown, but mounting evidence suggests that PCOS might be a complex multigenic disorder with strong epigenetic and environmental influences, including diet and lifestyle factors. PCOS is frequently associated with abdominal adiposity, insulin resistance, obesity, metabolic disorders and cardiovascular risk factors. The diagnosis and treatment of PCOS are not complicated, requiring only the judicious application of a few well-standardized diagnostic methods and appropriate therapeutic approaches addressing hyperandrogenism, the consequences of ovarian dysfunction and the associated metabolic disorders. This article aims to provide a balanced review of the latest advances and current limitations in our knowledge about PCOS while also providing a few clear and simple principles, based on current evidence-based clinical guidelines, for the proper diagnosis and long-term clinical management of women with PCOS.
CLUH couples mitochondrial distribution to the energetic and metabolic status.
Wakim, Jamal; Goudenege, David; Perrot, Rodolphe; Gueguen, Naig; Desquiret-Dumas, Valerie; Chao de la Barca, Juan Manuel; Dalla Rosa, Ilaria; Manero, Florence; Le Mao, Morgane; Chupin, Stephanie; Chevrollier, Arnaud; Procaccio, Vincent; Bonneau, Dominique; Logan, David C; Reynier, Pascal; Lenaers, Guy; Khiati, Salim
2017-06-01
Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status. © 2017. Published by The Company of Biologists Ltd.
Cerebro-renal interactions: impact of uremic toxins on cognitive function.
Watanabe, Kimio; Watanabe, Tsuyoshi; Nakayama, Masaaki
2014-09-01
Cognitive impairment (CI) associated with chronic kidney disease (CKD) has received attention as an important problem in recent years. Causes of CI with CKD are multifactorial, and include cerebrovascular disease, renal anemia, secondary hyperparathyroidism, dialysis disequilibrium, and uremic toxins (UTs). Among these causes, little is known about the role of UTs. We therefore selected 21 uremic compounds, and summarized reports of cerebro-renal interactions associated with UTs. Among the compounds, uric acid, indoxyl sulfate, p-cresyl sulfate, interleukin 1-β, interleukin 6, TNF-α, and PTH were most likely to affect the cerebro-renal interaction dysfunction; however, sufficient data have not been obtained for other UTs. Notably, most of the data were not obtained under uremic conditions; therefore, the impact and mechanism of each UT on cognition and central nervous system in uremic state remains unknown. At present, impacts and mechanisms of UT effects on cognition are poorly understood. Clarifying the mechanisms and establishing novel therapeutic strategies for cerebro-renal interaction dysfunction is expected to be subject of future research. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Dong-Xu; He, Xia; Wu, Dan; Zhang, Qun; Yang, Chao; Liang, Feng-Yin; He, Xiao-Fei; Dai, Guang-Yan; Pei, Zhong; Lan, Yue; Xu, Guang-Qing
2017-07-13
Sleep deprivation (SD) is a common condition associated with a variety of nervous system diseases, and has a negative impact on emotional and cognitive function. Continuous theta burst stimulation (cTBS) is known to improve cognition and emotion function in normal situations as well as in various types of dysfunction, but the mechanism remains unknown. We used two-photon in vivo imaging to explore the effect of cTBS on glymphatic pathway clearance in normal and SD C57BL/6J mice. Aquaporin-4 (AQP4) polarization was detected by immunofluorescence. Anxiety-like behaviors was measured using open field tests. We found that SD reduced influx efficiency along the peri-vascular space (PVS), disturbed AQP4 polarization and induced anxiety-like behaviors. CTBS significantly attenuated the decrease in efficiency of solute clearance usually incurred with SD, restored the loss of AQP4 polarization and improved anxiety-like behavior in SD animals. Our results implied that cTBS had the potential to protect against neuronal dysfunction induced by sleep disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy
Yuen, Michaela; Sandaradura, Sarah A.; Dowling, James J.; Kostyukova, Alla S.; Moroz, Natalia; Quinlan, Kate G.; Lehtokari, Vilma-Lotta; Ravenscroft, Gianina; Todd, Emily J.; Ceyhan-Birsoy, Ozge; Gokhin, David S.; Maluenda, Jérome; Lek, Monkol; Nolent, Flora; Pappas, Christopher T.; Novak, Stefanie M.; D’Amico, Adele; Malfatti, Edoardo; Thomas, Brett P.; Gabriel, Stacey B.; Gupta, Namrata; Daly, Mark J.; Ilkovski, Biljana; Houweling, Peter J.; Davidson, Ann E.; Swanson, Lindsay C.; Brownstein, Catherine A.; Gupta, Vandana A.; Medne, Livija; Shannon, Patrick; Martin, Nicole; Bick, David P.; Flisberg, Anders; Holmberg, Eva; Van den Bergh, Peter; Lapunzina, Pablo; Waddell, Leigh B.; Sloboda, Darcée D.; Bertini, Enrico; Chitayat, David; Telfer, William R.; Laquerrière, Annie; Gregorio, Carol C.; Ottenheijm, Coen A.C.; Bönnemann, Carsten G.; Pelin, Katarina; Beggs, Alan H.; Hayashi, Yukiko K.; Romero, Norma B.; Laing, Nigel G.; Nishino, Ichizo; Wallgren-Pettersson, Carina; Melki, Judith; Fowler, Velia M.; MacArthur, Daniel G.; North, Kathryn N.; Clarke, Nigel F.
2014-01-01
Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle. PMID:25250574
Heading in Soccer: Integral Skill or Grounds for Cognitive Dysfunction?
ERIC Educational Resources Information Center
Kirkendall, Donald T.; Garrett, William E., Jr.
2001-01-01
Discusses how purposeful heading of soccer balls and head injuries affect soccer players' cognitive dysfunction. Cognitive deficits may occur for many reasons. Heading cannot be blamed when details of the actual event and impact are unknown. Concussions are the most common head injury in soccer and a factor in cognitive deficits and are probably…
Yago, Kazuhiro; Yanagita, Soshi; Aono, Maki; Matsuo, Ken; Shimada, Hideto
2009-06-01
A 76-year-old man presented with fever of unknown origin and renal dysfunction. Laboratory examination revealed anemia, thrombocytopenia, hypoalbuminemia, proteinuria, and elevations of C-reactive protein, lactic dehydrogenase, creatinine and ferritin. (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging showed FDG accumulation in the renal cortex and spleen. Based on the imaging study, renal biopsy was performed and histological diagnosis of intravascular large B-cell lymphoma (IVLBCL) was made. Renal impairment due to IVLBCL is uncommon and is often difficult to diagnose early. FDG-PET/CT may be a useful tool for the early diagnosis of IVLBCL.
Gut failure in critical care: old school versus new school
Sertaridou, Eleni; Papaioannou, Vasilios; Kolios, George; Pneumatikos, Ioannis
2015-01-01
The concept of bacterial translocation and gut-origin sepsis as causes of systemic infectious complications and multiple organ deficiency syndrome in surgical and critically ill patients has been a recurring issue over the last decades attracting the scientific interest. Although gastrointestinal dysfunction seemingly arises frequently in intensive care unit patients, it is usually underdiagnosed or underestimated, because the pathophysiology involved is incompletely understood and its exact clinical relevance still remains controversial with an unknown yet probably adverse impact on the patients’ outcome. The purpose of this review is to define gut-origin sepsis and related terms, to describe the mechanisms leading to gut-derived complications, and to illustrate the therapeutic options to prevent or limit these untoward processes. PMID:26130136
Yasuda, Shunichiro; Tanaka, Keisuke; Ichikawa, Ayako; Watanabe, Ken; Uchida, Emi; Yamamoto, Masahide; Yamamoto, Kouhei; Mizuchi, Daisuke; Miura, Osamu; Fukuda, Tetsuya
2016-10-01
TAFRO (thrombocytopenia, anasarca, myelofibrosis, renal dysfunction, and organomegaly) syndrome is an atypical manifestation of Castleman's disease. However, the mechanism underlying this very rare syndrome remains unknown, and there is no established standard treatment. Here we report cases of two young females with TAFRO syndrome who showed similar clinical courses. Both cases showed severe anasarca, ascites, and thrombocytopenia. Although high-dose steroids were ineffective, combination chemotherapy showed remarkable effects. However, both patients developed severe but reversible heart failure after CHOP therapy owing to diffuse cardiomyopathy, which was presumably associated with TAFRO syndrome. Therefore, although combination chemotherapy may be very effective in the treatment of TAFRO syndrome, careful observation for cardiomyopathy development is needed, particularly when using adriamycin-containing regimens.
Age-Related Impairments in Object-Place Associations Are Not Due to Hippocampal Dysfunction
Hernandez, Abigail R.; Maurer, Andrew P.; Reasor, Jordan E.; Turner, Sean M.; Barthle, Sarah E.; Johnson, Sarah A.; Burke, Sara N.
2016-01-01
Age-associated cognitive decline can reduce an individual’s quality of life. As no single neurobiological deficit can account for the wide spectrum of behavioral impairments observed in old age, it is critical to develop an understanding of how interactions between different brain regions change over the life span. The performance of young and aged animals on behaviors that require the hippocampus and cortical regions to interact, however, has not been well characterized. Specifically, the ability to link a spatial location with specific features of a stimulus, such as object identity, relies on the hippocampus, perirhinal and prefrontal cortices. Although aging is associated with dysfunction in each of these brain regions, behavioral measures of functional change within the hippocampus, perirhinal and prefrontal cortices in individual animals are often not correlated. Thus, how dysfunction of a single brain region within this circuit, such as the hippocampus, impacts behaviors that require communication with the perirhinal and prefrontal cortices remains unknown. To address this question, young and aged rats were tested on the interregion dependent object-place paired association task, as well as a hippocampal-dependent test of spatial reference memory. This particular cohort of aged rats did not show deficits on the hippocampal-dependent task, but were significantly impaired at acquiring object-place associations relative to young. These data suggest that behaviors requiring functional connectivity across different regions of the memory network may be particularly sensitive to aging, and can be used to develop models that will clarify the impact of systems-level dysfunction in the elderly. PMID:26413723
Yu, Shu-Yang; Cao, Chen-Jie; Zuo, Li-Jun; Chen, Ze-Jie; Lian, Teng-Hong; Wang, Fang; Hu, Yang; Piao, Ying-Shan; Li, Li-Xia; Guo, Peng; Liu, Li; Yu, Qiu-Jin; Wang, Rui-Dan; Chan, Piu; Chen, Sheng-di; Wang, Xiao-Min; Zhang, Wei
2018-01-17
Transcranial ultrasound is a useful tool for providing the evidences for the early diagnosis and differential diagnosis of Parkinson disease (PD). However, the relationship between hyper echogenicity in substantia nigra (SN) and clinical symptoms of PD patients remains unknown, and the role of dysfunction of iron metabolism on the pathogenesis of SN hyper echogenicity is unclear. PD patients was detected by transcranial sonography and divided into with no hyper echogenicity (PDSN-) group and with hyper echogenicity (PDSN+) group. Motor symptoms (MS) and non-motor symptoms (NMS) were evaluated, and the levels of iron and related proteins in serum and cerebrospinal fluid (CSF) were detected for PD patients. Data comparison between the two groups and correlation analyses were performed. PDSN+ group was significantly older, and had significantly older age of onset, more advanced Hohen-Yahr stage, higher SCOPA-AUT score and lower MoCA score than PDSN- group (P < 0.05). Compared with PDSN- group, the levels of transferrin and light-ferritin in serum and iron level in CSF were significantly elevated (P < 0.05), but ferroportin level in CSF was significantly decreased in PDSN+ group (P < 0.05). PD patients with hyper echogenicity in SN are older, at more advanced disease stage, have severer motor symptoms, and non-motor symptoms of cognitive impairment and autonomic dysfunction. Hyper echogenicity of SN in PD patients is related to dysfunction of iron metabolism, involving increased iron transport from peripheral system to central nervous system, reduction of intracellular iron release and excessive iron deposition in brain.
Pretto, Chrystel M; Gaide Chevronnay, Héloïse P; Cornet, Patricia B; Galant, Christine; Delvaux, Denis; Courtoy, Pierre J; Marbaix, Etienne; Henriet, Patrick
2008-10-01
Endometrial breakdown during menstruation and dysfunctional bleeding is triggered by the abrupt expression of matrix metalloproteinases (MMPs), including interstitial collagenase (MMP-1). The paracrine induction of MMP-1 in stromal cells via epithelium-derived IL-1alpha is repressed by ovarian steroids. However, the control by estradiol (E) and progesterone (P) of endometrial IL-1alpha expression and bioactivity remains unknown. Variations of endometrial IL-1alpha mRNA and protein along the menstrual cycle and during dysfunctional bleeding were determined using RT-PCR, in situ hybridization, and immunolabeling. The mechanism of EP control was analyzed using culture of explants, laser capture microdissection, and purified cells. Data were compared with expression changes of IL-1beta and IL-1 receptor antagonist. IL-1alpha is synthesized by epithelial cells throughout the cycle but E and/or P prevents its release. In contrast, endometrial stromal cells produce IL-1alpha only at menses and during irregular bleeding in areas of tissue breakdown. Stromal expression of IL-1alpha, like that of MMP-1, is repressed by P (alone or with E) but triggered by epithelium-derived IL-1alpha released upon EP withdrawal. Our experiments in cultured endometrium suggest that IL-1alpha released by epithelial cells triggers the production of IL-1alpha by stromal cells in a paracrine amplification loop to induce MMP-1 expression during menstruation and dysfunctional bleeding. All three steps of this amplification cascade are repressed by EP.
L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats.
Vanhaecke, T; Aubert, P; Grohard, P-A; Durand, T; Hulin, P; Paul-Gilloteaux, P; Fournier, A; Docagne, F; Ligneul, A; Fressange-Mazda, C; Naveilhan, P; Boudin, H; Le Ruyet, P; Neunlist, M
2017-08-01
Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn. © 2017 John Wiley & Sons Ltd.
Kozora, Elizabeth; Erkan, Doruk; Zhang, Lening; Zimmerman, Robert; Ramon, Glendalee; Ulug, Aziz M; Lockshin, Michael D
2014-01-01
The aim of this study was to compare the cognitive function of antiphospholipid antibody (aPL)-negative systemic lupus erythematosus (SLE) and aPL-positive non-SLE patients. Twenty aPL-negative SLE and 20 aPL-positive non-SLE female patients with no history of overt neuropsychiatric manifestations took standardised cognitive tests of learning and memory, attention and working memory, executive functions, verbal fluency, visuoconstruction, and motor function. The primary outcome measure was an established global cognitive impairment index (CII). Cranial magnetic resonance imaging (MRI) was also obtained on all patients. Twelve of 20 (60%) of the SLE and 8/20 (40%) of the aPL-positive patients had global cognitive impairment on CII; there were no group differences on CII or on individual measures. Cognitive impairment was not associated with duration of disease, level of disease activity, or prednisone use. No correlations were found between clinical disease factors and cognitive impairment, and neither group showed an association between incidental or major MRI abnormalities and cognitive dysfunction. Both aPL-negative SLE and aPL-positive non-SLE patients, without other overt neuropsychiatric disease, demonstrated high levels of cognitive impairment. No clinical, serologic, or radiologic characteristics were associated with cognitive impairment. Cognitive dysfunction is common in APS and in SLE, but its mechanisms remain unknown.
Port, Russell G.; Gandal, Michael J.; Roberts, Timothy P. L.; Siegel, Steven J.; Carlson, Gregory C.
2014-01-01
Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD. PMID:25538564
Erectile dysfunction and central obesity: an Italian perspective
Corona, Giovanni; Rastrelli, Giulia; Filippi, Sandra; Vignozzi, Linda; Mannucci, Edoardo; Maggi, Mario
2014-01-01
Erectile dysfunction (ED) is a frequent complication of obesity. The aim of this review is to critically analyze the framework of obesity and ED, dissecting the connections between the two pathological entities. Current clinical evidence shows that obesity, and in particular central obesity, is associated with both arteriogenic ED and reduced testosterone (T) levels. It is conceivable that obesity-associated hypogonadism and increased cardiovascular risk might partially justify the higher prevalence of ED in overweight and obese individuals. Conversely, the psychological disturbances related to obesity do not seem to play a major role in the pathogenesis of obesity-related ED. However, both clinical and preclinical data show that the association between ED and visceral fat accumulation is independent from known obesity-associated comorbidities. Therefore, how visceral fat could impair penile microcirculation still remains unknown. This point is particularly relevant since central obesity in ED subjects categorizes individuals at high cardiovascular risk, especially in the youngest ones. The presence of ED in obese subjects might help healthcare professionals in convincing them to initiate a virtuous cycle, where the correction of sexual dysfunction will be the reward for improved lifestyle behavior. Unsatisfying sexual activity represents a meaningful, straightforward motivation for consulting healthcare professionals, who, in turn, should take advantage of the opportunity to encourage obese patients to treat, besides ED, the underlying unfavorable conditions, thus not only restoring erectile function, but also overall health. PMID:24713832
Cardiac Dysautonomia in Huntington's Disease.
Abildtrup, Mads; Shattock, Michael
2013-01-01
Huntington's disease is a fatal, hereditary, neurodegenerative disorder best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances. Although a disease of the central nervous system, mortality surveys indicate that heart disease is a leading cause of death. The nature of such cardiac abnormalities remains unknown. Clinical findings indicate a high prevalence of autonomic nervous system dysfunction - dysautonomia - which may be a result of pathology of the central autonomic network. Dysautonomia can have profound effects on cardiac health, and pronounced autonomic dysfunction can be associated with neurogenic arrhythmias and sudden cardiac death. Significant advances in the knowledge of neural mechanisms in cardiac disease have recently been made which further aid our understanding of cardiac mortality in Huntington's disease. Even so, despite the evidence of aberrant autonomic activity the potential cardiac consequences of autonomic dysfunction have been somewhat ignored. In fact, underlying cardiac abnormalities such as arrhythmias have been part of the exclusion criteria in clinical autonomic Huntington's disease research. A comprehensive analysis of cardiac function in Huntington's disease patients is warranted. Further experimental and clinical studies are needed to clarify how the autonomic nervous system is controlled and regulated in higher, central areas of the brain - and how these regions may be altered in neurological pathology, such as Huntington's disease. Ultimately, research will hopefully result in an improvement of management with the aim of preventing early death in Huntington's disease from cardiac causes.
Liu, Jing; Wan, Shengming; Zhang, Yun; Zhang, Shu; Zhang, Hongying; Wu, Shiwen
2018-05-11
Heat stroke, the most serious type of heat illness, refers to the presence of hyperthermia (core temperature >40°C), accompanied by central nervous system dysfunction. The hippocampus is a particularly vulnerable region in the early stage of heat stroke. Increasing evidence suggests that dysregulation of brain iron metabolism is involved in many neurodegenerative diseases. However, whether heat stroke causes dysfunction of iron metabolism, as well as iron-regulatory proteins, in the hippocampus remains unknown. The present study was conducted to explore the effects on spatial learning and memory, as well as iron content, ferroportin 1 (Fpn1), and hepcidin expression in the hippocampus after heat stroke in rats. Compared with the Sham group, learning ability and memory declined in rats after heat stroke. Iron concentration was significantly increased in the hippocampus. Expression of Fpn1 protein significantly decreased in the hippocampus, while expression of hepcidin increased. Interestingly, Fpn1 mRNA expression in the hippocampus increased. Our data thereby indicate that heat stroke can decrease learning ability and memory in rats. The mechanism may be related to changes of iron levels, as well as Fpn1 and hepcidin expression, in the hippocampus. Furthermore, hepcidin may rapidly decrease cellular Fpn1 protein levels, even under conditions of iron loading, indicating that hepcidin is a more dominant regulator of Fpn1 than is iron.
Erectile dysfunction and central obesity: an Italian perspective.
Corona, Giovanni; Rastrelli, Giulia; Filippi, Sandra; Vignozzi, Linda; Mannucci, Edoardo; Maggi, Mario
2014-01-01
Erectile dysfunction (ED) is a frequent complication of obesity. The aim of this review is to critically analyze the framework of obesity and ED, dissecting the connections between the two pathological entities. Current clinical evidence shows that obesity, and in particular central obesity, is associated with both arteriogenic ED and reduced testosterone (T) levels. It is conceivable that obesity-associated hypogonadism and increased cardiovascular risk might partially justify the higher prevalence of ED in overweight and obese individuals. Conversely, the psychological disturbances related to obesity do not seem to play a major role in the pathogenesis of obesity-related ED. However, both clinical and preclinical data show that the association between ED and visceral fat accumulation is independent from known obesity-associated comorbidities. Therefore, how visceral fat could impair penile microcirculation still remains unknown. This point is particularly relevant since central obesity in ED subjects categorizes individuals at high cardiovascular risk, especially in the youngest ones. The presence of ED in obese subjects might help healthcare professionals in convincing them to initiate a virtuous cycle, where the correction of sexual dysfunction will be the reward for improved lifestyle behavior. Unsatisfying sexual activity represents a meaningful, straightforward motivation for consulting healthcare professionals, who, in turn, should take advantage of the opportunity to encourage obese patients to treat, besides ED, the underlying unfavorable conditions, thus not only restoring erectile function, but also overall health.
Jurgens, Heidi A.; Amancherla, Kaushik; Johnson, Rodney W.
2012-01-01
Influenza is a common and highly contagious viral pathogen yet its effects on the structure and function of the central nervous system remain largely unknown. Although there is evidence that influenza strains that infect the brain can lead to altered cognitive and emotional behaviors, it is unknown if a viral strain that is not neurotropic (A/PR/8/34) can result in a central inflammatory response, neuronal damage and neurobehavioral effects. We hypothesized that neuroinflammation and alterations in hippocampal neuron morphology may parallel cognitive dysfunction following peripheral infection with live influenza virus. Here we show that influenza-infected mice exhibited cognitive deficits in a reversal learning version of the Morris water maze. At the same timepoint in which cognitive impairment was evident, proinflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-α) and microglial reactivity were increased, while neurotrophic (BDNF, NGF) and immunomodulatory (CD200, CX3CL1) factors were decreased in the hippocampus of infected mice. In addition, influenza induced architectural changes to hippocampal neurons in the CA1 and dentate gyrus, with the most profound effects on dentate granule cells in the innermost portion of the granule cell layer. Overall these data provide the first evidence that neuroinflammation and changes in hippocampal structural plasticity may underlie cognitive dysfunction associated with influenza infection. In addition, the heightened inflammatory state concurrent with reduced neurotrophic support could leave the brain vulnerable to subsequent insult following influenza infection. A better understanding of how influenza impacts the brain and behavior may provide insight for preventing inflammation and neuronal damage during peripheral viral infection. PMID:22442063
Sex Offenders Seeking Treatment for Sexual Dysfunction--Ethics, Medicine, and the Law.
Phillips, Elizabeth A; Rajender, Archana; Douglas, Thomas; Brandon, Ashley F; Munarriz, Ricardo
2015-07-01
The treatment of sexual dysfunction in patients with prior sexual offenses poses ethical and legal dilemmas. Sex offenders are not obligated by law to disclose this history to medical professionals. Over 20% of sex offenders experience sexual dysfunction; however, the number of sex offenders seeking evaluation for sexual dysfunction is unknown. The aims of this study were to determine the incidence and characteristics of sex offenders seeking treatment in our clinic; and to review data regarding sex offender recidivism and ethics pertaining to the issue as it relates to treating physicians. Sex offenders were identified via three methods: new patient screening in a dedicated sexual medicine clinic, chart review of those on intracavernosal injection (ICI) therapy for erectile dysfunction (ED), and review of patient's status-post placement of penile prosthesis. Charts were cross-referenced with the U.S. Department of Justice National Sex Offender Public Website. Patient characteristics and details of offenses were collected. The main outcome measures used were a self-reported sexual offense and national registry data. Eighteen male sex offenders were identified: 13 via new patient screening; 3 by review of ICI patients; 1 by review of penile prosthesis data; and 1 prior to penile prosthesis placement. All were primarily referred for ED. Of those with known offenses, 64% were level 3 offenders (most likely to re-offend). The same number had committed crimes against children. All those with complete data had multiple counts of misconduct (average 3.6). Ninety-four percent (17/18) had publicly funded health care. Twelve (67%) were previously treated for sexual dysfunction. Registered sex offenders are seeking and receiving treatment for sexual dysfunction. It is unknown whether treatment of sexual dysfunction increases the risk of recidivism of sexual offenses. Physicians currently face a difficult choice in deciding whether to treat sexual dysfunction in sex offenders. © 2015 International Society for Sexual Medicine.
Nutrition for synchronized swimming: a review.
Lundy, Bronwen
2011-10-01
Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.
Graziani, Alessandro; Casalini, Pierpaolo; Mirici-Cappa, Federica; Pezzi, Giuseppe; Giuseppe Stefanini, Francesco
2016-01-01
Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is a rare disease of unknown etiology, characterized by rapid-onset obesity in young children, hypoventilation, hypothalamic and autonomic dysfunction. Patients between the ages of 2 and 4 present with hyperphagia and weight gain, followed by neuro-hormonal dysfunction and central hypoventilation months or years later. Cardiac arrest may represent the fatal complication of alveolar hypoventilation and early mechanical ventilation is essential for the patient's life. In this paper, we describe a 22-year-old patient with ROHHAD syndrome who had an acute respiratory failure during nocturnal non-invasive ventilation (NIV).
Choi, Soo-Kyoung; Lim, Mihwa; Yeon, Soo-In; Lee, Young-Ho
2016-06-01
What is the central question of this study? Endoplasmic reticulum (ER) stress has been reported to be involved in type 2 diabetes; however, the role of exacerbated ER stress in vascular dysfunction in type 2 diabetes remains unknown. What is the main finding and its importance? The main findings of this study are that ER stress is increased in the coronary arteries in type 2 diabetes, and inhibition of ER stress using taurine-conjugated ursodeoxycholic acid improves vascular function, which is associated with normalization of the myogenic response and endothelium-dependent relaxation. Vascular dysfunction is a major complication in type 2 diabetes. Although endoplasmic reticulum (ER) stress has been suggested to be a contributory factor in cardiovascular diseases, the relationship between ER stress and vascular dysfunction in type 2 diabetes remains unclear. Thus, in the present study, we examined whether ER stress contributes to coronary artery dysfunction and whether inhibition of ER stress ameliorates vascular function in type 2 diabetes. Type 2 diabetic mice and their control counterparts were treated with an ER stress inhibitor (taurine-conjugated ursodeoxycholic acid, 150 mg kg(-1) day(-1) , by i.p. injection) for 2 weeks or not treated. The myogenic response and endothelium-dependent relaxation were measured in pressurized coronary arteries. In type 2 diabetic mice, blood glucose and body weight were elevated compared with control mice. The myogenic response was potentiated and endothelium-dependent relaxation impaired in coronary arteries from the type 2 diabetic mice. Interestingly, treatment with the ER stress inhibitor normalized the myogenic responses and endothelium-dependent relaxation. These data were associated with an increase in ER stress marker expression or phosphorylation (IRE1-XBP-1 and PERK-eIF2α) in type 2 diabetic mice, which were reduced by treatment with the ER stress inhibitor. Inhibition of ER stress normalizes the myogenic response and improves vascular function in type 2 diabetes. Therefore, ER stress could be a potential target for cardiovascular diseases in diabetes mellitus. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
The history of vaccinations in the light of the autism epidemic.
Cave, Stephanie F
2008-01-01
Autism has been characterized as a behavioral disorder since it was first described by Leo Kanner in 1943. The number of autistic children has increased over the last decade. The incidence of autism was 1 in 10000 before the 1970s and has steadily increased to 1 in 150 in 2008 with a male:female predominance of 4:1. The cause of this epidemic has remained unknown, but several hypotheses have been studied. Many of these suggest an environmental trigger, such as the ethyl mercury contained in the preservative thimerosal, which has been used in vaccines since 1931. Other possible triggers associated with vaccinations are chemical toxins and live viruses. James has published studies suggesting a genetic predisposition in the families of autistic children, exposing them to a deficiency in glutathione and an inability to detoxify heavy metals. Vargas has shown autism to encompass ongoing inflammation in the brains of autistic children. The Hannah Poling vaccine decision was a landmark case. Poling's family was awarded funds for ongoing medical care of an autistic child who was found to have mitochondrial dysfunction exacerbated by vaccines that left her with autistic behavior and seizures. Several studies have emerged supporting the fact that a significant number of autistic children do have mitochondrial dysfunction. The impact that the Poling case will have on the ability of parents of autistic children to gain access to funds to enable them to properly care for their children remains to be seen.
[Non alcoholic fatty liver. A frequent entity with an unknown outcome].
Barisio D'Angelo, María Gabriela; Mariel Actis, Andrea; Outomuro, Delia
2009-01-01
Non-alcoholic fatty liver disease (NAFLD), defined as excessive fat accumulation into the hepatocytes, has a prevalence of approximately 15 to 25%. Frequently associated risk factors for NAFLD are obesity, type 2 diabetes and dyslipidemia. It has been proponed that a mitochondrial dysfunction would play a crucial role in the disease development.On the other hand, focus is on insulin resistance syndrome, the only metabolic alteration strongly associated with this malady. The disease is suspected in individuals with insulina resistance characteristics such as metabolic syndrome and also in those with augmented serum aminotransferases levels. Different tests with biochemical markers have been proposed to predict the development of fibrosis or steatohepatitis. Therapeutic options in NAFLD patients are limited and weight lost remains as the most recommended one.
Seo, Hye-Sun; Ha, Jong-Won; Moon, Jae Youn; Choi, Eui-Young; Rim, Se-Joong; Jang, Yangsoo; Chung, Namsik; Shim, Won-Heum; Cho, Seung-Yun; Kim, Sung Soon
2008-10-01
Secondary tricuspid regurgitation (TR) as a result of pulmonary hypertension and/or left-sided heart disease is caused by tricuspid valve (TV) annular dilatation and tethering of the tricuspid leaflet after right ventricular (RV) dilatation. However, the mechanism of isolated TR without significant pulmonary hypertension remains unknown. The present study investigated the RV function and TV deformations in patients with isolated TR to find out the mechanism and etiology of the disease. Twelve patients with isolated, severe TR were included. RV area, volume, ejection fraction (EF), tenting distance and tenting area were measured. These parameters were compared with 12 age-and gender-matched controls and 12 patients with secondary TR. The cause of isolated TR was incomplete coaptation associated with annular dilatation without other problems. Compared with the controls, RV end-diastolic volumes and annular diameters were significantly larger and RVEF was significantly lower in patients with isolated TR. Tenting area and tenting distance were also significantly higher. However, there were no significant differences in these parameters between patients with isolated and secondary TR. Isolated TR was associated with RV remodeling, systolic dysfunction and resultant annular dilatation and tethering of tricuspid leaflets.
Wilson, Edward N.; Abela, Andrew R.; Do Carmo, Sonia; Allard, Simon; Marks, Adam R.; Welikovitch, Lindsay A.; Ducatenzeiler, Adriana; Chudasama, Yogita; Cuello, A. Claudio
2017-01-01
In Alzheimer disease (AD), the accumulation of amyloid beta (Aβ) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aβ peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aβ accumulation on temporal and frontal lobe dysfunction. We compared the performance of McGill-R-Thy1-APP transgenic AD rats with wild-type littermate controls on a visual discrimination task using a touchscreen operant platform. Subsequently, we conducted studies to establish the biochemical and molecular basis for the behavioral alterations. It was found that the presence of intraneuronal Aβ caused a severe associative learning deficit in the AD rats. This coincided with reduced nuclear translocation and genomic occupancy of the CREB co-activator, CRTC1, and decreased production of synaptic plasticity-associated transcripts Arc, c-fos, Egr1, and Bdnf. Thus, blockade of CRTC1-dependent gene expression in the early, preplaque phase of AD-like pathology provides a molecular basis for the cognitive deficits that figure so prominently in early AD. PMID:26759481
Ribas, Vicent; Drew, Brian G.; Zhou, Zhenqi; Phun, Jennifer; Kalajian, Nareg Y.; Soleymani, Teo; Daraei, Pedram; Widjaja, Kevin; Wanagat, Jonathan; de Aguiar Vallim, Thomas Q.; Fluitt, Amy H.; Bensinger, Steven; Le, Thuc; Radu, Caius; Whitelegge, Julian P.; Beaven, Simon W.; Tontonoz, Peter; Lusis, Aldons J.; Parks, Brian W.; Vergnes, Laurent; Reue, Karen; Singh, Harpreet; Bopassa, Jean C.; Toro, Ligia; Stefani, Enrico; Watt, Matthew J.; Schenk, Simon; Akerstrom, Thorbjorn; Kelly, Meghan; Pedersen, Bente K.; Hewitt, Sylvia C.; Korach, Kenneth S.; Hevener, Andrea L.
2016-01-01
Impaired estrogen receptor α(ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERαexpression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERαknockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A–regulator of calcineurin 1–calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERαdeficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERαin the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women. PMID:27075628
Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment?
Gładysz, Dominika; Krzywdzińska, Amanda; Hozyasz, Kamil K
2018-01-06
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Microscale frictional strains determine chondrocyte fate in loaded cartilage.
Bonnevie, Edward D; Delco, Michelle L; Bartell, Lena R; Jasty, Naveen; Cohen, Itai; Fortier, Lisa A; Bonassar, Lawrence J
2018-06-06
Mounting evidence suggests that altered lubricant levels within synovial fluid have acute biological consequences on chondrocyte homeostasis. While these responses have been connected to increased friction, the mechanisms behind this response remain unknown. Here, we combine a frictional bioreactor with confocal elastography and image-based cellular assays to establish the link between cartilage friction, microscale shear strain, and acute, adverse cellular responses. Our incorporation of cell-scale strain measurements reveals that elevated friction generates high shear strains localized near the tissue surface, and that these elevated strains are closely associated with mitochondrial dysfunction, apoptosis, and cell death. Collectively, our data establish two pathways by which chondrocytes negatively respond to friction: an immediate necrotic response and a longer term pathway involving mitochondrial dysfunction and apoptosis. Specifically, in the surface region, where shear strains can exceed 0.07, cells are predisposed to acute death; however, below this surface region, cells exhibit a pathway consistent with apoptosis in a manner predicted by local shear strains. These data reveal a mechanism through which cellular damage in cartilage arises from compromised lubrication and show that in addition to boundary lubricants, there are opportunities upstream of apoptosis to preserve chondrocyte health in arthritis therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deshwal, Soni; Forkink, Marleen; Hu, Chou-Hui; Buonincontri, Guido; Antonucci, Salvatore; Di Sante, Moises; Murphy, Michael P; Paolocci, Nazareno; Mochly-Rosen, Daria; Krieg, Thomas; Di Lisa, Fabio; Kaludercic, Nina
2018-02-19
Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon.
Impact of HIV Infection on Diastolic Function and Left Ventricular Mass
Hsue, Priscilla Y.; Hunt, Peter W.; Ho, Jennifer E.; Farah, Husam H.; Schnell, Amanda; Hoh, Rebecca; Martin, Jeffrey N.; Deeks, Steven G.; Bolger, Ann F.
2010-01-01
Background HIV patients have increased risk for cardiovascular disease, but the underlying mechanisms remain unknown. The purpose of this study was to determine the prevalence of echocardiographic abnormalities among asymptomatic HIV-infected individuals compared to HIV-uninfected individuals. Methods/Results We performed echocardiography in 196 HIV-infected adults and 52 controls. Left ventricular ejection fraction (LVEF), left ventricular mass indexed to the body surface area (LVMI), and diastolic function were assessed according to American Society of Echocardiography standards. LVMI was higher in HIV-infected patients (77.2g/m2 in HIV patients vs. 66.5g/m2 in controls, p<0.0001). LVEF was similar in both groups. Eight(4%) of the HIV patients had evidence of LV systolic dysfunction (defined as an EF<50%) versus none of the controls; 97(50%) had mild diastolic dysfunction compared to 29% of the HIV-uninfected subjects (p=0.008). After adjustment for hypertension and race, HIV-infected participants had a mean 8g/m2 larger LVMI compared to controls (p=0.001). Higher LVMI was independently associated with lower nadir CD4 T cell count, suggesting that immunodeficiency may play a role in this process. After adjustment for age and traditional risk factors, HIV patients had a 2.4 greater odds of having diastolic dysfunction as compared to controls (p=0.019). Conclusions HIV-infected patients had a higher prevalence of diastolic dysfunction and higher LVMI compared to controls. These differences were not readily explained by differences in traditional risk factors and were independently associated with HIV infection. These results suggest that contemporary asymptomatic HIV patients manifest mild functional and morphological cardiac abnormalities which are independently associated with HIV infection. PMID:19933410
Distinct pathways leading to TDP-43-induced cellular dysfunctions.
Yamashita, Makiko; Nonaka, Takashi; Hirai, Shinobu; Miwa, Akiko; Okado, Haruo; Arai, Tetsuaki; Hosokawa, Masato; Akiyama, Haruhiko; Hasegawa, Masato
2014-08-15
TAR DNA-binding protein of 43 kDa (TDP-43) is the major component protein of inclusions found in brains of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the molecular mechanisms by which TDP-43 causes neuronal dysfunction and death remain unknown. Here, we report distinct cytotoxic effects of full-length TDP-43 (FL-TDP) and its C-terminal fragment (CTF) in SH-SY5Y cells. When FL-TDP was overexpressed in the cells using a lentiviral system, exogenous TDP-43, like endogenous TDP-43, was expressed mainly in nuclei of cells without any intracellular inclusions. However, these cells showed striking cell death, caspase activation and growth arrest at G2/M phase, indicating that even simple overexpression of TDP-43 induces cellular dysfunctions leading to apoptosis. On the other hand, cells expressing TDP-43 CTF showed cytoplasmic aggregates but without significant cell death, compared with cells expressing FL-TDP. Confocal microscopic analyses revealed that RNA polymerase II (RNA pol II) and several transcription factors, such as specificity protein 1 and cAMP-response-element-binding protein, were co-localized with the aggregates of TDP-43 CTF, suggesting that sequestration of these factors into TDP-43 aggregates caused transcriptional dysregulation. Indeed, accumulation of RNA pol II at TDP-43 inclusions was detected in brains of patients with FTLD-TDP. Furthermore, apoptosis was not observed in affected neurons of FTLD-TDP brains containing phosphorylated and aggregated TDP-43 pathology. Our results suggest that different pathways of TDP-43-induced cellular dysfunction may contribute to the degeneration cascades involved in the onset of ALS and FTLD-TDP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ramos-Gomez, Minerva; Olivares-Marin, Ivanna Karina; Canizal-García, Melina; González-Hernández, Juan Carlos; Nava, Gerardo M; Madrigal-Perez, Luis Alberto
2017-06-01
A broad range of health benefits have been attributed to resveratrol (RSV) supplementation in mammalian systems, including the increases in longevity. Nonetheless, despite the growing number of studies performed with RSV, the molecular mechanism by which it acts still remains unknown. Recently, it has been proposed that inhibition of the oxidative phosphorylation activity is the principal mechanism of RSV action. This mechanism suggests that RSV might induce mitochondrial dysfunction resulting in oxidative damage to cells with a concomitant decrease of cell viability and cellular life span. To prove this hypothesis, the chronological life span (CLS) of Saccharomyces cerevisiae was studied as it is accepted as an important model of oxidative damage and aging. In addition, oxygen consumption, mitochondrial membrane potential, and hydrogen peroxide (H 2 O 2 ) release were measured in order to determine the extent of mitochondrial dysfunction. The results demonstrated that the supplementation of S. cerevisiae cultures with 100 μM RSV decreased CLS in a glucose-dependent manner. At high-level glucose, RSV supplementation increased oxygen consumption during the exponential phase yeast cultures, but inhibited it in chronologically aged yeast cultures. However, at low-level glucose, oxygen consumption was inhibited in yeast cultures in the exponential phase as well as in chronologically aged cultures. Furthermore, RSV supplementation promoted the polarization of the mitochondrial membrane in both cultures. Finally, RSV decreased the release of H 2 O 2 with high-level glucose and increased it at low-level glucose. Altogether, this data supports the hypothesis that RSV supplementation decreases CLS as a result of mitochondrial dysfunction and this phenotype occurs in a glucose-dependent manner.
Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K
2015-05-01
Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.
Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.
2015-01-01
Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388
Hage, Camilla; Lund, Lars H; Donal, Erwan; Daubert, Jean-Claude; Linde, Cecilia; Mellbin, Linda
2015-01-01
Introduction Underlying mechanisms of heart failure (HF) with preserved ejection fraction (HFPEF) remain unknown. We explored copeptin, a biomarker of the arginine vasopressin system, hypothesising that copeptin in HFPEF is elevated, associated with diastolic dysfunction and N-terminal pro-brain natriuretic peptide (NT-proBNP) and predictive of HF hospitalisation and mortality. Methods and analysis In a prospective observational substudy of the The Karolinska Rennes (KaRen) 86 patients with symptoms of acute HF and ejection fraction (EF) ≥45% were enrolled. After 4–8 weeks, blood sampling and echocardiography was performed. Plasma-copeptin was analysed in 86 patients and 62 healthy controls. Patients were followed in median 579 days (quartile 1; quartile 3 (Q1;Q3) 276;1178) regarding the composite end point all-cause mortality or HF hospitalisation. Ethics and dissemination The patients with HFPEF had higher copeptin levels, median 13.56 pmol/L (Q1;Q3 8.56;20.55) than controls 5.98 pmol/L (4.15;9.42; p<0.001). Diastolic dysfunction, assessable in 75/86 patients, was present in 45 and absent in 30 patients. Copeptin did not differ regarding diastolic dysfunction and did not correlate with cardiac function but with NT-proBNP (r=0.223; p value=0.040). In univariate Cox regression analysis log copeptin predicted the composite end point (HR 1.56 (95% CI 1.03 to 2.38; p value=0.037)) but not after adjusting for NT-proBNP (HR 1.39 (95% CI 0.91 to 2.12; p value=0.125)). Conclusions In the present patients with HFPEF, copeptin is elevated, correlates with NT-proBNP but not markers of diastolic dysfunction, and has prognostic implications, however blunted after adjustment for NT-proBNP. The HFPEF pathophysiology may be better reflected by markers of neurohormonal activation than by diastolic dysfunction. Trial registration number ClinicalTrials.gov NCT00774709. PMID:26568833
Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.
Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume
2017-06-01
We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, P <0.05), which was prevented when sitting was preceded by a bout of cycling exercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P >0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P >0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Striatal dysfunction during reversal learning in unmedicated schizophrenia patients☆
Schlagenhauf, Florian; Huys, Quentin J.M.; Deserno, Lorenz; Rapp, Michael A.; Beck, Anne; Heinze, Hans-Joachim; Dolan, Ray; Heinz, Andreas
2014-01-01
Subjects with schizophrenia are impaired at reinforcement-driven reversal learning from as early as their first episode. The neurobiological basis of this deficit is unknown. We obtained behavioral and fMRI data in 24 unmedicated, primarily first episode, schizophrenia patients and 24 age-, IQ- and gender-matched healthy controls during a reversal learning task. We supplemented our fMRI analysis, focusing on learning from prediction errors, with detailed computational modeling to probe task solving strategy including an ability to deploy an internal goal directed model of the task. Patients displayed reduced functional activation in the ventral striatum (VS) elicited by prediction errors. However, modeling task performance revealed that a subgroup did not adjust their behavior according to an accurate internal model of the task structure, and these were also the more severely psychotic patients. In patients who could adapt their behavior, as well as in controls, task solving was best described by cognitive strategies according to a Hidden Markov Model. When we compared patients and controls who acted according to this strategy, patients still displayed a significant reduction in VS activation elicited by informative errors that precede salient changes of behavior (reversals). Thus, our study shows that VS dysfunction in schizophrenia patients during reward-related reversal learning remains a core deficit even when controlling for task solving strategies. This result highlights VS dysfunction is tightly linked to a reward-related reversal learning deficit in early, unmedicated schizophrenia patients. PMID:24291614
Wang, Xue; Wang, Fangyu; Zhang, Yidan; Xiong, Hui; Zhang, Yanjun; Zhuang, Pengwei; Zhang, Youcai
2018-05-01
Impaired regulation of bile acid (BA) homeostasis has been suggested to be associated with adverse metabolic consequences. However, whether BA homeostasis is altered in diabetes-induced cognitive dysfunction (DCD) remains unknown. In the present study, mice were divided into four groups, namely normal control (NC) group, high-fat diet (HFD) group, diabetes without cognitive dysfunction (unDCD) group, and DCD group. Compared to HFD mice, the concentration of total BAs in liver was higher in unDCD and DCD mice, due to increased intestinal BA absorption. DCD mice tended to have higher BA concentrations in both liver and ileum than unDCD mice. Consequently, DCD mice had increased basolateral BA efflux (Ostα, Ostβ, and Mrp4) and decreased BA synthesis (Cyp7a1, Cyp8b1, and Cyp7b1) in the liver as well as activated Fxr-Fgf15 signaling in the ileum. DCD mice also had increased BA hydroxylation (Cyp3a11) and BA sulfation (Sult2a1) in the liver compared to HFD mice. Furthermore, the bacterial community composition was altered in the cecum of DCD mice, characterized with a marked increase in Defferribacteres and Candidatus Saccharibacteria. In summary, the present study provides the first comprehensive analysis of BA homeostasis in DCD mice, and revealed a potential role of BAs in DCD development. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhou, Jibin; Lal, Hind; Chen, Xiongwen; Shang, Xiying; Song, Jianliang; Li, Yingxin; Kerkela, Risto; Doble, Bradley W.; MacAulay, Katrina; DeCaul, Morgan; Koch, Walter J.; Farber, John; Woodgett, James; Gao, Erhe; Force, Thomas
2010-01-01
The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases consists of 2 highly related isoforms, α and β. Although GSK-3β has an important role in cardiac development, much remains unknown about the function of either GSK-3 isoform in the postnatal heart. Herein, we present what we believe to be the first studies defining the role of GSK-3α in the mouse heart using gene targeting. Gsk3a–/– mice over 2 months of age developed progressive cardiomyocyte and cardiac hypertrophy and contractile dysfunction. Following thoracic aortic constriction in young mice, we observed enhanced hypertrophy that rapidly transitioned to ventricular dilatation and contractile dysfunction. Surprisingly, markedly impaired β-adrenergic responsiveness was found at both the organ and cellular level. This phenotype was reproduced by acute treatment of WT cardiomyocytes with a small molecule GSK-3 inhibitor, confirming that the response was not due to a chronic adaptation to LV dysfunction. Thus, GSK-3α appears to be the central regulator of a striking range of essential processes, including acute and direct positive regulation of β-adrenergic responsiveness. In the absence of GSK-3α, the heart cannot respond effectively to hemodynamic stress and rapidly fails. Our findings identify what we believe to be a new paradigm of regulation of β-adrenergic signaling and raise concerns given the rapid expansion of drug development targeting GSK-3. PMID:20516643
Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho
2014-09-26
Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Smuder, Ashley J; Nelson, W Bradley; Hudson, Matthew B; Kavazis, Andreas N; Powers, Scott K
2014-07-01
Mechanical ventilation (MV) is a life-saving intervention in patients with acute respiratory failure. However, prolonged MV results in ventilator-induced diaphragm dysfunction (VIDD), a condition characterized by both diaphragm fiber atrophy and contractile dysfunction. Previous work has shown that calpain, caspase-3, and the ubiquitin-proteasome pathway (UPP) are all activated in the diaphragm during prolonged MV. However, although it is established that both calpain and caspase-3 are important contributors to VIDD, the role that the UPP plays in the development of VIDD remains unknown. These experiments tested the hypothesis that inhibition of the UPP will protect the diaphragm against VIDD. The authors tested this prediction in an established animal model of MV using a highly specific UPP inhibitor, epoxomicin, to prevent MV-induced activation of the proteasome in the diaphragm (n = 8 per group). The results of this study reveal that inhibition of the UPP did not prevent ventilator-induced diaphragm muscle fiber atrophy and contractile dysfunction during 12 h of MV. Also, inhibition of the UPP does not affect MV-induced increases in calpain and caspase-3 activity in the diaphragm. Finally, administration of the proteasome inhibitor did not protect against the MV-induced increases in the expression of the E3 ligases, muscle ring finger-1 (MuRF1), and atrogin-1/MaFbx. Collectively, these results indicate that proteasome activation does not play a required role in VIDD development during the first 12 h of MV.
Beer elicits vasculoprotective effects through Akt/eNOS activation.
Vilahur, Gemma; Casani, Laura; Mendieta, Guiomar; Lamuela-Raventos, Rosa M; Estruch, Ramon; Badimon, Lina
2014-12-01
There is controversy regarding the effect of alcohol beverage intake in vascular vasodilatory function in peripheral arteries. The effects of beer intake in coronary vasodilation remain unknown. We investigated whether regular beer intake (alcohol and alcohol-free) protects against hypercholesterolaemia-induced coronary endothelial dysfunction and the mechanisms behind this effect. Pigs were fed 10 days: (i) a Western-type hypercholesterolaemic diet (WD); (ii) WD+low-dose beer (12·5 g alcohol/day); (iii) WD+moderate-dose beer (25 g alcohol/day); or (iv) WD+moderate-dose alcohol-free-beer (0·0 g alcohol/day). Coronary responses to endothelium-dependent vasoactive drugs (acetylcholine: receptor mediated; calcium ionophore-A23189: nonreceptor mediated), endothelium-independent vasoactive drug (SNP) and L-NMMA (NOS-antagonist) were evaluated in the LAD coronary artery by flow Doppler. Coronary Akt/eNOS activation, MCP-1 expression, oxidative DNA damage and superoxide production were assessed. Lipid profile, lipoproteins resistance to oxidation and urinary isoxanthohumol concentration were evaluated. Alcoholic and nonalcoholic beer intake prevented WD-induced impairment of receptor- and non-receptor-operated endothelial-dependent coronary vasodilation. All animals displayed a similar vasodilatory response to SNP and L-NMMA blunted all endothelial-dependent vasorelaxation responses. Haemodynamic parameters remained unchanged. Coronary arteries showed lower DNA damage and increased Akt/eNOS axis activation in beer-fed animals. Animals taking beer showed HDL with higher antioxidant capacity, higher LDL resistance to oxidation and increased isoxanthohumol levels. Weight, lipids levels, liver enzymes and MCP-1 expression were not affected by beer intake. Non-alcoholic-related beer components protect against hyperlipemia-induced coronary endothelial dysfunction by counteracting vascular oxidative damage and preserving the Akt/eNOS pathway. Light-to-moderate beer consumption prevents and/or reduces the endothelial dysfunction associated with cardiovascular risk factors. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.
Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S
2018-02-01
Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Mitochondrial damage and ageing using skin as a model organ.
Hudson, Laura; Bowman, Amy; Rashdan, Eyman; Birch-Machin, Mark A
2016-11-01
Ageing describes the progressive functional decline of an organism over time, leading to an increase in susceptibility to age-related diseases and eventually to death, and it is a phenomenon observed across a wide range of organisms. Despite a vast repertoire of ageing studies performed over the past century, the exact causes of ageing remain unknown. For over 50 years it has been speculated that mitochondria play a key role in the ageing process, due mainly to correlative data showing an increase in mitochondrial dysfunction, mitochondrial DNA (mtDNA) damage, and reactive oxygen species (ROS) with age. However, the exact role of the mitochondria in the ageing process remains unknown. The skin is often used to study human ageing, due to its easy accessibility, and the observation that the ageing process is able to be accelerated in this organ via environmental insults, such as ultra violet radiation (UVR). This provides a useful tool to investigate the mechanisms regulating ageing and, in particular, the role of the mitochondria. Observations from dermatological and photoageing studies can provide useful insights into chronological ageing of the skin and other organs such as the brain and liver. Moreover, a wide range of diseases are associated with ageing; therefore, understanding the cause of the ageing process as well as regulatory mechanisms involved could provide potentially advantageous therapeutic targets for the prevention or treatment of such diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Interleukin-33 modulates inflammation in endometriosis.
Miller, Jessica E; Monsanto, Stephany P; Ahn, Soo Hyun; Khalaj, Kasra; Fazleabas, Asgerally T; Young, Steven L; Lessey, Bruce A; Koti, Madhuri; Tayade, Chandrakant
2017-12-20
Endometriosis is a debilitating condition that is categorized by the abnormal growth of endometrial tissue outside the uterus. Although the pathogenesis of this disease remains unknown, it is well established that endometriosis patients exhibit immune dysfunction. Interleukin (IL)-33 is a danger signal that is a critical regulator of chronic inflammation. Although plasma and peritoneal fluid levels of IL-33 have been associated with deep infiltrating endometriosis, its contribution to the disease pathophysiology is unknown. We investigated the role of IL-33 in the pathology of endometriosis using patient samples, cell lines and a syngeneic mouse model. We found that endometriotic lesions produce significantly higher levels of IL-33 compared to the endometrium of healthy, fertile controls. In vitro stimulation of endometrial epithelial, endothelial and endometriotic epithelial cells with IL-33 led to the production of pro-inflammatory and angiogenic cytokines. In a syngeneic mouse model of endometriosis, IL-33 injections caused systemic inflammation, which manifested as an increase in plasma pro-inflammatory cytokines compared to control mice. Furthermore, endometriotic lesions from IL-33 treated mice were highly vascularized and exhibited increased proliferation. Collectively, we provide convincing evidence that IL-33 perpetuates inflammation, angiogenesis and lesion proliferation, which are critical events in the lesion survival and progression of endometriosis.
Beauchamp, Brittany; Thrush, A Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y; Patti, Mary-Elizabeth; Harper, Mary-Ellen
2015-04-10
Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. © 2015 Authors.
Licznerski, Pawel; Duric, Vanja; Banasr, Mounira; Alavian, Kambiz N.; Ota, Kristie T.; Kang, Hyo Jung; Jonas, Elizabeth A.; Ursano, Robert; Krystal, John H.; Duman, Ronald S.
2015-01-01
Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology. PMID:26506154
Toxic shock syndrome: clinical and laboratory features in 15 patients.
Tofte, R W; Williams, D N
1981-02-01
Toxic shock syndrome is a recently recognized illness with serious morbidity and mortality that occurs primarily in healthy menstruating women who use tampons. Thirteen women and two men were evaluated; two of the women died in spite of seemingly appropriate therapy. All patients had a temperature of 38.9 degrees C or greater, hypotension of syncope, a skin rash with subsequent desquamation, mucous membrane inflammation, and laboratory evidence of multiple organ dysfunction. Staphylococcus aureus was isolated from the cervix or vagina in eight women and from soft-tissue infections in both men. Two patients were bacteremic. The significant heterogeneity in the clinical manifestations, laboratory abnormalities, and therapeutic requirements among patients may result in diagnostic confusion and inappropriate therapy. Although toxic shock syndrome appears to be associated with tampon usage and S. aureus, the pathogenesis remains unknown.
Reglodi, Dora; Renaud, Justine; Tamas, Andrea; Tizabi, Yousef; Socías, Sergio B; Del-Bel, Elaine; Raisman-Vozari, Rita
2017-08-01
Parkinson's disease is a progressive neurodegenerative disorder characterized by the degeneration of midbrain nigral dopaminergic neurons. Although its etiology remains unknown, the pathological role of several factors has been highlighted, namely oxidative stress, neuroinflammation, protein misfolding, and mitochondrial dysfunction, in addition to genetic predispositions. The current therapy is mainly symptomatic with l-DOPA aiming to replace dopamine. Novel therapeutic approaches are being investigated with the intention of influencing pathways leading to neuronal death and dysfunction. The present review summarizes three novel approaches, the use of which is promising in pre-clinical studies. Polyphenols have been shown to possess neuroprotective properties on account of their well-established antioxidative and anti-inflammatory actions but also due to their influence on protein misfolding and mitochondrial homeostasis. Within the amazing ancillary effects of antibiotics, their neuroprotective properties against neurodegenerative and neuroinflammatory processes are of great interest for the development of effective therapies against Parkinson's disease. Experimental evidence supports the potential of antibiotics as neuroprotective agents, being useful not only to prevent the formation of toxic α-synuclein oligomers but also to ameliorate mitochondrial dysfunction and neuroinflammation. Neuropeptides offer another approach with their diverse effects in the nervous system. Among them, pituitary adenylate cyclase-activating polypeptide, a member of the secretin/glucagon superfamily, has several advantageous effects in models of neurodegeneration, namely anti-apoptotic, anti-inflammatory and antioxidant actions, the combination of which offers a potent protective effect in dopaminergic neurons. Owing to their pleiotropic modes of action, these novel therapeutic candidates have potential in tackling the multidimensional features of Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Münzel, Thomas; Daiber, Andreas; Steven, Sebastian; Tran, Lan P.; Ullmann, Elisabeth; Kossmann, Sabine; Schmidt, Frank P.; Oelze, Matthias; Xia, Ning; Li, Huige; Pinto, Antonio; Wild, Philipp; Pies, Kai; Schmidt, Erwin R.; Rapp, Steffen; Kröller-Schön, Swenja
2017-01-01
Abstract Aims Epidemiological studies indicate that traffic noise increases the incidence of coronary artery disease, hypertension and stroke. The underlying mechanisms remain largely unknown. Field studies with nighttime noise exposure demonstrate that aircraft noise leads to vascular dysfunction, which is markedly improved by vitamin C, suggesting a key role of oxidative stress in causing this phenomenon. Methods and results We developed a novel animal model to study the vascular consequences of aircraft noise exposure. Peak sound levels of 85 and mean sound level of 72 dBA applied by loudspeakers for 4 days caused an increase in systolic blood pressure, plasma noradrenaline and angiotensin II levels and induced endothelial dysfunction. Noise increased eNOS expression but reduced vascular NO levels because of eNOS uncoupling. Noise increased circulating levels of nitrotyrosine, interleukine-6 and vascular expression of the NADPH oxidase subunit Nox2, nitrotyrosine-positive proteins and of endothelin-1. FACS analysis demonstrated an increase in infiltrated natural killer-cells and neutrophils into the vasculature. Equal mean sound pressure levels of white noise for 4 days did not induce these changes. Comparative Illumina sequencing of transcriptomes of aortic tissues from aircraft noise-treated animals displayed significant changes of genes in part responsible for the regulation of vascular function, vascular remodelling, and cell death. Conclusion We established a novel and unique aircraft noise stress model with increased blood pressure and vascular dysfunction associated with oxidative stress. This animal model enables future studies of molecular mechanisms, mitigation strategies, and pharmacological interventions to protect from noise-induced vascular damage. PMID:28329261
Zeiler, Frederick Adam; Donnelly, Joseph; Nourallah, Basil; Thelin, Eric Peter; Calviello, Leanne; Smieleweski, Peter; Czosnyka, Marek; Ercole, Ari; Menon, David
2018-02-12
Impaired cerebrovascular reactivity has been associated with outcome following traumatic brain injury (TBI), but it is unknown how it is affected by trauma severity. Thus, we aimed to explore the relationship between intra-cranial (IC) and extra-cranial (EC) injury burden and cerebrovascular reactivity in TBI patients. We retrospectively included critically ill TBI patients. IC injury burden included detailed lesion and computerized tomography (CT) scoring (ie. Marshall, Rotterdam, Helsinki and Stockholm Scores) on admission. EC injury burden were characterized using the injury severity score (ISS) and APACHE II score. Pressure reactivity index (PRx), pulse amplitude index (PAx) and RAC were used to assess autoregulation/cerebrovascular reactivity. We used univariate and multi-variate logistic regression techniques to explore relationships between IC and EC injury burden and autoregulation indices. A total of 358 patients were assessed. ISS and all IC CT scoring systems were poor predictors of impaired cerebrovascular reactivity. Only subdural hematomas and thickness of SAH (p<0.05, respectively) were consistently associated with dysfunctional cerebrovascular reactivity. High age (p<0.01 for all) and admission APACHE II scores (p<0.05 for all) were the two variables strongest associated with abnormal cerebrovascular reactivity. In summary, diffuse IC injury markers (thickness of SAH and the presence of a SDH) and APACHE II were most associated with dysfunction in cerebrovascular reactivity after TBI. Standard CT scoring systems and evidence of macroscopic parenchymal damage are poor predictors, implicating potentially both microscopic injury patterns and host response as drivers of dysfunctional cerebrovascular reactivity. Age remains a major variable associated with cerebrovascular reactivity.
Xia, Maosheng; Yang, Li; Sun, Guangfeng; Qi, Shuang; Li, Baoman
2017-02-01
Many studies have indicated that a history of depression increases the risk of developing Alzheimer's disease (AD); however, the potential pathogenestic mechanism by which depression functions as a high risk factor for AD remains unknown. Recently, a "cerebral lymphatic system" referred to as "glymphatic system" has been demonstrated to be responsible for neuronal extracellular waste protein clearance via a paravascular pathway. However, the function of glymphatic pathway has not been determined in depressive disorders. The present study used an animal model of chronic unpredictable mild stress (CUMS) to determine the function of glymphatic pathway by using fluorescence tracers. Immunohistochemistry was used to assess the accumulation of endogenous mouse and exogenous human amyloid beta 42 (Aβ42) in CUMS-treated mice with or without treatment with antidepressant fluoxetine. Glymphatic pathway circulation was impaired in mice treated with CUMS; moreover, glymphatic pathway dysfunction suppressed Aβ42 metabolism, because the accumulation of endogenous and exogenous Aβ42 was increased in the brains of the CUMS-treated mice. However, treatment with fluoxetine reversed these destructive effects of CUMS on glymphatic system. In anhedonic mice, the expression of the water channel aquaporin 4 (AQP4), a factor in glymphatic pathway dysfunction, was down-regulated in cortex and hippocampus. The dysfunction of glymphatic system suggested why a history of depression may be a strong risk factor for AD in anhedonic mice. We hope our study will contribute to an understanding of the risk mechanism of depressive disorder in the development of AD and the mechanisms of antidepressant therapies in AD.
Acute recurrent pancreatitis: Etiopathogenesis, diagnosis and treatment
Testoni, Pier Alberto
2014-01-01
Acute recurrent pancreatitis (ARP) refers to a clinical entity characterized by episodes of acute pancreatitis which occurs on more than one occasion. Recurrence of pancreatitis generally occurs in a setting of normal morpho-functional gland, however, an established chronic disease may be found either on the occasion of the first episode of pancreatitis or during the follow-up. The aetiology of ARP can be identified in the majority of patients. Most common causes include common bile duct stones or sludge and bile crystals; sphincter of oddi dysfunction; anatomical ductal variants interfering with pancreatic juice outflow; obstruction of the main pancreatic duct or pancreatico-biliary junction; genetic mutations; alcohol consumption. However, despite diagnostic technologies, the aetiology of ARP still remains unknown in up to 30% of cases: in these cases the term “idiopathic” is used. Because occult bile stone disease and sphincter of oddi dysfunction account for the majority of cases, cholecystectomy, and eventually the endoscopic biliary and/or pancreatic sphincterotomy are curative in most of cases. Endoscopic biliary sphincterotomy appeared to be a curative procedure per se in about 80% of patients. Ursodeoxycholic acid oral treatment alone has also been reported effective for treatment of biliary sludge. In uncertain cases toxin botulin injection may help in identifying some sphincter of oddi dysfunction, but this treatment is not widely used. In the last twenty years, pancreatic endotherapy has been proven effective in cases of recurrent pancreatitis depending on pancreatic ductal obstruction, independently from the cause of obstruction, and has been widely used instead of more aggressive approaches. PMID:25493002
Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro
2015-01-01
Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556
Wilson, Edward N; Abela, Andrew R; Do Carmo, Sonia; Allard, Simon; Marks, Adam R; Welikovitch, Lindsay A; Ducatenzeiler, Adriana; Chudasama, Yogita; Cuello, A Claudio
2017-02-01
In Alzheimer disease (AD), the accumulation of amyloid beta (Aβ) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aβ peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aβ accumulation on temporal and frontal lobe dysfunction. We compared the performance of McGill-R-Thy1-APP transgenic AD rats with wild-type littermate controls on a visual discrimination task using a touchscreen operant platform. Subsequently, we conducted studies to establish the biochemical and molecular basis for the behavioral alterations. It was found that the presence of intraneuronal Aβ caused a severe associative learning deficit in the AD rats. This coincided with reduced nuclear translocation and genomic occupancy of the CREB co-activator, CRTC1, and decreased production of synaptic plasticity-associated transcripts Arc, c-fos, Egr1, and Bdnf. Thus, blockade of CRTC1-dependent gene expression in the early, preplaque phase of AD-like pathology provides a molecular basis for the cognitive deficits that figure so prominently in early AD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gukovskaya, Anna S; Gukovsky, Ilya; Jung, Yoon; Mouria, Michelle; Pandol, Stephen J
2002-06-21
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.
Ribas, Vicent; Drew, Brian G; Zhou, Zhenqi; Phun, Jennifer; Kalajian, Nareg Y; Soleymani, Teo; Daraei, Pedram; Widjaja, Kevin; Wanagat, Jonathan; de Aguiar Vallim, Thomas Q; Fluitt, Amy H; Bensinger, Steven; Le, Thuc; Radu, Caius; Whitelegge, Julian P; Beaven, Simon W; Tontonoz, Peter; Lusis, Aldons J; Parks, Brian W; Vergnes, Laurent; Reue, Karen; Singh, Harpreet; Bopassa, Jean C; Toro, Ligia; Stefani, Enrico; Watt, Matthew J; Schenk, Simon; Akerstrom, Thorbjorn; Kelly, Meghan; Pedersen, Bente K; Hewitt, Sylvia C; Korach, Kenneth S; Hevener, Andrea L
2016-04-13
Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women. Copyright © 2016, American Association for the Advancement of Science.
Merlet, Nolwenn; Busseuil, David; Mihalache-Avram, Teodora; Mecteau, Melanie; Shi, Yanfen; Nachar, Walid; Brand, Genevieve; Brodeur, Mathieu R; Charpentier, Daniel; Rhainds, David; Sy, Gavin; Schwendeman, Anna; Lalwani, Narendra; Dasseux, Jean-Louis; Rhéaume, Eric; Tardif, Jean-Claude
2016-07-15
High-density lipoprotein (HDL) infusions induce rapid improvement of experimental atherosclerosis in rabbits but their effect on ventricular function remains unknown. We aimed to evaluate the effects of the HDL mimetic peptide CER-522 on left ventricular diastolic dysfunction (LVDD). Rabbits were fed with a cholesterol- and vitamin D2-enriched diet until mild aortic valve stenosis and hypercholesterolemia-induced LV hypertrophy and LVDD developed. Animals then received saline or 10 or 30mg/kg CER-522 infusions 6 times over 2weeks. We performed serial echocardiograms and LV histology to evaluate the effects of CER-522 therapy on LVDD. LVDD was reduced by CER-522 as shown by multiple parameters including early filling mitral deceleration time, deceleration rate, Em/Am ratio, E/Em ratio, pulmonary venous velocities, and LVDD score. These findings were associated with reduced macrophages (RAM-11 positive cells) in the pericoronary area and LV, and decreased levels of apoptotic cardiomyocytes in CER-522-treated rabbits. CER-522 treatment also resulted in decreased atheromatous plaques and internal elastic lamina area in coronary arteries. CER-522 improves LVDD in rabbits, with reductions of LV macrophage accumulation, cardiomyocyte apoptosis, coronary atherosclerosis and remodelling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Utility of Periodontal exploration in patients with Fibromyalgia
Santos-García, Rocío; Sánchez-Domínguez, Benito; Cordero, Mario D.; Rios-Santos, José V.; Jaramillo-Santos, María R.; Climent, Mariano H.
2012-01-01
Objetive: Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology, which affects predominantly women. Mitochondrial alteration could have a role in the pathophysilogical mechanisms of inflammatory conditions as FM and periodontitis. The aim of the present study was assay the relationship between both diseases and mitochondrial dysfunction. Patient and Methods: We study the presence of periodontitis in twelve patients diagnosed of FM and mitochondrial dysfunction described. The diagnosis of FM was established according to ACR criteria and clinical symptoms were evaluated using the Fibromyalgia Impact Questionnaire (FIQ) and Beck Depression Inventory (BDI). Results: Only one patients of twelve included and agreed to participate in the study were diagnosed with periodontitis. Conclusions: Pending studies with larger numbers of patients, we can conclude that mitochondrial dysfunction in FM is a itself event not related with periodontitis. Periodontitis could be considered a exclusion criterion in all studies about mitochondrial dysfunction in patients. Key words:Peridontitis, fibromyalgia, mitocondrial dysfunction, oxidative stress. PMID:24558523
New Developments in Hepatorenal Syndrome.
Mindikoglu, Ayse L; Pappas, Stephen C
2018-02-01
Hepatorenal syndrome (HRS) continues to be one of the major complications of decompensated cirrhosis, leading to death in the absence of liver transplantation. Challenges in precisely evaluating renal function in the patient with cirrhosis remain because of the limitations of serum creatinine (Cr) alone in estimating glomerular filtration rate (GFR); current GFR estimating models appear to underestimate renal dysfunction. Newer models incorporating renal biomarkers, such as the Cr-Cystatin C GFR Equation for Cirrhosis appear to estimate measured GFR more accurately. A major change in the diagnostic criteria for HRS based on dynamic serial changes in serum Cr that regard HRS type 1 as a special form of acute kidney injury promises the possibility of earlier identification of renal dysfunction in patients with cirrhosis. The diagnostic criteria of HRS still include the exclusion of other causes of kidney injury. Renal biomarkers have been disappointing in assisting with the differentiation of HRS from prerenal azotemia and other kidney disorders. Serum metabolomic profiling may be a more powerful tool to assess renal dysfunction, although the practical clinical significance of this remains unclear. As a result of the difficulties of assessing renal function in cirrhosis and the varying HRS diagnostic criteria and the rigor with which they are applied, the precise incidence and prevalence of HRS is unknown, but it is likely that HRS occurs more commonly than expected. The pathophysiology of HRS is rooted firmly in the setting of progressive reduction in renal blood flow as a result of portal hypertension and splanchnic vasodilation. Progressive marked renal cortical ischemia in patients with cirrhosis parallels the evolution of diuretic-sensitive ascites to diuretic-refractory ascites and HRS, a recognized continuum of renal dysfunction in cirrhosis. Alterations in nitrous oxide production, both increased and decreased, may play a major role in the pathophysiology of this evolution. The inflammatory cascade, triggered by bacterial translocation and endotoxemia, increasingly recognized as important in the manifestation of acute-on-chronic liver failure, also may play a significant role in the pathophysiology of HRS. The mainstay of treatment remains vasopressor therapy with albumin in an attempt to reverse splanchnic vasodilation and improve renal blood flow. Several meta-analyses have confirmed the value of vasopressors, chiefly terlipressin and noradrenaline, in improving renal function and reversing HRS type 1. Other interventions such as renal replacement therapy, transjugular intrahepatic portosystemic shunt, and artificial liver support systems have a very limited role in improving outcomes in HRS. Liver transplantation remains the definitive treatment for HRS. The frequency of simultaneous liver-kidney transplantation has increased dramatically in the Model for End-stage Liver Disease era, with changes in organ allocation policies. This has resulted in a more urgent need to predict native kidney recovery from HRS after liver transplantation alone, to avoid unnecessary simultaneous liver-kidney transplantation. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Chronic Lung Allograft Dysfunction: A Systematic Review of Mechanisms.
Royer, Pierre-Joseph; Olivera-Botello, Gustavo; Koutsokera, Angela; Aubert, John-David; Bernasconi, Eric; Tissot, Adrien; Pison, Christophe; Nicod, Laurent; Boissel, Jean-Pierre; Magnan, Antoine
2016-09-01
Chronic lung allograft dysfunction (CLAD) is the major limitation of long-term survival after lung transplantation. Chronic lung allograft dysfunction manifests as bronchiolitis obliterans syndrome or the recently described restrictive allograft syndrome. Although numerous risk factors have been identified so far, the physiopathological mechanisms of CLAD remain poorly understood. We investigate here the immune mechanisms involved in the development of CLAD after lung transplantation. We explore the innate or adaptive immune reactions induced by the allograft itself or by the environment and how they lead to allograft dysfunction. Because current literature suggests bronchiolitis obliterans syndrome and restrictive allograft syndrome as 2 distinct entities, we focus on the specific factors behind one or the other syndromes. Chronic lung allograft dysfunction is a multifactorial disease that remains irreversible and unpredictable so far. We thus finally discuss the potential of systems-biology approach to predict its occurrence and to better understand its underlying mechanisms.
Sources of avoidance motivation: Valence effects from physical effort and mental rotation.
Morsella, Ezequiel; Feinberg, Giles H; Cigarchi, Sepeedeh; Newton, James W; Williams, Lawrence E
2011-09-01
When reaching goals, organisms must simultaneously meet the overarching goal of conserving energy. According to the law of least effort, organisms will select the means associated with the least effort. The mechanisms underlying this bias remain unknown. One hypothesis is that organisms come to avoid situations associated with unnecessary effort by generating a negative valence toward the stimuli associated with such situations. Accordingly, merely using a dysfunctional, 'slow' computer mouse causes participants to dislike ambient neutral images (Study 1). In Study 2, nonsense shapes were liked less when associated with effortful processing (135° of mental rotation) versus easier processing (45° of rotation). Complementing 'fluency' effects found in perceptuo-semantic research, valence emerged from action-related processing in a principled fashion. The findings imply that negative valence associations may underlie avoidance motivations, and have practical implications for educational/workplace contexts in which effort and positive affect are conducive to success.
Learning from Animal Models of Obsessive-Compulsive Disorder
Monteiro, Patricia; Feng, Guoping
2015-01-01
Obsessive-Compulsive Disorder (OCD) affects 2–3% of the worldwide population and can cause significant distress and disability to its sufferers. Substantial challenges remain in the field of OCD research and therapeutics. Approved interventions only partially alleviate symptoms, with 30–40% of patients being resistant to treatment. Research evidence points towards the involvement of cortico-striato-thalamocortical circuitry (CSTC) although OCD’s etiology is still unknown. This review will focus on the most recent behavior, genetics and neurophysiological findings from animal models of OCD. Based on evidence from these models and parallels with human studies, we discuss the circuit hyperactivity hypothesis for OCD, a potential circuitry dysfunction of action termination, and the involvement of candidate genes. Adding a more biologically-valid framework to OCD will help us define and test new hypotheses and facilitate the development of targeted therapies based on disease-specific mechanisms. PMID:26037910
Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency
Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A
2014-01-01
The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542
The GARP complex is required for cellular sphingolipid homeostasis.
Fröhlich, Florian; Petit, Constance; Kory, Nora; Christiano, Romain; Hannibal-Bach, Hans-Kristian; Graham, Morven; Liu, Xinran; Ejsing, Christer S; Farese, Robert V; Walther, Tobias C
2015-09-10
Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.
NMDA Receptor Regulation Prevents Regression of Visual Cortical Function in the Absence of Mecp2
Durand, Severine; Patrizi, Annarita; Quast, Kathleen B.; Hachigian, Lea; Pavlyuk, Roman; Saxena, Alka; Carninci, Piero; Hensch, Takao K.; Fagiolini, Michela
2012-01-01
SUMMARY Brain function is shaped by postnatal experience and vulnerable to disruption of Methyl-CpG-binding protein, Mecp2, in multiple neurodevelopmental disorders. How Mecp2 contributes to the experience-dependent refinement of specific cortical circuits and their impairment remains unknown. We analyzed vision in gene-targeted mice and observed an initial normal development in the absence of Mecp2. Visual acuity then rapidly regressed after postnatal day P35–40 and cortical circuits largely fell silent by P55-60. Enhanced inhibitory gating and an excess of parvalbumin-positive, perisomatic input preceded the loss of vision. Both cortical function and inhibitory hyperconnectivity were strikingly rescued independent of Mecp2 by early sensory deprivation or genetic deletion of the excitatory NMDA receptor subunit, NR2A. Thus, vision is a sensitive biomarker of progressive cortical dysfunction and may guide novel, circuit-based therapies for Mecp2 deficiency. PMID:23259945
Hypoconnectivity and hyperfrontality in retired American football players.
Hampshire, Adam; MacDonald, Alex; Owen, Adrian M
2013-10-17
Recent research has raised concerns about the long-term neurological consequences of repetitive concussive and sub-concussive injuries in professional players of American Football. Despite this interest, the neural and psychological status of retired players remains unknown. Here, we evaluated the performances and brain activation patterns of retired National Football League players (NFL alumni) relative to controls using an fMRI-optimised neuropsychological test of executive function. Behaviourally, the NFL alumni showed only modest performance deficits on the executive task. By contrast, they showed pronounced hyperactivation and hypoconnectivity of the dorsolateral frontal and frontopolar cortices. Critically, abnormal frontal-lobe function was correlated with the number of times that NFL alumni reported having been removed from play after head injury and was evident in individual players. These results support the hypothesis that NFL alumni have a heightened probability of developing executive dysfunction and suggest that fMRI provides the most sensitive biomarker of the underlying neural abnormality.
Yeo, Min-Kyung; Ham, Young Rok; Choi, Song-Yi; Lee, Yong-Moon; Park, Moon Hyang; Suh, Kwang-Sun
2017-07-01
Kidney transplantation for amyloidosis remains a contentious issue. Recurrence of amyloidosis is one of the risks of transplantation. Chronic active antibody-mediated rejection is an important cause of chronic allograft dysfunction. A 47-year-old woman underwent kidney transplantation due to renal AA amyloidosis with unknown etiology. Six years posttransplantation, a kidney biopsy showed AA amyloidosis with chronic active antibody-mediated rejection. Donor-specific antibody class II was positive. The patient underwent intravenous plasmapheresis and treatment with rituximab and colchicine. The relationship between recurrence of amyloidosis and rejection was not obvious. Clinical characteristics of kidney transplantation for AA amyloidosis were subjected to literature review and 315 cases were identified. The incidence of amyloidosis recurrence and acute and chronic rejection rates were 15%, 15%, and 8%, respectively. Five-year patient and graft survival rates were 77% and 82%, respectively. Clinical courses of kidney transplantation in AA amyloidosis were, thus, identified.
Light and Laser Modalities in the Treatment of Cutaneous Sarcoidosis: A Systematic Review.
Lima, Ana Luiza; Goetze, Steven; Illing, Tanja; Elsner, Peter
2018-04-27
Sarcoidosis is a systemic non-caseating granulomatous disease of unknown aetiology. Cutaneous manifestations are present in approximately 10-30% of the patients with the systemic form. Therapy is indicated in case of disabling symptoms, organ dysfunction or cosmetically distressing manifestation. Despite different therapeutic possibilities, cutaneous sarcoidosis remains exceptionally difficult to treat. Light and laser therapy may be a promising alternative. In this systematic review, we summarised the available treatments according to the literature concerning light and laser therapy for cutaneous sarcoidosis. Publications written in English and German, published between January 1990 and July 2016 in the database PubMed, MEDLINE, Embase, and Scopus were analysed. Light therapy with intense pulsed light, photodynamic therapy, and ultraviolet A light therapy, as well as laser therapy with pulsed dye laser, YAG laser, and Q-switched ruby laser were described. The results are based on individual case reports and small case series. Randomised controlled studies are lacking.
Acorus tatarinowii Schott extract protects PC12 cells from amyloid-beta induced neurotoxicity.
An, Hong-Mei; Li, Guo-Wen; Lin, Chen; Gu, Chao; Jin, Miao; Sun, Wen-Xian; Qiu, Ming-Feng; Hu, Bing
2014-05-01
Amyloid-beta induced neurotoxicity has been identified as a major cause of Alzheimer's disease. Acorus tatarinowii Schott is one of the most frequently used Chinese herbs for Alzheimer's disease treatment. However, the effects of Acorus tatarinowii Schott on amyloid-beta mediated nerve cell damage remains unknown. In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of A. tatarinowii Schott extract (ATSE) against Abeta25-35 induced neurotoxicity. The results showed pretreatment with ATSE significantly protected PC12 cells from Abeta25-35 induced cell death, lactate dehydrogenase release, DNA damage, mitochondrial dysfunction and cytochrome c release from mitochondria. In addition, pretreatment with ATSE also significantly inhibited Abeta25-35 induced caspase-3 activation and reactive oxygen species generation in PC12 cells. These observations suggested that ATSE protects PC12 cells from amyloid-beta induced neurotoxicity.
Hypoconnectivity and Hyperfrontality in Retired American Football Players
NASA Astrophysics Data System (ADS)
Hampshire, Adam; MacDonald, Alex; Owen, Adrian M.
2013-10-01
Recent research has raised concerns about the long-term neurological consequences of repetitive concussive and sub-concussive injuries in professional players of American Football. Despite this interest, the neural and psychological status of retired players remains unknown. Here, we evaluated the performances and brain activation patterns of retired National Football League players (NFL alumni) relative to controls using an fMRI-optimised neuropsychological test of executive function. Behaviourally, the NFL alumni showed only modest performance deficits on the executive task. By contrast, they showed pronounced hyperactivation and hypoconnectivity of the dorsolateral frontal and frontopolar cortices. Critically, abnormal frontal-lobe function was correlated with the number of times that NFL alumni reported having been removed from play after head injury and was evident in individual players. These results support the hypothesis that NFL alumni have a heightened probability of developing executive dysfunction and suggest that fMRI provides the most sensitive biomarker of the underlying neural abnormality.
Loiseau, Camille; Osinski, Diane; Joubert, Fanny; Straus, Christian; Similowski, Thomas; Bodineau, Laurence
2014-05-01
Central congenital hypoventilation syndrome is a neuro-respiratory disease characterized by the dysfunction of the CO2/H(+) chemosensitive neurons of the retrotrapezoid nucleus/parafacial respiratory group. A recovery of CO2/H(+) chemosensitivity has been observed in some central congenital hypoventilation syndrome patients coincidental with contraceptive treatment by a potent progestin, desogestrel (Straus et al., 2010). The mechanisms of this progestin effect remain unknown, although structures of medulla oblongata, midbrain or diencephalon are known to be targets for progesterone. In the present study, on ex vivo preparations of central nervous system of newborn rats, we show that acute exposure to etonogestrel (active metabolite of desogestrel) enhanced the increased respiratory frequency induced by metabolic acidosis via a mechanism involving supramedullary structures located in pontine, mesencephalic or diencephalic regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Gray Matter Is Targeted in First-Attack Multiple Sclerosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao
The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We foundmore » that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.« less
77 FR 40901 - Notice of Inventory Completion: Gregg County Historical Museum, Longview, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
... adult, one adult of unknown sex, and one juvenile of unknown sex. The human remains from Burial 6 include an occipital cranial bone fragment of one adult of unknown sex. The human remains from Burial 7 include one adult of unknown sex. No known individuals were identified. The 11 associated funerary objects...
Thangavel, Samikkannu; Mulet, Carmen T; Atluri, Venkata S R; Agudelo, Marisela; Rosenberg, Rhonda; Devieux, Jessy G; Nair, Madhavan P N
2018-02-01
Human immunodeficiency virus (HIV) infection induces oxidative stress and alcohol use accelerates disease progression, subsequently causing immune dysfunction. However, HIV and alcohol impact on lipid rafts-mediated immune dysfunction remains unknown. In this study, we investigate the modulation by which oxidative stress induces reactive oxygen species (ROS) affecting redox expression, lipid rafts caveiloin-1, ATP-binding cassette (ABC) transporters, and transcriptional sterol regulatory element-binding protein (SREBP) gene and protein modification and how these mechanisms are associated with arachidonic acid (AA) metabolites in HIV positive alcohol users, and how they escalate immune dysfunction. In both alcohol using HIV-positive human subjects and in vitro studies of alcohol with HIV-1 gp120 protein in peripheral blood mononuclear cells, increased ROS production significantly affected redox expression in glutathione synthetase (GSS), super oxide dismutase (SOD), and glutathione peroxidase (GPx), and subsequently impacted lipid rafts Cav-1, ABC transporters ABCA1, ABCG1, ABCB1, and ABCG4, and SREBP transcription. The increased level of rate-limiting enzyme 3-hydroxy-3-methylglutaryl HMG-CoA reductase (HMGCR), subsequently, inhibited 7-dehydrocholesterol reductase (DHCR-7). Moreover, the expression of cyclooxygenase-2 (COX-2) and lipoxygenase-5 (5-LOX) mRNA and protein modification tentatively increased the levels of prostaglandin E2 synthases (PGE 2 ) in plasma when compared with either HIV or alcohol alone. This article suggests for the first time that the redox inhibition affects lipid rafts, ABC-transporter, and SREBP transcription and modulates AA metabolites, serving as an important intermediate signaling network during immune cell dysfunction in HIV-positive alcohol users. These findings indicate that HIV infection induces oxidative stress and redox inhibition, affecting lipid rafts and ABC transports, subsequently upregulating AA metabolites and leading to immune toxicity, and further exacerbation with alcohol use. Antioxid. Redox Signal. 28, 324-337.
ELABELA Improves Cardio-Renal Outcome in Fatal Experimental Septic Shock.
Coquerel, David; Chagnon, Frédéric; Sainsily, Xavier; Dumont, Lauralyne; Murza, Alexandre; Côté, Jérôme; Dumaine, Robert; Sarret, Philippe; Marsault, Éric; Salvail, Dany; Auger-Messier, Mannix; Lesur, Olivier
2017-11-01
Apelin-13 was recently proposed as an alternative to the recommended β-adrenergic drugs for supporting endotoxin-induced myocardial dysfunction. Since Apelin-13 signals through its receptor (Apelin peptide jejunum) to exert singular inotropic/vasotropic actions and to optimize body fluid balance, this candidate pathway might benefit septic shock management. Whether the newly discovered ELABELA (ELA), a second endogenous ligand of the Apelin peptide jejunum receptor highly expressed in the kidney, further improves cardio-renal impairment remains unknown. Interventional study in a rat model of septic shock (128 adult males) to assess the effects of ELA and Apelin-13 on vascular and cardio-renal function. Experiments were performed in a tertiary care University-based research institute. Polymicrobial sepsis-induced cardiac dysfunction was produced by cecal ligation puncture to assess hemodynamic efficacy, cardioprotection, and biomechanics under acute or continuous infusions of the apelinergic agonists ELA or Apelin-13 (39 and 15 µg/kg/hr, respectively) versus normal saline. Apelinergic agonists improved 72-hour survival after sepsis induction, with ELA providing the best clinical outcome after 24 hours. Apelinergic agonist infusion counteracted cecal ligation puncture-induced myocardial dysfunction by improving left ventricular pressure-volume relationship. ELA-treated cecal ligation puncture rats were the only group to 1) display a significant improvement in left ventricular filling as shown by increased E-wave velocity and left ventricular end-diastolic volume, 2) exhibit a higher plasma volume, and 3) limit kidney injury and free-water clearance. These beneficial renal effects were superior to Apelin-13, likely because full-length ELA enabled a distinctive regulation of pituitary vasopressin release. Activation of the apelinergic system by exogenous ELA or Apelin-13 infusion improves cardiovascular function and survival after cecal ligation puncture-induced sepsis. However, ELA proved better than Apelin-13 by improving fluid homeostasis, cardiovascular hemodynamics recovery, and limiting kidney dysfunction in a vasopressinergic-dependent manner.
Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins.
Migrino, Raymond Q; Truran, Seth; Gutterman, David D; Franco, Daniel A; Bright, Megan; Schlundt, Brittany; Timmons, Mitchell; Motta, Angelica; Phillips, Shane A; Hari, Parameswaran
2011-12-01
Light chain amyloidosis (AL) involves overproduction of amyloidogenic light chain proteins (LC) leading to heart failure, yet the mechanisms underlying tissue toxicity remain unknown. We hypothesized that LC induces endothelial dysfunction in non-AL human microvasculature and apoptotic injury in human coronary artery endothelial cells (HCAECs). Adipose arterioles (n = 34, 50 ± 3 yr) and atrial coronary arterioles (n = 19, 68 ± 2 yr) from non-AL subjects were cannulated. Adipose arteriole dilator responses to acetylcholine/papaverine were measured at baseline and 1 h exposure to LC (20 μg/ml) from biopsy-proven AL subjects (57 ± 11 yr) without and with antioxidant cotreatment. Coronary arteriole dilation to bradykinin/papaverine was measured post-LC exposure. HCAECs were exposed to 1 or 24 h of LC. LC reduced dilation to acetylcholine (10(-4) M: 41.6 ± 7 vs. 85.8 ± 2.2% control, P < 0.001) and papaverine (81.4 ± 4.6 vs. 94.8 ± 1.3% control, P < 0.01) in adipose arterioles and to bradykinin (10(-6) M: 68.6 ± 6.2 vs. 90.9 ± 1.6% control, P < 0.001) but not papaverine in coronary arterioles. There was an increase in superoxide and peroxynitrite in arterioles treated with LC. Adipose arteriole dilation was restored by cotreatment with polyethylene glycol-superoxide dismutase and tetrahydrobiopterin but only partially restored by mitoquinone (mitochondria-targeted antioxidant) and gp91ds-tat (NADPH oxidase inhibitor). HCAECs exposed to LC showed reduced NO and increased superoxide, peroxynitrite, annexin-V, and propidium iodide compared with control. Brief exposure to physiological amounts of LC induced endothelial dysfunction in human adipose and coronary arterioles and increased apoptotic injury in coronary artery endothelial cells likely as a result of oxidative stress, reduced NO bioavailability, and peroxynitrite production. Microvascular dysfunction and injury is a novel mechanism underlying AL pathobiology and is a potential target for therapy.
Right Ventricular Dysfunction in Chronic Lung Disease
Kolb, Todd M.; Hassoun, Paul M.
2012-01-01
Right ventricular dysfunction arises in chronic lung disease when chronic hypoxemia and disruption of pulmonary vascular beds contribute to increase ventricular afterload, and is generally defined by hypertrophy with preserved myocardial contractility and cardiac output. Although the exact prevalence is unknown, right ventricular hypertrophy appears to be a common complication of chronic lung disease, and more frequently complicates advanced lung disease. Right ventricular failure is rare, except during acute exacerbations of chronic lung disease or when multiple co-morbidities are present. Treatment is targeted at correcting hypoxia and improving pulmonary gas exchange and mechanics. There are presently no convincing data to support the use of pulmonary hypertension-specific therapies in patients with right ventricular dysfunction secondary to chronic lung disease. PMID:22548815
Efficient breathing at neonatal ages: A sex and Epo-dependent issue.
Iturri, Pablo; Bairam, Aida; Soliz, Jorge
2017-11-01
During postnatal life, the respiratory control system undergoes intense development and is highly responsive to stimuli emerging from the environment. In fact, interruption of breathing prevents gas exchange and results in systemic hypoxia that, if prolonged, can lead to cardio-respiratory failure or sudden infant death. Moreover, in newborns and infants, respiratory disorders related to neural control dysfunction show significant sexual dimorphism with a higher prevalence in males. To this day, the therapeutic tools available to alleviate these respiratory disorders remain limited. Furthermore, the factors explaining the sexual dimorphism in newborns and during infancy remain unknown. Erythropoietin (Epo) was originally discovered as a cytokine able to increase the production of red blood cells upon conditions of reduced oxygen availability. We now know that Epo is a cytokine also secreted by neurons and astrocytes that protects the brain during trauma or hypoxic stress in a sex dependent manner. In this novel line of research, our previous studies demonstrated at adult ages that cerebral Epo acts as a respiratory stimulant in rodents and humans. These results provided a strong rationale for exploring the role of cerebral Epo in neuronal respiratory control during postnatal development. The objective of this review is to summarize our recent findings showing that cerebral Epo is a potent sex-specific respiratory stimulant at neonatal ages. Keeping in mind that Epo is routinely and safely administrated in newborn humans for anemia and neonatal asphyxia, we predict that our research provides the basis necessary to promote the clinical use of Epo against neonatal respiratory disorders related to neural control dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.
Soluble Components of Ultraflne Particulate Matter Stimulate Endothelial H202 Production
A growing body of evidence shows a strong association between particulate matter (PM) exposure and adverse cardiovascular health effects such as atherosclerosis and myocardial ischemia. The mechanisms by which PM causes cardiovascular dysfunction is unknown, but there is increasi...
Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients
Kung, Ethan; Perry, James C.; Davis, Christopher; Migliavacca, Francesco; Pennati, Giancarlo; Giardini, Alessandro; Hsia, Tain-Yen; Marsden, Alison
2014-01-01
Reduced exercise capacity is nearly universal among Fontan patients. Although many factors have emerged as possible contributors, the degree to which each impacts the overall hemodynamics is largely unknown. Computational modeling provides a means to test hypotheses of causes of exercise intolerance via precisely controlled virtual experiments and measurements. We quantified the physiological impacts of commonly encountered, clinically relevant dysfunctions introduced to the exercising Fontan system via a previously developed lumped-parameter model of Fontan exercise. Elevated pulmonary arterial pressure was observed in all cases of dysfunction, correlated with lowered cardiac output, and often mediated by elevated atrial pressure. Pulmonary vascular resistance was not the most significant factor affecting exercise performance as measured by cardiac output. In the absence of other dysfunctions, atrioventricular valve insufficiency alone had significant physiological impact, especially under exercise demands. The impact of isolated dysfunctions can be linearly summed to approximate the combined impact of several dysfunctions occurring in the same system. A single dominant cause of exercise intolerance was not identified, though several hypothesized dysfunctions each led to variable decreases in performance. Computational predictions of performance improvement associated with various interventions should be weighed against procedural risks and potential complications, contributing to improvements in routine patient management protocol. PMID:25260878
Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald
2014-10-01
Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.
Percival, Justin M.; Siegel, Michael P.; Knowels, Gary; Marcinek, David J.
2013-01-01
Given the crucial roles for mitochondria in ATP energy supply, Ca2+ handling and cell death, mitochondrial dysfunction has long been suspected to be an important pathogenic feature in Duchenne muscular dystrophy (DMD). Despite this foresight, mitochondrial function in dystrophin-deficient muscles has remained poorly defined and unknown in vivo. Here, we used the mdx mouse model of DMD and non-invasive spectroscopy to determine the impact of dystrophin-deficiency on skeletal muscle mitochondrial localization and oxidative phosphorylation function in vivo. Mdx mitochondria exhibited significant uncoupling of oxidative phosphorylation (reduced P/O) and a reduction in maximal ATP synthesis capacity that together decreased intramuscular ATP levels. Uncoupling was not driven by increased UCP3 or ANT1 expression. Dystrophin was required to maintain subsarcolemmal mitochondria (SSM) pool density, implicating it in the spatial control of mitochondrial localization. Given that nitric oxide-cGMP pathways regulate mitochondria and that sildenafil-mediated phosphodiesterase 5 inhibition ameliorates dystrophic pathology, we tested whether sildenafil's benefits result from decreased mitochondrial dysfunction in mdx mice. Unexpectedly, sildenafil treatment did not affect mitochondrial content or oxidative phosphorylation defects in mdx mice. Rather, PDE5 inhibition decreased resting levels of ATP, phosphocreatine and myoglobin, suggesting that sildenafil improves dystrophic pathology through other mechanisms. Overall, these data indicate that dystrophin-deficiency disrupts SSM localization, promotes mitochondrial inefficiency and restricts maximal mitochondrial ATP-generating capacity. Together these defects decrease intramuscular ATP and the ability of mdx muscle mitochondria to meet ATP demand. These findings further understanding of how mitochondrial bioenergetic dysfunction contributes to disease pathogenesis in dystrophin-deficient skeletal muscle in vivo. PMID:23049075
Palmieri, Tina L; Holmes, James H; Arnoldo, Brett; Peck, Michael; Potenza, Bruce; Cochran, Amalia; King, Booker T; Dominic, William; Cartotto, Robert; Bhavsar, Dhaval; Kemalyan, Nathan; Tredget, Edward; Stapelberg, Francois; Mozingo, David; Friedman, Bruce; Greenhalgh, David G; Taylor, Sandra L; Pollock, Brad H
2017-10-01
Our objective was to compare outcomes of a restrictive to a liberal red cell transfusion strategy in 20% or more total body surface area (TBSA) burn patients. We hypothesized that the restrictive group would have less blood stream infection (BSI), organ dysfunction, and mortality. Patients with major burns have major (>1 blood volume) transfusion requirements. Studies suggest that a restrictive blood transfusion strategy is equivalent to a liberal strategy. However, major burn injury is precluded from these studies. The optimal transfusion strategy in major burn injury is thus needed but remains unknown. This prospective randomized multicenter trial block randomized patients to a restrictive (hemoglobin 7-8 g/dL) or liberal (hemoglobin 10-11 g/dL) transfusion strategy throughout hospitalization. Data collected included demographics, infections, transfusions, and outcomes. Eighteen burn centers enrolled 345 patients with 20% or more TBSA burn similar in age, TBSA burn, and inhalation injury. A total of 7054 units blood were transfused. The restrictive group received fewer blood transfusions: mean 20.3 ± 32.7 units, median = 8 (interquartile range: 3, 24) versus mean 31.8 ± 44.3 units, median = 16 (interquartile range: 7, 40) in the liberal group (P < 0.0001, Wilcoxon rank sum). BSI incidence, organ dysfunction, ventilator days, and time to wound healing (P > 0.05) were similar. In addition, there was no 30-day mortality difference: 9.5% restrictive versus 8.5% liberal (P = 0.892, χ test). A restrictive transfusion strategy halved blood product utilization. Although the restrictive strategy did not decrease BSI, mortality, or organ dysfunction in major burn injury, these outcomes were no worse than the liberal strategy (Clinicaltrials.gov identifier NCT01079247).
Biophysical markers of the peripheral vasoconstriction response to pain in sickle cell disease
Khaleel, Maha; Sunwoo, John; Shah, Payal; Detterich, Jon A.; Kato, Roberta M.; Thuptimdang, Wanwara; Meiselman, Herbert J.; Sposto, Richard; Tsao, Jennie; Wood, John C.; Zeltzer, Lonnie; Coates, Thomas D.; Khoo, Michael C. K.
2017-01-01
Painful vaso-occlusive crisis (VOC), a complication of sickle cell disease (SCD), occurs when sickled red blood cells obstruct flow in the microvasculature. We postulated that exaggerated sympathetically mediated vasoconstriction, endothelial dysfunction and the synergistic interaction between these two factors act together to reduce microvascular flow, promoting regional vaso-occlusions, setting the stage for VOC. We previously found that SCD subjects had stronger vasoconstriction response to pulses of heat-induced pain compared to controls but the relative degrees to which autonomic dysregulation, peripheral vascular dysfunction and their interaction are present in SCD remain unknown. In the present study, we employed a mathematical model to decompose the total vasoconstriction response to pain into: 1) the neurogenic component, 2) the vascular response to blood pressure, 3) respiratory coupling and 4) neurogenic-vascular interaction. The model allowed us to quantify the contribution of each component to the total vasoconstriction response. The most salient features of the components were extracted to represent biophysical markers of autonomic and vascular impairment in SCD and controls. These markers provide a means of phenotyping severity of disease in sickle-cell anemia that is based more on underlying physiology than on genotype. The marker of the vascular component (BMv) showed stronger contribution to vasoconstriction in SCD than controls (p = 0.0409), suggesting a dominant myogenic response in the SCD subjects as a consequence of endothelial dysfunction. The marker of neurogenic-vascular interaction (BMn-v) revealed that the interaction reinforced vasoconstriction in SCD but produced vasodilatory response in controls (p = 0.0167). This marked difference in BMn-v suggests that it is the most sensitive marker for quantifying combined alterations in autonomic and vascular function in SCD in response to heat-induced pain. PMID:28542469
Qiu, Jia-Jun; Liu, Yan-Na; Ren, Zhao-Rui; Yan, Jing-Bin
2017-11-01
Trisomy 21 is the most common chromosomal disorder and underlies Down syndrome. Epigenetics, such as DNA methylation and post-translational histone modifications, plays a vital role in Down syndrome. However, the functions of epigenetics-related long noncoding RNAs (lncRNAs), found to have an impact on neural diseases such as Alzheimer's disease, remain unknown in Down syndrome. In this study, we analyzed the RNA sequencing data from Down syndrome-induced pluripotent stem cells (iPSCs) and normal iPSCs. A large number of lncRNAs were identified differentially expressed in Down syndrome-iPSCs. Notably, stronger perturbation was shown in the expression of lncRNAs compared to protein coding genes (Kolmogorov-Smirnov test, P<0.05), suggesting that lncRNAs play more important roles in Down syndrome. Through gene set enrichment analysis and bi-clustering, we also found that most of the differential expressed lncRNAs were closely associated with mitochondrial functions (e.g. mitochondrion organization, P=3.21×10 -17 ; mitochondrial ATP synthesis coupled electron transport, P=1.73×10 -19 and mitochondrial membrane organization, P=4.04×10 -8 ). PCR-array and qRT-PCR results revealed that almost all genes related to mitochondria were down-regulated in Down syndrome-iPSCs, implying that mitochondria were dysfunctional in Down syndrome (e.g. ATP5B, Fold Change=-8.2317; COX6A1, Fold Change=-12.7788 and SLC25A17, Fold Change=-22.1296). All in all, our study indicated that a stronger perturbation of lncRNAs expression may lead to the dysfunction of mitochondria in Down syndrome. Copyright © 2017. Published by Elsevier Ltd.
Wei, QianQian; Chen, XuePing; Zheng, ZhenZhen; Huang, Rui; Guo, XiaoYan; Cao, Bei; Zhao, Bi; Shang, Hui-Fang
2014-12-01
Despite growing interest, the frequency and characteristics of frontal lobe functional and behavioral deficits in Chinese people with amyotrophic lateral sclerosis (ALS), as well as their impact on the survival of ALS patients, remain unknown. The Chinese version of the frontal assessment battery (FAB) and frontal behavioral inventory (FBI) were used to evaluate 126 sporadic ALS patients and 50 healthy controls. The prevalence of frontal lobe dysfunction was 32.5%. The most notable impairment domain of the FAB was lexical fluency (30.7%). The binary logistic regression model revealed that an onset age older than 45 years (OR 5.976, P = 0.002) and a lower educational level (OR 0.858, P = 0.002) were potential determinants of an abnormal FAB. Based on the FBI score, 46.0% of patients showed varied degrees of frontal behavioral changes. The most common impaired neurobehavioral domains were irritability (25.4%), logopenia (20.6%) and apathy (19.0%). The binary logistic regression model revealed that the ALS Functional Rating Scale-Revised scale score (OR 0.127, P = 0.001) was a potential determinant of an abnormal FBI. Frontal functional impairment and the severity of frontal behavioral changes were not associated with the survival status or the progression of ALS by the cox proportional hazard model and multivariate regression analyses, respectively. Frontal lobe dysfunction and frontal behavioral changes are common in Chinese ALS patients. Frontal lobe dysfunction may be related to the onset age and educational level. The severity of frontal behavioral changes may be associated with the ALSFRS-R. However, the frontal functional impairment and the frontal behavioral changes do not worsen the progression or survival of ALS.
Schmid-Schönbein, Geert W.
2017-01-01
Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737
Zhang, Ling; Du, Jianfeng; Yano, Naohiro; Wang, Hao; Zhao, Yu Tina; Dubielecka, Patrycja M; Zhuang, Shougang; Chin, Y Eugene; Qin, Gangjian; Zhao, Ting C
2017-08-01
Histone deacetylases are recently identified to act as key regulators for cardiac pathophysiology and metabolic disorders. However, the function of histone deacetylase (HDAC) in controlling cardiac performance in Type II diabetes and obesity remains unknown. Here, we determine whether HDAC inhibition attenuates high fat diet (HFD)-induced cardiac dysfunction and improves metabolic features. Adult mice were fed with either HFD or standard chow food for 24 weeks. Starting at 12 weeks, mice were divided into four groups randomly, in which sodium butyrate (1%), a potent HDAC inhibitor, was provided to chow and HFD-fed mice in drinking water, respectively. Glucose intolerance, metabolic parameters, cardiac function, and remodeling were assessed. Histological analysis and cellular signaling were examined at 24 weeks following euthanization of mice. HFD-fed mice demonstrated myocardial dysfunction and profound interstitial fibrosis, which were attenuated by HDAC inhibition. HFD-induced metabolic syndrome features insulin resistance, obesity, hyperinsulinemia, hyperglycemia, lipid accumulations, and cardiac hypertrophy, these effects were prevented by HDAC inhibition. Furthermore, HDAC inhibition attenuated myocyte apoptosis, reduced production of reactive oxygen species, and increased angiogenesis in the HFD-fed myocardium. Notably, HFD induced decreases in MKK3, p38, p38 regulated/activated protein kinase (PRAK), and Akt-1, but not p44/42 phosphorylation, which were prevented by HDAC inhibition. These results suggest that HDAC inhibition plays a critical role to preserve cardiac performance and mitigate metabolic disorders in obesity and diabetes, which is associated with MKK3/p38/PRAK pathway. The study holds promise in developing a new therapeutic strategy in the treatment of Type II diabetic-induced heart failure and metabolic disorders. J. Cell. Biochem. 118: 2395-2408, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Female sexual dysfunction and adolescents.
Greydanus, Donald E; Matytsina, Lyubov
2010-10-01
To review recent publications in the area of sexual dysfunction in females including the adolescent age group. Though as many as 40% of adult females have a sexual dysfunction, the incidence among adolescent females is unknown. Though over half of adolescents are sexually active, sexual dysfunction is not a term universally accepted among the general public as well as researchers. Research on sexual dysfunction in females typically starts with age 18 years or over. Causes of sexual dysfunction include medical disorders, gynecological problems, which started from the adolescent age, psychiatric disorders, and complications of medications such as selective serotonin reuptake inhibitors (SSRIs), antipsychotics, and others. Management includes identification of the specific sexual dysfunction and treatment of the underlying condition, including surgical treatment in such cases as absent vagina or obstetrics fistula. Psychological therapy is helpful when psychological factors are contributory to the dysfunction. Pharmacologic principles of management cases can, for example, include treatment of gynecological problems such as pelvic inflammatory disease (PID) or endometriosis as a cause of sexual dysfunction or include removal of the offending drug, use of glutamatergic strategies or trazodone in SSRI-association dysfunction, and addition of bupropion or other medications in select cases. No medication is FDA-approved for sexual dysfunction in females. Sexual dysfunction in females includes lack of sexual desire, sexual pain disorders (as dyspareunia), anorgasmia, and sexual arousal dysfunction. Acceptance of the high incidence of sexual dysfunction in all female populations is necessary to appreciate this phenomenon in the adolescent cohort, because some gynecological disease can arise from the adolescent age and can cause sexual dysfunction. Some sexual dysfunctions require immediate treatment, including surgical in the case of congenital anomaly, ovarian cyst, or tumor. Current understanding is based on extrapolation of research in the adult population. Management principles include removal of offending drugs and treatment of underlying disorders. Research in the adolescent population is recommended for more understanding and acceptance of this phenomenon in this age group.
Effect of gender and sex hormones on immune responses following shock.
Angele, M K; Schwacha, M G; Ayala, A; Chaudry, I H
2000-08-01
Several clinical and experimental studies show a gender dimorphism of the immune and organ responsiveness in the susceptibility to and morbidity from shock, trauma, and sepsis. In this respect, cell-mediated immune responses are depressed in males after trauma-hemorrhage, whereas they are unchanged or enhanced in females. Sex hormones contribute to this gender-specific immune response after adverse circulatory conditions. Specifically, studies indicate that androgens are responsible for the immunodepression after trauma-hemorrhage in males. In contrast, female sex steroids seem to exhibit immunoprotective properties after trauma and severe blood loss, because administration of estrogen prevents the androgen-induced immunodepression in castrated male mice. Nonetheless, the precise underlying mechanisms for these immunomodulatory effects of sex steroids after shock remain unknown. Although testosterone depletion, testosterone receptor antagonism, or estrogen treatment has been shown to prevent the depression of immune functions after trauma-hemorrhage, it remains to be established whether differences in the testosterone-estradiol ratio are responsible for the immune dysfunction. Furthermore, sex hormone receptors have been identified on various immune cells, suggesting direct effects. Thus, the immunomodulatory properties of sex hormones after trauma-hemorrhage might represent novel therapeutic strategies for the treatment of immunodepression in trauma patients.
Grau-Roma, Llorenç; Peckham, Robert; Paton, Jacqui; Stahel, Anina; de Brot, Simone
2017-01-01
The postmortem examination of a 14-y-old Appaloosa gelding with clinically diagnosed pituitary pars intermedia dysfunction showed a unique finding of moderate multifocal lymphocytic hypophysitis (LH). The pituitary glands of 24 horses submitted for postmortem examination were examined grossly and examined histologically for the presence of lymphocytes. Of these 23 horses, 1 additional case suffered from moderate LH. The 2 cases with LH tested negative for Equid herpesvirus 1 and 4 by polymerase chain reaction and immunohistochemistry (IHC), and no viral particles were observed by electron microscopy in 1 case examined. The cause of LH remains unknown, but based on the T-lymphocytic nature of the inflammation and the human literature, an immune-mediated origin is hypothesized. In addition, the review of 24 cases revealed that 10 horses had few and small multifocal lymphocytic infiltrates within the pituitary gland; the remaining 12 horses showed no evident lymphocytes when examined by hematoxylin and eosin. IHC for CD3 showed the presence of a small number of individual T-lymphocytes scattered through the gland in all examined horses, which appears therefore to be a normal feature of the pituitary gland in horses.
Advances in the pathophysiology of pre-eclampsia and related podocyte injury
Craici, Iasmina M.; Wagner, Steven J.; Weissgerber, Tracey L.; Grande, Joseph P.; Garovic, Vesna D.
2014-01-01
Pre-eclampsia is a pregnancy-specific hypertensive disorder that may lead to serious maternal and fetal complications. It is a multisystem disease that is commonly, but not always, accompanied by proteinuria. Its cause(s) remain unknown, and delivery remains the only definitive treatment. It is increasingly recognized that many pathophysiological processes contribute to this syndrome, with different signaling pathways converging at the point of systemic endothelial dysfunction, hypertension, and proteinuria. Different animal models of pre-eclampsia have proven utility for specific aspects of pre-eclampsia research, and offer insights into pathophysiology and treatment possibilities. Therapeutic interventions that specifically target these pathways may optimize pre-eclampsia management and may improve fetal and maternal outcomes. In addition, recent findings regarding placental, endothelial, and podocyte pathophysiology in pre-eclampsia provide unique and exciting possibilities for improved diagnostic accuracy. Emerging evidence suggests that testing for urinary podocytes or their markers may facilitate the prediction and diagnosis of pre-eclampsia. In this review, we explore recent research regarding placental, endothelial, and podocyte pathophysiology. We further discuss new signaling and genetic pathways that may contribute to pre-eclampsia pathophysiology, emerging screening and diagnostic strategies, and potential targeted interventions. PMID:24573315
2017-07-25
Breast Carcinoma; Carcinoma of Unknown Primary Origin; Endometrial Carcinoma; Esophageal Carcinoma; Lung Carcinoma; Malignant Head and Neck Neoplasm; Melanoma; Ovarian Carcinoma; Renal Pelvis and Ureter Urothelial Carcinoma; Testicular Lymphoma
Recent advances in female sexual dysfunction.
Davis, A R
2000-06-01
Female sexuality has received little scientific study. Recently, increased interest in this field has generated new research in the epidemiology, pathophysiology, and pharmacotherapy of female sexual dysfunction (FSD). A new FSD classification system has been proposed. Although sexual difficulties are highly prevalent among women, the degree of associated distress is unknown. Risk factors for FSD are probably both psychologic and physiologic. Aging or menopause is associated with lubrication difficulties, which can be treated with hormone replacement. Hysterectomy seems more likely to result in improvement rather then deterioration of sexual functioning. Depression may be a predictor of sexual dysfunction after hysterectomy. Vasoactive agents are currently being evaluated as treatment for female sexual arousal disorder. The most important advance in the study of female sexual function is the recent surge of interest in this relatively unexplored field.
On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease.
Segura-Aguilar, Juan
2017-06-01
For 50 years ago was introduced L-3,4-dihydroxyphenylalanine (L-dopa) in Parkinson's disease treatment and during this significant advances has been done but what trigger the degeneration of the nigrostriatal system remain unknown. There is a general agreement in the scientific community that mitochondrial dysfunction, protein degradation dysfunction, alpha-synuclein aggregation to neurotoxic oligomers, neuroinflammation, oxidative and endoplasmic reticulum stress are involved in the loss of dopaminergic neurons containing neuromelanin in Parkinson's disease. The question is what triggers these mechanisms. The age of normal onset in idiopathic Parkinson's disease suggests that environmental factors such as metals, pollutants or genetic mutations cannot be involved because these factors are related to early onset of Parkinsonism. Therefore, we have to search for endogenous neurotoxins and neuroprotection in order to understand what trigger the loss of dopaminergic neurons. One important feature of Parkinson's disease is the rate of the degenerative process before the motor symptoms are evident and during the disease progression. The extremely slow rate of Parkinson's disease suggests that the neurotoxins and the neuroprotection have to be related to dopamine metabolism. Possible candidates for endogenous neurotoxins are alpha-synuclein neurotoxic oligomers, 4-dihydroxyphenylacetaldehyde and ortho-quinones formed during dopamine oxidation to neuromelanin. Vesicular monoamine transporter-2, DT-diaphorase and glutathione transferase M2-2 seems to be the most important neuroprotective mechanism to prevent neurotoxic mechanism during dopamine oxidation.
De Clercq, Inge; Vermeirssen, Vanessa; Van Aken, Olivier; Vandepoele, Klaas; Murcha, Monika W.; Law, Simon R.; Inzé, Annelies; Ng, Sophia; Ivanova, Aneta; Rombaut, Debbie; van de Cotte, Brigitte; Jaspers, Pinja; Van de Peer, Yves; Kangasjärvi, Jaakko; Whelan, James; Van Breusegem, Frank
2013-01-01
Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain–containing NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana. PMID:24045019
The dosimetry of brachytherapy-induced erectile dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrick, Gregory S.; Butler, Wayne M
2003-12-31
There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40%more » and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.« less
Abbott, D H; Barnett, D K; Bruns, C M; Dumesic, D A
2005-01-01
The aetiology of polycystic ovary syndrome (PCOS) remains unknown. This familial syndrome is prevalent among reproductive-aged women and its inheritance indicates a dominant regulatory gene with incomplete penetrance. However, promising candidate genes have proven unreliable as markers for the PCOS phenotype. This lack of genetic linkage may represent both extreme heterogeneity of PCOS and difficulty in establishing a universally accepted PCOS diagnosis. Nevertheless, hyperandrogenism is one of the most consistently expressed PCOS traits. Animal models that mimic fetal androgen excess may thus provide unique insight into the origins of the PCOS syndrome. Many female mammals exposed to androgen excess in utero or during early post-natal life typically show masculinized and defeminized behaviour, ovulatory dysfunction and virilized genitalia, although behavioural and ovulatory dysfunction can coexist without virilized genitalia based upon the timing of androgen excess. One animal model shows particular relevance to PCOS: the prenatally androgenized female rhesus monkey. Females exposed to androgen excess early in gestation exhibit hyperandrogenism, oligomenorrhoea and enlarged, polyfollicular ovaries, in addition to LH hypersecretion, impaired embryo development, insulin resistance accompanying abdominal obesity, impaired insulin response to glucose and hyperlipidaemia. Female monkeys exposed to androgen excess late in gestation mimic these programmed changes, except for LH and insulin secretion defects. In utero androgen excess may thus variably perturb multiple organ system programming and thereby provide a single, fetal origin for a heterogeneous adult syndrome.
Mączewski, M; Mączewska, J; Duda, M
2008-01-01
Background and purpose: Diet-induced hypercholesterolaemia exacerbates post-myocardial infarction (MI) ventricular remodelling and heart failure, but the mechanism of this phenomenon remains unknown. This study examined whether worsening of post-MI ventricular remodelling induced by dietary hypercholesterolaemia was related to upregulation of angiotensin II type 1 (AT1) receptor in the rat heart. Experimental approach: MI was induced surgically in rats fed normal or high cholesterol diet. Both groups of rats were then assigned to control, atorvastatin, losartan or atorvastatin+losartan-treated subgroups and followed for 8 weeks. Left ventricular (LV) function was assessed with echocardiography. In isolated hearts, LV pressures were measured with a latex balloon and a tip catheter. AT1-receptor density was assessed in LV membranes with radioligand-binding assays. Key results: High cholesterol diet exacerbated LV dilation and dysfunction in post-MI hearts. Atorvastatin or losartan prevented these hypercholesterolaemia-induced effects, whereas their combination was not more effective than each drug alone. AT1 receptors were upregulated 8 weeks after MI, this was further increased by hypercholesterolaemia and restored to baseline levels by atorvastatin. Conclusions and implications: Hypercholesterolaemia exacerbated LV remodelling and dysfunction in post-MI rat hearts and upregulated cardiac AT1 receptors. All these effects were effectively prevented by atorvastatin. Thus, the pleiotropic statin effects may include interference with the renin-angiotensin system through downregulation of AT1 receptors. PMID:18536757
Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism
Wang, Wenting; Li, Chenchen; Chen, Qian; Hawrot, James; Yao, Annie Y.; Gao, Xian; Lu, Congyi; Zang, Ying; Lyman, Katherine; Wang, Dongqing; Guo, Baolin; Wu, Shengxi; Gerfen, Charles R.; Fu, Zhanyan
2017-01-01
The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice. PMID:28414301
2010-01-01
Background In recent years, several lines of evidence have shown an increase in Parkinson's disease prevalence in rural environments where pesticides are heavily used. Although, the underlying mechanism for neuronal degeneration in sporadic PD remains unknown, mitochondrial dysfunction, oxidative stress and proteasomal dysfunction are proposed as contributing factors. In this study rats were chronically and continuously exposed to the pesticide, dichlorvos to identify the molecular mechanism of nigrostaital neuronal degeneration. Result Chronic dichlorvos exposure (2.50 mg/kg b.wt.s.c/daily for 12 weeks) caused nigrostriatal dopaminergic degeneration. The degenerative changes were accompanied by a loss of 60-80% of the nigral dopamine neurons and 60-70% reduction in striatal dopamine and tyrosine hydroxylase levels. Dichlorvos exposed animals also showed α -synuclein and ubiquitin positive inclusions along with swollen, dystrophic neurites and mitochondrial abnormalities like decreased complex I&IV activities, increased mitochondrial size, axonal degeneration and presence of electron dense perinuclear cytoplasmic inclusions in the substantia nigra of rats. These animals also showed evidence of oxidative stress, including increased mitochondrial ROS levels, decreased MnSOD activity and increased lipid peroxidation. Measurable impairments in neurobehavioral indices were also observed. Notable exacerbations in motor impairments, open field and catalepsy were also evident in dichlorvos exposed animals. Conclusion All these findings taken together indicate that chronic dichlorvos exposure may cause nigrostaital neurodegenaration and significant behavioral impairments. PMID:21073741
NASA Astrophysics Data System (ADS)
Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava
2016-03-01
Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.
[THE ROLE OF ANGIOGENIC FACTORS IN THE DIAGNOSTICS OF PREGNANCY COMPLICATED WITH PREECLAMPSIA].
Tagiyeva, I; Aliyeva, S; Bagirova, S; Shamsadinskaya, N; Agaeva, K
2017-01-01
The pathophysiology of preeclampsia remains largely unknown. It has been hypothesized that placental ischemia is an early event, leading to placental production of a soluble factor or factors that cause maternal endothelial dysfunction, resulting in the clinical findings of hypertension, proteinuria, and edema. Here, we confirm that placental soluble fms-like tyrosine kinase 1 (sFlt1), an antagonist of vascular growth factor (VEGF) and placental growth factor (PIGF), is upregulated in preeclampsia, leading to increased systemic levels of sFlt1. Our research demonstrate that increased circulating sFlt1 in III trimester in patients with preeclampsia is associated with decreased circulating levels of free VEGF and PIGF, resulting in endothelial dysfunction, comparing with control group. These observations suggest that excess circulating sFlt1 contributes to the pathogenesis of preeclampsia. 45 pregnant women with preeclampsia of different severity degrees were under observation. Control group included 20 healthy pregnant. Pregnant women with preeclampsia were subdivided into 2 groups. There were 11 (24,4%) pregnant with severe degree of preeclamsia (I group), the II group included 34 pregnant with mild degree of preeclampsia. Increased expression of soluble tyrosine kinase-1 (sFlt-1), together with decreased PIGF and VEGF signaling, were first abnormalities described. Thus, determination of levels angiogenic factors: PIGF, VEGF and sFlt-1 is very important for prediction severity of preeclampsia.
Serine 421 regulates mutant huntingtin toxicity and clearance in mice
Kratter, Ian H.; Zahed, Hengameh; Lau, Alice; Daub, Aaron C.; Weiberth, Kurt F.; Gu, Xiaofeng; Humbert, Sandrine; Yang, X. William; Osmand, Alex; Steffan, Joan S.; Masliah, Eliezer
2016-01-01
Huntington’s disease (HD) is a progressive, adult-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the N-terminal region of the protein huntingtin (HTT). There are no cures or disease-modifying therapies for HD. HTT has a highly conserved Akt phosphorylation site at serine 421, and prior work in HD models found that phosphorylation at S421 (S421-P) diminishes the toxicity of mutant HTT (mHTT) fragments in neuronal cultures. However, whether S421-P affects the toxicity of mHTT in vivo remains unknown. In this work, we used murine models to investigate the role of S421-P in HTT-induced neurodegeneration. Specifically, we mutated the human mHTT gene within a BAC to express either an aspartic acid or an alanine at position 421, mimicking tonic phosphorylation (mHTT-S421D mice) or preventing phosphorylation (mHTT-S421A mice), respectively. Mimicking HTT phosphorylation strongly ameliorated mHTT-induced behavioral dysfunction and striatal neurodegeneration, whereas neuronal dysfunction persisted when S421 phosphorylation was blocked. We found that S421 phosphorylation mitigates neurodegeneration by increasing proteasome-dependent turnover of mHTT and reducing the presence of a toxic mHTT conformer. These data indicate that S421 is a potent modifier of mHTT toxicity and offer in vivo validation for S421 as a therapeutic target in HD. PMID:27525439
Effects of edaravone on a rat model of punch-drunk syndrome.
Nomoto, Jun; Kuroki, Takao; Nemoto, Masaaki; Kondo, Kosuke; Harada, Naoyuki; Nagao, Takeki
2011-01-01
Punch-drunk syndrome (PDS) refers to a pathological condition in which higher brain dysfunction occurs in a delayed fashion in boxers who have suffered repeated blows to the head. However, the underlying mechanisms remain unknown. This study attempted to elucidate the mechanism of higher brain dysfunction observed following skull vibration in two experiments involving a rat model of PDS. Experiment 1 evaluated the effects of edaravone on histological changes in the rat brain tissue after skull vibration (frequency 20 Hz, amplitude 4 mm, duration 60 minutes). The amount of free radicals formed in response to skull vibration was very small, and edaravone administration reduced the number of glial fibrillary acidic protein and advanced glycation end product-positive cells. Experiment 2 examined the time course of change in learning ability following skull vibration in Tokai High Avoider rats. The learning ability of individual rats was evaluated by the Sidman-type electric shock avoidance test 5 days after the last session of skull vibration or final anesthesia and once a month for 9 consecutive months. Delayed learning disability was not observed in rats administered edaravone immediately after skull vibration. These results suggest that free radical-induced astrocyte activation and subsequent glial scar formation contribute to the occurrence of delayed learning disabilities. Edaravone administration after skull vibration suppressed glial scar formation, thereby inhibiting the occurrence of delayed learning disabilities.
Murad-Regadas, Sthela Maria; Regadas, Francisco Sergio P; Rodrigues, Lusmar Veras; Fernandes, Graziela Olivia da Silva; Buchen, Guilherme; Kenmoti, Viviane T
2012-01-01
Management of patients with obstructed defecation syndrome is still controversial. To analyze the efficacy of clinical, clinical treatment followed by biofeedback, and surgical treatment in patients with obstructed defecation, rectocele and multiple dysfunctions evaluated with echodefecography. The study included 103 females aged 26-84 years with obstructed defecation, grade-II/III rectocele and multiple dysfunctions on echodefecography. Patients were distributed into three treatment groups and constipation scores were assigned. Group I: 34 (33%) patients with significant improvement of symptoms through clinical management only. Group II: 14 (14%) with improvement through clinical treatment plus biofeedback. Group III: 55 (53%) referred to surgery due to treatment failure. Group I: 20 (59%) patients had grade-II rectocele, 14 (41%) grade-III. Obstructed defecation syndrome was associated with intussusception (41%), mucosal prolapse (41%), anismus (29%), enterocele (9%) or 2 dysfunctions (23%). The average constipation score decreased significantly from 11 to 5. Group II: 11 (79%) grade-II rectocele, 3 (21%) grade-III, associated with intussusception (7%), mucosal prolapse (43%), anismus (71%) or 2 dysfunctions (29%). There was significant decrease in constipation score from 13 to 6. Group III: 8 (15%) grade-II rectocele, 47 (85%) grade-III, associated with intussusception (42%), mucosal prolapse (40%) or 2 dysfunctions (32%). The constipation score remained unchanged despite clinical treatment and biofeedback. Twenty-three underwent surgery had a significantly decrease in constipation score from 12 to 4. The remaining 32 (31%) patients which 22 refused surgery, 6 had low anal pressure and 4 had slow transit. Approximately 50% of patients with obstructed defecation, rectocele and multiple dysfunctions presented a satisfactory response to clinical treatment and/or biofeedback. Surgical repair was mainly required in patients with grade-III rectocele whose constipation scores remained high despite all efforts.
Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro
2015-05-01
Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29 weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Occupational vocal cord dysfunction due to exposure to wood dust and xerographic toner.
Muñoz, Xavier; Roger, Alex; De la Rosa, David; Morell, Ferran; Cruz, Maria J
2007-04-01
Vocal cord dysfunction is a poorly understood entity that is often misdiagnosed as asthma. Both irritant and non-irritant vocal cord dysfunction have been described. This report presents two cases of irritant vocal cord dysfunction secondary to specific environmental exposure, the first to iroko and western red cedar wood (a carpenter) and the second to xerographic printing toner (a secretary). Several tests were performed, including chest radiographs, measurements of total serum immunoglobulin E, skin prick tests with common pneumoallergens (as well as iroko and western red cedar in the first case), pulmonary function studies, methacholine challenge testing, specific inhalation challenge performed with suspected agents in a single-blinded fashion, and peak expiratory flow testing and fiberoptic rhinolaryngoscopy (in case 1). During the specific inhalation challenge, the patients showed dysphonia, chest tightness, inspiratory stridor, and flattening of the inspiratory limb of the maximum flow-volume loop in spirometry, with no significant decreases in the level of forced expiratory volume in 1 second; fiberoptic rhinolaryngoscopy confirmed the diagnosis of vocal cord dysfunction in case 1. It is important to know that agents that can cause occupational asthma can also cause vocal cord dysfunction. The mechanisms by which these agents produce vocal cord dysfunction are unknown. The differences in the clinical presentation of the patients described relative to the reported cases suggest that more than one pathophysiological mechanism may be implicated in the genesis of this entity.
Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald
2014-01-01
Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75–81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.—Vernochet, C., Damilano, F., Mourier, A., Bezy, O., Mori, M. A., Smyth, G., Rosenzweig, A., Larsson, N.-G., Kahn, C. R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. PMID:25005176
The pathophysiology of cigarette smoking and cardiovascular disease: an update.
Ambrose, John A; Barua, Rajat S
2004-05-19
Cigarette smoking (CS) continues to be a major health hazard, and it contributes significantly to cardiovascular morbidity and mortality. Cigarette smoking impacts all phases of atherosclerosis from endothelial dysfunction to acute clinical events, the latter being largely thrombotic. Both active and passive (environmental) cigarette smoke exposure predispose to cardiovascular events. Whether there is a distinct direct dose-dependent correlation between cigarette smoke exposure and risk is debatable, as some recent experimental clinical studies have shown a non-linear relation to cigarette smoke exposure. The exact toxic components of cigarette smoke and the mechanisms involved in CS-related cardiovascular dysfunction are largely unknown, but CS increases inflammation, thrombosis, and oxidation of low-density lipoprotein cholesterol. Recent experimental and clinical data support the hypothesis that cigarette smoke exposure increases oxidative stress as a potential mechanism for initiating cardiovascular dysfunction.
New insights into environmental enteric dysfunction
USDA-ARS?s Scientific Manuscript database
Environmental enteric dysfunction (EED) has been recognised as an important contributing factor to physical and cognitive stunting, poor response to oral vaccines, limited resilience to acute infections and ultimately global childhood mortality. The aetiology of EED remains poorly defined but the ep...
Crystal structure of the human glucose transporter GLUT1
NASA Astrophysics Data System (ADS)
Deng, Dong; Xu, Chao; Sun, Pengcheng; Wu, Jianping; Yan, Chuangye; Hu, Mingxu; Yan, Nieng
2014-06-01
The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.
Maternal MDMA administration in mice leads to neonatal growth delay.
Kaizaki, Asuka; Tanaka, Sachiko; Yoshida, Takemi; Numazawa, Satoshi
2014-02-01
The psychoactive recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is widely abused. The fact that MDMA induces neurotoxic damage in serotonergic nerve endings is well known. However, the effects of MDMA on pregnant and neonatal animals remain unknown. Therefore, we studied the effects of gestational exposure to MDMA on birth, growth, and behavior of pups. Female BALB/c mice were orally administered either water (10 ml/kg) or MDMA (20 mg/10 ml/kg) from gestational day 1 to postnatal day (P) 21. MDMA did not affect the birth rate, but the survival rate of the pups significantly decreased. A significant reduction in body weight gain was observed in pups from MDMA-administered dams during P3-P21. Maternal MDMA treatment caused an attenuated cliff avoidance reaction and decreased motor function in the pups, as determined by the wire hanging test. These results suggest that MDMA treatment during pregnancy and lactation causes growth retardation and dysfunction of motor neurons in mouse pups.
Wang, Yangping; Bai, Yang; Li, Yashu; Liang, Guangping; Jiang, Yufeng; Liu, Zhongyang; Liu, Meixi; Hao, Jianlei; Zhang, Xiaorong; Hu, Xiaohong; Chen, Jian; Wang, Rupeng; Yin, Zhinan; Wu, Jun; Luo, Gaoxing; He, Weifeng
2017-01-01
Altered homeostasis and dysfunction of dendritic epidermal T cells (DETCs) contribute to abnormal diabetic wound healing. IL-15 plays important roles in survival and activation of T lymphocytes. Recently, reduction of epidermal IL-15 has been reported as an important mechanism for abnormal DETC homeostasis in streptozotocin -induced diabetic animals. However, the role of IL-15 in impaired diabetic wound healing remains unknown. Here, we found that, through rescuing the insufficient activation of DETCs, IL-15 increased IGF-1 production by DETCs and thereby promoted diabetic skin wound repair. Regulation of IGF-1 in DETCs by IL-15 was partly dependent on the mTOR pathway. In addition, expression of IL-15 and IGF-1 were positively correlated in wounded epidermis. Together, our data indicated that IL-15 enhanced IGF-1 production by DETCs to promoting diabetic wound repair, suggesting IL-15 as a potential therapeutic agent for managing diabetic wound healing.
Cerebral blood flow is reduced in patients with sepsis syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowton, D.L.; Bertels, N.H.; Prough, D.S.
The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO/sub 2/ in nine patients with sepsis syndrome using the /sup 133/Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, themore » specific reactivity of the cerebral vasculature to changes in CO/sub 2/ was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study.« less
The DSM diagnostic criteria for sexual aversion disorder.
Brotto, Lori A
2010-04-01
Sexual Aversion Disorder (SAD) is one of two Sexual Desire Disorders in the Diagnostic and Statistical Manual of Mental Disorders (DSM) and is defined as a "persistent or recurrent extreme aversion to, and avoidance of, all or almost all, genital sexual contact with a sexual partner" which causes distress or interpersonal difficulty. This paper reviews the short history of the diagnosis of SAD as well as the existing literature on its prevalence and etiology. Kaplan (1987) emphasized the phobic qualities of individuals with SAD who are highly avoidant of all forms of sexual contact. Much has also been written about the overlap between SAD and panic states, and the more obvious similarities between SAD and anxiety as opposed to sexual desire are described. There has been very little new published data on SAD since the publication of DSM-IV and the precise prevalence remains unknown. This paper critiques the placement of SAD as a Sexual Dysfunction and argues that it might more appropriately be placed within the Specific Phobia grouping as an Anxiety Disorder.
Altered effective connectivity of default model brain network underlying amnestic MCI
NASA Astrophysics Data System (ADS)
Yan, Hao; Wang, Yonghui; Tian, Jie
2012-02-01
Mild cognitive impairment (MCI) is the transitional, heterogeneous continuum from healthy elderly to Alzheimer's disease (AD). Previous studies have shown that brain functional activity in the default mode network (DMN) is impaired in MCI patients. However, the altered effective connectivity of the DMN in MCI patients remains largely unknown. The present study combined an independent component analysis (ICA) approach with Granger causality analysis (mGCA) to investigate the effective connectivity within the DMN in 12 amnestic MCI patients and 12 age-matched healthy elderly. Compared to the healthy control, the MCI exhibited decreased functional activity in the posterior DMN regions, as well as a trend towards activity increases in anterior DMN regions. Results from mGCA further supported this conclusion that the causal influence projecting to the precuneus/PCC became much weaker in MCI, while stronger interregional interactions emerged within the frontal-parietal cortices. These findings suggested that abnormal effective connectivity within the DMN may elucidate the dysfunctional and compensatory processes in MCI brain networks.
Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD.
Udi, Shiran; Hinden, Liad; Earley, Brian; Drori, Adi; Reuveni, Noa; Hadar, Rivka; Cinar, Resat; Nemirovski, Alina; Tam, Joseph
2017-12-01
Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB 1 R) induces nephropathy, whereas CB 1 R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB 1 R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β -oxidation. Collectively, these findings indicate that renal proximal tubule cell CB 1 R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway. Copyright © 2017 by the American Society of Nephrology.
Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses
Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.
2014-01-01
SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027
Kanayama, Misako; Miyaoka, Tsuyoshi; Araki, Tomoko; Hayashida, Maiko; Hashioka, Sadayuki; Horiguchi, Jun
2018-01-01
Dysfunction of the autonomic nervous system (ANS) in schizophrenia has been detected by electrophysiological methods, but the underlying mechanisms remain unknown. Several studies have suggested that measuring salivary alpha-amylase activity levels is useful for evaluating the ANS activity and that sAA levels increase in schizophrenia and correlate with Brief Psychiatric Rating Scale (BPRS) scores. However, no study has examined the relationship between sAA activity levels and symptoms of schizophrenia with catatonic state. We present the case of a 59-year-old female with persistent catatonic schizophrenia treated by electroconvulsive therapy. We evaluated the ANS activity by measuring sAA activity levels before and after ECT, and we evaluated her symptoms using the BPRS and Bush-Francis Catatonia Rating Scale (BFCRS). ECT was highly effective and BPRS and BFCRS scores substantially decreased. sAA activity levels decreased from 125 kU/l to 33 kU/l. sAA activity levels could be a potential biomarker of schizophrenia with catatonic state.
An essential cell-autonomous role for hepcidin in cardiac iron homeostasis
Lakhal-Littleton, Samira; Wolna, Magda; Chung, Yu Jin; Christian, Helen C; Heather, Lisa C; Brescia, Marcella; Ball, Vicky; Diaz, Rebeca; Santos, Ana; Biggs, Daniel; Clarke, Kieran; Davies, Benjamin; Robbins, Peter A
2016-01-01
Hepcidin is the master regulator of systemic iron homeostasis. Derived primarily from the liver, it inhibits the iron exporter ferroportin in the gut and spleen, the sites of iron absorption and recycling respectively. Recently, we demonstrated that ferroportin is also found in cardiomyocytes, and that its cardiac-specific deletion leads to fatal cardiac iron overload. Hepcidin is also expressed in cardiomyocytes, where its function remains unknown. To define the function of cardiomyocyte hepcidin, we generated mice with cardiomyocyte-specific deletion of hepcidin, or knock-in of hepcidin-resistant ferroportin. We find that while both models maintain normal systemic iron homeostasis, they nonetheless develop fatal contractile and metabolic dysfunction as a consequence of cardiomyocyte iron deficiency. These findings are the first demonstration of a cell-autonomous role for hepcidin in iron homeostasis. They raise the possibility that such function may also be important in other tissues that express both hepcidin and ferroportin, such as the kidney and the brain. DOI: http://dx.doi.org/10.7554/eLife.19804.001 PMID:27897970
Morimura, Naoko; Yasuda, Hiroki; Yamaguchi, Kazuhiko; Katayama, Kei-Ichi; Hatayama, Minoru; Tomioka, Naoko H; Odagawa, Maya; Kamiya, Akiko; Iwayama, Yoshimi; Maekawa, Motoko; Nakamura, Kazuhiko; Matsuzaki, Hideo; Tsujii, Masatsugu; Yamada, Kazuyuki; Yoshikawa, Takeo; Aruga, Jun
2017-06-12
Lrfn2/SALM1 is a PSD-95-interacting synapse adhesion molecule, and human LRFN2 is associated with learning disabilities. However its role in higher brain function and underlying mechanisms remain unknown. Here, we show that Lrfn2 knockout mice exhibit autism-like behavioural abnormalities, including social withdrawal, decreased vocal communications, increased stereotyped activities and prepulse inhibition deficits, together with enhanced learning and memory. In the hippocampus, the levels of synaptic PSD-95 and GluA1 are decreased. The synapses are structurally and functionally immature with spindle shaped spines, smaller postsynaptic densities, reduced AMPA/NMDA ratio, and enhanced LTP. In vitro experiments reveal that synaptic surface expression of AMPAR depends on the direct interaction between Lrfn2 and PSD-95. Furthermore, we detect functionally defective LRFN2 missense mutations in autism and schizophrenia patients. Together, these findings indicate that Lrfn2/LRFN2 serve as core components of excitatory synapse maturation and maintenance, and their dysfunction causes immature/silent synapses with pathophysiological state.
Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.
2018-01-01
p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369
Peng, Yudong; Meng, Kai; Jiang, Lili; Zhong, Yucheng; Yang, Yong; Lan, Yin
2017-01-01
Endothelial cells’ (EC) injury is a major step for the pathological progression of atherosclerosis. Recent study demonstrated that thymic stromal lymphopoietin (TSLP) exerts a protective role in atherosclerosis. However, the effect of TSLP and the exact molecular mechanism involved in EC remains unknown. In the present study, we found that long noncoding RNA (lncRNA) HOTAIR was much lower in EC from atherosclerotic plaque. Functional assays showed that HOTAIR facilitated cell proliferation and migration, and suppressed apoptosis in EC. Moreover, we demonstrated that TSLP functions upstream of HOTAIR. We found that serum level of TSLP was decreased in atherosclerosis patients and serum TSLP level positively correlated with HOTAIR expression in EC. Further investigation demonstrated that TSLP activated HOTAIR transcription through PI3K/AKT-IRF1 pathway and then regulates the EC proliferation and migration. TSLP-HOTAIR axis also plays a protective role in low-density lipoprotein (ox-LDL)-induced EC injury. Taken together, TSLP-HOTAIR may be a potential therapy for EC dysfunction in atherosclerosis. PMID:28615347
Kim, Jiwon; Di Franco, Antonino; Seoane, Tania; Srinivasan, Aparna; Kampaktsis, Polydoros N; Geevarghese, Alexi; Goldburg, Samantha R; Khan, Saadat A; Szulc, Massimiliano; Ratcliffe, Mark B; Levine, Robert A; Morgan, Ashley E; Maddula, Pooja; Rozenstrauch, Meenakshi; Shah, Tara; Devereux, Richard B; Weinsaft, Jonathan W
2016-11-01
Right ventricular (RV) and left ventricular (LV) function are closely linked due to a variety of factors, including common coronary blood supply. Altered LV perfusion holds the potential to affect the RV, but links between LV ischemia and RV performance, and independent impact of RV dysfunction on effort tolerance, are unknown. The population comprised 2051 patients who underwent exercise stress myocardial perfusion imaging and echo (5.5±7.9 days), among whom 6% had echo-evidenced RV dysfunction. Global summed stress scores were ≈3-fold higher among patients with RV dysfunction, attributable to increments in inducible and fixed LV perfusion defects (all P≤0.001). Regional inferior and lateral wall ischemia was greater among patients with RV dysfunction (both P<0.01), without difference in corresponding anterior defects (P=0.13). In multivariable analysis, inducible inferior and lateral wall perfusion defects increased the likelihood of RV dysfunction (both P<0.05) independent of LV function, fixed perfusion defects, and pulmonary artery pressure. Patients with RV dysfunction demonstrated lesser effort tolerance whether measured by exercise duration (6.7±2.8 versus 7.9±2.9 minutes; P<0.001) or peak treadmill stage (2.6±0.9 versus 3.1±1.0; P<0.001), paralleling results among patients with LV dysfunction (7.0±2.9 versus 8.0±2.9; P<0.001|2.7±1.0 versus 3.1±1.0; P<0.001 respectively). Exercise time decreased stepwise in relation to both RV and LV dysfunction (P<0.001) and was associated with each parameter independent of age or medication regimen. Among patients with known or suspected coronary artery disease, regional LV ischemia involving the inferior and lateral walls confers increased likelihood of RV dysfunction. RV dysfunction impairs exercise tolerance independent of LV dysfunction. © 2016 American Heart Association, Inc.
Sawada, Takahiro; Tsubata, Hideo; Hashimoto, Naoko; Takabe, Michinori; Miyata, Taishi; Aoki, Kosuke; Yamashita, Soichiro; Oishi, Shogo; Osue, Tsuyoshi; Yokoi, Kiminobu; Tsukishiro, Yasue; Onishi, Tetsuari; Shimane, Akira; Taniguchi, Yasuyo; Yasaka, Yoshinori; Ohara, Takeshi; Kawai, Hiroya; Yokoyama, Mitsuhiro
2016-08-26
Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by recovery of concomitant endothelial dysfunction in newly diagnosed IGM patients with CAD. Clinical Trial Registration UMIN Registry number: UMIN000011265 ( https://www.upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013200&language=E ).
Schwab, Kristin; Saggar, Rajeev; Duffy, Erin; Elashoff, David; Tseng, Chi-Hong; Weigt, Sam; Charan, Deepshikha; Abtin, Fereidoun; Johannes, Jimmy; Derhovanessian, Ariss; Conklin, Jeffrey; Ghassemi, Kevin; Khanna, Dinesh; Siddiqui, Osama; Ardehali, Abbas; Hunter, Curtis; Kwon, Murray; Biniwale, Reshma; Lo, Michelle; Volkmann, Elizabeth; Torres Barba, David; Belperio, John A.; Mahrer, Thomas; Furst, Daniel E.; Kafaja, Suzanne; Clements, Philip; Shino, Michael; Gregson, Aric; Kubak, Bernard; Lynch, Joseph P.; Ross, David
2016-01-01
Rationale: Consideration of lung transplantation in patients with systemic sclerosis (SSc) remains guarded, often due to the concern for esophageal dysfunction and the associated potential for allograft injury and suboptimal post–lung transplantation outcomes. Objectives: The purpose of this study was to systematically report our single-center experience regarding lung transplantation in the setting of SSc, with a particular focus on esophageal dysfunction. Methods: We retrospectively reviewed all lung transplants at our center from January 1, 2000 through August 31, 2012 (n = 562), comparing the SSc group (n = 35) to the following lung transplant diagnostic subsets: all non-SSc (n = 527), non-SSc diffuse fibrotic lung disease (n = 264), and a non-SSc matched group (n = 109). We evaluated post–lung transplant outcomes, including survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates. In addition, we defined severe esophageal dysfunction using esophageal manometry and esophageal morphometry criteria on the basis of chest computed tomography images. For patients with SSc referred for lung transplant but subsequently denied (n = 36), we queried the reason(s) for denial with respect to the concern for esophageal dysfunction. Measurements and Main Results: The 1-, 3-, and 5-year post–lung transplant survival for SSc was 94, 77, and 70%, respectively, and similar to the other groups. The remaining post–lung transplant outcomes evaluated were also similar between SSc and the other groups. Approximately 60% of the SSc group had severe esophageal dysfunction. Pre–lung transplant chest computed tomography imaging demonstrated significantly abnormal esophageal morphometry for SSc when compared with the matched group. Importantly, esophageal dysfunction was the sole reason for lung transplant denial in a single case. Conclusions: Relative to other lung transplant indications, our SSc group experienced comparable survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates, despite the high prevalence of severe esophageal dysfunction. Esophageal dysfunction rarely precluded active listing for lung transplantation. PMID:27078625
Arginine metabolism is altered in adults with A-B + ketosis-prone diabetes
USDA-ARS?s Scientific Manuscript database
A-B + ketosis-prone diabetes (KPD) is a subset of type 2 diabetes in which patients have severe but reversible B cell dysfunction of unknown etiology. Plasma metabolomic analysis indicates that abnormal arginine metabolism may be involved. The objective of this study was to determine the relation be...
Can dysfunctional HDL explain high coronary artery disease risk in South Asians?
Dodani, Sunita; Kaur, Rajwinderjit; Reddy, Srinavasa; Reed, Guy L; Navab, Mohammad; George, Varghese
2008-09-16
Coronary artery disease (CAD) is the leading cause of mortality and morbidity in United States, and South Asian immigrants (SAIs) have a higher risk for CAD compare to Caucasians. Traditional risk factors do not completely explain high risk, and some of the unknown risk factors need to be explored. We assessed dysfunctional pro-inflammatory high density lipoprotein (HDL) in SAIs and assessed its association with sub-clinical CAD using carotid intima-media thickness (IMT) as a surrogate marker for atherosclerosis. Cross-sectional study on SAIs aged 40-65 years. Sub-clinical CAD was measured using carotid intima media thickness (IMT) as a surrogate marker of atherosclerosis. Dysfunctional or pro-inflammatory HDL was determined by novel cell free assay and HDL inflammatory Index. Dysfunctional HDL was found in the 50% participants, with HDL-inflammatory index of >or=1.00, suggesting pro-inflammatory HDL (95% CI, 0.8772-1.4333). The prevalence of sub-clinical CAD using carotid IMT (>or=0.80 mm) was seen in 41.4% (95% CI, 0.2347-0.5933). On logistic regression analysis, positive carotid IMT was found to be associated with dysfunctional HDL after adjusting for age, family history of cardiovascular disease, and hypertension (p=0.030). The measurement of HDL level as well as functionality plays an important role in CAD risk assessment. Those SAIs with dysfunctional HDL and without known CAD can be a high risk group requiring treatment with lipid lowering drugs to reduce future risk of CAD. Further large studies are required to explore association of dysfunctional HDL with CAD and identify additional CAD risk caused by dysfunctional HDL.
USDA-ARS?s Scientific Manuscript database
Environmental enteric dysfunction (EED), a condition characterized by small intestine inflammation and abnormal gut permeability, is widespread in children in developing countries and a major cause of growth failure. The pathophysiology of EED remains poorly understood. We measured serum metabolite...
Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Penghao; Xie, Qihai; Wei, Tong
Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less
Jackson, Michael W; Gordon, Thomas P; McCombe, Pamela A
2008-04-01
Physiological techniques can be used to detect novel autoantibodies causing alteration of autonomic function after passive transfer to mice. Previously, such antibodies have been detected in patients with type I diabetes mellitus, myasthenia gravis, and Sjogren's syndrome. We now describe a patient with an idiopathic nondiabetic neuropathy with prominent autonomic symptoms, including bladder and bowel dysfunction. Physiological assays of whole colon and bladder were used to determine the presence in the patient serum of functional autoantibodies capable of mediating autonomic dysfunction. Immunoglobulin G (IgG) from this patient was able to disrupt bladder and bowel function on passive transfer to mice. This is a new pattern of autoantibody-mediated abnormality. Although the target antigen is unknown, it is likely to be a cell-surface receptor or ion channel. This case highlights the usefulness of passive transfer studies in detecting functional antibodies in patients with autonomic neuropathy.
Chang, Ta-Yuan; Huang, Kuei-Hung; Liu, Chiu-Shong; Shie, Ruei-Hao; Chao, Keh-Ping; Hsu, Wen-Hsin; Bao, Bo-Ying
2010-06-15
Many volatile organic compounds (VOCs) are emitted during the manufacturing of thin film transistor liquid crystal displays (TFT-LCDs), exposure to some of which has been reported to be associated with kidney dysfunction, but whether such an effect exists in TFT-LCD industry workers is unknown. This cross-sectional study aimed to investigate the association between exposure to VOCs and kidney dysfunction among TFT-LCD workers. The results showed that ethanol (1811.0+/-1740.4 ppb), acetone (669.0+/-561.0 ppb), isopropyl alcohol (187.0+/-205.3 ppb) and propylene glycol monomethyl ether acetate (PGMEA) (102.9+/-102.0 ppb) were the four dominant VOCs present in the workplace. The 63 array workers studied had a risk of kidney dysfunction 3.21-fold and 3.84-fold that of 61 cell workers and 18 module workers, respectively. Workers cumulatively exposed to a total level of isopropyl alcohol, PGMEA and propylene glycol monomethyl ether> or =324 ppb-year had a significantly higher risk of kidney dysfunction (adjusted OR=3.41, 95% CI=1.14-10.17) compared with those exposed to <25 ppb-year after adjustment for potential confounding factors. These findings indicated that array workers might be the group at greatest risk of kidney dysfunction within the TFT-LCD industry, and cumulative exposure to specific VOCs might be associated with kidney dysfunction. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.
Iodinated Contrast Media-Induced Thyroid Dysfunction in Euthyroid Nodular Goiter Patients.
Kornelius, Edy; Chiou, Jeng-Yuan; Yang, Yi-Sun; Lo, Shih-Chang; Peng, Chiung-Huei; Lai, Yung-Rung; Huang, Chien-Ning
2016-08-01
The risks of thyroid dysfunction after iodinated contrast media exposure in patients with euthyroid nodular goiter are largely unknown. This observational, retrospective cohort study included a random selection of one million people in Taiwan. All patients with iodinated contrast media exposure during this study period were selected. Patients with euthyroid nodular goiter were identified as cases, while patients without thyroid nodule were selected as controls. We followed these patients until the first event of thyroid dysfunction including hyperthyroidism or hypothyroidism after iodinated contrast media exposure. A total of 334 cases and 2672 matched controls were selected in this study. The mean age of cases and controls were 58.6 and 58.4 years old, and mean follow-up durations were 2.1 and 2 years respectively. After adjustment, patients with euthyroid nodular goiter had a higher risk of thyroid dysfunction (hazard ratio 5.43, [confidence interval (CI) 3.01-9.80]) compared with controls after iodinated contrast media exposure. In the subgroup analysis, the risks of hyperthyroidism and hypothyroidism in cases compared with controls were 5.77 [CI 2.64-12.62] and 4.95 [CI 2.15-11.40] respectively. Half of the euthyroid nodular goiter cases developed thyroid dysfunction within one year after iodinated contrast media exposure. Interestingly, all thyroid-related comorbidities and drug prescriptions did not increase the risk of thyroid dysfunction. Presence of euthyroid nodular goiter was associated with higher risk of thyroid dysfunction including hyperthyroidism and hypothyroidism after iodinated contrast media exposure.
Breast-feeding, Leptin:Adiponectin Ratio, and Metabolic Dysfunction in Adolescents with Obesity.
Mihalopoulos, Nicole L; Urban, Brittney M; Metos, Julie M; Balch, Alfred H; Young, Paul C; Jordan, Kristine C
2017-05-01
Increased adiposity increases leptin and decreases adiponectin concentrations, resulting in an increased leptin:adiponectin ratio (LAR). In adults, components of the metabolic syndrome and other cardiometabolic risk factors, what we classify here as "metabolic dysfunction," are associated with both a high LAR and a history of being breast-fed. The relation among breast-feeding, LAR, and degree of metabolic dysfunction in obese youth is unknown. The purpose of our pilot study was to explore this relation and estimate the effect size of the relations to determine the sample size needed to power future prospective studies. We obtained fasting levels of leptin, adiponectin, lipids, insulin, and glucose from obese youth (aged 8-17 years). Weight, height, waist circumference, blood pressure, and breast-feeding history also were assessed. Of 96 participants, 78 were breast-fed as infants, 54% of whom were breast-fed for >6 months. Wide variation was observed in LARs among children who were and were not breast-fed (>100% coefficient of variation). Overall, prevalence of metabolic dysfunction in the cohort was 94% and was not proven to be associated with higher LAR. In this cohort of obese youth, we found a high prevalence of breast-feeding, metabolic dysfunction, and wide variation in the LARs. Based on the effect size estimated, future studies would need to enroll >1500 patients or identify, stratify, and selectively enroll obese patients without metabolic dysfunction to accurately determine whether breast-feeding in infancy influences LARs or metabolic dysfunction among obese youth.
Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases.
Wang, Hui; Liu, Jing-Shi; Peng, Shao-Hua; Deng, Xi-Yun; Zhu, De-Mao; Javidiparsijani, Sara; Wang, Gui-Rong; Li, Dai-Qiang; Li, Long-Xuan; Wang, Yi-Chun; Luo, Jun-Ming
2013-10-28
Pulmonary abnormalities, dysfunction or hyper-reactivity occurs in association with inflammatory bowel disease (IBD) more frequently than previously recognized. Emerging evidence suggests that subtle inflammation exists in the airways among IBD patients even in the absence of any bronchopulmonary symptoms, and with normal pulmonary functions. The pulmonary impairment is more pronounced in IBD patients with active disease than in those in remission. A growing number of case reports show that the IBD patients develop rapidly progressive respiratory symptoms after colectomy, with failure to isolate bacterial pathogens on repeated sputum culture, and often request oral corticosteroid therapy. All the above evidence indicates that the inflammatory changes in both the intestine and lung during IBD. Clinical or subclinical pulmonary inflammation accompanies the main inflammation of the bowel. Although there are clinical and epidemiological reports of chronic inflammation of the pulmonary and intestinal mucosa in IBD, the detailed mechanisms of pulmonary-intestinal crosstalk remain unknown. The lung has no anatomical connection with the main inflammatory site of the bowel. Why does the inflammatory process shift from the gastrointestinal tract to the airways? The clinical and subclinical pulmonary abnormalities, dysfunction, or hyper-reactivity among IBD patients need further evaluation. Here, we give an overview of the concordance between chronic inflammatory reactions in the airways and the gastrointestinal tract. A better understanding of the possible mechanism of the crosstalk among the distant organs will be beneficial in identifying therapeutic strategies for mucosal inflammatory diseases such as IBD and allergy.
Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases
Wang, Hui; Liu, Jing-Shi; Peng, Shao-Hua; Deng, Xi-Yun; Zhu, De-Mao; Javidiparsijani, Sara; Wang, Gui-Rong; Li, Dai-Qiang; Li, Long-Xuan; Wang, Yi-Chun; Luo, Jun-Ming
2013-01-01
Pulmonary abnormalities, dysfunction or hyper-reactivity occurs in association with inflammatory bowel disease (IBD) more frequently than previously recognized. Emerging evidence suggests that subtle inflammation exists in the airways among IBD patients even in the absence of any bronchopulmonary symptoms, and with normal pulmonary functions. The pulmonary impairment is more pronounced in IBD patients with active disease than in those in remission. A growing number of case reports show that the IBD patients develop rapidly progressive respiratory symptoms after colectomy, with failure to isolate bacterial pathogens on repeated sputum culture, and often request oral corticosteroid therapy. All the above evidence indicates that the inflammatory changes in both the intestine and lung during IBD. Clinical or subclinical pulmonary inflammation accompanies the main inflammation of the bowel. Although there are clinical and epidemiological reports of chronic inflammation of the pulmonary and intestinal mucosa in IBD, the detailed mechanisms of pulmonary-intestinal crosstalk remain unknown. The lung has no anatomical connection with the main inflammatory site of the bowel. Why does the inflammatory process shift from the gastrointestinal tract to the airways? The clinical and subclinical pulmonary abnormalities, dysfunction, or hyper-reactivity among IBD patients need further evaluation. Here, we give an overview of the concordance between chronic inflammatory reactions in the airways and the gastrointestinal tract. A better understanding of the possible mechanism of the crosstalk among the distant organs will be beneficial in identifying therapeutic strategies for mucosal inflammatory diseases such as IBD and allergy. PMID:24187454
Mahati, K; Bhagya, V; Christofer, T; Sneha, A; Shankaranarayana Rao, B S
2016-10-01
Severe depression compromises structural and functional integrity of the brain and results in impaired learning and memory, maladaptive synaptic plasticity as well as degenerative changes in the hippocampus and amygdala. The precise mechanisms underlying cognitive dysfunctions in depression remain largely unknown. On the other hand, enriched environment (EE) offers beneficial effects on cognitive functions, synaptic plasticity in the hippocampus. However, the effect of EE on endogenous depression associated cognitive dysfunction has not been explored. Accordingly, we have attempted to address this issue by investigating behavioural, structural and synaptic plasticity mechanisms in an animal model of endogenous depression after exposure to enriched environment. Our results demonstrate that depression is associated with impaired spatial learning and enhanced anxiety-like behaviour which is correlated with hypotrophy of the dentate gyrus and amygdalar hypertrophy. We also observed a gross reduction in the hippocampal long-term potentiation (LTP). We report a complete behavioural recovery with reduced indices of anhedonia and behavioural despair, reduced anxiety-like behaviour and improved spatial learning along with a complete restoration of dentate gyrus and amygdalar volumes in depressive rats subjected to EE. Enrichment also facilitated CA3-Schaffer collateral LTP. Our study convincingly proves that depression-induces learning deficits and impairs hippocampal synaptic plasticity. It also highlights the role of environmental stimuli in restoring depression-induced cognitive deficits which might prove vital in outlining more effective strategies to treat major depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Dermody, Nadene; Hornberger, Michael; Piguet, Olivier; Hodges, John R; Irish, Muireann
2016-01-01
Prospective memory (PM) refers to a future-oriented form of memory in which the individual must remember to execute an intended action either at a future point in time (Time-based) or in response to a specific event (Event-based). Lapses in PM are commonly exhibited in neurodegenerative disorders including Alzheimer's disease (AD) and frontotemporal dementia (FTD), however, the neurocognitive mechanisms driving these deficits remain unknown. To investigate the clinical and neural correlates of Time- and Event-based PM disruption in AD and the behavioral-variant FTD (bvFTD). Twelve AD, 12 bvFTD, and 12 healthy older Control participants completed a modified version of the Cambridge Prospective Memory test, which examines Time- and Event-based aspects of PM. All participants completed a standard neuropsychological assessment and underwent whole-brain structural MRI. AD and bvFTD patients displayed striking impairments across Time- and Event-based PM relative to Controls, however, Time-based PM was disproportionately affected in the AD group. Episodic memory dysfunction and hippocampal atrophy were found to correlate strongly with PM integrity in both patient groups, however, dissociable neural substrates were also evident for PM performance across dementia syndromes. Our study reveals the multifaceted nature of PM dysfunction in neurodegenerative disorders, and suggests common and dissociable neurocognitive mechanisms, which subtend these deficits in each patient group. Future studies of PM disturbance in dementia syndromes will be crucial for the development of successful interventions to improve functional independence in the patient's daily life.
Lu, Fen; Li, Xu; Li, Wei; Wei, Ke; Yao, Yong; Zhang, Qianlin; Liang, Xinliang; Zhang, Jiewen
2017-08-01
Brain dysfunction, especially cognitive impairment, is one of the main complications in Alzheimer's disease (AD), which threatens the health of 46.8 million people worldwide. At present, the pathogenesis of cognitive dysfunction is only partially understood, and effective therapies for memory loss in AD remain elusive. Tetramethylpyrazine (TMP) is one of the major bioactive compounds purified from Chuanxiong, a Chinese herb used for the treatment of neurovascular and cardiovascular diseases. The neuroprotective properties of TMP are evident in some neurodegenerative diseases, including Parkinson's disease. However, whether TMP plays a neuroprotective role in AD is still unknown. Here, we report that 2-week treatment with TMP rescued both short-term and long-term fear memory impairment induced by intracerebroventricular injection of streptozotocin in a well-known AD rat model. Administration of TMP also restored spatial learning and memory retention abilities in streptozotocin-injected rats. Furthermore, TMP inhibited the activity of GSK-3β, an important kinase that mediates hippocampal synaptic and memory disorders in diabetes mellitus. Finally, we found that TMP treatment restored the function of cholinergic neurons. Our data suggest that dietary uptake of TMP can provide protection against memory loss in AD, and the inhibition of GSK-3β may play an important role in this protective effect. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Oikonomou, Evangelos; Mourouzis, Konstantinos; Fountoulakis, Petros; Papamikroulis, Georgios Angelos; Siasos, Gerasimos; Antonopoulos, Alexis; Vogiatzi, Georgia; Tsalamadris, Sotiris; Vavuranakis, Manolis; Tousoulis, Dimitris
2018-05-01
Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.
Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats.
Wang, Rui; Zhang, Yu; Li, Jianguo; Zhang, Ce
2017-03-06
β-amyloid (Aβ) deposition is considered partially responsible for cognitive dysfunction in Alzheimer's disease (AD). Recently, resveratrol has been reported to play a potential role as a neuroprotective biofactor by modulating Aβ pathomechanisms, including through anti-neuronal apoptotic, anti-oxidative stress, and anti-neuroinflammatory effects. In addition, SIRT1 has been demonstrated to modulate learning and memory function by regulating the expression of cAMP response binding protein (CREB), which involves in modulating the expression of SIRT1. However, whether resveratrol can alleviate Aβ-induced cognitive dysfunction, whether SIRT1 expression and CREB phosphorylation in the hippocampus are affected by Aβ, and whether resveratrol influences these effects remain unknown. In the present study, we used a hippocampal injection model in rats to investigate the effects of resveratrol on Aβ 1-42 -induced impairment of spatial learning, memory and synaptic plasticity as well as on alterations of SIRT1 expression and CREB phosphorylation. We found that resveratrol significantly reversed the water maze behavioral impairment and the attenuation of long-term potentiation (LTP) in area CA1 that were induced by hippocampal injection of Aβ 1-42 . Interestingly, resveratrol also prevented the Aβ 1-42 -induced reductions in SIRT1 expression and CREB phosphorylation in rat hippocampus. In conclusion, in rats, resveratrol protects neurons against Aβ 1-42 -induced disruption of spatial learning, memory and hippocampal LTP. The mechanisms underlying the neuroprotective effects may involve rescue of SIRT1 expression and CREB phosphorylation. Copyright © 2016. Published by Elsevier Ltd.
McGraw, Sarah A; Rosen, Raymond C; Althof, Stanley E; Dunn, Marian; Cameron, Ann; Wong, David
2015-01-01
Erectile dysfunction negatively affects men and women in relationships; however, the subjective experience of erectile dysfunction and phosphodiesterase-type 5 inhibitor therapy remains poorly understood. The authors therefore characterized participants' subjective understanding of erectile dysfunction and phosphodiesterase-type 5 inhibitor therapy using individual interviews with affected heterosexual men (n = 58) and women (n = 65). Responses were characterized by 6 psychosocial domains: explanation of the experience, emotional responses, socially expected responses, value of sex, communication with the partner, and treatment expectations. The findings may aid clinicians in relating to men with erectile dysfunction and thus potentially improve effectiveness of therapy.
Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers.
Emanuelli, T; Burgeiro, A; Carvalho, E
2016-12-01
Diabetic foot ulcers affect 15-20 % of all diabetic patients and remain an important challenge since the available therapies have limited efficacy and some of the novel therapeutic approaches, which include growth factors and stem cells, are highly expensive and their safety remains to be evaluated. Despite its low cost and safety, the interest for topical insulin as a healing agent has increased only in the last 20 years. The molecular mechanisms of insulin signaling and its metabolic effects have been well studied in its classical target tissues. However, little is known about the specific effects of insulin in healthy or even diabetic skin. In addition, the mechanisms involved in the effects of insulin on wound healing have been virtually unknown until about 10 years ago. This paper will review the most recent advances in the cellular and molecular mechanisms that underlie the beneficial effects of insulin on skin wound healing in diabetes. Emerging evidence that links dysfunction of key cellular organelles, namely the endoplasmic reticulum and the mitochondria, to changes in the autophagy response, as well as the impaired wound healing in diabetic patients will also be discussed along with the putative mechanisms whereby insulin could regulate/modulate these alterations.
Eosinophilic esophagitis in an octogenarian
Trifan, Anca; Stoica, Oana; Chihaia, Catalin-Alexandru; Danciu, Mihai; Stanciu, Carol; Singeap, Ana-Maria
2016-01-01
Abstract Introduction: Eosinophilic esophagitis (EoE) is a chronic, immune/antigen-mediated disease characterized clinically by symptoms related to esophageal dysfunction and histologically by a marked eosinophilic infiltrate in the esophageal mucosa. What was once considered a rare disease has nowadays become one of the most frequent esophageal diseases in the Western countries, occupying a place just next to the gastroesophageal reflux disease. EoE etiology and pathogenesis remain largely unknown, although most studies consider that allergic and genetic factors play the most important role. Methods: We report the case of EoE in an elderly male (octogenarian), giving a brief review of the current data related to epidemiology, pathogenesis, diagnosis, and treatment of the disease. Results: Dysphagia to solid foods was the leading symptom, and endoscopic findings included white exudates, longitudinal furrows, and concentric mucosal rings, all suggestive for EoE. Diagnosis relied on histological findings in esophageal mucosal biopsies (>30 eosinophils per high power field). He was treated with topical steroids for 8 weeks, symptoms improved gradually and the patient remained in remission at the 8-month follow-up. Conclusion: This case emphasizes that EoE may occur in very old patients and gastroenterologists should have a high index of suspicion of this disorder in any elderly with dysphagia and endoscopic relevant features. PMID:27741150
Physiological handling of dietary fructose-containing sugars: implications for health.
Campos, V C; Tappy, L
2016-03-01
Fructose has always been present in our diet, but its consumption has increased markedly over the past 200 years. This is mainly due to consumption of sucrose or high-fructose corn syrup in industrial foods and beverages. Unlike glucose, fructose cannot be directly used as an energy source by all cells of the human body and needs first to be converted into glucose, lactate or fatty acids in the liver, intestine and kidney. Because of this specific two-step metabolism, some energy is consumed in splanchnic organs to convert fructose into other substrates, resulting in a lower net energy efficiency of fructose compared with glucose. A high intake of fructose-containing sugars is associated with body weight gain in large cohort studies, and fructose can certainly contribute to energy imbalance leading to obesity. Whether fructose-containing foods promote obesity more than other energy-dense foods remains controversial, however. A short-term (days-weeks) high-fructose intake is not associated with an increased fasting glycemia nor to an impaired insulin-mediated glucose transport in healthy subjects. It, however, increases hepatic glucose production, basal and postprandial blood triglyceride concentrations and intrahepatic fat content. Whether these metabolic alterations are early markers of metabolic dysfunction or merely adaptations to the specific two-step fructose metabolism remain unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Queenie; Liverpool Hospital, Sydney, NSW; Hee, Leia
Purpose: To evaluate 2-dimensional strain imaging (SI) for the detection of subclinical myocardial dysfunction during and after radiation therapy (RT). Methods and Materials: Forty women with left-sided breast cancer, undergoing only adjuvant RT to the left chest, were prospectively recruited. Standard echocardiography and SI were performed at baseline, during RT, and 6 weeks after RT. Strain (S) and strain rate (Sr) parameters were measured in the longitudinal, circumferential, and radial planes. Correlation of change in global longitudinal strain (GLS % and Δ change) and the volume of heart receiving 30 Gy (V30) and mean heart dose (MHD) were examined. Results: Leftmore » ventricular ejection fraction was unchanged; however, longitudinal systolic S and Sr and radial S were significantly reduced during RT and remained reduced at 6 weeks after treatment [longitudinal S (%) −20.44 ± 2.66 baseline vs −18.60 ± 2.70* during RT vs −18.34 ± 2.86* at 6 weeks after RT; longitudinal Sr (s{sup −1}) −1.19 ± 0.21 vs −1.06 ± 0.18* vs −1.06 ± 0.16*; radial S (%) 56.66 ± 18.57 vs 46.93 ± 14.56* vs 49.22 ± 15.81*; *P<.05 vs baseline]. Diastolic Sr were only reduced 6 weeks after RT [longitudinal E Sr (s{sup −1}) 1.47 ± 0.32 vs 1.29 ± 0.27*; longitudinal A Sr (s{sup −1}) 1.19 ± 0.31 vs 1.03 ± 0.24*; *P<.05 vs baseline], whereas circumferential strain was preserved throughout. A modest correlation between S and Sr and V30 and MHD was observed (GLS Δ change and V30 ρ = 0.314, P=.05; GLS % change and V30 ρ = 0.288, P=.076; GLS Δ change and MHD ρ = 0.348, P=.03; GLS % change and MHD ρ = 0.346, P=.031). Conclusions: Subclinical myocardial dysfunction was detected by 2-dimensional SI during RT, with changes persisting 6 weeks after treatment, though long-term effects remain unknown. Additionally, a modest correlation between strain reduction and radiation dose was observed.« less
Vascular rarefaction mediates whitening of brown fat in obesity
Shimizu, Ippei; Aprahamian, Tamar; Kikuchi, Ryosuke; Shimizu, Ayako; Papanicolaou, Kyriakos N.; MacLauchlan, Susan; Maruyama, Sonomi; Walsh, Kenneth
2014-01-01
Brown adipose tissue (BAT) is a highly vascularized organ with abundant mitochondria that produce heat through uncoupled respiration. Obesity is associated with a reduction of BAT function; however, it is unknown how obesity promotes dysfunctional BAT. Here, using a murine model of diet-induced obesity, we determined that obesity causes capillary rarefaction and functional hypoxia in BAT, leading to a BAT “whitening” phenotype that is characterized by mitochondrial dysfunction, lipid droplet accumulation, and decreased expression of Vegfa. Targeted deletion of Vegfa in adipose tissue of nonobese mice resulted in BAT whitening, supporting a role for decreased vascularity in obesity-associated BAT. Conversely, introduction of VEGF-A specifically into BAT of obese mice restored vascularity, ameliorated brown adipocyte dysfunction, and improved insulin sensitivity. The capillary rarefaction in BAT that was brought about by obesity or Vegfa ablation diminished β-adrenergic signaling, increased mitochondrial ROS production, and promoted mitophagy. These data indicate that overnutrition leads to the development of a hypoxic state in BAT, causing it to whiten through mitochondrial dysfunction and loss. Furthermore, these results link obesity-associated BAT whitening to impaired systemic glucose metabolism. PMID:24713652
Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration
Lana-Elola, Eva; Gibbins, Dorota; La Russa, Federica; Wiseman, Frances; Williamson, Matthew; Saccon, Rachele; Olerinyova, Anna; Mahmood, Radma; Nye, Emma; Cater, Heather; Yu, Y. Eugene; Bennett, David L. H.; Greensmith, Linda; Fisher, Elizabeth M. C.
2018-01-01
Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied—the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown. Using a panel of mouse strains with duplications of regions of mouse chromosomes orthologous to Hsa21 we show that increased dosage of small numbers of genes causes locomotor dysfunction and, moreover, that the Dyrk1a gene is required in three copies to cause the phenotype. Furthermore, we show for the first time a new DS phenotype: loss of motor neurons both in mouse models and, importantly, in humans with DS, that may contribute to locomotor dysfunction. PMID:29746474
Mitochondrial dysfunction precedes neurodegeneration in mahogunin (Mgrn1) mutant mice
Sun, Kaihua; Johnson, Brian S.; Gunn, Teresa M.
2007-01-01
Oxidative stress, ubiquitination defects and mitochondrial dysfunction are commonly associated with neurodegeneration. Mice lacking mahogunin ring finger-1 (MGRN1) or attractin (ATRN) develop age-dependent spongiform neurodegeneration through an unknown mechanism. It has been suggested that they act in a common pathway. As MGRN1 is an E3 ubiquitin ligase, proteomic analysis of Mgrn1 mutant and control brains was performed to explore the hypothesis that loss of MGRN1 causes neurodegeneration via accumulation of its substrates. Many mitochondrial proteins were reduced in Mgrn1 mutants. Subsequent assays confirmed significantly reduced mitochondrial complex IV expression and activity as well as increased oxidative stress in mutant brains. Mitochondrial dysfunction was obvious many months before onset of vacuolation, implicating this as a causative factor. Compatible with the hypothesis that ATRN and MGRN1 act in the same pathway, mitochondrial dysfunction and increased oxidative stress were also observed in the brains of Atrn mutants. Our results suggest that the study of Mgrn1 and Atrn mutant mice will provide insight into a causative molecular mechanism common to many neurodegenerative disorders. PMID:17720281
Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Kalbitz, Miriam; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus
2015-01-01
Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956
Gosselin, H; Qi, X; Rouleau, J L
1998-01-01
Early after infarction, ventricular dysfunction occurs as a result of loss of myocardial tissue. Although papillary muscle studies suggest that reduced myocardial contractility contributes to this ventricular dysfunction, in vivo studies indicate that at rest, cardiac output is normal or near normal, suggesting that contractility of the remaining viable myocardium of the ventricular wall is preserved. However, this has never been verified. To explore this further, 100 rats with various-sized myocardial infarctions had ventricular function assessed by Langendorff preparation or by isolated papillary muscle studies 5 weeks after infarction. Morphologic studies were also done. Rats with large infarctions (54%) had marked ventricular dilatation (dilatation index from 0.23 to 0.75, p < 0.01) and papillary muscle dysfunction (total tension from 6.7 to 3.2 g/mm2, p < 0.01) but only moderate left ventricular dysfunction (maximum developed tension from 206 to 151 mmHg (1 mmHg = 133.3 Pa), p < 0.01), a decrease less than one would expect with an infarct size of 54%. The contractility of the remaining viable myocardium of the ventricle was also moderately depressed (peak systolic midwall stress 91 to 60 mmHg, p < 0.01). Rats with moderate infarctions (32%) had less marked but still moderate ventricular dilatation (dilatation index 0.37, p < 0.001) and moderate papillary muscle dysfunction (total tension 4.2 g/mm2, p < 0.01). However, their decrease in ventricular function was only mild (maximum developed pressure 178 mmHg, p < 0.01) and less than one would expect with an infarct size of 32%. The remaining viable myocardium of the ventricular wall appeared to have normal contractility (peak systolic midwall stress = 86 mmHg, ns). We conclude that in this postinfarction model, in large myocardial infarctions, a loss of contractility of the remaining viable myocardium of the ventricular wall occurs as early as 5 weeks after infarction and that papillary muscle studies slightly overestimate the degree of ventricular dysfunction. In moderate infarctions, the remaining viable myocardium of the ventricular wall has preserved contractility while papillary muscle function is depressed. In this relatively early postinfarction phase, ventricular remodelling appears to help maintain left ventricular function in both moderate and large infarctions.
Wang, Ruichun; Chen, Junping; Wu, Guorong
2015-01-01
Postoperative cognitive dysfunction (POCD) is a subtle impairment of cognitive abilities and can manifest on different neuropsychological features in the early postoperative period. It has been proved that the use of mechanical ventilation (MV) increased the development of delirium and POCD. However, the impact of variable and conventional lung protective mechanical ventilation on the incidence of POCD still remains unknown, which was the aim of this study. 162 patients scheduled to undergo elective gastrointestinal tumor resection via laparotomy in Ningbo No. 2 hospital with expected duration >2 h from June, 2013 to June, 2015 were enrolled in this study. Patients included were divided into two groups according to the scheme of lung protective MV, variable ventilation group (VV group, n=79) and conventional ventilation group (CV group, n=83) by randomization performed by random block randomization. The plasma levels of inflammatory cytokines, characteristics of the surgical procedure, incidence of delirium and POCD were collected and compared. Postoperative delirium was detected in 36 of 162 patients (22.2%) and 12 patients of these (16.5%) belonged to the VV group while 24 patients (28.9%) were in the CV group (P=0.036). POCD on the seventh postoperative day in CV group (26/83, 31.3%) was increased in comparison with the VV group (14/79, 17.7%) with significant statistical difference (P=0.045). The levels of inflammatory cytokines were all significantly higher in CV group than those in VV group on the 1st postoperative day (P<0.05). On 7th postoperative day, the levels of IL-6 and TNF-α in CV group remained much higher compared with VV group (P<0.05). Variable vs conventional lung protective MV decreased the incidence of postoperative delirium and POCD by reducing the systemic proinflammatory response.
Grupper, Avishay; Nativi-Nicolau, Jose; Maleszewski, Joseph J; Geske, Jennifer R; Kremers, Walter K; Edwards, Brooks S; Kushwaha, Sudhir S; Pereira, Naveen L
2016-11-01
This study evaluated changes in serum levels of galectin (Gal)-3 before and after heart transplantation (HTx) and assessed the role of pre-HTx Gal-3 as a biomarker for post-HTx outcomes. Gal-3 is a novel biomarker that reflects cardiac remodeling and fibrosis. Elevated serum Gal-3 levels are associated with poor prognosis in heart failure patients. Whether Gal-3 levels change following HTx and the significance of post-HTx outcomes are unknown. Serum Gal-3 levels were measured in 62 patients at 118 days (Interquartile Range [IQR]: 23 to 798 days) before and 365 days (IQR: 54 to 767 days) post HTx. Cardiac tissue taken during routine post-HTx endomyocardial biopsy was evaluated to assess the correlation between tissue Gal-3 staining and serum Gal-3 levels and with the presence of myocardial hypertrophy and fibrosis. Serum Gal-3 levels remained significantly elevated (>17.8 ng/ml) in 35 patients (56%) post HTx. There was a significant inverse correlation between Gal-3 levels and glomerular filtration rate measured before and after HTx (p > 0.005). There was no association between Gal-3 serum level and Gal-3 staining of myocardial tissue or with the presence of myocyte hypertrophy and interstitial fibrosis post HTx. Elevated pre-HTx Gal-3 levels were associated with reduced post-HTx exercise capacity, but this association was not significant after adjustment for age, body mass index, and glomerular filtration rate. This is the first study to demonstrate the fact that Gal-3 levels remain elevated in the majority of patients despite HTx and is associated with renal dysfunction. Our findings suggest Gal-3 is a systemic rather than cardiac-specific biomarker. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Maiti, Arpan Kumar; Saha, Nimai Chandra; More, Sunil S; Panigrahi, Ashish Kumar; Paul, Goutam
2017-04-01
Lead (Pb) is one of the most pollutant metals that accumulate in the brain mitochondria disrupting mitochondrial structure and function. Though oxidative stress mediated by reactive oxygen species remains the most accepted mechanism of Pb neurotoxicity, some reports suggest the involvement of nitric oxide ( • NO) and reactive nitrogen species in Pb-induced neurotoxicity. But the impact of Pb neurotoxicity on mitochondrial respiratory enzyme complexes remains unknown with no relevant report highlighting the involvement of peroxynitrite (ONOO - ) in it. Herein, we investigated these effects in in vivo rat model by oral application of MitoQ, a known mitochondria-specific antioxidant with ONOO - scavenging activity. Interestingly, MitoQ efficiently alleviated ONOO - -mediated mitochondrial complexes II, III and IV inhibition, increased mitochondrial ATP production and restored mitochondrial membrane potential. MitoQ lowered enhanced caspases 3 and 9 activities upon Pb exposure and also suppressed synaptosomal lipid peroxidation and protein oxidation accompanied by diminution of nitrite production and protein-bound 3-nitrotyrosine. To ascertain our in vivo findings on mitochondrial dysfunction, we carried out similar experiments in the presence of different antioxidants and free radical scavengers in the in vitro SHSY5Y cell line model. MitoQ provided better protection compared to mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase suggesting the predominant involvement of ONOO - compared to • NO and O 2 •- . However, dimethylsulphoxide and catalase failed to provide protection signifying the noninvolvement of • OH and H 2 O 2 in the process. The better protection provided by MitoQ in SHSY5Y cells can be attributed to the fact that MitoQ targets mitochondria whereas mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase are known to target mainly cytoplasm and not mitochondria. Taken together the results from the present study clearly brings out the potential of MitoQ against ONOO - -induced toxicity upon Pb exposure indicating its therapeutic potential in metal toxicity.
The Role of Building Learning Cities in the Rejuvenation of Africa
ERIC Educational Resources Information Center
Biao, Idowu; Esaete, Josephine; Oonyu, Joseph
2013-01-01
Although Africa has been home to famous ancient cities in the past, its modern conurbation areas are poor living spaces characterised by squalor, poor planning and human misery. The authors of this paper argue that the learning city concept, still almost unknown in Africa, holds enormous potential for redressing the dysfunctional state of things…
Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD
Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.
2012-01-01
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248
Dodani, Sunita
2008-01-01
Background: Coronary artery disease (CAD) is the leading cause of mortality and morbidity in the United States (US), and South Asian immigrants (SAIs) have a higher risk of CAD compared to Caucasians. Traditional risk factors may not completely explain high risk, and some of the unknown risk factors need to be explored. This short review is mainly focused on the possible role of dysfunctional high-density lipoprotein (HDL) in causing CAD and presents an overview of available literature on dysfunctional HDL. Discussion: The conventional risk factors, insulin resistance parameters, and metabolic syndrome, although important in predicting CAD risk, may not sufficiently predict risk in SAIs. HDL has antioxidant, antiinflammatory, and antithrombotic properties that contribute to its function as an antiatherogenic agent. Recent Caucasian studies have shown HDL is not only ineffective as an antioxidant but, paradoxically, appears to be prooxidant, and has been found to be associated with CAD. Several causes have been hypothesized for HDL to become dysfunctional, including Apo lipoprotein A-I (Apo A-I) polymorphisms. New risk factors and markers like dysfunctional HDL and genetic polymorphisms may be associated with CAD. Conclusions: More research is required in SAIs to explore associations with CAD and to enhance early detection and prevention of CAD in this high risk group. PMID:19183743
Zou, Jiang; Wang, Nian; Liu, Manting; Bai, Yongping; Wang, Hao; Liu, Ke; Zhang, Huali; Xiao, Xianzhong; Wang, Kangkai
2018-05-01
Hydroxysafflor Yellow A (HSYA), a most representative ingredient of Carthamus tinctorius L., had long been used in treating ischaemic cardiovascular diseases in China and exhibited prominently anticoagulant and pro-angiogenic activities, but the underlying mechanisms remained largely unknown. This study aimed to further elucidate the pro-angiogenic effect and mechanism of HSYA on ischaemic cardiac dysfunction. A C57 mouse model of acute myocardial infarction (AMI) was firstly established, and 25 mg/kg HSYA was intraperitoneally injected immediately after operation and given once, respectively, each morning and evening for 2 weeks. It was found that HSYA significantly improved ischaemia-induced cardiac haemodynamics, enhanced the survival rate, alleviated the myocardial injury and increased the expressions of CD31, vascular endothelial growth factor-A (VEGF-A) and nucleolin in the ischaemic myocardium. In addition, HSYA promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs), enhanced the expressions of nucleolin, VEGF-A and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. However, down-regulation of nucleolin expression sharply abrogated the effect mentioned above of HSYA. Further protein-RNA coimmunoprecipitation and immunoprecipitation-RT-PCR assay showed that nucleolin binded to VEGF-A and MMP-9 mRNA and overexpression of nucleolin up-regulated the mRNA expressions of VEGF-A and MMP-9 in the HUVECs through enhancing the stability of VEGF-A and MMP-9 mRNA. Furthermore, HSYA increased the mRNA expressions of VEGF-A and MMP-9 in the extract of antinucleolin antibody-precipitated protein from the heart of AMI mice. Our data revealed that nucleolin mediated the pro-angiogenic effect of HSYA through post-transcriptional regulation of VEGF-A and MMP-9 expression, which contributed to the protective effect of HSYA on ischaemic cardiac dysfunction. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Oniki, Kentaro; Saruwatari, Junji; Izuka, Tomoko; Kajiwara, Ayami; Morita, Kazunori; Sakata, Misaki; Otake, Koji; Ogata, Yasuhiro; Nakagawa, Kazuko
2015-01-01
In normal weight subjects (body mass index < 25 kg/m2), non-alcoholic fatty liver disease (NAFLD) is likely to coexist with metabolic diseases. The patatin-like phospholipase 3 (PNPLA3) polymorphism rs738409 (c.444C>G) is associated with the risk of NAFLD and/or renal dysfunction; however, the influence of the weight status on the associations remains unknown. We aimed to clarify the associations of the PNPLA3 polymorphism with the risk of NAFLD and/or renal dysfunction, while also paying careful attention to the weight status of the subjects. Cross-sectional and retrospective longitudinal studies with 5.5 ± 1.1 years of follow-up were conducted in 740 and 393 Japanese participants (61.2 ± 10.5 and 67.5 ± 6.0 years), respectively, during a health screening program. Among 591 subjects who did not have a habitual alcohol intake and/or hepatitis B or C virus infections, the PNPLA3 G/G genotype was associated with the risk for NAFLD in normal weight subjects [odds ratio (95% CI): 3.06 (1.11–8.43), P < 0.05]. Among all subjects, carriers of the PNPLA3 G/G genotype with a normal weight had a lower eGFR than those of the C/C genotype [partial regression coefficient (SE): -3.26 (1.48), P < 0.05]. These associations were replicated in the longitudinal analyses. Among the overweight subjects, none of the genotypes were significantly associated in the cross-sectional and longitudinal analyses; however, the power of the analyses was small, especially in the analyses among overweight subjects. The findings of this study suggest that carriers of the PNPLA3 G/G genotype with a normal weight status should nevertheless be carefully monitored for the presence of NAFLD and/or renal dysfunction. PMID:26200108
Exercise training improves obesity‐related lymphatic dysfunction
Hespe, Geoffrey E.; Kataru, Raghu P.; Savetsky, Ira L.; García Nores, Gabriela D.; Torrisi, Jeremy S.; Nitti, Matthew D.; Gardenier, Jason C.; Zhou, Jie; Yu, Jessie Z.; Jones, Lee W.
2016-01-01
Key points Obesity results in perilymphatic inflammation and lymphatic dysfunction.Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells.Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells. Abstract Although previous studies have shown that obesity markedly decreases lymphatic function, the cellular mechanisms that regulate this response remain unknown. In addition, it is unclear whether the pathological effects of obesity on the lymphatic system are reversible with behavioural modifications. The purpose of this study, therefore, was to analyse lymphatic vascular changes in obese mice and to determine whether these pathological effects are reversible with aerobic exercise. We randomized obese mice to either aerobic exercise (treadmill running for 30 min per day, 5 days a week, for 6 weeks) or a sedentary group that was not exercised and analysed lymphatic function using a variety of outcomes. We found that sedentary obese mice had markedly decreased collecting lymphatic vessel pumping capacity, decreased lymphatic vessel density, decreased lymphatic migration of immune cells, increased lymphatic vessel leakiness and decreased expression of lymphatic specific markers compared with lean mice (all P < 0.01). Aerobic exercise did not cause weight loss but markedly improved lymphatic function compared with sedentary obese mice. Exercise had a significant anti‐inflammatory effect, resulting in decreased perilymphatic accumulation of inflammatory cells and inducible nitric oxide synthase expression. In addition, exercise normalized isolated lymphatic endothelial cell gene expression of lymphatic specific genes, including VEGFR‐3 and Prox1. Taken together, our findings suggest that obesity impairs lymphatic function via multiple mechanisms and that these pathological changes can be reversed, in part, with aerobic exercise, independent of weight loss. In addition, our study shows that obesity‐induced lymphatic endothelial cell gene expression changes are reversible with behavioural modifications. PMID:26931178
Breast-feeding, Leptin:Adiponectin Ratio, and Metabolic Dysfunction in Adolescents with Obesity
Mihalopoulos, Nicole L.; Urban, Brittney M.; Metos, Julie M.; Balch, Alfred H.; Young, Paul C.; Jordan, Kristine C.
2017-01-01
Objectives Increased adiposity increases leptin and decreases adiponectin concentrations, resulting in an increased leptin:adiponectin ratio (LAR). In adults, components of the metabolic syndrome and other cardiometabolic risk factors, what we classify here as “metabolic dysfunction,” are associated with both a high LAR and a history of being breast-fed. The relation among breast-feeding, LAR, and degree of metabolic dysfunction in obese youth is unknown. The purpose of our pilot study was to explore this relation and estimate the effect size of the relations to determine the sample size needed to power future prospective studies. Methods We obtained fasting levels of leptin, adiponectin, lipids, insulin, and glucose from obese youth (aged 8–17 years). Weight, height, waist circumference, blood pressure, and breast-feeding history also were assessed. Results Of 96 participants, 78 were breast-fed as infants, 54% of whom were breast-fed for >6 months. Wide variation was observed in LARs among children who were and were not breast-fed (>100% coefficient of variation). Overall, prevalence of metabolic dysfunction in the cohort was 94% and was not proven to be associated with higher LAR. Conclusions In this cohort of obese youth, we found a high prevalence of breast-feeding, metabolic dysfunction, and wide variation in the LARs. Based on the effect size estimated, future studies would need to enroll >1500 patients or identify, stratify, and selectively enroll obese patients without metabolic dysfunction to accurately determine whether breast-feeding in infancy influences LARs or metabolic dysfunction among obese youth. PMID:28464176
The Triple I Hypothesis: Taking Another('s) Perspective on Executive Dysfunction in Autism
ERIC Educational Resources Information Center
White, Sarah J.
2013-01-01
The executive dysfunction theory attempts to explain not only the repetitive behaviours but also the socio-communicative difficulties in autism. While it is clear that some individuals with autism perform poorly on certain executive function tasks, it remains unclear what underlies these impairments. The most consistent and striking difficulties…
USDA-ARS?s Scientific Manuscript database
Chronic childhood malnutrition, as manifested by stunted linear growth, remains a persistent barrier to optimal child growth and societal development. Environmental enteric dysfunction (EED) is a significant underlying factor in the causal pathway to stunting, delayed cognitive development, and ulti...
Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing
2018-05-01
Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.
Two cases of Kawasaki disease presented with acute febrile jaundice.
Kaman, Ayşe; Aydın-Teke, Türkan; Gayretli-Aydın, Zeynep Gökçe; Öz, Fatma Nur; Metin-Akcan, Özge; Eriş, Deniz; Tanır, Gönül
2017-01-01
Kawasaki disease is an acute, systemic vasculitis of unknown etiology. Although gastrointestinal involvement does not belong to the classic diagnostic criteria; diarrhea, abdominal pain, hepatic dysfunction, hydrops of gallbladder, and acute febrile cholestatic jaundice are reported in patients with Kawasaki disease. We describe here two cases presented with fever, and acute jaundice as initial features of Kawasaki disease.
Natural History of Thyroid Function in Adults with Down Syndrome--10-Year Follow-Up Study
ERIC Educational Resources Information Center
Prasher, V.; Gomez, G.
2007-01-01
Background: The natural history of thyroid function in adults with Down syndrome (DS) is unknown. Method: This study investigated annual thyroid function tests in 200 adults with DS over a 10-year period. Results: Transient and persistent thyroid dysfunction was common. The 5- and 10-year incidence of definite hypothyroidism was 0.9%-1.64% and…
Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway
He, Chao; Zhang, Wei; Li, Suobei; Ruan, Wei; Xu, Junmei
2018-01-01
Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF-) 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO-) 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP) with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp.) before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg), after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction. PMID:29765498
Evidence-Based Diagnosis and Treatment of the Painful Sacroiliac Joint
Laslett, Mark
2008-01-01
Sacroiliac joint (SIJ) pain refers to the pain arising from the SIJ joint structures. SIJ dysfunction generally refers to aberrant position or movement of SIJ structures that may or may not result in pain. This paper aims to clarify the difference between these clinical concepts and present current available evidence regarding diagnosis and treatment of SIJ disorders. Tests for SIJ dysfunction generally have poor inter-examiner reliability. A reference standard for SIJ dysfunction is not readily available, so validity of the tests for this disorder is unknown. Tests that stress the SIJ in order to provoke familiar pain have acceptable inter-examiner reliability and have clinically useful validity against an acceptable reference standard. It is unknown if provocation tests can reliably identify extra-articular SIJ sources of pain. Three or more positive pain provocation SIJ tests have sensitivity and specificity of 91% and 78%, respectively. Specificity of three or more positive tests increases to 87% in patients whose symptoms cannot be made to move towards the spinal midline, i.e., centralize. In chronic back pain populations, patients who have three or more positive provocation SIJ tests and whose symptoms cannot be made to centralize have a probability of having SIJ pain of 77%, and in pregnant populations with back pain, a probability of 89%. This combination of test findings could be used in research to evaluate the efficacy of specific treatments for SIJ pain. Treatments most likely to be effective are specific lumbopelvic stabilization training and injections of corticosteroid into the intra-articular space. PMID:19119403
Lightfoot, Adam P; Nagaraju, Kanneboyina; McArdle, Anne; Cooper, Robert G
2015-11-01
Discussion of endoplasmic reticulum (ER) stress pathway activation in idiopathic inflammatory myopathies (IIM), and downstream mechanisms causative of muscle weakness. In IIM, ER stress is an important pathogenic process, but how it causes muscle dysfunction is unknown. We discuss relevant pathways modified in response to ER stress in IIM: reactive oxygen species (ROS) generation and mitochondrial dysfunction, and muscle cytokine (myokine) generation. First, ER stress pathway activation can induce changes in mitochondrial bioenergetics and ROS production. ROS can oxidize cellular components, causing muscle contractile dysfunction and energy deficits. Novel compounds targeting ROS generation and/or mitochondrial dysfunction can improve muscle function in several myopathologies. Second, recent research has demonstrated that skeletal muscle produces multiple myokines. It is suggested that these play a role in causing muscle weakness. Myokines are capable of immune cell recruitment, thus contributing to perturbed muscle function. A characterization of myokines in IIM would clarify their pathogenic role, and so identify new therapeutic targets. ER stress pathway activation is clearly of etiological relevance in IIM. Research to better understand mechanisms of weakness downstream of ER stress is now required, and which may discover new therapeutic targets for nonimmune cell-mediated weakness.
Understanding Muscle Dysfunction in Chronic Fatigue Syndrome
Rutherford, Gina; Manning, Philip; Newton, Julia L.
2016-01-01
Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME. PMID:26998359
EFFECT OF AT1 RECEPTOR BLOCKADE ON INTERMITTENT HYPOXIA-INDUCED ENDOTHELIAL DYSFUNCTION
Marcus, Noah J.; Philippi, Nathan R.; Bird, Cynthia E.; Li, Yu-Long; Schultz, Harold D.; Morgan, Barbara J.
2012-01-01
Chronic intermittent hypoxia (CIH) raises arterial pressure, impairs vasodilator responsiveness, and increases circulating angiotensin II (Ang II); however, the role of Ang II in CIH-induced vascular dysfunction is unknown. Rats were exposed to CIH or room air (NORM), and a subset of these animals was treated with losartan (Los) during the exposure period. After 28 days, vasodilatory responses to acetylcholine or nitroprusside were measured in isolated gracilis arteries. Superoxide levels and Ang II receptor protein expression were measured in saphenous arteries. After 28 days, arterial pressure was increased and acetylcholine-induced vasodilation was blunted in CIH vs. NORM, and this was prevented by Los. Responses to nitroprusside and superoxide levels did not differ between CIH and NORM. Expression of AT2R was decreased and the AT1R:AT2R ratio was increased in CIH vs. NORM, but this was unaffected by Los. These results indicate that the blood pressure elevation and endothelial dysfunction associated with CIH is dependent, at least in part, on RAS signaling. PMID:22728949
Multiorgan dysfunction caused by travel-associated African trypanosomiasis.
Cottle, Lucy E; Peters, Joanna R; Hall, Alison; Bailey, J Wendi; Noyes, Harry A; Rimington, Jane E; Beeching, Nicholas J; Squire, S Bertel; Beadsworth, Mike B J
2012-02-01
We describe a case of multiorgan dysfunction secondary to Trypanosoma brucei rhodesiense infection acquired on safari in Zambia. This case was one of several recently reported to ProMED-mail in persons who had traveled to this region. Trypanosomiasis remains rare in travelers but should be considered in febrile patients who have returned from trypanosomiasis-endemic areas of Africa.
The heartbreak of depression: 'Psycho-cardiac' coupling in myocardial infarction.
Headrick, John P; Peart, Jason N; Budiono, Boris P; Shum, David H K; Neumann, David L; Stapelberg, Nicolas J C
2017-05-01
Ample evidence identifies strong links between major depressive disorder (MDD) and both risk of ischemic or coronary heart disease (CHD) and resultant morbidity and mortality. The molecular mechanistic bases of these linkages are poorly defined. Systemic factors linked to MDD, including vascular dysfunction, atherosclerosis, obesity and diabetes, together with associated behavioral changes, all elevate CHD risk. Nonetheless, experimental evidence indicates the myocardium is also directly modified in depression, independently of these factors, impairing infarct tolerance and cardioprotection. It may be that MDD effectively breaks the heart's intrinsic defense mechanisms. Four extrinsic processes are implicated in this psycho-cardiac coupling, presenting potential targets for therapeutic intervention if causally involved: sympathetic over-activity vs. vagal under-activity, together with hypothalamic-pituitary-adrenal (HPA) axis and immuno-inflammatory dysfunctions. However, direct evidence of their involvement remains limited, and whether targeting these upstream mediators is effective (or practical) in limiting the cardiac consequences of MDD is unknown. Detailing myocardial phenotype in MDD can also inform approaches to cardioprotection, yet cardiac molecular changes are similarly ill defined. Studies support myocardial sensitization to ischemic insult in models of MDD, including worsened oxidative and nitrosative damage, apoptosis (with altered Bcl-2 family expression) and infarction. Moreover, depression may de-sensitize hearts to protective conditioning stimuli. The mechanistic underpinnings of these changes await delineation. Such information not only advances our fundamental understanding of psychological determinants of health, but also better informs management of the cardiac consequences of MDD and implementing cardioprotection in this cohort. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chronic Kidney Disease Awareness Among Individuals with Clinical Markers of Kidney Dysfunction
Plantinga, Laura C.; Hsu, Chi-yuan; Jordan, Regina; Burrows, Nilka Ríos; Hedgeman, Elizabeth; Yee, Jerry; Saran, Rajiv; Powe, Neil R.
2011-01-01
Summary Background and objectives Awareness of chronic kidney disease (CKD) among providers and patients is low. Whether clinical cues prompt recognition of CKD is unknown. We examined whether markers of kidney disease that should trigger CKD recognition among providers are associated with higher individual CKD awareness. Design, setting, participants, & measurements CKD awareness was assessed in 1852 adults with an estimated GFR <60 ml/min per 1.73 m2 using 1999 to 2008 National Health and Nutrition Examination Survey data. CKD awareness was a “yes” answer to “Have you ever been told you have weak or failing kidneys?” Participants were grouped by distribution of the following abnormal markers of CKD: hyperkalemia, acidosis, hyperphosphatemia, elevated blood urea nitrogen, anemia, albuminuria, and uncontrolled hypertension. Odds of CKD awareness associated with each abnormal marker and groupings of markers were estimated by multivariable logistic regression. Results Among individuals with kidney disease, only those with albuminuria had greater odds of CKD awareness (adjusted odds ratio, 4.0, P < 0.01) than those without. Odds of CKD awareness increased with each additional manifested clinical marker of CKD (adjusted odds ratio, 1.3, P = 0.05). Nonetheless, 90% of individuals with two to four markers of CKD and 84% of individuals with ≥5 markers of CKD were unaware of their disease. Conclusions Although individuals who manifest many markers of kidney dysfunction are more likely to be aware of their CKD, their CKD awareness remains low. A better understanding of mechanisms of awareness is required to facilitate earlier detection of CKD and implement therapy to minimize associated complications. PMID:21784832
Obesity increases inflammation and impairs lymphatic function in a mouse model of lymphedema.
Savetsky, Ira L; Torrisi, Jeremy S; Cuzzone, Daniel A; Ghanta, Swapna; Albano, Nicholas J; Gardenier, Jason C; Joseph, Walter J; Mehrara, Babak J
2014-07-15
Although obesity is a major clinical risk factor for lymphedema, the mechanisms that regulate this effect remain unknown. Recent reports have demonstrated that obesity is associated with acquired lymphatic dysfunction. The purpose of this study was to determine how obesity-induced lymphatic dysfunction modulates the pathological effects of lymphatic injury in a mouse model. We used a diet-induced model of obesity in adult male C57BL/6J mice in which experimental animals were fed a high-fat diet and control animals were fed a normal chow diet for 8-10 wk. We then surgically ablated the superficial and deep lymphatics of the midportion of the tail. Six weeks postoperatively, we analyzed changes in lymphatic function, adipose deposition, inflammation, and fibrosis. We also compared responses to acute inflammatory stimuli in obese and lean mice. Compared with lean control mice, obese mice had baseline decreased lymphatic function. Lymphedema in obese mice further impaired lymphatic function and resulted in increased subcutaneous adipose deposition, increased CD45(+) and CD4(+) cell inflammation (P < 0.01), and increased fibrosis, but caused no change in the number of lymphatic vessels. Interestingly, obese mice had a significantly increased acute inflammatory reaction to croton oil application. In conclusion, obese mice have impaired lymphatic function at baseline that is amplified by lymphatic injury. This effect is associated with increased chronic inflammation, fibrosis, and adipose deposition. These findings suggest that obese patients are at higher risk for lymphedema due to impaired baseline lymphatic clearance and an increased propensity for inflammation in response to injury. Copyright © 2014 the American Physiological Society.
Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.
Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J
2016-08-01
Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Type 2 diabetes aggravates Alzheimer's disease-associated vascular alterations of the aorta in mice.
Sena, Cristina M; Pereira, Ana M; Carvalho, Cristina; Fernandes, Rosa; Seiça, Raquel M; Oliveira, Catarina R; Moreira, Paula I
2015-01-01
Vascular risk factors are associated with a higher incidence of dementia. In fact, diabetes mellitus is considered a main risk factor for Alzheimer's disease (AD) and both diseases are characterized by vascular dysfunction. However, the underlying mechanisms remain largely unknown. Here, the effects of high-sucrose-induced type 2 diabetes (T2D) in the aorta of wild type (WT) and triple-transgenic AD (3xTg-AD) mice were investigated. 3xTg-AD mice showed a significant decrease in body weight and an increase in postprandial glycemia, glycated hemoglobin (HbA1c), and vascular nitrotyrosine, superoxide anion (O2•-), receptor for the advanced glycation end products (RAGE) protein, and monocyte chemoattractant protein-1 (MCP-1) levels when compared to WT mice. High-sucrose intake caused a significant increase in body weight, postprandial glycemia, HbA1c, triglycerides, plasma vascular cell adhesion molecule 1 (VCAM-1), and vascular nitrotyrosine, O2•-, RAGE, and MCP-1 levels in both WT and 3xTg-AD mice when compared to the respective control group. Also, a significant decrease in nitric oxide-dependent vasorelaxation was observed in 3xTg-AD and sucrose-treated WT mice. In conclusion, AD and T2D promote similar vascular dysfunction of the aorta, this effect being associated with elevated oxidative and nitrosative stress and inflammation. Also, AD-associated vascular alterations are potentiated by T2D. These findings support the idea that metabolic alterations predispose to the onset and progression of dementia.
Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia
2018-04-01
Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.
Resveratrol ameliorated the behavioral deficits in a mouse model of post-traumatic stress disorder.
Zhang, Ze-Shun; Qiu, Zhi-Kun; He, Jia-Li; Liu, Xu; Chen, Ji-Sheng; Wang, Yu-Lu
2017-10-01
Post-traumatic stress disorder (PTSD) has become a major psychiatric and neurological issue. Resveratrol is shown to be effective on depression and anxiety. However, the mechanism of anti-PTSD-like effects of resveratrol remains unknown. The present study aimed to explore the possible molecular and cellular mechanisms underlying the anti-PTSD-like effects of resveratrol. Following a 2-day exposure to inescapable electric foot shocks, animals were administered resveratrol (10, 20, and 40mg/kg, i.g.) during the behavioral tests, which included contextual freezing measurement, elevated plus maze test, staircase test, and open field test. Similar to the positive control drug sertraline (15mg/kg, i.g.), the behavioral deficits of stressed mice were blocked by resveratrol (20 and 40mg/kg, i.g.), which reversed the increased freezing time in contextual freezing measurement and the number of rears in the staircase test and blocked the decrease in time and number of entries in open arms in the elevated plus maze test without affecting the locomotor activity in the open field test. In addition, resveratrol (20 and 40mg/kg, i.g.) antagonized the decrease in the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. Furthermore, long-term resveratrol attenuated the dysfunctions of hypothalamic-pituitary-adrenal axis simultaneously. Collectively, the evidence indicated that the anti-PTSD-like effects of resveratrol were associated with the normalization of biosynthesis of neurosteroids in the brain and prevention of the hypothalamic-pituitary-adrenal axis dysfunction. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiang; Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011; Zhang, Ting
Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral arterymore » occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.« less
Liu, Haixia; Jia, Lu; Chen, Xiaoyan; Shi, Limin; Xie, Junxia
2018-03-01
The excitability of dopaminergic neurons in the substantia nigra pars compacta (SNc) that supply the striatum with dopamine (DA) determines the function of the nigrostriatal system for motor coordination. We previously showed that 4-pyridinylmethyl-9(10H)-anthracenone (XE991), a specific blocker of Kv7/KCNQ channels, enhanced the excitability of nigral DA neurons and resulted in attenuation of haloperidol-induced catalepsy in a Parkinson's disease (PD) rat model. However, whether XE991 exhibits neuroprotective effects towards DA neuron degeneration remains unknown. The aim of this study was to investigate the effects of Kv7/KCNQ channel blocker, XE991, on 6-hydroxydopamine (6-OHDA)-induced nigral DA neuron degeneration and motor dysfunction. Using immunofluorescence staining and western blotting, we showed that intracerebroventricular administration of XE991 prevented the 6-OHDA-induced decrease in tyrosine hydroxylase (TH)-positive neurons and TH protein expression in the SNc. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) also revealed that XE991 partly restored the levels of DA and its metabolites in the striatum. Moreover, XE991 decreased apomorphine (APO)-induced contralateral rotations, enhanced balance and coordination, and attenuated muscle rigidity in 6-OHDA-treated rats. Importantly, all neuroprotective effects by XE991 were abolished by co-application of Kv7/KCNQ channel opener retigabine and XE991. Thus, Kv7/KCNQ channel inhibition by XE991 can exert neuroprotective effects against 6-OHDA-induced degeneration of the nigrostriatal DA system and motor dysfunction. Copyright © 2017. Published by Elsevier Inc.
Kovac, Stjepana; Preza, Elisavet; Houlden, Henry; Walker, Matthew C; Abramov, Andrey Y
2018-04-27
Mutations in genes affecting mitochondrial proteins are increasingly recognised in patients with epilepsy, but the factors determining cell fate during seizure activity in these mutations remain unknown. Fluorescent dye imaging techniques were applied to fibroblast cell lines from patients suffering from common mitochondrial mutations and to age-matched controls. Using live cell imaging techniques in fibroblasts, we show that fibroblasts with mutations in the mitochondrial genome had reduced mitochondrial membrane potential and NADH pools and higher redox indices, indicative of respiratory chain dysfunction. Increasing concentrations of ferutinin, a Ca 2+ ionophore, led to oscillatory Ca 2+ signals in fibroblasts resembling dynamic Ca 2+ changes that occur during seizure-like activity. Co-monitoring of mitochondrial membrane potential (ΔΨ m ) changes induced by ferutinin showed accelerated membrane depolarisation and cell collapse in fibroblasts with mutations in the mitochondrial genome when compared to controls. Ca 2+ flash photolysis using caged Ca 2+ confirmed impaired Ca 2+ handling in fibroblasts with mitochondrial mutations. Findings indicate that intracellular Ca 2+ levels cannot be compensated during periods of hyperexcitability, leading to Ca 2+ overload and subsequent cell death in mitochondrial diseases.
TAFRO syndrome: current perspectives.
Sakashita, Kentaro; Murata, Kengo; Takamori, Mikio
2018-01-01
Multicentric Castleman's disease (MCD), a distinct subtype of Castleman's disease, is a rare, nonneoplastic, lymphoproliferative disorder. Patients with MCD present with systemic symptoms and multiple lymphadenopathy. Lymph node biopsy is necessary for the diagnosis of various histological MCD patterns including hyaline vascular, plasma cell, and mixed types. Human herpesvirus 8 (HHV8) infection was identified as an important etiology of MCD among immunocompromised patients such as those positive for human immunodeficiency virus. Although HHV8-negative MCD was reported in immunocompetent patients, the underlying etiology remains unknown. Several experts speculate that MCD in immunocompetent patients might be due to proinflammatory hypercytokinemia because of infection by a virus other than HHV8, inflammation, or neoplastic disease. In 2010, a distinct variant of HHV8-negative MCD reported in Japan was characterized by thrombocytopenia, anasarca, myelofibrosis, renal dysfunction, and organomegaly (TAFRO). Recent case reports and a systematic review suggest that TAFRO syndrome might have a unique pathogenesis among HHV8-negative MCD variants. This review introduces TAFRO syndrome as a subtype of HHV8-negative MCD and offers an overview of the current perspectives on this syndrome.
Mitotic Dysfunction Associated with Aging Hallmarks.
Macedo, Joana Catarina; Vaz, Sara; Logarinho, Elsa
2017-01-01
Aging is a biological process characterized by the progressive deterioration of physiological functions known to be the main risk factor for chronic diseases and declining health. There has been an emerging connection between aging and aneuploidy, an aberrant number of chromosomes, even though the molecular mechanisms behind age-associated aneuploidy remain largely unknown. In recent years, several genetic pathways and biochemical processes controlling the rate of aging have been identified and proposed as aging hallmarks. Primary hallmarks that cause the accumulation of cellular damage include genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis (López-Otín et al., Cell 153:1194-1217, 2013). Here we review the provocative link between these aging hallmarks and the loss of chromosome segregation fidelity during cell division, which could support the correlation between aging and aneuploidy seen over the past decades. Secondly, we review the systemic impacts of aneuploidy in cell physiology and emphasize how these include some of the primary hallmarks of aging. Based on the evidence, we propose a mutual causality between aging and aneuploidy, and suggest modulation of mitotic fidelity as a potential means to ameliorate healthy lifespan.
Madji Hounoum, Blandine; Mavel, Sylvie; Coque, Emmanuelle; Patin, Franck; Vourc'h, Patrick; Marouillat, Sylviane; Nadal-Desbarats, Lydie; Emond, Patrick; Corcia, Philippe; Andres, Christian R; Raoul, Cédric; Blasco, Hélène
2017-04-01
The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605. © 2017 Wiley Periodicals, Inc.
Cardiovascular Abnormalities in Carbon Monoxide Poisoning.
Garg, Jalaj; Krishnamoorthy, Parasuram; Palaniswamy, Chandrasekar; Khera, Sahil; Ahmad, Hasan; Jain, Diwakar; Aronow, Wilbert S; Frishman, William H
Acute carbon monoxide (CO) poisoning is the most common cause of poisoning and poisoning-related death in the United States. It manifests as broad spectrum of symptoms ranging from mild headache, nausea, and fatigue to dizziness, syncope, coma, seizures resulting in cardiovascular collapse, respiratory failure, and death. Cardiovascular complications of CO poisoning has been well reported and include myocardial stunning, left ventricular dysfunction, pulmonary edema, and arrhythmias. Acute myocardial ischemia has also been reported from increased thrombogenicity due to CO poisoning. Myocardial toxicity from CO exposure is associated with increased short-term and long-term mortality. Carboxyhemoglobin (COHb) levels do not correlate well with the clinical severity of CO poisoning. Supplemental oxygen remains the cornerstone of therapy for CO poisoning. Hyperbaric oxygen therapy increases CO elimination and has been used with wide variability in patients with evidence of neurological and myocardial injury from CO poisoning, but its benefit in limiting or reversing cardiac injury is unknown. We present a comprehensive review of literature on cardiovascular manifestations of CO poisoning and propose a diagnostic algorithm for managing patients with CO poisoning.
Of guinea pigs and men--an unusual case of jaundice.
Pischke, S; Ehmer, U; Schedel, I; Gratz, W F; Wedemeyer, H; Ziesing, S; Bange, F C; Burchard, G D; Manns, M P; Bahr, M J; Strassburg, C P
2010-01-01
A 21-year-old male presented at the emergency room with jaundice, itching, dry cough, malaise and weight loss of 10 kg during the preceding four weeks. Eighteen months earlier, the patient had suffered an automobile accident leading to polytrauma. Serological markers for viral or other causes of hepatitis were absent. For suspected secondary sclerosing cholangitis, ultrasound and ERCP were performed but failed to reveal pathological findings. A liver biopsy showed cholestatic liver disease without signs of portal field-associated hepatitis. Hepato-biliary scintigraphy demonstrated hepatocellular dysfunction. The patient finally mentioned his guinea pig farm with around 50 animals, 20 of which had recently died for unknown reasons. The patient and three of his guinea pigs were subsequently tested for serological evidence of leptospirosis. IgG and IgM antibodies reacting with Leptospira interrogans were detected in the patient's serum, and all 3 guinea pigs were serologically positive for serovar Bratislava. Bacterial culture was not successful, and also PCR tests remained negative. The clinical symptoms quickly resolved after the initiation of antibiotic therapy with amoxicillin.
Persistent lung oscillator response to CO2 after buccal oscillator inhibition in the adult frog.
Leclère, Renaud; Straus, Christian; Similowski, Thomas; Bodineau, Laurence; Fiamma, Marie-Noëlle
2012-08-15
The automatic ventilatory drive in amphibians depends on two oscillators interacting with each other, the gill/buccal and lung oscillators. The lung oscillator would be homologous to the mammalian pre-Bötzinger complex and the gill/buccal oscillator homologous to the mammalian parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN). Dysfunction of the pFRG/RTN has been involved in the development of respiratory diseases associated to the loss of CO(2) chemosensitivity such as the congenital central hypoventilation syndrome. Here, on adult in vitro isolated frog brainstem, consequences of the buccal oscillator inhibition (by reducing Cl(-)) were evaluated on the respiratory rhythm developed by the lung oscillator under hypercapnic challenges. Our results show that under low Cl(-) concentration (i) the buccal oscillator is strongly inhibited and the lung burst frequency and amplitude decreased and (ii) it persists a powerful CO(2) chemosensitivity. In conclusion, in frog, the CO(2) chemosensitivity depends on cellular contingent(s) whose the functioning is independent of the concentration of Cl(-) and origin remains unknown. Copyright © 2012 Elsevier B.V. All rights reserved.
A role for cerebellum in the hereditary dystonia DYT1
Fremont, Rachel; Tewari, Ambika; Angueyra, Chantal; Khodakhah, Kamran
2017-01-01
DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down in select brain regions of adult mice using shRNAs. TorsinA knockdown in the cerebellum, but not in the basal ganglia, was sufficient to induce dystonia. In agreement with a potential developmental compensation for loss of torsinA in rodents, torsinA knockdown in the immature cerebellum failed to produce dystonia. Abnormal motor symptoms in knockdown animals were associated with irregular cerebellar output caused by changes in the intrinsic activity of both Purkinje cells and neurons of the deep cerebellar nuclei. These data identify the cerebellum as the main site of dysfunction in DYT1, and offer new therapeutic targets. DOI: http://dx.doi.org/10.7554/eLife.22775.001 PMID:28198698
Liu, Albert; Jain, Neeraj; Vyas, Ajai; Lim, Lee Wei
2015-01-01
Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04803.001 PMID:25768425
Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai
2015-01-01
Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739
Morimura, Naoko; Yasuda, Hiroki; Yamaguchi, Kazuhiko; Katayama, Kei-ichi; Hatayama, Minoru; Tomioka, Naoko H.; Odagawa, Maya; Kamiya, Akiko; Iwayama, Yoshimi; Maekawa, Motoko; Nakamura, Kazuhiko; Matsuzaki, Hideo; Tsujii, Masatsugu; Yamada, Kazuyuki; Yoshikawa, Takeo; Aruga, Jun
2017-01-01
Lrfn2/SALM1 is a PSD-95-interacting synapse adhesion molecule, and human LRFN2 is associated with learning disabilities. However its role in higher brain function and underlying mechanisms remain unknown. Here, we show that Lrfn2 knockout mice exhibit autism-like behavioural abnormalities, including social withdrawal, decreased vocal communications, increased stereotyped activities and prepulse inhibition deficits, together with enhanced learning and memory. In the hippocampus, the levels of synaptic PSD-95 and GluA1 are decreased. The synapses are structurally and functionally immature with spindle shaped spines, smaller postsynaptic densities, reduced AMPA/NMDA ratio, and enhanced LTP. In vitro experiments reveal that synaptic surface expression of AMPAR depends on the direct interaction between Lrfn2 and PSD-95. Furthermore, we detect functionally defective LRFN2 missense mutations in autism and schizophrenia patients. Together, these findings indicate that Lrfn2/LRFN2 serve as core components of excitatory synapse maturation and maintenance, and their dysfunction causes immature/silent synapses with pathophysiological state. PMID:28604739
Bin, Bum-Ho; Bhin, Jinhyuk; Seo, Juyeon; Kim, Se-Young; Lee, Eunyoung; Park, Kyuhee; Choi, Dong-Hwa; Takagishi, Teruhisa; Hara, Takafumi; Hwang, Daehee; Koseki, Haruhiko; Asada, Yoshinobu; Shimoda, Shinji; Mishima, Kenji; Fukada, Toshiyuki
2017-08-01
Skin is the first area that manifests zinc deficiency. However, the molecular mechanisms by which zinc homeostasis affects skin development remain largely unknown. Here, we show that zinc-regulation transporter-/iron-regulation transporter-like protein 7 (ZIP7) localized to the endoplasmic reticulum plays critical roles in connective tissue development. Mice lacking the Slc39a7/Zip7 gene in collagen 1-expressing tissue exhibited dermal dysplasia. Ablation of ZIP7 in mesenchymal stem cells inhibited cell proliferation thereby preventing proper dermis formation, indicating that ZIP7 is required for dermal development. We also found that mesenchymal stem cells lacking ZIP7 accumulated zinc in the endoplasmic reticulum, which triggered zinc-dependent aggregation and inhibition of protein disulfide isomerase, leading to endoplasmic reticulum dysfunction. These results suggest that ZIP7 is necessary for endoplasmic reticulum function in mesenchymal stem cells and, as such, is essential for dermal development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho
2017-12-01
Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Metabolic Reprogramming in Amyotrophic Lateral Sclerosis.
Szelechowski, M; Amoedo, N; Obre, E; Léger, C; Allard, L; Bonneu, M; Claverol, S; Lacombe, D; Oliet, S; Chevallier, S; Le Masson, G; Rossignol, R
2018-03-02
Mitochondrial dysfunction in the spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the neurometabolic alterations during early stages of the disease remain unknown. Here, we investigated the bioenergetic and proteomic changes in ALS mouse motor neurons and patients' skin fibroblasts. We first observed that SODG93A mice presymptomatic motor neurons display alterations in the coupling efficiency of oxidative phosphorylation, along with fragmentation of the mitochondrial network. The proteome of presymptomatic ALS mice motor neurons also revealed a peculiar metabolic signature with upregulation of most energy-transducing enzymes, including the fatty acid oxidation (FAO) and the ketogenic components HADHA and ACAT2, respectively. Accordingly, FAO inhibition altered cell viability specifically in ALS mice motor neurons, while uncoupling protein 2 (UCP2) inhibition recovered cellular ATP levels and mitochondrial network morphology. These findings suggest a novel hypothesis of ALS bioenergetics linking FAO and UCP2. Lastly, we provide a unique set of data comparing the molecular alterations found in human ALS patients' skin fibroblasts and SODG93A mouse motor neurons, revealing conserved changes in protein translation, folding and assembly, tRNA aminoacylation and cell adhesion processes.
Neural circuits in anxiety and stress disorders: a focused review
Duval, Elizabeth R; Javanbakht, Arash; Liberzon, Israel
2015-01-01
Anxiety and stress disorders are among the most prevalent neuropsychiatric disorders. In recent years, multiple studies have examined brain regions and networks involved in anxiety symptomatology in an effort to better understand the mechanisms involved and to develop more effective treatments. However, much remains unknown regarding the specific abnormalities and interactions between networks of regions underlying anxiety disorder presentations. We examined recent neuroimaging literature that aims to identify neural mechanisms underlying anxiety, searching for patterns of neural dysfunction that might be specific to different anxiety disorder categories. Across different anxiety and stress disorders, patterns of hyperactivation in emotion-generating regions and hypoactivation in prefrontal/regulatory regions are common in the literature. Interestingly, evidence of differential patterns is also emerging, such that within a spectrum of disorders ranging from more fear-based to more anxiety-based, greater involvement of emotion-generating regions is reported in panic disorder and specific phobia, and greater involvement of prefrontal regions is reported in generalized anxiety disorder and posttraumatic stress disorder. We summarize the pertinent literature and suggest areas for continued investigation. PMID:25670901
Neuromodulation in bladder dysfunction.
Hasan, S T; Neal, D E
1998-10-01
Neuromodulation is one option for the management of a wide variety of lower urinary tract disorders, including non-neuropathic and neuropathic bladder dysfunctions. The mechanisms of action of the reported techniques remain unclear; urodynamic changes are minimal, but symptomatic improvements are common. Although the treatment is relatively free from side-effects compared with more aggressive surgical options, the placebo effect is likely to be significant. Its exact cost effectiveness is unclear, but the technology is a welcome addition to the range of treatment options for lower urinary tract dysfunctions, such as urgency and urge incontinence.
Diaphragm Dysfunction in Mechanically Ventilated Patients.
Dot, Irene; Pérez-Teran, Purificación; Samper, Manuel-Andrés; Masclans, Joan-Ramon
2017-03-01
Muscle involvement is found in most critical patients admitted to the intensive care unit (ICU). Diaphragmatic muscle alteration, initially included in this category, has been differentiated in recent years, and a specific type of muscular dysfunction has been shown to occur in patients undergoing mechanical ventilation. We found this muscle dysfunction to appear in this subgroup of patients shortly after the start of mechanical ventilation, observing it to be mainly associated with certain control modes, and also with sepsis and/or multi-organ failure. Although the specific etiology of process is unknown, the muscle presents oxidative stress and mitochondrial changes. These cause changes in protein turnover, resulting in atrophy and impaired contractility, and leading to impaired functionality. The term 'ventilator-induced diaphragm dysfunction' was first coined by Vassilakopoulos et al. in 2004, and this phenomenon, along with injury cause by over-distention of the lung and barotrauma, represents a challenge in the daily life of ventilated patients. Diaphragmatic dysfunction affects prognosis by delaying extubation, prolonging hospital stay, and impairing the quality of life of these patients in the years following hospital discharge. Ultrasound, a non-invasive technique that is readily available in most ICUs, could be used to diagnose this condition promptly, thus preventing delays in starting rehabilitation and positively influencing prognosis in these patients. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Singh, Keshav K; Rasmussen, Anne Karin; Rasmussen, Lene Juel
2004-04-01
Mitochondrial dysfunction is a hallmark of cancer cells. However, genetic response to mitochondrial dysfunction during carcinogenesis is unknown. To elucidate genetic response to mitochondrial dysfunction we used Saccharomyces cerevisiae as a model system. We analyzed genome-wide expression of nuclear genes involved in signal transduction and transcriptional regulation in a wild-type yeast and a yeast strain lacking the mitochondrial genome (rho(0)). Our analysis revealed that the gene encoding cAMP-dependent protein kinase subunit 3 (PKA3) was upregulated. However, the gene encoding cAMP-dependent protein kinase subunit 2 (PKA2) and the VTC1, PTK2, TFS1, CMK1, and CMK2 genes, involved in signal transduction, were downregulated. Among the known transcriptional factors, OPI1, MIG2, INO2, and ROX1 belonged to the upregulated genes, whereas MSN4, MBR1, ZMS1, ZAP1, TFC3, GAT1, ADR1, CAT8, and YAP4 including RFA1 were downregulated. RFA1 regulates DNA repair genes at the transcriptional level. RFA is also involved directly in DNA recombination, DNA replication, and DNA base excision repair. Downregulation of RFA1 in rho(0) cells is consistent with our finding that mitochondrial dysfunction leads to instability of the nuclear genome. Together, our data suggest that gene(s) involved in mitochondria-to-nucleus communication play a role in mutagenesis and may be implicated in carcinogenesis.
Jiang, Chunming; Zhu, Wei; Yan, Xiang; Shao, Qiuyuan; Xu, Biao; Zhang, Miao; Gong, Rujun
2016-01-01
Acute kidney injury (AKI) remains challenging for clinical practice and poses a risk of developing progressive chronic kidney disease (CKD) with no definitive treatment available yet. Tanshinone IIA, an active ingredient of Chinese herbal Salvia miltiorrhiza, has been widely used in Asia for the remarkable organoprotective activities. Its effect on established AKI, however, remains unknown. In mice with folic acid-induced AKI, delayed treatment with Tanshinone IIA, commenced early or late after injury, diminished renal expression of kidney injury markers, reduced apoptosis and improved kidney dysfunction, concomitant with mitigated histologic signs of AKI to CKD transition, including interstitial fibrosis and tubular atrophy, and with an ameliorated inflammatory infiltration in tubulointerstitium and a favored M2-skewed macrophage polarization. Mechanistically, Tanshinone IIA blunted glycogen synthase kinase (GSK)3β overactivity and hyperactivation of its downstream mitogen-activated protein kinases that are centrally implicated in renal fibrogenesis and inflammation. Inhibition of GSK3β is likely a key mechanism mediating the therapeutic activity of Tanshinone IIA, because sodium nitroprusside, a GSK3β activator, largely offset its renoprotective effect. In confirmatory studies, rescue treatment with Tanshinone IIA likewise ameliorated ischemia/reperfusion-induced kidney destruction in mice. Our data suggest that Tanshinone IIA represents a valuable treatment that improves post-AKI kidney salvage via targeting GSK3β. PMID:27857162
Early uneven ear input induces long-lasting differences in left-right motor function.
Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M
2018-03-01
How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.
Coupez, Elisabeth; Timsit, Jean-François; Ruckly, Stéphane; Schwebel, Carole; Gruson, Didier; Canet, Emmanuel; Klouche, Kada; Argaud, Laurent; Bohe, Julien; Garrouste-Orgeas, Maïté; Mariat, Christophe; Vincent, François; Cayot, Sophie; Cointault, Olivier; Lepape, Alain; Darmon, Michael; Boyer, Alexandre; Azoulay, Elie; Bouadma, Lila; Lautrette, Alexandre; Souweine, Bertrand
2016-07-30
Intensive care unit (ICU) patients require dialysis catheters (DCs) for renal replacement therapy (RRT). They carry a high risk of developing end-stage renal disease, and therefore their vascular access must be preserved. Guidewire exchange (GWE) is often used to avoid venipuncture insertion (VPI) at a new site. However, the impact of GWE on infection and dysfunction of DCs in the ICU is unknown. Our aim was to compare the effect of GWE and VPI on DC colonization and dysfunction in ICU patients. Using data from the ELVIS randomized controlled trial (RCT) (1496 ICU adults requiring DC for RRT or plasma exchange) we performed a matched-cohort analysis. Cases were DCs inserted by GWE (n = 178). They were matched with DCs inserted by VPI. Matching criteria were participating centre, simplified acute physiology score (SAPS) II +/-10, insertion site (jugular or femoral), side for jugular site, and length of ICU stay before DC placement. We used a marginal Cox model to estimate the effect of DC insertion (GWE vs. VPI) on DC colonization and dysfunction. DC colonization rate was not different between GWE-DCs and VPI-DCs (10 (5.6 %) for both groups) but DC dysfunction was more frequent with GWE-DCs (67 (37.6 %) vs. 28 (15.7 %); hazard ratio (HR), 3.67 (2.07-6.49); p < 0.01). Results were similar if analysis was restricted to DCs changed for dysfunction. GWE for DCs in ICU patients, compared with VPI did not contribute to DC colonization or infection but was associated with more than twofold increase in DC dysfunction. This study is registered with ClinicalTrials.gov, number NCT00563342 . Registered 2 April 2009.
ERIC Educational Resources Information Center
Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.
2008-01-01
Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…
Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu
2017-01-01
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein-rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity-associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad-vaspin) to examine its effects on lipopolysaccharide (LPS)-induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10] levels, and intercellular cell adhesion molecule-1 (ICAM-1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)-vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF-α and IL-6) and endothelial-specific adhesion markers [vascular cell adhesion molecule-1 and E-selectin], activation of nuclear factor-κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad-vaspin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)-3β pathway. In addition, pretreatment of HPMECs with rh-vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS-induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS. PMID:29039444
Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu
2017-12-01
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein‑rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue‑derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity‑associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad‑vaspin) to examine its effects on lipopolysaccharide (LPS)‑induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)‑α, interleukin (IL)‑6 and IL‑10] levels, and intercellular cell adhesion molecule‑1 (ICAM‑1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)‑vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF‑α and IL‑6) and endothelial‑specific adhesion markers [vascular cell adhesion molecule‑1 and E‑selectin], activation of nuclear factor‑κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad‑vaspin protected against LPS‑induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)‑3β pathway. In addition, pretreatment of HPMECs with rh‑vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS‑induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS.
Sugiyama, Seigo; Jinnouchi, Hideaki; Hieshima, Kunio; Kurinami, Noboru; Suzuki, Tomoko; Miyamoto, Fumio; Kajiwara, Keizo; Matsui, Kunihiko; Jinnouchi, Tomio
2015-04-23
Elevated cholesterol in type 2 diabetes mellitus (DM) can cause endothelial dysfunction. An effective clinical therapy to improve endothelial dysfunction remains to be established. Different cardiovascular actions between treatments for the inhibition of cholesterol absorption and the suppression of cholesterol synthesis for achieving improvement in endothelial function are unknown in DM. Stable patients with type 2 DM and mildly elevated low-density lipoprotein cholesterol were enrolled. We evaluated peripheral microvascular endothelial function using reactive hyperemia peripheral arterial tonometry (RH-PAT) examination and calculated a natural logarithmic transformed value for the RH-PAT index (LnRHI). We randomly assigned 33 patients to each monotherapy: cholesterol synthesis suppression using atorvastatin (5 mg/day, n=16) or cholesterol absorption inhibition using ezetimibe (10 mg/day, n=17). Patients were prospectively followed for 6 months. Serum lipids and LnRHI were repeatedly examined before and after each therapy. LDL significantly decreased in both groups, but the percent changes of LDL showed a greater decrease in the atorvastatin group compared with the ezetimibe group (-34.5±7.8% vs. -21.9±9.6%, p<0.01). Serum levels of non-esterified free fatty acids (NEFA) significantly decreased in the ezetimibe group but not in the atorvastatin group (ezetimibe group: 561.1±236.8 to 429.7±195.9, p<0.01; atorvastatin group: 538.8±319.5 to 520.2±227.3, p=0.75). The percent decrease in NEFA was significantly greater in the ezetimibe group compared with the atorvastatin group (-19.9±27.4% vs. 11.3±44.1%, p<0.05). LnRHI showed a significant increase in the ezetimibe group but not in the atorvastatin group (ezetimibe group: 0.471±0.157 to 0.678±0.187, p<0.01; atorvastatin group: 0.552±0.084 to 0.558±0.202, p=0.64). The percent changes in LnRHI were significantly greater in the ezetimibe group compared with the atorvastatin group (63.3±89.2% vs. 7.4±41.2%, p<0.05). In patients with type 2 DM, ezetimibe monotherapy significantly reduced LDL and NEFA, and improved peripheral microvascular endothelial dysfunction. Ezetimibe could potentially exhibit beneficial effects on lipid disorders and microvascular endothelial dysfunction in DM.
Increasing women’s sexual desire: The comparative effectiveness of estrogens and androgens
Cappelletti, Maurand; Wallen, Kim
2016-01-01
Both estradiol and testosterone have been implicated as the steroid critical for modulating women’s sexual desire. By contrast, in all other female mammals only estradiol has been shown to be critical for female sexual motivation and behavior. Pharmaceutical companies have invested heavily in the development of androgen therapies for female sexual desire disorders, but today there are still no FDA approved androgen therapies for women. Nonetheless, testosterone is currently, and frequently, prescribed off-label for the treatment of low sexual desire in women, and the idea of testosterone as a cure-all for female sexual dysfunction remains popular. This paper places the ongoing debate concerning the hormonal modulation of women’s sexual desire within a historical context, and reviews controlled trials of estrogen and/or androgen therapies for low sexual desire in postmenopausal women. These studies demonstrate that estrogen-only therapies that produce periovulatory levels of circulating estradiol increase sexual desire in postmenopausal women. Testosterone at supraphysiological, but not at physiological, levels enhances the effectiveness of low-dose estrogen therapies at increasing women’s sexual desire; however, the mechanism by which supraphysiological testosterone increases women’s sexual desire in combination with an estrogen remains unknown. Because effective therapies require supraphysiological amounts of testosterone, it remains unclear whether endogenous testosterone contributes to the modulation of women’s sexual desire. The likelihood that an androgen-only clinical treatment will meaningfully increase women’s sexual desire is minimal, and the focus of pharmaceutical companies on the development of androgen therapies for the treatment of female sexual desire disorders is likely misplaced. PMID:26589379
Tay, Sen Hee; Mak, Anselm
2015-01-01
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects approximately 1–45.3 per 100,000 people worldwide. Although deaths as a result of active and renal diseases have been substantially declining amongst SLE patients, disease involving the central nervous system (CNS), collectively termed neuropsychiatric systemic lupus erythematosus (NPSLE), remains one of the important causes of death in these patients. Cognitive dysfunction is one of the most common manifestations of NPSLE, which comprises deficits in information-processing speed, attention and executive function, in conjunction with preservation of speech. Albeit a prevalent manifestation of NPSLE, the pathogenetic mechanisms of cognitive dysfunction remain unclear. Recent advances in genetic studies, molecular techniques, neuropathology, neuroimaging and cognitive science have gleaned valuable insights into the pathophysiology of lupus-related cognitive dysfunction. In recent years, a role for autoantibodies, molecular and cellular mechanisms in cognitive dysfunction, has been emerging, challenging our previous concept of the brain as an immune privileged site. This review will focus on the potential pathogenic factors involved in NPSLE, including anti-N-methyl-d-aspartate receptor subunit NR2A/B (anti-NR2A/B) antibodies, matrix metalloproteinase-9, neutrophil extracellular traps and pro-inflammatory mediators. Better understanding of these mechanistic processes will enhance identification of new therapeutic modalities to halt the progression of cognitive decline in SLE patients. PMID:25955648
Maeshima, Hitoshi; Baba, Hajime; Nakano, Yoshiyuki; Satomura, Emi; Namekawa, Yuki; Takebayashi, Naoko; Nomoto, Hiroshi; Suzuki, Toshihito; Mimura, Masaru; Arai, Heii
2013-10-01
Previous studies have demonstrated that patients with depression also have memory dysfunctions during depressive episodes. These dysfunctions partially remain immediately after remission from a depressive state; however, it is unclear whether these residual memory dysfunctions may disappear through long-term remission from depression. The present study compared patients during early-life (age<60) and late-life (age ≥ 60) depression while in their remitted stage with healthy controls to elucidate the impact of a long-term course on memory. Logical memory from the Wechsler Memory Scale-Revised was administered to 67 patients with major depressive disorder (MDD) (47 patients with early-life depression and residual 20 patients with late-life depression) and 50 healthy controls. MDD patients received memory assessments at the time of their initial remission and at a follow-up three years after remission. At the time of initial remission, scores for logical memory were significantly lower in both patient groups compared to matched controls. At follow-up, memory dysfunction for early-life MDD patients disappeared, whereas scores in the late-life MDD group remained significantly lower than those of matched controls. All patients in the present study were on antidepressant medications. Our findings suggested that the progress of memory performance in late-life MDD patients may be different from early-life MDD patients. © 2013 Elsevier B.V. All rights reserved.
Emerging roles for hemostatic dysfunction in malaria pathogenesis.
O'Sullivan, Jamie M; Preston, Roger J S; O'Regan, Niamh; O'Donnell, James S
2016-05-12
Severe Plasmodium falciparum malaria remains a leading cause of mortality, particularly in sub-Saharan Africa where it accounts for up to 1 million deaths per annum. In spite of the significant mortality and morbidity associated with cerebral malaria (CM), the molecular mechanisms involved in the pathophysiology of severe malaria remain surprisingly poorly understood. Previous studies have demonstrated that sequestration of P falciparum-infected erythrocytes within the microvasculature of the brain plays a key role in the development of CM. In addition, there is convincing evidence that both endothelial cell activation and platelets play critical roles in the modulating the pathogenesis of severe P falciparum malaria. In this review, we provide an overview of recent studies that have identified novel roles through which hemostatic dysfunction may directly influence malaria pathogenesis. In particular, we focus on emerging data suggesting that von Willebrand factor, coagulation cascade activation, and dysfunction of the protein C pathway may be of specific importance in this context. These collective insights underscore a growing appreciation of the important, but poorly understood, role of hemostatic dysfunction in malaria progression and, importantly, illuminate potential approaches for novel therapeutic strategies. Given that the mortality rate associated with CM remains on the order of 20% despite the availability of effective antimalarial therapy, development of adjunctive therapies that can attenuate CM progression clearly represents a major unmet need. These emerging data are thus not only of basic scientific interest, but also of direct clinical significance. © 2016 by The American Society of Hematology.
Early Immune Function and Duration of Organ Dysfunction in Critically Ill Septic Children.
Muszynski, Jennifer A; Nofziger, Ryan; Moore-Clingenpeel, Melissa; Greathouse, Kristin; Anglim, Larissa; Steele, Lisa; Hensley, Josey; Hanson-Huber, Lisa; Nateri, Jyotsna; Ramilo, Octavio; Hall, Mark W
2018-02-22
Late immune suppression is associated with nosocomial infection and mortality in septic adults and children. Relationships between early immune suppression and outcomes in septic children remain unclear. Prospective observational study to test the hypothesis that early innate and adaptive immune suppression are associated with longer duration of organ dysfunction in children with severe sepsis/septic shock. Methods, Measurements and Main Results: Children aged < 18 years meeting consensus criteria for severe sepsis or septic shock were sampled within 48 hours of sepsis onset. Healthy controls were sampled once. Innate immune function was quantified by whole blood ex vivo lipopolysaccharide-induced TNFα production capacity. Adaptive immune function was quantified by ex vivo phytohemagglutinin-induced IFNγ production capacity. 102 septic children and 35 healthy children were enrolled. Compared to healthy children, septic children demonstrated lower LPS-induced TNFα production (p < 0.0001) and lower PHA-induced IFNγ production (p<0.0001). Among septic children, early innate and adaptive immune suppression were associated with greater number of days with multiple organ dysfunction (MODS) and greater number of days with any organ dysfunction. On multivariable analyses, early innate immune suppression remained independently associated with increased MODS days [aRR 1.2 (1.03, 1.5)] and organ dysfunction days [aRR 1.2 (1.1, 1.3)]. Critically ill children with severe sepsis or septic shock demonstrate early innate and adaptive immune suppression. Early suppression of both innate and adaptive immunity are associated with longer duration of organ dysfunction and may be useful markers to guide investigations of immunomodulatory therapies in septic children.
Garland, Sheila N; Rouleau, Codie R; Campbell, Tavis; Samuels, Charles; Carlson, Linda E
2015-01-01
Insomnia is an important but often overlooked side effect of cancer. Dysfunctional sleep beliefs have been identified as an important perpetuating factor for insomnia. Mindfulness practice has been demonstrated to improve sleep quality but it is unknown whether these effects relate to changes in dysfunctional sleep beliefs. This study is a secondary analysis of a randomized controlled trial comparing mindfulness-based cancer recovery (MBCR) to cognitive behavior therapy for insomnia (CBT-I) in cancer patients with insomnia. This present analysis compares program impact on mindfulness, dysfunctional sleep beliefs, and insomnia severity clinical cutoffs. Patients (MBCR, n = 32; CBT-I, n = 40) were assessed at baseline, post-program, and 3-month follow-up. Across both groups, patients showed improvements over time in acting with awareness (P = .021) and not judging experiences (P = .023). Changes in dysfunctional sleep beliefs produced by the CBT-I group exceeded those produced by MBCR at post-program and follow-up (P < .001). Acting with awareness, non-judging, and non-reacting were the facets of mindfulness associated with an overall reduction in dysfunctional sleep beliefs. There were no significant differences between the MBCR and CBT-I groups in the percentage of patients exceeding insomnia severity clinical cutoffs at post-program or follow-up. This study supports the use of both CBT-I and MBCR to reduce insomnia severity and suggests the development of mindfulness facets as a method of reducing dysfunctional sleep beliefs. Copyright © 2015 Elsevier Inc. All rights reserved.
[Considerations on family dynamics and the malnutrition syndrome in Mexican children].
Vásquez-Garibay, Edgar Manuel; González-Rico, José Luis; Romero-Velarde, Enrique; Sánchez-Talamantes, Eva; Navarro-Lozano, María Eugenia; Nápoles-Rodríguez, Francisco
2015-01-01
Since the early 1990s we noted that family dysfunction was more common in children with severe primary malnutrition than in children admitted to the hospital without malnutrition. Defects on feeding habits during the first year of life, especially early weaning and inadequate complementary feeding were more common in dysfunctional families. We also observed that chronic malnutrition in preschool children, and overweight and obesity in schoolchildren were more common in children from dysfunctional families. Once the association between dysfunctional family dynamics and obesity in schoolchildren was demonstrated, it was observed that low education of fathers and mothers increased twofold the possibility of family dysfunction: OR: 2.06; 95% CI: 1.37-3.10 and OR: 2.47; 95% CI: 1.57-3.89, respectively. In addition, the low-income and the lower purchasing power of foods were associated to family dysfunction (p<0.05). A remaining task is to explore how to assess family dysfunction in composite, extended, single-parent families where there exist other persons vulnerable to the different entities of malnutrition syndrome and indeed depend on adults for their care, food and nutrition.
Cardiac macrophages promote diastolic dysfunction.
Hulsmans, Maarten; Sager, Hendrik B; Roh, Jason D; Valero-Muñoz, María; Houstis, Nicholas E; Iwamoto, Yoshiko; Sun, Yuan; Wilson, Richard M; Wojtkiewicz, Gregory; Tricot, Benoit; Osborne, Michael T; Hung, Judy; Vinegoni, Claudio; Naxerova, Kamila; Sosnovik, David E; Zile, Michael R; Bradshaw, Amy D; Liao, Ronglih; Tawakol, Ahmed; Weissleder, Ralph; Rosenzweig, Anthony; Swirski, Filip K; Sam, Flora; Nahrendorf, Matthias
2018-02-05
Macrophages populate the healthy myocardium and, depending on their phenotype, may contribute to tissue homeostasis or disease. Their origin and role in diastolic dysfunction, a hallmark of cardiac aging and heart failure with preserved ejection fraction, remain unclear. Here we show that cardiac macrophages expand in humans and mice with diastolic dysfunction, which in mice was induced by either hypertension or advanced age. A higher murine myocardial macrophage density results from monocyte recruitment and increased hematopoiesis in bone marrow and spleen. In humans, we observed a parallel constellation of hematopoietic activation: circulating myeloid cells are more frequent, and splenic 18 F-FDG PET/CT imaging signal correlates with echocardiographic indices of diastolic dysfunction. While diastolic dysfunction develops, cardiac macrophages produce IL-10, activate fibroblasts, and stimulate collagen deposition, leading to impaired myocardial relaxation and increased myocardial stiffness. Deletion of IL-10 in macrophages improves diastolic function. These data imply expansion and phenotypic changes of cardiac macrophages as therapeutic targets for cardiac fibrosis leading to diastolic dysfunction. © 2018 Hulsmans et al.
PTSD and Sexual Dysfunction in Men and Women.
Yehuda, Rachel; Lehrner, Amy; Rosenbaum, Talli Y
2015-05-01
Difficulties in sexual desire and function often occur in persons with posttraumatic stress disorder (PTSD), but many questions remain regarding the mechanisms underlying the occurrence of sexual problems in PTSD. The aim of this review was to present a model of sexual dysfunction in PTSD underpinned by an inability to regulate and redirect the physiological arousal needed for healthy sexual function away from aversive hyperarousal and intrusive memories. A literature review pertaining to PTSD and sexual function was conducted. Evidence for the comorbidity of sexual dysfunction and PTSD is presented, and biological and psychological mechanisms that may underlie this co-occurrence are proposed. This manuscript presents evidence of sexual dysfunction in conjunction with PTSD, and of the neurobiology and neuroendocrinology of PTSD and sexual function. Sexual dysfunction following trauma exposure may be mediated by PTSD-related biological, cognitive, and affective processes. The treatment of PTSD must include attention to sexual dysfunction and vice versa. © 2015 International Society for Sexual Medicine.
Prescription opioids for back pain and use of medications for erectile dysfunction.
Deyo, Richard A; Smith, David H M; Johnson, Eric S; Tillotson, Carrie J; Donovan, Marilee; Yang, Xiuhai; Petrik, Amanda; Morasco, Benjamin J; Dobscha, Steven K
2013-05-15
Cross-sectional analysis of electronic medical and pharmacy records. To examine associations between use of medication for erectile dysfunction or testosterone replacement and use of opioid therapy, patient age, depression, and smoking status. Males with chronic pain may experience erectile dysfunction related to depression, smoking, age, or opioid-related hypogonadism. The prevalence of this problem in back pain populations and the relative importance of several risk factors are unknown. We examined electronic pharmacy and medical records for males with back pain in a large group model health maintenance organization during 2004. Relevant prescriptions were considered for 6 months before and after the index visit. There were 11,327 males with a diagnosis of back pain. Males who received medications for erectile dysfunction or testosterone replacement (n = 909) were significantly older than those who did not and had greater comorbidity, depression, smoking, and use of sedative-hypnotics. In logistic regressions, the long-term use of opioids was associated with greater use of medications for erectile dysfunction or testosterone replacement compared with no opioid use (odds ratio, 1.45; 95% confidence interval, 1.12-1.87, P < 0.01). Age, comorbidity, depression, and use of sedative-hypnotics were also independently associated with the use of medications for erectile dysfunction or testosterone replacement. Patients prescribed daily opioid doses of 120 mg of morphine-equivalents or more had greater use of medication for erectile dysfunction or testosterone replacement than patients without opioid use (odds ratio, 1.58; 95% confidence interval, 1.03-2.43), even with adjustment for the duration of opioid therapy. Dose and duration of opioid use, as well as age, comorbidity, depression, and use of sedative-hypnotics, were associated with evidence of erectile dysfunction. These findings may be important in the process of decision making for the long-term use of opioids. 4.
Choi, Ung Lim; Park, Jae-Hyeong; Sun, Byung Joo; Oh, Jin Kyung; Seong, Seok Woo; Lee, Jae-Hwan; Choi, Si Wan; Jeong, Jin-Ok; Kwon, In Sun; Seong, In-Whan
2018-05-01
Left ventricular (LV) apical thrombus is a clinically important complication which can cause systemic embolization in patients with anterior acute myocardial infarction (AMI). Systolic dysfunction has been a risk factor for developing LV apical thrombus in AMI patients. However, the role of diastolic dysfunction in the development of LV apical thrombus in these patients is still unknown. We performed this study to evaluate whether diastolic dysfunction can influence the development of LV apical thrombus in anterior AMI patients. We retrospectively analyzed all consecutive anterior AMI patients with available echocardiographic images within 1 month from January 2005 to April 2016. After gathering clinical characteristics from their medical records, systolic and diastolic functions were analyzed from digitally stored echocardiographic images. We included a total of 1045 patients (748 males, mean age 64 ± 12 years) with anterior AMI, and 494 (47%) were diagnosed as STEMI. The incidence of LV apical thrombus was 3.3% (34/1045). The LV apical thrombus group had larger LV diastolic dimension, larger LV diastolic and systolic volumes, and lower LVEF than the no LV thrombus group. The LV apical thrombus group showed higher mitral E velocity over mitral annular E' velocity ratio, an indicator of LV end-diastolic pressure (P < 0.001). In the LV apical thrombus group, the incidence of grade 2 diastolic dysfunction (32 vs 12%, P = 0.001) and grade 3 diastolic dysfunction (26 vs 2%, P < 0.001) were significantly higher than in the no LV apical thrombus group. The presence of more than grade 2 diastolic dysfunction, LVEF and presence of LV apical aneurysm were statistically significant factors associated with LV apical thrombus after the multivariate analysis. In conclusion, along with LV systolic dysfunction and LV apical aneurysm, LV diastolic dysfunction was also related with the presence of LV apical thrombus in patients with anterior AMI.
Concurrent Vision Dysfunctions in Convergence Insufficiency with Traumatic Brain Injury
Alvarez, Tara L.; Kim, Eun H.; Vicci, Vincent R.; Dhar, Sunil K.; Biswal, Bharat B.; Barrett, A. M.
2012-01-01
Purpose This study assessed the prevalence of convergence insufficiency (CI) with and without simultaneous vision dysfunctions within the traumatic brain injury (TBI) sample population because although CI is commonly reported with TBI, the prevalence of concurrent visual dysfunctions with CI in TBI is unknown. Methods A retrospective analysis of 557 medical records from TBI civilian patients was conducted. Patients were all evaluated by a single optometrist. Visual acuity, oculomotor, binocular vision function, accommodation, visual fields, ocular health and vestibular function were assessed. Statistical comparisons between the CI and non-CI, as well as in-patient and out-patient subgroups, were conducted using chi-squared and Z-tests. Results Approximately 9% of the TBI sample had CI without the following simultaneous diagnoses: saccade or pursuit dysfunction; 3rd, 4th, or 6th nerve palsy; visual field deficit; visual spatial inattention/neglect; vestibular dysfunction or nystagmus. Photophobia with CI was observed in 16.3% (N=21/130) and vestibular dysfunction with CI was observed in 18.5% (N=24/130) of the CI subgroup. CI and cranial nerve palsies were common and yielded prevalence rates of 23.3% (N=130/557) and 26.9% (N=150/557), respectively, within the TBI sample. Accommodative dysfunction was common within the non-presbyopic TBI sample with a prevalence of 24.4% (N=76/314). Visual field deficits or unilateral visual spatial inattention/neglect were observed within 29.6% (N=80/270) of the TBI in-patient subgroup and were significantly more prevalent compared to the out-patient subgroup (p<0.001). Most TBI patients had visual acuities of 20/60 or better in the TBI sample (85%;N=473/557). Conclusions CI without simultaneous visual or vestibular dysfunctions was observed in about 9% of the visually symptomatic TBI civilian population studied. A thorough visual and vestibular examination is recommended for all TBI patients. PMID:23190716
Russo, Cesare; Sera, Fusako; Jin, Zhezhen; Palmieri, Vittorio; Homma, Shunichi; Rundek, Tatjana; Elkind, Mitchell S V; Sacco, Ralph L; Di Tullio, Marco R
2016-05-01
General obesity, measured by body mass index (BMI), and abdominal adiposity, measured as waist circumference (WC) and waist-to-hip ratio (WHR), are associated with heart failure and cardiovascular events. However, the relationship of general and abdominal obesity with subclinical left ventricular (LV) dysfunction is unknown. We assessed the association of general and abdominal obesity with subclinical LV systolic dysfunction in a population-based elderly cohort. Participants from the Cardiovascular Abnormalities and Brain Lesions study underwent measurement of BMI, WC, and WHR. Left ventricular systolic function was assessed by two-dimensional echocardiographic LV ejection fraction (LVEF) and speckle-tracking global longitudinal strain (GLS). The study population included 729 participants (mean age 71 ± 9 years, 60% women). In multivariate analysis, higher BMI (but not WC and WHR) was associated with higher LVEF (β = 0.11, P = 0.003). Higher WC (β = 0.08, P = 0.038) and higher WHR (β = 0.15, P < 0.001) were associated with lower GLS, whereas BMI was not (P = 0.720). Compared with normal WHR, high WHR was associated with lower GLS in all BMI categories (normal, overweight, and obese), and was associated with subclinical LV dysfunction by GLS both in participants without [adjusted odds ratio (OR) 2.0, 95% confidence interval (CI) 1.1-3.6, P = 0.020] and with general obesity (adjusted OR 5.4, 95% CI 1.1-25.9, P = 0.034). WHR was incremental to BMI and risk factors in predicting LV dysfunction. Abdominal adiposity was independently associated with subclinical LV systolic dysfunction by GLS in all BMI categories. BMI was not associated with LV dysfunction. Increased abdominal adiposity may be a risk factor for LV dysfunction regardless of the presence of general obesity. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Guan, Wenchi; Murugiah, Karthik; Downing, Nicholas; Li, Jing; Wang, Qing; Ross, Joseph S; Desai, Nihar R; Masoudi, Frederick A; Spertus, John A; Li, Xi; Krumholz, Harlan M; Jiang, Lixin
2015-06-12
Spironolactone, the only aldosterone antagonist available in China, improves outcomes in acute myocardial infarction (AMI) among patients with systolic dysfunction and either diabetes or heart failure (HF). However, national practice patterns in the use of spironolactone in China are unknown. From a nationally representative sample of AMI patients from in 2001, 2006, and 2011, we identified 6906 patients with either diabetes or HF and classified them into 1 of 4 groups according to their eligibility for spironolactone-"ideal"(left ventricular ejection fraction [LVEF] ≤40% and without contraindications), "contraindicated," "not indicated" (neither ideal nor contraindicated), and "unknown indications" (LVEF unmeasured)-to determine how frequently patient eligibility for this drug is assessed in the hospital, how it is used in several groups, and to identify factors associated with the use in these groups. From 2001 to 2011, the proportion of patients whose eligibility for spironolactone was not assessed decreased (66.9% in 2001 to 32.8% in 2011). Spironolactone use significantly increased among ideal patients over this period (28.6% to 72.4%; P<0.001 for trend), but also in contraindicated patients (11.4% to 27.5%; P=0.002 for trend) and in other patients groups (not indicated: 27.5% to 38.3%; unknown indications: 21.3% to 35.1%; both P<0.01 for trend). In all 4 groups, patients presenting with HF on admission were more likely to receive spironolactone. Although the appropriate use of spironolactone and assessment of eligibility increased in China over the past decade, there remains marked opportunities for improvement. URL: http://www.clinicaltrials.gov Unique identifier: NCT01624883. © 2015 The Authors. Published on behalf of the American Heart Association, Inc, by Wiley Blackwell.
Green tea consumption affects cognitive dysfunction in the elderly: a pilot study.
Ide, Kazuki; Yamada, Hiroshi; Takuma, Norikata; Park, Mijong; Wakamiya, Noriko; Nakase, Junpei; Ukawa, Yuuichi; Sagesaka, Yuko M
2014-09-29
Green tea is known to have various health benefits for humans. However, the effect of green tea consumption on cognitive dysfunction remains to be clinically verified. We conducted a clinical study to investigate the effects of green tea consumption on cognitive dysfunction. Twelve elderly nursing home residents with cognitive dysfunction (Mini-Mental State Examination Japanese version (MMSE-J) score: <28) participated in the study (2 men, 10 women; mean age, 88 years). The participants consumed green tea powder 2 g/day for 3 months. After three months of green tea consumption, the participants' MMSE-J scores were significantly improved (before, 15.3 ± 7.7; after, 17.0 ± 8.2; p = 0.03). This result suggests that green tea consumption may be effective in improving cognitive function or reducing the progression of cognitive dysfunction; however, long-term large-scale controlled studies are needed to further clarify the effect.
Relationship between oral motor dysfunction and oral bacteria in bedridden elderly.
Tada, Akio; Shiiba, Masashi; Yokoe, Hidetaka; Hanada, Nobuhiro; Tanzawa, Hideki
2004-08-01
The purpose of this study was to analyze the relationship between oral bacterial colonization and oral motor dysfunction. Oral motor dysfunction (swallowing and speech disorders) and detection of oral bacterial species from dental plaque in 55 elderly persons who had remained hospitalized for more than 3 months were investigated and statistically analyzed. The detection rates of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Streptococcus agalactiae, and Stenotrophomonas maltophilia were significantly higher in subjects with than in those without a swallowing disorder. A similar result was found with regard to the presence of a speech disorder. About half of subjects who had oral motor dysfunction and hypoalbuminemia had colonization by MRSA and/or Pseudomonas aeruginosa. These results suggest that the combination of oral motor dysfunction and hypoalbminemia elevated the risk of opportunistic microorganisms colonization in the oral cavity of elderly patients hospitalized over the long term.
Review of gestational diabetes mellitus effects on vascular structure and function.
Jensen, Louise A; Chik, Constance L; Ryan, Edmond A
2016-05-01
Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.
Ahmed, Mohammed; Kumari, Suneeta; Manali, Partam; Sonje, Snezana; Malik, Mansoor
2016-10-01
Safety and quality concerns regarding over the counter sexual enhancement products sold in the USA market pose a major health risk to the general public. Nevertheless, the use of herbal medicines continues to expand rapidly across world and many people perceive usage of herbal medication as a safe and reliable way to improve health outcome. The safety of herbal supplements has become a globally major concern in national and international health authorities due to increasing adverse events and adulterations associated with usage of herbal medications. These non FDA approved products with unknown ingredients are widely accessible for purchase ranging from local food, drug stores and to the internet. These Erectile Dysfunction (ED) pills may contain Sildenafil, the active ingredient of Viagra in much higher quantity then legally prescribed by a licensed physician or they may contain unknown quantities of Thiosildenafil, the active ingredient in Cialis. The types of chemicals found in these medications are making it harder for regulatory authorities to track them down. These products keep the consumer in the dark in terms of the quantity, ingredients, effectiveness and possible side effects. These sexual enhancement products are being sold as safe and natural with false hopes to resolve erectile dysfunction. Patients who are prone to impulsive hypersexual behavior such as patients with bipolar disorder, substance use, borderline personality disorder and those who may feel adamant to discuss erectile dysfunction with their physicians are more likely to become the victims of using illicit medications/ drugs with serious health risks consequences. We present a case report of an individual with bipolar disorder and hypersexual behavior who became victim to over the counter sexual enhancement products/supplements which caused serious health and life threatening consequences.
Moreira, Henrique T; Volpe, Gustavo J; Marin-Neto, José A; Ambale-Venkatesh, Bharath; Nwabuo, Chike C; Trad, Henrique S; Romano, Minna M D; Pazin-Filho, Antonio; Maciel, Benedito C; Lima, João A C; Schmidt, André
2017-03-01
Right ventricular (RV) impairment is postulated to be responsible for prominent systemic congestion in Chagas disease. However, occurrence of primary RV dysfunction in Chagas disease remains controversial. We aimed to study RV systolic function in patients with Chagas disease using cardiac magnetic resonance. This cross-sectional study included 158 individuals with chronic Chagas disease who underwent cardiac magnetic resonance. RV systolic dysfunction was defined as reduced RV ejection fraction based on predefined cutoffs accounting for age and sex. Multivariable logistic regression was used to verify the relationship of RV systolic dysfunction with age, sex, functional class, use of medications for heart failure, atrial fibrillation, and left ventricular systolic dysfunction. Mean age was 54±13 years, 51.2% men. RV systolic dysfunction was identified in 58 (37%) individuals. Although usually associated with reduced left ventricular ejection fraction, isolated RV systolic dysfunction was found in 7 (4.4%) patients, 2 of them in early stages of Chagas disease. Presence of RV dysfunction was not significantly different in patients with indeterminate/digestive form of Chagas disease (35.7%) compared with those with Chagas cardiomyopathy (36.8%) ( P =1.000). In chronic Chagas disease, RV systolic dysfunction is more commonly associated with left ventricular systolic dysfunction, although isolated and early RV dysfunction can also be identified. © 2017 American Heart Association, Inc.
Implications of immune dysfunction on endometriosis associated infertility
Miller, Jessica E.; Ahn, Soo Hyun; Monsanto, Stephany P.; Khalaj, Kasra; Koti, Madhuri; Tayade, Chandrakant
2017-01-01
Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure. PMID:27740937
Implications of immune dysfunction on endometriosis associated infertility.
Miller, Jessica E; Ahn, Soo Hyun; Monsanto, Stephany P; Khalaj, Kasra; Koti, Madhuri; Tayade, Chandrakant
2017-01-24
Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure.
The Blood Testis Barrier and Male Sexual Dysfunction following Spinal Cord Injury
2015-10-01
sensory and motor deficits . In addition to these well-described pathological outcomes, a majority of men will also experience greatly diminished...underlying this deficit has previously been unknown. We have explored the effects of spinal trauma on tissues that exhibit “barrier” properties, or...immune cell infiltration. The goal of this project is to: 1) further elaborate the early and long-term biochemical, molecular and structural deficits
Long-term outcomes and management of the heart transplant recipient.
McCartney, Sharon L; Patel, Chetan; Del Rio, J Mauricio
2017-06-01
Cardiac transplantation remains the gold standard in the treatment of advanced heart failure. With advances in immunosuppression, long-term outcomes continue to improve despite older and higher risk recipients. The median survival of the adult after heart transplantation is currently 10.7 years. While early graft failure and multiorgan system dysfunction are the most important causes of early mortality, malignancy, rejection, infection, and cardiac allograft vasculopathy contribute to late mortality. Chronic renal dysfunction is common after heart transplantation and occurs in up to 68% of patients by year 10, with 6.2% of patients requiring dialysis and 3.7% undergoing renal transplant. Functional outcomes after heart transplantation remain an area for improvement, with only 26% of patients working at 1-year post-transplantation, and are likely related to the high incidence of depression after cardiac transplantation. Areas of future research include understanding and managing primary graft dysfunction and reducing immunosuppression-related complications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diastolic dysfunction in hypertension.
Nazário Leão, R; Marques da Silva, P
Hypertension and coronary heart disease, often coexisting, are the most common risk factors for heart failure. The progression of hypertensive heart disease involves myocardial fibrosis and alterations in the left ventricular geometry that precede the functional change, initially asymptomatic. The left ventricular diastolic dysfunction is part of this continuum being defined by the presence of left ventricular diastolic dysfunction without signs or symptoms of heart failure or poor left ventricular systolic function. It is highly prevalent in hypertensive patients and is associated with increased cardiovascular morbidity and mortality. Despite its growing importance in clinical practice it remains poorly understood. This review aims to present the epidemiological fundamentals and the latest developments in the pathophysiology, diagnosis and treatment of left ventricular diastolic dysfunction. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.
Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Allona, Antonio; Martín-Morales, Antonio; Moncada, Ignacio; Videla, Sebastián; Sáenz de Tejada, Iñigo
2003-12-26
Standard treatments for erectile dysfunction (ED) (i.e., PDE5 inhibitors) are less effective in diabetic patients for unknown reasons. Endothelium-dependent relaxation (EDR) of human corpus cavernosum (HCC) depends on nitric oxide (NO), while in human penile resistance arteries (HPRA) endothelium-derived hyperpolarizing factor (EDHF) and NO participate. Here we show that diabetes significantly reduced EDR induced by acetylcholine (ACh) in HCC and HPRA. Relaxation attributed to EDHF was also impaired in HPRA from diabetic patients. The PDE5 inhibitor, sildenafil (10nM), reversed diabetes-induced endothelial dysfunction in HCC, but not in HPRA. Calcium dobesilate (DOBE; 10 microM) fully reversed diabetes-induced endothelial dysfunction in HPRA by specifically potentiating the EDHF-mediated component of EDR. Impairment by diabetes of NO and EDHF-dependent responses precluded the complete recovery of endothelial function in HPRA by sildenafil. This could explain the poor clinical response to PDE5 inhibitors of diabetic men with ED and suggests that a pharmacological approach that combines enhancement of NO/cGMP and EDHF pathways could be necessary to treat ED in many diabetic men.
Daulatzai, Mak Adam
2012-01-01
OSA is characterized by the quintessential triad of intermittent apnea, hypoxia, and hypoxemia due to pharyngeal collapse. This paper highlights the upstream mechanisms that may trigger cognitive decline in OSA. Three interrelated steps underpin cognitive dysfunction in OSA patients. First, several risk factors upregulate peripheral inflammation; these crucial factors promote neuroinflammation, cerebrovascular endothelial dysfunction, and oxidative stress in OSA. Secondly, the neuroinflammation exerts negative impact globally on the CNS, and thirdly, important foci in the neocortex and brainstem are rendered inflamed and dysfunctional. A strong link is known to exist between neuroinflammation and neurodegeneration. A unique perspective delineated here underscores the importance of dysfunctional brainstem nuclei in etiopathogenesis of cognitive decline in OSA patients. Nucleus tractus solitarius (NTS) is the central integration hub for afferents from upper airway (somatosensory/gustatory), respiratory, gastrointestinal, cardiovascular (baroreceptor and chemoreceptor) and other systems. The NTS has an essential role in sympathetic and parasympathetic systems also; it projects to most key brain regions and modulates numerous physiological functions. Inflamed and dysfunctional NTS and other key brainstem nuclei may play a pivotal role in triggering memory and cognitive dysfunction in OSA. Attenuation of upstream factors and amelioration of the NTS dysfunction remain important challenges. PMID:23470865
Yang, Chun; Du, Yi-Kuan; Wang, Jun; Luan, Ping; Yang, Qin-Lao; Huang, Wen-Hua; Yuan, Lin
2015-10-01
Glycation product accumulation during aging of slowly renewing tissues may be an important mechanism underlying aging of the testis. Adipose-derived stem cells (ADSCs) have shown promise in a novel tissue regenerative technique and may have utility in treating sexual dysfunction. ADSCs have also been found to be effective in antiaging therapy, although the mechanism underlying their effects remains unknown. This study was designed to investigate the anti-aging effect of ADSCs in a D-galactose (D-gal)-induced aging animal model and to clarify the underlying mechanism. Randomly selected 6-week-old male Sprague-Dawley rats were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, D-gal-induced aging rats were randomized to receive caudal vein injections of 3 × 10(6) 5-bromo 2'deoxy-uridine-labeled ADSCs or an equal volume of phosphate-buffered saline. Serum testosterone level, steroidogenic enzymes (3-β-hydroxysteroid dehydrogenase), and superoxide dismutase (SOD) activity decreased significantly in aging rats compared with the control group; serum lipid peroxidation, spermatogenic cell apoptosis, and methane dicarboxylic aldehyde (MDA) expression increased significantly. ADSCs increased the SOD level and reduced the MDA level in the aging animal model and restored levels of serum testosterone, steroidogenic enzymes, and spermatogenic cell apoptosis. These results demonstrate that ADSCs can contribute to testicular regeneration during aging. ADSCs also provide functional benefits through glycation suppression and antioxidant effects in a rat model of aging. Although some ADSCs differentiated into Leydig cells, the paracrine pathway seems to play a main role in this process, resulting in the reduction of apoptosis. © 2015 Wiley Periodicals, Inc.
Liu, Tao; Li, Jian-Jun; Zhao, Zhong-Yan; Yang, Guo-Shuai; Pan, Meng-Jie; Li, Chang-Qing; Pan, Su-Yue; Chen, Feng
2016-02-01
It has been suggested by the first voxel-based morphometry investigation that betel quid dependence (BQD) individuals are presented with brain structural changes in previous reports, and there may be a neurobiological basis for BQD individuals related to an increased risk of executive dysfunction and disinhibition, subjected to the reward system, cognitive system, and emotion system. However, the effects of BQD on neural activity remain largely unknown. Individuals with impaired cognitive control of behavior often reveal altered spontaneous cerebral activity in resting-state functional magnetic resonance imaging and those changes are usually earlier than structural alteration.Here, we examined BQD individuals (n = 33) and age-, sex-, and education-matched healthy control participants (n = 32) in an resting-state functional magnetic resonance imaging study to observe brain function alterations associated with the severity of BQD. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were both evaluated to stand for spontaneous cerebral activity. Gray matter volumes of these participants were also calculated for covariate.In comparison with healthy controls, BQD individuals demonstrated dramatically decreased ALFF and ReHo values in the prefrontal gurus along with left fusiform, and increased ALFF and ReHo values in the primary motor cortex area, temporal lobe as well as some regions of occipital lobe. The betel quid dependence scores (BQDS) were negatively related to decreased activity in the right anterior cingulate.The abnormal spontaneous cerebral activity revealed by ALFF and ReHo calculation excluding the structural differences in patients with BQD may help us probe into the neurological pathophysiology underlying BQD-related executive dysfunction and disinhibition. Diminished spontaneous brain activity in the right anterior cingulate cortex may, therefore, represent a biomarker of BQD individuals.
Zheng, Leilei; Chai, Hao; Yu, Shaohua; Xu, You; Chen, Wanzhen; Wang, Wei
2015-01-01
The exact mechanism behind auditory hallucinations in schizophrenia remains unknown. A corollary discharge dysfunction hypothesis has been put forward, but it requires further confirmation. Electroencephalography (EEG) of the Deutsch octave illusion might offer more insight, by demonstrating an abnormal cerebral activation similar to that under auditory hallucinations in schizophrenic patients. We invited 23 first-episode schizophrenic patients with auditory hallucinations and 23 healthy participants to listen to silence and two sound sequences, which consisted of alternating 400- and 800-Hz tones. EEG spectral power and coherence values of different frequency bands, including theta rhythm (3.5-7.5 Hz), were computed using 32 scalp electrodes. Task-related spectral power changes and task-related coherence differences were also calculated. Clinical characteristics of patients were rated using the Positive and Negative Syndrome Scale. After both sequences of octave illusion, the task-related theta power change values of frontal and temporal areas were significantly lower, and the task-related theta coherence difference values of intrahemispheric frontal-temporal areas were significantly higher in schizophrenic patients than in healthy participants. Moreover, the task-related power change values in both hemispheres were negatively correlated and the task-related coherence difference values in the right hemisphere were positively correlated with the hallucination score in schizophrenic patients. We only tested the Deutsch octave illusion in primary schizophrenic patients with acute first episode. Further studies might adopt other illusions or employ other forms of schizophrenia. Our results showed a lower activation but higher connection within frontal and temporal areas in schizophrenic patients under octave illusion. This suggests an oversynchronized but weak frontal area to exert an action to the ipsilateral temporal area, which supports the corollary discharge dysfunction hypothesis. © 2014 S. Karger AG, Basel.
Schugar, Rebecca C.; Huang, Xiaojing; Moll, Ashley R.; Brunt, Elizabeth M.; Crawford, Peter A.
2013-01-01
Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet – weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction – were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation. PMID:24009777
Liu, Kuan-Liang; Ye, Ling-Long; Chou, Shing-Hsien; Tung, Ying-Chang; Lin, Yu-Sheng; Wu, Lung-Sheng; Lin, Chia-Pin; Shia, Ben-Chang; Chu, Pao-Hsien
2016-01-01
Erectile dysfunction (ED) has been regarded a marker of cardiovascular diseases. Nevertheless, the association between ED and incident atrial fibrillation (AF) remains unknown. To determine the association between ED and incident AF. This population-based cohort study was conducted using the National Health Insurance Research Database in Taiwan. In total, 6,273 of patients with ED without a prior diagnosis of AF were enrolled from January 1, 2001 through December 31, 2009, and a propensity-score matching method was used to identify 3,516 patients in the ED and control groups. Newly incident AF at follow-up was recorded as the end point. The mean age of the study population was 40.0 ± 17.1 years, and the follow-up period was 8.0 ± 0.5 years. Compared with the control group, patients with ED were older and had more of the following comorbidities: D'Hoore Charlson Comorbidity Index, hypertension, congestive heart failure, diabetes mellitus, dyslipidemia, chronic kidney disease, coronary artery disease, stroke, chronic lung disease, major depression disorder, obstructive sleep apnea, and hyperthyroidism. After adjusting for confounders, the ED group was not associated with more incident AF compared with the control group (hazard ratio = 1.031, 95% confidence interval = 0.674-1.578, P =.888). In these patients, ED of an organic origin was associated with a trend of having AF more often compared with ED of a psychosexual type (P =.272 by log-rank test). Although ED is known as a predictor of atherosclerotic cardiovascular diseases, it is not independently associated with incident AF in men. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Kamal, Fadia A; Travers, Joshua G; Schafer, Allison E; Ma, Qing; Devarajan, Prasad; Blaxall, Burns C
2017-01-01
Development of CKD secondary to chronic heart failure (CHF), known as cardiorenal syndrome type 2 (CRS2), clinically associates with organ failure and reduced survival. Heart and kidney damage in CRS2 results predominantly from chronic stimulation of G protein-coupled receptors (GPCRs), including adrenergic and endothelin (ET) receptors, after elevated neurohormonal signaling of the sympathetic nervous system and the downstream ET system, respectively. Although we and others have shown that chronic GPCR stimulation and the consequent upregulated interaction between the G-protein βγ-subunit (Gβγ), GPCR-kinase 2, and β-arrestin are central to various cardiovascular diseases, the role of such alterations in kidney diseases remains largely unknown. We investigated the possible salutary effect of renal GPCR-Gβγ inhibition in CKD developed in a clinically relevant murine model of nonischemic hypertrophic CHF, transverse aortic constriction (TAC). By 12 weeks after TAC, mice developed CKD secondary to CHF associated with elevated renal GPCR-Gβγ signaling and ET system expression. Notably, systemic pharmacologic Gβγ inhibition by gallein, which we previously showed alleviates CHF in this model, attenuated these pathologic renal changes. To investigate a direct effect of gallein on the kidney, we used a bilateral ischemia-reperfusion AKI mouse model, in which gallein attenuated renal dysfunction, tissue damage, fibrosis, inflammation, and ET system activation. Furthermore, in vitro studies showed a key role for ET receptor-Gβγ signaling in pathologic fibroblast activation. Overall, our data support a direct role for GPCR-Gβγ in AKI and suggest GPCR-Gβγ inhibition as a novel therapeutic approach for treating CRS2 and AKI. Copyright © 2016 by the American Society of Nephrology.
Altered Spontaneous Brain Activity in Betel Quid Dependence
Liu, Tao; Li, Jian-jun; Zhao, Zhong-yan; Yang, Guo-shuai; Pan, Meng-jie; Li, Chang-qing; Pan, Su-yue; Chen, Feng
2016-01-01
Abstract It has been suggested by the first voxel-based morphometry investigation that betel quid dependence (BQD) individuals are presented with brain structural changes in previous reports, and there may be a neurobiological basis for BQD individuals related to an increased risk of executive dysfunction and disinhibition, subjected to the reward system, cognitive system, and emotion system. However, the effects of BQD on neural activity remain largely unknown. Individuals with impaired cognitive control of behavior often reveal altered spontaneous cerebral activity in resting-state functional magnetic resonance imaging and those changes are usually earlier than structural alteration. Here, we examined BQD individuals (n = 33) and age-, sex-, and education-matched healthy control participants (n = 32) in an resting-state functional magnetic resonance imaging study to observe brain function alterations associated with the severity of BQD. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were both evaluated to stand for spontaneous cerebral activity. Gray matter volumes of these participants were also calculated for covariate. In comparison with healthy controls, BQD individuals demonstrated dramatically decreased ALFF and ReHo values in the prefrontal gurus along with left fusiform, and increased ALFF and ReHo values in the primary motor cortex area, temporal lobe as well as some regions of occipital lobe. The betel quid dependence scores (BQDS) were negatively related to decreased activity in the right anterior cingulate. The abnormal spontaneous cerebral activity revealed by ALFF and ReHo calculation excluding the structural differences in patients with BQD may help us probe into the neurological pathophysiology underlying BQD-related executive dysfunction and disinhibition. Diminished spontaneous brain activity in the right anterior cingulate cortex may, therefore, represent a biomarker of BQD individuals. PMID:26844480
Vecchio, Nicolás; Belardi, Diego; Benzadón, Mariano; Seoane, Leonardo; Daquarti, Gustavo; Scazzuso, Fernando
2018-06-01
Despite the well-documented benefit of implantable cardioverter defibrillator (ICD) in patients with severe left ventricular dysfunction, there is a large number of patients who had not been offered this therapy. The aim of this study is to evaluate the utility of a hybrid decision support system (hCDSS) to improve the adherence to indicate ICD therapy in our institution. We conducted a retrospective, observational and single-center study. An hCDSS focused on patients with severe deterioration of the left ventricular function was implemented, creating a mandatory field containing the value of left ejection fraction and three options to choose: >35%, ≤ 35% or unknown. When the option ≤ 35% is checked, an email is automatically sent to the electrophysiology section where the staff can contact the treating physician to discuss the indication of ICD therapy. We measured the number of ICDs implanted before the alert (month 1-21), immediate post and late post alert (month 22-27 and 28-48 months respectively) RESULTS: The rate of ICD implantation increased from 1.76% per month in the pre-intervention period to 4.48% after the intervention (p < 0.001). This increase in the rate of ICD implantation remained stable between the immediate and late post-intervention period (4.6 vs. 4.4; p = .8) CONCLUSION: The implementation of a hybrid decision support system was associated with improved adherence to clinical guidelines for prevention of sudden cardiac death, as evidenced by a rapid and sustained increase in the number of ICD implants in patients with severe left ventricular dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.
Sensitive parenting is associated with plasma oxytocin and polymorphisms in the OXTR and CD38 genes.
Feldman, Ruth; Zagoory-Sharon, Orna; Weisman, Omri; Schneiderman, Inna; Gordon, Ilanit; Maoz, Rina; Shalev, Idan; Ebstein, Richard P
2012-08-01
Research in mammals has demonstrated the involvement of oxytocin (OT) in social bond formation; yet, its role in human bonding remains unclear. Plasma OT has been used as a proxy for central activity and studies indicate its association with human affiliative behaviors. Molecular genetic studies also reveal a role for OT neuropathways in shaping the social brain. However, the links between peripheral OT, genetic markers, and their combined contribution to human parenting are unknown. Participants included 352 individuals: 272 mothers and fathers and their 4- to 6-month-old-infants and 80 nonparents. Plasma OT was assayed from adults who were genotyped for oxytocin receptor (OXTR) and CD38 risk alleles associated with social dysfunctions. CD38 is an ectoenzyme that mediates the release of brain OT. Parent-infant interactions were microcoded for parental touch and gaze synchrony and participants reported on parental care in childhood. OXTR (rs2254298 and rs1042778) and CD38 (rs3796863) risk alleles were each associated with lower plasma OT. Reduced plasma OT and both OXTR and CD38 risk alleles were related to less parental touch. The interaction of high plasma OT and low-risk CD38 alleles predicted longer durations of parent-infant gaze synchrony. Parents reporting greater parental care showed higher plasma OT, low-risk CD38 alleles, and more touch toward their infants. Results indicate that peripheral and genetic markers of the extended OT pathway are interrelated and underpin core behaviors associated with human parenting and social engagement. These findings may have important implications for understanding neuropsychiatric disorders marked by early social dysfunctions. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Bazarov, Alexey V; Hines, William C; Mukhopadhyay, Rituparna; Beliveau, Alain; Melodyev, Sonya; Zaslavsky, Yuri; Yaswen, Paul
2009-10-15
A central question in breast cancer biology is how cancer cells acquire telomerase activity required for unlimited proliferation. According to one model, proliferation of telomerase(-) pre-malignant cells leads to telomere dysfunction and increased genomic instability. Such instability leads in rare cases to reactivation of telomerase and immortalization. The mechanism of telomerase reactivation remains unknown. We have studied immortalization of cultured human mammary epithelial cells by c-Myc, a positive transcriptional regulator of the hTERT gene encoding the catalytic subunit of telomerase. Retrovirally introduced c-Myc cDNA resulted in immortalization of human mammary epithelial cells in which the cyclin dependent kinase inhibitor, p16(INK4A), was inactivated by an shRNA-encoding retrovirus. However, while c-Myc introduction immediately resulted in increased activity of transiently transfected hTERT promoter reporter constructs, endogenous hTERT mRNA levels did not change until about 60 population doublings after c-Myc introduction. Increased endogenous hTERT transcripts and stabilization of telomeric DNA in cells expressing exogenous c-Myc coincided with telomere dysfunction-associated senescence in control cultures. Genome copy number analyses of immortalized cells indicated amplifications of some or all of chromosome 5, where hTERT genes are located. hTERT gene copy number, however, was not increased in one case. The results are consistent with the hypothesis that changes in chromosome 5, while not necessarily increasing hTERT gene copy number, resulted in removal of repressive chromatin structures around hTERT loci, allowing induction of hTERT transcription. These in vitro results model one possible sequence of events leading to immortalization of breast epithelial cells during cancer progression.
Schugar, Rebecca C; Huang, Xiaojing; Moll, Ashley R; Brunt, Elizabeth M; Crawford, Peter A
2013-01-01
Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.
2014-01-01
Background In patients with anomalous left coronary artery from the pulmonary artery (ALCAPA) left ventricular (LV) dilatation and dysfunction evolves due to diminished myocardial perfusion caused by coronary steal phenomenon. Using late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) imaging, myocardial scarring has been shown in ALCAPA patients late after repair, however the incidence of scarring before surgery and its impact on postoperative course after surgical repair remained unknown. Methods 8 ALCAPA-patients (mean age 10.0 ± 5.8 months) underwent CMR before and early after (mean 4.9 ± 2.5 months) coronary reimplantation procedures. CMR included functional analysis and LGE for detection of myocardial scars. Results LV dilatation (mean LVEDVI 171 ± 94 ml/m2) and dysfunction (mean LV-EF 22 ± 10 %) was present in all patients and improved significantly after surgery (mean LVEDV 68 ± 42 ml/m2, p = 0.02; mean LV-EF 58 ± 19 %, p < 0.001). Preoperative CMR revealed myocardial scarring in 2 of the 8 patients and did not predict postoperative course. At follow-up CMR, one LGE-positive patient showed delayed recovery of LV function while myocardial scarring was still present in both patients. In two patients new-onset transmural scarring was found, although functional recovery after operation was sufficient. One of them showed a stenosis of the left coronary artery and required resurgery. Conclusions Despite diminished myocardial perfusion and severely compromised LV function, myocardial scarring was preoperatively only infrequently present. Improvement of myocardial function was independent of new-onset scarring while the impact of preoperative scarring still needs to be defined. PMID:24387660
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio
2014-01-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe
2014-09-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kwon, Oh Sung; Smuder, Ashley J.; Wiggs, Michael P.; Hall, Stephanie E.; Sollanek, Kurt J.; Morton, Aaron B.; Talbert, Erin E.; Toklu, Hale Z.; Tumer, Nihal
2015-01-01
Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481
Baldissera, Matheus D; Souza, Carine F; Zeppenfeld, Carla Cristina; Descovi, Sharine N; Moreira, Karen Luise S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; da Silva, Aleksandro S; Baldisserotto, Bernardo
2018-06-01
It is known that the cytotoxic effects of aflatoxin B 1 (AFB 1 ) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB 1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB 1 -contaminated diet (1177 ppb kg feed -1 ) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB 1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB 1 , while activity of the sodium-potassium pump (Na + , K + -ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB 1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na + , K + -ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB 1 intoxication. Copyright © 2018 Elsevier B.V. All rights reserved.
Lu, Feng-Mei; Zhou, Jian-Song; Zhang, Jiang; Xiang, Yu-Tao; Zhang, Jian; Liu, Qi; Wang, Xiao-Ping; Yuan, Zhen
2015-01-01
Conduct disorder (CD) is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI) studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs) are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD) individuals. Independent component analysis (ICA) was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus), which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus), the lateral visual network (left superior occipital gyrus), and the medial visual network (right fusiform, left lingual gyrus and right calcarine), which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network) and a high-order cognitive network (the default mode network). Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD. PMID:26713867
Ågmo, Anders
2014-06-01
Female sexual dysfunctions are a heterogeneous group of symptoms with unknown but probably varying etiology. Social factors may contribute both to the prevalence and to the origin of these dysfunctions. The present review focuses on female hypoactive sexual desire disorder, sexual arousal disorder and orgasmic disorder. These disorders are generally the most common, according to epidemiological studies, and they can all be considered as disorders of motivation. An incentive motivational model of sexual behavior, applicable to humans as well as to non-human animals, is described and the dysfunctions placed into the context of this model. It is shown that endocrine alterations as well as observable alterations in neurotransmitter activity are unlikely causes of the disorders. A potential role of learning is stressed. Nevertheless, the role of some transmitters in female rodent sexual behavior is analyzed, and compared to data from women, whenever such data are available. The conclusion is that there is no direct coincidence between effects on rodent copulatory behavior and sexual behavior in women. Based on these and other considerations, it is suggested that sexual approach behaviors rather than copulatory reflexes in rodents might be of some relevance for human sexual behavior, and perhaps even for predicting the effects of interventions, perhaps even the effects of drugs. Female copulatory behaviors, including the proceptive behaviors, are less appropriate. The common sexual dysfunctions in women are not problems with the performance of copulatory acts, but with the desire for such acts, by feeling aroused by such acts and experiencing the pleasure expected to be caused by such acts. Finally, it is questioned whether female sexual dysfunctions are appropriate targets for pharmacological treatment. © 2013.
La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G
2013-03-01
Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.
Fischer, Tamás
2006-12-24
The beneficial effect achieved by the treatment of endothelial dysfunction in chronic cardiovascular diseases is already an evidence belonging to the basic treatment of the disease. Given the fact that the vascular system is uniform and consubstantial both physiologically, pathophysiologically and in terms of therapy, and that it plays a key role in age-related macular degeneration (AMD) - a disease leading to tragic loss of vision with its etiology and therapy being unknown -, endothelial dysfunction should be treated. The pleiotropic effects of ACE-inhibitors, AR-blockers and statins help to restitute the balance between vasodilators and vasoconstrictors in endothelial dysfunction caused by oxidative stress, the balance of growth factors and their inhibitors, pro- and anti-inflammatory substances and prothrombotic and fibrinolytic factors, inhibit the formation of oxidative stress and its harmful effects; while aspirin with its pleiotropic effects acting as an antiaggregation substance on platelets helps to set the endothelial layer back to its normal balance regarding its vasodilating, antithrombotic, anti-adhesive and anti-inflammatory functions. For the above reasons it is suggested that, as a part of long term primary and/or secondary prevention, the following groups of patients with AMD receive - taking into consideration all possible side effects - ACE-inhibitor and/or AR-blocker and statin and aspirin treatment: 1) those without maculopathy but being over the age of 50 and having risk factors inducing endothelial dysfunction; 2) those, who already developed AMD in one eye as a prevention in the second, unaffected eye; and 3) those patients who developed AMD in both eyes in order to ameliorate or merely slow the progression of the disease. Besides, it is advisory to inhibit AMD risk factors inducing oxidative stress with consecutive endothelial dysfunction.
Confronting the catalytic dark matter encoded by sequenced genomes
Ellens, Kenneth W.; Christian, Nils; Singh, Charandeep; Satagopam, Venkata P.
2017-01-01
Abstract The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the ‘unknown enzyme problem’. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research. PMID:29059321
Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao
2018-02-05
Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Cole, Robert Townsend; Gandhi, Jonathan; Bray, Robert A; Gebel, Howard M; Yin, Michael; Shekiladze, Nikolaz; Young, An; Grant, Aubrey; Mahoney, Ian; Laskar, S Raja; Gupta, Divya; Bhatt, Kunal; Book, Wendy; Smith, Andrew; Nguyen, Duc; Vega, J David; Morris, Alanna A
2018-04-01
Despite improvements in outcomes after heart transplantation, black recipients have worse survival compared with non-black recipients. The source of such disparate outcomes remains largely unknown. We hypothesize that a propensity to generate de-novo donor-specific antibodies (dnDSA) and subsequent antibody-mediated rejection (AMR) may account for racial differences in sub-optimal outcomes after heart transplant. In this study we aimed to determine the role of dnDSA and AMR in racial disparities in post-transplant outcomes. This study was a single-center, retrospective analysis of 137 heart transplant recipients (81% male, 48% black) discharged from Emory University Hospital. Patients were classified as black vs non-black for the purpose of our analysis. Kaplan-Meier and Cox regression analyses were used to evaluate the association between race and selected outcomes. The primary outcome was the development of dnDSA. Secondary outcomes included treated AMR and a composite of all-cause graft dysfunction or death. After 3.7 years of follow-up, 39 (28.5%) patients developed dnDSA and 19 (13.8%) were treated for AMR. In multivariable models, black race was associated with a higher risk of developing dnDSA (hazard ratio [HR] 3.65, 95% confidence interval [CI] 1.54 to 8.65, p = 0.003) and a higher risk of treated AMR (HR 4.86, 95% CI 1.26 to 18.72, p = 0.021) compared with non-black race. Black race was also associated with a higher risk of all-cause graft dysfunction or death in univariate analyses (HR 2.10, 95% CI 1.02 to 4.30, p = 0.044). However, in a multivariable model incorporating dnDSA, black race was no longer a significant risk factor. Only dnDSA development was significantly associated with all-cause graft dysfunction or death (HR 4.85, 95% CI 1.89 to 12.44, p = 0.001). Black transplant recipients are at higher risk for the development of dnDSA and treated AMR, which may account for racial disparities in outcomes after heart transplantation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Exercise training improves obesity-related lymphatic dysfunction.
Hespe, Geoffrey E; Kataru, Raghu P; Savetsky, Ira L; García Nores, Gabriela D; Torrisi, Jeremy S; Nitti, Matthew D; Gardenier, Jason C; Zhou, Jie; Yu, Jessie Z; Jones, Lee W; Mehrara, Babak J
2016-08-01
Obesity results in perilymphatic inflammation and lymphatic dysfunction. Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells. Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells. Although previous studies have shown that obesity markedly decreases lymphatic function, the cellular mechanisms that regulate this response remain unknown. In addition, it is unclear whether the pathological effects of obesity on the lymphatic system are reversible with behavioural modifications. The purpose of this study, therefore, was to analyse lymphatic vascular changes in obese mice and to determine whether these pathological effects are reversible with aerobic exercise. We randomized obese mice to either aerobic exercise (treadmill running for 30 min per day, 5 days a week, for 6 weeks) or a sedentary group that was not exercised and analysed lymphatic function using a variety of outcomes. We found that sedentary obese mice had markedly decreased collecting lymphatic vessel pumping capacity, decreased lymphatic vessel density, decreased lymphatic migration of immune cells, increased lymphatic vessel leakiness and decreased expression of lymphatic specific markers compared with lean mice (all P < 0.01). Aerobic exercise did not cause weight loss but markedly improved lymphatic function compared with sedentary obese mice. Exercise had a significant anti-inflammatory effect, resulting in decreased perilymphatic accumulation of inflammatory cells and inducible nitric oxide synthase expression. In addition, exercise normalized isolated lymphatic endothelial cell gene expression of lymphatic specific genes, including VEGFR-3 and Prox1. Taken together, our findings suggest that obesity impairs lymphatic function via multiple mechanisms and that these pathological changes can be reversed, in part, with aerobic exercise, independent of weight loss. In addition, our study shows that obesity-induced lymphatic endothelial cell gene expression changes are reversible with behavioural modifications. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
Chen, Chris Chin Wah; Erlich, Avigail T; Hood, David A
2018-03-17
Parkin is a ubiquitin ligase that is involved in the selective removal of dysfunctional mitochondria. This process is termed mitophagy and can assist in mitochondrial quality control. Endurance training can produce adaptations in skeletal muscle toward a more oxidative phenotype, an outcome of enhanced mitochondrial biogenesis. It remains unknown whether Parkin-mediated mitophagy is involved in training-induced increases in mitochondrial content and function. Our purpose was to determine a role for Parkin in maintaining mitochondrial turnover in muscle, and its requirement in mediating mitochondrial biogenesis following endurance exercise training. Wild-type and Parkin knockout (KO) mice were trained for 6 weeks and then treated with colchicine or vehicle to evaluate the role of Parkin in mediating changes in mitochondrial content, function and acute exercise-induced mitophagy flux. Our results indicate that Parkin is required for the basal maintenance of mitochondrial function. The absence of Parkin did not significantly alter mitophagy basally; however, acute exercise produced an elevation in mitophagy flux, a response that was Parkin-dependent. Mitochondrial content was increased following training in both genotypes, but this occurred without an induction of PGC-1α signaling in KO animals. Interestingly, the increased muscle mitochondrial content in response to training did not influence basal mitophagy flux, despite an enhanced expression and localization of Parkin to mitochondria in WT animals. Furthermore, exercise-induced mitophagy flux was attenuated with training in WT animals, suggesting a lower rate of mitochondrial degradation resulting from improved organelle quality with training. In contrast, training led to a higher mitochondrial content, but with persistent dysfunction, in KO animals. Thus, the lack of a rescue of mitochondrial dysfunction with training in the absence of Parkin is the likely reason for the impaired training-induced attenuation of mitophagy flux compared to WT animals. Our study demonstrates that Parkin is required for exercise-induced mitophagy flux. Exercise-induced mitophagy is reduced with training in muscle, likely due to attenuated signaling consequent to increased mitochondrial content and quality. Our data suggest that Parkin is essential for the maintenance of basal mitochondrial function, as well as for the accumulation of normally functioning mitochondria as a result of training adaptations in muscle.
Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao
2016-04-12
Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents and suppress the hyperglycemia-induced Ca(2+) releases from RyRs in cerebral VSMCs isolated from normal control rats. Our study indicated that berberine alleviated the cerebral arterial contractility in the rat model of streptozotocin-induced diabetes via regulating the intracellular Ca(2+) handling of smooth muscle cells.
Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine
2016-09-01
Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should help further exploration of the mode of action of this therapy on erectile tissue. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Jessen, Marie K; Skibsted, Simon; Shapiro, Nathan I
2017-06-01
The aim of this study was to validate the association between number of organ dysfunctions and mortality in emergency department (ED) patients with suspected infection. This study was conducted at two medical care center EDs. The internal validation set was a prospective cohort study conducted in Boston, USA. The external validation set was a retrospective case-control study conducted in Aarhus, Denmark. The study included adult patients (>18 years) with clinically suspected infection. Laboratory results and clinical data were used to assess organ dysfunctions. Inhospital mortality was the outcome measure. Multivariate logistic regression was used to determine the independent mortality odds for number and types of organ dysfunctions. We enrolled 4952 (internal) and 483 (external) patients. The mortality rate significantly increased with increasing number of organ dysfunctions: internal validation: 0 organ dysfunctions: 0.5% mortality, 1: 3.6%, 2: 9.5%, 3: 17%, and 4 or more: 37%; external validation: 2.2, 6.7, 17, 41, and 57% mortality (both P<0.001 for trend). Age-adjusted and comorbidity-adjusted number of organ dysfunctions remained an independent predictor. The effect of specific types of organ dysfunction on mortality was most pronounced for hematologic [odds ratio (OR) 3.3 (95% confidence interval (CI) 2.0-5.4)], metabolic [OR 3.3 (95% CI 2.4-4.6); internal validation], and cardiovascular dysfunctions [OR 14 (95% CI 3.7-50); external validation]. The number of organ dysfunctions predicts sepsis mortality.
Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke
Gottesman, Rebecca F; Hillis, Argye E
2013-01-01
Stroke remains a primary cause of morbidity throughout the world mainly because of its effect on cognition. Individuals can recover from physical disability resulting from stroke, but might be unable to return to their previous occupations or independent life because of cognitive impairments. Cognitive dysfunction ranges from focal deficits, resulting directly from an area of infarction or from hypoperfusion in adjacent tissue, to more global cognitive dysfunction. Global dysfunction is likely to be related to other underlying subclinical cerebrovascular disease, such as white-matter disease or subclinical infarcts. Study of cognitive dysfunction after stroke is complicated by varying definitions and lack of measurement of cognition before stroke. Additionally, stroke can affect white-matter connectivity, so newer imaging techniques, such as diffusion-tensor imaging and magnetisation transfer imaging, that can be used to assess this subclinical injury are important tools in the assessment of cognitive dysfunction after stroke. As research is increasingly focused on the role of preventable risk factors in the development of dementia, the role of stroke in the development of cognitive impairment and dementia could be another target for prevention. PMID:20723846
Management of tetanus complication
NASA Astrophysics Data System (ADS)
Somia, I. K. A.
2018-03-01
The mortality rate of tetanus is still high; it is because of various complications due to muscle spasms, autonomic dysfunction, as well as due to prolonged critical care. Management of tetanus with its complications is in intensive care facilities. Management goals include stopping toxin production, neutralization of unbound toxin, management of the airway, muscle spasm control, treatment of autonomic dysfunction and general supportive management. Currently, diazepam is still an effective medication to control of muscle spasm and rigidity. Therapy for autonomic dysfunction that supported by evidence is MgSO4. Also, general supportive management for long-term care remains necessary to prevent other complications such as thromboembolism, infection, malnutrition, and others.
Sexual function in elderly women: a review of current literature.
Ambler, Dana R; Bieber, Eric J; Diamond, Michael P
2012-01-01
Although sexuality remains an important component of emotional and physical intimacy that most men and women desire to experience throughout their lives, sexual dysfunction in women is a problem that is not well studied. The prevalence of sexual dysfunction among all women is estimated to be between 25% and 63%; the prevalence in postmenopausal women is even higher, with rates between 68% and 86.5%. Increasing recognition of this common problem and future research in this field may alter perceptions about sexuality, dismiss taboo and incorrect thoughts on sexual dysfunction, and spark better management for patients, allowing them to live more enjoyable lives.
Impact of Pulmonary Artery Pressure on Exercise Function in Severe COPD
Sims, Michael W.; Margolis, David J.; Localio, A. Russell; Panettieri, Reynold A.; Kawut, Steven M.; Christie, Jason D.
2009-01-01
Background: Although pulmonary hypertension commonly complicates COPD, the functional consequences of increased pulmonary artery pressures in patients with this condition remain poorly defined. Methods: We conducted a cross-sectional analysis of a cohort of 362 patients with severe COPD who were evaluated for lung transplantation. Patients with pulmonary hemodynamics measured by cardiac catheterization and available 6-min walk test results were included. The association of mean pulmonary artery pressure (mPAP) with pulmonary function, echocardiographic variables, and 6-min walk distance was assessed. Results: The prevalence of pulmonary hypertension (mPAP, > 25 mm Hg; pulmonary artery occlusion pressure [PAOP], < 16 mm Hg) was 23% (95% confidence interval, 19 to 27%). In bivariate analysis, higher mPAP was associated with lower FVC and FEV1, higher Pco2 and lower Po2 in arterial blood, and more right heart dysfunction. Multivariate analysis demonstrated that higher mPAP was associated with shorter distance walked in 6 min, even after adjustment for age, gender, race, height, weight, FEV1, and PAOP (−11 m for every 5 mm Hg rise in mPAP; 95% confidence interval, −21 to −0.7; p = 0.04). Conclusions: Higher pulmonary artery pressures are associated with reduced exercise function in patients with severe COPD, even after controlling for demographics, anthropomorphics, severity of airflow obstruction, and PAOP. Whether treatments aimed at lowering pulmonary artery pressures may improve clinical outcomes in COPD, however, remains unknown. PMID:19318664
Sampath, Venkatesh; Bhandari, Vineet; Berger, Jessica; Merchant, Daniel; Zhang, Liyun; Ladd, Mihoko; Menden, Heather; Garland, Jeffery; Ambalavanan, Namasivayam; Mulrooney, Neil; Quasney, Michael; Dagle, John; Lavoie, Pascal M; Simpson, Pippa; Dahmer, Mary
2017-01-01
Background The genetic basis of dysfunctional immune responses in necrotizing enterocolitis (NEC) remains unknown. We hypothesized that variants in Nucleotide binding and Oligomerization Domain (NOD)-Like Receptors (NLRs) and Autophagy (ATG) genes modulate vulnerability to NEC. Methods We genotyped a multi-center cohort of premature infants with and without NEC for NOD1, NOD2, ATG16L1, CARD8 and NLRP3 variants. Chi-square tests and logistic regression were used for statistical analysis. Results In our primary cohort (n=1015), 86 (8.5%) infants developed NEC. The A allele of the ATG16L1 (Thr300Ala) variant was associated with increased NEC (AA vs. AG vs. GG; 11.3% vs. 8.4% vs. 4.8%, p=0.009). In regression models for NEC that adjusted for epidemiological confounders, GA (p=0.033) and the AA genotype (p=0.038) of ATG16L1 variant were associated with NEC. The association between the A allele of the ATG16L1 variant and NEC remained significant among Caucasian infants (p=0.02). In a replication cohort (n=259), NEC rates were highest among infants with the AA genotype but did not reach statistical significance. Conclusion We report a novel association between a hypomorphic variant in an autophagy gene (ATG16L1) and NEC in premature infants. Our data suggest that decreased autophagy arising from genetic variants may confer protection against NEC. PMID:27893720
Ramjee, Vimal; Grossestreuer, Anne V; Yao, Yuan; Perman, Sarah M; Leary, Marion; Kirkpatrick, James N; Forfia, Paul R; Kolansky, Daniel M; Abella, Benjamin S; Gaieski, David F
2015-11-01
Determination of clinical outcomes following resuscitation from cardiac arrest remains elusive in the immediate post-arrest period. Echocardiographic assessment shortly after resuscitation has largely focused on left ventricular (LV) function. We aimed to determine whether post-arrest right ventricular (RV) dysfunction predicts worse survival and poor neurologic outcome in cardiac arrest patients, independent of LV dysfunction. A single-center, retrospective cohort study at a tertiary care university hospital participating in the Penn Alliance for Therapeutic Hypothermia (PATH) Registry between 2000 and 2012. 291 in- and out-of-hospital adult cardiac arrest patients at the University of Pennsylvania who had return of spontaneous circulation (ROSC) and post-arrest echocardiograms. Of the 291 patients, 57% were male, with a mean age of 59 ± 16 years. 179 (63%) patients had LV dysfunction, 173 (59%) had RV dysfunction, and 124 (44%) had biventricular dysfunction on the initial post-arrest echocardiogram. Independent of LV function, RV dysfunction was predictive of worse survival (mild or moderate: OR 0.51, CI 0.26-0.99, p<0.05; severe: OR 0.19, CI 0.06-0.65, p=0.008) and neurologic outcome (mild or moderate: OR 0.33, CI 0.17-0.65, p=0.001; severe: OR 0.11, CI 0.02-0.50, p=0.005) compared to patients with normal RV function after cardiac arrest. Echocardiographic findings of post-arrest RV dysfunction were equally prevalent as LV dysfunction. RV dysfunction was significantly predictive of worse outcomes in post-arrest patients after accounting for LV dysfunction. Post-arrest RV dysfunction may be useful for risk stratification and management in this high-mortality population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2015-02-01
Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight junction disruption and barrier dysfunction.
Lee, Adabel; Hankin, Benjamin L
2009-03-01
This study extends the existing adult literature on insecure attachment as a predictor of depression and anxiety by examining these pathways in a sample of adolescents. In addition, dysfunctional attitudes and low self-esteem were tested as mediators of the association between insecure attachment and symptoms of depression and anxiety. Youth (N = 350; 6th-10th graders) completed self-report measures of attachment, dysfunctional attitudes, self-esteem, and symptoms of depression and anxiety in a 4-wave prospective study. Results indicate that anxious and avoidant attachment each predicted changes in both depression and anxiety (after controlling for initial symptom levels). The association between anxious attachment, but not avoidant attachment, and later internalizing symptoms was mediated by dysfunctional attitudes and low self-esteem. Effects remained even after controlling for initial co-occurring symptoms.
Fatal Primary Capillary Leak Syndrome in a Late Preterm Newborn.
Kulihova, Katarina; Prochazkova, Martina; Semberova, Jana; Janota, Jan
2016-10-01
Primary capillary leak syndrome is a rare disease of unknown etiology, characterized by episodes of vascular collapse and plasma extravasation, which may lead to multiple organ failure. Primary capillary leak is extremely rare in children. The authors report a case of a late preterm newborn with fatal capillary leak syndrome of unknown etiology, manifesting as hypotension unresponsive to treatment, extravasation leading to generalised edema, disseminated intravascular coagulation and finally, multiple organ dysfunction syndrome. Aggressive volumotherapy and a combination of inotropes and high doses of terlipressin did not influence systemic vascular collapse and plasma extravasation. The newborn developed multiple organ failure and died on day 27 of life. Investigations performed failed to reveal any specific cause of capillary leak. This is the first report of a fatal primary capillary leak syndrome in a newborn.
Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias
Shi, Dan; Xie, Duanyang; Zhang, Hong; Zhao, Hong; Huang, Jian; Li, Changming; Liu, Yi; Lv, Fei; The, Erlinda; Liu, Yuan; Yuan, Tianyou; Wang, Shiyi; Chen, Jinjin; Pan, Lei; Yu, Zuoren; Liang, Dandan; Zhu, Weidong; Zhang, Yuzhen; Li, Li; Peng, Luying; Li, Jun; Chen, Yi-Han
2014-01-01
Ischaemic cardiac arrhythmias cause a large proportion of sudden cardiac deaths worldwide. The ischaemic arrhythmogenesis is primarily because of the dysfunction and adverse remodelling of sarcolemma ion channels. However, the potential regulators of sarcolemma ion channel turnover and function in ischaemic cardiac arrhythmias remains unknown. Our previous studies indicate that dynamin-2 (DNM2), a cardiac membrane-remodelling GTPase, modulates ion channels membrane trafficking in the cardiomyocytes. Here, we have found that DNM2 plays an important role in acute ischaemic arrhythmias. In rat ventricular tissues and primary cardiomyocytes subjected to acute ischaemic stress, the DNM2 protein and transcription levels were markedly down-regulated. This DNM2 reduction was coupled with severe ventricular arrhythmias. Moreover, we identified that the down-regulation of DNM2 within cardiomyocytes increases the action potential amplitude and prolongs the re-polarization duration by depressing the retrograde trafficking of Nav1.5 and Kir2.1 channels. These effects are likely to account for the DNM2 defect-induced arrhythmogenic potentials. These results suggest that DNM2, with its multi-ion channel targeting properties, could be a promising target for novel antiarrhythmic therapies. PMID:25092467
Hou, Lijuan; Zhang, Jian; Zhang, Chao; Xu, Yachun; Zhu, Xiaoxia; Yao, Cijiang; Liu, Ying; Li, Tao; Cao, Jiyu
2017-01-01
Cooking oil fumes (COFs) derived PM 2.5 is the major source of indoor air pollution in Asia. For this, a pregnant rat model within different doses of cooking oil fumes (COFs) derived PM 2.5 was established in pregnancy in our research. Our previous studies have showed that exposure to COFs-derived PM 2.5 was related to adverse pregnancy outcomes. However, the mechanisms of signaling pathways remain unknown. Therefore, this study aimed to investigate the underlying mechanisms induced by COFs-derived PM2.5 injury on umbilical cord blood vessels (UCs) in vitro. Exposure to COFs-derived PM 2.5 resulted in changing the expression of eNOS, ET-1, ETRA, and ETRB. In additions, western blot analysis indicated that the HIF-1α/iNOS/NO signaling pathway and VEGF/VEGFR1/iNOS signaling pathway were involved in UCs injury triggered by COFs-derived PM 2.5 . In conclusion, our data suggested that exposure to COFs-derived PM 2.5 resulted in increasing of oxidative stress and inflammation, as well as dysfunction of UCs. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.
1997-01-01
Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826
Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J
1997-11-25
Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.
Hyperprolinemia in Type 2 Glutaric Aciduria and MADD-Like Profiles.
Pontoizeau, Clément; Habarou, Florence; Brassier, Anaïs; Veauville-Merllié, Alice; Grisel, Coraline; Arnoux, Jean-Baptiste; Vianey-Saban, Christine; Barouki, Robert; Chadefaux-Vekemans, Bernadette; Acquaviva, Cécile; de Lonlay, Pascale; Ottolenghi, Chris
2016-01-01
Classical neonatal-onset glutaric aciduria type 2 (MAD deficiency) is a severe disorder of mitochondrial fatty acid oxidation associated with poor survival. Secondary dysfunction of acyl-CoA dehydrogenases may result from deficiency for riboflavin transporters, leading to severe disorders that, nevertheless, are treatable by riboflavin supplementation. In the last 10 years, we identified nine newborns with biochemical features consistent with MAD deficiency, only four of whom survived past the neonatal period. A likely iatrogenic cause of riboflavin deficiency was found in two premature newborns having parenteral nutrition, one of whom recovered upon multivitamin supplementation, whereas the other died before diagnosis. Four other patients had demonstrated mutations involving ETF or ETF-DH flavoproteins, whereas the remaining three patients presumably had secondary deficiencies of unknown mechanism. Interestingly, six newborns among the seven tested for plasma amino acids had pronounced hyperprolinemia. In one case, because the initial diagnostic workup did not include organic acids and acylcarnitine profiling, clinical presentation and hyperprolinemia suggested the diagnosis. Analysis of our full cohort of >50,000 samples from >30,000 patients suggests that the proline/alanine ratio may be a good marker of MAD deficiency and could contribute to a more effective management of the treatable forms.
Disturbed vesicular trafficking of membrane proteins in prion disease.
Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro
2013-01-01
The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.
Schäfer, Michaela; Oeing, Christian U.; Rohm, Maria; Baysal-Temel, Ezgi; Lehmann, Lorenz H.; Bauer, Ralf; Volz, H. Christian; Boutros, Michael; Sohn, Daniela; Sticht, Carsten; Gretz, Norbert; Eichelbaum, Katrin; Werner, Tessa; Hirt, Marc N.; Eschenhagen, Thomas; Müller-Decker, Karin; Strobel, Oliver; Hackert, Thilo; Krijgsveld, Jeroen; Katus, Hugo A.; Berriel Diaz, Mauricio; Backs, Johannes; Herzig, Stephan
2015-01-01
Objectives Cancer cachexia affects the majority of tumor patients and significantly contributes to high mortality rates in these subjects. Despite its clinical importance, the identity of tumor-borne signals and their impact on specific peripheral organ systems, particularly the heart, remain mostly unknown. Methods and results By combining differential colon cancer cell secretome profiling with large-scale cardiomyocyte phenotyping, we identified a signature panel of seven “cachexokines”, including Bridging integrator 1, Syntaxin 7, Multiple inositol-polyphosphate phosphatase 1, Glucosidase alpha acid, Chemokine ligand 2, Adamts like 4, and Ataxin-10, which were both sufficient and necessary to trigger cardiac atrophy and aberrant fatty acid metabolism in cardiomyocytes. As a prototypical example, engineered secretion of Ataxin-10 from non-cachexia-inducing cells was sufficient to induce cachexia phenotypes in cardiomyocytes, correlating with elevated Ataxin-10 serum levels in murine and human cancer cachexia models. Conclusions As Ataxin-10 serum levels were also found to be elevated in human cachectic cancer patients, the identification of Ataxin-10 as part of a cachexokine cocktail now provides a rational approach towards personalized predictive, diagnostic and therapeutic measures in cancer cachexia. PMID:26909315
DNA/RNA Helicase Gene Mutations in a Form of Juvenile Amyotrophic Lateral Sclerosis (ALS4)
Chen, Ying-Zhang; Bennett, Craig L.; Huynh, Huy M.; Blair, Ian P.; Puls, Imke; Irobi, Joy; Dierick, Ines; Abel, Annette; Kennerson, Marina L.; Rabin, Bruce A.; Nicholson, Garth A.; Auer-Grumbach, Michaela; Wagner, Klaus; De Jonghe, Peter; Griffin, John W.; Fischbeck, Kenneth H.; Timmerman, Vincent; Cornblath, David R.; Chance, Phillip F.
2004-01-01
Juvenile amyotrophic lateral sclerosis (ALS4) is a rare autosomal dominant form of juvenile amyotrophic lateral sclerosis (ALS) characterized by distal muscle weakness and atrophy, normal sensation, and pyramidal signs. Individuals affected with ALS4 usually have an onset of symptoms at age <25 years, a slow rate of progression, and a normal life span. The ALS4 locus maps to a 1.7-Mb interval on chromosome 9q34 flanked by D9S64 and D9S1198. To identify the molecular basis of ALS4, we tested 19 genes within the ALS4 interval and detected missense mutations (T3I, L389S, and R2136H) in the Senataxin gene (SETX). The SETX gene encodes a novel 302.8-kD protein. Although its function remains unknown, SETX contains a DNA/RNA helicase domain with strong homology to human RENT1 and IGHMBP2, two genes encoding proteins known to have roles in RNA processing. These observations of ALS4 suggest that mutations in SETX may cause neuronal degeneration through dysfunction of the helicase activity or other steps in RNA processing. PMID:15106121
Autoimmune Encephalitis Following Bone Marrow Transplantation.
Rathore, Geetanjali S; Leung, Kathryn S; Muscal, Eyal
2015-09-01
Neurological complications, especially encephalopathy and seizures, are commonly seen in bone marrow transplant patients. Infections, chemotoxicity, graft versus host disease, or secondary central nervous system malignancies are the most common underlying etiologies. There is increased awareness that autoimmune encephalitis may cause neurological dysfunction in immunocompetent children. The potential role of such a mechanism in children undergoing bone marrow transplantation is unknown. We report a boy who developed autoimmune encephalitis with voltage-gated potassium channel-associated and thyroid autoantibodies subsequent to transplantation. A 7-year-old boy presented with a change in behavior, poor attention, cognitive deficits, and abnormal movements 15 months after undergoing transplantation for idiopathic aplastic anemia. He had clinical and subclinical seizures and brain magnetic resonance imaging hyperintensities bilaterally in the uncal regions. His evaluation revealed high titers of voltage-gated potassium channel, leucine-rich glioma-inactivated 1 protein, and thyroglobulin antibodies suggestive of autoimmune limbic encephalitis. He showed significant improvement in behavior and neuropsychological testing and has remained seizure-free on levetiracetam after immunotherapy with corticosteroids and intravenous immunoglobulin. Systemic autoimmune manifestations in bone marrow transplant patients have been well-documented, but autoimmune encephalitis after transplantation has yet to be described in children. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of Psilocybin on Empathy and Moral Decision-Making
Preller, Katrin H; Kometer, Michael; Dziobek, Isabel; Vollenweider, Franz X
2017-01-01
Abstract Background Impaired empathic abilities lead to severe negative social consequences and influence the development and treatment of several psychiatric disorders. Furthermore, empathy has been shown to play a crucial role in moral and prosocial behavior. Although the serotonin system has been implicated in modulating empathy and moral behavior, the relative contribution of the various serotonin receptor subtypes is still unknown. Methods We investigated the acute effect of psilocybin (0.215 mg/kg p.o.) in healthy human subjects on different facets of empathy and hypothetical moral decision-making using the multifaceted empathy test (n=32) and the moral dilemma task (n=24). Results Psilocybin significantly increased emotional, but not cognitive empathy compared with placebo, and the increase in implicit emotional empathy was significantly associated with psilocybin-induced changed meaning of percepts. In contrast, moral decision-making remained unaffected by psilocybin. Conclusions These findings provide first evidence that psilocybin has distinct effects on social cognition by enhancing emotional empathy but not moral behavior. Furthermore, together with previous findings, psilocybin appears to promote emotional empathy presumably via activation of serotonin 2A/1A receptors, suggesting that targeting serotonin 2A/1A receptors has implications for potential treatment of dysfunctional social cognition. PMID:28637246
Anderegg, William R L; Klein, Tamir; Bartlett, Megan; Sack, Lawren; Pellegrini, Adam F A; Choat, Brendan; Jansen, Steven
2016-05-03
Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated with elevated risk of mortality in diverse ecosystems remain unknown, although these traits could greatly improve understanding and prediction of tree mortality in forests. We performed a meta-analysis on species' mortality rates across 475 species from 33 studies around the globe to assess which traits determine a species' mortality risk. We found that species-specific mortality anomalies from community mortality rate in a given drought were associated with plant hydraulic traits. Across all species, mortality was best predicted by a low hydraulic safety margin-the difference between typical minimum xylem water potential and that causing xylem dysfunction-and xylem vulnerability to embolism. Angiosperms and gymnosperms experienced roughly equal mortality risks. Our results provide broad support for the hypothesis that hydraulic traits capture key mechanisms determining tree death and highlight that physiological traits can improve vegetation model prediction of tree mortality during climate extremes.
The human retrovirus XMRV in prostate cancer and chronic fatigue syndrome.
Silverman, Robert H; Nguyen, Carvell; Weight, Christopher J; Klein, Eric A
2010-07-01
Xenotropic murine leukemia virus-related virus (XMRV) is an authentic, newly recognized human retrovirus first identified in prostate cancer tissues from men with a deficiency in the innate immunity gene RNASEL. At present, studies have detected XMRV at widely different rates in prostate cancer cases (0-27%) and in patients with chronic fatigue syndrome (CFS; 0-67%). Indirect or direct modes of carcinogenesis by XMRV have been suggested depending on whether the virus was found in stroma or malignant epithelium. Viral replication in the prostate might be affected by androgens, which stimulate XMRV through a transcriptional enhancer site in viral DNA. By contrast, host restriction factors, such as APOBEC3 and tetherin, inhibit virus replication. Immune dysfunction mediated by XMRV has been suggested as a possible factor in CFS. Recent studies show that some existing antiretroviral drugs suppress XMRV infections and diagnostic assays are under development. Although other retroviruses of the same genus as XMRV (gammaretroviruses) cause cancer and neurological disease in animals, whether XMRV is a cause of either prostate cancer or CFS remains unknown. Emerging science surrounding XMRV is contributing to our knowledge of retroviral infections while focusing intense interest on two major human diseases.
Benmohamed, Radhia; Arvanites, Anthony C; Kim, Jinho; Ferrante, Robert J; Silverman, Richard B; Morimoto, Richard I; Kirsch, Donald R
2011-03-01
The underlying cause of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder, remains unknown. However, there is strong evidence that one pathophysiological mechanism, toxic protein misfolding and/or aggregation, may trigger motor neuron dysfunction and loss. Since the clinical and pathological features of sporadic and familial ALS are indistinguishable, all forms of the disease may be better understood and ultimately treated by studying pathogenesis and therapy in models expressing mutant forms of SOD1. We developed a cellular model in which cell death depended on the expression of G93A-SOD1, a mutant form of superoxide dismutase found in familial ALS patients that produces toxic protein aggregates. This cellular model was optimized for high throughput screening to identify protective compounds from a >50,000 member chemical library. Three novel chemical scaffolds were selected for further study following screen implementation, counter-screening and secondary testing, including studies with purchased analogs. All three scaffolds blocked SOD1 aggregation in high content screening assays and data on the optimization and further characterization of these compounds will be reported separately. These data suggest that optimization of these chemicals scaffolds may produce therapeutic candidates for ALS patients.
The Effect of Paired Muscle Stimulation on Preparation for Movement.
Brownjohn, Philip W; Blakemore, Rebekah L; Fox, Jonathan A; Shemmell, Jonathan
2018-06-07
Paired muscle stimulation is used clinically to facilitate the performance of motor tasks for individuals with motor dysfunction. However, the optimal temporal relationship between stimuli for enhancing movement remains unknown. We hypothesized that synchronous, muscle stimulation would increase the extent to which stimulated muscles are concurrently prepared for movement. We validated a measure of muscle-specific changes in corticomotor excitability prior to movement. We used this measure to examine the preparation of the first dorsal interosseous (FDI), abductor digiti minimi (ADM), abductor pollicis brevis (APB) muscles prior to voluntary muscle contractions before and after paired muscle stimulation at four interstimulus intervals (0, 5, 10, and 75 ms). Paired muscle stimulation increased premovement excitability in the stimulated FDI, but not in the ADM muscle. Interstimulus interval was not a significant factor in determining efficacy of the protocol. Paired stimulation, therefore, did not result in a functional association being formed between the stimulated muscles. Somatosensory potentials evoked by the muscle stimuli were small compared to those commonly elicited by stimulation of peripheral nerves, suggesting that the lack of functional association formation between muscles may be due to the small magnitude of afferent volleys from the stimulated muscles, particularly the ADM, reaching the cortex.
TAK1 regulates skeletal muscle mass and mitochondrial function
Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.
2018-01-01
Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881
The development of psychopathy.
Blair, R J R; Peschardt, K S; Budhani, S; Mitchell, D G V; Pine, D S
2006-01-01
The current review focuses on the construct of psychopathy, conceptualized as a clinical entity that is fundamentally distinct from a heterogeneous collection of syndromes encompassed by the term 'conduct disorder'. We will provide an account of the development of psychopathy at multiple levels: ultimate causal (the genetic or social primary cause), molecular, neural, cognitive and behavioral. The following main claims will be made: (1) that there is a stronger genetic as opposed to social ultimate cause to this disorder. The types of social causes proposed (e.g., childhood sexual/physical abuse) should elevate emotional responsiveness, not lead to the specific form of reduced responsiveness seen in psychopathy; (2) The genetic influence leads to the emotional dysfunction that is the core of psychopathy; (3) The genetic influence at the molecular level remains unknown. However, it appears to impact the functional integrity of the amygdala and orbital/ventrolateral frontal cortex (and possibly additional systems); (4) Disruption within these two neural systems leads to impairment in the ability to form stimulus-reinforcement associations and to alter stimulus-response associations as a function of contingency change. These impairments disrupt the impact of standard socialization techniques and increase the risk for frustration-induced reactive aggression respectively.
Preclinical Models for Investigation of Herbal Medicines in Liver Diseases: Update and Perspective
Tan, Hor-Yue; San-Marina, Serban; Wang, Ning; Hong, Ming; Li, Sha; Li, Lei; Cheung, Fan; Wen, Xiao-Yan; Feng, Yibin
2016-01-01
Liver disease results from a dynamic pathological process associated with cellular and genetic alterations, which may progress stepwise to liver dysfunction. Commonly, liver disease begins with hepatocyte injury, followed by persistent episodes of cellular regeneration, inflammation, and hepatocyte death that may ultimately lead to nonreversible liver failure. For centuries, herbal remedies have been used for a variety of liver diseases and recent studies have identified the active compounds that may interact with liver disease-associated targets. Further study on the herbal remedies may lead to the formulation of next generation medicines with hepatoprotective, antifibrotic, and anticancer properties. Still, the pharmacological actions of vast majority of herbal remedies remain unknown; thus, extensive preclinical studies are important. In this review, we summarize progress made over the last five years of the most commonly used preclinical models of liver diseases that are used to screen for curative herbal medicines for nonalcoholic fatty liver disease, liver fibrosis/cirrhosis, and liver. We also summarize the proposed mechanisms associated with the observed liver-protective, antifibrotic, and anticancer actions of several promising herbal medicines and discuss the challenges faced in this research field. PMID:26941826
Ding, Mengmeng; Jin, Li; Xie, Lin; Park, So Hyun; Tong, Yixin; Wu, Di; Chhabra, A Bobby; Fu, Zheng; Li, Xudong
2018-03-01
An autosomal-recessive inactivating mutation R272Q in the human intestinal cell kinase (ICK) gene caused profound multiplex developmental defects in human endocrine-cerebro-osteodysplasia (ECO) syndrome. ECO patients exhibited a wide variety of skeletal abnormalities, yet the underlying mechanisms by which ICK regulates skeletal development remained largely unknown. The goal of this study was to understand the structural and mechanistic basis underlying skeletal anomalies caused by ICK dysfunction. Ick R272Q knock-in transgenic mouse model not only recapitulated major ECO skeletal defects such as short limbs and polydactyly but also revealed a deformed spine with defective intervertebral disk. Loss of ICK function markedly reduced mineralization in the spinal column, ribs, and long bones. Ick mutants showed a significant decrease in the proliferation zone of long bones and the number of type X collagen-expressing hypertrophic chondrocytes in the spinal column and the growth plate of long bones. These results implicate that ICK plays an important role in bone and cartilage development by promoting chondrocyte proliferation and maturation. Our findings provided new mechanistic insights into the skeletal phenotype of human ECO and ECO-like syndromes.
2014-01-01
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM. PMID:24467887
Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao
2017-03-11
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Guo, Rui; Ren, Jun
2010-01-18
Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.
Mackie, Fiona L.; Lean, Samantha C.; Greenwood, Susan L.; Heazell, Alexander E. P.; Forbes, Karen; Jones, Rebecca L.
2017-01-01
Scope Low maternal folate status during pregnancy increases the risk of delivering small for gestational age (SGA) infants, but the mechanistic link between maternal folate status, SGA, and placental dysfunction is unknown. microRNAs (miRNAs) are altered in pregnancy pathologies and by folate in other systems. We hypothesized that low maternal folate status causes placental dysfunction, mediated by altered miRNA expression. Methods and results A prospective observational study recruited pregnant adolescents and assessed third trimester folate status and placental function. miRNA array, QPCR, and bioinformatics identified placental miRNAs and target genes. Low maternal folate status is associated with higher incidence of SGA infants (28% versus 13%, p < 0.05) and placental dysfunction, including elevated trophoblast proliferation and apoptosis (p < 0.001), reduced amino acid transport (p < 0.01), and altered placental hormones (pregnancy‐associated plasma protein A, progesterone, and human placental lactogen). miR‐222‐3p, miR‐141‐3p, and miR‐34b‐5p were upregulated by low folate status (p < 0.05). Bioinformatics predicted a gene network regulating cell turnover. Quantitative PCR demonstrated that key genes in this network (zinc finger E‐box binding homeobox 2, v‐myc myelocytomatosis viral oncogene homolog (avian), and cyclin‐dependent kinase 6) were reduced (p < 0.05) in placentas with low maternal folate status. Conclusion This study supports that placental dysfunction contributes to impaired fetal growth in women with low folate status and suggests altered placental expression of folate‐sensitive miRNAs and target genes as a mechanistic link. PMID:28105727
Zakirova, Zuchra; Fanutza, Tomas; Bonet, Justine; Readhead, Ben; Zhang, Weijia; Yi, Zhengzi; Beauvais, Genevieve; Zwaka, Thomas P.; Ozelius, Laurie J.; Blitzer, Robert D.; Gonzalez-Alegre, Pedro
2018-01-01
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. PMID:29364887
Maestraggi, Quentin; Lebas, Benjamin; Clere-Jehl, Raphaël; Ludes, Pierre-Olivier; Chamaraux-Tran, Thiên-Nga; Schneider, Francis; Diemunsch, Pierre; Geny, Bernard; Pottecher, Julien
2017-01-01
Fundamental events driving the pathological processes of septic shock-induced multiorgan failure (MOF) at the cellular and subcellular levels remain debated. Emerging data implicate mitochondrial dysfunction as a critical factor in the pathogenesis of sepsis-associated MOF. If macrocirculatory and microcirculatory dysfunctions undoubtedly participate in organ dysfunction at the early stage of septic shock, an intrinsic bioenergetic failure, sometimes called "cytopathic hypoxia," perpetuates cellular dysfunction. Short-term failure of vital organs immediately threatens patient survival but long-term recovery is also severely hindered by persistent dysfunction of organs traditionally described as nonvital, such as skeletal muscle and peripheral blood mononuclear cells (PBMCs). In this review, we will stress how and why a persistent mitochondrial dysfunction in skeletal muscles and PBMC could impair survival in patients who overcome the first acute phase of their septic episode. First, muscle wasting protracts weaning from mechanical ventilation, increases the risk of mechanical ventilator-associated pneumonia, and creates a state of ICU-acquired muscle weakness, compelling the patient to bed. Second, failure of the immune system ("immunoparalysis") translates into its inability to clear infectious foci and predisposes the patient to recurrent nosocomial infections. We will finally emphasize how mitochondrial-targeted therapies could represent a realistic strategy to promote long-term recovery after sepsis.
Dilated cardiomyopathy and sinoatrial dysfunction in an Estrela mountain dog.
Lobo, Luis; Pinheiro-Vieira, António; Gomes, João L; Canada, Nuno; Ribeiro, Lenio; Costa, Paulo D; Oliveira, Pedro; Bussadori, Claudio
2012-01-01
A 1 yr old male Estrela mountain dog was evaluated as a part of a screening program for dilated cardiomyopathy. The dog came from a family with a history of dilated cardiomyopathy but was asymptomatic. Occult dilated cardiomyopathy and sino-atrial dysfunction were diagnosed based on echocardiography and electrocardiography. These two disorders may be associated given that related dogs have been diagnosed with the same disorders. The dog has remained asymptomatic for 4 years following initial evaluation.
Stefan, Mihaela; Simmons, Rebecca A; Bertera, Suzanne; Trucco, Massimo; Esni, Farzad; Drain, Peter; Nicholls, Robert D
2011-05-01
Prader-Willi syndrome (PWS) is a multisystem disorder caused by genetic loss of function of a cluster of imprinted, paternally expressed genes. Neonatal failure to thrive in PWS is followed by childhood-onset hyperphagia and obesity among other endocrine and behavioral abnormalities. PWS is typically assumed to be caused by an unknown hypothalamic-pituitary dysfunction, but the underlying pathogenesis remains unknown. A transgenic deletion mouse model (TgPWS) has severe failure to thrive, with very low levels of plasma insulin and glucagon in fetal and neonatal life prior to and following onset of progressive hypoglycemia. In this study, we tested the hypothesis that primary deficits in pancreatic islet development or function may play a fundamental role in the TgPWS neonatal phenotype. Major pancreatic islet hormones (insulin, glucagon) were decreased in TgPWS mice, consistent with plasma levels. Immunohistochemical analysis of the pancreas demonstrated disrupted morphology of TgPWS islets, with reduced α- and β-cell mass arising from an increase in apoptosis. Furthermore, in vivo and in vitro studies show that the rate of insulin secretion is significantly impaired in TgPWS β-cells. In TgPWS pancreas, mRNA levels for genes encoding all pancreatic hormones, other secretory factors, and the ISL1 transcription factor are upregulated by either a compensatory response to plasma hormone deficiencies or a primary effect of a deleted gene. Our findings identify a cluster of imprinted genes required for the development, survival, coordinate regulation of genes encoding hormones, and secretory function of pancreatic endocrine cells, which may underlie the neonatal phenotype of the TgPWS mouse model.
Thyroid dysfunctions of prematurity and their impacts on neurodevelopmental outcome.
Chung, Mi Lim; Yoo, Han Wok; Kim, Ki-Soo; Lee, Byong Sop; Pi, Soo-Young; Lim, Gina; Kim, Ellen Ai-Rhan
2013-01-01
Thyroid dysfunction is very common and is associated with neurodevelopmental impairments in preterm infants. This study was conducted to determine the incidence and natural course of various thyroid dysfunctions and their impacts on neurodevelopmental outcomes among premature infants. A total of 177 infants were enrolled who were born at <34 weeks or whose birth weight was <1500 g and who underwent repeat thyroid function tests. We analyzed how various thyroid dysfunctions affected neurodevelopmental outcomes at 18 months of corrected age. Thyroid dysfunction was noted in 88 infants. Hypothyroxinemia was observed in 23 infants, and their thyroid function was influenced by variable clinical factors. Free T4 levels were all normalized without thyroxine medication, and neurodevelopmental outcomes were not affected. In contrast, hyperthyrotropinemia was not associated with other clinical factors. Among 58 subjects who had hyperthyrotropinemia, only 31 infants showed normal thyroid-stimulating hormone (TSH) levels at follow-up tests. The remaining 27 infants had persistently high TSH levels, which significantly and poorly influenced the neurodevelopmental outcomes. Thyroid dysfunction is common among preterm infants. With the exception of persistent hyperthyrotropinemia, it generally does not affect neurodevelopmental outcomes. However, the beneficial effects of thyroid hormone therapy in patients with persistent hyperthyrotropinemia merits further study.
Stehlé, Thomas; Vignon, Marguerite; Flamant, Martin; Figueres, Marie-Lucile; Rabant, Marion; Rodenas, Anita; Noël, Laure-Hélène; Arnulf, Bertrand; Vidal-Petiot, Emmanuelle
2016-06-01
Light chain proximal tubulopathy (LCPT) is a rare disease, characterized by cytoplasmic inclusions of light chain (usually kappa) immunoglobulins. Clinical presentation is usually a Fanconi syndrome. The proximal tubular dysfunction can be incomplete, and exceptional cases of LCPT without any tubular dysfunction have even been described. Here, we report a case of LCPT in which the only sign of proximal tubulopathy is the absence of secretion of creatinine, as assessed by the simultaneous measurement of renal clearance of creatinine and CrEDTA. The loss of tubular creatinine secretion as a sign of tubular proximal cell dysfunction ought to be identified in patients with light chain proximal tubulopathy as it leads to a clinically relevant underestimation of GFR by the creatinine-derived equations. The prevalence and prognostic significance of this particular proximal tubular damage in LCPT remain to be determined.
Exercise and reproductive dysfunction.
Chen, E C; Brzyski, R G
1999-01-01
To provide an overview of our current understanding of exercise-induced reproductive dysfunction and an approach to its evaluation and management. A MEDLINE search was performed to review all articles with title words related to menstrual dysfunction, amenorrhea, oligomenorrhea, exercise, and athletic activities from 1966 to 1998. The pathophysiology, proposed mechanisms, clinical manifestations, evaluation, and management of exercise-associated reproductive dysfunction were compiled. Exercise-induced menstrual irregularity appears to be multifactorial in origin and remains a diagnosis of exclusion. The underlying mechanisms are mainly speculative. Clinical manifestations range from luteal phase deficiency to anovulation, amenorrhea, and even delayed menarche. Evaluation should include a thorough history and a complete physical plus pelvic examination. Most cases are reversible with dietary and exercise modifications. Hormonal replacement in cases of a prolonged hypoestrogenic state with evidence of increased bone loss is recommended, although the long-term consequences of prolonged hormonal deficiency are ill-defined.
Rose, Anita; van de Vis, Wim; Engelbrecht, Jannie; Pirard, Michelle; Lau, Stefanie; Heesen, Christoph; Köpke, Sascha
2018-01-01
Objective Sexual dysfunction in multiple sclerosis (MS) is a significant, but often underestimated and overlooked suffering. Interventions to treat sexual dysfunction in MS are rare. The relation between sexual dysfunction in MS and psychological as well as neuropsychological aspects is evident. However, this field of research remains markedly underdeveloped in this severe chronic illness. The aim of this scoping review is to describe the relevant knowledge in this area and to identify psychological interventions to treat sexual dysfunctions in MS. Methods A scoping review was conducted to answer the following questions: (1) Which psychological and neuropsychological factors impact on sexual dysfunction in MS and vice versa? (2) What kind of psychological interventions aiming to improve sexual dysfunctions in MS are available? A comprehensive search and review of MEDLINE, PsycINFO, and CINAHL was completed by using a recent methodological framework for scoping reviews. Results 23 publications covering a total of 13,259 people with MS and 532 healthy controls were identified. Sexual dysfunction was found to be very common in MS and there is an obvious relation to psychological disorders as e.g. depression and anxiety and also to psychological aspects as partner relationship and quality of life. The relation between sexual dysfunction in MS and neuropsychological impairment has only rarely been studied and no clear results were found. Only two studies were identified, assessing the effectiveness of psychological intervention studies on sexual dysfunction in people with MS, and a third study presenting a secondary analysis of a study targeting depression. All three studies reported significant improvements in sexual dysfunction as well as partly in psychological variables. Conclusions There is a pressing need for the development and adequate evaluation of psychological interventions for sexual dysfunctions in MS. In addition, sexual dysfunction and its impact on psychological wellbeing should be more focussed in clinical care. Registration This review is registered with PROSPERO; Registration number: CRD42016033066. PMID:29486006
Pöttgen, Jana; Rose, Anita; van de Vis, Wim; Engelbrecht, Jannie; Pirard, Michelle; Lau, Stefanie; Heesen, Christoph; Köpke, Sascha
2018-01-01
Sexual dysfunction in multiple sclerosis (MS) is a significant, but often underestimated and overlooked suffering. Interventions to treat sexual dysfunction in MS are rare. The relation between sexual dysfunction in MS and psychological as well as neuropsychological aspects is evident. However, this field of research remains markedly underdeveloped in this severe chronic illness. The aim of this scoping review is to describe the relevant knowledge in this area and to identify psychological interventions to treat sexual dysfunctions in MS. A scoping review was conducted to answer the following questions: (1) Which psychological and neuropsychological factors impact on sexual dysfunction in MS and vice versa? (2) What kind of psychological interventions aiming to improve sexual dysfunctions in MS are available? A comprehensive search and review of MEDLINE, PsycINFO, and CINAHL was completed by using a recent methodological framework for scoping reviews. 23 publications covering a total of 13,259 people with MS and 532 healthy controls were identified. Sexual dysfunction was found to be very common in MS and there is an obvious relation to psychological disorders as e.g. depression and anxiety and also to psychological aspects as partner relationship and quality of life. The relation between sexual dysfunction in MS and neuropsychological impairment has only rarely been studied and no clear results were found. Only two studies were identified, assessing the effectiveness of psychological intervention studies on sexual dysfunction in people with MS, and a third study presenting a secondary analysis of a study targeting depression. All three studies reported significant improvements in sexual dysfunction as well as partly in psychological variables. There is a pressing need for the development and adequate evaluation of psychological interventions for sexual dysfunctions in MS. In addition, sexual dysfunction and its impact on psychological wellbeing should be more focussed in clinical care. This review is registered with PROSPERO; Registration number: CRD42016033066.
Wens, Inez; Eijnde, Bert O; Hansen, Dominique
2016-08-15
In the treatment of multiple sclerosis (MS), exercise training is now considered a cornerstone. However, most clinicians tend to focus on neurologic deficits only, and thus prefer to prescribe rehabilitation programs specifically to counteract these deficits. However, the present comprehensive review shows that patients with MS (pwMS) also experience significant muscular, cardiac, ventilatory and metabolic dysfunction, which significantly contribute, next to neurologic deficits, to exercise intolerance. In addition, these anomalies also might increase the risk for frequent hospitalization and morbidity and can reduce life expectancy. Unfortunately, the impact of exercise intervention on these anomalies in pwMS are mostly unknown. Therefore, it is suggested that pwMS should be screened systematically for muscular, cardiac, ventilatory and metabolic function during exercise testing. The detection of such anomalies should lead to adaptations and optimisation of exercise training prescription and clinical care/medical treatment of pwMS. In addition, future studies should focus on the impact of exercise intervention on muscular, cardiac, ventilatory and metabolic (dys)function in pwMS, to contribute to improved treatment and care. Copyright © 2016. Published by Elsevier B.V.
Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan
2015-01-01
Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.
CHRONIC PERIPHERAL NERVE COMPRESSION DISRUPTS PARANODAL AXOGLIAL JUNCTIONS
Otani, Yoshinori; Yermakov, Leonid M.; Dupree, Jeffrey L.; Susuki, Keiichiro
2016-01-01
Introduction Peripheral nerves are often exposed to mechanical stress leading to compression neuropathies. The pathophysiology underlying nerve dysfunction by chronic compression is largely unknown. Methods We analyzed molecular organization and fine structures at and near nodes of Ranvier in a compression neuropathy model in which a silastic tube was placed around the mouse sciatic nerve. Results Immunofluorescence study showed that clusters of cell adhesion complex forming paranodal axoglial junctions were dispersed with frequent overlap with juxtaparanodal components. These paranodal changes occurred without internodal myelin damage. The distribution and pattern of paranodal disruption suggests that these changes are the direct result of mechanical stress. Electron microscopy confirmed loss of paranodal axoglial junctions. Discussion Our data show that chronic nerve compression disrupts paranodal junctions and axonal domains required for proper peripheral nerve function. These results provide important clues toward better understanding of the pathophysiology underlying nerve dysfunction in compression neuropathies. PMID:27463510
Yokukansankachimpihange increased body weight but not food-incentive motivation in wild-type mice.
Hamaguchi, Takuya; Tsutsui-Kimura, Iku; F Tanaka, Kenji; Mimura, Masaru
2017-08-01
Yokukansankachimpihange (YKSCH), a traditional Japanese medicine, is widely used for the amelioration of the behavioral and psychological symptoms of dementia with digestive dysfunction. Regardless of its successful use for digestive dysfunction, the effect of YKSCH on body weight was unknown. Furthermore, if YKSCH increased body weight, it might increase motivation according to Kampo medicine theory. Therefore, we investigated whether YKSCH had the potential to increase body weight and enhance motivation in mice. To address this, C57BL/6J mice were used to evaluate the long-term effect of YKSCH on body weight and food-incentive motivation. As part of the evaluation, we optimized an operant test for use over the long-term. We found that feeding mice YKSCH-containing chow increased body weight, but did not increase their motivation to food reward. We propose that YKSCH may be a good treatment option for preventing decrease in body weight in patients with dementia.
Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis.
Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis
2016-01-01
Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism.
Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis
Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis
2016-01-01
Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism. PMID:27213061
Chapman, Stephen J; Bolton, William S; Corrigan, Neil; Young, Neville; Jayne, David G
2017-02-01
Postoperative bowel dysfunction affects quality of life after sphincter-preserving rectal cancer surgery, but the extent of the problem is not clearly defined because of inconsistent outcome measures used to characterize the condition. The purpose of this study was to assess variation in the reporting of postoperative bowel dysfunction and to make recommendations for standardization in future studies. If possible, a quantitative synthesis of bowel dysfunction symptoms was planned. MEDLINE and EMBASE databases, as well as the Cochrane Library, were queried systematically between 2004 and 2015. The studies selected reported at least 1 component of bowel dysfunction after resection of rectal cancer. The main outcome measures were reporting, measurement, and definition of postoperative bowel dysfunction. Of 5428 studies identified, 234 met inclusion criteria. Widely reported components of bowel dysfunction were incontinence to stool (227/234 (97.0%)), frequency (168/234 (71.8%)), and incontinence to flatus (158/234 (67.5%)). Urgency and stool clustering were reported less commonly, with rates of 106 (45.3%) of 234 and 61 (26.1%) of 234. Bowel dysfunction measured as a primary outcome was associated with better reporting (OR = 3.49 (95% CI, 1.99-6.23); p < 0.001). Less than half of the outcomes were assessed using a dedicated research tool (337/720 (46.8%)), and the remaining descriptive measures were infrequently defined (56/383 (14.6%)). Heterogeneity in the reporting, measurement, and definition of postoperative bowel dysfunction precluded pooling of results and limited interpretation. Considerable variation exists in the reporting, measurement, and definition of postoperative bowel dysfunction. These inconsistencies preclude reliable estimates of incidence and meta-analysis. A broadly accepted outcome measure may address this deficit in future studies.
Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala
Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.
2010-01-01
Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. PMID:21111403
Erectile Dysfunction in the Older Adult Male.
Mola, Joanna R
2015-01-01
Erectile dysfunction (ED) in the older adult male is a significant problem affecting more than 75% of men over 70 years of age in the United States. Older men have an increased likelihood of developing ED due to chronic disease, comorbid conditions, and age-related changes. Research has demonstrated that while the prevalence and severity of ED increases with age, sexual desire often remains unchanged. This article discusses the clinical picture of ED, including relevant pathophysiology, clinical presentation, and evaluation and treatment options.
Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.; ...
2016-03-31
Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches tomore » demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. Also, the present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.« less
Summary of the recommendations on sexual dysfunctions in women.
Basson, Rosemary; Wierman, Margaret E; van Lankveld, Jacques; Brotto, Lori
2010-01-01
Women's sexual dysfunction includes reduced interest/incentives for sexual engagement, difficulties with becoming subjectively and/or genitally aroused, difficulties in triggering desire during sexual engagement, orgasm disorder, and sexual pain. To update the recommendations published in 2004, from the 2nd International Consultation on Sexual Medicine (ICSM) pertaining to the diagnosis and treatment of women's sexual dysfunctions. A third international consultation in collaboration with the major sexual medicine associations assembled over 186 multidisciplinary experts from 33 countries into 25 committees. Twenty one experts from six countries contributed to the Recommendations on Sexual Dysfunctions in Women. Expert opinion was based on grading of evidence-based medical literature, widespread internal committee discussion, public presentation, and debate. A comprehensive assessment of medical, sexual, and psychosocial history is recommended for diagnosis and management. Indications for general and focused pelvic genital examination are identified. Evidence based recommendations for further revisions of definitions for sexual disorders are given. An evidence based approach to management is provided. Extensive references are provided in the full ICSM reports. There remains a need for more research and scientific reporting on the optimal management of women's sexual dysfunctions including multidisciplinary approaches.
Cognitive dysfunction and functional magnetic resonance imaging in systemic lupus erythematosus.
Barraclough, M; Elliott, R; McKie, S; Parker, B; Bruce, I N
2015-10-01
Cognitive dysfunction is a common aspect of systemic lupus erythematosus (SLE) and is increasingly reported as a problem by patients. In many cases the exact cause is unclear. Limited correlations between specific autoantibodies or structural brain abnormalities and cognitive dysfunction in SLE have been reported. It may be that the most appropriate biomarkers have yet to be found. Functional magnetic resonance imaging (fMRI) is a technique used in many other conditions and provides sensitive measures of brain functionality during cognitive tasks. It is now beginning to be employed in SLE studies. These studies have shown that patients with SLE often perform similarly to healthy controls in terms of behavioural measures on cognitive tasks. However, SLE patients appear to employ compensatory brain mechanisms, such as increased response in fronto-parietal regions, to maintain adequate cognitive performance. As there have been only a few studies using fMRI in SLE to investigate cognitive dysfunction, many questions remain unanswered. Further research could, however, help to identify biomarkers for cognitive dysfunction in SLE. © The Author(s) 2015.
Mehta, Hardik; Armstrong, Anderson; Swett, Katrina; Shah, Sanjiv J.; Allison, Matthew A.; Hurwitz, Barry; Bangdiwala, Shrikant; Dadhania, Rupal; Kitzman, Dalane W.; Arguelles, William; Lima, Joao; Youngblood, Marston; Schneiderman, Neil; Daviglus, Martha L.; Spevack, Daniel; Talavera, Greg A.; Raisinghani, Ajit; Kaplan, Robert; Rodriguez, Carlos J.
2016-01-01
Background Population-based estimates of cardiac dysfunction and clinical heart failure (HF) remain undefined among Hispanics/Latino adults. Methods and Results Participants of Hispanic/Latino origin across the US, aged 45–74 years were enrolled into the Echocardiographic Study of Latinos (ECHO-SOL) and underwent a comprehensive echocardiography exam to define left ventricular systolic dysfunction (LVSD) and left ventricular diastolic dysfunction (LVDD). Clinical HF was defined according to self-report; and those with cardiac dysfunction but without clinical HF were characterized as having subclinical or unrecognized cardiac dysfunction. Of 1,818 ECHO-SOL participants (mean age 56.4 years; 42.6% male) , 49.7% had LVSD and/or LVDD. LVSD prevalence was 3.6%, while LVDD was detected in 50.3%. Participants with LVSD were more likely to be males and current smokers (all p<0.05). Female sex, hypertension, diabetes, higher body-mass index and renal dysfunction were more common among those with LVDD (all p<0.05). In age-sex adjusted models, individuals of Central American and Cuban backgrounds were almost two-fold more likely to have LVDD compared to those of Mexican backgrounds. Prevalence of clinical HF with LVSD (HF with reduced EF) was 7.3%; prevalence of clinical HF with LVDD (HF with preserved EF) was 3.6%. 96.1% of the cardiac dysfunction seen was subclinical or unrecognized. Compared to those with clinical cardiac dysfunction, prevalent coronary heart disease was the only factor independently associated with subclinical or unrecognized cardiac dysfunction (odds ratio: 0.1; 95% confidence interval: 0.1–0.4). Conclusions Among Hispanics/Latinos, most cardiac dysfunction is subclinical or unrecognized, with a high prevalence of diastolic dysfunction. This identifies a high-risk population for the development of clinical HF. PMID:27048764
Genomic and genotyping characterization of haplotype-based polymorphic microsatellites in Prunus
USDA-ARS?s Scientific Manuscript database
Efficient utilization of microsatellites in genetic studies remains impeded largely due to the unknown status of their primer reliability, chromosomal location, and allele polymorphism. Discovery and characterization of microsatellite polymorphisms in a taxon will disclose the unknowns and gain new ...
Iron overload patients with unknown etiology from national survey in Japan.
Ikuta, Katsuya; Hatayama, Mayumi; Addo, Lynda; Toki, Yasumichi; Sasaki, Katsunori; Tatsumi, Yasuaki; Hattori, Ai; Kato, Ayako; Kato, Koichi; Hayashi, Hisao; Suzuki, Takahiro; Kobune, Masayoshi; Tsutsui, Miyuki; Gotoh, Akihiko; Aota, Yasuo; Matsuura, Motoo; Hamada, Yuzuru; Tokuda, Takahiro; Komatsu, Norio; Kohgo, Yutaka
2017-03-01
Transfusion is believed to be the main cause of iron overload in Japan. A nationwide survey on post-transfusional iron overload subsequently led to the establishment of guidelines for iron chelation therapy in this country. To date, however, detailed clinical information on the entire iron overload population in Japan has not been fully investigated. In the present study, we obtained and studied detailed clinical information on the iron overload patient population in Japan. Of 1109 iron overload cases, 93.1% were considered to have occurred post-transfusion. There were, however, 76 cases of iron overload of unknown origin, which suggest that many clinicians in Japan may encounter some difficulty in correctly diagnosing and treating iron overload. Further clinical data were obtained for 32 cases of iron overload of unknown origin; median of serum ferritin was 1860.5 ng/mL. As occurs in post-transfusional iron overload, liver dysfunction was found to be as high as 95.7% when serum ferritin levels exceeded 1000 ng/mL in these patients. Gene mutation analysis of the iron metabolism-related genes in 27 cases of iron overload with unknown etiology revealed mutations in the gene coding hemojuvelin, transferrin receptor 2, and ferroportin; this indicates that although rare, hereditary hemochromatosis does occur in Japan.
Butler, R N; Lewis, M I; Hoffman, E; Whitehead, E D
1994-10-01
In the medical evaluation of older men with erectile dysfunction, obtain a detailed history to determine whether the dysfunction is organic or psychogenic. Determine if there are underlying pathologic processes--most notably vascular diseases--or other factors responsible for the dysfunction, such as medications or nerve or arterial damage from surgery. Lifestyle changes in mid-life (regular exercise, a low-fat diet, and smoking cessation) increase a man's chances of remaining potent as he grows older. Treatments for impotence include injection therapy, vacuum devices, and implants. Each therapy has advantages and disadvantages, and the informed patient plays an important role in choosing the therapy that is right for him.
Vision and Vestibular System Dysfunction Predicts Prolonged Concussion Recovery in Children.
Master, Christina L; Master, Stephen R; Wiebe, Douglas J; Storey, Eileen P; Lockyer, Julia E; Podolak, Olivia E; Grady, Matthew F
2018-03-01
Up to one-third of children with concussion have prolonged symptoms lasting beyond 4 weeks. Vision and vestibular dysfunction is common after concussion. It is unknown whether such dysfunction predicts prolonged recovery. We sought to determine which vision or vestibular problems predict prolonged recovery in children. A retrospective cohort of pediatric patients with concussion. A subspecialty pediatric concussion program. Four hundred thirty-two patient records were abstracted. Presence of vision or vestibular dysfunction upon presentation to the subspecialty concussion program. The main outcome of interest was time to clinical recovery, defined by discharge from clinical follow-up, including resolution of acute symptoms, resumption of normal physical and cognitive activity, and normalization of physical examination findings to functional levels. Study subjects were 5 to 18 years (median = 14). A total of 378 of 432 subjects (88%) presented with vision or vestibular problems. A history of motion sickness was associated with vestibular dysfunction. Younger age, public insurance, and presence of headache were associated with later presentation for subspecialty concussion care. Vision and vestibular problems were associated within distinct clusters. Provocable symptoms with vestibulo-ocular reflex (VOR) and smooth pursuits and abnormal balance and accommodative amplitude (AA) predicted prolonged recovery time. Vision and vestibular problems predict prolonged concussion recovery in children. A history of motion sickness may be an important premorbid factor. Public insurance status may represent problems with disparities in access to concussion care. Vision assessments in concussion must include smooth pursuits, saccades, near point of convergence (NPC), and accommodative amplitude (AA). A comprehensive, multidomain assessment is essential to predict prolonged recovery time and enable active intervention with specific school accommodations and targeted rehabilitation.
Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross
2017-08-01
Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-06-15
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-01-01
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093
76 FR 75907 - Notice of Inventory Completion: Minnesota Indian Affairs Council, Bemidji, MN
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
...''). History and Description of the Remains At an unknown date, human remains representing, at minimum, two.... SUMMARY: The Minnesota Indian Affairs Council has completed an inventory of human remains and associated... tribe that believes itself to be culturally affiliated with the human remains may contact the Minnesota...
Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways.
Li, Xiang; Michaeloudes, Charalambos; Zhang, Yuelin; Wiegman, Coen H; Adcock, Ian M; Lian, Qizhou; Mak, Judith C W; Bhavsar, Pankaj K; Chung, Kian Fan
2018-05-01
Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated. Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs. iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru
2013-01-01
Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884
Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta.
Sturza, Adrian; Leisegang, Matthias S; Babelova, Andrea; Schröder, Katrin; Benkhoff, Sebastian; Loot, Annemarieke E; Fleming, Ingrid; Schulz, Rainer; Muntean, Danina M; Brandes, Ralf P
2013-07-01
Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Qingqiao; Xia, Yuanyu, E-mail: xiayuanyu.wh@gmail.com; Wang, Guan
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression inmore » HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders.« less
Elucidation of the mechanism of atorvastatin-induced myopathy in a rat model.
El-Ganainy, Samar O; El-Mallah, Ahmed; Abdallah, Dina; Khattab, Mahmoud M; Mohy El-Din, Mahmoud M; El-Khatib, Aiman S
2016-06-01
Myopathy is among the well documented and the most disturbing adverse effects of statins. The underlying mechanism is still unknown. Mitochondrial dysfunction related to coenzyme Q10 decline is one of the proposed theories. The present study aimed to investigate the mechanism of atorvastatin-induced myopathy in rats. In addition, the mechanism of the coenzyme Q10 protection was investigated with special focus of mitochondrial alterations. Sprague-Dawely rats were treated orally either with atorvastatin (100mg/kg) or atorvastatin and coenzyme Q10 (100mg/kg). Myopathy was assessed by measuring serum creatine kinase (CK) and myoglobin levels together with examination of necrosis in type IIB fiber muscles. Mitochondrial dysfunction was evaluated by measuring muscle lactate/pyruvate ratio, ATP level, pAkt as well as mitochondrial ultrastructure examination. Atorvastatin treatment resulted in a rise in both CK (2X) and myoglobin (6X) level with graded degrees of muscle necrosis. Biochemical determinations showed prominent increase in lactate/pyruvate ratio and a decline in both ATP (>80%) and pAkt (>50%) levels. Ultrastructure examination showed mitochondrial swelling with disrupted organelle membrane. Co-treatment with coenzyme Q10 induced reduction in muscle necrosis as well as in CK and myoglobin levels. In addition, coenzyme Q10 improved all mitochondrial dysfunction parameters including mitochondrial swelling and disruption. These results presented a model for atorvastatin-induced myopathy in rats and proved that mitochondrial dysfunction is the main contributor in statin-myopathy pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution?
Poitras, Veronica J; Hudson, Robert W; Tschakovsky, Michael E
2018-05-01
Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.
Goodarzi, Mark O; Carmina, Enrico; Azziz, Ricardo
2015-01-01
Approximately 20-30% of PCOS women demonstrate excess adrenal precursor androgen (APA) production, primarily using DHEAS as a marker of APA in general and more specifically DHEA, synthesis. The role of APA excess in determining or causing PCOS is unclear, although observations in patients with inherited APA excess (e.g., patients with 21-hydroxylase deficient congenital classic or non-classic adrenal hyperplasia) demonstrate that APA excess can result in a PCOS-like phenotype. Inherited defects of the enzymes responsible for steroid biosynthesis, or defects in cortisol metabolism, account for only a very small fraction of women suffering from hyperandrogenism or APA excess. Rather, women with PCOS and APA excess appear to have a generalized exaggeration in adrenal steroidogenesis in response to ACTH stimulation, although they do not have an overt hypothalamic-pituitary-adrenal axis dysfunction. In general, extra-adrenal factors, including obesity, insulin and glucose levels, and ovarian secretions, play a limited role in the increased APA production observed in PCOS. Substantial heritabilities of APAs, particularly DHEAS, have been found in the general population and in women with PCOS; however, the handful of SNPs discovered to date account only for a small portion of the inheritance of these traits. Paradoxically, and as in men, elevated levels of DHEAS appear to be protective against cardiovascular risk in women, although the role of DHEAS in modulating this risk in women with PCOS remains unknown. In summary, the exact cause of APA excess in PCOS remains unclear, although it may reflect a generalized and inherited exaggeration in androgen biosynthesis of an inherited nature. Copyright © 2014 Elsevier Ltd. All rights reserved.
The relationship of physical trauma and surgical stress to menstrual dysfunction.
To, W W; Wong, M W
2000-02-01
To evaluate the incidence and pattern of menstrual dysfunction in reproductive age group women suffering acute musculoskeletal trauma, 198 women between 15 and 50 years of age admitted consecutively into an acute orthopaedic unit were recruited over a 6-month period. The patients were then followed up for 6 months with menstrual diaries to compare their menstrual pattern with their preadmission status. Excluding those with significant menstrual problems before admission, the menstrual pattern remained normal in 135 (68%) (EM), while 12 (6%) developed polymenorrhoea (PM), and 51 (25%) had oligomenorrhoea or amenorrhoea (OAM) within the 6-month observation. The three groups did not differ in their mean age, body mass index, parity or age of menarche, but previous cycle lengths were shortest in the PM group (25.4 days, SD 7.64) (p<0.05) and history of amenorrhoea in the previous one year was most common in the OAM group (p<0.025). Univariate analysis showed the incidence of moderate to major trauma,operative treatment, longer operative time, general anaesthesia, blood transfusion and immobilisation were significantly higher in the PM and OAM groups compared to the unchanged group (p<0.05). A logistic regression model showed that general anaesthesia and longer surgical operations remained significantly related to the development of menstrual dysfunction. We conclude that the pattern of menstrual dysfunction after acute orthopaedic trauma appeared to be dictated by the woman's pre-existing menstrual characteristics and the stress of surgical treatment.
Coucha, Maha; Li, Weiguo; Hafez, Sherif; Abdelsaid, Mohammed; Johnson, Maribeth H.; Fagan, Susan C.
2014-01-01
Admission hyperglycemia (HG) amplifies vascular injury and neurological deficits in acute ischemic stroke, but the mechanisms remain controversial. We recently reported that ischemia-reperfusion (I/R) injury impairs the myogenic response in both hemispheres via increased nitration. However, whether HG amplifies contralateral myogenic dysfunction and whether loss of tone in the contralateral hemisphere contributes to stroke outcomes remain to be determined. Our hypothesis was that contralateral myogenic dysfunction worsens stroke outcomes after acute hyperglycemic stroke in an oxidative stress-dependent manner. Male wild-type or SOD1 transgenic rats were injected with saline or 40% glucose solution 10 min before surgery and then subjected to 30 min of ischemia/45 min or 24 h of reperfusion. In another set of animals (n = 5), SOD1 was overexpressed only in the contralateral hemisphere by stereotaxic adenovirus injection 2–3 wk before I/R. Myogenic tone and neurovascular outcomes were determined. HG exacerbated myogenic dysfunction in contralateral side only, which was associated with infarct size expansion, increased edema, and more pronounced neurological deficit. Global and selective SOD1 overexpression restored myogenic reactivity in ipsilateral and contralateral sides, respectively, and enhanced neurovascular outcomes. In conclusion, our results show that SOD1 overexpression nullified the detrimental effects of HG on myogenic tone and stroke outcomes and that the contralateral hemisphere may be a novel target for the management of acute hyperglycemic stroke. PMID:25552308
Zhao, Zhigang; Xuan, Xujun; Zhang, Jingwei; He, Jun; Zeng, Guohua
2014-10-01
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common debilitating condition of unclear etiology. Sexual dysfunction is an important component of the clinical phenotype of CP/CPPS. Patients often have prostatic calcifications, but a link to sexual dysfunction is unknown. The aim of this study was to evaluate the association of prostatic calcifications with sexual dysfunction in this condition. A total of 358 males with CP/CPPS were consecutively enrolled, and a prospectively maintained database of these patients was analyzed. Calcifications were diagnosed using ultrasound imaging of the prostate. Symptom severity was measured using the National Institutes of Health Chronic Prostatitis Symptom Index (CPSI). Sexual dysfunction was evaluated using the validated 15-item International Index of Erectile Function (IIEF-15) questionnaire and 5-item Premature Ejaculation Diagnostic Tool scales. The variables were compared between patients with prostatic calcifications and those without using the Student's t-test, Wilcoxon unpaired test, or chi-square test. Logistic regression models were developed to explore a possible association between prostatic calcifications and sexual dysfunction. Measurable calcifications in the prostate were found in 175 (48.9%) of the 358 patients. Patients with calcifications were more likely to have higher white blood cell counts or positive bacteria cultures in their prostatic fluid, longer symptoms duration, and lower scores for the total IIEF-15, IIEF-erectile function, and IIEF-intercourse satisfaction domains (P < 0.001 for each). However, the scores for CPSI, premature ejaculation, and IIEF-orgasmic function, IIEF-sexual desire, and IIEF-overall satisfaction domains were identical between men with and without calcifications (P > 0.05 for each). Furthermore, logistic regression analyses revealed that intraprostatic calcification is significantly associated with self-assessed erectile dysfunction (ED) (odds ratio:3.632, 95% confidence interval: 2.405-5.822, P < 0.001). Our results showed that prostatic calcifications are significantly associated with the presence of ED in CP/CPPS males. © 2014 International Society for Sexual Medicine.
Massardo, L; Bravo-Zehnder, M; Calderón, J; Flores, P; Padilla, O; Aguirre, J M; Scoriels, L; González, A
2015-05-01
Autoantibodies against N-methyl-D-aspartate receptor (anti-NMDAR) and ribosomal-P (anti-P) antigens are potential pathogenic factors in the frequently observed diffuse brain dysfunctions in patients with systemic lupus erythematosus (SLE). Although studies have been conducted in this area, the role of anti-NMDAR antibodies in SLE cognitive dysfunction remains elusive. Moreover, the specific contribution of anti-P antibodies has not been reported yet. The present study attempts to clarify the contribution of anti-NMDAR and anti-P antibodies to cognitive dysfunction in SLE. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was used to assess a wide range of cognitive function areas in 133 Chilean women with SLE. ANCOVA models included autoantibodies, patient and disease features. Cognitive deficit was found in 20%. Higher SLEDAI-2K scores were associated with impairment in spatial memory and learning abilities, whereas both anti-NMDAR and anti-P antibodies contributed to deficits in attention and spatial planning abilities, which reflect fronto-parietal cortex dysfunctions. These results reveal an association of active disease together with specific circulating autoantibodies, such as anti-NMDAR and anti-P, with cognitive dysfunction in SLE patients. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sorato, E; Menazza, S; Zulian, A; Sabatelli, P; Gualandi, F; Merlini, L; Bonaldo, P; Canton, M; Bernardi, P; Di Lisa, F
2014-10-01
Although mitochondrial dysfunction and oxidative stress have been proposed to play a crucial role in several types of muscular dystrophy (MD), whether a causal link between these two alterations exists remains an open question. We have documented that mitochondrial dysfunction through opening of the permeability transition pore plays a key role in myoblasts from patients as well as in mouse models of MD, and that oxidative stress caused by monoamine oxidases (MAO) is involved in myofiber damage. In the present study we have tested whether MAO-dependent oxidative stress is a causal determinant of mitochondrial dysfunction and apoptosis in myoblasts from patients affected by collagen VI myopathies. We find that upon incubation with hydrogen peroxide or the MAO substrate tyramine myoblasts from patients upregulate MAO-B expression and display a significant rise in reactive oxygen species (ROS) levels, with concomitant mitochondrial depolarization. MAO inhibition by pargyline significantly reduced both ROS accumulation and mitochondrial dysfunction, and normalized the increased incidence of apoptosis in myoblasts from patients. Thus, MAO-dependent oxidative stress is causally related to mitochondrial dysfunction and cell death in myoblasts from patients affected by collagen VI myopathies, and inhibition of MAO should be explored as a potential treatment for these diseases. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Agha-Hosseini, Farzaneh; Moosavi, Mahdieh-Sadat
2013-01-01
This evidence-based article reviews risk indicators and management of unknown-origin xerostomia. Xerostomia and hyposalivation refer to different aspects of dry mouth. Xerostomia is a subjective sensation of dry mouth, whilst hyposalivation is defined as an objective assessment of reduced salivary flow rate. About 30% of the elderly (65 years and older) experience xerostomia and hyposalivation. Structural and functional factors, or both may lead to salivary gland dysfunction. The EBM literature search was conducted by using the medical literature database MEDLINE via PubMed and OvidMedline search engines. Results were limited to English language articles (1965 to present) including clinical trials (CT), randomized controlled trials (RCT), systematic reviews and review articles. Case control or cohort studies were included for the etiology. Neuropathic etiology such as localized oral alteration of thermal sensations, saliva composition change (for example higher levels of K, Cl, Ca, IgA, amylase, calcium, PTH and cortisol), lower levels of estrogen and progesterone, smaller salivary gland size, and illnesses such as lichen planus, are risk indicators for unknown-origin xerostomia. The management is palliative and preventative. Management of symptoms includes drug administration (systemic secretogogues, saliva substitutes and bile secretion-stimulator), night guard, diet and habit modifications. Other managements may be indicated to treat adverse effects. Neuropathic etiology, saliva composition change, smaller salivary gland size, and illnesses such as oral lichen planus can be suggestive causes for unknown-origin xerostomia. However, longitudinal studies will be important to elucidate the causes of unknown-origin xerostomia. PMID:25512755
Cooperation and heterogeneity of the autistic mind.
Yoshida, Wako; Dziobek, Isabel; Kliemann, Dorit; Heekeren, Hauke R; Friston, Karl J; Dolan, Ray J
2010-06-30
Individuals with autism spectrum conditions (ASCs) have a core difficulty in recursively inferring the intentions of others. The precise cognitive dysfunctions that determine the heterogeneity at the heart of this spectrum, however, remains unclear. Furthermore, it remains possible that impairment in social interaction is not a fundamental deficit but a reflection of deficits in distinct cognitive processes. To better understand heterogeneity within ASCs, we employed a game-theoretic approach to characterize unobservable computational processes implicit in social interactions. Using a social hunting game with autistic adults, we found that a selective difficulty representing the level of strategic sophistication of others, namely inferring others' mindreading strategy, specifically predicts symptom severity. In contrast, a reduced ability in iterative planning was predicted by overall intellectual level. Our findings provide the first quantitative approach that can reveal the underlying computational dysfunctions that generate the autistic "spectrum."
Filippov, Aleksei A; Del Nido, Pedro J; Vasilyev, Nikolay V
2016-10-25
In recent decades, significant progress has been made in the diagnosis and management of congenitally corrected transposition of the great arteries (ccTGA). Nevertheless, gradual dysfunction and failure of the right ventricle (RV) in the systemic circulation remain the main contributors to mortality and disability for patients with ccTGA, especially after adolescence. Anatomic repair of ccTGA effectively resolves the problem of failure of the systemic RV and has good early and midterm results. However, this strategy is applicable primarily in infants and children up to their teens and has associated risks and limitations, and new challenges can arise in the late postoperative period. Patients with ccTGA manifesting progressive systemic RV dysfunction beyond adolescence represent the major challenge. Several palliative options such as cardiac resynchronization therapy, tricuspid valve repair or replacement, pulmonary artery banding, and implantation of an assist device into the systemic RV can be used to improve functional status and to delay the progression of ventricular dysfunction in patients who are not suitable for anatomic correction of ccTGA. For adult patients with severe systemic RV failure, heart transplantation currently remains the only long-term lifesaving procedure, although donor organ availability remains one of the most limiting factors in this type of therapy. This review focuses on current surgical and medical strategies and interventional options for the prevention and management of systemic RV failure in adults and children with ccTGA. © 2016 American Heart Association, Inc.
Dopstadt, Julian; Neubauer, Lisa; Tudzynski, Paul; Humpf, Hans-Ulrich
2016-01-01
Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster.
Tudzynski, Paul; Humpf, Hans-Ulrich
2016-01-01
Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster. PMID:27390873
van Dooren, Fleur E P; Schram, Miranda T; Schalkwijk, Casper G; Stehouwer, Coen D A; Henry, Ronald M A; Dagnelie, Pieter C; Schaper, Nicolaas C; van der Kallen, Carla J H; Koster, Annemarie; Sep, Simone J S; Denollet, Johan; Verhey, Frans R J; Pouwer, Frans
2016-08-01
The pathogenesis of depression may involve low-grade inflammation and endothelial dysfunction. We aimed to evaluate the independent associations of inflammation and endothelial dysfunction with depressive symptoms and depressive disorder, and the role of lifestyle factors in this association. In The Maastricht Study, a population-based cohort study (n=852, 55% men, m=59.8±8.5years), depressive symptoms were assessed with the Patient Health Questionnaire-9 and (major and minor) depressive disorder with the Mini-International Neuropsychiatric Interview. Plasma biomarkers of inflammation (hsCRP, SAA, sICAM-1, IL-6, IL-8, TNF-α) and endothelial dysfunction (sVCAM-1, sICAM-1, sE-selectin, vWF) were measured with sandwich immunoassays and combined into two standardized sum scores. Biomarkers of inflammation (hsCRP, TNF-α, SAA, sICAM-1) and endothelial dysfunction (sICAM-1, sE-Selectin) were univariately associated with depressive symptoms and depressive disorder. The sum scores of inflammation and endothelial dysfunction were associated with depressive disorder after adjustment for age, sex, type 2 diabetes, kidney function and prior cardiovascular disease (OR 1.54, p=0.001 and 1.40, p=0.006). Both sum scores remained significantly associated with depressive disorder after additional adjustment for lifestyle factors smoking, alcohol consumption and body mass index. The sum score of inflammation was also independently associated with depressive symptoms, while the sum score of endothelial dysfunction was not. Inflammation and endothelial dysfunction are both associated with depressive disorder, independent of lifestyle factors. Our results might suggest that inflammation and endothelial dysfunction are involved in depression. Copyright © 2016. Published by Elsevier Inc.
Relation of Erectile Dysfunction to Subclinical Myocardial Injury.
Omland, Torbjørn; Randby, Anna; Hrubos-Strøm, Harald; Røsjø, Helge; Einvik, Gunnar
2016-12-15
The circulating concentration of cardiac troponin I (cTnI) is an index of subclinical myocardial injury in several patient populations and in the general population. Erectile dysfunction is associated with greater risk for cardiovascular events, but the association with subclinical myocardial injury is not known. We aimed to test the hypothesis that the presence and severity of erectile dysfunction is associated with greater concentrations of cTnI in the general population. The presence and severity of erectile dysfunction was assessed by administering the International Index of Erectile Function 5 (IIEF-5) questionnaire to 260 men aged 30 to 65 years recruited from a population-based study. Concentrations of cTnI were determined by a high-sensitivity (hs) assay. Hs-cTnI levels were significantly higher in subjects with than in those without erectile dysfunction (median 2.9 vs 1.6 ng/l; p <0.001). Men with erectile dysfunction (i.e., IIEF-5 sum score <22) were also significantly older; had a higher systolic blood pressure, lower estimated glomerular filtration rate, higher augmentation index and N-terminal pro-B-type natriuretic peptide; and had a higher prevalence of hypertension, diabetes mellitus, and previous coronary artery disease than subjects without erectile dysfunction. These covariates were adjusted for in a multivariate linear regression model, yet the IIEF-5 sum score remained significantly negatively associated with the hs-cTnI concentration (standardized β -0.206; p <0.001). In conclusion, the presence and severity of erectile dysfunction is associated with circulating concentrations of hs-cTnI, indicating subclinical myocardial injury independently of cardiovascular risk factors, endothelial dysfunction and heart failure biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.
Freitas, Flávio G R; Salomão, Reinaldo; Tereran, Nathalia; Mazza, Bruno Franco; Assunção, Murillo; Jackiu, Mirian; Fernandes, Haggeas; Machado, Flávia Ribeiro
2008-08-01
This study aimed to assess the impact of the duration of organ dysfunction on the outcome of patients with severe sepsis or septic shock. Clinical data were collected from hospital charts of patients with severe sepsis and septic shock admitted to a mixed intensive care unit from November 2003 to February 2004. The duration of organ dysfunction prior to diagnosis was correlated with mortality. Results were considered significant if p<0.05. Fifty-six patients were enrolled. Mean age was 55.6+/-20.7 years, mean APACHE II score was 20.6+/-6.9, and mean SOFA score was 7.9+/-3.7. Thirty-six patients (64.3%) had septic shock. The mean duration of organ dysfunction was 1.9+/-1.9 days. Within the univariate analysis, the variables correlated with hospital mortality were: age (p=0.015), APACHE II (p=0.008), onset outside the intensive care unit (p=0.05), blood glucose control (p=0.05) and duration of organ dysfunction (p=0.0004). In the multivariate analysis, only a duration of organ dysfunction persisting longer than 48 hours correlated with mortality (p=0.004, OR: 8.73 (2.37-32.14)), whereas the APACHE II score remained only a slightly significant factor (p=0.049, OR: 1.11 (1.00-1.23)). Patients who received therapeutic interventions within the first 48 hours after the onset of organ dysfunction exhibited lower mortality (32.1% vs. 82.1%, p=0.0001). These findings suggest that the diagnosis of organ dysfunction is not being made in a timely manner. The time elapsed between the onset of organ dysfunction and initiation of therapeutic intervention can be quite long, and this represents an important determinant of survival in cases of severe sepsis and septic shock.
Igwe, Wilson C; Ojinnaka, Ngozi C
2010-08-10
Association between psychiatric morbidity and substance abuse among adolescent has been reported. However prevalence and pattern of such dysfunctions are unknown in our environment. To determine the prevalence of psychosocial dysfunction and depressive symptoms among adolescents who abuse substance and also note the influence of socio-demographic factors and type of substance on the pattern of dysfunction. A cross-sectional study was carried out among 900 adolescents selected from 29 secondary schools in Enugu metropolis. A multi-stage sampling procedure was used to select the students. The student drug use questionnaire was used to screen respondents for substance abuse. Those who were abusing substance and matched controls (non substance abusers) were assessed for psychiatric symptoms using the 35-item Paediatric Symptom Checklist (PSC) and the Zung Self-rating Depression Scale (SDS). Social classification was done using the parental educational attainment and occupation. A total of 290 students were current substance abusers. The substances most commonly abused were alcohol (31.6%), cola nitida (kola nut) (20.7%) and coffee (15.7%). Using the PSC scale, 70 (24.1%) subjects compared to 29 (10.7%) of the controls had scores in the morbidity range of >or= 28 for psychosocial dysfunction. This was statistically significant (chi(2) = 17.57 p = 0.001). Fifty-four subjects (18.6%) had scores in the morbidity range of >or= 50 for depressive symptoms using the Zung SDS compared to 21 (7.7%) of controls. This was statistically significant (chi(2) = 14.43, p = 0.001). Prevalence of dysfunction was not significantly related to age in both subjects and controls (chi(2) = 4.62, p = 0.010, chi(2) = 4.8, p = 0.10 respectively). Also using both scales, there was no significant relationship between psychosocial dysfunction and gender or social class in both subjects and control. The prevalence of dysfunction using both scales was significantly higher in multiple abusers compared to single abusers. Subjects abusing alcohol scored more on both scales compared to those abusing other substances. Prevalence of psychosocial dysfunction is higher in adolescents abusing substance compare to controls. The prevalence of psychiatric morbidity was not related to the age, gender or social classes in the study population.We advocate periodic screening of our adolescents for drug abuse regular evaluation of such group for possible psychopathology.
McAllister-Williams, R Hamish; Bones, Kate; Goodwin, Guy M; Harrison, John; Katona, Cornelius; Rasmussen, Jill; Strong, Sarah; Young, Allan H
2017-01-01
Cognitive dysfunction occurs in depression and can persist into remission. It impacts on patient functioning but remains largely unrecognised, unmonitored and untreated. We explored understanding of cognitive dysfunction in depression among UK clinicians. A multi-step consultation process. Step 1: a multi-stakeholder steering committee identified key themes of burden, detection and management of cognitive dysfunction in depression, and developed statements on each to explore understanding and degree of agreement among clinicians. Step 2: 100 general practitioners (GPs) and 100 psychiatrists indicated their level of agreement with these statements. Step 3: the steering committee reviewed responses and highlighted priority areas for future education and research. There was agreement that clinicians are not fully aware of cognitive dysfunction in depression. Views of the relationship between cognitive dysfunction and other depressive symptom severities was not consistent with the literature. In particular, there was a lack of recognition that some cognitive dysfunction can persist into remission. There was understandable uncertainty around treatment options, given the current limited evidence base. However, it was recognised that cognitive dysfunction is an area of unmet need and that there is a lack of objective tests of cognition appropriate for depressed patients that can be easily implemented in the clinic. Respondents are likely to be 'led' by the direction of the statements they reviewed. The study did not involve patients and carers. UK clinicians should undergo training regarding cognitive dysfunction in depression, and further research is needed into its assessment, treatment and monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
Social dysfunction after pediatric traumatic brain injury: a translational perspective
Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.
2016-01-01
Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224
Rational pharmacological approaches for cognitive dysfunction and depression in Parkinson's disease.
Sandoval-Rincón, Maritza; Sáenz-Farret, Michel; Miguel-Puga, Adán; Micheli, Federico; Arias-Carrión, Oscar
2015-01-01
Parkinson's disease (PD) is not a single entity but rather a heterogeneous neurodegenerative disorder. The present study aims to conduct a critical systematic review of the literature to describe the main pharmacological strategies to treat cognitive dysfunction and major depressive disorder in PD patients. We performed a search of articles cited in PubMed from 2004 to 2014 using the following MeSH terms (Medical subject headings) "Parkinson disease"; "Delirium," "Dementia," "Amnestic," "Cognitive disorders," and "Parkinson disease"; "depression," "major depressive disorder," "drug therapy." We found a total of 71 studies related to pharmacological treatment in cognitive dysfunction and 279 studies for pharmacological treatment in major depressive disorder. After fulfillment of all the inclusion and exclusion criteria, 13 articles remained for cognitive dysfunction and 11 for major depressive disorder, which are presented and discussed in this study. Further research into non-motor symptoms of PD may provide insights into mechanisms of neurodegeneration, and provide better quality of life by using rational drugs.
Barker, Jacob A; Marini, Bernard L; Bixby, Dale; Perissinotti, Anthony J
2016-12-01
Acute myeloid leukemia is a hematologic malignancy characterized by the clonal expansion of myeloid blasts in the peripheral blood, bone marrow, and other tissues. Prognosis is poor with 5-year survival rates ranging from 5-65% depending on demographic and clinical features. Outcomes are worse for patients that have an antecedent myeloproliferative neoplasm that evolves to acute myeloid leukemia, with a survival rate of <10%. Treatment for acute myeloid leukemia has remained cytarabine and an anthracycline given in the standard 3 + 7 regimen. However, for patients with liver dysfunction this regimen, among many others, cannot be given safely. There is currently a lack of data regarding the use of cytarabine in patients with severe hepatic dysfunction. In this case report, we present a patient with secondary acute myeloid leukemia who successfully received a modified regimen of high-dose cytarabine while in severe hepatic dysfunction (bilirubin >15 mg/dL). © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.
Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches tomore » demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.
Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches tomore » demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. Also, the present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.« less
78 FR 2433 - Notice of Inventory Completion: Fort Collins Museum of Discovery, Fort Collins, CO
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
... Discovery). Although specific provenience of the human remains is unknown, osteological analysis conducted by physical anthropologists and by independent forensic scientists determined that the remains are of...
Effects of cigarette smoking on erectile dysfunction
Kovac, J.R.; Labbate, C.; Ramasamy, R.; Tang, D.; Lipshultz, L.I.
2015-01-01
Summary Cigarette smoking is a leading cause of preventable morbidity and mortality in the United States. Although public policies have resulted in a decreased number of new smokers, smoking rates remain stubbornly high in certain demographics with 20% of all American middle aged men smoking. In addition to the well-established harmful effects of smoking (i.e coronary artery disease and lung cancer), the past three decades have led to a compendium of evidence being compiled into the development of a relationship between cigarette smoking and erectile dysfunction. The main physiological mechanism that appears to be affected includes the nitric oxide signal transduction pathway. This review details the recent literature linking cigarette smoking to erectile dysfunction, epidemiological associations, dose-dependency and the effects of smoking cessation on improving erectile quality. PMID:25557907
Neurological Autoantibody Prevalence in Epilepsy of Unknown Etiology.
Dubey, Divyanshu; Alqallaf, Abdulradha; Hays, Ryan; Freeman, Matthew; Chen, Kevin; Ding, Kan; Agostini, Mark; Vernino, Steven
2017-04-01
Autoimmune epilepsy is an underrecognized condition, and its true incidence is unknown. Identifying patients with an underlying autoimmune origin is critical because these patients' condition may remain refractory to conventional antiseizure medications but may respond to immunotherapy. To determine the prevalence of neurological autoantibodies (Abs) among adult patients with epilepsy of unknown etiology. Consecutive patients presenting to neurology services with new-onset epilepsy or established epilepsy of unknown etiology were identified. Serum samples were tested for autoimmune encephalitis Abs as well as thyroperoxidase (TPO) and glutamic acid decarboxylase 65 (GAD65) Abs. An antibody prevalence in epilepsy (APE) score based on clinical characteristics was assigned prospectively. Data were collected from June 1, 2015, to June 1, 2016. Presence of neurological Abs. A score based on clinical characteristics was assigned to estimate the probability of seropositivity prior to antibody test results. Good seizure outcome was estimated on the basis of significant reduction of seizure frequency at the first follow-up or seizure freedom. Of the 127 patients (68 males and 59 females) enrolled in the study, 15 were subsequently excluded after identification of an alternative diagnosis. Serum Abs suggesting a potential autoimmune etiology were detected in 39 (34.8%) cases. More than 1 Ab was detected in 7 patients (6.3%): 3 (2.7%) had TPO-Ab and voltage-gated potassium channel complex (VGKCc) Ab, 2 (1.8%) had GAD65-Ab and VGKCc-Ab, 1 had TPO-Ab and GAD65-Ab, and 1 had anti-Hu Ab and GAD65-Ab. Thirty-two patients (28.6%) had a single Ab marker. Among 112 patients included in the study, 15 (13.4%) had TPO-Ab, 14 (12.5%) had GAD65-Ab, 12 (10.7%) had VGKCc (4 of whom were positive for leucine-rich glioma-inactivated protein 1 [LGI1] Ab), and 4 (3.6%) had N-methyl-D-aspartate receptor (NMDAR) Ab. Even after excluding TPO-Ab and low-titer GAD65-Ab, Abs strongly suggesting an autoimmune cause of epilepsy were seen in 23 patients (20.5%). Certain clinical features, such as autonomic dysfunction, neuropsychiatric changes, viral prodrome, faciobrachial dystonic spells or facial dyskinesias, and mesial temporal sclerosis abnormality on magnetic resonance imaging, correlated with seropositivity. The APE score was a useful tool in predicting positive serologic findings. Patients who were Ab positive were more likely to have good seizure outcome than were patients with epilepsy of unknown etiology (15 of 23 [65.2%] vs 24 of 89 [27.0%]; odds ratio, 4.8; 95% CI, 1.8-12.9; P = .002). In patients who were seropositive, reduction in seizure frequency was associated with use of immunomodulatory therapy. Among adult patients with epilepsy of unknown etiology, a significant minority had detectable serum Abs suggesting an autoimmune etiology. Certain clinical features (encoded in the APE score) could be used to identify patients with the highest probability of harboring neurological Abs.
The effects of serotonin manipulations on emotional information processing and mood.
Merens, Wendelien; Willem Van der Does, A J; Spinhoven, Philip
2007-11-01
Serotonin is implicated in both mood and cognition. It has recently been shown that antidepressant treatment has immediate effects on emotional information processing, which is much faster than any clinically significant effects. This review aims to investigate whether the effects on emotional information processing are reliable, and whether these effects are related to eventual clinical outcome. Treatment-efficiency may be greatly improved if early changes in emotional information processing are found to predict clinical outcome following antidepressant treatment. Review of studies investigating the short-term effects of serotonin manipulations (including medication) on the processing of emotional information, using PubMed and PsycInfo databases. Twenty-five studies were identified. Serotonin manipulations were found to affect attentional bias, facial emotion recognition, emotional memory, dysfunctional attitudes and decision making. The sequential link between changes in emotional processing and mood remains to be further investigated. The number of studies on serotonin manipulations and emotional information processing in currently depressed subjects is small. No studies yet have directly tested the link between emotional information processing and clinical outcome during the course of antidepressant treatment. Serotonin function is related to several aspects of emotional information processing, but it is unknown whether these changes predict or have any relationship with clinical outcome. Suggestions for future research are provided.
Nakasone, Akari; Fujiwara, Masayuki; Fukao, Yoichiro; Biswas, Kamal Kanti; Rahman, Abidur; Kawai-Yamada, Maki; Narumi, Issay; Uchimiya, Hirofumi; Oono, Yutaka
2012-09-01
Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation step in auxin signaling. However, the exact mechanism by which SMAP1 functions in auxin signaling remains unknown. Here, we demonstrate that SMAP1 is required for normal plant growth and development and the root response to indole-3-acetic acid or methyl jasmonate in the auxin resistant1 (axr1) mutation background. Deletion analysis and green fluorescent protein/glutathione S-transferase pull-down assays showed that SMAP1 physically interacts with the CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME (CSN) via the SMAP1 F/D region. The extremely dwarf phenotype of the aar1-1 csn5a-1 double mutant confirms the functional role of SMAP1 in plant growth and development under limiting CSN functionality. Our findings suggest that SMAP1 is involved in the auxin response and possibly in other cullin-RING ubiquitin ligase-regulated signaling processes via its interaction with components associated with RELATED TO UBIQUITIN modification.
The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation
Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D.; McComb, David W.; Porter, Alexandra E.; Stevens, Molly M.
2012-01-01
Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:22879397
Shimoda, Shinji; Mishima, Kenji; Higashiyama, Hiroyuki; Idaira, Yayoi; Asada, Yoshinobu; Kitamura, Hiroshi; Yamasaki, Satoru; Hojyo, Shintaro; Nakayama, Manabu; Ohara, Osamu; Koseki, Haruhiko; dos Santos, Heloisa G.; Bonafe, Luisa; Ha-Vinh, Russia; Zankl, Andreas; Unger, Sheila; Kraenzlin, Marius E.; Beckmann, Jacques S.; Saito, Ichiro; Rivolta, Carlo; Ikegawa, Shiro; Superti-Furga, Andrea; Hirano, Toshio
2008-01-01
Background Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. Methodology/Principal Findings Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. Conclusions/Significance Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction. PMID:18985159
Stress inhibits PYY secretion in obese and normal weight women.
Kiessl, Gundula R R; Laessle, Reinhold G
2016-06-01
The impact of stress on circulating levels of appetite-regulating hormones remains largely unknown. The aim of this study was to analyze the effect of acute psychosocial stress on the gut hormone peptide YY (PYY) secretion in obese and normal weight women. Therefore, we compared pre- and post-prandial plasma PYY secretion of 42 obese and 43 normal weight women in a repeated measure randomized controlled laboratory experiment. PYY and cortisol concentrations were measured and ratings of stress and satiety were also recorded in response to a psychological stressor (Trier Social Stress Test, TSST). PYY samples were collected in the fasting state both before participating in the TSST and before a control session. Participants had a standardized meal after the TSST and control session, respectively. PYY was measured both 30 and 60 min after the TSST and control session, respectively. Stress inhibited PYY secretion as well as food intake in all women, but did not influence subjective satiety perception. The present data indicate that despite of lower PYY levels the subjects' requirement to overeat was not increased. From an evolutionary perspective this finding is adaptive. After stress the organism is prepared for fight or flight reaction, whereas not primarily necessary functions are inhibited. Therefore, increased food intake during stress would be dysfunctional.
Elevated serum aminotransferase levels in children at risk for obstructive sleep apnea.
Kheirandish-Gozal, Leila; Sans Capdevila, Oscar; Kheirandish, Ebrahim; Gozal, David
2008-01-01
Fatty liver disease (FLD) is a highly prevalent condition in obese (Ob) children, who are at increased risk for obstructive sleep apnea (OSA). However, the contribution of OSA to FLD remains unknown. Prospective study. Polysomnographic evaluation and assessment of plasma levels of insulin, glucose, and lipids, and liver function tests. A total of 518 consecutive snoring children 4 to 17 years of age who were being evaluated for habitual snoring and suspected OSA. A total of 376 children had body mass index z score of < 1.20 (non-Ob children), 3 children (<1%) had elevated serum aminotransferase (LFT) levels, and 248 had OSA (65.9%). Among the 142 overweight/Ob children, 46 had elevated LFT levels (32.4%); of these children, 42 had OSA (91.3%). In contrast, OSA was present in only 71.8% of Ob children without elevated LFT level (p < 0.01). Insulin resistance and hyperlipidemia were more likely to occur in children with FLD. Furthermore, FLD was improved after treatment of OSA in 32 of 42 Ob children (p < 0.0001). Increased liver enzyme levels are frequently found in Ob snoring children, particularly among those with OSA and/or metabolic dysfunction. Effective treatment of OSA results in improved liver function test results in the vast majority of these patients.
A CCR2+ myeloid cell niche required for pancreatic β cell growth
Mussar, Kristin; Pardike, Stephanie; Hohl, Tobias M.; Hardiman, Gary; Cirulli, Vincenzo
2017-01-01
Organ-specific patterns of myeloid cells may contribute tissue-specific growth and/or regenerative potentials. The perinatal stage of pancreas development marks a time characterized by maximal proliferation of pancreatic islets, ensuring the maintenance of glucose homeostasis throughout life. Ontogenically distinct CX3CR1+ and CCR2+ macrophage populations have been reported in the adult pancreas, but their functional contribution to islet cell growth at birth remains unknown. Here, we uncovered a temporally restricted requirement for CCR2+ myeloid cells in the perinatal proliferation of the endocrine pancreatic epithelium. CCR2+ macrophages are transiently enriched over CX3CR1+ subsets in the neonatal pancreas through both local expansion and recruitment of immature precursors. Using CCR2-specific depletion models, we show that loss of this myeloid population leads to a striking reduction in β cell proliferation, dysfunctional islet phenotypes, and glucose intolerance in newborns. Replenishment of pancreatic CCR2+ myeloid compartments by adoptive transfer rescues these defects. Gene profiling identifies pancreatic CCR2+ myeloid cells as a prominent source of IGF2, which contributes to IGF1R-mediated islet proliferation. These findings uncover proproliferative functions of CCR2+ myeloid subsets and identify myeloid-dependent regulation of IGF signaling as a local cue supporting pancreatic proliferation. PMID:28768911
Si, Jin; Ge, Yan; Zhuang, Shougang; Juan Wang, Li; Chen, Shan; Gong, Rujun
2013-01-01
Adrenocorticotropic hormone (ACTH) has a renoprotective effect in chronic kidney disease; however, its effect on acute kidney injury (AKI) remains unknown. In a rat model of tumor necrosis factor (TNF)–induced AKI, we found that ACTH gel prevented kidney injury, corrected acute renal dysfunction, and improved survival. Morphologically, ACTH gel ameliorated TNF-induced acute tubular necrosis, associated with a reduction in tubular apoptosis. While the steroidogenic response to ACTH gel plateaued, the kidney-protective effect continued to increase at even higher doses, suggesting steroid-independent mechanisms. Of note, ACTH also acts as a key agonist of the melanocortin system, with its cognate melanocortin 1 receptor (MC1R) abundantly expressed in renal tubules. In TNF-injured tubular epithelial cells in vitro, ACTH reinstated cellular viability and eliminated apoptosis. This beneficial effect was blunted in MC1R-silenced cells, suggesting that this receptor mediates the anti-apoptotic signaling of ACTH. Moreover, ACTH gel protected mice against cecal ligation puncture–induced septic AKI better than α-melanocyte-stimulating hormone: a protein equal in biological activity to ACTH except for steroidogenesis. Thus, ACTH has additive renoprotective actions achieved by both steroid-dependent mechanisms and MC1R-directed anti-apoptosis. ACTH may represent a novel therapeutic strategy to prevent or treat AKI. PMID:23325074
A comparison of two multisegment foot models in high-and low-arched athletes.
Powell, Douglas W; Williams, D S Blaise; Butler, Robert J
2013-01-01
Malalignment and dysfunction of the foot have been associated with an increased propensity for overuse and traumatic injury in athletes. Several multisegment foot models have been developed to investigate motions in the foot. However, it remains unknown whether the kinematics measured by different multisegment foot models are equivocal. The purpose of the present study is to examine the efficacy of two multisegment foot models in tracking aberrant foot function. Ten high-arched and ten low-arched female athletes walked and ran while ground reaction forces and three-dimensional kinematics were tracked using the Leardini and Oxford multisegment foot models. Ground reaction forces and joint angles were calculated with Visual 3D (C-Motion Inc, Germantown, MD). Repeated-measures analyses of variance were used to analyze peak eversion, time to peak eversion, and eversion excursions. The Leardini model was more sensitive to differences in peak eversion angles than the Oxford model. However, the Oxford model detected differences in eversion excursion values that the Leardini model did not detect. Although both models found differences in frontal plane motion between high- and low-arched athletes, the Leardini multisegment foot model is suggested to be more appropriate as it directly tracks frontal plane midfoot motion during dynamic motion.
Zhang, Tao; Tian, Fuying; Huo, Ran; Tang, Aifa; Zeng, Yong; Duan, Yong-Gang
2017-09-01
The presence of dendritic cells (DCs) and associated cytokines in follicular fluid (FF) from patients with polycystic ovary syndrome (PCOS) remains unknown. FF was collected from PCOS patients and patients with severe male factor infertility (control) at the day of transvaginal oocyte retrieval. Phenotypes of DC were detected by flow cytometry, and TNF-α, IL-6, IL-10, and IL-23 were assessed by ELISA. A significant decrease in the percentage of DC was found in patients with PCOS (16.22±5.5%) compared with control (21.27±5.5%, P<.01). E 2 on the day of hCG administration was correlated positively with the mean fluorescence intensity of HLA-DR (r=.75, P<.01) and reversely correlated with the concentration of TNF-α in FF (r=-.69, P<.01). The level of TNF-α, IL-6, and IL-10 increased significantly but IL-23 decreased in FF from patients with PCOS. The decrease of DC and disturbance of associated cytokines in FF from PCOS patients indicates a disorder of immunological microenvironment of the ovarian follicle, which might be involved in the dysfunction of folliculogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong
2014-01-01
Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.
Bitter, Thomas; Langer, Christoph; Vogt, Jürgen; Lange, Mathias; Horstkotte, Dieter; Oldenburg, Olaf
2009-03-01
Obstructive sleep apnea (OSA) is more common in patients with atrial fibrillation (AFib). Recently, an additional association between central sleep apnea/Cheyne-Stokes respiration (CSA/CSR) and AFib has been described. The aim of this study was to investigate the prevalence and type of sleep-disordered breathing in patients with AFib and normal systolic left ventricular function. 150 patients (110 men and 40 women, aged 66.1 +/- 1.7 years) underwent cardiorespiratory polygraphy, capillary blood gas analysis, measurement of NT-proBNP, and echocardiography to determine the diameter of the left atrium (LAD) and the peak systolic pulmonary artery pressure (PAP). Sleep-disordered breathing was documented in 74% of all patients with AFib (43% had OSA and 31% had CSA/CSR). Patients with CSA/CSR had a higher PAP, a higher apnea-hypopnea index, a greater LAD, and a lower capillary blood pCO(2) than patients with OSA. Patients with AFib were found to have not only a high prevalence of obstructive sleep apnea, as has been described previously, but also a high prevalence of CSA/CSR. It remains unknown whether CSA/CSR is more common in AFib because of diastolic dysfunction or whether phenomena associated with CSA/CSR predispose to AFib. Further research on this question is needed.
Characteristics of laser-induced shock wave injury to the inner ear of rats
NASA Astrophysics Data System (ADS)
Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro
2014-12-01
Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.
Therapeutic Yoga: Symptom Management for Multiple Sclerosis
MacDonald, Megan
2015-01-01
Abstract Multiple sclerosis (MS) is the most common autoimmune inflammatory demyelinating disease of the central nervous system, affecting over 2.3 million people worldwide. According to the National Institute of Neurological Disorders and Stroke, the age of disease onset is typically between 20 and 40 years, with a higher incidence in women. Individuals with MS experience a wide range of symptoms, including declining physical, emotional, and psychological symptoms (e.g., fatigue, imbalance, spasticity, chronic pain, cognitive impairment, bladder and bowel dysfunction, visual and speech impairments, depression, sensory disturbance, and mobility impairment). To date, both the cause of and cure for MS remain unknown. In recent years, more individuals with MS have been pursuing alternative methods of treatment to manage symptoms of the disease, including mind-body therapies such as yoga, meditation, breathing, and relaxation techniques. It has been suggested that the practice of yoga may be a safe and effective way of managing symptoms of MS. Therefore, the purpose of this paper is to summarize the most relevant literature on exercise and mind-body modalities to treat MS symptoms and, more specifically, the benefits and potential role of yoga as an alternative treatment of symptom management for individuals with MS. The article also discusses future directions for research. PMID:26270955
Wired for behaviors: from development to function of innate limbic system circuitry
Sokolowski, Katie; Corbin, Joshua G.
2012-01-01
The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction. PMID:22557946
Genes implicated in the pathogenesis of spinocerebellar ataxias.
Wüllner, Ullrich
2003-12-01
The degenerative ataxias comprise a number of heterogeneous diseases, many of which are genetically determined. Loss of cerebellar Purkinje and brainstem neurons as well as degeneration of spinal pathways are the major morphological findings of most ataxias, but neuronal loss may also affect the basal ganglia and the retina. While the degenerative ataxias initially were classified on a neuropathological basis, more recent classifications focused on clinical hallmarks and the mode of inheritance, separating inherited, sporadic and symptomatic ataxias. Genetic linkage analysis and molecular genetic studies identified various genotypes and revealed genetic heterogeneity of the autosomal dominant ataxias (ADCA), which on the basis of the genotypes are now classified as spinocerebellar ataxias (SCA1-22). Based on pathogenesis these disorders fall into three discrete groups: the polyglutamine disorders, SCA1-3, 7 and 17; the channelopathies, SCA6 and episodic ataxia types 1 and 2 (EA1-2); and SCA8, 10 and 12, which result from repeat expansions outside the coding regions and reduce gene expression. The etiologies of SCAs 4, 5, 9, 11, 13-16, 19, 21 and 22 remain unknown as of today. The recent advances in the identification of the underlying gene defects of most of the inherited ataxias have opened new avenues to a better understanding of the molecular mechanisms leading to cellular dysfunction and cell death.
Genetics of Tinnitus: An Emerging Area for Molecular Diagnosis and Drug Development
Lopez-Escamez, Jose A.; Bibas, Thanos; Cima, Rilana F. F.; Van de Heyning, Paul; Knipper, Marlies; Mazurek, Birgit; Szczepek, Agnieszka J.; Cederroth, Christopher R.
2016-01-01
Subjective tinnitus is the perception of sound in the absence of external or bodily-generated sounds. Chronic tinnitus is a highly prevalent condition affecting over 70 million people in Europe. A wide variety of comorbidities, including hearing loss, psychiatric disorders, neurodegenerative disorders, and temporomandibular joint (TMJ) dysfunction, have been suggested to contribute to the onset or progression of tinnitus; however, the precise molecular mechanisms of tinnitus are not well understood and the contribution of genetic and epigenetic factors remains unknown. Human genetic studies could enable the identification of novel molecular therapeutic targets, possibly leading to the development of novel pharmaceutical therapeutics. In this article, we briefly discuss the available evidence for a role of genetics in tinnitus and consider potential hurdles in designing genetic studies for tinnitus. Since multiple diseases have tinnitus as a symptom and the supporting genetic evidence is sparse, we propose various strategies to investigate the genetic underpinnings of tinnitus, first by showing evidence of heritability using concordance studies in twins, and second by improving patient selection according to phenotype and/or etiology in order to control potential biases and optimize genetic data output. The increased knowledge resulting from this endeavor could ultimately improve the drug development process and lead to the preventive or curative treatment of tinnitus. PMID:27594824
Gaupp, Stefanie; Arezzo, Joseph; Dutta, Dipankar J.; John, Gareth R.; Raine, Cedric S.
2013-01-01
Central nervous system hypomyelination is a feature common to a number of transgenic (Tg) mouse lines that express a variety of unrelated exogenous (i.e. non-CNS) transgenes. In this report we document hypomyelination structurally by immunocytochemistry and functionally in the Tg line MBP-JE, which overexpresses the chemokine CCL2 (MCP-1) within oligodendrocytes targeted by a myelin basic protein (MBP) promoter. Analysis of hypomyelinated optic nerves of Tg mice revealed progressive decrease in oligodendrocyte numbers with age (p < 0.01). Although molecular mechanisms underlying hypomyelination in this and other Tg models remain largely unknown, we present preliminary findings on oligodendrocyte progenitor cell (OPC) cultures in which, although OPC expressed CCR2, the receptor for CCL2, treatment with CCL2 had no significant effect on OPC proliferation, differentiation or apoptosis. We suggest that hypomyelination in the MBP-JE model might not be due to CCL2 expression but rather the result of transcriptional dysfunction related to random insertion of the MBP promoter that disrupts myelinogenesis and leads to oligodendrocytes demise. Because an MBP promoter is a common denominator in most Tg lines displaying hypomyelination, we hypothesize that use of myelin gene sequences in the regulator region of transgenic constructs might underlie this perturbation of myelination in such models. PMID:22082665
Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.
Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim
2018-07-01
The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.
Thyroid hormones: Possible roles in epilepsy pathology.
Tamijani, Seyedeh Masoumeh Seyedhoseini; Karimi, Benyamin; Amini, Elham; Golpich, Mojtaba; Dargahi, Leila; Ali, Raymond Azman; Ibrahim, Norlinah Mohamed; Mohamed, Zahurin; Ghasemi, Rasoul; Ahmadiani, Abolhassan
2015-09-01
Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Effect of Psilocybin on Empathy and Moral Decision-Making.
Pokorny, Thomas; Preller, Katrin H; Kometer, Michael; Dziobek, Isabel; Vollenweider, Franz X
2017-09-01
Impaired empathic abilities lead to severe negative social consequences and influence the development and treatment of several psychiatric disorders. Furthermore, empathy has been shown to play a crucial role in moral and prosocial behavior. Although the serotonin system has been implicated in modulating empathy and moral behavior, the relative contribution of the various serotonin receptor subtypes is still unknown. We investigated the acute effect of psilocybin (0.215 mg/kg p.o.) in healthy human subjects on different facets of empathy and hypothetical moral decision-making using the multifaceted empathy test (n=32) and the moral dilemma task (n=24). Psilocybin significantly increased emotional, but not cognitive empathy compared with placebo, and the increase in implicit emotional empathy was significantly associated with psilocybin-induced changed meaning of percepts. In contrast, moral decision-making remained unaffected by psilocybin. These findings provide first evidence that psilocybin has distinct effects on social cognition by enhancing emotional empathy but not moral behavior. Furthermore, together with previous findings, psilocybin appears to promote emotional empathy presumably via activation of serotonin 2A/1A receptors, suggesting that targeting serotonin 2A/1A receptors has implications for potential treatment of dysfunctional social cognition. © The Author 2017. Published by Oxford University Press on behalf of CINP.
DNA Damage and Pulmonary Hypertension
Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien
2016-01-01
Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373
Morphological differences in the mirror neuron system in Williams syndrome.
Ng, Rowena; Brown, Timothy T; Erhart, Matthew; Järvinen, Anna M; Korenberg, Julie R; Bellugi, Ursula; Halgren, Eric
2016-01-01
Williams syndrome (WS) is a genetic condition characterized by an overly gregarious personality, including high empathetic concern for others. Although seemingly disparate from the profile of autism spectrum disorder (ASD), both are associated with deficits in social communication/cognition. Notably, the mirror neuron system (MNS) has been implicated in social dysfunction for ASD; yet, the integrity of this network and its association with social functioning in WS remains unknown. Magnetic resonance imaging (MRI) methods were used to examine the structural integrity of the MNS of adults with WS versus typically developing (TD) individuals. The Social Responsiveness Scale (SRS), a tool typically used to screen for social features of ASD, was also employed to assess the relationships between social functioning with the MNS morphology in WS participants. WS individuals showed reduced cortical surface area of MNS substrates yet relatively preserved cortical thickness as compared to TD adults. Increased cortical thickness of the inferior parietal lobule (IPL) was associated with increased deficits in social communication, social awareness, social cognition, and autistic mannerisms. However, social motivation was not related to anatomical features of the MNS. Our findings indicate that social deficits typical to both ASD and WS may be attributed to an aberrant MNS, whereas the unusual social drive marked in WS is subserved by substrates distinct from this network.
Mitochondrial targeting sequence variants of the CHCHD2 gene are a risk for Lewy body disorders
Ogaki, Kotaro; Koga, Shunsuke; Heckman, Michael G.; Fiesel, Fabienne C.; Ando, Maya; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Moussaud-Lamodière, Elisabeth L.; Soto-Ortolaza, Alexandra I.; Walton, Ronald L.; Strongosky, Audrey J.; Uitti, Ryan J.; McCarthy, Allan; Lynch, Timothy; Siuda, Joanna; Opala, Grzegorz; Rudzinska, Monika; Krygowska-Wajs, Anna; Barcikowska, Maria; Czyzewski, Krzysztof; Puschmann, Andreas; Nishioka, Kenya; Funayama, Manabu; Hattori, Nobutaka; Parisi, Joseph E.; Petersen, Ronald C.; Graff-Radford, Neill R.; Boeve, Bradley F.; Springer, Wolfdieter; Wszolek, Zbigniew K.; Dickson, Dennis W.
2015-01-01
Objective: To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and Lewy body disease (LBD) in Caucasian populations. Methods: All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in an Irish series (355 PD and 365 controls) and a Polish series (394 PD and 350 controls). Immunohistochemistry and immunofluorescence studies were performed on pathologic LBD cases with rare CHCHD2 variants. Results: We identified 9 rare exonic variants of unknown significance. These variants were more frequent in the combined group of PD and LBD patients compared to controls (0.6% vs 0.1%, p = 0.013). In addition, the presence of any rare variant was more common in patients with LBD (2.5% vs 1.0%, p = 0.050) compared to controls. Eight of these 9 variants were located within the gene's mitochondrial targeting sequence. Conclusions: Although the role of variants of the CHCHD2 gene in PD and LBD remains to be further elucidated, the rare variants in the mitochondrial targeting sequence may be a risk factor for Lewy body disorders, which may link CHCHD2 to other genetic forms of parkinsonism with mitochondrial dysfunction. PMID:26561290
Khan, Sher Hayat; Zhao, Deming; Shah, Syed Zahid Ali; Hassan, Mohammad Farooque; Zhu, Ting; Song, Zhiqi; Zhou, Xiangmei; Yang, Lifeng
2017-05-01
Transmissible spongiform encephalopathies (TSEs) are caused by the accumulation of the abnormal prion protein scrapie (PrP Sc ). Prion protein aggregation, misfolding, and cytotoxicity in the brain are the major causes of neuronal dysfunction and ultimate neurodegeneration in all TSEs. Parkin, an E3 ubiquitin ligase, has been studied extensively in all major protein misfolding aggregating diseases, especially Parkinson's disease and Alzheimer's disease, but the role of parkin in TSEs remains unknown. Here we investigated the role of parkin in a prion disease cell model in which neuroblastoma2a (N2a) cells were treated with prion peptide PrP106-126. We observed a gradual decrease in the soluble parkin level upon treatment with PrP106-126 in a time-dependent manner. Furthermore, endogenous parkin colocalized with FITC-tagged prion fragment106-126. Overexpression of parkin in N2a cells via transfection repressed apoptosis by enhancing autophagy. Parkin-overexpressing cells also showed reductions in apoptotic BAX translocation to the mitochondria and cytochrome c release to the cytosol, which ultimately inhibited activation of proapoptotic caspases. Taken together, our findings reveal a parkin-mediated cytoprotective mechanism against PrP106-126 toxicity, which is a novel potential therapeutic target for treating prion diseases.
Arduíno, Daniela M.; Raquel Esteves, A.; Cortes, Luísa; Silva, Diana F.; Patel, Bindi; Grazina, Manuela; Swerdlow, Russell H.; Oliveira, Catarina R.; Cardoso, Sandra M.
2012-01-01
Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD. PMID:22843496
Arduíno, Daniela M; Esteves, A Raquel; Cortes, Luísa; Silva, Diana F; Patel, Bindi; Grazina, Manuela; Swerdlow, Russell H; Oliveira, Catarina R; Cardoso, Sandra M
2012-11-01
Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD.
[Pathophysiology and management of Peyronie's disease in adult patients: an update].
Alenda, O; Beley, S; Ferhi, K; Cour, F; Chartier-Kastler, E; Haertig, A; Richard, F; Rouprêt, M
2010-02-01
Peyronie's disease (PD) is due to a fibrotic plaque forms in the tunica albuginea layer of the penis. It is responsible of penile pain, angulation, and erectile dysfunction. Even though the aetiology remains unknown, the knowledge of the pathophysiology has evolved in recent years. Recent studies indicate that PD has prevalence of 3 to 9% in adult men. During the initial acute phase (6 to 18 months), the condition may progress, stabilize or regress in 20%. Therefore, a conservative treatment approach has been advocated. An initial discussion about evaluation, information, and reassurance is necessary in most cases. The most commonly employed oral therapies include tocopherol (vitamin E), and para-aminobenzoate (Potaba), which have failed to demonstrate efficiency. Intralesional injection therapies with interferon alpha-2B, verapamil are frequently used as a first-line treatment modality, and can provide an improvement in decreasing penile pain and penile curvature. Current literature has shown that extracorporeal shock wave lithotripsy was only active on the pain. Regarding penile curvature, there are discrepancies in the published series. The surgical approach is restricted to men unresponsive to nonoperative therapies (i.e., 10% of patients). In such cases, plication, grafting or even penile prosthesis implantation are conceivable management options. (c) 2009 Elsevier Masson SAS. All rights reserved.
Hematidrosis (bloody sweat): a review of the recent literature (1996-2016).
Kluger, Nicolas
2018-06-01
Hematidrosis is an eccrine sweat disorder characterized by one or more episodes of spontaneous, bloody sweating from non-traumatized skin. The author carried out a systematic review of all cases of hematidrosis reported in PubMed over the past 20 years. A total of 25 cases were reviewed; 21 were women (84%), the median age was 13 years (range 9-72), and the majority (62%) were from Asia, mainly India. Hematidrosis was located on the face-including the forehead (40%), eyes (40%), and ears (36%)-in 96% of the cases and on the umbilicus in 24% and the palms in 20%. Prodromal symptoms were reported by almost 30% of the patients. Possible triggering factors were identified in 56% of the cases; most of these (86%) were stress factors within families (conflicts or abuse) or at school. In two cases, platelet dysfunction and epilepsy were suspected as culprits. Nine patients had a psychiatric diagnosis associated with hematidrosis. The outcome was favorable in most of the cases with medical treatment (e.g., beta-blocker, anxiolytics) and psychological support. The number of cases has increased in recent years. Hematidrosis appears to be a somatization disorder that mainly affects children from developing countries. Its physiopathology remains largely unknown. It deserves better recognition because it is usually a temporary condition when managed properly.
Takase, Hinako M.; Itoh, Tohru; Ino, Seitaro; Wang, Ting; Koji, Takehiko; Akira, Shizuo; Takikawa, Yasuhiro; Miyajima, Atsushi
2013-01-01
The liver is a unique organ with a remarkably high potential to regenerate upon injuries. In severely damaged livers where hepatocyte proliferation is impaired, facultative liver progenitor cells (LPCs) proliferate and are assumed to contribute to regeneration. An expansion of LPCs is often observed in patients with various types of liver diseases. However, the underlying mechanism of LPC activation still remains largely unknown. Here we show that a member of the fibroblast growth factor (FGF) family, FGF7, is a critical regulator of LPCs. Its expression was induced concomitantly with LPC response in the liver of mouse models as well as in the serum of patients with acute liver failure. Fgf7-deficient mice exhibited markedly depressed LPC expansion and higher mortality upon toxin-induced hepatic injury. Transgenic expression of FGF7 in vivo led to the induction of cells with characteristics of LPCs and ameliorated hepatic dysfunction. We revealed that Thy1+ mesenchymal cells produced FGF7 and appeared in close proximity to LPCs, implicating a role for those cells as the functional LPC niche in the regenerating liver. These findings provide new insights into the cellular and molecular basis for LPC regulation and identify FGF7 as a potential therapeutic target for liver diseases. PMID:23322300
Constitutional Mutations in RTEL1 Cause Severe Dyskeratosis Congenita
Walne, Amanda J.; Vulliamy, Tom; Kirwan, Michael; Plagnol, Vincent; Dokal, Inderjeet
2013-01-01
Dyskeratosis congenita (DC) and its phenotypically severe variant, Hoyeraal-Hreidarsson syndrome (HHS), are multisystem bone-marrow-failure syndromes in which the principal pathology is defective telomere maintenance. The genetic basis of many cases of DC and HHS remains unknown. Using whole-exome sequencing, we identified biallelic mutations in RTEL1, encoding a helicase essential for telomere maintenance and regulation of homologous recombination, in an individual with familial HHS. Additional screening of RTEL1 identified biallelic mutations in 6/23 index cases with HHS but none in 102 DC or DC-like cases. All 11 mutations in ten HHS individuals from seven families segregated in an autosomal-recessive manner, and telomere lengths were significantly shorter in cases than in controls (p = 0.0003). This group had significantly higher levels of telomeric circles, produced as a consequence of incorrect processing of telomere ends, than did controls (p = 0.0148). These biallelic RTEL1 mutations are responsible for a major subgroup (∼29%) of HHS. Our studies show that cells harboring these mutations have significant defects in telomere maintenance, but not in homologous recombination, and that incorrect resolution of T-loops is a mechanism for telomere shortening and disease causation in humans. They also demonstrate the severe multisystem consequences of its dysfunction. PMID:23453664
Nozza, Andrea
2017-01-01
POEMS syndrome is a rare, chronic and disabling condition. The causes of this condition remain unknown; however, chronic overproduction of proinflammatory cytokines appears to be a major contributor. Early diagnosis is essential to start treatment before the clinical state of the patient becomes compromised. A complete evaluation of the disease at its onset is critical to the treatment decision. In localized disease, curative doses of radiation (50 Gy) is the recommended therapy. On the other hand, patients with disseminated disease should be given systemic therapy. Treatment-related morbidity can be minimized by an efficient induction therapy that modifies the cytokine status, improving clinical condition and control disease severity before mobilization and transplantation. Patients not suitable for hematopoietic stem cell transplantation (HSCT) are usually treated with alkylator-based therapy. Novel agents may also offer benefits to patients with a poor performance status or renal dysfunction, and induce transplantation eligibility. Given the biological characteristics of POEMS, immunomodulatory effects and the absence of neurotoxicity, lenalidomide appears to be an effective therapy for the treatment of POEMS, both as short induction therapy before PBSCT and in non-transplant eligible patients, as it showed high response rate and durable responses. At present, however, guidelines for the diagnosis and treatment of POEMS are not available and appear advocated. PMID:28894560
Morphological differences in the mirror neuron system in Williams Syndrome
Ng, Rowena; Brown, Timothy T.; Erhart, Matthew; Järvinen, Anna M.; Korenberg, Julie R.; Bellugi, Ursula; Halgren, Eric
2015-01-01
Williams syndrome (WS) is a genetic condition characterized by an overly gregarious personality, including high empathetic concern for others. Although seemingly disparate from the profile of autism spectrum disorder (ASD), both are associated with deficits in social communication/cognition. Notably, the mirror neuron system (MNS) has been implicated in social dysfunction for ASD; yet, the integrity of this network and its association with social functioning in WS remains unknown. Magnetic resonance imaging methods were used to examine the structural integrity of the MNS of adults with WS versus typically developing (TD) individuals. The Social Responsiveness Scale (SRS), a tool typically used to screen for social features of ASD, was also employed to assess the relationships between social functioning with the MNS morphology in WS participants. WS individuals showed reduced cortical surface area of MNS substrates yet relatively preserved cortical thickness as compared to TD adults. Increased cortical thickness of the inferior parietal lobule was associated with increased deficits in social communication, social awareness, social cognition, and autistic mannerisms. However, social motivation was not related to anatomical features of the MNS. Our findings indicate that social deficits typical to both ASD and WS may be attributed to an aberrant MNS, whereas the unusual social drive marked in WS is subserved by substrates distinct from this network. PMID:26230578
Characteristics of laser-induced shock wave injury to the inner ear of rats.
Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro
2014-12-01
Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.
Cognitive remission: a novel objective for the treatment of major depression?
Bortolato, Beatrice; Miskowiak, Kamilla W; Köhler, Cristiano A; Maes, Michael; Fernandes, Brisa S; Berk, Michael; Carvalho, André F
2016-01-22
Cognitive dysfunction in major depressive disorder (MDD) encompasses several domains, including but not limited to executive function, verbal memory, and attention. Furthermore, cognitive dysfunction is a frequent residual manifestation in depression and may persist during the remitted phase. Cognitive deficits may also impede functional recovery, including workforce performance, in patients with MDD. The overarching aims of this opinion article are to critically evaluate the effects of available antidepressants as well as novel therapeutic targets on neurocognitive dysfunction in MDD. Conventional antidepressant drugs mitigate cognitive dysfunction in some people with MDD. However, a significant proportion of MDD patients continue to experience significant cognitive impairment. Two multicenter randomized controlled trials (RCTs) reported that vortioxetine, a multimodal antidepressant, has significant precognitive effects in MDD unrelated to mood improvement. Lisdexamfetamine dimesylate was shown to alleviate executive dysfunction in an RCT of adults after full or partial remission of MDD. Preliminary evidence also indicates that erythropoietin may alleviate cognitive dysfunction in MDD. Several other novel agents may be repurposed as cognitive enhancers for MDD treatment, including minocycline, insulin, antidiabetic agents, angiotensin-converting enzyme inhibitors, S-adenosyl methionine, acetyl-L-carnitine, alpha lipoic acid, omega-3 fatty acids, melatonin, modafinil, galantamine, scopolamine, N-acetylcysteine, curcumin, statins, and coenzyme Q10. The management of cognitive dysfunction remains an unmet need in the treatment of MDD. However, it is hoped that the development of novel therapeutic targets will contribute to 'cognitive remission', which may aid functional recovery in MDD.
Psychosocial factors and caregivers' distress: effects of familism and dysfunctional thoughts.
Losada, Andres; Marquez-Gonzalez, Maria; Knight, Bob G; Yanguas, Javier; Sayegh, Philip; Romero-Moreno, Rosa
2010-03-01
Caring for a relative with dementia is linked with negative psychological and physical consequences for the caregiver. The number of studies analyzing the influence of specific values and thoughts on caregivers' distress remains sparse. The aim of this study is to analyze the influence of both familism dimensions and dysfunctional thoughts specific to caregiving on depression in a sample of 334 dementia caregivers. The results of this study suggest that familism can have positive influences on caregiving distress when the family is perceived as a source of support. However, the dimensions of familism pertaining to a strong adherence to values regarding both feelings of obligation to provide support as well as behaviors and attitudes that should be followed by different members of a family were linked with caregivers' distress through their influence on dysfunctional thoughts. This study provides support for the importance of conceptualizing familism as a multidimensional construct with both positive and negative effects on caregivers' emotional distress and suggests that familism affects emotional distress through dysfunctional thoughts rather than through burden appraisals. Clinical implications include attending to both the positive and negative effects of familism values and the potential value of targeting dysfunctional thoughts in cognitive-behavioral interventions with caregivers.
Esper, Stephen A; Subramaniam, Kathirvel; Tanaka, Kenichi A
2014-06-01
The techniques and equipment of cardiopulmonary bypass (CPB) have evolved over the past 60 years, and numerous numbers of cardiac surgical procedures are conducted around the world using CPB. Despite more widespread applications of percutaneous coronary and valvular interventions, the need for cardiac surgery using CPB remains the standard approach for certain cardiac pathologies because some patients are ineligible for percutaneous procedures, or such procedures are unsuccessful in some. The ageing patient population for cardiac surgery poses a number of clinical challenges, including anemia, decreased cardiopulmonary reserve, chronic antithrombotic therapy, neurocognitive dysfunction, and renal insufficiency. The use of CPB is associated with inductions of systemic inflammatory responses involving both cellular and humoral interactions. Inflammatory pathways are complex and redundant, and thus, the reactions can be profoundly amplified to produce a multiorgan dysfunction that can manifest as capillary leak syndrome, coagulopathy, respiratory failure, myocardial dysfunction, renal insufficiency, and neurocognitive decline. In this review, pathophysiological aspects of CPB are considered from a practical point of view, and preventive strategies for hemodilutional anemia, coagulopathy, inflammation, metabolic derangement, and neurocognitive and renal dysfunction are discussed. © The Author(s) 2014.
The heart as an extravascular target of endothelin-1 in ...
Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction have been explored, though linkage with specific factors or genes remains limited. Given evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction, the present review highlights the emerging role of endothelins as mediators of cardiac dysfunction following particulate matter exposure. Endothelin-1 is a small multifunctional protein expressed in the pulmonary and cardiovascular system, known for its ability to constrict blood vessels. Although endothelin-1 can also directly and indirectly (via secondary signaling events) modulate cardiac contractility, heart rate, and rhythm, research on the role of endothelins in the context of air pollution has tended to focus on the vascular effects. The plausibility of endothelin as a mechanism underlying particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. Extravascular effects of endothelin on the heart could better explain one mechanism by which particulate matter exposure may lead to cardiac dysfunction. We propose and support the novel hypothesis that autocrine/paracrine signaling systems, such as endothelins, mediate cardiac
Gabbi, Patricia; Ribeiro, Leandro Rodrigo; Jessié Martins, Gutierres; Cardoso, Alexandra Seide; Haupental, Fernanda; Rodrigues, Fernanda Silva; Machado, Alencar Kolinski; Sperotto Brum, Juliana; Medeiros Frescura Duarte, M M; Schetinger, Maria Rosa Chitolina; da Cruz, Ivana Beatrice Mânica; Flávia Furian, Ana; Oliveira, Mauro Schneider; Dos Santos, Adair Roberto Soares; Royes, Luiz Fernando Freire; Fighera, Michele Rechia; de Freitas, Mayara Lutchemeyer
2017-03-01
Methylmalonic acid (MMA) accumulates in tissues in methylmalonic acidemia, a heterogeneous group of inherited childhood diseases characterized by neurological dysfunction, oxidative stress and neuroinflammation; it is associated with degeneration of striatal neurons and cerebral cortical atrophy. It is presently unknown, however, whether transient exposure to MMA in the neonatal period is sufficient to trigger inflammatory and apoptotic processes that lead to brain structural damage. Here, newborn mice were given a single intracerebroventricular dose of MMA at 12 hours after birth. Maze testing of 21- and 40-day-old mice showed that MMA-injected animals exhibited deficit in the working memory test but not in the reference test. MMA-injected mice showed increased levels of the reactive oxygen species marker 2',7'-dichlorofluorescein diacetate, tumor necrosis factor, interleukin-1β, caspases 1, 3, and 8, and increased acetylcholinesterase activity in the cortex, hippocampus and striatum. This was associated with increased astrocyte and microglial immunoreactivity in all brain regions. These findings suggest that transient exposure to MMA may alter the redox state and cause neuroinflammatory/apoptotic processes and glial activation during critical periods of brain development. Similar processes may underlie brain dysfunction and cognitive impairment in patients with methylmalonic acidemia. © 2017 American Association of Neuropathologists, Inc. All rights reserved.
Ditamo, Yanina; Dentesano, Yanela M; Purro, Silvia A; Arce, Carlos A; Bisig, C Gastón
2016-12-01
α-Tubulin C-terminus undergoes post-translational, cyclic tyrosination/detyrosination, and L-Phenylalanine (Phe) can be incorporated in place of tyrosine. Using cultured mouse brain-derived cells and an antibody specific to Phe-tubulin, we showed that: (i) Phe incorporation into tubulin is reversible; (ii) such incorporation is not due to de novo synthesis; (iii) the proportion of modified tubulin is significant; (iv) Phe incorporation reduces cell proliferation without affecting cell viability; (v) the rate of neurite retraction declines as level of C-terminal Phe incorporation increases; (vi) this inhibitory effect of Phe on neurite retraction is blocked by the co-presence of tyrosine; (vii) microtubule dynamics is reduced when Phe-tubulin level in cells is high as a result of exogenous Phe addition and returns to normal values when Phe is removed; moreover, microtubule dynamics is also reduced when Phe-tubulin is expressed (plasmid transfection). It is known that Phe levels are greatly elevated in blood of phenylketonuria (PKU) patients. The molecular mechanism underlying the brain dysfunction characteristic of PKU is unknown. Beyond the differences between human and mouse cells, it is conceivable the possibility that Phe incorporation into tubulin is the first event (or among the initial events) in the molecular pathways leading to brain dysfunctions that characterize PKU.
Milner, Eric; Zhou, Meng-Liang; Johnson, Andrew W; Vellimana, Ananth K; Greenberg, Jacob K; Holtzman, David M; Han, Byung Hee; Zipfel, Gregory J
2014-10-01
We and others have shown that soluble amyloid β-peptide (Aβ) and cerebral amyloid angiopathy (CAA) cause significant cerebrovascular dysfunction in mutant amyloid precursor protein (APP) mice, and that these deficits are greater in aged APP mice having CAA compared with young APP mice lacking CAA. Amyloid β-peptide in young APP mice also increases infarction after focal cerebral ischemia, but the impact of CAA on ischemic brain injury is unknown. To determine this, we assessed cerebrovascular reactivity, cerebral blood flow (CBF), and extent of infarction and neurological deficits after transient middle cerebral artery occlusion in aged APP mice having extensive CAA versus young APP mice lacking CAA (and aged-matched littermate controls). We found that aged APP mice have more severe cerebrovascular dysfunction that is CAA dependent, have greater CBF compromise during and immediately after middle cerebral artery occlusion, and develop larger infarctions after middle cerebral artery occlusion. These data indicate CAA induces a more severe form of cerebrovascular dysfunction than amyloid β-peptide alone, leading to intra- and postischemic CBF deficits that ultimately exacerbate cerebral infarction. Our results shed mechanistic light on human studies identifying CAA as an independent risk factor for ischemic brain injury. © 2014 American Heart Association, Inc.
González, Iria; Del Castillo, Silvia; Muñiz, Javier; Morales, Luis J.; Moreno, Fernando; Jiménez, Rosa; Cristóbal, Carmen; Graupner, Catherine; Talavera, Pedro; Curcio, Alejandro; Martínez, Paula; Guerra, Juan A.; Alonso, Joaquín J.
2015-01-01
Introduction. Cardiotoxicity represents a major limitation for the use of anthracyclines or trastuzumab in breast cancer patients. Data from longitudinal studies of diastolic dysfunction (DD) in this group of patients are scarce. The objective of the present study was to assess the incidence, evolution, and predictors of DD in patients with breast cancer treated with anthracyclines. Methods. This analytical, observational cohort study comprised 100 consecutive patients receiving anthracycline-based chemotherapy (CHT) for breast cancer. All patients underwent clinical evaluation, echocardiogram, and measurement of cardiac biomarkers at baseline, end of anthracycline-based CHT, and at 3 months and 9 months after anthracycline-based CHT was completed. Fifteen patients receiving trastuzumab were followed with two additional visits at 6 and 12 months after the last dose of anthracycline-based CHT. A multivariate analysis was performed to find variables related to the development of DD. Fifteen of the 100 patients had baseline DD and were excluded from this analysis. Results. At the end of follow-up (median: 12 months, interquartile range: 11.1–12.8), 49 patients (57.6%) developed DD. DD was persistent in 36 (73%) but reversible in the remaining 13 patients (27%). Four patients developed cardiotoxicity (three patients had left ventricular systolic dysfunction and one suffered a sudden cardiac death). None of the patients with normal diastolic function developed systolic dysfunction during follow-up. In the logistic regression model, body mass index (BMI) and age were independently related to the development of DD, with the following odds ratio values: BMI: 1.19 (95% confidence interval [CI]: 1.04–1.36), and age: 1.12 (95% CI: 1.03–1.19). Neither cardiac biomarkers nor remaining clinical variables were predictors of DD. Conclusion. Development of diastolic dysfunction after treatment with anthracycline or anthracycline- plus trastuzumab chemotherapy is common. BMI and age were independently associated with DD following anthracycline chemotherapy. Implications for Practice: This study characterizes the incidence of diastolic dysfunction in a cohort of patients undergoing anthracycline treatment. The incidence of diastolic dysfunction during follow-up was 57% and persisted at the last follow-up visit in 73% of patients. Age and body mass index were found to be independent predictors of anthracycline-related diastolic dysfunction. These findings may help identify patients at higher risk for developing a clinically relevant anthracycline cardiotoxicity from those at lower risk and to differentiate monitoring programs for breast cancer patients according to their risk. PMID:26185196
4C.05: PWV IS AN INDEPENDENT DETERMINANT OF COGNITIVE DYSFUNCTION IN CKD PATIENTS.
Karasavvidou, D; Pappas, K; Stagikas, D; Makridis, D; Katsinas, C; Kalaitzidis, R
2015-06-01
Cognitive dysfunction has long been recognized as a complication of chronic kidney disease (CKD), through several putative mechanisms, including high BP, large and small artery damage. Our study tests the hypothesis that large artery stiffness and microvascular damage are related to brain microcirculation changes as reflected by impaired cognitive function in CKD patients.(Figure is included in full-text article.) : Two hundred seventeen patients (50 with CKD stage 1; 67 stage 2; 53 stage 3; 47 stage 4), with mean age 58.4 years (64.5% males), were enrolled in a cross-sectional study. Cognitive function was assessed using Mini Mental State Examination (MMSE). Full score on the MMSE is 30; cognitive impairment was defined as <26 and cognitive dysfunction as <19. Educational level was categorized as lower versus higher education. Using the Sphygmocor system and an oscillometric device, we directly measured brachial SBP (bSBP) and pulse pressure (bPP), carotid SBP (cSBP) and pulse pressure (cPP) and estimated aortic SBP (aSBP) and pulse pressure (aPP) from the radial pressure waveform. Pulse Pressure Amplification (PPA), augmentation index (AIx) and carotid-femoral pulse wave velocity (cfPWV) were calculated. The risk of cognitive dysfunction increased significantly from CKD stage 3 to 4 (p < 0.01). Table. In univariate analysis, age (p < 0.001), education level (p < 0.001) stages of CKD (p < 0.004), cfPWV (p < 0.029), AIx (p < 0.03), bSBP (p < 0.002), aSBP (p < 0.012), cSBP (p < 0.015) and cPP (p < 0.002) were significantly and negatively associated with MMSE. In multivariate regression analysis, adjusted for CKD stages, the remaining independent factor significantly (p < 0.02) associated with cognitive dysfunction was cfPWV. Carotid-femoral PWV may be a more sensitive marker of cognitive dysfunction than other parameters of central blood pressure. Since high cfPWV is associated with high pressure pulsatility at the cerebrovascular level, these data suggest that the later could play a pathophysiological role in cognitive dysfunction. In clinical practice, measuring aortic stiffness may help predicting the cognitive decline. Whether, the reduction in aortic stiffness following treatment translates into improved cognitive outcomes remains to be determined.
Seid, Awole; Gerensea, Hadgu; Tarko, Shambel; Zenebe, Yosef; Mezemir, Rahel
2017-03-15
The prevalence of erectile dysfunction among diabetic men varies between 35-90%. Although erectile dysfunction is widespread among men with diabetes, the condition often remains undiagnosed and demands appropriate assessment and prompt treatment. Erectile dysfunction can affect all aspects of a patient's life including physical, emotional, social, sexual, and relationships. The main aim of this study is to determine the prevalence and determinants of erectile dysfunction among diabetic patients attending hospitals in the Central and Northwest zone of Tigray, Ethiopia. A hospital based cross-sectional study was conducted on 249 male diabetic patients attending five hospitals in the Central and Northwestern Zone of Tigray, Ethiopia using systematic random sampling. The data was collected from January 1 - February 30, 2016 and was entered and analyzed using SPSS version 20. Correlation and multivariate logistic regression was employed to test associations between independent and outcome variables. The mean age of study participants was 43.39 years and the mean duration of diabetes diagnosis was 6.22 years. The overall prevalence of erectile dysfunction was 69.9%, with 32.9% suffering from mild, 31.7% moderate, and 5.2% severe erectile dysfunction. Multivariate logistic regression revealed that erective dysfunction was significantly predicted by old age (Adjusted Odds Ratio [AOR] =15.013, CI:3.212-70.166), longer duration of diabetes (AOR = 3.77, CI:1.291-11.051), and lower monthly income (AOR = 0.285, CI:0.132-0.615). No association was found with body mass index, co-morbidity, glycemic control, and alcohol consumption. The prevalence of erective dysfunction in this study population was very high. Age, income, and duration of diabetes were the independent predictors of erectile dysfunction. Nearly all of the patients in the sample (97%) had not been screened or treated for erectile dysfunction. Assessment and management of erectile dysfunction in the diabetic clinic should be part of routine medical care during follow-up visits with diabetic patients. Healthcare providers should put an emphasis on screening and treating older patients and those who had a diabetes diagnosis for a longer duration.
Rowland, D; Cooper, S; Macias, L
2008-01-01
For many men, the treatment of sexual dysfunctions such as premature ejaculation may well be most effective when pharmacotherapy is combined with psychotherapy. Yet the essential elements of psychotherapy that might best be combined with pharmacological-based therapy are currently unknown. Support for evidence-based studies that identify key components of psychotherapy that might improve positive long-term outcomes, including patient satisfaction, are needed. Pharmaceutical companies having a vested interest in achieving both treatment adherence and improved patient outcomes could benefit from such information.
Cardiac Autonomic Dysfunction in Offspring of Hypertensive Parents During Exercise.
Almeida, Leonardo Barbosa de; Peçanha, Tiago; Mira, Pedro Augusto de Carvalho; Souza, Livia Victorino de; da Silva, Lílian Pinto; Martinez, Daniel Godoy; Freitas, Isabelle Magalhães Guedes; Laterza, Mateus Camaroti
2017-12-01
Offspring of hypertensive parents present autonomic dysfunction at rest and during physiological maneuvers. However, the cardiac autonomic modulation during exercise remains unknown. This study tested whether the cardiac autonomic modulation would be reduced in offspring of hypertensive parents during exercise. Fourteen offspring of hypertensive and 14 offspring of normotensive individuals were evaluated. The groups were matched by age (24.5±1.0 vs. 26.6±1.5 years; p=0.25) and BMI (22.8±0.6 vs. 24.2±1.0 kg/m 2 ; p=0.30). Blood pressure and heart rate were assessed simultaneously during 3 min at baseline followed by 3-min isometric handgrip at 30% of maximal voluntary contraction. Cardiac autonomic modulation was evaluated using heart rate variability. Primary variables were subjected to two-way ANOVA (group vs. time). P value<0.05 was considered statistically significant. Blood pressure and heart rate were similar between groups during exercise protocol. In contrast, offspring of hypertensive subjects showed a reduction of SDNN (Basal=34.8±3.5 vs. 45.2±3.7 ms; Exercise=30.8±3.3 vs. 41.5±3.9 ms; p group=0.01), RMSSD (Basal=37.1±3.7 vs. 52.0±6.0 ms; Exercise=28.6±3.4 vs. 41.9±5.3 ms; p group=0.02) and pNN50 (Basal=15.7±4.0 vs. 29.5±5.5%; Exercise=7.7±2.4 vs. 18.0±4.3%; p group=0.03) during the exercise protocol in comparison with offspring of normotensive parents. We concluded that normotensive offspring of hypertensive parents exhibit impaired cardiac autonomic modulation during exercise. © Georg Thieme Verlag KG Stuttgart · New York.
Hotta, Yuji; Hattori, Mayuko; Kataoka, Tomoya; Ohno, Risa; Mikumo, Mayumi; Maeda, Yasuhiro; Kimura, Kazunori
2011-03-01
Chronic phosphodiesterase type 5 inhibitor treatment may be useful in reversing erectile dysfunction (ED). However, the mechanisms of this improvement remain unknown. The aim of this article was to determine the mechanisms of the improvement by chronic vardenafil treatment for acute arteriogenic ED in rats. Eight-week-old male Wistar-ST rats were divided into four groups: sham-operated rats (Control group) and rats with acute arteriogenic ED induced by ligating bilateral internal iliac arteries (Ligation group), subsequently treated with low-dose (0.4 mg/kg/day; VL group) or high-dose (4.0 mg/kg/day; VH group) vardenafil for 20 days from 1 week after ligature. Erectile function was assessed based on changes of intracavernous pressure (ICP) followed by electrostimulation of the cavernous nerves and was evaluated by the area under the curve of ICP/area under the curve of mean arterial pressure (area of ICP/MAP). Transforming growth factor (TGF)-β(1), vascular endothelial growth factor-A, endothelial nitric oxide synthase (eNOS), inducible NOS, and neuronal NOS mRNA expression levels in penile corpus cavernosum were determined by real-time PCR. Western blotting for TGF-β(1) protein levels and Masson trichrome staining of penile tissues were performed in each at group 4 weeks after surgery. In the VH group, area of ICP/MAP was significantly improved when compared with the Ligation group (P < 0.01). The smooth muscle (SM)/collagen ratio in the VH group was significantly higher than in the Ligation group (P < 0.05), and was comparable with that in the Control group. TGF-β(1) mRNA and protein levels in the VH group were significantly lower when compared with the Ligation group (P < 0.05). Chronic vardenafil administration ameliorates impairment of penile hemodynamics and maintains normal SM to collagen ratio in cavernous tissues after acute arterial injury in rats. © 2010 International Society for Sexual Medicine.
Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle
2017-02-08
Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum. SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are relevant in the context of neurological and neurodegenerative diseases that involve changes in dopamine transporter function. Copyright © 2017 the authors 0270-6474/17/371581-10$15.00/0.
Yilmaz, H; Cakmak, M; Darcin, T; Inan, O; Gurel, O M; Bilgic, M A; Bavbek, N; Akcay, A
2015-04-01
Subclinical hypothyroidism and vitamin D deficiency are common. The diastolic function of patients with both subclinical hypothyroidism and vitamin D deficiency remains unknown. This study aimed to investigate diastolic dysfunction in patients with both subclinical hypothyroidism and vitamin D deficiency. This study included 254 patients. All patients underwent standard Doppler echocardiography. Patients who had risk factors for diastolic dysfunction or had used L-thyroxine and vitamin D within the previous 3 months were excluded. Vitamin D deficiency was defined as a 25-OH-vitamin D level lower than 20 ng/ml, and vitamin D sufficiency was defined as a 25-OH-vitamin D level ≥ 30 ng/ml. Subclinical hypothyroidism was defined as a TSH level of 4.5-10 mU/l when the free T4 concentration was normal. The patients were divided into 4 groups. Group 1 (n=71) included patients with subclinical hypothyroidism and vitamin D deficiency; Group 2 (n=66) included patients with subclinical hypothyroidism and vitamin D sufficiency; Group 3 (n=65) included euthyroid patients with vitamin D deficiency; and Group 4 (n=52) included euthyroid patients with vitamin D sufficiency. LAVI (31.3 ± 3.2, 28.7 ± 3.0, 28.4 ± 3.4, and 27.9 ± 3.9; p<0.001) and E/E' values (11.2 ± 2.7, 8.9 ± 2.7, 9.1 ± 2.9, 8.8 ± 2.5; p<0.001) were significantly higher in Group 1 than in Groups 2, 3 and 4. E' values were significantly lower in Group 1 than in Groups 2, 3 and 4. The coexistence of subclinical hypothyroidism with vitamin D deficiency can lead to further deterioration in the LV diastolic function via the regulation of intracellular calcium and induction of inflammatory activity. Therefore, close follow-up of the diastolic functions of these patients could be beneficial.
The association between infantile postural asymmetry and unsettled behaviour in babies.
Ellwood, Julie; Ford, Michael; Nicholson, Alf
2017-12-01
Unsettled infant behaviour is a common problem of infancy without known aetiology or clearly effective management. Some manual therapists propose that musculoskeletal dysfunction contributes to unsettled infant behaviour, yet reported improvement following treatment is anecdotal. The infantile postural asymmetry measurement scale is a tool which measures infantile asymmetry, a form of musculoskeletal dysfunction. The first part of the study aimed to investigate its reliability and validity for measuring infantile postural asymmetry. This study also aimed to investigate whether there was an association between infantile postural asymmetry and unsettled infant behaviour and whether an association was mediated by, or confounded with, the demographic variables of age, sex, parity, birth weight and weight gain in 12- to 16-week-old infants. Fifty-eight infants were recruited and a quantitative cross-sectional observational design was used. An association between unsettled behaviour and infantile postural asymmetry was not found. A significant difference between high and low cervical rotation deficit groups for surgency was detected in female babies and needs further examination. Questions remain regarding the construct validity of the infantile postural asymmetry scale. No association between unsettled infant behaviour and infantile postural asymmetry was found in 12- to 16-week-old infants. The influence of sex on the interaction between infantile postural asymmetry and infant behaviour needs further examination. An association between unsettled infant behaviour and infantile postural asymmetry is still unproven. What is known: • Unsettled infant behaviour has a considerable impact on many family situations. • Identifying a definitive cause has been a source of much examination and research. Many different hypotheses have been suggested yet much is still unknown. What is new: • The association between unsettled infant behaviour and infantile postural asymmetry is still unproven. • The need to validate a reliable tool to measure infantile postural asymmetry, with particular focus on cervical spine rotation deficit, is indicated.
[Pseudomigraine with pleocytosis].
Pariso, Gabriela S; Parisi, Virginia L; Persi, Gabriel G; Canto, Lucila; Rugilo, Carlos A; Gatto, Emilia M
2006-01-01
The syndrome of transient headache and neurological deficits with cerebrospinal fluid lymphocytosis or pseudomigraine with temporary neurological symptoms and lymphocytic pleocytosis (HaNDL) is a syndrome consisting of recurrent headaches, reversible neurological deficit, lymphocytic pleocytosis in cerebrospinal fluid (CSF), variable duration over time and spontaneous resolution. Although several etiopathogenic mechanisms have been suggested (vascular, infectous, immunological and calcium channelopthy), its etiology remains unknown. We describe a 28 year old female, with recurrent migraine with pleocytosis, confusional syndrome and transient neurological deficit. The clinical remission was achieved within two months. Although its etiology remains unknown the differential diagnosis is discussed in order to keep in mind this syndrome.
Zhaorigetu, Siqin; Bair, Henry; Lu, Jonathan; Jin, Di; Olson, Scott D; Harting, Matthew T
2018-01-01
Although it is well known that nitrofen induces congenital diaphragmatic hernia (CDH), including CDH-associated lung hypoplasia and pulmonary hypertension (PH) in rodents, the mechanism of pathogenesis remains largely unclear. It has been reported that pulmonary artery (PA) endothelial cell (EC) dysfunction contributes to the development of PH in CDH. Thus, we hypothesized that there is significant alteration of endothelial dysfunction-associated proteins in nitrofen-induced CDH PAs. Pregnant SD rats received either nitrofen or olive oil on gestational day 9.5. The newborn rats were sacrificed and divided into a CDH (n = 81) and a control (n = 23) group. After PA isolation, the expression of PA endothelial dysfunction-associated proteins was assessed on Western blot and immunostaining. We demonstrate that the expression of C-reactive protein and endothelin-1 and its receptors, ETA and ETB, were significantly increased in the CDH PAs. Levels of phosphorylated myosin light chain were significantly elevated, but those of phosphorylated endothelial nitric oxide synthase, caveolin-1, and mechanistic target of rapamycin were significantly decreased in the CDH PAs. In this work, we elucidate alterations in the expression of endothelial dysfunction-associated proteins specific to nitrofen-induced CDH rodent PAs, thereby advancing our understanding of the critical role of endothelial dysfunction-associated pathways in the pathogenesis of nitrofen-induced CDH. © 2017 S. Karger AG, Basel.
Tarantini, Stefano; Valcarcel-Ares, M Noa; Yabluchanskiy, Andriy; Tucsek, Zsuzsanna; Hertelendy, Peter; Kiss, Tamas; Gautam, Tripti; Zhang, Xin A; Sonntag, William E; de Cabo, Rafael; Farkas, Eszter; Elliott, Michael H; Kinter, Michael T; Deak, Ferenc; Ungvari, Zoltan; Csiszar, Anna
2018-06-14
Obesity has deleterious effects on cognitive function in the elderly adults. In mice, aging exacerbates obesity-induced oxidative stress, microvascular dysfunction, blood-brain barrier (BBB) disruption, and neuroinflammation, which compromise cognitive health. However, the specific mechanisms through which aging and obesity interact to remain elusive. Previously, we have shown that Nrf2 signaling plays a critical role in microvascular resilience to obesity and that aging is associated with progressive Nrf2 dysfunction, promoting microvascular impairment. To test the hypothesis that Nrf2 deficiency exacerbates cerebromicrovascular dysfunction induced by obesity Nrf2+/+ and Nrf2-/-, mice were fed an adipogenic high-fat diet (HFD). Nrf2 deficiency significantly exacerbated HFD-induced oxidative stress and cellular senescence, impairment of neurovascular coupling responses, BBB disruption, and microglia activation, mimicking the aging phenotype. Obesity in Nrf2-/- mice elicited complex alterations in the amyloidogenic gene expression profile, including upregulation of amyloid precursor protein. Nrf2 deficiency and obesity additively reduced long-term potentiation in the CA1 area of the hippocampus. Collectively, Nrf2 dysfunction exacerbates the deleterious effects of obesity, compromising cerebromicrovascular and brain health by impairing neurovascular coupling mechanisms, BBB integrity and synaptic function and promoting neuroinflammation. These results support a possible role for age-related Nrf2 dysfunction in the pathogenesis of vascular cognitive impairment and Alzheimer's disease.
Wang, Diya; Zhang, Jianbin; Jiang, Wenkai; Cao, Zipeng; Zhao, Fang; Cai, Tongjian; Aschner, Michael; Luo, Wenjing
2017-05-04
Central nervous system (CNS) inflammation and autophagy dysfunction are known to be involved in the pathology of neurodegenerative diseases. Manganese (Mn), a neurotoxic metal, has the potential to induce microglia-mediated neuroinflammation as well as autophagy dysfunction. NLRP3 (NLR family, pyrin domain containing 3)- CASP1 (caspase 1) inflammasome-mediated neuroinflammation in microglia has specific relevance to neurological diseases. However, the mechanism driving these phenomena remains poorly understood. We demonstrate that Mn activates the NLRP3-CASP1 inflammasome pathway in the hippocampus of mice and BV2 cells by triggering autophagy-lysosomal dysfunction. The autophagy-lysosomal dysfunction is induced by lysosomal damage caused by excessive Mn accumulation, damaging the structure and normal function of these organelles. Additionally, we show that the release of lysosomal CTSB (cathepsin B) plays an important role in Mn-induced NLRP3-CASP1 inflammasome activation, and that the increased autophagosomes in the cytoplasm are not the main cause of NLRP3-CASP1 inflammasome activation. The accumulation of proinflammatory cytokines, such as IL1B (interleukin 1 β) and IL18 (interleukin 18), as well as the dysfunctional autophagy pathway may damage hippocampal neuronal cells, thus leading to hippocampal-dependent impairment in learning and memory, which is associated with the pathogenesis of Alzheimer disease (AD).
Psychogenic erectile dysfunction.
Bodie, Joshua A; Beeman, William W; Monga, Manoj
2003-01-01
To educate healthcare professionals on the historical aspects, clinical diagnosis, and current treatment methods of psychogenic erectile dysfunction. A topic review of current literature was performed. Chief sources included primarily mainstream journals in the fields of urology, psychiatry/psychology, impotence/erectile dysfunction, epidemiology, and internal medicine. MEDLINE and PsycINFO databases were utilized. Data from clinical studies, trials, and review articles concerned primarily with psychological aspects of the arousal (erectile function) phase of the male sexual response cycle were collected, analyzed, and summarized in this review article. There has been a shift in how erectile dysfunction has been perceived and treated over the past 30 years. With the current focus now on the very prevalent organic causes of ED, psychological factors are increasingly overlooked, though they remain important to the treatment of the patient as a whole. This article provides a complete, concise review of the interplay between psychological components and erectile function, reviews the work-up and diagnosis of psychogenic ED, and discusses treatment methods. Erectile dysfunction is a prevalent problem that can affect, and can be affected by, psychosocial aspects of a man's life. Medical or pharmacological interventions are often appropriate to treat ED, but the psychosocial aspects should not be ignored. It has become easier for practitioners to put aside patients' psychosocial and interpersonal concerns regarding sexual health. Clinicians provide the best possible treatment if they recognize that erectile dysfunction is a complex, multifactorial disorder, and treat accordingly.
ATRX Dysfunction Induces Replication Defects in Primary Mouse Cells
Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z.; Higgs, Douglas R.; Gibbons, Richard J.
2014-01-01
The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells. PMID:24651726
Keita, Asa V; Söderholm, Johan D
2012-07-01
The ability to control uptake across the mucosa and protect from harmful substances in the gut lumen is defined as intestinal barrier function. The etiology of Crohn's disease is unknown, but genetic, environmental, and immunological factors all contribute. The frontline between these factors lies in the intestinal barrier. The most important inflammation-driving environmental factor in Crohn's disease is the microbiota, where Esherichia coli strains have been assigned a key role. The first observable signs of Crohn's disease are small aphtoid ulcers over Peyer's patches and lymphoid follicles. The overlaying follicle-associated epithelium (FAE) is specialized for luminal sampling and is an entry site for antigens and bacteria. We have demonstrated increased E. coli uptake across the FAE in Crohn's disease, which may initiate inflammation. This short review will discuss barrier dysfunction and bacteria in the context of ileal Crohn's disease, and how the FAE might be the site of initial inflammation. © 2012 New York Academy of Sciences.
Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing
2017-04-30
Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).
Arduíno, Daniela M.; Esteves, A. Raquel; Swerdlow, Russell H.; Cardoso, Sandra M.
2015-01-01
Parkinson’s disease (PD) is a multifactorial and clinically complex age-related movement disorder. The cause of its most common form (sporadic PD, sPD) is unknown, but one prominent causal factor is mitochondrial dysfunction. Although several genetic- and toxin-based models have been developed along the last decades to mimic the pathological cascade of PD, cellular models that reliably recapitulate the pathological features of the neurons that degenerate in PD are scarce. We describe here the generation of cytoplasmic hybrid cells (or cybrids) as a cellular model of sPD. This approach consists on the fusion of platelets harboring mtDNA from sPD patients with cells in which the endogenous mtDNA has been depleted (Rho0 cells). The sPD cybrid model has been successful in recapitulating most of the hallmarks of sPD, constituting now a validated model for addressing the link between mitochondrial dysfunction and sPD pathology. PMID:25634293
Arduíno, Daniela M; Esteves, A Raquel; Swerdlow, Russell H; Cardoso, Sandra M
2015-01-01
Parkinson's disease (PD) is a multifactorial and clinically complex age-related movement disorder. The cause of its most common form (sporadic PD, sPD) is unknown, but one prominent causal factor is mitochondrial dysfunction. Although several genetic- and toxin-based models have been developed along the last decades to mimic the pathological cascade of PD, cellular models that reliably recapitulate the pathological features of the neurons that degenerate in PD are scarce.We describe here the generation of cytoplasmic hybrid cells (or cybrids) as a cellular model of sPD. This approach consists on the fusion of platelets harboring mtDNA from sPD patients with cells in which the endogenous mtDNA has been depleted (Rho0 cells).The sPD cybrid model has been successful in recapitulating most of the hallmarks of sPD, constituting now a validated model for addressing the link between mitochondrial dysfunction and sPD pathology.
Normal male sexual function: emphasis on orgasm and ejaculation
Alwaal, Amjad; Breyer, Benjamin N.; Lue, Tom F.
2016-01-01
Orgasm and ejaculation are two separate physiological processes that are sometimes difficult to distinguish. Orgasm is an intense transient peak sensation of intense pleasure creating an altered state of consciousness associated with reported physical changes. Antegrade ejaculation is a complex physiological process that is composed of two phases (emission and expulsion), and is influenced by intricate neurological and hormonal pathways. Despite the many published research projects dealing with the physiology of orgasm and ejaculation, much about this topic is still unknown. Ejaculatory dysfunction is a common disorder, and currently has no definitive cure. Understanding the complex physiology of orgasm and ejaculation allows the development of therapeutic targets for ejaculatory dysfunction. In this article, we summarize the current literature on the physiology of orgasm and ejaculation, starting with a brief description of the anatomy of sex organs and the physiology of erection. Then, we describe the physiology of orgasm and ejaculation detailing the neuronal, neurochemical, and hormonal control of the ejaculation process. PMID:26385403
Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z
2017-07-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.
Fletcher, Emily V.; Simon, Christian M.; Pagiazitis, John G.; Chalif, Joshua I.; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z.
2017-01-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease. PMID:28504671
Does load-induced ventricular hypertrophy progress to systolic heart failure?
Berenji, Kambeez; Drazner, Mark H; Rothermel, Beverly A; Hill, Joseph A
2005-07-01
Ventricular hypertrophy develops in response to numerous forms of cardiac stress, including pressure or volume overload, loss of contractile mass from prior infarction, neuroendocrine activation, and mutations in genes encoding sarcomeric proteins. Hypertrophic growth is believed to have a compensatory role that diminishes wall stress and oxygen consumption, but Framingham and other studies established ventricular hypertrophy as a marker for increased risk of developing chronic heart failure, suggesting that hypertrophy may have maladaptive features. However, the relative contribution of comorbid disease to hypertrophy-associated systolic failure is unknown. For instance, coronary artery disease is induced by many of the same risk factors that cause hypertrophy and can itself lead to systolic dysfunction. It is uncertain, therefore, whether ventricular hypertrophy commonly progresses to systolic dysfunction without the contribution of intervening ischemia or infarction. In this review, we summarize findings from epidemiologic studies, preclinical experiments in animals, and clinical trials to lay out what is known-and not known-about this important question.
Hypothyroid-associated central vestibular disease in 10 dogs: 1999-2005.
Higgins, Michael A; Rossmeisl, John H; Panciera, David L
2006-01-01
With the exception of myxedema coma, central nervous system signs are rare in hypothyroid dogs. Central vestibular dysfunction is a possible and reversible manifestation of hypothyroidism. Medical records of dogs with vestibular dysfunction and hypothyroidism were reviewed. Of 113 records identified, 10 dogs with at least 2 concurrent clinical neurologic abnormalities localizable to the central vestibular system were included. Retrospective, descriptive study. Median age at diagnosis was 7 years (range, 5-10 years). All dogs were referred for progressive neurologic disease. Lesions were localized to the myelencephalic region in 5 dogs and to the vestibulocerebellum in 5 dogs. Two dogs had evidence of multifocal intracranial disease. Non-neurologic physical abnormalities suggestive of hypothyroidism were absent in 7 of 10 dogs. Hypercholesterolemia was the only consistent clinicopathologic abnormality detected, and was present in 7 of 10 dogs. All dogs had total thyroxine (TT4) and free thyroxine (fT4) concentrations below reference ranges, and 9 of 10 had increased TSH concentrations. Intracranial imaging studies were normal in 5 of 8 dogs, and identified lesions consistent with infarctions in 3 of 8 dogs. Albuminocytologic dissociation was detected in 5 of 6 CSF analyses. Brainstem auditory-evoked responses disclosed prolonged wave V latencies in 3 of 4 dogs tested. No other causes of central vestibular dysfunction were identified during other diagnostic investigations. The median time from initiation of treatment to clinical improvement was 4 days. Vestibular signs resolved in 9 of 10 dogs within 4 weeks. Although the pathogenesis in dogs without evidence of infarction is unknown, central vestibular dysfunction appears to be a rare but reversible neurologic sequelae of hypothyroidism.
Du, Juan; Ruan, Xiangyan; Gu, Muqing; Bitzer, Johannes; Mueck, Alfred O
2016-06-01
Female sexual dysfunction (FSD) is a very common sexual health problem worldwide. The prevalence of FSD in Chinese women is, however, unknown. This is the first study to investigate a large number of young women throughout China via the internet, to determine the prevalence and types of FSD and to identify the risk factors for FSD. The primary endpoint was the Female Sexual Function Index (FSFI) score, with additional questions on contraception, sexual activity, relationship stability, pregnancy and other factors which may influence sexual function. The online questionnaire was completed by women from 31 of the 34 Chinese provinces. A total of 1618 completed questionnaires were received, and 1010 were included in the analyses after screening (62.4%). The mean age of the respondents was 25.1 ± 4.5 years. The mean total FSFI score was 24.99 ± 4.60. According to FSFI definitions (cut-off score 26.55), 60.2% of women were at risk of FSD. Based on domain scores, 52 were considered at high risk of dysfunction for pain (5.1%), 35 for orgasm (3.5%), 33 for desire (3.3%), 20 for arousal (2.0%), 6 for satisfaction (0.6%) and 2 for lubrication (0.2%). The prevalence of FSFI scores indicating risk of sexual dysfunction was about 60% in Chinese women. An unstable relationship, pressure to become pregnant, non-use of contraception, negative self-evaluation of appearance and increasing age were significantly associated with FSD in young Chinese women.
Magalhaes, Joana; Gegg, Matthew E.; Migdalska-Richards, Anna; Doherty, Mary K.; Whitfield, Phillip D.; Schapira, Anthony H.V.
2016-01-01
Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. PMID:27378698
Bruder, Gerard E; Schneier, Franklin R; Stewart, Jonathan W; McGrath, Patrick J; Quitkin, Frederic
2004-01-01
Behavioral, electrophysiological, and imaging studies have found evidence that anxiety disorders are associated with left hemisphere dysfunction or higher than normal activation of right hemisphere regions. Few studies, however, have examined hemispheric asymmetries of function in social phobia, and the influence of comorbidity with depressive disorders is unknown. The present study used dichotic listening tests to assess lateralized cognitive processing in patients with social phobia, depression, or comorbid social phobia and depression. The study used a two-by-two factorial design in which one factor was social phobia (present versus absent) and the second factor was depressive disorder (present versus absent). A total of 125 unmedicated patients with social phobia, depressive disorder, or comorbid social phobia and depressive disorder and 44 healthy comparison subjects were tested on dichotic fused-words, consonant-vowel syllable, and complex tone tests. Patients with social phobia with or without a comorbid depressive disorder had a smaller left hemisphere advantage for processing words and syllables, compared with subjects without social phobia, whereas no difference between groups was found in the right hemisphere advantage for processing complex tones. Depressed women had a larger left hemisphere advantage for processing words, compared with nondepressed women, but this difference was not seen among men. The results support the hypothesis that social phobia is associated with dysfunction of left hemisphere regions mediating verbal processing. Given the importance of verbal processes in social interactions, this dysfunction may contribute to the stress and difficulty experienced by patients with social phobia in social situations.
Yin, Qingqiao; Xia, Yuanyu; Wang, Guan
2016-09-02
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Validating the WHO Maternal Near Miss Tool in a high-income country.
Witteveen, Tom; de Koning, Ilona; Bezstarosti, Hans; van den Akker, Thomas; van Roosmalen, Jos; Bloemenkamp, Kitty W
2016-01-01
This study was performed to assess the applicability of the WHO Maternal Near Miss Tool (MNM Tool) and the organ dysfunction criteria in a high-income country. The MNM tool was applied to 2552 women who died of pregnancy-related causes or sustained severe acute maternal morbidity between August 2004 and August 2006 in one of the 98 hospitals with a maternity unit in the Netherlands. Fourteen (0.6%) cases had insufficient data for application. Each case was assessed according to the three main "MNM categories" specified in the MNM tool and their subcategory criteria: five disease-, four intervention- and seven organ dysfunction-based criteria. Potentially life-threatening conditions (disease-based inclusions) and life-threatening cases (organ dysfunction-based inclusions) were differentiated according to WHO methodology. Outcomes were incidence of all (sub)categories and case-fatality rates. Of the 2538 cases, 2308 (90.9%) women fulfilled disease-based, 2116 (83.4%) intervention-based and 1024 (40.3%) organ dysfunction-based criteria. Maternal death occurred in 48 women, of whom 23 (47.9%) fulfilled disease-based, 33 (68.8%) intervention-based and 31 (64.6%) organ dysfunction-based criteria. Case-fatality rates were 23/2308 (1.0%) for cases fulfilling the disease-based criteria, 33/2116 (1.6%) for intervention-based criteria and 31/1024 (3.0%) for women fulfilling the organ dysfunction-based criteria. In the Netherlands, where advanced laboratory and clinical monitoring are available, organ dysfunction-based criteria of the MNM tool failed to identify nearly two-thirds of sustained severe acute maternal morbidity cases and more than one-third of maternal deaths. Disease-based criteria remain important, and using only organ dysfunction-based criteria would lead to underestimating severe acute maternal morbidity. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Gatti, Giuseppe; Benussi, Bernardo; Currò, Placido; Forti, Gabriella; Rauber, Elisabetta; Minati, Alessandro; Gabrielli, Marco; Tognolli, Umberto; Sinagra, Gianfranco; Pappalardo, Aniello
2017-12-01
Retrograde cerebral perfusion (RCP) is a brain protection technique that is adopted generally for anticipated short periods of deep hypothermic circulatory arrest (DHCA). However, the real impact of this technique on cerebral protection during DHCA remains a controversial issue. For 344 (59.5%) of 578 consecutive patients (mean age, 66.9 ± 10.9 years) who underwent cardiovascular surgery under DHCA at the present authors' institution (1999-2015), RCP was the sole technique of cerebral protection that was adopted in addition to deep hypothermia. Surgery of the thoracic aorta was performed in 95.9% of these RCP patients; in 92 cases there was an aortic arch involvement. Outcomes were reviewed retrospectively. The focus was on postoperative neurological dysfunctions. There were 33 (9.6%) in-hospital deaths. Thirty-one (9%) patients had permanent neurological dysfunctions and 66 (19.1%) transitory neurological dysfunctions alone. Age older than 74 years (odds ratio [OR], 1.88, P = .023), surgery for acute aortic dissection (OR, 2.57; P = .0009), and DHCA time longer than 25 minutes (OR, 2.44; P = .0021) were predictors of neurological dysfunctions. The 10-year nonparametric estimate of freedom from all-cause death was 61.8% (95% confidence interval, 57.8%-65.8%). Permanent postoperative neurological dysfunctions were risk factors for cardiac or cerebrovascular death (hazard ratio, 2.6; P = .039) even after an adjusted survival analysis (P < .04). According to the study findings, RCP, in addition to deep hypothermia, combines with a low risk of neurological dysfunctions provided that DHCA length is 25 minutes or less. Permanent postoperative neurological dysfunctions are predictors of poor late survival. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Igarashi, Hideki; Takahashi, Toshifumi; Abe, Hiroyuki; Nakano, Hiroshi; Nakajima, Osamu; Nagase, Satoru
2016-10-01
Does in vivo aging of mouse oocytes affect mitochondrial function? Mitochondrial function was impaired in post-ovulatory in vivo-aged mouse oocytes and microinjection of somatic cell mitochondria did not rescue poor fertilization and embryonic development rates. The mechanisms underlying the decline in oocyte quality associated with oocyte aging remain unknown, although studies have suggested that the decline is regulated by mitochondrial dysfunction. However, only a limited number of studies have provided direct evidence implicating mitochondrial dysfunction in oocyte quality during the aging of oocytes. We used post-ovulatory, in vivo-aged mouse oocytes as a model for studying low-quality oocytes in oocyte aging. Superovulated oocytes released from the oviduct at 14 h and 20-24 h post-hCG injection were designated as 'fresh' and 'aged' oocytes, respectively. Membrane potentials and oxygen consumption in single oocytes were evaluated as measures of mitochondrial function in fresh and aged oocytes. Mitochondrial transcriptional factor A (TFAM) expression levels were examined by western blotting, and colocalization of mitochondria and TFAM was analyzed by measuring immunofluorescence in fresh and aged oocytes. IVF and blastocyst formation rates were calculated after oocyte microinjection with mitochondria derived from liver cells. The average mitochondrial membrane potential in fresh oocytes was significantly higher than that in aged oocytes (P < 0.05). The average oxygen consumption rate in aged oocytes was significantly lower than that in fresh oocytes (P < 0.05). Although total TFAM expression was unchanged, its colocalization with mitochondria decreased in aged oocytes. IVF and blastocyst formation rates for mitochondrion-injected aged oocytes were not significantly different from those for buffer-injected aged oocytes. Not applicable. A limitation of this study is that we did not examine the effects of microinjecting mitochondria from other somatic cell types into aged oocytes on their fertilization and embryonic development rates. The results from the present study showed that poor embryonic development was associated with impairment of mitochondrial functions in in vivo-aged oocytes. However, the microinjection of mitochondria from liver cells did not improve the low fertilization and embryonic development rates of aged oocytes. It remains to be demonstrated whether oocyte quality can be rescued by the transfer of cytosolic factors or cellular organelles, such as the endoplasmic reticulum or mitochondria, from specific cell types. This study was supported by Grants-in-Aid for General Science Research to Toshifumi Takahashi (No. 25462550) and Hideki Igarashi (No. 26462474). The funding source played no role in study design in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The authors have no conflict of interest to disclose. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Erectile dysfunction in chronic kidney disease: From pathophysiology to management
Papadopoulou, Eirini; Varouktsi, Anna; Lazaridis, Antonios; Boutari, Chrysoula; Doumas, Michael
2015-01-01
Chronic kidney disease (CKD) is encountered in millions of people worldwide, with continuously rising incidence during the past decades, affecting their quality of life despite the increase of life expectancy in these patients. Disturbance of sexual function is common among men with CKD, as both conditions share common pathophysiological causes, such as vascular or hormonal abnormalities and are both affected by similar coexisting comorbid conditions such as cardiovascular disease, hypertension and diabetes mellitus. The estimated prevalence of erectile dysfunction reaches 70% in end stage renal disease patients. Nevertheless, sexual dysfunction remains under-recognized and under-treated in a high proportion of these patients, a fact which should raise awareness among clinicians. A multifactorial approach in management and treatment is undoubtedly required in order to improve patients’ quality of life and cardiovascular outcomes. PMID:26167462
Erectile dysfunction. A guide to diagnosis and management.
Arduca, Paul
2003-06-01
Erectile dysfunction (ED) is a common age related problem best managed in general practice. The incidence of ED will thus increase as men live longer. It is only in the past decade that the pathophysiology of ED has been well understood. This article discusses the mechanisms of normal erectile function and dysfunction and the assessment and management of ED. The success of currently available and newly emerging oral agents has revolutionised the management of ED. However, the majority of men with ED remain undiagnosed and untreated and patients are often unable to distinguish between a problem of ED, desire or libido. It is particularly important for general practitioners to enquire about ED in middle aged and older men, diabetics and patients with vascular disease. Appropriate management goes beyond management of the actual condition, and involves addressing lifestyle and psychosocial issues.
Wikinski, Silvia
2009-01-01
This work summarizes the efficacy of pharmacotherapy in the chronic course of schizophrenia and unipolar depresion. It is aimed to answer three questions: does it cure these diseases? Does it exert any significant effect on the symptomatic presentation of the disorders? Which is its action on the social dysfunction provoked by schizophrenia or depression? A conceptual analysis of available bibliography was performed. It could be concluded that antypsychotics improve the symptomatic course of schizophrenia, although their efficacy is limited, and that these drugs does not act on the social dysfunction provoked by the disease. With respect to depression, it could be concluded that a significant proportion of patients remain symptomatic despite receiveng adequate treatments. No data about efficacy of pharmacotherapy on the dysfunction resultant from unipolar depression is available.
Effect of chewing gum on the postoperative recovery of gastrointestinal function
Ge, Wei; Chen, Gang; Ding, Yi-Tao
2015-01-01
Postoperative gastrointestinal dysfunction remains a source of morbidity and the major determinant of length of stay after abdominal operation. There are many different reasons for postoperative gastrointestinal dysfunction such as stress response, perioperative interventions, bowel manipulation and so on. The mechanism of enhanced recovery from postoperative gastrointestinal dysfunction with the help of chewing gum is believed to be the cephalic-vagal stimulation of digestion which increases the promotability of neural and humoral factors that act on different parts of the gastrointestinal tract. Recently, there were a series of randomized controlled trials to confirm the role of chewing gum in the recovery of gastrointestinal function. The results suggested that chewing gum enhanced early recovery of bowel function following abdominal surgery expect the gastrointestinal surgery. However, the effect of chewing gum in gastrointestinal surgery was controversial. PMID:26550107
Cognitive Impairment in Chronic Alcoholics: Some Cause for Optimism.
ERIC Educational Resources Information Center
Goldman, Mark S.
1983-01-01
It appears that, although the cognitive functioning of many alcoholics remains impaired even after drinking has stopped, considerable recovery can occur. New findings now suggest the possibility of reducing cognitive dysfunction and enhancing alcoholism treatment outcomes. (CMG)
Liver Cirrhosis is Independently Associated With 90-Day Mortality in ARDS Patients.
Gacouin, Arnaud; Locufier, Maxime; Uhel, Fabrice; Letheulle, Julien; Bouju, Pierre; Fillatre, Pierre; Le Tulzo, Yves; Tadié, Jean Marc
2016-01-01
In a few studies, cirrhosis has been associated with increased mortality in patients with acute respiratory distress syndrome (ARDS). These studies were, however, conducted mostly before 2000. Over the last 15 years, the prognosis of cirrhotic patients admitted to the intensive care unit (ICU) seems to have improved and major changes in the management of mechanical ventilation (MV) of ARDS have appeared. The aim of this study was to determine whether cirrhosis remains a factor for poor prognosis despite improvements in MV techniques and supportive therapies for ARDS. Retrospective analysis of data recorded from 232 patients (42 with cirrhosis and 290 without cirrhosis) who received lung-protective ventilation for ARDS defined according to American-European Consensus Conference criteria and admitted from 2006 to 2013. Alcohol was the most common aetiology of the cirrhosis. The end point was mortality at day-90 from the diagnosis of ARDS, survival was calculated using the Kaplan-Meier method, and we used a Cox-proportional hazard model to determine whether cirrhosis remained independently associated with mortality after adjustment for other prognostic variables for ARDS described previously. Organ dysfunctions were assessed based on the Sequential Organ Failure Assessment (SOFA) criteria, pulmonary and nonpulmonary dysfunctions were distinguished and compared between cirrhotic and non-cirrhotic patients on the first 3 days of VM. Comparison of survival curves showed that cirrhotic patients had a poorer 90-day prognosis than non-cirrhotic patients (P = 0.03 by the log-rank test). After adjusted analysis, cirrhosis remained independently associated with mortality at day 90 (adjusted hazard ratio 2.09, 95% CI, 1.27-3.45, P = 0.004). Non-pulmonary SOFA scores were significantly higher in cirrhotic patients than in non-cirrhotic patients on day 1 (P < 0.001), day 2 (P = 0.003), and day 3 (P = 0.002) of MV for ARDS whereas pulmonary SOFA scores did not differ significantly. Despite improvements in the management of cirrhotic patients admitted to the ICU and in the management of MV for the treatment of ARDS, cirrhosis remained associated with a poorer prognosis in ARDS patients. The prognosis of cirrhotic patients with ARDS appears related to extrapulmonary organ dysfunctions rather than pulmonary dysfunction.
Atasever, Ayse Gulsah; Ozcan, Perihan Ergin; Kasali, Kamber; Abdullah, Taner; Orhun, Gunseli; Senturk, Evren
2018-01-01
Gastrointestinal (GI) motility disorders in intensive care patients remain relatively unexplored. Nowadays, the frequency, risk factors and complications of GI dysfunction during enteral nutrition (EN) become more questionable. To evaluate the frequency, risk factors and complications of GI dysfunction during EN in the first 2 weeks of the intensive care unit (ICU) stay and to identify precautions to prevent the development of GI dysfunction and avoid complications. In this prospective observational study, we deliberately targeted at-risk patients. A total of 137 patients who received nasogastric tube feeding in an ICU of a tertiary hospital were enrolled. The incidence of GI dysfunction that was found to be 63% which was associated mainly between MDR bacteria positivity and negative fluid balance. Diarrhea was observed in 36 patients (26%) and on 147 patient-days (incidence rate, 5.5 per 100 patient-days). The median day of diarrhea onset was 6 days after the initiation of EN. Forty patients (29%) presented with constipation (85% during the first week). Fifty patients (36%) exhibited upper digestive intolerance on 212 patient-days (incidence rate, 7.9 per 100 patient-days), after a median EN duration of 6 days (range, 2-14 days). Logistic regression analysis revealed MDR bacteria growth in the culture (OR, 1.75; 95% CI, 1.15-2.67; P =0.008) and negative fluid balance (OR, 0.57; 95% CI, 0.34-0.94; P =0.03) as the risk factors for GI dysfunction. We also showed that GI dysfunction was associated with high SOFA score, hypoalbuminemia, catecholamine use, and prolonged length of stay (LOS). GI dysfunction, on the other hand, can cause some complications including inadequate nutrition, and newly developed decubitus ulcers. GI dysfunction should be considered a clinical predictor of inadequate nutrition and prolonged LOS. In addition, the most dramatic risk for GI dysfunction was observed in patients with MDR bacteria growth in the culture and patients in negative fluid balance. Intensivists provide appropriate nutrition for patients, as well as prompt intervention and the development of treatment strategies in the event of GI dysfunction.