Science.gov

Sample records for dysfunctional mammalian telomeres

  1. The methylating agent streptozotocin induces persistent telomere dysfunction in mammalian cells.

    PubMed

    Paviolo, Natalia S; Santiñaque, Federico F; Castrogiovanni, Daniel C; Folle, Gustavo A; Bolzán, Alejandro D

    2015-12-01

    We analyzed chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the methylating agent and antineoplastic/diabetogenic drug streptozotocin (STZ), to test whether it induces long-term telomere instability (by chromosome end loss and/or telomere dysfunction). Rat cells (ADIPO-P2 cell line, derived from Sprague-Dawley rat adipose cells) were treated with a single concentration of STZ (2mM). Chromosomal aberrations were analyzed 18h, 10 days, and 15 days after treatment, using PNA-FISH with a pan-telomeric probe [Cy3-(CCCTAA)3] to detect (TTAGGG)n repeats. Cytogenetic analysis revealed a higher frequency of chromosomal aberrations in STZ-exposed cultures vs. untreated cultures at each time point analyzed. The yield of induced aberrations was very similar at each time point. Induction of aberrations not involving telomere dysfunction was only observed 18h and 15 days after treatment, whereas induction of telomere dysfunction-related aberrations by STZ (mainly in the form of telomere FISH signal loss and duplications, most of them chromatid-type aberrations) was observed at each time point. Our results show that STZ induces persistent telomere instability in mammalian cells, cytogenetically manifested as telomere dysfunction-related chromosomal aberrations. Neither telomere length nor telomerase activity is related to the telomere dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mammalian telomeres and their partnership with lamins

    PubMed Central

    Burla, Romina; La Torre, Mattia; Saggio, Isabella

    2016-01-01

    ABSTRACT Chromosome ends are complex structures, which require a panel of factors for their elongation, replication, and protection. We describe here the mechanics of mammalian telomeres, dynamics and maintainance in relation to lamins. Multiple biochemical connections, including association of telomeres to the nuclear envelope and matrix, of telomeric proteins to lamins, and of lamin-associated proteins to chromosome ends, underline the interplay between lamins and telomeres. Paths toward senescence, such as defective telomere replication, altered heterochromatin organization, and impaired DNA repair, are common to lamins' and telomeres' dysfunction. The convergence of phenotypes can be interpreted through a model of dynamic, lamin-controlled functional platforms dedicated to the function of telomeres as fragile sites. The features of telomeropathies and laminopathies, and of animal models underline further overlapping aspects, including the alteration of stem cell compartments. We expect that future studies of basic biology and on aging will benefit from the analysis of this telomere-lamina interplay. PMID:27116558

  3. Telomere dysfunction and chromothripsis.

    PubMed

    Ernst, Aurélie; Jones, David T W; Maass, Kendra K; Rode, Agata; Deeg, Katharina I; Jebaraj, Billy Michael Chelliah; Korshunov, Andrey; Hovestadt, Volker; Tainsky, Michael A; Pajtler, Kristian W; Bender, Sebastian; Brabetz, Sebastian; Gröbner, Susanne; Kool, Marcel; Devens, Frauke; Edelmann, Jennifer; Zhang, Cindy; Castelo-Branco, Pedro; Tabori, Uri; Malkin, David; Rippe, Karsten; Stilgenbauer, Stephan; Pfister, Stefan M; Zapatka, Marc; Lichter, Peter

    2016-06-15

    Chromothripsis is a recently discovered form of genomic instability, characterized by tens to hundreds of clustered DNA rearrangements resulting from a single dramatic event. Telomere dysfunction has been suggested to play a role in the initiation of this phenomenon, which occurs in a large number of tumor entities. Here, we show that telomere attrition can indeed lead to catastrophic genomic events, and that telomere patterns differ between cells analyzed before and after such genomic catastrophes. Telomere length and telomere stabilization mechanisms diverge between samples with and without chromothripsis in a given tumor subtype. Longitudinal analyses of the evolution of chromothriptic patterns identify either stable patterns between matched primary and relapsed tumors, or loss of the chromothriptic clone in the relapsed specimen. The absence of additional chromothriptic events occurring between the initial tumor and the relapsed tumor sample points to telomere stabilization after the initial chromothriptic event which prevents further shattering of the genome.

  4. The Terminal Telomeric DNA Sequence Determines the Mechanism of Dysfunctional Telomere Fusion

    PubMed Central

    Stohr, Bradley A.; Xu, Lifeng; Blackburn, Elizabeth H.

    2010-01-01

    Summary Mammalian telomeres consist of tandem DNA repeats that bind protective protein factors collectively termed shelterins. Telomere disruption typically results in genome instability induced by telomere fusions. For reasons that are unclear, the mechanism of telomere fusion varies depending on the means of telomere disruption. Here, we investigate telomere fusions caused by overexpression of mutant telomerases that add mutated telomeric repeats, thereby compromising shelterin binding to telomeric termini. While all mutant telomeric sequences tested induced heterodicentric chromosome fusions in ATM-competent cells, only those mutant repeat sequences with significant self-complementarity induced ATM-independent sister chromatid and isodicentric chromosome fusions. Thus, once a telomere becomes dysfunctional, the terminal telomeric sequence itself determines the fate of that telomere. These results suggest that annealing of self-complementary DNA sequence engages an alternative telomere fusion pathway in human cells, and provide one explanation for the conspicuous lack of self-complementarity in the majority of known naturally-occurring eukaryotic telomeric sequences. PMID:20670897

  5. Defective Artemis causes mild telomere dysfunction.

    PubMed

    Yasaei, Hemad; Slijepcevic, Predrag

    2010-05-26

    Repair of DNA double strand breaks by non-homologous end joining (NHEJ) requires several proteins including Ku, DNA-PKcs, Artemis, XRCC4, Ligase IV and XLF. Two of these proteins, namely Ku and DNA-PKcs, are also involved in maintenance of telomeres, chromosome end-structures. In contrast, cells defective in Ligase IV and XRCC4 do not show changes in telomere length or function suggesting that these proteins are not involved in telomere maintenance. Since a mouse study indicated that defective Artemis may cause telomere dysfunction we investigated the effects of defective Artemis on telomere maintenance in human cells. We observed significantly elevated frequencies of telomeric fusions in two primary fibroblast cell lines established from Artemis defective patients relative to the control cell line. The frequencies of telomeric fusions increased after exposure of Artemis defective cells to ionizing radiation. Furthermore, we observed increased incidence of DNA damage at telomeres in Artemis defective cells that underwent more than 32 population doublings using the TIF (Telomere dysfunction Induced Foci) assay. We have also inhibited the expression levels of DNA-PKcs in Artemis defective cell lines by either using synthetic inhibitor (IC86621) or RNAi and observed their greater sensitivity to telomere dysfunction relative to control cells. These results suggest that defective Artemis causes a mild telomere dysfunction phenotype in human cell lines.

  6. Defective Artemis causes mild telomere dysfunction

    PubMed Central

    2010-01-01

    Background Repair of DNA double strand breaks by non-homologous end joining (NHEJ) requires several proteins including Ku, DNA-PKcs, Artemis, XRCC4, Ligase IV and XLF. Two of these proteins, namely Ku and DNA-PKcs, are also involved in maintenance of telomeres, chromosome end-structures. In contrast, cells defective in Ligase IV and XRCC4 do not show changes in telomere length or function suggesting that these proteins are not involved in telomere maintenance. Since a mouse study indicated that defective Artemis may cause telomere dysfunction we investigated the effects of defective Artemis on telomere maintenance in human cells. Results We observed significantly elevated frequencies of telomeric fusions in two primary fibroblast cell lines established from Artemis defective patients relative to the control cell line. The frequencies of telomeric fusions increased after exposure of Artemis defective cells to ionizing radiation. Furthermore, we observed increased incidence of DNA damage at telomeres in Artemis defective cells that underwent more than 32 population doublings using the TIF (Telomere dysfunction Induced Foci) assay. We have also inhibited the expression levels of DNA-PKcs in Artemis defective cell lines by either using synthetic inhibitor (IC86621) or RNAi and observed their greater sensitivity to telomere dysfunction relative to control cells. Conclusion These results suggest that defective Artemis causes a mild telomere dysfunction phenotype in human cell lines. PMID:20678254

  7. Telomere Dysfunction and DNA-PKcs Deficiency: characterization and consequence

    PubMed Central

    Williams, Eli S.; Klingler, Rebekah; Ponnaiya, Brian; Hardt, Tanja; Schrock, Evelin; Lees-Miller, Susan P.; Meek, Katheryn; Ullrich, Robert L.; Bailey, Susan M.

    2013-01-01

    The mechanisms by which cells accurately distinguish between DNA double-strand break (DSB) ends and telomeric DNA ends remain poorly defined. Recent investigations have revealed intriguing interactions between DNA repair and telomeres. We were the first to report a requirement for the non-homologous end-joining (NHEJ) protein DNA-dependent protein kinase (DNA-PK) in the effective end-capping of mammalian telomeres. Here, we report our continued characterization of uncapped (as opposed to shortened) dysfunctional telomeres in cells deficient for the catalytic subunit of DNA-PK (DNA-PKcs) and shed light on their consequence. We present evidence in support of our model that uncapped telomeres in this repair-deficient background are inappropriately detected and processed as DSBs, and so participate not only in spontaneous telomere-telomere fusion, but importantly, also in ionizing radiation (IR)-induced telomere-DSB fusion events. We demonstrate that phosphorylation of DNA-PKcs itself (Thr-2609 cluster) is a critical event for proper telomere end-processing and that ligase IV (NHEJ) is required for uncapped telomere fusion. We also find uncapped telomeres in cells from the BALB/c mouse, which harbors two single-nucleotide polymorphisms (SNPs) that result in reduced DNA-PKcs abundance and activity, most markedly in mammary tissue, and is both radiosensitive and susceptible to radiogenic mammary cancer. Our results suggest mechanistic links between uncapped/dysfunctional telomeres in DNA-PKcs repair-deficient backgrounds, radiation-induced instability and breast cancer. These studies provide the first direct evidence of genetic susceptibility and environmental insult interactions leading to a unique and on-going form of genomic instability capable of driving carcinogenesis. PMID:19244120

  8. Telomere dysfunction induces metabolic and mitochondrial compromise

    PubMed Central

    Sahin, Ergün; Colla, Simona; Liesa, Marc; Moslehi, Javid; Müller, Florian L.; Guo, Mira; Cooper, Marcus; Kotton, Darrell; Fabian, Attila J.; Walkey, Carl; Maser, Richard S.; Tonon, Giovanni; Foerster, Friedrich; Xiong, Robert; Wang, Y. Alan; Shukla, Sachet A.; Jaskelioff, Mariela; Martin, Eric S.; Heffernan, Timothy P.; Protopopov, Alexei; Ivanova, Elena; Mahoney, John E.; Kost-Alimova, Maria; Perry, Samuel R.; Bronson, Roderick; Liao, Ronglih; Mulligan, Richard; Shirihai, Orian S.; Chin, Lynda; DePinho, Ronald A.

    2013-01-01

    Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere–p53–PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction. PMID:21307849

  9. The meiosis-specific modification of mammalian telomeres.

    PubMed

    Shibuya, Hiroki; Watanabe, Yoshinori

    2014-01-01

    During meiosis, rapid chromosome movements within the nucleus enable homologous chromosomes to acquire physical juxtaposition. In most organisms, chromosome ends, telomeres, tethered to the transmembrane LINC-complex mediate this movement by transmitting cytoskeletal forces to the chromosomes. While the majority of molecular studies have been performed using lower eukaryotes as model systems, recent studies have identified mammalian meiotic telomere regulators, including the LINC-complex SUN1/KASH5 and the meiosis-specific telomere binding protein TERB1. This review highlights the molecular regulations of mammalian meiotic telomeres in comparison with other model systems and discusses some future perspectives.

  10. Molecular basis of telomere dysfunction in human genetic diseases.

    PubMed

    Sarek, Grzegorz; Marzec, Paulina; Margalef, Pol; Boulton, Simon J

    2015-11-01

    Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular consequences of disease-causing mutations associated with telomere dysfunction.

  11. DNA Replication Origins and Fork Progression at Mammalian Telomeres

    PubMed Central

    Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa

    2017-01-01

    Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373

  12. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation

    PubMed Central

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania

    2016-01-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  13. Characterization of Oxidative Guanine Damage and Repair in Mammalian Telomeres

    PubMed Central

    Wang, Zhilong; Rhee, David B.; Lu, Jian; Bohr, Christina T.; Zhou, Fang; Vallabhaneni, Haritha; de Souza-Pinto, Nadja C.; Liu, Yie

    2010-01-01

    8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)–initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere–FISH), by chromosome orientation–FISH (CO–FISH), and by indirect immunofluorescence in combination with telomere–FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1−/−) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1−/− mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1−/− mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1−/− mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1−/− MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining

  14. Telomere homeostasis in mammalian germ cells: a review.

    PubMed

    Reig-Viader, Rita; Garcia-Caldés, Montserrat; Ruiz-Herrera, Aurora

    2016-06-01

    Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.

  15. High Mobility Group A2 protects cancer cells against telomere dysfunction

    PubMed Central

    Natarajan, Suchitra; Begum, Farhana; Gim, Jeonga; Wark, Landon; Henderson, Dana; Davie, James R.

    2016-01-01

    The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) plays important roles in the repair and protection of genomic DNA in embryonic stem cells and cancer cells. Here we show that HMGA2 localizes to mammalian telomeres and enhances telomere stability in cancer cells. We present a novel interaction of HMGA2 with the key shelterin protein TRF2. We found that the linker (L1) region of HMGA2 contributes to this interaction but the ATI-L1-ATII molecular region of HMGA2 is required for strong interaction with TRF2. This interaction was independent of HMGA2 DNA-binding and did not require the TRF2 interacting partner RAP1 but involved the homodimerization and hinge regions of TRF2. HMGA2 retained TRF2 at telomeres and reduced telomere-dysfunction despite induced telomere stress. Silencing of HMGA2 resulted in (i) reduced binding of TRF2 to telomere DNA as observed by ChIP, (ii) increased telomere instability and (iii) the formation of telomere dysfunction-induced foci (TIF). This resulted in increased telomere aggregation, anaphase bridges and micronuclei. HMGA2 prevented ATM-dependent pTRF2T188 phosphorylation and attenuated signaling via the telomere specific ATM-CHK2-CDC25C DNA damage signaling axis. In summary, our data demonstrate a unique and novel role of HMGA2 in telomere protection and promoting telomere stability in cancer cells. This identifies HMGA2 as a new therapeutic target for the destabilization of telomeres in HMGA2+ cancer cells. PMID:26799419

  16. Mammalian RAP1 controls telomere function and gene expression through binding to telomeric and extra-telomeric sites

    PubMed Central

    Martinez, Paula; Thanasoula, Maria; Carlos, Ana R.; Gómez, Gonzalo; Tejera, Agueda M.; Schoeftner, Stefan; Dominguez, Orlando; Pisano, David G.; Tarsounas, Madalena; Blasco, Maria A.

    2013-01-01

    Shelterin binds and protects mammalian telomeres. Here, we generated cells and mice conditionally deleted for the shelterin component RAP1. We find that Rap1 deficiency is dispensable for telomere capping but leads to increased telomere recombination and fragility. Mice with Rap1 deletion in stratified epithelia are viable but have shorter telomeres and develop skin hyperpigmentation at aduldhood. By performing chromatin immunoprecipitation coupled with ultra-highthroughput sequencing, we find that RAP1 binds to telomeres and to extra-telomeric sites through the (TTAGGG)2 consensus motif. Extra-telomeric RAP1 binding sites are enriched at subtelomeric regions, in agreement with preferential deregulation of subtelomeric genes in Rap1-deficient cells. More than 70% of extra-telomeric RAP1 binding sites are at the vicinity of genes and 31% of the genes deregulated in Rap1-null cells contain RAP1 binding sites, suggesting a role of RAP1 in transcriptional control. These findings place a shelterin component at the interface between telomere function and transcriptional regulation. PMID:20622869

  17. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs.

    PubMed

    Rossiello, Francesca; Aguado, Julio; Sepe, Sara; Iannelli, Fabio; Nguyen, Quan; Pitchiaya, Sethuramasundaram; Carninci, Piero; d'Adda di Fagagna, Fabrizio

    2017-02-27

    The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs.

  18. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.

    PubMed

    Colla, Simona; Ong, Derrick Sek Tong; Ogoti, Yamini; Marchesini, Matteo; Mistry, Nipun A; Clise-Dwyer, Karen; Ang, Sonny A; Storti, Paola; Viale, Andrea; Giuliani, Nicola; Ruisaard, Kathryn; Ganan Gomez, Irene; Bristow, Christopher A; Estecio, Marcos; Weksberg, David C; Ho, Yan Wing; Hu, Baoli; Genovese, Giannicola; Pettazzoni, Piergiorgio; Multani, Asha S; Jiang, Shan; Hua, Sujun; Ryan, Michael C; Carugo, Alessandro; Nezi, Luigi; Wei, Yue; Yang, Hui; D'Anca, Marianna; Zhang, Li; Gaddis, Sarah; Gong, Ting; Horner, James W; Heffernan, Timothy P; Jones, Philip; Cooper, Laurence J N; Liang, Han; Kantarjian, Hagop; Wang, Y Alan; Chin, Lynda; Bueso-Ramos, Carlos; Garcia-Manero, Guillermo; DePinho, Ronald A

    2015-05-11

    Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.

  19. Mitochondrial dysfunction in mammalian ageing.

    PubMed

    Terzioglu, Mügen; Larsson, Nils-Göran

    2007-01-01

    Ageing is likely a multifactorial process caused by accumulated damage to a variety of cellular components. Increasing age in mammals correlates with increased levels of mitochondrial DNA (mtDNA) mutations and deteriorating respiratory chain function. Mosaic respiratory chain deficiency in a subset of cells in various tissues, such as heart, skeletal muscle, colonic crypts and neurons, is typically found in aged humans. Experimental evidence in the mouse has linked increased levels of somatic mtDNA mutations to a variety of ageing phenotypes, such as osteoporosis, hair loss, greying of the hair, weight reduction and decreased fertility. It has been known for a long time that respiratory chain-deficient cells are more prone to undergo apoptosis and increased cell loss is therefore likely of importance in age-associated mitochondrial dysfunction. There is a tendency to automatically link mitochondrial dysfunction to increased production of reactive oxygen species (ROS). However, the experimental support for this concept is rather weak. Mouse models with respiratory chain deficiency induced by tissue-specific mtDNA depletion or by massive increase of point mutations in mtDNA have very minor or no increase of oxidative stress. Future studies are needed to address the relative importance of mitochondrial dysfunction and ROS in mammalian ageing.

  20. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs

    PubMed Central

    Rossiello, Francesca; Aguado, Julio; Sepe, Sara; Iannelli, Fabio; Nguyen, Quan; Pitchiaya, Sethuramasundaram; Carninci, Piero; d’Adda di Fagagna, Fabrizio

    2017-01-01

    The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs. PMID:28239143

  1. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction12

    PubMed Central

    Sakellariou, Despoina; Chiourea, Maria; Raftopoulou, Christina; Gagos, Sarantis

    2013-01-01

    Human tumors using the alternative lengthening of telomeres (ALT) exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN) in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines. We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted. We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs) were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth. PMID:24339742

  2. Telomere Dysfunction in Nonalcoholic Fatty Liver Disease and Cryptogenic Cirrhosis.

    PubMed

    Laish, Ido; Mannasse-Green, Batya; Hadary, Ruth; Biron-Shental, Tal; Konikoff, Fred M; Amiel, Aliza; Kitay-Cohen, Yona

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) and cryptogenic cirrhosis (CC) are considered preneoplastic conditions that might progress to hepatocellular carcinoma. We evaluated parameters of telomere dysfunction in these patient groups to study the correlation between telomere length and the progression of NAFLD. We analyzed peripheral lymphocytes from 22 patients with NAFLD, 20 patients with CC, and 20 healthy, age-matched controls. Telomere length was analyzed using quantitative fluorescence in situ hybridization, and cellular senescence was evaluated by the percentage of cells with senescence-associated heterochromatin foci. The expression of telomerase reverse transcriptase (hTERT) mRNA was measured using polymerase chain reaction, and telomere capture (TC) was assessed with 2 Cytocell probes, 15qter and 13qter. Shorter telomere length and increased cellular senescence was demonstrated in patients with NAFLD, compared to the CC patients and healthy controls. While hTERT mRNA was significantly decreased, TC was increased in CC patients, compared to the NAFLD group and healthy individuals. Thus, there is a correlation between hTERT mRNA expression and telomere length in patients with NAFLD, which might be related to associated metabolic disorders and the risk of malignant transformation. Patients with CC, on the contrary, elongate their telomeres through the TC mechanism.

  3. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt

    PubMed Central

    Ivanova, Iglika G.; Maringele, Laura

    2016-01-01

    Damaged DNA can be repaired by removal and re-synthesis of up to 30 nucleotides during base or nucleotide excision repair. An important question is what happens when many more nucleotides are removed, resulting in long single-stranded DNA (ssDNA) lesions. Such lesions appear on chromosomes during telomere damage, double strand break repair or after the UV damage of stationary phase cells. Here, we show that long single-stranded lesions, formed at dysfunctional telomeres in budding yeast, are re-synthesized when cells are removed from the telomere-damaging environment. This process requires Pol32, an accessory factor of Polymerase δ. However, re-synthesis takes place even when the telomere-damaging conditions persist, in which case the accessory factors of both polymerases δ and ε are required, and surprisingly, salt. Salt added to the medium facilitates the DNA synthesis, independently of the osmotic stress responses. These results provide unexpected insights into the DNA metabolism and challenge the current view on cellular responses to telomere dysfunction. PMID:26883631

  4. Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes infected by Epstein–Barr virus

    PubMed Central

    Kamranvar, S A; Chen, X; Masucci, M G

    2013-01-01

    Malignant cells achieve replicative immortality by two alternative mechanisms, a common one dependent on de novo synthesis of telomeric DNA by telomerase, and a rare one based on telomere recombination known as alternative lengthening of telomeres (ALT). Epstein–Barr virus (EBV) transforms human B-lymphocytes into lymphoblastoid cell lines with unlimited growth potential in vitro and in vivo. Here we show that newly EBV-infected cells exhibit multiple signs of telomere dysfunction, including the occurrence of extra-chromosomal telomeres, telomere fusion and telomere length heterogeneity, and undergo progressive increase in telomere length without a parallel increase in telomerase activity. This phenotype is accompanied by the accumulation of telomere-associated promyelocytic leukemia nuclear bodies and telomeric-sister chromatid exchange, suggesting that EBV infection promotes the activation of ALT. Newly infected cells also display a significant reduction of telomere-associated TRF2 and express low levels of TRF1, TRF2, POT1 and ATRX, pointing to telomere de-protection as an important correlate of ALT activation. Collectively, these findings highlight the involvement of recombination-dependent mechanisms for maintenance of telomere homeostasis in EBV-induced B-cell immortalization. PMID:23708666

  5. Genetic and environmental factors influencing human diseases with telomere dysfunction

    PubMed Central

    Ly, Hinh

    2009-01-01

    Both genetic and environmental factors have been implicated in the mechanism underlying the pathogenesis of serious and fatal forms of human blood disorder (acquired aplastic anemia, AA) and lung disease (idiopathic pulmonary fibrosis, IPF). We and other researchers have recently shown that naturally occurring mutations in genes encoding the telomere maintenance complex (telomerase) may predispose patients to the development of AA or IPF. Epidemiological data have shown that environmental factors can also cause and/or exacerbate the pathogenesis of these diseases. The exact mechanisms that these germ-line mutations in telomere maintenance genes coupled with environmental insults lead to ineffective hematopoiesis in AA and lung scarring in IPF are not well understood, however. In this article, we provide a summary of evidence for environmental and genetic factors influencing the diseases. These studies provide important insights into the interplay between environmental and genetic factors leading to human diseases with telomere dysfunction. PMID:19684885

  6. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  7. Trigeminal star-like platinum complexes induce cancer cell senescence through quadruplex-mediated telomere dysfunction.

    PubMed

    Zheng, Xiao-Hui; Mu, Ge; Zhong, Yi-Fang; Zhang, Tian-Peng; Cao, Qian; Ji, Liang-Nian; Zhao, Yong; Mao, Zong-Wan

    2016-12-01

    Two trigeminal star-like platinum complexes were synthesized to induce the formation of human telomere G-quadruplex (hTel G4) with extremely high selectivity and affinity. The induced hTel G4 activates strong telomeric DNA damage response (TDDR), resulting in telomere dysfunction and cell senescence.

  8. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    SciTech Connect

    Park, Jeong-Eun; Woo, Seon Rang; Kang, Chang-Mo; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun Ran; Park, In-chul; Hong, Sung Hee; Hwang, Sang-Gu; Lee, Jung-Kee; Kim, Hae Kwon; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2011-01-14

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.

  9. E-type cyclins modulate telomere integrity in mammalian male meiosis.

    PubMed

    Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J

    2016-06-01

    We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.

  10. ATM Inhibition Potentiates Death of Androgen Receptor-inactivated Prostate Cancer Cells with Telomere Dysfunction

    PubMed Central

    Reddy, Vidyavathi; Wu, Min; Ciavattone, Nicholas; McKenty, Nathan; Menon, Mani; Barrack, Evelyn R.; Reddy, G. Prem-Veer; Kim, Sahn-Ho

    2015-01-01

    Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer. PMID:26336104

  11. Telomere and telomerase biology.

    PubMed

    Giardini, Miriam Aparecida; Segatto, Marcela; da Silva, Marcelo Santos; Nunes, Vinícius Santana; Cano, Maria Isabel Nogueira

    2014-01-01

    Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.

  12. Complex interactions between the DNA-damage response and mammalian telomeres

    PubMed Central

    Arnoult, Nausica; Karlseder, Jan

    2016-01-01

    Natural chromosome ends resemble double-stranded DNA breaks, but they do not activate a damage response in healthy cells. Telomeres therefore have evolved to solve the ‘end-protection problem’ by inhibiting multiple DNA damage–response pathways. During the past decade, the view of telomeres has progressed from simple caps that hide chromosome ends to complex machineries that have an active role in organizing the genome. Here we focus on mammalian telomeres and summarize and interpret recent discoveries in detail, focusing on how repair pathways are inhibited, how resection and replication are controlled and how these mechanisms govern cell fate during senescence, crisis and transformation. PMID:26581520

  13. TeloPIN: a database of telomeric proteins interaction network in mammalian cells

    PubMed Central

    Luo, Zhenhua; Dai, Zhiming; Xie, Xiaowei; Feng, Xuyang; Liu, Dan; Songyang, Zhou; Xiong, Yuanyan

    2015-01-01

    Interaction network surrounding telomeres has been intensively studied during the past two decades. However, no specific resource by integrating telomere interaction information data is currently available. To facilitate the understanding of the molecular interaction network by which telomeres are associated with biological process and diseases, we have developed TeloPIN (Telomeric Proteins Interaction Network) database (http://songyanglab.sysu.edu.cn/telopin/), a novel database that points to provide comprehensive information on protein–protein, protein–DNA and protein–RNA interaction of telomeres. TeloPIN database contains four types of interaction data, including (i) protein–protein interaction (PPI) data, (ii) telomeric proteins ChIP-seq data, (iii) telomere-associated proteins data and (iv) telomeric repeat-containing RNAs (TERRA)-interacting proteins data. By analyzing these four types of interaction data, we found that 358 and 199 proteins have more than one type of interaction information in human and mouse cells, respectively. We also developed table browser and TeloChIP genome browser to help researchers with better integrated visualization of interaction data from different studies. The current release of TeloPIN database includes 1111 PPI, eight telomeric protein ChIP-seq data sets, 1391 telomere-associated proteins and 183 TERRA-interacting proteins from 92 independent studies in mammalian cells. The interaction information provided by TeloPIN database will greatly expand our knowledge of telomeric proteins interaction network. Database URL: TeloPIN database address is http://songyanglab.sysu.edu.cn/telopin. TeloPIN database is freely available to non-commercial use. PMID:25792605

  14. Autophagy-independent senescence and genome instability driven by targeted telomere dysfunction.

    PubMed

    Mar, Florie A; Debnath, Jayanta; Stohr, Bradley A

    2015-01-01

    Telomere dysfunction plays a complex role in tumorigenesis. While dysfunctional telomeres can block the proliferation of incipient cancer clones by inducing replicative senescence, fusion of dysfunctional telomeres can drive genome instability and oncogenic genomic rearrangements. Therefore, it is important to define the regulatory pathways that guide these opposing effects. Recent work has shown that the autophagy pathway regulates both senescence and genome instability in various contexts. Here, we apply models of acute telomere dysfunction to determine whether autophagy modulates the resulting genome instability and senescence responses. While telomere dysfunction rapidly induces autophagic flux in human fibroblast cell lines, inhibition of the autophagy pathway does not have a significant impact upon the transition to senescence, in contrast to what has previously been reported for oncogene-induced senescence. Our results suggest that this difference may be explained by disparities in the development of the senescence-associated secretory phenotype. We also show that chromosome fusions induced by telomere dysfunction are comparable in autophagy-proficient and autophagy-deficient cells. Altogether, our results highlight the complexity of the senescence-autophagy interface and indicate that autophagy induction is unlikely to play a significant role in telomere dysfunction-driven senescence and chromosome fusions.

  15. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis.

    PubMed

    Naikawadi, Ram P; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L; Green, Gary; La, Janet L; Rock, Jason R; Looney, Mark R; Wolters, Paul J

    2016-09-08

    Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1(fl/fl) mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin(+) mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase(+) lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1(fl/fl) mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction.

  16. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis

    PubMed Central

    Naikawadi, Ram P.; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L.; Green, Gary; La, Janet L.; Rock, Jason R.; Looney, Mark R.; Wolters, Paul J.

    2016-01-01

    Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction. PMID:27699234

  17. Telomere dysfunction in peripheral blood lymphocytes from patients with primary sclerosing cholangitis and inflammatory bowel disease.

    PubMed

    Laish, Ido; Katz, Hila; Stein, Assaf; Liberman, Meytal; Naftali, Timna; Kitay-Cohen, Yona; Biron-Shental, Tal; Konikoff, Fred M; Amiel, Aliza

    2015-09-01

    Primary sclerosing cholangitis and inflammatory bowel disease are two associated, chronic inflammatory, pre-malignant conditions. We hypothesized that patients with these disorders may harbour telomere dysfunction as a marker of chromosomal instability. The aim of our study was to compare parameters of the telomere-telomerase system in these cohorts. In this prospective study, peripheral blood was withdrawn from patients with primary sclerosing cholangitis (N=20), inflammatory bowel disease (N=20) and healthy controls (N=20), and lymphocytes were isolated. Telomere length was quantified as a function of the signal intensity and telomere number. Random aneuploidy and telomere capture were determined by fluorescence in situ hybridization technique with specific probes. Patients with inflammatory bowel disease had higher measures of intestinal disease activity than patients with primary sclerosing cholangitis. Despite this, shorter telomere length and telomere aggregates, especially the fusion of 2-5 telomeres, were observed at significantly higher rate in patients with primary sclerosing cholangitis relative to inflammatory bowel disease or healthy controls. Rates of aneuploidy and telomere capture were higher in the two probes in both diseases compared to controls (p<0.001). Dysfunction of telomeres was demonstrated in primary sclerosing cholangitis patients more than inflammatory bowel disease and healthy controls patients, which attests to genetic instability and immunosenescence. NCT02247622. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ

    PubMed Central

    Hsiao, Susan J.

    2009-01-01

    Telomeres protect chromosome ends from being viewed as double-strand breaks and from eliciting a DNA damage response. Deprotection of chromosome ends occurs when telomeres become critically short because of replicative attrition or inhibition of TRF2. In this study, we report a novel form of deprotection that occurs exclusively after DNA replication in S/G2 phase of the cell cycle. In cells deficient in the telomeric poly(adenosine diphosphate ribose) polymerase tankyrase 1, sister telomere resolution is blocked. Unexpectedly, cohered sister telomeres become deprotected and are inappropriately fused. In contrast to telomeres rendered dysfunctional by TRF2, which engage in chromatid fusions predominantly between chromatids from different chromosomes (Bailey, S.M., M.N. Cornforth, A. Kurimasa, D.J. Chen, and E.H. Goodwin. 2001. Science. 293:2462–2465; Smogorzewska, A., J. Karlseder, H. Holtgreve-Grez, A. Jauch, and T. de Lange. 2002. Curr. Biol. 12:1635–1644), telomeres rendered dysfunctional by tankyrase 1 engage in chromatid fusions almost exclusively between sister chromatids. We show that cohered sister telomeres are fused by DNA ligase IV–mediated nonhomologous end joining. These results demonstrate that the timely removal of sister telomere cohesion is essential for the formation of a protective structure at chromosome ends after DNA replication in S/G2 phase of the cell cycle. PMID:19221198

  19. ATM Inhibition Potentiates Death of Androgen Receptor-inactivated Prostate Cancer Cells with Telomere Dysfunction.

    PubMed

    Reddy, Vidyavathi; Wu, Min; Ciavattone, Nicholas; McKenty, Nathan; Menon, Mani; Barrack, Evelyn R; Reddy, G Prem-Veer; Kim, Sahn-Ho

    2015-10-16

    Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells.

    PubMed

    Le Chalony, Catherine; Hoffschir, Françoise; Gauthier, Laurent R; Gross, Julia; Biard, Denis S; Boussin, François D; Pennaneach, Vincent

    2012-09-01

    DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.

  1. Dual roles of telomere dysfunction in initiation and suppression of tumorigenesis

    SciTech Connect

    Cosme-Blanco, Wilfredo; Chang, Sandy

    2008-06-10

    Human carcinomas arise through the acquisition of genetic changes that endow precursor cancer cells with a critical threshold of cancer-relevant genetic lesions. This complex genomic alterations confer upon precursor cancer cells the ability to grow indefinitely and to metastasize to distant sites. One important mechanism underlying a cell's tumorigenic potential is the status of its telomere. Telomeres are G-rich simple repeat sequences that serve to prevent chromosomal ends from being recognized as DNA double-strand breaks (DSBs). Dysfunctional telomeres resemble DSBs, leading to the formation of dicentric chromosomes that fuel high degrees of genomic instability. In the setting of an intact p53 pathway, this instability promotes cellular senescence, a potent tumor suppressor mechanism. However, rare cells that stochastically lose p53 function emerge from this sea of genomic instability and progress towards cancer. In this review, we describe the use of mouse models to probe the impact of dysfunctional telomeres on tumor initiation and suppression.

  2. Glucose substitution prolongs maintenance of energy homeostasis and lifespan of telomere dysfunctional mice

    PubMed Central

    Missios, Pavlos; Zhou, Yuan; Guachalla, Luis Miguel; von Figura, Guido; Wegner, Andre; Chakkarappan, Sundaram Reddy; Binz, Tina; Gompf, Anne; Hartleben, Götz; Burkhalter, Martin D.; Wulff, Veronika; Günes, Cagatay; Sattler, Rui Wang; Song, Zhangfa; Illig, Thomas; Klaus, Susanne; Böhm, Bernhard O.; Wenz, Tina; Hiller, Karsten; Rudolph, K. Lenhard

    2014-01-01

    DNA damage and telomere dysfunction shorten organismal lifespan. Here we show that oral glucose administration at advanced age increases health and lifespan of telomere dysfunctional mice. The study reveals that energy consumption increases in telomere dysfunctional cells resulting in enhanced glucose metabolism both in glycolysis and in the tricarboxylic acid cycle at organismal level. In ageing telomere dysfunctional mice, normal diet provides insufficient amounts of glucose thus leading to impaired energy homeostasis, catabolism, suppression of IGF-1/mTOR signalling, suppression of mitochondrial biogenesis and tissue atrophy. A glucose-enriched diet reverts these defects by activating glycolysis, mitochondrial biogenesis and oxidative glucose metabolism. The beneficial effects of glucose substitution on mitochondrial function and glucose metabolism are blocked by mTOR inhibition but mimicked by IGF-1 application. Together, these results provide the first experimental evidence that telomere dysfunction enhances the requirement of glucose substitution for the maintenance of energy homeostasis and IGF-1/mTOR-dependent mitochondrial biogenesis in ageing tissues. PMID:25233189

  3. Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy.

    PubMed

    Mourkioti, Foteini; Kustan, Jackie; Kraft, Peggy; Day, John W; Zhao, Ming-Ming; Kost-Alimova, Maria; Protopopov, Alexei; DePinho, Ronald A; Bernstein, Daniel; Meeker, Alan K; Blau, Helen M

    2013-08-01

    Duchenne muscular dystrophy (DMD), the most common inherited muscular dystrophy of childhood, leads to death due to cardiorespiratory failure. Paradoxically, mdx mice with the same genetic deficiency of dystrophin exhibit minimal cardiac dysfunction, impeding the development of therapies. We postulated that the difference between mdx and DMD might result from differences in telomere lengths in mice and humans. We show here that, like DMD patients, mice that lack dystrophin and have shortened telomeres (mdx/mTR(KO)) develop severe functional cardiac deficits including ventricular dilation, contractile and conductance dysfunction, and accelerated mortality. These cardiac defects are accompanied by telomere erosion, mitochondrial fragmentation and increased oxidative stress. Treatment with antioxidants significantly retards the onset of cardiac dysfunction and death of mdx/mTR(KO) mice. In corroboration, all four of the DMD patients analysed had 45% shorter telomeres in their cardiomyocytes relative to age- and sex-matched controls. We propose that the demands of contraction in the absence of dystrophin coupled with increased oxidative stress conspire to accelerate telomere erosion culminating in cardiac failure and death. These findings provide strong support for a link between telomere length and dystrophin deficiency in the etiology of dilated cardiomyopathy in DMD and suggest preventive interventions.

  4. Telomeres and endocrine dysfunction of the adrenal and GH/IGF-1 axes.

    PubMed

    Aulinas, Anna; Ramírez, María José; Barahona, María José; Mato, Eugènia; Bell, Olga; Surrallés, Jordi; Webb, Susan M

    2013-12-01

    Telomeres, located at the end of linear chromosomes, are essential to maintain genomic stability. Telomere biology has recently emerged as an important player in the fields of ageing and disease. To maintain telomere length (TL) and reduce its degradation after mitosis, the telomerase enzyme complex is produced. Genetic, epigenetic, hormonal and environmental factors can regulate telomerase function. These include stress hormones such as cortisol and growth factors. The hypothalamic-pituitary-adrenal (HPA) axis has been evaluated in psychiatric diseases where hypercortisolism and oxidative stress are often present. Some researches have linked TL shortening to increases in stress-related cortisol, but others have not. The effects of cortisol on the telomere system are complex and may depend on the intensity and duration of exposure. On the other hand, low levels of IGF-1 are associated with inflammation and ageing-related diseases (ischaemic heart disease, congestive heart failure). Both IGF-1 and TL diminish with age and are positively and strongly correlated with each other. It is not clear whether this positive correlation reflects a single association or a cause-effect relationship. Further research will ideally investigate longitudinal changes in telomeres and both these hormonal axes. To our knowledge, TL dysfunction has not been described in either endogenous hypercortisolism (Cushing's syndrome) or acromegaly where excessive amounts of GH and consequently IGF-1 are produced. This review focuses on the possible relationships between telomere dysfunction and the hypothalamic-pituitary-adrenal (HPA) axis and GH-IGF-1 system. © 2013 John Wiley & Sons Ltd.

  5. Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms

    PubMed Central

    Raykov, Vasil; Marvin, Marcus E.; Louis, Edward J.; Maringele, Laura

    2016-01-01

    Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction. PMID:27334270

  6. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX.

    PubMed

    Hu, Yang; Shi, Guang; Zhang, Laichen; Li, Feng; Jiang, Yuanling; Jiang, Shuai; Ma, Wenbin; Zhao, Yong; Songyang, Zhou; Huang, Junjiu

    2016-08-31

    Activation of telomerase or alternative lengthening of telomeres (ALT) is necessary for tumours to escape from dysfunctional telomere-mediated senescence. Anti-telomerase drugs might be effective in suppressing tumour growth in approximately 85-90% of telomerase-positive cancer cells. However, there are still chances for these cells to bypass drug treatment after switching to the ALT mechanism to maintain their telomere integrity. But the mechanism underlying this switch is unknown. In this study, we used telomerase-positive cancer cells (HTC75) to discover the mechanism of the telomerase-ALT switch by inducing telomere-specific DNA damage, alpha-thalassemia X-linked syndrome protein (ATRX) knockdown and deletion of death associated protein (DAXX). Surprisingly, two important ALT hallmarks in the ALT-like HTC75 cells were observed after treatments: ALT-associated promyelocytic leukaemia bodies (APBs) and extrachromosomal circular DNA of telomeric repeats. Moreover, knocking out hTERT by utilizing the CRISPR/Cas9 technique led to telomere elongation in a telomerase-independent manner in ALT-like HTC75 cells. In summary, this is the first report to show that inducing telomeric DNA damage, disrupting the ATRX/DAXX complex and inhibiting telomerase activity in telomerase-positive cancer cells lead to the ALT switch.

  7. Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres.

    PubMed

    Rog, Ofer; Miller, Kyle M; Ferreira, Miguel Godinho; Cooper, Julia Promisel

    2009-03-13

    Genome stability depends upon the RecQ helicases, which are conserved from bacteria to man, but little is known about how their myriad activities are regulated. Fission yeast lacking the telomere protein Taz1 (mammalian TRF1/TRF2 ortholog) lose many hallmarks of telomeres, including accurate replication and local protection from DNA repair reactions. Here we show that the RecQ homolog, Rqh1, is sumoylated. Surprisingly, Rqh1 acts on taz1Delta telomeres in a deleterious way, promoting telomere breakage and entanglement. Mutation of Rqh1 sumoylation sites rescues taz1Delta cells from these hazards without dramatically affecting nontelomeric Rqh1 functions. The prominence of Rqh1 in the etiology of several different telomere defects supports the idea that they originate from a common underlying lesion--aberrant processing of the stalled telomeric replication forks that accumulate in the absence of Taz1. Our work underscores the principle that RecQ helicases are "double-edged swords" whose activity, while necessary for maintaining genome-wide stability, must be vigilantly controlled.

  8. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    SciTech Connect

    Woo, Seon Rang; Park, Jeong-Eun; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Jeong, Jaemin; Kang, Chang-Mo; Yun, Hyun Jin; Yun, Mi Yong; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Park, In-Chul; Hong, Sung Hee; Hwang, Sang-Gu; Kim, Haekwon; Cho, Myung-Haing; Kim, Sang Hoon; Park, Gil Hong; Lee, Kee-Ho

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{sub 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.

  9. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    PubMed

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity.

  10. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes

    PubMed Central

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2008-01-01

    Telomeres are maintained by three DNA-binding proteins (telomeric repeat binding factor 1 [TRF1], TRF2, and protector of telomeres 1 [POT1]) and several associated factors. One factor, TRF1-interacting protein 2 (TIN2), binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether subcomplexes also exist in vivo. We provide evidence for two TIN2 subcomplexes with distinct functions in human cells. We isolated these two TIN2 subcomplexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13 and TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist and that TIN2-15C–sensitive subcomplexes are particularly important for cell survival in the absence of functional p53. PMID:18443218

  11. Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line

    SciTech Connect

    Qiang, Weiguang; Wu, Qinqin; Zhou, Fuxiang; Xie, Conghua; Wu, Changping; Zhou, Yunfeng

    2014-03-07

    Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.

  12. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis

    PubMed Central

    Morimoto, Akihiro; Shibuya, Hiroki; Zhu, Xiaoqiang; Kim, Jihye; Ishiguro, Kei-ichiro; Han, Min

    2012-01-01

    In yeasts and worms, KASH (Klarsicht/ANC-1/Syne/homology) domain and SUN (Sad-1/UNC-84) domain nuclear envelope (NE) proteins play a crucial role in meiotic chromosome movement and homologue pairing. However, although the vertebrate SUN domain protein SUN1 is involved in these processes, its partner has remained identified. Based on subcellular localization screening in mouse spermatocytes, we identified a novel germ cell–specific protein, KASH5, that localized exclusively at telomeres from the leptotene to diplotene stages in both spermatocytes and oocytes. KASH5 possesses hitherto unknown KASH-related sequences that directly interacted with SUN1 and mediated telomere localization. Thus, KASH5 is a mammalian meiosis-specific KASH domain protein. We show that meiotic chromosome movement depended on microtubules and that KASH5 interacted with the microtubule-associated dynein–dynactin complex. These results suggest that KASH5 connects the telomere-associated SUN1 protein to the cytoplasmic force–generating mechanism involved in meiotic chromosome movement. Our study strongly suggests that the meiotic homologue-pairing mechanism mediated by the SUN–KASH NE bridge is highly conserved among eukaryotes. PMID:22826121

  13. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    SciTech Connect

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  14. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts.

    PubMed

    Cao, Kan; Blair, Cecilia D; Faddah, Dina A; Kieckhaefer, Julia E; Olive, Michelle; Erdos, Michael R; Nabel, Elizabeth G; Collins, Francis S

    2011-07-01

    Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disease, is caused by a point mutation in the lamin A gene (LMNA). This mutation constitutively activates a cryptic splice donor site, resulting in a mutant lamin A protein known as progerin. Recent studies have demonstrated that progerin is also produced at low levels in normal human cells and tissues. However, the cause-and-effect relationship between normal aging and progerin production in normal individuals has not yet been determined. In this study, we have shown in normal human fibroblasts that progressive telomere damage during cellular senescence plays a causative role in activating progerin production. Progressive telomere damage was also found to lead to extensive changes in alternative splicing in multiple other genes. Interestingly, elevated progerin production was not seen during cellular senescence that does not entail telomere shortening. Taken together, our results suggest a synergistic relationship between telomere dysfunction and progerin production during the induction of cell senescence, providing mechanistic insight into how progerin may participate in the normal aging process.

  15. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts

    PubMed Central

    Cao, Kan; Blair, Cecilia D.; Faddah, Dina A.; Kieckhaefer, Julia E.; Olive, Michelle; Erdos, Michael R.; Nabel, Elizabeth G.; Collins, Francis S.

    2011-01-01

    Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disease, is caused by a point mutation in the lamin A gene (LMNA). This mutation constitutively activates a cryptic splice donor site, resulting in a mutant lamin A protein known as progerin. Recent studies have demonstrated that progerin is also produced at low levels in normal human cells and tissues. However, the cause-and-effect relationship between normal aging and progerin production in normal individuals has not yet been determined. In this study, we have shown in normal human fibroblasts that progressive telomere damage during cellular senescence plays a causative role in activating progerin production. Progressive telomere damage was also found to lead to extensive changes in alternative splicing in multiple other genes. Interestingly, elevated progerin production was not seen during cellular senescence that does not entail telomere shortening. Taken together, our results suggest a synergistic relationship between telomere dysfunction and progerin production during the induction of cell senescence, providing mechanistic insight into how progerin may participate in the normal aging process. PMID:21670498

  16. Short dysfunctional telomeres impair the repair of arsenite-induced oxidative damage in mouse cells.

    PubMed

    Newman, Jennifer P A; Banerjee, Birendranath; Fang, Wanru; Poonepalli, Anuradha; Balakrishnan, Lakshmidevi; Low, Grace Kah Mun; Bhattacharjee, Rabindra N; Akira, Shizuo; Jayapal, Manikandan; Melendez, Alirio J; Baskar, Rajamanickam; Lee, Han-Woong; Hande, M Prakash

    2008-03-01

    Telomeres and telomerase appear to participate in the repair of broken DNA ends produced by oxidative damage. Arsenite is an environmental contaminant and a potent human carcinogen, which induces oxidative stress on cells via the generation of reactive oxygen species affecting cell viability and chromosome stability. It promotes telomere attrition and reduces cell survival by apoptosis. In this study, we used mouse embryonic fibroblasts (MEFs) from mice lacking telomerase RNA component (mTERC(-/-) mice) with long (early passage or EP) and short (late passage or LP) telomeres to investigate the extent of oxidative damage by comparing the differences in DNA damage, chromosome instability, and cell survival at 24 and 48 h of exposure to sodium arsenite (As3+; NaAsO2). There was significantly high level of DNA damage in mTERC(-/-) cells with short telomeres as determined by alkaline comet assay. Consistent with elevated DNA damage, increased micronuclei (MN) induction reflecting gross genomic instability was also observed. Fluorescence in situ hybridization (FISH) analysis revealed that increasing doses of arsenite augmented the chromosome aberrations, which contributes to genomic instability leading to possibly apoptotic cell death and cell cycle arrest. Microarray analysis has revealed that As3+ treatment altered the expression of 456 genes of which 20% of them have known functions in cell cycle and DNA damage signaling and response, cell growth, and/or maintenance. Results from our studies imply that short dysfunctional telomeres impair the repair of oxidative damage caused by arsenite. The results will have implications in risk estimation as well as cancer chemotherapy. (c) 2007 Wiley-Liss, Inc.

  17. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells.

    PubMed

    Müller, Sebastian; Sanders, Deborah A; Di Antonio, Marco; Matsis, Stephanos; Riou, Jean-François; Rodriguez, Raphaël; Balasubramanian, Shankar

    2012-08-28

    The synthesis, biophysical and biological evaluation of a series of G-quadruplex interacting small molecules based on a N,N'-bis(quinolinyl)pyridine-2,6-dicarboxamide scaffold is described. The synthetic analogues were evaluated for their ability to stabilize telomeric G-quadruplex DNA, some of which showed very high stabilization potential associated with high selectivity over double-stranded DNA. The compounds exhibited growth arrest of cancer cells with detectable selectivity over normal cells. Long-time growth arrest was accompanied by senescence, where telomeric dysfunction is a predominant mechanism together with the accumulation of restricted DNA damage sites in the genome. Our data emphasize the potential of a senescence-mediated anticancer therapy through the use of G-quadruplex targeting small molecules based on the molecular framework of pyridostatin.

  18. Telomere dysfunction and inactivation of the p16(INK4a)/Rb pathway in pyothorax-associated lymphoma.

    PubMed

    Tresnasari, Kristianti; Takakuwa, Tetsuya; Ham, Maria Francisca; Rahadiani, Nur; Nakajima, Hiroo; Aozasa, Katsuyuki

    2007-07-01

    Previous studies have indicated that genome instability is involved in the lymphomagenesis of pyothorax-associated lymphoma (PAL), which develops in patients with a long-standing history of pyothorax. One of the well-known causes of genome instability is telomere dysfunction. In the present study, the condition of telomeres was analyzed in the cell lines and clinical samples from PAL. Telomere length (TL) in PAL cell lines was extremely short (<4.5 kbp). TL in tumor samples was broad in range, and shorter than that in the peripheral blood leukocytes from the matched patients. Three of five PAL cell lines showed frequent loss of telomere signals (telomere erosion); however, telomerase activity in PAL cell lines was similar to that in Burkitt lymphoma cell lines. Rb expression was detected in three PAL cell lines and four of 15 clinical samples, respectively. Rb protein expressed in three PAL cell lines was heavily phosphorylated, indicating that function of Rb protein was suppressed. p16(INK4a) expression was not detected in either cell lines or clinical samples. The promoter region in p16(INK4a) was heavily methylated in all cell lines as well as the clinical samples. Inactivation of the p16(INK4a)/Rb pathway may allow continuous cell division and critical telomere shortening, which induce genome instability, finally leading to malignant transformation. Taken together, telomere dysfunction and inactivation of the p16(INK4a)/Rb pathway might play a role for PAL development.

  19. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence.

    PubMed

    Benson, Erica K; Lee, Sam W; Aaronson, Stuart A

    2010-08-01

    Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature-aging syndrome caused by a dominant mutation in the gene encoding lamin A, which leads to an aberrantly spliced and processed protein termed progerin. Previous studies have shown that progerin induces early senescence associated with increased DNA-damage signaling and that telomerase extends HGPS cellular lifespan. We demonstrate that telomerase extends HGPS cellular lifespan by decreasing progerin-induced DNA-damage signaling and activation of p53 and Rb pathways that otherwise mediate the onset of premature senescence. We show further that progerin-induced DNA-damage signaling is localized to telomeres and is associated with telomere aggregates and chromosomal aberrations. Telomerase amelioration of DNA-damage signaling is relatively rapid, requires both its catalytic and DNA-binding functions, and correlates in time with the acquisition by HGPS cells of the ability to proliferate. All of these findings establish that HGPS premature cellular senescence results from progerin-induced telomere dysfunction.

  20. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction

    PubMed Central

    Cheng, Ye; Li, Yunqian; Ma, Chengyuan; Song, Yang; Xu, Haiyang; Yu, Hongquan; Xu, Songbai; Mu, Qingchun; Li, Haisong; Chen, Yong; Zhao, Gang

    2016-01-01

    Glioblastomas are resistant to many kinds of treatment, including chemotherapy, radiation and other adjuvant therapies. As2O3 reportedly induces ROS generation in cells, suggesting it may be able to induce telomerase suppression and telomere dysfunction in glioblastoma cells. We show here that As2O3 induces ROS generation as well as telomerase phosphorylation in U87, U251, SHG4 and C6 glioma cells. It also induces translocation of telomerase from the nucleus to the cytoplasm, thereby decreasing total telomerase activity. These effects of As2O3 trigger an extensive DNA damage response at the telomere, which includes up-regulation of ATM, ATR, 53BP1, γ-H2AX and Mer11, in parallel with telomere fusion and 3′-overhang degradation. This ultimately results in induction of p53- and p21-mediated cell apoptosis, G2/M cell cycle arrest and cellular senescence. These results provide new insight into the antitumor effects of As2O3 and can perhaps contribute to solving the problem of glioblastoma treatment resistance. PMID:26871293

  1. A Human Artificial Chromosome Recapitulates the Metabolism of Native Telomeres in Mammalian Cells

    PubMed Central

    Wakai, Michihito; Abe, Satoshi; Kazuki, Yasuhiro; Oshimura, Mitsuo; Ishikawa, Fuyuki

    2014-01-01

    Telomeric and subtelomeric regions of human chromosomes largely consist of highly repetitive and redundant DNA sequences, resulting in a paucity of unique DNA sequences specific to individual telomeres. Accordingly, it is difficult to analyze telomere metabolism on a single-telomere basis. To circumvent this problem, we have exploited a human artificial chromosome (HAC#21) derived from human chromosome 21 (hChr21). HAC#21 was generated through truncation of the long arm of native hChr21 by the targeted telomere seeding technique. The newly established telomere of HAC#21 lacks canonical subtelomere structures but possesses unique sequences derived from the target vector backbone and the internal region of hChr21 used for telomere targeting, which enabled us to molecularly characterize the single HAC telomere. We established HeLa and NIH-3T3 sub-lines containing a single copy of HAC#21, where it was robustly maintained. The seeded telomere is associated with telomeric proteins over a length similar to that reported in native telomeres, and is faithfully replicated in mid-S phase in HeLa cells. We found that the seeded telomere on HAC#21 is transcribed from the newly juxtaposed site. The transcript, HAC-telRNA, shares several features with TERRA (telomeric repeat-containing RNA): it is a short-lived RNA polymerase II transcript, rarely contains a poly(A) tail, and associates with chromatin. Interestingly, HAC-telRNA undergoes splicing. These results suggest that transcription into TERRA is locally influenced by the subtelomeric context. Taken together, we have established human and mouse cell lines that will be useful for analyzing the behavior of a uniquely identifiable, functional telomere. PMID:24558398

  2. Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells

    SciTech Connect

    Gomez-Millan, Jaime; Goldblatt, Erin M.; Gryaznov, Sergei M.; Mendonca, Marc S.; Herbert, Brittney-Shea . E-mail: brherber@iupui.edu

    2007-03-01

    Purpose: Telomerase is expressed in 80-90% of tumor cells, but is absent in most somatic cells. The absence of telomerase activity results in progressive telomere shortening, leading to cellular senescence or death through deoxyribonucleic acid (DNA) damage signals. In addition, a role for telomerase in DNA damage repair has also been suggested. A specific telomerase inhibitor, GRN163L that is complementary to the template region of the telomerase ribonucleic acid component (hTR). We hypothesized that exposure to GRN163L, either through immediate inhibition of telomerase activity or through eventual telomere shortening and dysfunction, may enhance radiation sensitivity. Our goal was to test whether the treatment with GRN163L enhances sensitivity to irradiation (IR) in MDA-MB-231 breast cancer cells. Methods and Materials: The MDA-MB-231 breast cancer cells were treated with or without GRN163L for 2-42 days. Inhibition of telomerase activity and shortening of telomeres were confirmed. Cells were then irradiated and clonogenic assays were performed to show cell survival differences. In vivo studies using MDA-MB-231 xenografts were performed to corroborate the in vitro results. Results: We show that cells with shortened telomeres due to GRN163L enhance the effect on IR reducing survival by an additional 30% (p < 0.01). These results are confirmed in vivo, with a significant decrease in tumor growth in mice exposed to GRN163L. Conclusions: We found that GRN163L is a promising adjuvant treatment in combination with radiation therapy that may improve the therapeutic index by enhancing the radiation sensitivity. These studies prompt further investigation as to whether this combination can be applied to other cancers and the clinic.

  3. Akt Regulates TPP1 Homodimerization and Telomere Protection

    PubMed Central

    Han, Xin; Liu, Dan; Zhang, Yi; Li, Yujing; Lu, Weisi; Chen, Junjie; Songyang, Zhou

    2014-01-01

    Summary Telomeres are specialized structures at the ends of eukaryotic chromosomes that are important for maintaining genome stability and integrity. Telomere dysfunction has been linked to aging and cancer development. In mammalian cells, extensive studies have been carried out to illustrate how core telomeric proteins assemble on telomeres to recruit the telomerase and additional factors for telomere maintenance and protection. In comparison, how changes in growth signaling pathways impact telomeres and telomere-binding proteins remains largely unexplored. The phosphatidylinositol 3-kinase (PI3-K)/Akt (also known as PKB) pathway, one of the best characterized growth signaling cascades, regulates a variety of cellular function including cell proliferation, survival, metabolism, and DNA repair, and dysregulation of PI3-K/Akt signaling has been linked to aging and diseases such as cancer and diabetes. In this study, we provide evidence that the Akt signaling pathway plays an important role in telomere protection. Akt inhibition either by chemical inhibitors or small interfering RNAs induced telomere dysfunction. Furthermore, we found that TPP1 could homodimerize through its OB fold, a process that was dependent on the Akt kinase. Telomere damage and reduced TPP1 dimerization as a result of Akt inhibition was also accompanied by diminished recruitment of TPP1 and POT1 to the telomeres. Our findings highlight a previously unknown link between Akt signaling and telomere protection. PMID:23862686

  4. The G-quadruplex-stabilising agent RHPS4 induces telomeric dysfunction and enhances radiosensitivity in glioblastoma cells.

    PubMed

    Berardinelli, F; Siteni, S; Tanzarella, C; Stevens, M F; Sgura, A; Antoccia, A

    2015-01-01

    G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4. In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres. In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions. These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Multiple roles for Mre11 at uncapped telomeres

    PubMed Central

    Deng, Yibin; Guo, Xiaolan; Ferguson, David O.; Chang, Sandy

    2009-01-01

    Progressive telomere attrition or uncapping of the shelterin complex elicits a DNA damage response (DDR) as a result of a cell’s inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks (DSBs)1. Telomere deprotection activates both ataxia telangiectasia mutated (ATM) and telangiectasia and Rad3-related (ATR) kinase dependent DDR pathways and promotes efficient non-homologous end-joining (NHEJ) of dysfunctional telomeres2–5. The mammalian Mre11-Rad50-NBS1 (MRN) complex interacts with ATM to sense chromosomal DSBs and coordinate global DNA damage responses6, 7. While the MRN complex accumulates at dysfunctional telomeres, it is not known whether mammalian MRN promotes repair at these sites. Here we address this question by utilizing mouse alleles that either inactivate the entire MRN complex or eliminate only the nuclease activities of Mre118. Cells lacking MRN do not activate ATM when telomeric repeat binding factor 2 (TRF2) is removed from telomeres, and Ligase 4 (Lig4) dependent chromosome end-to-end fusions are markedly reduced. Residual chromatid fusions involve only telomeres generated by leading strand synthesis. Strikingly, while cells deficient for Mre11 nuclease activity efficiently activate ATM and recruit 53BP1 to deprotected telomeres, the 3’ telomeric overhang persists to prevent NHEJ-mediated chromosomal fusions. Removal of shelterin proteins that protect the 3’ overhang in the setting of Mre11 nuclease deficiency restores Lig4 dependent chromosome fusions. Our data suggest a critical role for the MRN complex in sensing dysfunctional telomeres, with Mre11 nuclease activity required to remove the 3’ telomeric overhang to promote chromosome fusion. Mre11 is also required to protect newly replicated leading strand telomeres from engaging the NHEJ pathway, likely by promoting 5’ strand resection to generate Pot1a-TPP1 bound 3’ overhangs that prevents NHEJ. PMID:19633651

  6. Cancer and aging: The importance of telomeres in genome maintenance

    SciTech Connect

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  7. Emerging therapeutic approaches based on nanotechnology for the treatment of diseases associated with telomere dysfunction.

    PubMed

    Egusquiaguirre, Susana Patricia; Pedraz, Jose Luis; Hernandez, Rosa Maria; Igartua, Manuela

    2015-01-01

    Telomeric diseases are a group of rare progeroid genetic syndromes, presenting premature aging phenotypes, characterized for defects on telomere maintenance. In humans, telomeres are heterochromatic structures consisting of long TTAGGG repeats located at the chromosomal ends, which shorten progressively after each DNA replication because of the 'end replication problem'. Critically short telomeres activate a DNA damage response that leads to the arrest of the cell cycle and resulting in cellular senescence or apoptosis. Furthermore, excessively short telomeres are prone to create telomeric fusions, causing genomic instability and malignant transformation. In order to counteract this process, there are two enzymatic complexes, the telomerase complex, with the capacity to elongate telomeres; and the shelterin complex, which protects them from being recognized as DNA breaks. Over the last few decades, several studies have confirmed that critically short telomeres and defects in telomere-associated enzymatic complexes are involved in the development of a group of rare human genetic diseases, with the accumulation of excessive telomere attrition as the underlying cause of these pathologies. Despite the severity of these disorders, there is no curative treatment for any of them. In light of this, this review summarizes the most important defective telomere diseases, their current management, and it presents possible therapeutic strategies based on nanotechnology which may open up new possibilities for their treatment.

  8. HnRNP A3 binds to and protects mammalian telomeric repeats in vitro

    SciTech Connect

    Tanaka, Etsuko; Fukuda, Hirokazu; Nakashima, Katsuhiko; Tsuchiya, Naoto; Seimiya, Hiroyuki; Nakagama, Hitoshi . E-mail: hnakagam@gan2.res.ncc.go.jp

    2007-06-29

    The biological function of hnRNP family proteins is widely diverse and involved in pre-mRNA processing, transcriptional regulation, recombination, and telomere maintenance. In the course of our study on the elucidation of biological functions of minisatellite DNA, we isolated several nuclear proteins that bind to the mouse minisatellite Pc-1, which consists of a tandem array of d(GGCAG) repeats, from NIH3T3 cells. One of the minisatellite binding proteins, MNBP-A, which binds to a single-stranded G-rich strand of the Pc-1 repeat, was proven identical to the hnRNP A3. Recombinant hnRNP A3 was demonstrated to bind to the single-stranded telomeric d(TTAGGG) repeat with much higher affinity than the d(GGCAG) repeat. Binding of hnRNP A3 to the single-stranded telomeric repeat protected the repeat from nuclease attack, and inhibited both telomerase reaction and DNA synthesis in vitro. These results suggest a possible biological role of hnRNP A3 in the stable maintenance of telomere repeats.

  9. Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores.

    PubMed

    Teyssier, Jean-Raymond; Chauvet-Gelinier, Jean-Christophe; Ragot, Sylviane; Bonin, Bernard

    2012-01-01

    Major depressive disorder (MDD) is frequently associated with chronic medical illness responsible of increased disability and mortality. Inflammation and oxidative stress are considered to be the major mediators of the allostatic load, and has been shown to correlate with telomere erosion in the leucocytes of MDD patients, leading to the model of accelerated aging. However, the significance of telomere length as an exclusive biomarker of aging has been questioned on both methodological and biological grounds. Furthermore, telomeres significantly shorten only in patients with long lasting MDD. Sensitive and dynamic functional biomarkers of aging would be clinically useful to evaluate the somatic impact of MDD. To address this issue we have measured in the blood leucocytes of MDD patients (N=17) and controls (N=16) the expression of two genes identified as robust biomarkers of human aging and telomere dysfunction: p16(INK4a) and STMN1. We have also quantified the transcripts of genes involved in the repair of oxidative DNA damage at telomeres (OGG1), telomere regulation and elongation (TERT), and in the response to biopsychological stress (FOS and DUSP1). The OGG1, p16(INK4a), and STMN1 gene were significantly up-regulated (25 to 100%) in the leucocytes of MDD patients. Expression of p16(INK4a) and STMN1 was directly correlated with anxiety scores in the depression group, and that of p16(INK4a), STMN and TERT with the depression and anxiety scores in the combined sample (MDD plus controls). Furthermore, we identified a unique correlative pattern of gene expression in the leucocytes of MDD subjects. Expression of p16(INK4) and STMN1 is a promising biomarker for future epidemiological assessment of the somatic impact of depressive and anxious symptoms, at both clinical and subclinical level in both depressive patients and general population.

  10. Up-Regulation of leucocytes Genes Implicated in Telomere Dysfunction and Cellular Senescence Correlates with Depression and Anxiety Severity Scores

    PubMed Central

    Teyssier, Jean-Raymond; Chauvet-Gelinier, Jean-Christophe; Ragot, Sylviane; Bonin, Bernard

    2012-01-01

    Background Major depressive disorder (MDD) is frequently associated with chronic medical illness responsible of increased disability and mortality. Inflammation and oxidative stress are considered to be the major mediators of the allostatic load, and has been shown to correlate with telomere erosion in the leucocytes of MDD patients, leading to the model of accelerated aging. However, the significance of telomere length as an exclusive biomarker of aging has been questioned on both methodological and biological grounds. Furthermore, telomeres significantly shorten only in patients with long lasting MDD. Sensitive and dynamic functional biomarkers of aging would be clinically useful to evaluate the somatic impact of MDD. Methodology To address this issue we have measured in the blood leucocytes of MDD patients (N = 17) and controls (N = 16) the expression of two genes identified as robust biomarkers of human aging and telomere dysfunction: p16INK4a and STMN1. We have also quantified the transcripts of genes involved in the repair of oxidative DNA damage at telomeres (OGG1), telomere regulation and elongation (TERT), and in the response to biopsychological stress (FOS and DUSP1). Results The OGG1, p16INK4a, and STMN1 gene were significantly up-regulated (25 to 100%) in the leucocytes of MDD patients. Expression of p16INK4a and STMN1 was directly correlated with anxiety scores in the depression group, and that of p16INK4a, STMN and TERT with the depression and anxiety scores in the combined sample (MDD plus controls). Furthermore, we identified a unique correlative pattern of gene expression in the leucocytes of MDD subjects. Conclusions Expression of p16INK4 and STMN1 is a promising biomarker for future epidemiological assessment of the somatic impact of depressive and anxious symptoms, at both clinical and subclinical level in both depressive patients and general population. PMID:23185405

  11. Opposing impacts on healthspan and longevity by limiting dietary selenium in Telomere Dysfunctional mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential trace element essential for optimal health. We investigated the role of Se in longevity and healthspan in a mouse model of healthy aging in humans with short telomeres. Telomere shortening is associated with aging, mortality and aging-related diseases. We found that whi...

  12. A ‘higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs

    PubMed Central

    Schoeftner, Stefan; Blasco, Maria A

    2009-01-01

    Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases. PMID:19629032

  13. The fission yeast MRN complex tethers dysfunctional telomeres for NHEJ repair

    PubMed Central

    Reis, Clara Correia; Batista, Sílvia; Ferreira, Miguel Godinho

    2012-01-01

    Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non-homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23MRE11-Rad50-Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1ATM activation nor 5′-end resection was required for telomere fusion. Nuclease activity of Rad32MRE11 was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32MRE11 mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split-molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ. PMID:23188080

  14. Telomere dysfunction and cell survival: roles for distinctTIN2-containing complexes

    SciTech Connect

    Kim, Sahn-Ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Beausejour, Christian; Kaminker, Patrick; Campisi, Judith

    2006-11-07

    Telomeres are maintained by three DNA binding proteins, TRF1, TRF2 and POT1, and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. These and two other proteins form a soluble complex that may be the core telomere-maintenance complex. It is not clear whether subcomplexes exist or function in vivo. Here, we provide evidence for two TIN2 subcomplexes with distinct functions in human cells. TIN2 ablation by RNA interference caused telomere uncapping and p53-independent cell death in all cells tested. However, we isolated two TIN2 complexes from cell lysates, each selectively sensitive to a TIN2 mutant (TIN2-13, TIN2-15C). In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN215C more than TIN2-13 caused genomic instability and cell death. Thus, TIN2 subcomplexes likely have distinct functions in telomere maintenance, and may provide selective targets for eliminating cells with mutant p53.

  15. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells.

    PubMed

    Boccardi, Virginia; Razdan, Neetu; Kaplunov, Jessica; Mundra, Jyoti J; Kimura, Masayuki; Aviv, Abraham; Herbig, Utz

    2015-06-01

    Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells.

  16. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells

    PubMed Central

    Boccardi, Virginia; Razdan, Neetu; Kaplunov, Jessica; Mundra, Jyoti J; Kimura, Masayuki; Aviv, Abraham; Herbig, Utz

    2015-01-01

    Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells. PMID:25684230

  17. Proteins induced by telomere dysfunction are associated with human IgA nephropathy* #

    PubMed Central

    Lu, Ying-ying; Yang, Xian; Chen, Wen-qing; Ju, Zhen-yu; Shou, Zhang-fei; Jin, Juan; Zhang, Xiao-hui; Chen, Jiang-hua; Jiang, Hong

    2014-01-01

    Aging is one of the contributing risk factors for kidney diseases. Accumulating evidence prompts the view that telomere length in kidney tissue cells is an indicator for organismal aging. Previously identified aging markers (cathelin-related antimicrobial peptide (CRAMP), stathmin, elongation factor-1α (EF-1α), and chitinase) were associated not only with telomere driven aging in mice but also with human aging and chronic diseases. This study focuses on the relationship between these biomarkers and IgA nephropathy (IgAN) progression in the Chinese population. For 260 individuals, the four markers are determined in blind datasets using direct enzyme-linked immunosorbent assay (ELISA) and immunofluorescence staining. The expression levels of CRAMP and chitinase increased in blood plasma, urine, and kidney tissues during human IgAN progression. And for the other nephropathy, such as systemic lupus erythematosus (SLE), diabetic nephropathy (DN), and focal segmental glomerulosclerosis (FSGS), there is no protein upregulation with telomere shortening. Moreover, a combination of CRAMP and chitinase can distinguish patients with IgAN from healthy individuals with 88.2%/92.5% (plasma) and 74.3%/84.2% (urine) sensitivity/specificity. These data provide the experimental evidence that telomere shortening and related inflammatory proteins are associated with human IgAN, and it could be a new direction for the disease progression study. PMID:24903994

  18. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe

    SciTech Connect

    Habib, Ahmed G.K.; Masuda, Kenta; Yukawa, Masashi; Tsuchiya, Eiko; Ueno, Masaru

    2015-08-14

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1{sup +} or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. - Ηighlights: • We show link between long G2 and accumulation of toxic recombination intermediates. • Accumulation of recombination intermediates at telomere results in TBZ sensitivity. • Activation of DNA damage checkpoint worsens cells' viability in presence of TBZ.

  19. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients.

    PubMed

    Ahn, Ei Yong; Yoo, Jeong Eun; Rhee, Hyungjin; Kim, Myung Soo; Choi, Junjeong; Ko, Jung Eun; Lee, Jee San; Park, Young Nyun

    2014-05-31

    Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P<0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P<0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P<0.05). EF1α histoscores were also positively correlated with TIF (P<0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P<0.05). p21WAF1/CIP1 labeling index was inversely correlated with TIF

  20. Unusual chromatin in human telomeres.

    PubMed Central

    Tommerup, H; Dousmanis, A; de Lange, T

    1994-01-01

    We report that human telomeres have an unusual chromatin structure characterized by diffuse micrococcal nuclease patterns. The altered chromatin manifested itself only in human telomeres that are relatively short (2 to 7 kb). In contrast, human and mouse telomeres with telomeric repeat arrays of 14 to 150 kb displayed a more canonical chromatin structure with extensive arrays of tightly packed nucleosomes. All telomeric nucleosomes showed a shorter repeat size than bulk nucleosomes, and telomeric mononucleosomal particles were found to be hypersensitive to micrococcal nuclease. However, telomeric nucleosomes were similar to bulk nucleosomes in the rate at which they sedimented through sucrose gradients. We speculate that mammalian telomeres have a bipartite structure with unusual chromatin near the telomere terminus and a more canonical nucleosomal organization in the proximal part of the telomere. Images PMID:8065312

  1. A quantitative telomeric chromatin isolation protocol identifies different telomeric states

    NASA Astrophysics Data System (ADS)

    Grolimund, Larissa; Aeby, Eric; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; Lingner, Joachim

    2013-11-01

    Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein composition of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional telomeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shelterins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease.

  2. TZAP: A telomere-associated protein involved in telomere length control.

    PubMed

    Li, Julia Su Zhou; Miralles Fusté, Javier; Simavorian, Tatevik; Bartocci, Cristina; Tsai, Jill; Karlseder, Jan; Lazzerini Denchi, Eros

    2017-02-10

    Telomeres are found at the end of chromosomes and are important for chromosome stability. Here we describe a specific telomere-associated protein: TZAP (telomeric zinc finger-associated protein). TZAP binds preferentially to long telomeres that have a low concentration of shelterin complex, competing with the telomeric-repeat binding factors TRF1 and TRF2. When localized at telomeres, TZAP triggers a process known as telomere trimming, which results in the rapid deletion of telomeric repeats. On the basis of these results, we propose a model for telomere length regulation in mammalian cells: The reduced concentration of the shelterin complex at long telomeres results in TZAP binding and initiation of telomere trimming. Binding of TZAP to long telomeres represents the switch that triggers telomere trimming, setting the upper limit of telomere length. Copyright © 2017, American Association for the Advancement of Science.

  3. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair

    PubMed Central

    Lam, Yung C; Akhter, Shamima; Gu, Peili; Ye, Jing; Poulet, Anaïs; Giraud-Panis, Marie-Josèphe; Bailey, Susan M; Gilson, Eric; Legerski, Randy J; Chang, Sandy

    2010-01-01

    Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo's conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo−/−ATM−/− MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5′–3′ exonuclease function of SNM1B/Apollo in the generation of 3′ single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway. PMID:20551906

  4. Apollo contributes to G-overhang maintenance and protects leading-end telomeres

    PubMed Central

    Wu, Peng; van Overbeek, Megan; Rooney, Sean; de Lange, Titia

    2010-01-01

    SUMMARY Mammalian telomeres contain a single-stranded 3′ overhang that is thought to mediate telomere protection. Here we identify the TRF2-interacting factor Apollo as a nuclease that contributes to the generation/maintenance of this overhang. The function of mouse Apollo was determined using Cre-mediated gene deletion, complementation with Apollo mutants, and the TRF2-F120A mutant that cannot bind Apollo. Cells lacking Apollo activated the ATM kinase at their telomeres in S phase and showed leading-end telomere fusions. These telomere dysfunction phenotypes were accompanied by a reduction in the telomeric overhang signal. The telomeric functions of Apollo required its TRF2-interaction and nuclease motifs. Thus, TRF2 recruits the Apollo nuclease to process telomere ends synthesized by leading-strand DNA synthesis, thereby creating a terminal structure that avoids ATM activation and resists end-joining. These data establish that the telomeric overhang is required for the protection of telomeres from the DNA damage response. PMID:20619712

  5. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?

    PubMed

    Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo

    2017-04-15

    Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chromatin structure in telomere dynamics.

    PubMed

    Galati, Alessandra; Micheli, Emanuela; Cacchione, Stefano

    2013-01-01

    The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions.

  7. Chromatin Structure in Telomere Dynamics

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Cacchione, Stefano

    2013-01-01

    The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions. PMID:23471416

  8. Telomere shortening relaxes X chromosome inactivation and forces global transcriptome alterations.

    PubMed

    Schoeftner, Stefan; Blanco, Raquel; Lopez de Silanes, Isabel; Muñoz, Purificación; Gómez-López, Gonzalo; Flores, Juana M; Blasco, Maria A

    2009-11-17

    Telomeres are heterochromatic structures at chromosome ends essential for chromosomal stability. Telomere shortening and the accumulation of dysfunctional telomeres are associated with organismal aging. Using telomerase-deficient TRF2-overexpressing mice (K5TRF2/Terc(-/-)) as a model for accelerated aging, we show that telomere shortening is paralleled by a gradual deregulation of the mammalian transcriptome leading to cumulative changes in a defined set of genes, including up-regulation of the mTOR and Akt survival pathways and down-regulation of cell cycle and DNA repair pathways. Increased DNA damage from dysfunctional telomeres leads to reduced deposition of H3K27me3 onto the inactive X chromosome (Xi), impaired association of the Xi with telomeric transcript accumulations (Tacs), and reactivation of an X chromosome-linked K5TRF2 transgene that is subjected to X-chromosome inactivation in female mice with sufficiently long telomeres. Exogenously induced DNA damage also disrupts Xi-Tacs, suggesting DNA damage at the origin of these alterations. Collectively, these findings suggest that critically short telomeres activate a persistent DNA damage response that alters gene expression programs in a nonstochastic manner toward cell cycle arrest and activation of survival pathways, as well as impacts the maintenance of epigenetic memory and nuclear organization, thereby contributing to organismal aging.

  9. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres.

    PubMed

    Deng, Zhong; Norseen, Julie; Wiedmer, Andreas; Riethman, Harold; Lieberman, Paul M

    2009-08-28

    Telomere-repeat-encoding RNA (referred to as TERRA) has been identified as a potential component of yeast and mammalian telomeres. We show here that TERRA RNA interacts with several telomere-associated proteins, including telomere repeat factors 1 (TRF1) and 2 (TRF2), subunits of the origin recognition complex (ORC), heterochromatin protein 1 (HP1), histone H3 trimethyl K9 (H3 K9me3), and members of the DNA-damage-sensing pathway. siRNA depletion of TERRA caused an increase in telomere dysfunction-induced foci, aberrations in metaphase telomeres, and a loss of histone H3 K9me3 and ORC at telomere repeat DNA. Previous studies found that TRF2 amino-terminal GAR domain recruited ORC to telomeres. We now show that TERRA RNA can interact directly with the TRF2 GAR and ORC1 to form a stable ternary complex. We conclude that TERRA facilitates TRF2 interaction with ORC and plays a central role in telomere structural maintenance and heterochromatin formation.

  10. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients

    PubMed Central

    2014-01-01

    Background Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. Methods In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. Result The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P < 0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P < 0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P < 0.05). EF1α histoscores were also positively correlated with TIF (P < 0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P < 0.05). p21WAF1

  11. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases

    PubMed Central

    Benetti, Roberta; Gonzalo, Susana; Jaco, Isabel; Muñoz, Purificación; Gonzalez, Susana; Schoeftner, Stefan; Murchison, Elizabeth; Andl, Thomas; Chen, Taiping; Klatt, Peter; Li, En; Serrano, Manuel; Millar, Sarah; Hannon, Gregory; Blasco, Maria A

    2010-01-01

    Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with decreased expression of Dnmt1, Dnmt3a and Dnmt3b DNA methyltransferases (Dnmts), and methylation levels can be recovered by their overexpression. We identify the retinoblastoma-like 2 protein (Rbl2) as responsible for decreased Dnmt expression in Dicer1-null cells, suggesting the existence of Dicer-dependent small RNAs that target Rbl2. We identify the miR-290 cluster as being downregulated in Dicer1-deficient cells and show that it silences Rbl2, thereby controlling Dnmt expression. These results identify a pathway by which miR-290 directly regulates Rbl2-dependent Dnmt expression, indirectly affecting telomere-length homeostasis. PMID:18311151

  12. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  13. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  14. Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells.

    PubMed

    Kim, Hyeung; Li, Feng; He, Quanyuan; Deng, Tingting; Xu, Jun; Jin, Feng; Coarfa, Cristian; Putluri, Nagireddy; Liu, Dan; Songyang, Zhou

    2017-01-01

    CRISPR/Cas9 technology enables efficient loss-of-function analysis of human genes using somatic cells. Studies of essential genes, however, require conditional knockout (KO) cells. Here, we describe the generation of inducible CRISPR KO human cell lines for the subunits of the telosome/shelterin complex, TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, which directly interact with telomeres or can bind to telomeres through association with other subunits. Homozygous inactivation of several subunits is lethal in mice, and most loss-of-function studies of human telomere regulators have relied on RNA interference-mediated gene knockdown, which suffers its own limitations. Our inducible CRISPR approach has allowed us to more expediently obtain large numbers of KO cells in which essential telomere regulators have been inactivated for biochemical and molecular studies. Our systematic analysis revealed functional differences between human and mouse telomeric proteins in DNA damage responses, telomere length and metabolic control, providing new insights into how human telomeres are maintained.

  15. Telomere-Binding Protein TPP1 Modulates Telomere Homeostasis and Confers Radioresistance to Human Colorectal Cancer Cells

    PubMed Central

    Hu, Liu; Yang, Xiaoxi; Zhong, Juan; Li, Zheng; Yang, Hui; Lei, Han; Yu, Haijun; Liao, ZhengKai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2013-01-01

    Background Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. Principal Findings In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telomere length in human colorectal cancer cell lines. Moreover, TPP1 overexpression showed lengthened telomere length and a significant decrease of radiosensitivity to X-rays. TPP1 mediated radioresistance was correlated with a decreased apoptosis rate after IR exposure. Furthermore, TPP1 overexpression showed prolonged G2/M arrest mediated by ATM/ATR-Chk1 signal pathway after IR exposure. Moreover, TPP1 overexpression accelerated the repair kinetics of total DNA damage and telomere dysfunction induced by ionizing radiation. Conclusions We demonstrated that elevated expressions of TPP1 in human colorectal cancer cells could protect telomere from DNA damage and confer radioresistance. These results suggested that TPP1 may be a potential target in the radiotherapy of colorectal cancer. PMID:24260532

  16. Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths

    PubMed Central

    Cheng, Chen; Shtessel, Ludmila; Brady, Megan M.; Ahmed, Shawn

    2012-01-01

    Canonical telomere repeats at chromosome termini can be maintained by a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Human cancers that survive via ALT can exhibit long and heterogeneous telomeres, although many telomerase-negative tumors possess telomeres of normal length. Here, we report that Caenorhabditis elegans telomerase mutants that survived via ALT possessed either long or normal telomere lengths. Most ALT strains displayed end-to-end chromosome fusions, suggesting that critical telomere shortening occurred before or concomitant with ALT. ALT required the 9-1-1 DNA damage response complex and its clamp loader, HPR-17. Deficiency for the POT-2 telomere binding protein promoted ALT in telomerase mutants, overcame the requirement for the 9-1-1 complex in ALT, and promoted ALT with normal telomere lengths. We propose that telomerase-deficient human tumors with normal telomere lengths could represent a mode of ALT that is facilitated by telomere capping protein dysfunction. PMID:22547822

  17. Mitochondrial Dysfunction Is the Focus of Quaternary Ammonium Surfactant Toxicity to Mammalian Epithelial Cells

    PubMed Central

    Inácio, Ângela S.; Costa, Gabriel N.; Domingues, Neuza S.; Santos, Maria S.; Moreno, António J. M.; Vaz, Winchil L. C.

    2013-01-01

    Surfactants have long been known to have microbicidal action and have been extensively used as antiseptics and disinfectants for a variety of general hygiene and clinical purposes. Among surfactants, quaternary ammonium compounds (QAC) are known to be the most useful antiseptics and disinfectants. However, our previous toxicological studies showed that QAC are also the most toxic surfactants for mammalian cells. An understanding of the mechanisms that underlie QAC toxicity is a crucial first step in their rational use and in the design and development of more effective and safer molecules. We show that QAC-induced toxicity is mediated primarily through mitochondrial dysfunction in mammalian columnar epithelial cell cultures in vitro. Toxic effects begin at sublethal concentrations and are characterized by mitochondrial fragmentation accompanied by decreased cellular energy charge. At very low concentrations, several QAC act on mitochondrial bioenergetics through a common mechanism of action, primarily by inhibiting mitochondrial respiration initiated at complex I and, to a lesser extent, by slowing down coupled ADP phosphorylation. The result is a reduction of cellular energy charge which, when reduced below 50% of its original value, induces apoptosis. The lethal effects are shown to be primarily a result of this process. At higher doses (closer to the critical micellar concentration), QAC induce the complete breakdown of cellular energy charge and necrotic cell death. PMID:23529737

  18. The telomere syndromes

    PubMed Central

    Armanios, Mary; Blackburn, Elizabeth H.

    2013-01-01

    There has been mounting evidence of a causal role for telomere dysfunction in a number of degenerative disorders. Their manifestations encompass common disease states such as idiopathic pulmonary fibrosis and bone marrow failure. Although these disorders seem to be clinically diverse, collectively they comprise a single syndrome spectrum defined by the short telomere defect. Here we review the manifestations and unique genetics of telomere syndromes. We also discuss their underlying molecular mechanisms and significance for understanding common age-related disease processes. PMID:22965356

  19. Stop pulling my strings — what telomeres taught us about the DNA damage response

    PubMed Central

    Lazzerini-Denchi, Eros; Sfeir, Agnel

    2017-01-01

    Mammalian cells have evolved specialized mechanisms to sense and repair double-strand breaks (DSBs) to maintain genomic stability. However, in certain cases, the activity of these pathways can lead to aberrant DNA repair, genomic instability and tumorigenesis. One such case is DNA repair at the natural ends of linear chromosomes, known as telomeres, which can lead to chromosome-end fusions. Here, we review data obtained over the past decade and discuss the mechanisms that protect mammalian chromosome ends from the DNA damage response. We also discuss how telomere research has helped to uncover key steps in DSB repair. Last, we summarize how dysfunctional telomeres and the ensuing genomic instability drive the progression of cancer. PMID:27165790

  20. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance

    PubMed Central

    Burla, Romina; Carcuro, Mariateresa; Raffa, Grazia D.; Galati, Alessandra; Raimondo, Domenico; Rizzo, Angela; La Torre, Mattia; Micheli, Emanuela; Ciapponi, Laura; Cenci, Giovanni; Cundari, Enrico; Musio, Antonio; Biroccio, Annamaria; Cacchione, Stefano; Gatti, Maurizio; Saggio, Isabella

    2015-01-01

    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively

  1. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability.

    PubMed

    Hemann, M T; Strong, M A; Hao, L Y; Greider, C W

    2001-10-05

    Loss of telomere function can induce cell cycle arrest and apoptosis. To investigate the processes that trigger cellular responses to telomere dysfunction, we crossed mTR-/- G6 mice that have short telomeres with mice heterozygous for telomerase (mTR+/-) that have long telomeres. The phenotype of the telomerase null offspring was similar to that of the late generation parent, although only half of the chromosomes were short. Strikingly, spectral karyotyping (SKY) analysis revealed that loss of telomere function occurred preferentially on chromosomes with critically short telomeres. Our data indicate that, while average telomere length is measured in most studies, it is not the average but rather the shortest telomeres that constitute telomere dysfunction and limit cellular survival in the absence of telomerase.

  2. Break-induced telomere synthesis underlies alternative telomere maintenance.

    PubMed

    Dilley, Robert L; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D; Wondisford, Anne R; Greenberg, Roger A

    2016-11-03

    Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10-15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC-PCNA-Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.

  3. Mammalian E-type cyclins control chromosome pairing, telomere stability and CDK2 localization in male meiosis.

    PubMed

    Martinerie, Laetitia; Manterola, Marcia; Chung, Sanny S W; Panigrahi, Sunil K; Weisbach, Melissa; Vasileva, Ana; Geng, Yan; Sicinski, Peter; Wolgemuth, Debra J

    2014-02-01

    Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis.

  4. Mammalian E-type Cyclins Control Chromosome Pairing, Telomere Stability and CDK2 Localization in Male Meiosis

    PubMed Central

    Chung, Sanny S. W.; Panigrahi, Sunil K.; Weisbach, Melissa; Vasileva, Ana; Geng, Yan; Sicinski, Peter; Wolgemuth, Debra J.

    2014-01-01

    Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis. PMID:24586195

  5. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres.

    PubMed Central

    Laible, G; Wolf, A; Dorn, R; Reuter, G; Nislow, C; Lebersorger, A; Popkin, D; Pillus, L; Jenuwein, T

    1997-01-01

    Gene silencing is required to stably maintain distinct patterns of gene expression during eukaryotic development and has been correlated with the induction of chromatin domains that restrict gene activity. We describe the isolation of human (EZH2) and mouse (Ezh1) homologues of the Drosophila Polycomb-group (Pc-G) gene Enhancer of zeste [E(z)], a crucial regulator of homeotic gene expression implicated in the assembly of repressive protein complexes in chromatin. Mammalian homologues of E(z) are encoded by two distinct loci in mouse and man, and the two murine Ezh genes display complementary expression profiles during mouse development. The E(z) gene family reveals a striking functional conservation in mediating gene repression in eukaryotic chromatin: extra gene copies of human EZH2 or Drosophila E(z) in transgenic flies enhance position effect variegation of the heterochromatin-associated white gene, and expression of either human EZH2 or murine Ezh1 restores gene repression in Saccharomyces cerevisiae mutants that are impaired in telomeric silencing. Together, these data provide a functional link between Pc-G-dependent gene repression and inactive chromatin domains, and indicate that silencing mechanism(s) may be broadly conserved in eukaryotes. PMID:9214638

  6. ZNF365 promotes stability of fragile sites and telomeres

    PubMed Central

    Zhang, Yuqing; Shin, Sandra J.; Liu, Debra; Ivanova, Elena; Foerster, Friedrich; Ying, Haoqiang; Zheng, Hongwu; Xiao, Yonghong; Chen, Zhengming; Protopopov, Alexei; DePinho, Ronald A.; Paik, Ji-Hye

    2013-01-01

    Critically short telomeres activate cellular senescence or apoptosis, as mediated by the tumor suppressor p53, but in the absence of this checkpoint response, telomere dysfunction engenders chromosomal aberrations and cancer. Here, analysis of p53-regulated genes activated in the setting of telomere dysfunction identified Zfp365 (ZNF365 in humans) as a direct p53 target that promotes genome stability. Germline polymorphisms in the ZNF365 locus are associated with increased cancer risk, including those associated with telomere dysfunction. On the mechanistic level, ZNF365 suppresses expression of a subset of common fragile sites (CFS) including telomeres. In the absence of ZNF365, defective telomeres engage in aberrant recombination of telomere ends, leading to increased telomere sister chromatid exchange (T-SCE) and formation of anaphase DNA bridges, including ultra-fine DNA bridges (UFB), and ultimately increased cytokinesis failure and aneuploidy. Thus, the p53-ZNF365 axis contributes to genomic stability in the setting of telomere dysfunction. PMID:23776040

  7. Association of telomere instability with senescence of porcine cells

    PubMed Central

    2012-01-01

    Background Telomeres are essential for the maintenance of genomic stability, and telomere dysfunction leads to cellular senescence, carcinogenesis, aging, and age-related diseases in humans. Pigs have become increasingly important large animal models for preclinical tests and study of human diseases, and also may provide xeno-transplantation sources. Thus far, Southern blot analysis has been used to estimate average telomere lengths in pigs. Telomere quantitative fluorescence in situ hybridization (Q-FISH), however, can reveal status of individual telomeres in fewer cells, in addition to quantifying relative telomere lengths, and has been commonly used for study of telomere function of mouse and human cells. We attempted to investigate telomere characteristics of porcine cells using telomere Q-FISH method. Results The average telomere lengths in porcine cells measured by Q-FISH correlated with those of quantitative real-time PCR method (qPCR) or telomere restriction fragments (TRFs) by Southern blot analysis. Unexpectedly, we found that porcine cells exhibited high incidence of telomere doublets revealed by Q-FISH method, coincided with increased frequency of cellular senescence. Also, telomeres shortened during subculture of various porcine primary cell types. Interestingly, the high frequency of porcine telomere doublets and telomere loss was associated with telomere dysfunction-induced foci (TIFs). The incidence of TIFs, telomere doublets and telomere loss increased with telomere shortening and cellular senescence during subculture. Conclusion Q-FISH method using telomere PNA probe is particularly useful for characterization of porcine telomeres. Porcine cells exhibit high frequency of telomere instability and are susceptible to telomere damage and replicative senescence. PMID:23241441

  8. Fanconi anemia proteins in telomere maintenance.

    PubMed

    Sarkar, Jaya; Liu, Yie

    2016-07-01

    Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell. Published by Elsevier B.V.

  9. Telomere-associated aging disorders.

    PubMed

    Opresko, Patricia L; Shay, Jerry W

    2017-01-01

    Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Several monogenic inherited diseases that display features of human premature aging correlate with shortened telomeres, and are referred to collectively as telomeropathies. These disorders have overlapping symptoms and a common underlying mechanism of telomere dysfunction, but also exhibit variable symptoms and age of onset, suggesting they fall along a spectrum of disorders. Primary telomeropathies are caused by defects in the telomere maintenance machinery, whereas secondary telomeropathies have some overlapping symptoms with primary telomeropathies, but are generally caused by mutations in DNA repair proteins that contribute to telomere preservation. Here we review both the primary and secondary telomeropathies, discuss potential mechanisms for tissue specificity and age of onset, and highlight outstanding questions in the field and future directions toward elucidating disease etiology and developing therapeutic strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Telomeres and Mitochondria in the Aging Heart

    PubMed Central

    Moslehi, Javid; DePinho, Ronald A.; Sahin, Ergün

    2013-01-01

    Studies in humans and in mice have highlighted the importance of short telomeres and impaired mitochondrial function in driving age-related functional decline in the heart. Although telomere and mitochondrial dysfunction have been viewed mainly in isolation, recent studies in telomerase-deficient mice have provided evidence for an intimate link between these two processes. Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and PGC-1β in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging. PMID:22539756

  11. DNA excision repair at telomeres.

    PubMed

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-12-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Break-induced replication and recombinational telomere elongation in yeast.

    PubMed

    McEachern, Michael J; Haber, James E

    2006-01-01

    When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.

  13. Telomere attrition and diabetes mellitus.

    PubMed

    Tamura, Yoshiaki; Takubo, Kaiyo; Aida, Junko; Araki, Atsushi; Ito, Hideki

    2016-03-01

    Type 2 diabetes mellitus (DM) is a disease characterized by dysfunction of various organs. Recent studies have shown a close relationship between DM and telomere attrition in leukocytes. In patients with DM or impaired glucose tolerance, excessive oxidative stress induces damage to telomeres and shortens their length. Furthermore, it is suggested that telomere length is a good surrogate marker for mortality and diabetic complications in DM patients. We recently found that telomere length in pancreatic β-cells is also shortened in DM patients, potentially leading to an impaired capacity for proliferation and insulin secretion, and accelerated cell death. In contrast, leukocyte telomere length has also been reported in patients with obesity or insulin resistance, both of which are frequently associated with type 2 DM. In an animal model, it has been shown that telomere attrition in adipose tissue induces insulin resistance. Taken together, the available data suggest that hyperglycemia, oxidative stress, and telomere attrition in pancreatic β-cells and adipocytes create a vicious cycle that underlies the pathophysiology of type 2 DM. Inhibition of telomere attrition in various organs, including pancreatic β-cells, could be a new approach for preventing the progression of DM and its complications. © 2016 Japan Geriatrics Society.

  14. ATR suppresses telomere fragility and recombination but is dispensable for elongation of short telomeres by telomerase

    PubMed Central

    McNees, Carolyn J.; Tejera, Agueda M.; Martínez, Paula; Murga, Matilde; Mulero, Francisca; Fernandez-Capetillo, Oscar

    2010-01-01

    Telomere shortening caused by incomplete DNA replication is balanced by telomerase-mediated telomere extension, with evidence indicating that the shortest telomeres are preferred substrates in primary cells. Critically short telomeres are detected by the cellular DNA damage response (DDR) system. In budding yeast, the important DDR kinase Tel1 (homologue of ATM [ataxia telangiectasia mutated]) is vital for telomerase recruitment to short telomeres, but mammalian ATM is dispensable for this function. We asked whether closely related ATR (ATM and Rad3 related) kinase, which is important for preventing replicative stress and chromosomal breakage at common fragile sites, might instead fulfill this role. The newly created ATR-deficient Seckel mouse strain was used to examine the function of ATR in telomerase recruitment and telomere function. Telomeres were recently found to resemble fragile sites, and we show in this study that ATR has an important role in the suppression of telomere fragility and recombination. We also find that wild-type ATR levels are important to protect short telomeres from chromosomal fusions but do not appear essential for telomerase recruitment to short telomeres in primary mouse embryonic fibroblasts from the ATR-deficient Seckel mouse model. These results reveal a previously unnoticed role for mammalian ATR in telomere protection and stability. PMID:20212315

  15. Telomere neurobiology.

    PubMed

    Mattson, Mark P; Zhang, Peisu; Cheng, Aiwu

    2008-01-01

    The ends of chromosomes consist of a hexanucleotide DNA repeat sequence and specialized DNA-binding and telomere-associated proteins. An enzyme activity called telomerase maintains telomere length by using an RNA template (TR) and a reverse transcriptase (TERT) to add the hexanucleotide sequence to the free chromosome end. The structure of telomeres is maintained and modified by telomere repeat-binding factors (TRF1 and TRF2) and proteins known for their role in DNA damage responses, including poly(ADP-ribose) polymerase-1, Werner, and ATM. Telomerase activity can be quantified using a telomere repeat amplification protocol (TRAP) assay, and levels of TERT and telomere-associated proteins are evaluated by immunoblot and immunocytochemical methods. Levels of TERT and telomere-associated proteins can be overexpressed or knocked down using viral vector-based methods. Using the kinds of approaches described here, evidence has been obtained suggesting that telomeres play important roles in regulating neural stem cell proliferation, neuronal differentiation, senescence of glial cells, and apoptosis and DNA damage responses of neural cells.

  16. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins

    PubMed Central

    Lustig, Arthur J.

    2016-01-01

    Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes. PMID:26904098

  17. Telomerase Activity and Telomere Length in Daphnia

    PubMed Central

    Schumpert, Charles; Nelson, Jacob; Kim, Eunsuk; Dudycha, Jeffry L.; Patel, Rekha C.

    2015-01-01

    Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex. PMID:25962144

  18. Acacetin and Chrysin, Two Polyphenolic Compounds, Alleviate Telomeric Position Effect in Human Cells

    PubMed Central

    Boussouar, Amina; Barette, Caroline; Nadon, Robert; Saint-Léger, Adelaïde; Broucqsault, Natacha; Ottaviani, Alexandre; Firozhoussen, Arva; Lu, Yiming; Lafanechère, Laurence; Gilson, Eric; Magdinier, Frédérique; Ye, Jing

    2013-01-01

    We took advantage of the ability of human telomeres to silence neighboring genes (telomere position effect or TPE) to design a high-throughput screening assay for drugs altering telomeres. We identified, for the first time, that two dietary flavones, acacetin and chrysin, are able to specifically alleviate TPE in human cells. We further investigated their influence on telomere integrity and showed that both drugs drastically deprotect telomeres against DNA damage response. However, telomere deprotection triggered by shelterin dysfunction does not affect TPE, indicating that acacetin and chrysin target several functions of telomeres. These results show that TPE-based screening assays represent valuable methods to discover new compounds targeting telomeres. PMID:23962900

  19. Beyond average: potential for measurement of short telomeres

    PubMed Central

    Vera, Elsa; Blasco, Maria A.

    2012-01-01

    The length of telomeres, and in particular the abundance of short telomeres, has been proposed as a biomarker of aging and of general health status. A wide variety of studies show the association of short telomeres with age related pathologies and cancer, as well as with lifespan and mortality. These facts highlight the importance of measuring telomere length in human populations and by using reliable methods to uncover the association between telomere length and human disease. This review discusses the advantages and drawbacks of current telomere length measurement methods. Most of these methods provide mean telomere length values per cell or per sample and very few of them are able to measure the abundance of short telomeres, which are the ones indicative of telomere dysfunction. The information provided by each method and their suitability for different studies is discussed here. PMID:22683684

  20. Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death

    PubMed Central

    Sun, Luxi; Tan, Rong; Xu, Jianquan; LaFace, Justin; Gao, Ying; Xiao, Yanchun; Attar, Myriam; Neumann, Carola; Li, Guo-Min; Su, Bing; Liu, Yang; Nakajima, Satoshi; Levine, Arthur S.; Lan, Li

    2015-01-01

    Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising <1% of the genome, and telomere dysfunction has not been established. By fusing the KillerRed chromophore with the telomere repeat binding factor 1, TRF1, we developed a novel approach to generate localized damage to telomere DNA and to monitor the real time damage response at the single telomere level. We found that DNA damage at long telomeres in U2OS cells is not repaired efficiently compared to DNA damage in non-telomeric regions of the same length in heterochromatin. Telomeric DNA damage shortens the average length of telomeres and leads to cell senescence in HeLa cells and cell death in HeLa, U2OS and IMR90 cells, when DNA damage at non-telomeric regions is undetectable. Telomere-specific damage induces chromosomal aberrations, including chromatid telomere loss and telomere associations, distinct from the damage induced by ionizing irradiation. Taken together, our results demonstrate that oxidative damage induces telomere dysfunction and underline the importance of maintaining telomere integrity upon oxidative damage. PMID:26082495

  1. Cellular Consequences of Telomere Shortening in Histologically Normal Breast Tissues

    DTIC Science & Technology

    2013-09-01

    prognostic and/or risk biomarker [2]. Dysfunctional telomeres cause genomic instability via chromosomal breakage-fusion-bridge cycles. In the...invited to write a review article describing “The potential utility of telomere-related markers for cancer diagnosis” [7]. In alignment with his...De Marzo, E.A. Platz, and A.K. Meeker. Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for

  2. Arsenic exposure, telomere length, and expression of telomere-related genes among Bangladeshi individuals

    PubMed Central

    Gao, Jianjun; Roy, Shantanu; Tong, Lin; Argos, Maria; Jasmine, Farzana; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Hore, Samar K; Sarwar, Golam; Slavkovich, Vesna; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A.; Graziano, Joseph H.; Ahsan, Habibul; Pierce, Brandon L.

    2014-01-01

    Background Inorganic arsenic is a carcinogen whose mode of action may involve telomere dysfunction. Recent epidemiological studies suggest that chronic arsenic exposure is associated with longer telomeres and altered expression of telomere-related genes in peripheral blood. In this study, we evaluated the association of urinary arsenic concentration with expression of telomere-related genes and telomere length in Bangladeshi individuals with a wide range of arsenic exposure through naturally contaminated drinking water. Methods We used linear regression models to estimate associations between urinary arsenic and array-based expression measures for 69 telomere related genes using mononuclear cell RNA samples from 1,799 individuals. Association between arsenic exposure and a qPCR-based telomere length was assessed among 167 individuals. Results Urinary arsenic was possitively associated with expression of WRN, and negatively associated with TERF2, DKC1, TERF2IP and OBFC1 (all P < 0.00035, Bonferroni correction threshold). We detected interaction between urinary arsenic and arsenic metabolism efficiency in relation to expression of WRN (P for interaction = 0.00008). In addition, we observed that very high arsenic exposure was associated with longer telomeres compared to very low exposure (P=0.02). Discussion Our findings suggest that arsenic’s carcinogenic mode of action may involve alteration of telomere maintenance and/or telomere damage. This study extends our knowledge regarding the effect of arsenic on telomere length and expression of telomere-related genes. PMID:25460668

  3. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination.

    PubMed

    Churikov, Dmitri; Charifi, Ferose; Eckert-Boulet, Nadine; Silva, Sonia; Simon, Marie-Noelle; Lisby, Michael; Géli, Vincent

    2016-05-10

    In budding yeast, inactivation of telomerase and ensuing telomere erosion cause relocalization of telomeres to nuclear pore complexes (NPCs). However, neither the mechanism of such relocalization nor its significance are understood. We report that proteins bound to eroded telomeres are recognized by the SUMO (small ubiquitin-like modifier)-targeted ubiquitin ligase (STUbL) Slx5-Slx8 and become increasingly SUMOylated. Recruitment of Slx5-Slx8 to eroded telomeres facilitates telomere relocalization to NPCs and type II telomere recombination, a counterpart of mammalian alternative lengthening of telomeres (ALT). Moreover, artificial tethering of a telomere to a NPC promotes type II telomere recombination but cannot bypass the lack of Slx5-Slx8 in this process. Together, our results indicate that SUMOylation positively contributes to telomere relocalization to the NPC, where poly-SUMOylated proteins that accumulated over time have to be removed. We propose that STUbL-dependent relocalization of telomeres to NPCs constitutes a pathway in which excessively SUMOylated proteins are removed from "congested" intermediates to ensure unconventional recombination.

  4. How homologous recombination maintains telomere integrity.

    PubMed

    Tacconi, Eliana M C; Tarsounas, Madalena

    2015-06-01

    Telomeres protect the ends of linear chromosomes against loss of genetic information and inappropriate processing as damaged DNA and are therefore crucial to the maintenance of chromosome integrity. In addition to providing a pathway for genome-wide DNA repair, homologous recombination (HR) plays a key role in telomere replication and capping. Consistent with this, the genomic instability characteristic of HR-deficient cells and tumours is driven in part by telomere dysfunction. Here, we discuss the mechanisms by which HR modulates the response to intrinsic cellular challenges that arise during telomere replication, as well as its impact on the assembly of telomere protective structures. How normal and tumour cells differ in their ability to maintain telomeres is deeply relevant to the search for treatments that would selectively eliminate cells whose capacity for HR-mediated repair has been compromised.

  5. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon

    PubMed Central

    Ma, Marek

    2013-01-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. PMID:23969238

  6. Tumor viruses and replicative immortality--avoiding the telomere hurdle.

    PubMed

    Chen, Xinsong; Kamranvar, Siamak Akbari; Masucci, Maria G

    2014-06-01

    Tumor viruses promote cell proliferation in order to gain access to an environment suitable for persistence and replication. The expression of viral products that promote growth transformation is often accompanied by the induction of multiple signs of telomere dysfunction, including telomere shortening, damage of telomeric DNA and chromosome instability. Long-term survival and progression to full malignancy require the bypassing of senescence programs that are triggered by the damaged telomeres. Here we review different strategies by which tumor viruses interfere with telomere homeostasis during cell transformation. This frequently involves the activation of telomerase, which assures both the integrity and functionality of telomeres. In addition, recent evidence suggests that oncogenic viruses may activate a recombination-based mechanism for telomere elongation known as Alternative Lengthening of Telomeres (ALT). This error-prone strategy promotes genomic instability and could play an important role in viral oncogenesis.

  7. Spontaneous tumor development in bone marrow-rescued DNA-PKcs(3A/3A) mice due to dysfunction of telomere leading strand deprotection.

    PubMed

    Zhang, S; Matsunaga, S; Lin, Y-F; Sishc, B; Shang, Z; Sui, J; Shih, H-Y; Zhao, Y; Foreman, O; Story, M D; Chen, D J; Chen, B P C

    2016-07-28

    Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at the Thr2609 cluster is essential for its complete function in DNA repair and tissue stem cell homeostasis. This phenomenon is demonstrated by congenital bone marrow failure occurring in DNA-PKcs(3A/3A) mutant mice, which require bone marrow transplantation (BMT) to prevent early mortality. Surprisingly, an increased incidence of spontaneous tumors, especially skin cancer, was observed in adult BMT-rescued DNA-PKcs(3A/3A) mice. Upon further investigation, we found that spontaneous γH2AX foci occurred in DNA-PKcs(3A/3A) skin biopsies and primary keratinocytes and that these foci overlapped with telomeres during mitosis, indicating impairment of telomere replication and maturation. Consistently, we observed significantly elevated frequencies of telomere fusion events in DNA-PKcs(3A/3A) cells as compared with wild-type and DNA-PKcs-knockout cells. In addition, a previously identified DNA-PKcs Thr2609Pro mutation, found in breast cancer, also induces a similar impairment of telomere leading-end maturation. Taken together, our current analyses indicate that the functional DNA-PKcs T2609 cluster is required to facilitate telomere leading strand maturation and prevention of genomic instability and cancer development.

  8. Spontaneous Tumor Development in Bone Marrow Rescued DNA-PKcs3A/3A Mice Due to Dysfunction of Telomere Leading Strand Deprotection

    PubMed Central

    Zhang, Shichuan; Matsunaga, Shinji; Lin, Yu-Fen; Sishc, Brock; Shang, Zengfu; Sui, Jiangdong; Shih, Hung-Ying; Zhao, Yong; Foreman, Oded; Story, Michael D.; Chen, David J.; Chen, Benjamin PC.

    2015-01-01

    Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at the Thr2609 cluster is essential for its complete function in DNA repair and tissue stem cell homeostasis. This phenomenon is demonstrated by congenital bone marrow failure occurring in DNA-PKcs3A/3A mutant mice, which require bone marrow transplantation (BMT) to prevent early mortality. Surprisingly, an increased incidence of spontaneous tumors, especially skin cancer, was observed in adult BMT-rescued DNA-PKcs3A/3A mice. Upon further investigation we found that spontaneous γH2AX foci occurred in DNA-PKcs3A/3A skin biopsies and primary keratinocytes and that these foci overlapped with telomeres during mitosis, indicating impairment of telomere replication and maturation. Consistently, we observed significantly elevated frequencies of telomere fusion events in DNA-PKcs3A/3A cells as compared to wild type and DNA-PKcs knockout cells. In addition, a previously identified DNA-PKcs Thr2609Pro mutation, found in breast cancer, also induces a similar impairment of telomere leading end maturation. Taken together, our current analyses indicate that the functional DNA-PKcs T2609 cluster is required to facilitate telomere leading strand maturation and prevention of genomic instability and cancer development. PMID:26616856

  9. Telomere protein complexes and their role in lymphoid malignancies.

    PubMed

    Panero, Julieta; Santos, Patricia Dos; Slavutsky, Irma

    2017-01-01

    Telomeres are highly regulated and dynamic complexes that protect the genomic DNA and prevent the end of linear chromosomes from being misrecognized as a broken DNA. Due to the end replication problem, telomeres of somatic cells shorten with each cell division, inducing cell senescence. Telomerase is a reverse transcriptase capable of compensating telomere attrition by adding telomere repeats to the ends of chromosomes. Human telomeres are associated with the shelterin complex which consists of six telomere-associated proteins that specifically bind to telomeric DNA. Alterations or removal of individual shelterin components would lead to telomere uncapping and telomere dysfunction, resulting in cellular senescence and transformation to a malignant state. Another complex of multifunctional proteins, named non-shelterin complex, is thought to prevent telomere degradation and facilitate telomerase-based telomere elongation. As telomerase is highly expressed in most human tumor cells, it is considered an attractive target for new therapeutic strategies. In this review, we will summarize the characteristics of telomeres and telomerase in lymphoid malignancies and discuss the role of telomere-associated proteins in these entities.

  10. Widespread telomere instability in prostatic lesions.

    PubMed

    Tu, LiRen; Huda, Nazmul; Grimes, Brenda R; Slee, Roger B; Bates, Alison M; Cheng, Liang; Gilley, David

    2016-05-01

    A critical function of the telomere is to disguise chromosome ends from cellular recognition as double strand breaks, thereby preventing aberrant chromosome fusion events. Such chromosome end-to-end fusions are known to initiate genomic instability via breakage-fusion-bridge cycles. Telomere dysfunction and other forms of genomic assault likely result in misregulation of genes involved in growth control, cell death, and senescence pathways, lowering the threshold to malignancy and likely drive disease progression. Shortened telomeres and anaphase bridges have been reported in a wide variety of early precursor and malignant cancer lesions including those of the prostate. These findings are being extended using methods for the analysis of telomere fusions (decisive genetic markers for telomere dysfunction) specifically within human tissue DNA. Here we report that benign prostatic hyperplasia (BPH), high-grade prostatic intraepithelial neoplasia (PIN), and prostate cancer (PCa) prostate lesions all contain similarly high frequencies of telomere fusions and anaphase bridges. Tumor-adjacent, histologically normal prostate tissue generally did not contain telomere fusions or anaphase bridges as compared to matched PCa tissues. However, we found relatively high levels of telomerase activity in this histologically normal tumor-adjacent tissue that was reduced but closely correlated with telomerase levels in corresponding PCa samples. Thus, we present evidence of high levels of telomere dysfunction in BPH, an established early precursor (PIN) and prostate cancer lesions but not generally in tumor adjacent normal tissue. Our results suggest that telomere dysfunction may be a common gateway event leading to genomic instability in prostate tumorigenesis. . © 2015 Wiley Periodicals, Inc.

  11. Resolution of telomere associations by TRF1 cleavage in mouse embryonic stem cells

    PubMed Central

    Lisaingo, Kathleen; Uringa, Evert-Jan; Lansdorp, Peter M.

    2014-01-01

    Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein complex, is a mediator of telomere associations in mammalian cells. Using live-cell imaging, we show that expression of TRF1 or yellow fluorescent protein (YFP)-TRF1 fusion protein above endogenous levels prevents proper telomere resolution during mitosis. TRF1 overexpression results in telomere anaphase bridges and aggregates containing TRF1 protein and telomeric DNA. Site-specific protein cleavage of YFP-TRF1 by tobacco etch virus protease resolves telomere aggregates, indicating that telomere associations are mediated by TRF1. This study provides novel insight into the formation and resolution of telomere associations. PMID:24829382

  12. Gcn5 and SAGA Regulate Shelterin Protein Turnover and Telomere Maintenance

    PubMed Central

    Atanassov, Boyko S.; Evrard, Yvonne A.; Multani, Asha S.; Zhang, Zhijing; Tora, László; Devys, Didier; Chang, Sandy; Dent, Sharon Y.R.

    2009-01-01

    SUMMARY Histone acetyltransferases (HATs) play important roles in gene regulation and DNA repair by influencing the accessibility of chromatin to transcription factors and repair proteins. Here we show that deletion of Gcn5 leads to telomere dysfunction in mouse and human cells. Biochemical studies reveal that depletion of Gcn5 or ubiquitin specific protease 22 (Usp22), which is another bona fide component of the Gcn5-containing SAGA complex, increases ubiquitination and turnover of TRF1, a primary component of the telomeric shelterin complex. Inhibition of the proteasome or over expression of USP22 opposes this effect. The USP22 deubiquitinating module requires association with SAGA complexes for activity, and we find that depletion of Gcn5 compromises this association in mammalian cells. Thus, our results indicate that Gcn5 regulates TRF1 levels through effects on Usp22 activity and SAGA integrity. PMID:19683498

  13. Short Telomeres in Key Tissues Initiate Local and Systemic Aging in Zebrafish

    PubMed Central

    Carneiro, Madalena C.; Ferreira, Tânia; Carvalho, Tânia; Ferreira, Miguel Godinho

    2016-01-01

    Telomeres shorten with each cell division and telomere dysfunction is a recognized hallmark of aging. Tissue proliferation is expected to dictate the rate at which telomeres shorten. We set out to test whether proliferative tissues age faster than non-proliferative due to telomere shortening during zebrafish aging. We performed a prospective study linking telomere length to tissue pathology and disease. Contrary to expectations, we show that telomeres shorten to critical lengths only in specific tissues and independently of their proliferation rate. Short telomeres accumulate in the gut but not in other highly proliferative tissues such as the blood and gonads. Notably, the muscle, a low proliferative tissue, accumulates short telomeres and DNA damage at the same rate as the gut. Together, our work shows that telomere shortening and DNA damage in key tissues triggers not only local dysfunction but also anticipates the onset of age-associated diseases in other tissues, including cancer. PMID:26789415

  14. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase

    PubMed Central

    Procházková Schrumpfová, Petra; Vychodilová, Ivona; Dvořáčková, Martina; Majerská, Jana; Dokládal, Ladislav; Schořová, Šárka; Fajkus, Jiří

    2014-01-01

    Although telomere-binding proteins constitute an essential part of telomeres, in vivo data indicating the existence of a structure similar to mammalian shelterin complex in plants are limited. Partial characterization of a number of candidate proteins has not identified true components of plant shelterin or elucidated their functional mechanisms. Telomere repeat binding (TRB) proteins from Arabidopsis thaliana bind plant telomeric repeats through a Myb domain of the telobox type in vitro, and have been shown to interact with POT1b (Protection of telomeres 1). Here we demonstrate co-localization of TRB1 protein with telomeres in situ using fluorescence microscopy, as well as in vivo interaction using chromatin immunoprecipitation. Classification of the TRB1 protein as a component of plant telomeres is further confirmed by the observation of shortening of telomeres in knockout mutants of the trb1 gene. Moreover, TRB proteins physically interact with plant telomerase catalytic subunits. These findings integrate TRB proteins into the telomeric interactome of A. thaliana. PMID:24397874

  15. Telomerase and telomere biology in hematological diseases: A new therapeutic target.

    PubMed

    Allegra, Alessandro; Innao, Vanessa; Penna, Giuseppa; Gerace, Demetrio; Allegra, Andrea G; Musolino, Caterina

    2017-02-07

    Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.

  16. Telomere Reprogramming and Maintenance in Porcine iPS Cells

    PubMed Central

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells. PMID:24098638

  17. Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita.

    PubMed

    Touzot, Fabien; Gaillard, Laetitia; Vasquez, Nadia; Le Guen, Tangui; Bertrand, Yves; Bourhis, Jean; Leblanc, Thierry; Fischer, Alain; Soulier, Jean; de Villartay, Jean-Pierre; Revy, Patrick

    2012-02-01

    Telomeres represent the tips of linear chromosomes. In human subjects telomere maintenance deficiency leads to dyskeratosis congenita (DC), a rare genetic disorder characterized by progressive bone marrow failure, accelerated aging, and cancer predisposition. Hoyeraal-Hreidarsson syndrome (HH) is a severe variant of DC in which an early onset of bone marrow failure leading to combined immunodeficiency is associated with microcephaly, cerebellar hypoplasia, and growth retardation. Limited information is available on the cellular and molecular phenotypes of cells from patients with HH. We analyzed fibroblasts and whole blood cells from 5 patients with HH, 3 of them of unknown molecular origin. Telomere length, cellular senescence rate, telomerase activity, telomeric aberration, and DNA repair pathways were investigated. Although patients' cells exhibit dysfunctional telomeres, sharp differences in the telomeric aberrations and telomere lengths were noted among these patients. In some patients the dysfunctional telomere phenotype was unprecedented and associated with either normal telomere length or with telomeric aberrations akin to fragile telomeres. This result is of particular importance because the molecular diagnosis of these patients is primarily based on telomere length, which therefore misses a subset of patients with telomere dysfunction. These observations provide the notions that (1) various telomere defects can lead to similar clinical features, (2) telomere dysfunction in cells from patients with DC/HH is not always associated with short telomeres, and (3) additional factors, likely involved in telomere protection rather than in length regulation, are responsible for a subset of DC/HH. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Telomere status in chronic lymphocytic leukemia with TP53 disruption.

    PubMed

    Guièze, Romain; Pages, Mélanie; Véronèse, Lauren; Combes, Patricia; Lemal, Richard; Gay-Bellile, Mathilde; Chauvet, Martine; Callanan, Mary; Kwiatkowski, Fabrice; Pereira, Bruno; Vago, Philippe; Bay, Jacques-Olivier; Tournilhac, Olivier; Tchirkov, Andreï

    2016-08-30

    In chronic lymphocytic leukemia (CLL), telomere dysfunction is associated with poor outcomes. TP53 is involved in cellular responses to dysfunctional telomeres, and its inactivation is the strongest adverse prognostic factor for CLL. Given the biological relationship between TP53 and telomeres, and their prognostic value, it is important to improve our understanding of the impact of TP53 alterations on telomeres. We performed a comprehensive study of the deletions and mutations of the TP53 gene and telomere parameters, including hTERT and the shelterin complex, in 115 CLL patients. We found that any type of TP53 alteration was associated with very short telomeres and high hTERT expression, independently of other biological CLL features. Patients with disrupted TP53 showed telomere deletions and chromosomal end-to-end fusions in cells with complex karyotypes. TP53 disruption was characterized by downregulation of shelterin genes. Interestingly, low expression of POT1, TPP1 and TIN2 was also found in some patients with wild-type TP53 and had an adverse impact on progression-free survival after standard genotoxic therapy. In conclusion, we have demonstrated that patients with disrupted TP53 have severe telomere dysfunction and high genomic instability. Thus, the telomeric profile could be tested as a biomarker in CLL patients treated with new therapeutic agents.

  19. Telomere status in chronic lymphocytic leukemia with TP53 disruption

    PubMed Central

    Guièze, Romain; Pages, Mélanie; Véronèse, Lauren; Combes, Patricia; Lemal, Richard; Gay-bellile, Mathilde; Chauvet, Martine; Callanan, Mary; Kwiatkowski, Fabrice; Pereira, Bruno; Vago, Philippe; Bay, Jacques-Olivier; Tournilhac, Olivier; Tchirkov, Andreï

    2016-01-01

    In chronic lymphocytic leukemia (CLL), telomere dysfunction is associated with poor outcomes. TP53 is involved in cellular responses to dysfunctional telomeres, and its inactivation is the strongest adverse prognostic factor for CLL. Given the biological relationship between TP53 and telomeres, and their prognostic value, it is important to improve our understanding of the impact of TP53 alterations on telomeres. We performed a comprehensive study of the deletions and mutations of the TP53 gene and telomere parameters, including hTERT and the shelterin complex, in 115 CLL patients. We found that any type of TP53 alteration was associated with very short telomeres and high hTERT expression, independently of other biological CLL features. Patients with disrupted TP53 showed telomere deletions and chromosomal end-to-end fusions in cells with complex karyotypes. TP53 disruption was characterized by downregulation of shelterin genes. Interestingly, low expression of POT1, TPP1 and TIN2 was also found in some patients with wild-type TP53 and had an adverse impact on progression-free survival after standard genotoxic therapy. In conclusion, we have demonstrated that patients with disrupted TP53 have severe telomere dysfunction and high genomic instability. Thus, the telomeric profile could be tested as a biomarker in CLL patients treated with new therapeutic agents. PMID:27486974

  20. Transcription and activation under environmental stress of the complex telomeric repeats of Chironomus thummi.

    PubMed

    Martínez-Guitarte, J L; Díez, J L; Morcillo, G

    2008-01-01

    In contrast to their traditional role, telomeres seem to behave as transcriptionally active regions. RNAs complementary to the short DNA repeats characteristic of telomerase-maintained telomeres have recently been identified in various mammalian cell lines, representing a new and unexpected element in telomere architecture. Here, we report the existence of transcripts complementary to telomeric sequences characteristic of Chironomus thummi telomeres. As in other Diptera, the non-canonical telomeres of chironomids lack the simple telomerase repeats and have instead more complex repetitive sequences. Northern blots of total RNA hybridized with telomere probes and RT-PCR with telomere-specific tailed primers confirm the existence of small non-coding RNAs of around 200 bp, the size of the DNA repeated telomeric unit. Telomere transcripts are heterogeneous in length, and they appear as a ladder pattern that probably corresponds to multimers of the repeat. Moreover, telomeres are activated under conditions of environmental stress, such as heat shock, appearing highly decondensed and densely labelled with acetylated H4 histone, as well as with RNA polymerase II antibodies, both marks of transcriptional activity. Changes in the expression levels of telomeric RNA were detected after heat shock. These findings provide evidence that transcriptional activity of the repetitive telomere sequences is an evolutionarily conserved feature, not limited to telomerase telomeres. The functional significance of this non-coding RNA as a new additional element in the context of telomere biology remains to be explained.

  1. Telomere length alterations unique to invasive lobular carcinoma.

    PubMed

    Heaphy, Christopher M; Asch-Kendrick, Rebecca; Argani, Pedram; Meeker, Alan K; Cimino-Mathews, Ashley

    2015-08-01

    Telomeres are nucleoprotein complexes located at the extreme ends of eukaryotic chromosomes and protect chromosomal ends from degradation and recombination. Dysfunctional telomeres contribute to genomic instability, promote tumorigenesis, and, in breast cancer, have been associated with increased cancer risk and poor prognosis. Short telomere lengths have been previously associated with triple-negative and human epidermal growth factor receptor (Her2)--positive ductal carcinomas. However, these investigations have not specifically assessed invasive lobular carcinomas (ILCs), which accounts for 5% to 15% of all invasive breast cancers. Here, we evaluate telomere lengths within 48 primary ILCs with complete characterization of estrogen receptor (ER), progesterone receptor (PR), and Her2 status, including 32 luminal/Her2- (ER+/PR+/Her2-), 8 luminal/Her2+ (ER+/PR+/Her2+), 3 Her2+ (ER-/PR-/Her2+), and 5 triple-negative (ER-/PR-/Her2-) carcinomas. A telomere-specific fluorescence in situ hybridization assay, which provides single-cell telomere length resolution, was used to evaluate telomere lengths and compare with standard clinicopathological markers. In contrast to breast ductal carcinoma, in which more than 85% of cases display abnormally short telomeres, approximately half (52%) of the ILCs displayed either normal or long telomeres. Short telomere length was associated with older patient age. Interestingly, 3 cases (6%) displayed a unique telomere pattern consisting of 1 or 2 bright telomere spots among the normal telomere signals within each individual cancer cell, a phenotype that has not been previously described. Additional studies are needed to further evaluate the significance of the unique bright telomere spot phenotype and the potential utility of telomere length as a prognostic marker in ILC.

  2. Telomere uncapping at the crossroad between cell cycle arrest and carcinogenesis

    PubMed Central

    Gobbini, Elisa; Trovesi, Camilla; Cassani, Corinne; Longhese, Maria Pia

    2014-01-01

    Telomeres are nucleoprotein complexes that protect the natural ends of chromosomes from fusion and degradation and prevent them eliciting a checkpoint response. This protective function, which is called telomere capping, is largely mediated by telomere-binding proteins that suppress checkpoint activation and DNA repair activities. Telomere dysfunction through progressive shortening or removal of capping proteins leads to a checkpoint-mediated block of cell proliferation, which acts as a cancer-suppressor mechanism. However, genetic alterations that inactivate the checkpoint can lead to further telomere erosion and increased genomic instability that, coupled with the activation of mechanisms to restabilize telomeres, can drive the oncogenic process. PMID:27308311

  3. Finding the end: recruitment of telomerase to the telomere

    PubMed Central

    Nandakumar, Jayakrishnan; Cech, Thomas R.

    2013-01-01

    Telomeres, the ends of linear eukaryotic chromosomes, are characterized by the presence of multiple repeats of a short DNA sequence. This telomeric DNA is protected from illicit repair by telomere-associated proteins, which in mammals form the shelterin complex. Replicative polymerases are unable to synthesize DNA at the extreme ends of chromosomes, but in unicellular eukaryotes such as yeast and in mammalian germ cells and stem cells, telomere length is maintained by a ribonucleoprotein enzyme known as telomerase. Recent work has provided insights into the mechanisms of telomerase recruitment to telomeres, highlighting the contribution of telomere-associated proteins including TPP1 in humans, Ccq1 in S. pombe, and Cdc13 and Ku in S. cerevisiae. PMID:23299958

  4. Recombination Can Cause Telomere Elongations as Well as Truncations Deep within Telomeres in Wild-Type Kluyveromyces lactis Cells ▿

    PubMed Central

    Bechard, Laura H.; Jamieson, Nathan; McEachern, Michael J.

    2011-01-01

    In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis. We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae, however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52. Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis. PMID:21148753

  5. POT1 and TRF2 Cooperate To Maintain Telomeric Integrity†

    PubMed Central

    Yang, Qin; Zheng, Yun-Ling; Harris, Curtis C.

    2005-01-01

    Mammalian telomeric DNA contains duplex TTAGGG repeats and single-stranded overhangs. POT1 (protection of telomeres 1) is a telomere-specific single-stranded DNA-binding protein, highly conserved in eukaryotes. The biological function of human POT1 is not well understood. In the present study, we demonstrate that POT1 plays a key role in telomeric end protection. The reduction of POT1 by RNA interference led to the loss of telomeric single-stranded overhangs and induced apoptosis, chromosomal instability, and senescence in cells. POT1 and TRF2 interacted with each other to form a complex with telomeric DNA. A dominant negative TRF2, TRF2ΔBΔM, bound to POT1 and prevented it from binding to telomeres. POT1 overexpression protected against TRF2ΔBΔM-induced loss of telomeric single-stranded overhangs, chromosomal instability, and senescence. These results demonstrate that POT1 and TRF2 share in part in the same pathway for telomere capping and suggest that POT1 binds to the telomeric single-stranded DNA in the D-loop and cooperates with TRF2 in t-loop maintenance. PMID:15657433

  6. Telomere Length as a Predictor of Aggressive Prostate Cancer

    DTIC Science & Technology

    2008-11-01

    prospective study of lower urinary tract symptoms and erectile dysfunction . J Urol 2008;179:2321-6. PMID: 18423761 Sutcliffe S, Giovannucci E, Isaacs WB...cells and shorter telomeres in cancer-associated stromal cells are associated with a higher risk of prostate cancer death in surgically- treated men...Alumets J, Sandstedt B, Meeker AK, Gisselsson D. Defective chromosome segregation and telomere dysfunction in aggressive Wilms’ tumors. Clin Cancer Res

  7. Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries.

    PubMed

    Morgan, Richard G; Ives, Stephen J; Lesniewski, Lisa A; Cawthon, Richard M; Andtbacka, Robert H I; Noyes, R Dirk; Richardson, Russell S; Donato, Anthony J

    2013-07-15

    Arterial telomere dysfunction may contribute to chronic arterial inflammation by inducing cellular senescence and subsequent senescence-associated inflammation. Although telomere shortening has been associated with arterial aging in humans, age-related telomere uncapping has not been described in non-cultured human tissues and may have substantial prognostic value. In skeletal muscle feed arteries from 104 younger, middle-aged, and older adults, we assessed the potential role of age-related telomere uncapping in arterial inflammation. Telomere uncapping, measured by p-histone γ-H2A.X (ser139) localized to telomeres (chromatin immunoprecipitation; ChIP), and telomeric repeat binding factor 2 bound to telomeres (ChIP) was greater in arteries from older adults compared with those from younger adults. There was greater tumor suppressor protein p53 (P53)/cyclin-dependent kinase inhibitor 1A (P21)-induced senescence, measured by P53 bound to P21 gene promoter (ChIP), and greater expression of P21, interleukin 8, and monocyte chemotactic protein 1 mRNA (RT-PCR) in arteries from older adults compared with younger adults. Telomere uncapping was a highly influential covariate for the age-group difference in P53/P21-induced senescence. Despite progressive age-related telomere shortening in human arteries, mean telomere length was not associated with telomere uncapping or P53/P21-induced senescence. Collectively, these findings demonstrate that advancing age is associated with greater telomere uncapping in arteries, which is linked to P53/P21-induced senescence independent of telomere shortening.

  8. Telomere biology: Rationale for diagnostics and therapeutics in cancer.

    PubMed

    Rousseau, Philippe; Autexier, Chantal

    2015-01-01

    The key step of carcinogenesis is the malignant transformation which is fundamentally a telomere biology dysfunction permitting cells to bypass the Hayflick limit and to divide indefinitely and uncontrollably. Thus all partners and structures involved in normal and abnormal telomere maintenance, protection and lengthening can be considered as potential anti-cancer therapeutic targets. In this Point of View we discuss, highlight and provide new perspectives from the current knowledge and understanding to position the different aspects of telomere biology and dysfunction as diagnostic, preventive and curative tools in the field of cancer.

  9. Uncoupling of Longevity and Telomere Length in C. elegans

    PubMed Central

    Raices, Marcela; Maruyama, Hugo; Dillin, Andrew; Karlseder, Jan

    2005-01-01

    The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging. PMID:16151516

  10. Uncoupling of longevity and telomere length in C. elegans.

    PubMed

    Raices, Marcela; Maruyama, Hugo; Dillin, Andrew; Karlseder, Jan

    2005-09-01

    The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.

  11. Conservation of Telomere protein complexes: Shuffling through Evolution

    PubMed Central

    Linger, Benjamin R.; Price, Carolyn M.

    2009-01-01

    The rapid evolution of telomere proteins has hindered identification of orthologs from diverse species and created the impression that certain groups of eukaryotes have largely non-overlapping sets of telomere proteins. However, the recent identification of additional telomere proteins from various model organisms has dispelled this notion by expanding our understanding of the composition, architecture and range of telomere protein complexes present in individual species. It is now apparent that versions of the budding yeast CST complex and mammalian shelterin are present in multiple phyla. While the precise subunit composition and architecture of these complexes vary between species, the general function is often conserved. Despite the overall conservation of telomere protein complexes, there is still considerable species specific variation, with some organisms having lost a particular subunit or even an entire complex. In some cases, complex components appear to have migrated between the telomere and the telomerase RNP. Finally, gene duplication has created telomere protein paralogs with novel functions. While one paralog may be part of a conserved telomere protein complex and have the expected function, the other paralog may serve in a completely different aspect of telomere biology. PMID:19839711

  12. Telomeres, histone code, and DNA damage response.

    PubMed

    Misri, S; Pandita, S; Kumar, R; Pandita, T K

    2008-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.

  13. Telomeres, histone code, and DNA damage response

    PubMed Central

    Misri, S.; Pandita, S.; Kumar, R.; Pandita, T.K.

    2009-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability. PMID:19188699

  14. Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target.

    PubMed

    Pal, Jagannath; Gold, Jason S; Munshi, Nikhil C; Shammas, Masood A

    2013-12-01

    The purpose of this review is to highlight the importance of telomeres, the mechanisms implicated in their maintenance, and their role in the etiology as well as the treatment of human esophageal cancer. We will also discuss the role of telomeres in the maintenance and preservation of genomic integrity, the consequences of telomere dysfunction, and the various factors that may affect telomere health in esophageal tissue predisposing it to oncogenesis. There has been growing evidence that telomeres, which can be affected by various intrinsic and extrinsic factors, contribute to genomic instability, oncogenesis, as well as proliferation of cancer cells. Telomeres are the protective DNA-protein complexes at chromosome ends. Telomeric DNA undergoes progressive shortening with age leading to cellular senescence and/or apoptosis. If senescence/apoptosis is prevented as a consequence of specific genomic changes, continued proliferation leads to very short (ie, dysfunctional) telomeres that can potentially cause genomic instability, thus, increasing the risk for activation of telomere maintenance mechanisms and oncogenesis. Like many other cancers, esophageal cancer cells have short telomeres and elevated telomerase, the enzyme that maintains telomeres in most cancer cells. Homologous recombination, which is implicated in the alternate pathway of telomere elongation, is also elevated in Barrett's-associated esophageal adenocarcinoma. Evidence from our laboratory indicates that both telomerase and homologous recombination contribute to telomere maintenance, DNA repair, and the ongoing survival of esophageal cancer cells. This indicates that telomere maintenance mechanisms may potentially be targeted to make esophageal cancer cells static. The rate at which telomeres in healthy cells shorten is determined by a number of intrinsic and extrinsic factors, including those associated with lifestyle. Avoidance of factors that may directly or indirectly injure esophageal tissue

  15. Quantification of telomere length by FISH and laser scanning cytometry

    NASA Astrophysics Data System (ADS)

    Mahoney, John E.; Sahin, Ergun; Jaskelioff, Mariela; Chin, Lynda; DePinho, Ronald A.; Protopopov, Alexei I.

    2008-02-01

    Telomeres play a critical role in the maintenance of chromosomal stability. Telomere erosion, coupled with loss of DNA damage checkpoint function, results in genomic instability that promotes the development of cancer. The critical role of telomere dynamics in cancer has motivated the development of technologies designed to monitor telomere reserves in a highly quantitative and high-throughput manner in humans and model organisms. To this end, we have adapted and modified two established technologies, telomere-FISH and laser scanning cytometry. Specifically, we have produced a number of enhancements to the iCys LSC (CompuCyte) package including software updates, use of 60X dry objectives, and increased spatial resolution by 0.2 um size of stage steps. In addition, the 633 nm HeNe laser was replaced with a 532 nm green diode laser to better match the viewing options. Utilization of telomere-deficient mouse cells with short dysfunctional telomeres and matched telomerase reconstituted cultures demonstrated significantly higher mean integral specific fluorescence values for mTR transfectants relative to empty vector controls: 4.485M vs. 1.362M (p<0.0001). Histograms of average telomere intensities for individual cells were obtained and demonstrated intercellular heterogeneity in telomere lengths. The validation of the approach derives from a strong correlation between iCys LSC values and Southern blotting. This validated method greatly increases our experimental throughput and objectivity.

  16. Telomeres and human reproduction.

    PubMed

    Kalmbach, Keri Horan; Fontes Antunes, Danielle Mota; Dracxler, Roberta Caetano; Knier, Taylor Warner; Seth-Smith, Michelle Louise; Wang, Fang; Liu, Lin; Keefe, David Lawrence

    2013-01-01

    Telomeres mediate biologic aging in organisms as diverse as plants, yeast, and mammals. We propose a telomere theory of reproductive aging that posits telomere shortening in the female germ line as the primary driver of reproductive aging in women. Experimental shortening of telomeres in mice, which normally do not exhibit appreciable oocyte aging, and which have exceptionally long telomeres, recapitulates the aging phenotype of human oocytes. Telomere shortening in mice reduces synapsis and chiasmata, increases embryo fragmentation, cell cycle arrest, apoptosis, spindle dysmorphologies, and chromosome abnormalities. Telomeres are shorter in the oocytes from women undergoing in vitro fertilization, who then produce fragmented, aneuploid embryos that fail to implant. In contrast, the testes are replete with spermatogonia that can rejuvenate telomere reserves throughout the life of the man by expressing telomerase. Differences in telomere dynamics across the life span of men and women may have evolved because of the difference in the inherent risks of aging on reproduction between men and women. Additionally, growing evidence links altered telomere biology to endometriosis and gynecologic cancers, thus future studies should examine the role of telomeres in pathologies of the reproductive tract.

  17. Finding a human telomere DNA-RNA hybrid G-quadruplex formed by human telomeric 6-mer RNA and 16-mer DNA using click chemistry: a protective structure for telomere end.

    PubMed

    Xu, Yan; Suzuki, Yuta; Ishizuka, Takumi; Xiao, Chao-Da; Liu, Xiao; Hayashi, Tetsuya; Komiyama, Makoto

    2014-08-15

    Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA-RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA-RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA-RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA-RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA-RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.

  18. Telomeres and immune competency.

    PubMed

    Weng, Nan-ping

    2012-08-01

    Telomeres are essential for the integrity of chromosomes and for cellular replication. Attrition of telomeres occurs during DNA replication owing to the inability of conventional DNA polymerase to replicate chromosomal termini and the insufficient compensation for telomere loss by telomerase, an enzyme that synthesizes telomeric DNA. A number of genetic defects have been described in humans and in animal models that cause accelerated telomere attrition, in turn leading to severe phenotypes of hematopoietic and other proliferating cells. Telomere length, most frequently measured as an average value in heterogeneous peripheral blood leukocyte populations in humans, has been associated with a wide range of health conditions and diseases of immune and non-immune cells. Here, I review recent studies of telomere length dynamics with particular relevance to immune function.

  19. Molecular Recognition in Complexes of TRF Proteins with Telomeric DNA

    PubMed Central

    Wieczór, Miłosz; Tobiszewski, Adrian; Wityk, Paweł; Tomiczek, Bartłomiej; Czub, Jacek

    2014-01-01

    Telomeres are specialized nucleoprotein assemblies that protect the ends of linear chromosomes. In humans and many other species, telomeres consist of tandem TTAGGG repeats bound by a protein complex known as shelterin that remodels telomeric DNA into a protective loop structure and regulates telomere homeostasis. Shelterin recognizes telomeric repeats through its two major components known as Telomere Repeat-Binding Factors, TRF1 and TRF2. These two homologous proteins are therefore essential for the formation and normal function of telomeres. Indeed, TRF1 and TRF2 are implicated in a plethora of different cellular functions and their depletion leads to telomere dysfunction with chromosomal fusions, followed by apoptotic cell death. More specifically, it was found that TRF1 acts as a negative regulator of telomere length, and TRF2 is involved in stabilizing the loop structure. Consequently, these proteins are of great interest, not only because of their key role in telomere maintenance and stability, but also as potential drug targets. In the current study, we investigated the molecular basis of telomeric sequence recognition by TRF1 and TRF2 and their DNA binding mechanism. We used molecular dynamics (MD) to calculate the free energy profiles for binding of TRFs to telomeric DNA. We found that the predicted binding free energies were in good agreement with experimental data. Further, different molecular determinants of binding, such as binding enthalpies and entropies, the hydrogen bonding pattern and changes in surface area, were analyzed to decompose and examine the overall binding free energies at the structural level. With this approach, we were able to draw conclusions regarding the consecutive stages of sequence-specific association, and propose a novel aspartate-dependent mechanism of sequence recognition. Finally, our work demonstrates the applicability of computational MD-based methods to studying protein-DNA interactions. PMID:24586793

  20. Telomere Length Polymorphisms: A Potential Factor Underlying Increased Risk of Prostate Cancer in African American Men and Familial Prostate Cancer

    DTIC Science & Technology

    2008-12-01

    Defective chromosome segregation and telomere dysfunction in aggressive Wilms ’ tumors . Clinical Cancer Research. 13:6593-6602. 2007. 5. Bechan GI...cell tumors reveals evidence of telomere length heterogeneity and non-telomerase mediated telomere maintenance in tumor subsets. Modern Pathology 20...163A-163A 739 Suppl. 2 Mar. 2007. 4. Meeker AK, Bova GS, Hicks JL, De Marzo AM. Direct in situ analysis of telomere lengths in primary tumors and

  1. Telomere biology: cancer firewall or aging clock?

    PubMed

    Mitteldorf, J J

    2013-09-01

    It has been a decade since the first surprising discovery that longer telomeres in humans are statistically associated with longer life expectancies. Since then, it has been firmly established that telomere shortening imposes an individual fitness cost in a number of mammalian species, including humans. But telomere shortening is easily avoided by application of telomerase, an enzyme which is coded into nearly every eukaryotic genome, but whose expression is suppressed most of the time. This raises the question how the sequestration of telomerase might have evolved. The predominant assumption is that in higher organisms, shortening telomeres provide a firewall against tumor growth. A more straightforward interpretation is that telomere attrition provides an aging clock, reliably programming lifespans. The latter hypothesis is routinely rejected by most biologists because the benefit of programmed lifespan applies only to the community, and in fact the individual pays a substantial fitness cost. There is a long-standing skepticism that the concept of fitness can be applied on a communal level, and of group selection in general. But the cancer hypothesis is problematic as well. Animal studies indicate that there is a net fitness cost in sequestration of telomerase, even when cancer risk is lowered. The hypothesis of protection against cancer has never been tested in animals that actually limit telomerase expression, but only in mice, whose lifespans are not telomerase-limited. And human medical evidence suggests a net aggravation of cancer risk from the sequestration of telomerase, because cells with short telomeres are at high risk of neoplastic transformation, and they also secrete cytokines that exacerbate inflammation globally. The aging clock hypothesis fits well with what is known about ancestral origins of telomerase sequestration, and the prejudices concerning group selection are without merit. If telomeres are an aging clock, then telomerase makes an

  2. Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions

    PubMed Central

    Nera, Bernadette; Huang, Hui-Shun; Lai, Thao; Xu, Lifeng

    2015-01-01

    The shelterin protein TRF2 is essential for chromosome-end protection. Depletion of TRF2 causes chromosome end-to-end fusions, initiating genomic instability that can be cancer promoting. Paradoxically, significant increased levels of TRF2 are observed in a subset of human cancers. Experimental overexpression of TRF2 has also been shown to induce telomere shortening, through an unknown mechanism. Here we report that TRF2 overexpression results in replication stalling in duplex telomeric repeat tracts and the subsequent formation of telomeric ultrafine anaphase bridges (UFBs), ultimately leading to stochastic loss of telomeric sequences. These TRF2 overexpression-induced telomere deletions generate chromosome fusions resembling those detected in human cancers and in mammalian cells containing critically shortened telomeres. Therefore, our findings have uncovered a second pathway by which altered TRF2 protein levels can induce end-to-end fusions. The observations also provide mechanistic insight into the molecular basis of genomic instability in tumour cells containing significantly increased TRF2 levels. PMID:26640040

  3. DNA-PKcs is critical for telomere capping

    SciTech Connect

    Gilley, David; Tanaka, Hiromi; Hande, M. Prakash; Kurimasa,Akihiro; Li, Gloria C.; Chen, David J.

    2001-04-10

    The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is critical for DNA repair via the non-homologous end joining (NHEJ) pathway. Previously, it was reported that bone marrow cells and spontaneously transformed fibroblasts from SCID (severe combined immunodeficiency) mice have defects in telomere maintenance. The genetically defective SCID mouse arose spontaneously from its parental strain CB17. One known genomic alteration in SCID mice is a truncation of the extreme carboxyl-terminus of DNA-PKcs, but other as yet unidentified alterations may also exist. We have used a defined system, the DNA-PKcs knockout mouse, to investigate specifically the role DNA-PKcs specifically plays in telomere maintenance. We report that primary mouse embryonic fibroblasts (MEFs) and primary cultured kidney cells from 6-8 month old DNA-PKcs deficient mice accumulate a large number of telomere fusions, yet still retain wildtype telomere length. Thus, the phenotype of this defect separates the two-telomere related phenotypes, capping and length maintenance. DNA-PKcs deficient MEFs also exhibit elevated levels of chromosome fragments and breaks, which correlate with increased telomere fusions. Based on the high levels of telomere fusions observed in DNA-PKcs deficient cells, we conclude that DNA-PKcs plays an important capping role at the mammalian telomere.

  4. BRCA2 Acts as RAD51 Loader to Facilitate Telomere Replication and Capping

    PubMed Central

    Badie, Sophie; Escandell, Jose M.; Bouwman, Peter; Carlos, Ana Rita; Thanasoula, Maria; Gallardo, Maria M.; Suram, Anitha; Jaco, Isabel; Benitez, Javier; Herbig, Utz; Blasco, Maria A.; Jonkers, Jos; Tarsounas, Madalena

    2010-01-01

    BRCA2 is a key component of the homologous recombination (HR) pathway of DNA repair, acting as the loader of RAD51 recombinase at sites of double-strand breaks. Here, we demonstrate that BRCA2 associates with telomeres during S/G2 and facilitates RAD51 loading onto telomeres. Conditional Brca2 deletion and Rad51 inhibition in mouse embryonic fibroblasts (MEFs), but not Brca1 inactivation, led to telomere shortening and accumulation of fragmented telomeric signals, a hallmark of telomere fragility associated with replication defects. This suggests that BRCA2-mediated HR reactions contribute to telomere length maintenance by facilitating telomere replication and implies an essential role for BRCA2 in telomere integrity during unchallenged cell proliferation. Mouse mammary tumors lacking Brca2 accumulated telomere dysfunction-induced foci. BRCA2-mutated human breast tumors had shorter telomeres than BRCA1-mutated ones, suggesting that the genomic instability observed in BRCA2-deficient tumors is due in part to telomere dysfunction. PMID:21076401

  5. The potential utility of telomere-related markers for cancer diagnosis

    PubMed Central

    Heaphy, Christopher M; Meeker, Alan K

    2011-01-01

    Abstract The role telomeres and telomerase play in the initiation and progression of human cancers has been extensively evaluated. Telomeres are nucleoprotein complexes comprising the hexanucleotide DNA repeat sequence, TTAGGG and numerous telomere-associated proteins, including the six member Shelterin complex. The main function of the telomere is to stabilize the ends of the chromosomes. However, through multiple mechanisms, telomeres can become dysfunctional, which may drive genomic instability leading to the development of cancer. The majority of human cancers maintain, or actively lengthen, telomeres through up-regulation of the reverse transcriptase telomerase. Because there are significant differences in telomere length and telomerase activity between malignant and non-malignant tissues, many investigations have assessed the potential to utilize these molecular markers for cancer diagnosis. Here, we critically evaluate whether measurements of telomere lengths and telomerase levels may be clinically utilized as diagnostic markers in solid tumours, with emphasis on breast and prostate cancer as representative examples. Future directions focusing on the direct detection of dysfunctional telomeres are explored. New markers for telomere dysfunction may eventually prove clinically useful. PMID:21352473

  6. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease.

    PubMed

    Birch, Jodie; Anderson, Rhys K; Correia-Melo, Clara; Jurk, Diana; Hewitt, Graeme; Marques, Francisco Madeira; Green, Nicola J; Moisey, Elizabeth; Birrell, Mark A; Belvisi, Maria G; Black, Fiona; Taylor, John J; Fisher, Andrew J; De Soyza, Anthony; Passos, João F

    2015-11-15

    Cellular senescence has been associated with the structural and functional decline observed during physiological lung aging and in chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the first line of defense in the lungs and are important to COPD pathogenesis. However, the mechanisms underlying airway epithelial cell senescence, and particularly the role of telomere dysfunction in this process, are poorly understood. We aimed to investigate telomere dysfunction in airway epithelial cells from patients with COPD, in the aging murine lung and following cigarette smoke exposure. We evaluated colocalization of γ-histone protein 2A.X and telomeres and telomere length in small airway epithelial cells from patients with COPD, during murine lung aging, and following cigarette smoke exposure in vivo and in vitro. We found that telomere-associated DNA damage foci increase in small airway epithelial cells from patients with COPD, without significant telomere shortening detected. With age, telomere-associated foci increase in small airway epithelial cells of the murine lung, which is accelerated by cigarette smoke exposure. Moreover, telomere-associated foci predict age-dependent emphysema, and late-generation Terc null mice, which harbor dysfunctional telomeres, show early-onset emphysema. We found that cigarette smoke accelerates telomere dysfunction via reactive oxygen species in vitro and may be associated with ataxia telangiectasia mutated-dependent secretion of inflammatory cytokines interleukin-6 and -8. We propose that telomeres are highly sensitive to cigarette smoke-induced damage, and telomere dysfunction may underlie decline of lung function observed during aging and in COPD.

  7. Telomeric RNAs are essential to maintain telomeres

    PubMed Central

    Montero, Juan José; López de Silanes, Isabel; Graña, Osvaldo; Blasco, Maria A.

    2016-01-01

    Telomeres are transcribed generating long non-coding RNAs known as TERRA. Deciphering the role of TERRA has been one of the unsolved issues of telomere biology in the past decade. This has been, in part, due to lack of knowledge on the TERRA loci, thus preventing functional genetic studies. Here, we describe that long non-coding RNAs with TERRA features are transcribed from the human 20q and Xp subtelomeres. Deletion of the 20q locus by using the CRISPR-Cas9 technology causes a dramatic decrease in TERRA levels, while deletion of the Xp locus does not result in decreased TERRA levels. Strikingly, 20q-TERRA ablation leads to dramatic loss of telomere sequences and the induction of a massive DNA damage response. These findings identify chromosome 20q as a main TERRA locus in human cells and represent the first demonstration in any organism of the essential role of TERRA in the maintenance of telomeres. PMID:27531349

  8. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells.

    PubMed

    Hohensinner, P J; Kaun, C; Buchberger, E; Ebenbauer, B; Demyanets, S; Huk, I; Eppel, W; Maurer, G; Huber, K; Wojta, J

    2016-02-01

    Aging is a major factor predisposing for multiple diseases. Telomeres at the ends of chromosomes protect the integrity of chromosomal DNA. A specialized six-protein complex termed shelterin protects the telomere from unwanted interaction with DNA damage pathways. The aim of our study was to evaluate the integrity of telomeres and the stability of telomere protection during aging in endothelial cells (EC). We describe that aging EC can be characterized by an increased cell size (40%, p=0.02) and increased expression of PAI 1 (4 fold, p=0.02), MCP1 (10 fold, p=0.001) and GMCSF (15 fold, p=0.004). Telomeric state in aging cells is defined by an increased telomere oxidation (27%, p=0.01), reduced telomere length (62%, p=0.02), and increased DNA damage foci formation (5% in young EC versus 16% in aged EC, p=0.003). This telomeric dysfunction is accompanied by a reduction in the shelterin component TRF1 (33% mRNA, p=0.001; 24% protein, p=0.007). Overexpression of TRF1 in aging EC reduced telomere-associated DNA damage foci to 5% (p=0.02) and reduced expression levels of MCP1 (18% reduction, p=0.008). Aged EC have increased telomere damage and an intrinsic loss of telomere protection. Reestablishing telomere integrity could therefore be a target for rejuvenating endothelial cell function. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Control of telomere length by a trimming mechanism that involves generation of t-circles

    PubMed Central

    Pickett, Hilda A; Cesare, Anthony J; Johnston, Rebecca L; Neumann, Axel A; Reddel, Roger R

    2009-01-01

    Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself. PMID:19214183

  10. A role for monoubiquitinated FANCD2 at telomeres in ALT cells.

    PubMed

    Fan, Qiang; Zhang, Fan; Barrett, Briana; Ren, Keqin; Andreassen, Paul R

    2009-04-01

    Both Fanconi anemia (FA) and telomere dysfunction are associated with chromosome instability and an increased risk of cancer. Because of these similarities, we have investigated whether there is a relationship between the FA protein, FANCD2 and telomeres. We find that FANCD2 nuclear foci colocalize with telomeres and PML bodies in immortalized telomerase-negative cells. These cells maintain telomeres by alternative lengthening of telomeres (ALT). In contrast, FANCD2 does not colocalize with telomeres or PML bodies in cells which express telomerase. Using a siRNA approach we find that FANCA and FANCL, which are components of the FA nuclear core complex, regulate FANCD2 monoubiquitination and the telomeric localization of FANCD2 in ALT cells. Transient depletion of FANCD2, or FANCA, results in a dramatic loss of detectable telomeres in ALT cells but not in telomerase-expressing cells. Furthermore, telomere loss following depletion of these proteins in ALT cells is associated with decreased homologous recombination between telomeres (T-SCE). Thus, the FA pathway has a novel function in ALT telomere maintenance related to DNA repair. ALT telomere maintenance is therefore one mechanism by which monoubiquitinated FANCD2 may promote genetic stability.

  11. Telomeres: structures in need of unwinding.

    PubMed

    Paeschke, Katrin; McDonald, Karin R; Zakian, Virginia A

    2010-09-10

    Telomeres protect the ends of eukaryotic chromosomes from being recognized and processed as double strand breaks. In most organisms, telomeric DNA is highly repetitive with a high GC-content. Moreover, the G residues are concentrated in the strand running 3'-5' from the end of the chromosome towards its center. This G-rich strand is extended to form a 3' single-stranded tail that can form unusual secondary structures such as T-loops and G-quadruplex DNA. Both the duplex repeats and the single-stranded G-tail are assembled into stable protein-DNA complexes. The unique architecture, high GC content, and multi-protein association create particularly stable protein-DNA complexes that are a challenge for replication, recombination, and transcription. Helicases utilize the energy of nucleotide hydrolysis to unwind base paired nucleic acids and, in some cases, to displace proteins from them. The telomeric functions of helicases from the RecQ, Pifl, FANCJ, and DNA2 families are reviewed in this article. We summarize data showing that perturbation of their telomere activities can lead to telomere dysfunction and genome instability and in some cases human disease.

  12. Heregulin, a new regulator of telomere length in human cells.

    PubMed

    Menendez, Javier A; Rubio, Miguel A; Campisi, Judith; Lupu, Ruth

    2015-11-24

    The growth factor heregulin (HRG) promotes breast cancer (BC) tumorigenesis and metastasis and differentially modulates BC cell responses to DNA-damaging agents via its dual extracellular and nuclear localization. Given the central role of telomere dysfunction to drive carcinogenesis and to alter the chemotherapeutic profile of transformed cells, we hypothesized that an unanticipated nuclear function of HRG might be to regulate telomere length. Engineered overexpression of the HRGβ2 isoform in non-aggressive, HRG-negative MCF-7 BC cells resulted in a significant shortening of telomeres (up to 1.3 kb) as measured by Southern blotting of telomere terminal restriction fragments. Conversely, antisense-mediated suppression of HRGβ2 in highly aggressive, HRG-overexpressing MDA-MB-231 and Hs578T cells increased telomere length up to 3.0 kb. HRGβ2 overexpression promoted a marked upregulation of telomere-binding protein 2 (TRF2) protein expression, whereas its knockdown profoundly decreased TRF2 expression. Double staining of endogenous HRGβ2 with telomere-specific peptide nucleic acid probe/fluorescence in situ hybridization (PNA/FISH) revealed the partial localization of HRG at the chromosome ends. Moreover, a predominantly nucleoplasmic staining pattern of endogenous HRGβ2 appeared to co-localize with TRF2 and, concomitantly with RAP1, a telomere regulator that specifically interacts with TRF2. Small interfering RNA-mediated knockdown of HRG decreased the expression of TRF2 and RAP1, decreased their presence at chromosome ends, and coincidentally resulted in the formation of longer telomeres. This study uncovers a new function for HRGβ2 in controlling telomere length, in part due to its ability to regulate and interact with the telomere-associated proteins TRF2 and RAP1.

  13. Telomere Length Is a Determinant of Emphysema Susceptibility

    PubMed Central

    Alder, Jonathan K.; Guo, Nini; Kembou, Frant; Parry, Erin M.; Anderson, Collin J.; Gorgy, Amany I.; Walsh, Michael F.; Sussan, Thomas; Biswal, Shyam; Mitzner, Wayne; Tuder, Rubin M.

    2011-01-01

    Rationale: Germline mutations in the enzyme telomerase cause telomere shortening, and have their most common clinical manifestation in age-related lung disease that manifests as idiopathic pulmonary fibrosis. Short telomeres are also a unique heritable trait that is acquired with age. Objectives: We sought to understand the mechanisms by which telomerase deficiency contributes to lung disease. Methods: We studied telomerase null mice with short telomeres. Measurements and Main Results: Although they have no baseline histologic defects, when mice with short telomeres are exposed to chronic cigarette smoke, in contrast with controls, they develop emphysematous air space enlargement. The emphysema susceptibility did not depend on circulating cell genotype, because mice with short telomeres developed emphysema even when transplanted with wild-type bone marrow. In lung epithelium, cigarette smoke exposure caused additive DNA damage to telomere dysfunction, which limited their proliferative recovery, and coincided with a failure to down-regulate p21, a mediator of cellular senescence, and we show here, a determinant of alveolar epithelial cell cycle progression. We also report early onset of emphysema, in addition to pulmonary fibrosis, in a family with a germline deletion in the Box H domain of the RNA component of telomerase. Conclusions: Our data indicate that short telomeres lower the threshold of cigarette smoke–induced damage, and implicate telomere length as a genetic susceptibility factor in emphysema, potentially contributing to its age-related onset in humans. PMID:21757622

  14. Telomeres in aging and disease: lessons from zebrafish

    PubMed Central

    Carneiro, Madalena C.; de Castro, Inês Pimenta

    2016-01-01

    ABSTRACT Age is the highest risk factor for some of the most prevalent human diseases, including cancer. Telomere shortening is thought to play a central role in the aging process in humans. The link between telomeres and aging is highlighted by the fact that genetic diseases causing telomerase deficiency are associated with premature aging and increased risk of cancer. For the last two decades, this link has been mostly investigated using mice that have long telomeres. However, zebrafish has recently emerged as a powerful and complementary model system to study telomere biology. Zebrafish possess human-like short telomeres that progressively decline with age, reaching lengths in old age that are observed when telomerase is mutated. The extensive characterization of its well-conserved molecular and cellular physiology makes this vertebrate an excellent model to unravel the underlying relationship between telomere shortening, tissue regeneration, aging and disease. In this Review, we explore the advantages of using zebrafish in telomere research and discuss the primary discoveries made in this model that have contributed to expanding our knowledge of how telomere attrition contributes to cellular senescence, organ dysfunction and disease. PMID:27482813

  15. The many facets of homologous recombination at telomeres

    PubMed Central

    Claussin, Clémence; Chang, Michael

    2015-01-01

    The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms are called alternative lengthening of telomeres (ALT) and are used in a subset of human cancer cells. In this review, we summarize the different recombination activities occurring at telomeres and discuss how they are regulated. Much of the current knowledge is derived from work using yeast models, which is the focus of this review, but relevant studies in mammals are also included.

  16. Telomeres and human health.

    PubMed

    Bojesen, S E

    2013-11-01

    Telomeres are the tips of chromosomes and consist of proteins and hexanucleotide tandem repeats of DNA. The DNA repeats are shortened at each mitotic division of normal cells, and the telomere length chronicles how many divisions the cell has undergone. Thus, telomere length is a marker of fundamental biological pathways. It has been possible to measure telomere length for more than 20 years, and it has been established that telomere length is associated with age, sex and lifestyle factors. Here, the current knowledge of telomere length as a biomarker of disease susceptibility and mortality will be reviewed. In addition, technical difficulties and the reasons why measurement of telomeres has still not been introduced into routine clinical practice will be discussed. Findings from recent studies conducted in many thousands of individuals indicate that telomere length is not-or at best only marginally-independently associated with risk of common disorders such as cardiovascular, pulmonary and neoplastic diseases. However, in sufficiently powered studies, short telomeres are repeatedly and independently found to be associated with increased risk of early death in the general population or in subsets of individuals. This indicates that measurement of telomeres could be a valuable prognostic biomarker in many clinical settings. However, whether short telomeres are a causal factor for or simply a marker of increased risk of early death must be determined. Finally, how Mendelian randomization studies could clarify this issue, and which clinical studies might be carried out to refine this very promising biomarker for routine clinical use will be considered.

  17. The Structure of the Mammalian RNase H2 Complex Provides Insight into RNA.NA Hybrid Processing to Prevent Immune Dysfunction

    SciTech Connect

    Shaban, N.; Harvey, S; Perrino, F; Hollis, T

    2010-01-01

    The mammalian RNase H2 ribonuclease complex has a critical function in nucleic acid metabolism to prevent immune activation with likely roles in processing of RNA primers in Okazaki fragments during DNA replication, in removing ribonucleotides misinserted by DNA polymerases, and in eliminating RNA {center_dot} DNA hybrids during cell death. Mammalian RNase H2 is a heterotrimeric complex of the RNase H2A, RNase H2B, and RNase H2C proteins that are all required for proper function and activity. Mutations in the human RNase H2 genes cause Aicardi-Goutieres syndrome. We have determined the crystal structure of the three-protein mouse RNase H2 enzyme complex to better understand the molecular basis of RNase H2 dysfunction in human autoimmunity. The structure reveals the intimately interwoven architecture of RNase H2B and RNase H2C that interface with RNase H2A in a complex ideally suited for nucleic acid binding and hydrolysis coupled to protein-protein interaction motifs that could allow for efficient participation in multiple cellular functions. We have identified four conserved acidic residues in the active site that are necessary for activity and suggest a two-metal ion mechanism of catalysis for RNase H2. An Okazaki fragment has been modeled into the RNase H2 nucleic acid binding site providing insight into the recognition of RNA {center_dot} DNA junctions by the RNase H2. Further structural and biochemical analyses show that some RNase H2 disease-causing mutations likely result in aberrant protein-protein interactions while the RNase H2A subunit-G37S mutation appears to distort the active site accounting for the demonstrated substrate specificity modification.

  18. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain.

    PubMed

    Hawkins, Robert D

    2013-09-18

    Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca(2+) and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD).

  19. The Presence of Telomere Fusion in Sporadic Colon Cancer Independently of Disease Stage, TP53/KRAS Mutation Status, Mean Telomere Length, and Telomerase Activity

    PubMed Central

    Tanaka, Hiromi; Beam, Matthew J.; Caruana, Kevin

    2014-01-01

    Defects in telomere maintenance can result in telomere fusions that likely play a causative role in carcinogenesis by promoting genomic instability. However, this proposition remains to be fully understood in human colon carcinogenesis. In the present study, the temporal sequence of telomere dysfunction dynamics was delineated by analyzing telomere fusion, telomere length, telomerase activity, hotspot mutations in KRAS or BRAF, and TP53 of tissue samples obtained from 18 colon cancer patients. Our results revealed that both the deficiency of p53 and the shortening of mean telomere length were not necessary for producing telomere fusions in colon tissue. In five cases, telomere fusion was observed even in tissue adjacent to cancerous lesions, suggesting that genomic instability is initiated in pathologically non-cancerous lesions. The extent of mean telomere attrition increased with lymph node invasiveness of tumors, implying that mean telomere shortening correlates with colon cancer progression. Telomerase activity was relatively higher in most cancer tissues containing mutation(s) in KRAS or BRAF and/or TP53 compared to those without these hotspot mutations, suggesting that telomerase could become fully active at the late stage of colon cancer development. Interestingly, the majority of telomere fusion junctions in colon cancer appeared to be a chromatid-type containing chromosome 7q or 12q. In sum, this meticulous correlative study not only highlights the concept that telomere fusion is present in the early stages of cancer regardless of TP53/KRAS mutation status, mean telomere length, and telomerase activity, but also provides additional insights targeting key telomere fusion junctions which may have significant implications for colon cancer diagnoses. PMID:25379018

  20. Telomere length is an independent prognostic marker in MDS but not in de novo AML.

    PubMed

    Williams, Jenna; Heppel, Nicole H; Britt-Compton, Bethan; Grimstead, Julia W; Jones, Rhiannon E; Tauro, Sudhir; Bowen, David T; Knapper, Steven; Groves, Michael; Hills, Robert K; Pepper, Chris; Baird, Duncan M; Fegan, Chris

    2017-07-01

    Telomere dysfunction is implicated in the generation of large-scale genomic rearrangements that drive progression to malignancy. In this study we used high-resolution single telomere length analysis (STELA) to examine the potential role of telomere dysfunction in 80 myelodysplastic syndrome (MDS) and 95 de novo acute myeloid leukaemia (AML) patients. Despite the MDS cohort being older, they had significantly longer telomeres than the AML cohort (P < 0·0001) where telomere length was also significantly shorter in younger AML patients (age <60 years) (P = 0·02) and in FLT3 internal tandem duplication-mutated AML patients (P = 0·03). Using a previously determined telomere length threshold for telomere dysfunction (3·81 kb) did not provide prognostic resolution in AML [Hazard ratio (HR) = 0·68, P = 0·2]. In contrast, the same length threshold was highly prognostic for overall survival in the MDS cohort (HR = 5·0, P < 0·0001). Furthermore, this telomere length threshold was an independent parameter in multivariate analysis when adjusted for age, gender, cytogenetic risk group, number of cytopenias and International Prognostic Scoring System (IPSS) score (HR = 2·27, P < 0·0001). Therefore, telomere length should be assessed in a larger prospective study to confirm its prognostic role in MDS with a view to integrating this variable into a revised IPSS. © 2017 John Wiley & Sons Ltd.

  1. Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids

    PubMed Central

    Sagie, Shira; Toubiana, Shir; Hartono, Stella R.; Katzir, Hagar; Tzur-Gilat, Aya; Havazelet, Shany; Francastel, Claire; Velasco, Guillaume; Chédin, Frédéric; Selig, Sara

    2017-01-01

    DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction. PMID:28117327

  2. Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases.

    PubMed

    Kuhn, Michaela

    2009-01-01

    Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human

  3. Requirement of DDX39 DEAD box RNA helicase for genome integrity and telomere protection.

    PubMed

    Yoo, Hyun Hee; Chung, In Kwon

    2011-08-01

    Human chromosome ends associate with shelterin, a six-protein complex that protects telomeric DNA from being recognized as sites of DNA damage. The shelterin subunit TRF2 has been implicated in the protection of chromosome ends by facilitating their organization into the protective capping structure and by associating with several accessory proteins involved in various DNA transactions. Here we describe the characterization of DDX39 DEAD-box RNA helicase as a novel TRF2-interacting protein. DDX39 directly interacts with the telomeric repeat binding factor homology domain of TRF2 via the FXLXP motif (where X is any amino acid). DDX39 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT but has no effect on telomerase activity. Whereas overexpression of DDX39 in telomerase-positive human cancer cells led to progressive telomere elongation, depletion of endogenous DDX39 by small hairpin RNA (shRNA) resulted in telomere shortening. Furthermore, depletion of DDX39 induced DNA-damage response foci at internal genome as well as telomeres as evidenced by telomere dysfunction-induced foci. Some of the metaphase chromosomes showed no telomeric signal at chromatid ends, suggesting an aberrant telomere structure. Our findings suggest that DDX39, in addition to its role in mRNA splicing and nuclear export, is required for global genome integrity as well as telomere protection and represents a new pathway for telomere maintenance by modulating telomere length homeostasis.

  4. Adipocyte telomere length associates negatively with adipocyte size, whereas adipose tissue telomere length associates negatively with the extent of fibrosis in severely obese women.

    PubMed

    el Bouazzaoui, F; Henneman, P; Thijssen, P; Visser, A; Koning, F; Lips, M A; Janssen, I; Pijl, H; Willems van Dijk, K; van Harmelen, V

    2014-05-01

    Telomere length can be considered as a biological marker for cell proliferation and aging. Obesity is associated with adipocyte hypertrophy and proliferation as well as with shorter telomeres in adipose tissue. As adipose tissue is a mixture of different cell types and the cellular composition of adipose tissue changes with obesity, it is unclear what determines telomere length of whole adipose tissue. We aimed to investigate telomere length in whole adipose tissue and isolated adipocytes in relation to adiposity, adipocyte hypertrophy and adipose tissue inflammation and fibrosis. Telomere length was measured by real-time PCR in visceral adipose tissue, and isolated adipocytes of 21 obese women with a waist ranging from 110 to 147 cm and age from 31 to 61 years. Telomere length in adipocytes was shorter than in whole adipose tissue. Telomere length of adipocytes but not whole adipose tissue correlated negatively with waist and adipocyte size, which was still significant after correction for age. Telomere length of whole adipose tissue associated negatively with fibrosis as determined by collagen content. Thus, in extremely obese individuals, adipocyte telomere length is a marker of adiposity, whereas whole adipose tissue telomere length reflects the extent of fibrosis and may indicate adipose tissue dysfunction.

  5. Extensive telomere erosion is consistent with localised clonal expansions in Barrett's metaplasia.

    PubMed

    Letsolo, Boitelo T; Jones, Rhiannon E; Rowson, Jan; Grimstead, Julia W; Keith, W Nicol; Jenkins, Gareth J S; Baird, Duncan M

    2017-01-01

    Barrett's oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett's oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett's oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett's metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett's metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett's metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett's metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett's metaplasia.

  6. Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia

    PubMed Central

    Jones, Rhiannon E.; Rowson, Jan; Grimstead, Julia W.; Keith, W. Nicol; Jenkins, Gareth J. S.

    2017-01-01

    Barrett’s oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett’s oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett’s oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett’s metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett’s metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett’s metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett’s metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett’s metaplasia. PMID:28362812

  7. Ageing and the telomere connection: An intimate relationship with inflammation.

    PubMed

    Zhang, Jingwen; Rane, Grishma; Dai, Xiaoyun; Shanmugam, Muthu K; Arfuso, Frank; Samy, Ramar Perumal; Lai, Mitchell Kim Peng; Kappei, Dennis; Kumar, Alan Prem; Sethi, Gautam

    2016-01-01

    Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are also associated with hyperactivity of the transcription factor NF-κB and overexpression of inflammatory cytokines such as TNF-α, IL-6, and IFN-γ in circulating macrophages. Interestingly, telomerase, a reverse transcriptase that elongates telomeres, is involved in modulating NF-κB activity. Furthermore, inflammation and oxidative stress are implicated as pre-disease mechanisms for chronic diseases of ageing such as neurodegenerative diseases, cardiovascular disease, and cancer. To date, inflammation and telomere shortening have mostly been studied individually in terms of ageing and the associated disease phenotype. However, the interdependent nature of the two demands a more synergistic approach in understanding the ageing process itself and for developing new therapeutic approaches. In this review, we aim to summarize the intricate association between the various inflammatory molecules and telomeres that together contribute to the ageing process and related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization.

    PubMed

    Zhang, Zepeng; Hu, Qian; Zhao, Yong

    2017-01-01

    In mammalian cells, in addition to double-stranded telomeric DNA at chromosome ends, extra telomere-homologous DNA is present that adopts different conformations, including single-stranded G- or C-rich DNA, extrachromosomal circular DNA (T-circle), and telomeric complex (T-complex) with an unidentified structure. The formation of such telomere-homologous DNA is closely related to telomeric DNA metabolism and chromosome end protection by telomeres. Conventional agarose gel electrophoresis is unable to separate DNA based on conformation. Here, we introduce the method of two-dimensional (2D) agarose electrophoresis in combination with in-gel native/denatured hybridization to determine different conformations formed by telomere-homologous DNA.

  9. Responses to Telomere Erosion in Plants

    PubMed Central

    Amiard, Simon; Da Ines, Olivier; Gallego, Maria Eugenia; White, Charles I.

    2014-01-01

    In striking contrast to animals, plants are able to develop and reproduce in the presence of significant levels of genome damage. This is seen clearly in both the viability of plants carrying knockouts for key recombination and DNA repair genes, which are lethal in vertebrates, and in the impact of telomere dysfunction. Telomerase knockout mice show accelerated ageing and severe developmental phenotypes, with effects on both highly proliferative and on more quiescent tissues, while cell death in Arabidopsis tert mutants is mostly restricted to actively dividing meristematic cells. Through phenotypic and whole-transcriptome RNAseq studies, we present here an analysis of the response of Arabidopsis plants to the continued presence of telomere damage. Comparison of second-generation and seventh-generation tert mutant plants has permitted separation of the effects of the absence of the telomerase enzyme and the ensuing chromosome damage. In addition to identifying a large number of genes affected by telomere damage, many of which are of unknown function, the striking conclusion of this study is the clear difference observed at both cellular and transcriptome levels between the ways in which mammals and plants respond to chronic telomeric damage. PMID:24465970

  10. A Conserved Motif within RAP1 Plays Diversified Roles in Telomere Protection and Regulation in Different Organisms

    PubMed Central

    Chen, Yong; Rai, Rekha; Zhou, Zi-Ren; Kanoh, Junko; Ribeyre, Cyril; Yang, Yuting; Zheng, Hong; Damay, Pascal; Wang, Feng; Tsujii, Hisayo; Hiraoka, Yasushi; Shore, David; Hu, Hong-Yu; Chang, Sandy; Lei, Ming

    2013-01-01

    Repressor activator protein 1 (RAP1) is the most highly conserved telomere protein. It is involved in protecting chromosome ends in fission yeast, promoting gene silencing in Saccharomyces cerevisiae while in Kluyveromyces lactis it is required to repress homology directed recombination (HDR) at telomeres. Since mammalian RAP1 requires TRF2 for stable expression, its role in telomere function has remained obscure. To understand how RAP1 plays such diverse functions at telomeres, we solved the crystal or solution structures of the C-terminal RCT domains of RAP1 from multiple organisms in complex with their respective protein-binding partners. Our comparative structural analysis establishes the RCT domain of RAP1 as an evolutionarily conserved protein-protein interaction module. In mammalian and fission yeast cells, this module interacts with TRF2 and Taz1, respectively, targeting RAP1 to chromosome ends for telomere end protection. While RAP1 repress NHEJ at fission yeast telomeres, at mammalian telomeres it is required to repress HDR. In contrast, S. cerevisiae RAP1 utilizes the RCT domain to recruit Sir3 to telomeres to mediate gene silencing. Together, our results reveal that depending on the organism, the evolutionarily conserved RAP1 RCT motif plays diverse functional roles at telomeres. PMID:21217703

  11. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer

    SciTech Connect

    Artandi, Steven E. . E-mail: sartandi@stanford.edu; Attardi, Laura D. . E-mail: attardi@stanford.edu

    2005-06-10

    The ends of eukaryotic chromosomes are protected by specialized structures termed telomeres that serve in part to prevent the chromosome end from activating a DNA damage response. However, this important function for telomeres in chromosome end protection can be lost as telomeres shorten with cell division in culture or in self-renewing tissues with advancing age. Impaired telomere function leads to induction of a DNA damage response and activation of the tumor suppressor protein p53. p53 serves a critical role in enforcing both senescence and apoptotic responses to dysfunctional telomeres. Loss of p53 creates a permissive environment in which critically short telomeres are inappropriately joined to generate chromosomal end-to-end fusions. These fused chromosomes result in cycles of chromosome fusion-bridge-breakage, which can fuel cancer initiation, especially in epithelial tissues, by facilitating changes in gene copy number.

  12. DNA-induced dimerization of the single-stranded DNA binding telomeric protein Pot1 from Schizosaccharomyces pombe

    PubMed Central

    Nandakumar, Jayakrishnan; Cech, Thomas R.

    2012-01-01

    Eukaryotic chromosome ends are protected from illicit DNA joining by protein–DNA complexes called telomeres. In most studied organisms, telomeric DNA is composed of multiple short G-rich repeats that end in a single-stranded tail that is protected by the protein POT1. Mammalian POT1 binds two telomeric repeats as a monomer in a sequence-specific manner, and discriminates against RNA of telomeric sequence. While addressing the RNA discrimination properties of SpPot1, the POT1 homolog in Schizosaccharomyces pombe, we found an unanticipated ssDNA-binding mode in which two SpPot1 molecules bind an oligonucleotide containing two telomeric repeats. DNA binding seems to be achieved via binding of the most N-terminal OB domain of each monomer to each telomeric repeat. The SpPot1 dimer may have evolved to accommodate the heterogeneous spacers that occur between S. pombe telomeric repeats, and it also has implications for telomere architecture. We further show that the S. pombe telomeric protein Tpz1, like its mammalian homolog TPP1, increases the affinity of Pot1 for telomeric single-stranded DNA and enhances the discrimination of Pot1 against RNA. PMID:21911358

  13. Solving the Telomere Replication Problem

    PubMed Central

    Maestroni, Laetitia; Matmati, Samah; Coulon, Stéphane

    2017-01-01

    Telomeres are complex nucleoprotein structures that protect the extremities of linear chromosomes. Telomere replication is a major challenge because many obstacles to the progression of the replication fork are concentrated at the ends of the chromosomes. This is known as the telomere replication problem. In this article, different and new aspects of telomere replication, that can threaten the integrity of telomeres, will be reviewed. In particular, we will focus on the functions of shelterin and the replisome for the preservation of telomere integrity. PMID:28146113

  14. Deregulated telomere transcription causes replication-dependent telomere shortening and promotes cellular senescence

    PubMed Central

    Maicher, André; Kastner, Lisa; Dees, Martina; Luke, Brian

    2012-01-01

    Telomeres are transcribed into non-coding TElomeric Repeat containing RNAs (TERRA). We have employed a transcriptionally inducible telomere to investigate how telomere transcription affects telomere function in Saccharomyces cerevisiae. We report that telomere shortening resulting from high levels of telomere transcription stems from a DNA replication-dependent loss of telomere tracts, which can occur independent of both telomerase inhibition and homologous recombination. We show that in order for telomere loss to occur, transcription must pass through the telomere tract itself producing a TERRA molecule. We demonstrate that increased telomere transcription of a single telomere leads to a premature cellular senescence in the absence of a telomere maintenance mechanism (telomerase and homology directed repair). Similar rapid senescence and telomere shortening are also seen in sir2Δ cells with compromised telomere maintenance, where TERRA levels are increased at natural telomeres. These data suggest that telomere transcription must be tightly controlled to prevent telomere loss and early onset senescence. PMID:22553368

  15. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications.

    PubMed

    Qi Nan, Wu; Ling, Zhang; Bing, Chen

    2015-06-01

    The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.

  16. Strong association between long and heterogeneous telomere length in blood lymphocytes and bladder cancer risk in Egyptian

    PubMed Central

    Wang, Hongkun; Wang, Ying; Kota, Krishna K.; Kallakury, Bhaskar; Mikhail, Nabiel N.; Sayed, Douaa; Mokhtar, Ahmed; Maximous, Doaa; Yassin, Etemad H.; Gouda, Iman; Sobitan, Adebiyi; Sun, Bing; Loffredo, Christopher A.; Zheng, Yun-Ling

    2015-01-01

    Although it is widely recognized that telomere dysfunction plays an important role in cancer, the relationship between telomere function and bladder cancer risk is not well defined. In a case–control study of bladder cancer in Egypt, we examined relationships between two telomere features and bladder cancer risk. Telomere fluorescent in situ hybridization was used to measure telomere features using short-term cultured blood lymphocytes. Logistic regression was used to estimate the strength of association between telomere features and the risk of urothelial carcinoma of the bladder. High telomere length variation (TLV) across all chromosomal ends was significantly associated with an increased risk of bladder cancer [adjusted odds ratios (OR) = 2.22, 95% confidence interval (CI) = 1.48–3.35], as was long average telomere length (OR = 3.19, 95% CI = 2.07, 4.91). Further, TLV and average telomere length jointly affected bladder cancer risk: when comparing individuals with long telomere length and high TLV to those with short telomere length and low TLV, the adjusted OR was 14.68 (95% CI: 6.74–31.98). These associations were stronger among individuals who are 60 years of age or younger. In summary, long and heterogeneous telomere length in blood lymphocytes was strongly associated with an increased bladder cancer risk in Egyptian and the association was modulated by age. PMID:26342126

  17. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres.

    PubMed

    Badie, Sophie; Carlos, Ana Rita; Folio, Cecilia; Okamoto, Keiji; Bouwman, Peter; Jonkers, Jos; Tarsounas, Madalena

    2015-02-03

    Loss of telomere protection occurs during physiological cell senescence and ageing, due to attrition of telomeric repeats and insufficient retention of the telomere-binding factor TRF2. Subsequently formed telomere fusions trigger rampant genomic instability leading to cell death or tumorigenesis. Mechanistically, telomere fusions require either the classical non-homologous end-joining (C-NHEJ) pathway dependent on Ku70/80 and LIG4, or the alternative non-homologous end-joining (A-NHEJ), which relies on PARP1 and LIG3. Here, we show that the tumour suppressor BRCA1, together with its interacting partner CtIP, both acting in end resection, also promotes end-joining of uncapped telomeres. BRCA1 and CtIP do not function in the ATM-dependent telomere damage signalling, nor in telomere overhang removal, which are critical for telomere fusions by C-NHEJ. Instead, BRCA1 and CtIP act in the same pathway as LIG3 to promote joining of de-protected telomeres by A-NHEJ. Our work therefore ascribes novel roles for BRCA1 and CtIP in end-processing and fusion reactions at uncapped telomeres, underlining the complexity of DNA repair pathways that act at chromosome ends lacking protective structures. Moreover, A-NHEJ provides a mechanism of previously unanticipated significance in telomere dysfunction-induced genome instability. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Tetrahymena mutants with short telomeres.

    PubMed Central

    Ahmed, S; Sheng, H; Niu, L; Henderson, E

    1998-01-01

    Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation. PMID:9755196

  19. Presence of a fragile site and interstitial telomere repeat sequences in a(Y;13) translocation

    SciTech Connect

    Lemieux, N.; Fetni, R.; Boutouil, M.

    1994-09-01

    It has been proposed that the telomere repeat sequences (TTAGGG)n, when present at interstitial chromosomal locations, might promote site-specific fragility and recombinational activity. Nevertheless, in mammalians, only a few indications of such involvement of telomeric sequences have been observed. In this study, we show direct cytological evidence that a de novo interstitial telomere can cause the formation of a novel fragile site. Molecular cytogenetic studies of a de novo (Y;13) translocation, using centromeric and telomeric probes, have revealed the presence of two centromeres and interstitial telomere sequences. A fragile site was also found near the interstitial telomere loci. In this case, high-resolution cytogenetics was complemented by two-color FISH to give accurate information. Furthermore, an analysis with short arm Y chromosome DNA probes was carried out to detect possible deletion in this region, including the ZFY gene which is involved in human spermatogenesis. The Y chromosome appeared to be intact upon cytogenetic and in situ hybridization studies even for the telomeric region. Also, we observed two cells showing a normal karyotype without the Y;13 translocation suggesting the instability of this translocation. This finding shows the importance of telomere repeat sequences in translocations and other chromosome rearrangements. We are currently analyzing additional cases with similar analogies to obtain further insight on the role of telomeres and the dynamics of translocations.

  20. Caenorhabditis elegans POT-1 and POT-2 repress telomere maintenance pathways.

    PubMed

    Shtessel, Ludmila; Lowden, Mia Rochelle; Cheng, Chen; Simon, Matt; Wang, Kyle; Ahmed, Shawn

    2013-02-01

    Telomeres are composed of simple tandem DNA repeats that protect the ends of linear chromosomes from replicative erosion or inappropriate DNA damage response mechanisms. The mammalian Protection Of Telomeres (POT1) protein interacts with single-stranded telomeric DNA and can exert positive and negative effects on telomere length. Of four distinct POT1 homologs in the roundworm Caenorhabditis elegans, deficiency for POT-1 or POT-2 resulted in progressive telomere elongation that occurred because both proteins negatively regulate telomerase. We created a POT-1::mCherry fusion protein that forms discrete foci at C. elegans telomeres, independent of POT-2, allowing for live analysis of telomere dynamics. Transgenic pot-1::mCherry repressed telomerase in pot-1 mutants. Animals deficient for pot-1, but not pot-2, displayed mildly enhanced telomere erosion rates in the absence of the telomerase reverse transcriptase, trt-1. However, trt-1; pot-1 double mutants exhibited delayed senescence in comparison to trt-1 animals, and senescence was further delayed in trt-1; pot-2; pot-1 triple mutants, some of which survived robustly in the absence of telomerase. Our results indicate that POT-1 and POT-2 play independent roles in suppressing a telomerase-independent telomere maintenance pathway but may function together to repress telomerase.

  1. Caenorhabditis elegans POT-1 and POT-2 Repress Telomere Maintenance Pathways

    PubMed Central

    Shtessel, Ludmila; Lowden, Mia Rochelle; Cheng, Chen; Simon, Matt; Wang, Kyle; Ahmed, Shawn

    2013-01-01

    Telomeres are composed of simple tandem DNA repeats that protect the ends of linear chromosomes from replicative erosion or inappropriate DNA damage response mechanisms. The mammalian Protection Of Telomeres (POT1) protein interacts with single-stranded telomeric DNA and can exert positive and negative effects on telomere length. Of four distinct POT1 homologs in the roundworm Caenorhabditis elegans, deficiency for POT-1 or POT-2 resulted in progressive telomere elongation that occurred because both proteins negatively regulate telomerase. We created a POT-1::mCherry fusion protein that forms discrete foci at C. elegans telomeres, independent of POT-2, allowing for live analysis of telomere dynamics. Transgenic pot-1::mCherry repressed telomerase in pot-1 mutants. Animals deficient for pot-1, but not pot-2, displayed mildly enhanced telomere erosion rates in the absence of the telomerase reverse transcriptase, trt-1. However, trt-1; pot-1 double mutants exhibited delayed senescence in comparison to trt-1 animals, and senescence was further delayed in trt-1; pot-2; pot-1 triple mutants, some of which survived robustly in the absence of telomerase. Our results indicate that POT-1 and POT-2 play independent roles in suppressing a telomerase-independent telomere maintenance pathway but may function together to repress telomerase. PMID:23390606

  2. Telomeres, stem cells, and hematology

    PubMed Central

    2008-01-01

    Telomeres are highly dynamic structures that adjust the cellular response to stress and growth stimulation based on previous cell divisions. This critical function is accomplished by progressive telomere shortening and DNA damage responses activated by chromosome ends without sufficient telomere repeats. Repair of critically short telomeres by telomerase or recombination is limited in most somatic cells, and apoptosis or cellular senescence is triggered when too many uncapped telomeres accumulate. The chance of the latter increases as the average telomere length decreases. The average telomere length is set and maintained in cells of the germ line that typically express high levels of telomerase. In somatic cells, the telomere length typically declines with age, posing a barrier to tumor growth but also contributing to loss of cells with age. Loss of (stem) cells via telomere attrition provides strong selection for abnormal cells in which malignant progression is facilitated by genome instability resulting from uncapped telomeres. The critical role of telomeres in cell proliferation and aging is illustrated in patients with 50% of normal telomerase levels resulting from a mutation in one of the telomerase genes. Here, the role of telomeres and telomerase in human biology is reviewed from a personal historical perspective. PMID:18263784

  3. Ticking Telomeres/Telltale Telomerase.

    ERIC Educational Resources Information Center

    Biermann, Carol A.

    1997-01-01

    Discusses telomeres, complexes of DNA and protein that form the chromatin at the ends of chromosomes. Highlights telomeres as controllers of chromosome integrity, expendable telomeres, DNA replication requirements and their consequences, protection of structural genes, telomerase as indicators of immortality, cancer cells and other immortals, and…

  4. Ticking Telomeres/Telltale Telomerase.

    ERIC Educational Resources Information Center

    Biermann, Carol A.

    1997-01-01

    Discusses telomeres, complexes of DNA and protein that form the chromatin at the ends of chromosomes. Highlights telomeres as controllers of chromosome integrity, expendable telomeres, DNA replication requirements and their consequences, protection of structural genes, telomerase as indicators of immortality, cancer cells and other immortals, and…

  5. Telomere length and telomerase expression in pituitary tumors.

    PubMed

    Martins, C S; Santana-Lemos, B A; Saggioro, F P; Neder, L; Machado, H R; Moreira, A C; Calado, R T; de Castro, M

    2015-11-01

    Telomere dysfunction and telomerase activation underlie cancer transformation. This study aims to investigate the contribution of telomere biology to pituitary tumor behavior. Samples from 50 patients with pituitary tumors (11 ACTH-secreting, 18 GH-secreting, and 21 non-secreting tumors) and 7 subjects without pituitary lesions were collected. The expressions of telomerase essential components TERT and TERC and tumor telomere content were measured by quantitative PCR techniques. Telomerase (TERT) expression was detected in 36% of tumors. No correlation was observed between TERT and TERC expression level and tumor size in any tumor type. There was no association between gene expression and clinical findings. Telomere content (T/S ratio) was similar between pituitary adenomas (0.39 ± 0.16) and normal pituitaries (0.47 ± 0.12; p = 0.24) and also was between the different adenoma types: ACTH-secreting (0.43 ± 0.08), GH-secreting (0.31 ± 0.12), and non-secreting (0.42 ± 0.20; p = 0.10) tumors. The telomere content and expression of telomerase components are comparable between normal pituitary glands and tumor tissues, suggesting that telomere biology does not play an important role in pituitary tumor development.

  6. Cardiac telomere length in heart development, function, and disease.

    PubMed

    Booth, S A; Charchar, F J

    2017-07-01

    Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.

  7. Interaction of Quindoline derivative with telomeric repeat-containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2.

    PubMed

    Zhang, Yan; Zeng, Deying; Cao, Jiaojiao; Wang, Mingxue; Shu, Bing; Kuang, Guotao; Ou, Tian-Miao; Tan, Jia-Heng; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2017-09-21

    Telomeric repeat-containing RNA (TERRA) is a large non-coding RNA in mammalian cells, which forms an integral component of telomeric heterochromatin. TERRA can bind to an allosteric site of telomeric repeat factor 2 (TRF2), a key component of Shelterin that protect chromosome termini. Both TERRA and TRF2 have been recognized as promising new therapeutic targets for cancer treatment. Our methods include FRET assay, SPR, CD, microscale thermophoresis (MST), enzyme-linked immunosorbent assay (ELISA), chromatin immunoprecipitation (ChIP), colony formation assays, Western blot, immunofluorescence, cell cycle arrest and apoptosis detection, and xCELLigence real-time cell analysis (RTCA). In our routine screening of small molecule libraries, we found that a Quindoline derivative, CK1-14 could bind to and stabilize TERRA G-quadruplex structure, which could bind more tightly with an allosteric site of a telomeric binding protein TRF2, resulting in dissociation of TRF2 from telomeric DNA. Further in cellular studies indicated that the above effect of CK1-14 on TERRA G-quadruplex could activate DNA-damage response and cause cell cycle arrest, resulting in inhibition of U2OS cell proliferation and causing cell apoptosis. Our mechanistic studies indicated that interaction of CK1-14 with TERRA induces telomeric DNA-damage response in U2OS cancer cells through inhibition of TRF2. CK1-14 could be further developed as a promising lead compound targeting telomere for cancer treatment. Our present study provides the first evidence that allosteric modulation of TRF2 by TERRA G-quadruplex with a binding ligand could become a promising new strategy for cancer treatment especially for ALT tumor cells. Copyright © 2017. Published by Elsevier B.V.

  8. Telomere-driven diseases and telomere-targeting therapies.

    PubMed

    Martínez, Paula; Blasco, Maria A

    2017-04-03

    Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Telomere shortening is proposed to be a primary molecular cause of aging. Short telomeres block the proliferative capacity of stem cells, affecting their potential to regenerate tissues, and trigger the development of age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as telomere syndromes, including Hoyeraal-Hreidarsson syndrome, dyskeratosis congenita, pulmonary fibrosis, aplastic anemia, and liver fibrosis. Telomere shortening induces chromosomal instability that, in the absence of functional tumor suppressor genes, can contribute to tumorigenesis. In addition, mutations in telomere length maintenance genes and in shelterin components, the protein complex that protects telomeres, have been found to be associated with different types of cancer. These observations have encouraged the development of therapeutic strategies to treat and prevent telomere-associated diseases, namely aging-related diseases, including cancer. Here we review the molecular mechanisms underlying telomere-driven diseases and highlight recent advances in the preclinical development of telomere-targeted therapies using mouse models. © 2017 Martínez and Blasco.

  9. Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect

    SciTech Connect

    Wang, Yisong; Liu, Yie

    2006-01-01

    Msh2 is a key mammalian DNA mismatch repair (MMR) gene and mutations or deficiencies in mammalian Msh2 gene result in microsatellite instability (MSI+) and the development of cancer. Here, we report that primary mouse embryonic fibroblasts (MEFs) deficient in the murine MMR gene Msh2 (Msh2-/-) showed a significant increase in chromosome aneuploidy, centrosome amplification, and defective mitotic spindle organization and unequal chromosome segregation. Although Msh2-/- mouse tissues or primary MEFs had no apparent change in telomerase activity, telomere length, or recombination at telomeres, Msh2-/- MEFs showed an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA. These data suggest that MSH2 helps to maintain genomic stability through the regulation of the centrosome and normal telomere capping in vivo and that defects in MMR can contribute to oncogenesis through multiple pathways.

  10. RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei.

    PubMed

    Yang, Xiaofeng; Figueiredo, Luisa M; Espinal, Amin; Okubo, Eiji; Li, Bibo

    2009-04-03

    Trypanosoma brucei expresses variant surface glycoprotein (VSG) genes in a strictly monoallelic fashion in its mammalian hosts, but it is unclear how this important virulence mechanism is enforced. Telomere position effect, an epigenetic phenomenon, has been proposed to play a critical role in VSG regulation, yet no telomeric protein has been identified whose disruption led to VSG derepression. We now identify tbRAP1 as an intrinsic component of the T. brucei telomere complex and a major regulator for silencing VSG expression sites (ESs). Knockdown of tbRAP1 led to derepression of all VSGs in silent ESs, but not VSGs located elsewhere, and resulted in stronger derepression of genes located within 10 kb from telomeres than genes located further upstream. This graduated silencing pattern suggests that telomere integrity plays a key role in tbRAP1-dependent silencing and VSG regulation.

  11. How Telomeres Solve the End-Protection Problem

    PubMed Central

    de Lange, Titia

    2010-01-01

    The ends of eukaryotic chromosomes have the potential to be mistaken for damaged or broken DNA and must therefore be protected from cellular DNA damage response pathways. Otherwise, cells might permanently arrest in the cell cycle, and attempts to “repair” the chromosome ends would have devastating consequences for genome integrity. This end-protection problem is solved by protein-DNA complexes called telomeres. Studies of mammalian cells have recently uncovered the mechanism by which telomeres disguise the chromosome ends. Comparison to unicellular eukaryotes reveals key differences in the DNA damage response systems that inadvertently threaten chromosome ends. Telomeres appear to be tailored to these variations, explaining their variable structure and composition. PMID:19965504

  12. Telomere fusion threshold identifies a poor prognostic subset of breast cancer patients.

    PubMed

    Simpson, K; Jones, R E; Grimstead, J W; Hills, R; Pepper, C; Baird, D M

    2015-06-01

    Telomere dysfunction and fusion can drive genomic instability and clonal evolution in human tumours, including breast cancer. Telomere length is a critical determinant of telomere function and has been evaluated as a prognostic marker in several tumour types, but it has yet to be used in the clinical setting. Here we show that high-resolution telomere length analysis, together with a specific telomere fusion threshold, is highly prognostic for overall survival in a cohort of patients diagnosed with invasive ductal carcinoma of the breast (n = 120). The telomere fusion threshold defined a small subset of patients with an extremely poor clinical outcome, with a median survival of less than 12 months (HR = 21.4 (7.9-57.6), P < 0.0001). Furthermore, this telomere length threshold was independent of ER, PGR, HER2 status, NPI, or grade and was the dominant variable in multivariate analysis. We conclude that the fusogenic telomere length threshold provides a powerful, independent prognostic marker with clinical utility in breast cancer. Larger prospective studies are now required to determine the optimal way to incorporate high-resolution telomere length analysis into multivariate prognostic algorithms for patients diagnosed with breast cancer.

  13. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  14. Gradual telomere shortening and increasing chromosomal instability among PanIN grades and normal ductal epithelia with and without cancer in the pancreas.

    PubMed

    Matsuda, Yoko; Ishiwata, Toshiyuki; Izumiyama-Shimomura, Naotaka; Hamayasu, Hideki; Fujiwara, Mutsunori; Tomita, Ken-Ichiro; Hiraishi, Naoki; Nakamura, Ken-Ichi; Ishikawa, Naoshi; Aida, Junko; Takubo, Kaiyo; Arai, Tomio

    2015-01-01

    A large body of evidence supports a key role for telomere dysfunction in carcinogenesis due to the induction of chromosomal instability. To study telomere shortening in precancerous pancreatic lesions, we measured telomere lengths using quantitative fluorescence in situ hybridization in the normal pancreatic duct epithelium, pancreatic intraepithelial neoplasias (PanINs), and cancers. The materials employed included surgically resected pancreatic specimens without cancer (n = 33) and with invasive ductal carcinoma (n = 36), as well as control autopsy cases (n = 150). In comparison with normal ducts, telomere length was decreased in PanIN-1, -2 and -3 and cancer. Furthermore, telomeres were shorter in cancer than in PanIN-1 and -2. Telomere length in cancer was not associated with histological type, lesion location, or cancer stage. PanINs with or without cancer showed similar telomere lengths. The incidences of atypical mitosis and anaphase bridges, which are morphological characteristics of chromosomal instability, were negatively correlated with telomere length. The telomeres in normal duct epithelium became shorter with aging, and those in PanINs or cancers were shorter than in age-matched controls, suggesting that telomere shortening occurs even when histological changes are absent. Our data strongly suggest that telomere shortening occurs in the early stages of pancreatic carcinogenesis and progresses with precancerous development. Telomere shortening and chromosomal instability in the duct epithelium might be associated with carcinogenesis of the pancreas. Determination of telomere length in pancreatic ductal lesions may be valuable for accurate detection and risk assessment of pancreatic cancer.

  15. WRN is recruited to damaged telomeres via its RQC domain and tankyrase1-mediated poly-ADP-ribosylation of TRF1

    PubMed Central

    Sun, Luxi; Nakajima, Satoshi; Teng, Yaqun; Chen, Hao; Yang, Lu; Chen, Xiukai; Gao, Boya; Levine, Arthur S.

    2017-01-01

    Abstract Werner syndrome (WS) is a progeroid-like syndrome caused by WRN gene mutations. WS cells exhibit shorter telomere length compared to normal cells, but it is not fully understood how WRN deficiency leads directly to telomere dysfunction. By generating localized telomere-specific DNA damage in a real-time fashion and a dose-dependent manner, we found that the damage response of WRN at telomeres relies on its RQC domain, which is different from the canonical damage response at genomic sites via its HRDC domain. We showed that in addition to steady state telomere erosion, WRN depleted cells are also sensitive to telomeric damage. WRN responds to site-specific telomeric damage via its RQC domain, interacting at Lysine 1016 and Phenylalanine1037 with the N-terminal acidic domain of the telomere shelterin protein TRF1 and demonstrating a novel mechanism for WRN's role in telomere protection. We also found that tankyrase1-mediated poly-ADP-ribosylation of TRF1 is important for both the interaction between WRN and TRF1 and the damage recruitment of WRN to telomeres. Mutations of potential tankyrase1 ADP-ribosylation sites within the RGCADG motif of TRF1 strongly diminish the interaction with WRN and the damage response of WRN only at telomeres. Taken together, our results reveal a novel mechanism as to how WRN protects telomere integrity from damage and telomere erosion. PMID:28158503

  16. Telomere and Telomerase Therapeutics in Cancer

    PubMed Central

    Xu, Yucheng; Goldkorn, Amir

    2016-01-01

    Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics. PMID:27240403

  17. Donor Telomere Length SAA

    Cancer.gov

    A new NCI study has found that, among patients with severe aplastic anemia who received a hematopoietic cell transplant from an unrelated donor, those whose donor white blood cells had longer telomeres had higher survival rates five-years after transplant

  18. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres.

    PubMed

    Chavez, Joselyn; Murillo-Maldonado, Juan Manuel; Bahena, Vanessa; Cruz, Ana Karina; Castañeda-Sortibrán, América; Rodriguez-Arnaiz, Rosario; Zurita, Mario; Valadez-Graham, Viviana

    2017-07-07

    Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.

  19. Telomere shortening leads to earlier age of onset in ALS mice

    PubMed Central

    Linkus, Birgit; Wiesner, Diana; MeΔner, Martina; Karabatsiakis, Alexander; Scheffold, Annika; Rudolph, K. Lenhard; Thal, Dietmar R.; Weishaupt, Jochen H.; Ludolph, Albert C.; Danzer, Karin M.

    2016-01-01

    Telomere shortening has been linked to a variety of neurodegenerative diseases. Recent evidence suggests that reduced telomerase expression results in shorter telomeres in leukocytes from sporadic patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls. Here, we have characterized telomere length in microglia, astroglia and neurons in human post mortem brain tissue from ALS patients and healthy controls. Moreover, we studied the consequences of telomerase deletion in a genetic mouse model for ALS. We found a trend towards longer telomeres in microglia in the brains of ALS patients compared to non-neurologic controls. Knockout of telomerase leading to telomere shortening accelerated the ALS phenotype in SOD1G93A–transgenic mice. Our results suggest that telomerase dysfunction might contribute to the age-related risk for ALS. PMID:26978042

  20. Tying up loose ends: telomeres, genomic instability and lamins

    PubMed Central

    Eissenberg, Joel C.

    2016-01-01

    On casual inspection, the eukaryotic nucleus is a deceptively simple organelle. Far from being a bag of chromatin, the nucleus is, in some ways, a structural and functional extension of the chromosomes it contains. Recently, interest has intensified in how chromosome compartmentalization and dynamics affect nuclear function. Different studies uncovered functional interactions between chromosomes and the filamentous nuclear meshwork comprised of lamin proteins. Here, we summarize recent research suggesting that telomeres, the capping structures that protect chromosome ends, are stabilized by lamin-binding and that alterations in nuclear lamins lead to defects in telomere compartmentalization, homeostasis and function. Telomere dysfunction contributes to the genomic instability that characterizes aging-related diseases, and might be an important factor in the pathophysiology of lamin-related diseases. PMID:27010504

  1. Role of STN1 and DNA Polymerase α in Telomere Stability and Genome-Wide Replication in Arabidopsis

    PubMed Central

    Derboven, Elisa; Ekker, Heinz; Kusenda, Branislav; Bulankova, Petra; Riha, Karel

    2014-01-01

    The CST (Cdc13/CTC1-STN1-TEN1) complex was proposed to have evolved kingdom specific roles in telomere capping and replication. To shed light on its evolutionary conserved function, we examined the effect of STN1 dysfunction on telomere structure in plants. STN1 inactivation in Arabidopsis leads to a progressive loss of telomeric DNA and the onset of telomeric defects depends on the initial telomere size. While EXO1 aggravates defects associated with STN1 dysfunction, it does not contribute to the formation of long G-overhangs. Instead, these G-overhangs arise, at least partially, from telomerase-mediated telomere extension indicating a deficiency in C-strand fill-in synthesis. Analysis of hypomorphic DNA polymerase α mutants revealed that the impaired function of a general replication factor mimics the telomeric defects associated with CST dysfunction. Furthermore, we show that STN1-deficiency hinders re-replication of heterochromatic regions to a similar extent as polymerase α mutations. This comparative analysis of stn1 and pol α mutants suggests that STN1 plays a genome-wide role in DNA replication and that chromosome-end deprotection in stn1 mutants may represent a manifestation of aberrant replication through telomeres. PMID:25299252

  2. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  3. Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway.

    PubMed

    Rizzo, Angela; Salvati, Erica; Porru, Manuela; D'Angelo, Carmen; Stevens, Malcolm F; D'Incalci, Maurizio; Leonetti, Carlo; Gilson, Eric; Zupi, Gabriella; Biroccio, Annamaria

    2009-09-01

    Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.

  4. Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana

    PubMed Central

    Fulcher, Nick; Riha, Karel

    2016-01-01

    Proteins that bind to telomeric DNA form the key structural and functional constituents of telomeres. While telomere binding proteins have been described in the majority of organisms, their identity in plants remains unknown. Several protein families containing a telomere binding motif known as the telobox have been previously described in Arabidopsis thaliana. Nonetheless, functional evidence for their involvement at telomeres has not been obtained, likely due to functional redundancy. Here we performed genetic analysis on the TRF-like family consisting of six proteins (TRB1, TRP1, TRFL1, TRFL2, TRFL4, and TRF9) which have previously shown to bind telomeric DNA in vitro. We used haploid genetics to create multiple knock-out plants deficient for all six proteins of this gene family. These plants did not exhibit changes in telomere length, or phenotypes associated with telomere dysfunction. This data demonstrates that this telobox protein family is not involved in telomere maintenance in Arabidopsis. Phylogenetic analysis in major plant lineages revealed early diversification of telobox proteins families indicating that telomere function may be associated with other telobox proteins. PMID:26779251

  5. Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana.

    PubMed

    Fulcher, Nick; Riha, Karel

    2015-01-01

    Proteins that bind to telomeric DNA form the key structural and functional constituents of telomeres. While telomere binding proteins have been described in the majority of organisms, their identity in plants remains unknown. Several protein families containing a telomere binding motif known as the telobox have been previously described in Arabidopsis thaliana. Nonetheless, functional evidence for their involvement at telomeres has not been obtained, likely due to functional redundancy. Here we performed genetic analysis on the TRF-like family consisting of six proteins (TRB1, TRP1, TRFL1, TRFL2, TRFL4, and TRF9) which have previously shown to bind telomeric DNA in vitro. We used haploid genetics to create multiple knock-out plants deficient for all six proteins of this gene family. These plants did not exhibit changes in telomere length, or phenotypes associated with telomere dysfunction. This data demonstrates that this telobox protein family is not involved in telomere maintenance in Arabidopsis. Phylogenetic analysis in major plant lineages revealed early diversification of telobox proteins families indicating that telomere function may be associated with other telobox proteins.

  6. Telomere targeting with a novel G-quadruplex-interactive ligand BRACO-19 induces T-loop disassembly and telomerase displacement in human glioblastoma cells

    PubMed Central

    Zhou, Guangtong; Liu, Xinrui; Li, Yunqian; Xu, Songbai; Ma, Chengyuan; Wu, Xinmin; Cheng, Ye; Yu, Zhiyun; Zhao, Gang; Chen, Yong

    2016-01-01

    Interference with telomerase and telomere maintenance is emerging as an attractive target for anticancer therapies. Ligand-induced stabilization of G-quadruplex formation by the telomeric DNA 3′-overhang inhibits telomerase from catalyzing telomeric DNA synthesis and from capping telomeric ends, making these ligands good candidates for chemotherapeutic purposes. BRACO-19 is one of the most effective and specific ligand for telomeric G4. It is shown here that BRACO-19 suppresses proliferation and reduces telomerase activity in human glioblastoma cells, paralleled by the displacement of telomerase from nuclear to cytoplasm. Meanwhile, BRACO-19 triggers extensive DNA damage response at telomere, which may result from uncapping and disassembly of telomeric T-loop structure, characterized by the formation of anaphase bridge and telomere fusion, as well as the release of telomere-binding protein from telomere. The resulting dysfunctional telomere ultimately provokes p53 and p21-mediated cell cycle arrest, apoptosis and senescence. Notably, normal primary astrocytes do not respond to the treatment of BRACO-19, suggesting the agent's good selectivity for cancer cells. These results reinforce the notion that G-quadruplex binding compounds can act as broad inhibitors of telomere-related processes and have potential as selective antineoplastic drugs for various tumors including malignant gliomas. PMID:26908447

  7. Activation of a LTR-retrotransposon by telomere erosion.

    PubMed

    Scholes, Derek T; Kenny, Alison E; Gamache, Eric R; Mou, Zhongming; Curcio, M Joan

    2003-12-23

    Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.

  8. Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy

    PubMed Central

    Chang, Alex Chia Yu; Ong, Sang-Ging; LaGory, Edward L.; Kraft, Peggy E.; Giaccia, Amato J.; Wu, Joseph C.; Blau, Helen M.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an incurable X-linked genetic disease that is caused by a mutation in the dystrophin gene and affects one in every 3,600 boys. We previously showed that long telomeres protect mice from the lethal cardiac disease seen in humans with the same genetic defect, dystrophin deficiency. By generating the mdx4cv/mTRG2 mouse model with “humanized” telomere lengths, the devastating dilated cardiomyopathy phenotype seen in patients with DMD was recapitulated. Here, we analyze the degenerative sequelae that culminate in heart failure and death in this mouse model. We report progressive telomere shortening in developing mouse cardiomyocytes after postnatal week 1, a time when the cells are no longer dividing. This proliferation-independent telomere shortening is accompanied by an induction of a DNA damage response, evident by p53 activation and increased expression of its target gene p21 in isolated cardiomyocytes. The consequent repression of Pgc1α/β leads to impaired mitochondrial biogenesis, which, in conjunction with the high demands of contraction, leads to increased oxidative stress and decreased mitochondrial membrane potential. As a result, cardiomyocyte respiration and ATP output are severely compromised. Importantly, treatment with a mitochondrial-specific antioxidant before the onset of cardiac dysfunction rescues the metabolic defects. These findings provide evidence for a link between short telomere length and metabolic compromise in the etiology of dilated cardiomyopathy in DMD and identify a window of opportunity for preventive interventions. PMID:27799523

  9. Association of Donor and Recipient Telomere Length with Clinical Outcomes following Lung Transplantation

    PubMed Central

    Courtwright, Andrew M.; Fried, Sabrina; Villalba, Julian A.; Moniodis, Anna; Guleria, Indira; Wood, Isabelle; Milford, Edgar; Mallidi, Hari H.; Hunninghake, Gary M.; Raby, Benjamin A.; Agarwal, Suneet; Camp, Philip C.; Rosas, Ivan O.; Goldberg, Hilary J.; El-Chemaly, Souheil

    2016-01-01

    Background Patients with short telomere syndromes and pulmonary fibrosis have increased complications after lung transplant. However, the more general impact of donor and recipient telomere length in lung transplant has not been well characterized. Methods This was an observational cohort study of patients who received lung transplant at a single center between January 1st 2012 and January 31st 2015. Relative donor lymphocyte telomere length was measured and classified into long (third tertile) and short (other tertiles). Relative recipient lung telomere length was measured and classified into short (first tertile) and long (other tertiles). Outcome data included survival, need for modification of immunosuppression, liver or kidney injury, cytomegalovirus reactivation, and acute rejection. Results Recipient lung tissue telomere lengths were measured for 54 of the 79 patients (68.3%) who underwent transplant during the study period. Donor lymphocyte telomeres were measured for 45 (83.3%) of these recipients. Neither long donor telomere length (hazard ratio [HR] = 0.58, 95% confidence interval [CI], 0.12–2.85, p = 0.50) nor short recipient telomere length (HR = 1.01, 95% CI = 0.50–2.05, p = 0.96) were associated with adjusted survival following lung transplant. Recipients with short telomeres were less likely to have acute cellular rejection (23.5% vs. 58.8%, p = 0.02) but were not more likely to have other organ dysfunction. Conclusions In this small cohort, neither long donor lymphocyte telomeres nor short recipient lung tissue telomeres were associated with adjusted survival after lung transplantation. Larger studies are needed to confirm these findings. PMID:27589328

  10. Association of Donor and Recipient Telomere Length with Clinical Outcomes following Lung Transplantation.

    PubMed

    Courtwright, Andrew M; Fried, Sabrina; Villalba, Julian A; Moniodis, Anna; Guleria, Indira; Wood, Isabelle; Milford, Edgar; Mallidi, Hari H; Hunninghake, Gary M; Raby, Benjamin A; Agarwal, Suneet; Camp, Philip C; Rosas, Ivan O; Goldberg, Hilary J; El-Chemaly, Souheil

    2016-01-01

    Patients with short telomere syndromes and pulmonary fibrosis have increased complications after lung transplant. However, the more general impact of donor and recipient telomere length in lung transplant has not been well characterized. This was an observational cohort study of patients who received lung transplant at a single center between January 1st 2012 and January 31st 2015. Relative donor lymphocyte telomere length was measured and classified into long (third tertile) and short (other tertiles). Relative recipient lung telomere length was measured and classified into short (first tertile) and long (other tertiles). Outcome data included survival, need for modification of immunosuppression, liver or kidney injury, cytomegalovirus reactivation, and acute rejection. Recipient lung tissue telomere lengths were measured for 54 of the 79 patients (68.3%) who underwent transplant during the study period. Donor lymphocyte telomeres were measured for 45 (83.3%) of these recipients. Neither long donor telomere length (hazard ratio [HR] = 0.58, 95% confidence interval [CI], 0.12-2.85, p = 0.50) nor short recipient telomere length (HR = 1.01, 95% CI = 0.50-2.05, p = 0.96) were associated with adjusted survival following lung transplant. Recipients with short telomeres were less likely to have acute cellular rejection (23.5% vs. 58.8%, p = 0.02) but were not more likely to have other organ dysfunction. In this small cohort, neither long donor lymphocyte telomeres nor short recipient lung tissue telomeres were associated with adjusted survival after lung transplantation. Larger studies are needed to confirm these findings.

  11. Repression of telomere-associated genes by microglia activation in neuropsychiatric disease.

    PubMed

    Kronenberg, Golo; Uhlemann, Ria; Schöner, Johanna; Wegner, Stephanie; Boujon, Valérie; Deigendesch, Nikolas; Endres, Matthias; Gertz, Karen

    2016-11-28

    Microglia senescence may promote neuropsychiatric disease. This prompted us to examine the relationship between microglia activation states and telomere biology. A panel of candidate genes associated with telomere maintenance, mitochondrial biogenesis, and cell-cycle regulation were investigated in M1- and M2-polarized microglia in vitro as well as in MACS-purified CD11b+ microglia/brain macrophages from models of stroke, Alzheimer's disease, and chronic stress. M1 polarization, ischemia, and Alzheimer pathology elicited a strikingly similar transcriptomic profile with, in particular, reduced expression of murine Tert. Our results link classical microglia activation with repression of telomere-associated genes, suggesting a new mechanism underlying microglia dysfunction.

  12. Getting in (and out of) the loop: regulating higher order telomere structures

    PubMed Central

    Luke-Glaser, Sarah; Poschke, Heiko; Luke, Brian

    2012-01-01

    The DNA at the ends of linear chromosomes (the telomere) folds back onto itself and forms an intramolecular lariat-like structure. Although the telomere loop has been implicated in the protection of chromosome ends from nuclease-mediated resection and unscheduled DNA repair activities, it potentially poses an obstacle to the DNA replication machinery during S-phase. Therefore, the coordinated regulation of telomere loop formation, maintenance, and resolution is required in order to establish a balance between protecting the chromosome ends and promoting their duplication prior to cell division. Until recently, the only factor known to influence telomere looping in human cells was TRF2, a component of the shelterin complex. Recent work in yeast and mouse cells has uncovered additional regulatory factors that affect the loop structure at telomeres. In the following “perspective” we outline what is known about telomere looping and highlight the latest results regarding the regulation of this chromosome end structure. We speculate about how the manipulation of the telomere loop may have therapeutic implications in terms of diseases associated with telomere dysfunction and uncontrolled proliferation. PMID:23226680

  13. Predictors of telomere content in dragon lizards

    NASA Astrophysics Data System (ADS)

    Ballen, Cissy; Healey, Mo; Wilson, Mark; Tobler, Michael; Olsson, Mats

    2012-08-01

    Telomeres shorten as a consequence of DNA replication, in particular in cells with low production of telomerase and perhaps in response to physiological stress from exposure to reactive oxygen species, such as superoxide. This process of telomere attrition is countered by innate antioxidation, such as via the production of superoxide dismutase. We studied the inheritance of telomere length in the Australian painted dragon lizard ( Ctenophorus pictus) and the extent to which telomere length covaries with mass-corrected maternal reproductive investment, which reflects the level of circulating yolk precursor and antioxidant, vitellogenin. Our predictors of offspring telomere length explained 72 % of telomere variation (including interstitial telomeres if such are present). Maternal telomere length and reproductive investment were positively influencing offspring telomere length in our analyses, whereas flow cytometry-estimated superoxide level was negatively impacting offspring telomere length. We suggest that the effects of superoxide on hatchling telomere shortening may be partly balanced by transgenerational effects of vitellogenin antioxidation.

  14. Alternative lengthening of telomeres: remodeling the telomere architecture.

    PubMed

    Conomos, Dimitri; Pickett, Hilda A; Reddel, Roger R

    2013-01-01

    To escape from the normal limits on proliferative potential, cancer cells must employ a means to counteract the gradual telomere attrition that accompanies semi-conservative DNA replication. While the majority of human cancers do this by up-regulating telomerase enzyme activity, most of the remainder use a homologous recombination-mediated mechanism of telomere elongation known as alternative lengthening of telomeres (ALT). Many molecular details of the ALT pathway are unknown, and even less is known regarding the mechanisms by which this pathway is activated. Here, we review current findings about telomere structure in ALT cells, including DNA sequence, shelterin content, and heterochromatic state. We speculate that remodeling of the telomere architecture may contribute to the emergence and maintenance of the ALT phenotype.

  15. Detection of alternative lengthening of telomeres by telomere quantitative PCR

    PubMed Central

    Lau, Loretta M. S.; Dagg, Rebecca A.; Henson, Jeremy D.; Au, Amy Y. M.; Royds, Janice A.; Reddel, Roger R.

    2013-01-01

    Alternative lengthening of telomeres (ALT) is one of the two known telomere length maintenance mechanisms that are essential for the unlimited proliferation potential of cancer cells. Existing methods for detecting ALT in tumors require substantial amounts of tumor material and are labor intensive, making it difficult to study prevalence and prognostic significance of ALT in large tumor cohorts. Here, we present a novel strategy utilizing telomere quantitative PCR to diagnose ALT. The protocol is more rapid than conventional methods and scrutinizes two distinct characteristics of ALT cells concurrently: long telomeres and the presence of C-circles (partially double-stranded circles of telomeric C-strand DNA). Requiring only 30 ng of genomic DNA, this protocol will facilitate large-scale studies of ALT in tumors and can be readily adopted by clinical laboratories. PMID:22923525

  16. Telomere function in colorectal cancer

    PubMed Central

    Frías, Cristina; Morán, Alberto; de Juan, Carmen; Ortega, Paloma; Fernández-Marcelo, Tamara; Sánchez-Pernaute, Andrés; Torres, Antonio José; Díaz-Rubio, Eduardo; Benito, Manuel; Iniesta, Pilar

    2009-01-01

    Colorectal cancer is the third most common form of cancer and the second leading cause of cancer-related death in the western world. Tumour cells acquire the hallmarks of cancer during the carcinogenic selection process. Cell immortality is one of the principal features acquired during this process which involves the stabilization of telomere length. It is achieved mainly, by telomerase activation. Thus, the discovery of telomeres and telomerase allowed an understanding of the mechanisms by which cells can become immortalized. Different studies have shown that tumour cells have shorter telomeres than nontumour cells and have detected telomerase activity in the majority of tumours. Survival studies have determined that telomere maintenance and telomerase activity are associated with poor prognosis. Taking into account all the results achieved by different groups, quantification and evaluation of telomerase activity and measurement of telomere length may be useful methods for additional biologic and prognostic staging of colorectal carcinoma. PMID:21160767

  17. Human RAP1 inhibits non-homologous end joining at telomeres

    PubMed Central

    Sarthy, Jay; Bae, Nancy S; Scrafford, Jonathan; Baumann, Peter

    2009-01-01

    Telomeres, the nucleoprotein structures at the ends of linear chromosomes, promote genome stability by distinguishing chromosome termini from DNA double-strand breaks (DSBs). Cells possess two principal pathways for DSB repair: homologous recombination and non-homologous end joining (NHEJ). Several studies have implicated TRF2 in the protection of telomeres from NHEJ, but the underlying mechanism remains poorly understood. Here, we show that TRF2 inhibits NHEJ, in part, by recruiting human RAP1 to telomeres. Heterologous targeting of hRAP1 to telomeric DNA was sufficient to bypass the need for TRF2 in protecting telomeric DNA from NHEJ in vitro. On expanding these studies in cells, we find that recruitment of hRAP1 to telomeres prevents chromosome fusions caused by the loss of TRF2/hRAP1 from chromosome ends despite activation of a DNA damage response. These results provide the first evidence that hRAP1 inhibits NHEJ at mammalian telomeres and identify hRAP1 as a mediator of genome stability. PMID:19763083

  18. Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression

    PubMed Central

    Chang, Sandy; Khoo, Christine M.; Naylor, Maria L.; Maser, Richard S.; DePinho, Ronald A.

    2003-01-01

    Telomerase activation is a common feature of most advanced human cancers and is postulated to restore genomic stability to a level permissive for cell viability and tumor progression. Here, we used genetically defined transformed mouse embryonic fibroblast (MEF) cultures derived from late generation mTerc−/− Ink4a/Arf−/− mice to explore more directly how telomere-based crisis relates to the evolution of cancer cell genomes and to tumor biology. An exhaustive serial analysis of cytogenetic profiles over extensive passage in culture revealed that the emergence of chromosomal fusions (including dicentrics) coincided with onset of deletions and complex nonreciprocal translocations (NRTs), whereas mTerc-transduced cultures maintained intact chromosomes and stable genomes. Despite a high degree of telomere dysfunction and genomic instability, transformed late passage mTerc−/− Ink4a/Arf−/− cultures retained the capacity to form subcutaneous tumors in immunocompromised mice. However, even moderate levels of telomere dysfunction completely abrogated the capacity of these cells to form lung metastases after tail-vein injection, whereas mTerc reconstitution alone conferred robust metastatic activity in these cells. Finally, serial subcutaneous tumor formation using late passage transformed mTerc−/− Ink4a/Arf−/− cultures revealed clear evidence of telomerase-independent alternative lengthening of telomeres (ALT). Significantly, despite a marked increase in telomere reserve, cells derived from the ALT+ subcutaneous tumors were unable to generate lung metastases, indicating in vivo functional differences in these principal mechanisms of telomere maintenance. Together, these results are consistent with the model that although telomere dysfunction provokes chromosomal aberrations that initiate carcinogenesis, telomerase-mediated telomere maintenance enables such initiated cells to efficiently achieve a fully malignant endpoint, including metastasis. PMID

  19. Telomere Biology in Metazoa

    PubMed Central

    Gomes, Nuno M.V.; Shay, Jerry W.; Wright, Woodring E.

    2010-01-01

    In this review we present critical overview of some of the available literature on the fundamental biology of telomeres and telomerase in Metazoan. With the exception of Nematodes and Arthropods, the (TTAGGG)n sequence is conserved in most Metazoa. Available data shows that telomerase-based end maintenance is a very ancient mechanism in unicellular and multicellular organisms. In invertebrates, fish, amphibian, and reptiles persistent telomerase activity in somatic tissues might allow the maintenance of the extensive regenerative potentials of these species. Telomerase repression among birds and many mammals suggests that, as humans, they may use replicative aging as a tumor protection mechanism. PMID:20655915

  20. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase.

    PubMed

    van Overbeek, Megan; de Lange, Titia

    2006-07-11

    Human chromosome ends are protected by shelterin, an abundant six-subunit protein complex that binds specifically to the telomeric-repeat sequences, regulates telomere length, and ensures that chromosome ends do not elicit a DNA-damage response (reviewed in). Using mass spectrometry of proteins associated with the shelterin component Rap1, we identified an SMN1/PSO2 nuclease family member that is closely related to Artemis. We refer to this protein as Apollo and report that Apollo has the ability to localize to telomeres through an interaction with the shelterin component TRF2. Although its low abundance at telomeres indicates that Apollo is not a core component of shelterin, Apollo knockdown with RNAi resulted in senescence and the activation of a DNA-damage signal at telomeres as evidenced by telomere-dysfunction-induced foci (TIFs). The TIFs occurred primarily in S phase, suggesting that Apollo contributes to a processing step associated with the replication of chromosome ends. Furthermore, some of the metaphase chromosomes showed two telomeric signals at single-chromatid ends, suggesting an aberrant telomere structure. We propose that the Artemis-like nuclease Apollo is a shelterin accessory factor required for the protection of telomeres during or after their replication.

  1. ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in Arabidopsis.

    PubMed

    Boltz, Kara A; Leehy, Katherine; Song, Xiangyu; Nelson, Andrew D; Shippen, Dorothy E

    2012-04-01

    The CTC1/STN1/TEN1 (CST) complex is an essential constituent of plant and vertebrate telomeres. Here we show that CST and ATR (ataxia telangiectasia mutated [ATM] and Rad3-related) act synergistically to maintain telomere length and genome stability in Arabidopsis. Inactivation of ATR, but not ATM, temporarily rescued severe morphological phenotypes associated with ctc1 or stn1. Unexpectedly, telomere shortening accelerated in plants lacking CST and ATR. In first-generation (G1) ctc1 atr mutants, enhanced telomere attrition was modest, but in G2 ctc1 atr, telomeres shortened precipitously, and this loss coincided with a dramatic decrease in telomerase activity in G2 atr mutants. Zeocin treatment also triggered a reduction in telomerase activity, suggesting that the prolonged absence of ATR leads to a hitherto-unrecognized DNA damage response (DDR). Finally, our data indicate that ATR modulates DDR in CST mutants by limiting chromosome fusions and transcription of DNA repair genes and also by promoting programmed cell death in stem cells. We conclude that the absence of CST in Arabidopsis triggers a multifaceted ATR-dependent response to facilitate maintenance of critically shortened telomeres and eliminate cells with severe telomere dysfunction.

  2. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates.

    PubMed

    Opresko, Patricia L; Mason, Penelope A; Podell, Elaine R; Lei, Ming; Hickson, Ian D; Cech, Thomas R; Bohr, Vilhelm A

    2005-09-16

    Defects in human RecQ helicases WRN and BLM are responsible for the cancer-prone disorders Werner syndrome and Bloom syndrome. Cellular phenotypes of Werner syndrome and Bloom syndrome, including genomic instability and premature senescence, are consistent with telomere dysfunction. RecQ helicases are proposed to function in dissociating alternative DNA structures during recombination and/or replication at telomeric ends. Here we report that the telomeric single-strand DNA-binding protein, POT1, strongly stimulates WRN and BLM to unwind long telomeric forked duplexes and D-loop structures that are otherwise poor substrates for these helicases. This stimulation is dependent on the presence of telomeric sequence in the duplex regions of the substrates. In contrast, POT1 failed to stimulate a bacterial 3'-5'-helicase. We find that purified POT1 binds to WRN and BLM in vitro and that full-length POT1 (splice variant 1) precipitates a higher amount of endogenous WRN protein, compared with BLM, from the HeLa nuclear extract. We propose roles for the cooperation of POT1 with RecQ helicases WRN and BLM in resolving DNA structures at telomeric ends, in a manner that protects the telomeric 3' tail as it is exposed during unwinding.

  3. Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres

    PubMed Central

    Muntoni, Alessandra; Neumann, Axel A.; Hills, Mark; Reddel, Roger R.

    2009-01-01

    Alternative lengthening of telomeres (ALT) is a telomere length maintenance mechanism based on recombination, where telomeres use other telomeric DNA as a template for DNA synthesis. About 10% of all human tumors depend on ALT for their continued growth, and understanding its molecular details is critically important for the development of cancer treatments that target this mechanism. We have previously shown that telomeres of ALT-positive human cells can become lengthened via inter-telomeric copying, i.e. by copying the telomere of another chromosome. The possibility that such telomeres could elongate by using other sources of telomeric DNA as copy templates has not been investigated previously. In this study, we have determined whether a telomere can become lengthened by copying its own sequences, without the need for using another telomere as a copy template. To test this, we transduced an ALT cell line with a telomere-targeting construct and obtained clones with a single tagged telomere. We showed that the telomere tag can be amplified without the involvement of other telomeres, indicating that telomere elongation can also occur by intra-telomeric DNA copying. This is the first direct evidence that the ALT mechanism involves more than one method of telomere elongation. PMID:19095716

  4. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin

    PubMed Central

    Liu, Yun-He; D'Ambrosio, Martin; Liao, Tang-dong; Peng, Hongmei; Rhaleb, Nour-Eddine; Sharma, Umesh; André, Sabine; Gabius, Hans-J.; Carretero, Oscar A.

    2009-01-01

    Galectin-3 (Gal-3) is secreted by activated macrophages. In hypertension, Gal-3 is a marker for hypertrophic hearts prone to develop heart failure. Gal-3 infused in pericardial sac leads to cardiac inflammation, remodeling, and dysfunction. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a naturally occurring tetrapeptide, prevents and reverses inflammation and collagen deposition in the heart in hypertension and heart failure postmyocardial infarction. In the present study, we hypothesize that Ac-SDKP prevents Gal-3-induced cardiac inflammation, remodeling, and dysfunction, and these effects are mediated by the transforming growth factor (TGF)-β/Smad3 signaling pathway. Adult male rats were divided into four groups and received the following intrapericardial infusion for 4 wk: 1) vehicle (saline, n = 8); 2) Ac-SDKP (800 μg·kg−1·day−1, n = 8); 3) Gal-3 (12 μg/day, n = 7); and 4) Ac-SDKP + Gal-3 (n = 7). Left ventricular ejection fraction, cardiac output, and transmitral velocity were measured by echocardiography; inflammatory cell infiltration, cardiomyocyte hypertrophy, and collagen deposition in the heart by histological and immunohistochemical staining; and TGF-β expression and Smad3 phosphorylation by Western blot. We found that, in the left ventricle, Gal-3 1) enhanced macrophage and mast cell infiltration, increased cardiac interstitial and perivascular fibrosis, and causes cardiac hypertrophy; 2) increased TGF-β expression and Smad3 phosphorylation; and 3) decreased negative change in pressure over time response to isoproterenol challenge, ratio of early left ventricular filling phase to atrial contraction phase, and left ventricular ejection fraction. Ac-SDKP partially or completely prevented these effects. We conclude that Ac-SDKP prevents Gal-3-induced cardiac inflammation, fibrosis, hypertrophy, and dysfunction, possibly via inhibition of the TGF-β/Smad3 signaling pathway. PMID:19098114

  5. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin.

    PubMed

    Liu, Yun-He; D'Ambrosio, Martin; Liao, Tang-dong; Peng, Hongmei; Rhaleb, Nour-Eddine; Sharma, Umesh; André, Sabine; Gabius, Hans-J; Carretero, Oscar A

    2009-02-01

    Galectin-3 (Gal-3) is secreted by activated macrophages. In hypertension, Gal-3 is a marker for hypertrophic hearts prone to develop heart failure. Gal-3 infused in pericardial sac leads to cardiac inflammation, remodeling, and dysfunction. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a naturally occurring tetrapeptide, prevents and reverses inflammation and collagen deposition in the heart in hypertension and heart failure postmyocardial infarction. In the present study, we hypothesize that Ac-SDKP prevents Gal-3-induced cardiac inflammation, remodeling, and dysfunction, and these effects are mediated by the transforming growth factor (TGF)-beta/Smad3 signaling pathway. Adult male rats were divided into four groups and received the following intrapericardial infusion for 4 wk: 1) vehicle (saline, n = 8); 2) Ac-SDKP (800 microg x kg(-1) x day(-1), n = 8); 3) Gal-3 (12 microg/day, n = 7); and 4) Ac-SDKP + Gal-3 (n = 7). Left ventricular ejection fraction, cardiac output, and transmitral velocity were measured by echocardiography; inflammatory cell infiltration, cardiomyocyte hypertrophy, and collagen deposition in the heart by histological and immunohistochemical staining; and TGF-beta expression and Smad3 phosphorylation by Western blot. We found that, in the left ventricle, Gal-3 1) enhanced macrophage and mast cell infiltration, increased cardiac interstitial and perivascular fibrosis, and causes cardiac hypertrophy; 2) increased TGF-beta expression and Smad3 phosphorylation; and 3) decreased negative change in pressure over time response to isoproterenol challenge, ratio of early left ventricular filling phase to atrial contraction phase, and left ventricular ejection fraction. Ac-SDKP partially or completely prevented these effects. We conclude that Ac-SDKP prevents Gal-3-induced cardiac inflammation, fibrosis, hypertrophy, and dysfunction, possibly via inhibition of the TGF-beta/Smad3 signaling pathway.

  6. Potential Risks in the Paradigm of Basic to Translational Research: A Critical Evaluation of qPCR Telomere Size Techniques

    PubMed Central

    Lustig, Arthur J

    2015-01-01

    Real time qPCR has become the method of choice for rapid large-scale telomere length measurements. Large samples sizes are critical for clinical trials, and epidemiological studies. QPCR has become such routine procedure that it is often used with little critical analysis. With proper controls, the mean telomere size can be derived from the data and even the size can be estimated. But there is a need for more consistent and reliable controls that will provide closer to the actual mean size can be obtained with uniform consensus controls. Although originating at the level of basic telomere research, many researchers less familiar with telomeres often misunderstand the source and significance of the qPCR metric. These include researchers and clinicians who are interested in having a rapid tool to produce exciting results in disease prognostics and diagnostics than in the multiple characteristics of telomeres that form the basis of the measurement. But other characteristics of the non-bimodal and heterogeneous telomeres as well as the complexities of telomere dynamics are not easily related to qPCR mean telomere values. The qPCR metric does not reveal the heterogeneity and dynamics of telomeres. This is a critical issue since mutations in multiple genes including telomerase can cause telomere dysfunction and a loss of repeats. The smallest cellular telomere has been shown to arrest growth of the cell carrying the dysfunction telomere. A goal for the future is a simple method that takes into account the heterogeneity by measuring the highest and lowest values as part of the scheme to compare. In the absence of this technique, Southern blots need to be performed in a subset of qPCR samples for both mean telomere size and the upper and lower extremes of the distribution. Most importantly, there is a need for greater transparency in discussing the limitations of the qPCR data. Given the potentially exciting qPCR telomere size results emerging from clinical studies that

  7. The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect?

    PubMed Central

    Kordinas, Vasileios; Ioannidis, Anastasios; Chatzipanagiotou, Stylianos

    2016-01-01

    Telomeres are specialized nucleoprotein structures located at the end of linear chromosomes and telomerase is the enzyme responsible for telomere elongation. Telomerase activity is a key component of many cancer cells responsible for rapid cell division but it has also been found by many laboratories around the world that telomere/telomerase biology is dysfunctional in many other chronic conditions as well. These conditions are characterized by chronic inflammation, a situation mostly overlooked by physicians regarding patient treatment. Among others, these conditions include diabetes, renal failure, chronic obstructive pulmonary disease, etc. Since researchers have in many cases identified the association between telomerase and inflammation but there are still many missing links regarding this correlation, the latest findings about this phenomenon will be discussed by reviewing the literature. Our focus will be describing telomere/telomerase status in chronic diseases under the prism of inflammation, reporting molecular findings where available and proposing possible future approaches. PMID:27598205

  8. Chromosome instability as a result of double-strand breaks near telomeres in mouse embryonic stem cells.

    PubMed

    Lo, Anthony W I; Sprung, Carl N; Fouladi, Bijan; Pedram, Mehrdad; Sabatier, Laure; Ricoul, Michelle; Reynolds, Gloria E; Murnane, John P

    2002-07-01

    Telomeres are essential for protecting the ends of chromosomes and preventing chromosome fusion. Telomere loss has been proposed to play an important role in the chromosomal rearrangements associated with tumorigenesis. To determine the relationship between telomere loss and chromosome instability in mammalian cells, we investigated the events resulting from the introduction of a double-strand break near a telomere with I-SceI endonuclease in mouse embryonic stem cells. The inactivation of a selectable marker gene adjacent to a telomere as a result of the I-SceI-induced double-strand break involved either the addition of a telomere at the site of the break or the formation of inverted repeats and large tandem duplications on the end of the chromosome. Nucleotide sequence analysis demonstrated large deletions and little or no complementarity at the recombination sites involved in the formation of the inverted repeats. The formation of inverted repeats was followed by a period of chromosome instability, characterized by amplification of the subtelomeric region, translocation of chromosomal fragments onto the end of the chromosome, and the formation of dicentric chromosomes. Despite this heterogeneity, the rearranged chromosomes eventually acquired telomeres and were stable in most of the cells in the population at the time of analysis. Our observations are consistent with a model in which broken chromosomes that do not regain a telomere undergo sister chromatid fusion involving nonhomologous end joining. Sister chromatid fusion is followed by chromosome instability resulting from breakage-fusion-bridge cycles involving the sister chromatids and rearrangements with other chromosomes. This process results in highly rearranged chromosomes that eventually become stable through the addition of a telomere onto the broken end. We have observed similar events after spontaneous telomere loss in a human tumor cell line, suggesting that chromosome instability resulting from

  9. Extra Telomeres, but Not Internal Tracts of Telomeric Dna, Reduce Transcriptional Repression at Saccharomyces Telomeres

    PubMed Central

    Wiley, E. A.; Zakian, V. A.

    1995-01-01

    Yeast telomeric DNA is assembled into a nonnucleosomal chromatin structure known as the telosome, which is thought to influence the transcriptional repression of genes placed in its vicinity, a phenomenon called telomere position effect (TPE). The product of the RAP1 gene, Rap1p, is a component of the telosome. We show that the fraction of cells exhibiting TPE can be substantially reduced by expressing large amounts of a deletion derivative of Rap1p that is unable to bind DNA, called Rap1δBBp, or by introducing extra telomeres on a linear plasmid, presumably because both compete in trans with telomeric chromatin for factor(s) important for TPE. This reduction in TPE, observed in three different strains, was demonstrated for two different genes, each assayed at a different telomere. In contrast, the addition of internal tracts of telomeric DNA on a circular plasmid had very little effect on TPE. The product of the SIR3 gene, Sir3p, appears to be limiting for TPE. Overexpression of Sir3p completely suppressed the reduction in TPE observed with expression of Rap1δBBp, but did not restore high levels of TPE to cells with extra telomeres. These results suggest that extra telomeres must titrate a factor other than Sir3p that is important for TPE. These results also provide evidence for a terminus-specific binding factor that is a factor with a higher affinity for DNA termini than for nonterminal tracts of telomeric DNA and indicate that this factor is important for TPE. PMID:7705652

  10. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres

    SciTech Connect

    Wiley, E.A.; Zakian, V.A.

    1995-01-01

    Yeast telomeric DNA is assembled into a nonnucleosomal chromatin structure known as the telosome, which is thought to influence the transcriptional repression of genes placed in its vicinity, a phenomenon called telomere position effect (TPE). The product of the RAP1 gene, Rap1p, is a component of the telosome. We show that the fraction of cells exhibiting TPE can be substantially reduced by expressing large amounts of a deletion derivative of Rap1p that is unable to bind DNA, called Rap1{Delta}BBp, or by introducing extra telomeres on a linear plasmid, presumably because both compete in trans with telomeric chromatin for factor(s) important for TPE. This reduction in TPE, observed in three different strains, was demonstrated for two different genes, each assayed at a different telomere. In contrast, the addition of internal tracts of telomeric DNA on a circular plasmid had very little effect on TPE. The product of the SIR3 gene, Sir3p, appears to be limiting for TPE. Overexpression of Sir3p completely suppressed the reduction in TPE observed with expression of Rap1{Delta}BBp, but did not restore high levels of TPE to cells with extra telomeres. These results suggest that extra telomeres must titrate a factor other than Sir3p that is important for TPE. These results also provide evidence for a terminus-specific binding factor that is a factor with a higher affinity for DNA termini than for nonterminal tracts of telomeric DNA and indicate that this factor is important for TPE. 51 refs., 8 figs., 1 tab.

  11. Ergodicity convergence test suggests telomere motion obeys fractional dynamics

    NASA Astrophysics Data System (ADS)

    Kepten, E.; Bronshtein, I.; Garini, Y.

    2011-04-01

    Anomalous diffusion, observed in many biological processes, is a generalized description of a wide variety of processes, all obeying the same law of mean-square displacement. Identifying the basic mechanisms of these observations is important for deducing the nature of the biophysical systems measured. We implement a previously suggested method for distinguishing between fractional Langevin dynamics, fractional Brownian motion, and continuous time random walk based on the ergodic nature of the data. We apply the method together with the recently suggested P-variation test and the displacement correlation to the lately measured dynamics of telomeres in the nucleus of mammalian cells and find strong evidence that the telomeres motion obeys fractional dynamics. The ergodic dynamics are observed experimentally to fit fractional Brownian or Langevin dynamics.

  12. Dicer independent small RNAs associate with telomeric heterochromatin

    PubMed Central

    Cao, Fang; Li, Xiangzhi; Hiew, Samantha; Brady, Hugh; Liu, Yifan; Dou, Yali

    2009-01-01

    Small RNAs play important roles in the establishment and maintenance of heterochromatin structures. We show the presence of telomere specific small RNAs (tel-sRNAs) in mouse embryonic stem cells that are ∼24 nucleotides in length, Dicer-independent, and 2′-O-methylated at the 3′ terminus. The tel-sRNAs are asymmetric with specificity toward telomere G-rich strand, and evolutionarily conserved from protozoan to mammalian cells. Furthermore, tel-sRNAs are up-regulated in cells that carry null mutation of H3K4 methyltransferase MLL (Mll(−/−)) and down-regulated in cells that carry null mutations of histone H3K9 methyltransferase SUV39H (Suv39h1/h2(−/−)), suggesting that they are subject to epigenetic regulation. These results support that tel-sRNAs are heterochromatin associated pi-like small RNAs. PMID:19460867

  13. Inheritance of Telomere Length in a Bird

    PubMed Central

    Horn, Thorsten; Robertson, Bruce C.; Will, Margaret; Eason, Daryl K.; Elliott, Graeme P.; Gemmell, Neil J.

    2011-01-01

    Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length. PMID:21364951

  14. Inheritance of telomere length in a bird.

    PubMed

    Horn, Thorsten; Robertson, Bruce C; Will, Margaret; Eason, Daryl K; Elliott, Graeme P; Gemmell, Neil J

    2011-02-22

    Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length.

  15. Telomeres and telomere dynamics: relevance to cancers of the gastrointestinal tract

    PubMed Central

    Basu, Nivedita; Skinner, Halcyon G.; Litzelman, Kristin; Vanderboom, Russell; Baichoo, Esha; Boardman, Lisa A.

    2013-01-01

    Summary Aberrations in telomere length and telomere maintenance contribute to cancer development. In this article, we review basic principles of telomere length in normal and tumor tissue and the presence of the two main telomere maintenance pathways as they pertain to GI tract cancer. Peripheral blood telomeres are shorter in patients with many types of GI tract cancers. Telomere length in tumor DNA also appears to shorten early in cancer development. Tumor telomere shortening is often accompanied by telomerase activation to protect genetically damaged DNA from normal cell senescence or apoptosis, allowing immortalized but damaged DNA to persist. Alternative lengthening of telomeres (ALT) is another mechanism used by cancer to maintain telomere length in cancer cells. Telomerase and ALT activators and inhibitors may become important chemopreventive or chemotherapeutic agents as our understanding of telomere biology, specific telomere related phenotypes, and its relationship to carcinogenesis increases. PMID:24161135

  16. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis

    PubMed Central

    Sishc, Brock J.; Nelson, Christopher B.; McKenna, Miles J.; Battaglia, Christine L. R.; Herndon, Andrea; Idate, Rupa; Liber, Howard L.; Bailey, Susan M.

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  17. Pot1 and Telomere Maintenance

    PubMed Central

    Baumann, Peter; Price, Carolyn

    2010-01-01

    Proteins that specifically bind the single stranded overhang at the ends of telomeres have been identified in a wide range of eukaryotes and play pivotal roles in chromosome end protection and telomere length regulation. Here we summarize recent findings regarding the functions of POT1 proteins in vertebrates and discuss the functional evolution of POT1 proteins following gene duplication in protozoa, plants, nematodes and mice. PMID:20493859

  18. Telomere biology in Metazoa.

    PubMed

    Gomes, Nuno M V; Shay, Jerry W; Wright, Woodring E

    2010-09-10

    In this review we present critical overview of some of the available literature on the fundamental biology of telomeres and telomerase in Metazoan. With the exception of Nematodes and Arthropods, the (TTAGGG)(n) sequence is conserved in most Metazoa. Available data show that telomerase-based end maintenance is a very ancient mechanism in unicellular and multicellular organisms. In invertebrates, fish, amphibian, and reptiles persistent telomerase activity in somatic tissues might allow the maintenance of the extensive regenerative potentials of these species. Telomerase repression among birds and many mammals suggests that, as humans, they may use replicative aging as a tumor protection mechanism. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Telomeres: protecting chromosomes against genome instability

    PubMed Central

    O’Sullivan, Roderick J.; Karlseder, Jan

    2010-01-01

    Preface The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response (DDR). When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair there, however, the repair machinery is essential for proper telomere function. PMID:20125188

  20. Genetics and molecular biology of telomeres

    SciTech Connect

    Biessmann, H. ); Mason, J.M. )

    1992-01-01

    For simplicity, we define telomeres as complex structures at the ends of linear chromosomes that perform several cellular functions. Among the functions proposed for telomeres at least two are vital: protection of the chromosome end from degradation and fusion (termed capping) and complete replication of DNA sequences at chromosome ends. Telomeres are also involved in associations with other telomeres and structures within the nucleus, but the functions of these associations are not clearly understood. Although the concept of the telomere was developed, and the term was coined, more than 50 years ago (Muller, 1938), the structure of the telomere and its functions are still not fully understood. 317 refs., 4 figs.

  1. The role of telomere length modulation in delayed chromosome instability induced by ionizing radiation in human primary fibroblasts.

    PubMed

    Berardinelli, Francesco; Antoccia, Antonio; Buonsante, Rossella; Gerardi, Silvia; Cherubini, Roberto; De Nadal, Viviana; Tanzarella, Caterina; Sgura, Antonella

    2013-04-01

    Telomere integrity is important for chromosome stability. The main objective of our study was to investigate the relationship between telomere length modulation and mitotic chromosome segregation induced by ionizing radiation in human primary fibroblasts. We used X-rays and low-energy protons because of their ability to induce different telomeric responses. Samples irradiated with 4 Gy were fixed at different times up to 6 days from exposure and telomere length, anaphase abnormalities, and chromosome aberrations were analyzed. We observed that X-rays induced telomere shortening in cells harvested at 96 hrs, whereas protons induced a significant increase in telomere length at short as well as at long harvesting times (24 and 96 hrs). Consistent with this, the analysis of anaphase bridges at 96 hrs showed a fourfold increase in X-ray- compared with proton-irradiated samples, suggesting a correlation between telomere length/dysfunction and chromosome missegregation. In line with these findings, the frequency of dicentrics and rings decreased with time for protons whereas it remained stable after X-rays irradiation. Telomeric FISH staining on anaphases revealed a higher percentage of bridges with telomere signals in X-ray-treated samples than that observed after proton irradiation, thus suggesting that the aberrations observed after X-ray irradiation originated from telomere attrition and consequent chromosome end-to-end fusion. This study shows that, beside an expected "early" chromosome instability induced shortly after irradiation, a delayed one occurs as a result of alterations in telomere metabolism and that this mechanism may play an important role in genomic stability.

  2. Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model

    NASA Astrophysics Data System (ADS)

    Holbek, Simon; Bendtsen, Kristian Moss; Juul, Jeppe

    2013-10-01

    Mammalian cells are restricted from proliferating indefinitely. Telomeres at the end of each chromosome are shortened at cell division and when they reach a critical length, the cell will enter permanent cell cycle arrest—a state known as senescence. This mechanism is thought to be tumor suppressing, as it helps prevent precancerous cells from dividing uncontrollably. Stem cells express the enzyme telomerase, which elongates the telomeres, thereby postponing senescence. However, unlike germ cells and most types of cancer cells, stem cells only express telomerase at levels insufficient to fully maintain the length of their telomeres, leading to a slow decline in proliferation potential. It is not yet fully understood how this decline influences the risk of cancer and the longevity of the organism. We here develop a stochastic model to explore the role of telomere dynamics in relation to both senescence and cancer. The model describes the accumulation of cancerous mutations in a multicellular organism and creates a coherent theoretical framework for interpreting the results of several recent experiments on telomerase regulation. We demonstrate that the longest average cancer-free lifespan before cancer onset is obtained when stem cells start with relatively long telomeres that are shortened at a steady rate at cell division. Furthermore, the risk of cancer early in life can be reduced by having a short initial telomere length. Finally, our model suggests that evolution will favor a shorter than optimal average cancer-free lifespan in order to postpone cancer onset until late in life.

  3. Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model.

    PubMed

    Holbek, Simon; Bendtsen, Kristian Moss; Juul, Jeppe

    2013-10-01

    Mammalian cells are restricted from proliferating indefinitely. Telomeres at the end of each chromosome are shortened at cell division and when they reach a critical length, the cell will enter permanent cell cycle arrest-a state known as senescence. This mechanism is thought to be tumor suppressing, as it helps prevent precancerous cells from dividing uncontrollably. Stem cells express the enzyme telomerase, which elongates the telomeres, thereby postponing senescence. However, unlike germ cells and most types of cancer cells, stem cells only express telomerase at levels insufficient to fully maintain the length of their telomeres, leading to a slow decline in proliferation potential. It is not yet fully understood how this decline influences the risk of cancer and the longevity of the organism. We here develop a stochastic model to explore the role of telomere dynamics in relation to both senescence and cancer. The model describes the accumulation of cancerous mutations in a multicellular organism and creates a coherent theoretical framework for interpreting the results of several recent experiments on telomerase regulation. We demonstrate that the longest average cancer-free lifespan before cancer onset is obtained when stem cells start with relatively long telomeres that are shortened at a steady rate at cell division. Furthermore, the risk of cancer early in life can be reduced by having a short initial telomere length. Finally, our model suggests that evolution will favor a shorter than optimal average cancer-free lifespan in order to postpone cancer onset until late in life.

  4. Quantitative fluorescence in situ hybridization measurement of telomere length in skin with/without sun exposure or actinic keratosis.

    PubMed

    Ikeda, Hiroyuki; Aida, Junko; Hatamochi, Atsushi; Hamasaki, Yoichiro; Izumiyama-Shimomura, Naotaka; Nakamura, Ken-Ichi; Ishikawa, Naoshi; Poon, Steven S; Fujiwara, Mutsunori; Tomita, Ken-Ichiro; Hiraishi, Naoki; Kuroiwa, Mie; Matsuura, Masaaki; Sanada, Yukihiro; Kawano, Youichi; Arai, Tomio; Takubo, Kaiyo

    2014-03-01

    Chromosomal and genomic instability due to telomere dysfunction is known to play an important role in carcinogenesis. To study telomere shortening in the epidermis surrounding actinic keratosis, we measured telomere lengths of basal, parabasal, and suprabasal cells in epidermis with actinic keratosis (actinic keratosis group, n = 18) and without actinic keratosis (sun-protected, n = 15, and sun-exposed, n = 13 groups) and in actinic keratosis itself as well as in dermal fibroblasts in the 3 groups, using quantitative fluorescence in situ hybridization. Among the 3 cell types, telomeres of basal cells were not always the longest, suggesting that tissue stem cells are not necessarily located among basal cells. Telomeres of basal cells in the sun-exposed group were shorter than those in the sun-protected group. Telomeres in the background of actinic keratosis and in actinic keratosis itself and those of fibroblasts in actinic keratosis were significantly shorter than those in the controls. Our findings demonstrate that sun exposure induces telomere shortening and that actinic keratosis arises from epidermis with shorter telomeres despite the absence of any histologic atypia. © 2014.

  5. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH.

    PubMed

    Komosa, Martin; Root, Heather; Meyn, M Stephen

    2015-02-27

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain <5 ECTR DNA molecules/nucleus. ECTR DNA in ALT cells exhibit striking cell-to-cell variations in number (<20 to >300), range widely in length (<1 to >200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells.

  6. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH

    PubMed Central

    Komosa, Martin; Root, Heather; Meyn, M. Stephen

    2015-01-01

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain <5 ECTR DNA molecules/nucleus. ECTR DNA in ALT cells exhibit striking cell-to-cell variations in number (<20 to >300), range widely in length (<1 to >200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells. PMID:25662602

  7. Characterization of the Yeast Telomere Nucleoprotein Core

    PubMed Central

    Williams, Tanya L.; Levy, Daniel L.; Maki-Yonekura, Saori; Yonekura, Koji; Blackburn, Elizabeth H.

    2010-01-01

    At the core of Saccharomyces cerevisiae telomeres is an array of tandem telomeric DNA repeats bound site-specifically by multiple Rap1 molecules. There, Rap1 orchestrates the binding of additional telomere-associated proteins and negatively regulates both telomere fusion and length homeostasis. Using electron microscopy, viscosity, and light scattering measurements, we show that purified Rap1 is a monomer in solution that adopts a ringlike or C shape with a central cavity. Rap1 could orchestrate telomere function by binding multiple telomere array sites through either cooperative or independent mechanisms. To determine the mechanism, we analyze the distribution of Rap1 monomers on defined telomeric DNA arrays. This analysis clearly indicates that Rap1 binds independently to each nonoverlapping site in an array, regardless of the spacing between sites, the total number of sites, the affinity of the sites for Rap1, and over a large concentration range. Previous experiments have not clearly separated the effects of affinity from repeat spacing on telomere function. We clarify these results by testing in vivo the function of defined telomere arrays containing the same Rap1 binding site separated by spacings that were previously defined as low or high activity. We find that Rap1 binding affinity in vitro correlates with the ability of telomeric repeat arrays to regulate telomere length in vivo. We suggest that Rap1 binding to multiple sites in a telomere array does not, by itself, promote formation of a more energetically stabile complex. PMID:20826803

  8. Telomeres, A Busy Platform for Cell Signaling

    PubMed Central

    Gardano, Laura; Pucci, Fabio; Christian, Larissa; Le Bihan, Thierry; Harrington, Lea

    2013-01-01

    Telomeres are the terminal structures at the ends of linear chromosomes that represent a solution to the end replication problem. Specific binding of the six-protein subunit complex shelterin to telomeric, repetitive TTAGGG DNA sequences contributes to the stable architecture and maintenance of telomeres. Proteins involved in the DNA damage response are also localized at telomeres, and play a role in the surveillance and maintenance of telomere integrity. The enzyme responsible for telomere extension is telomerase, a ribonucleoprotein with reverse transcriptase activity. In the absence of telomerase, telomeres shorten to a length threshold that triggers the DNA damage response and replicative senescence. Here, we will summarize the latest findings concerning vertebrate telomere structure and epigenetics, and we present data regarding the impact of short telomeres upon cell signaling. In particular, in murine embryonic stem cells lacking telomerase, we found that distribution of cytosolic/nuclear β-catenin, a key component of the Wnt signaling pathway, changes when telomeres become critically short. We discuss implications and future perspectives of the effect of epigenetic modifications and/or conformational changes of telomeres on cell metabolism and signaling networks. Such an analysis may unveil potential therapeutic targets for pathologies like cancer, where the integrity of telomeres is altered. PMID:23772418

  9. Persistent telomere cohesion triggers a prolonged anaphase.

    PubMed

    Kim, Mi Kyung; Smith, Susan

    2014-01-01

    Telomeres use distinct mechanisms (not used by arms or centromeres) to mediate cohesion between sister chromatids. However, the motivation for a specialized mechanism at telomeres is not well understood. Here we show, using fluorescence in situ hybridization and live-cell imaging, that persistent sister chromatid cohesion at telomeres triggers a prolonged anaphase in normal human cells and cancer cells. Excess cohesion at telomeres can be induced by inhibition of tankyrase 1, a poly(ADP-ribose) polymerase that is required for resolution of telomere cohesion, or by overexpression of proteins required to establish telomere cohesion, the shelterin subunit TIN2 and the cohesin subunit SA1. Regardless of the method of induction, excess cohesion at telomeres in mitosis prevents a robust and efficient anaphase. SA1- or TIN2-induced excess cohesion and anaphase delay can be rescued by overexpression of tankyrase 1. Moreover, we show that primary fibroblasts, which accumulate excess telomere cohesion at mitosis naturally during replicative aging, undergo a similar delay in anaphase progression that can also be rescued by overexpression of tankyrase 1. Our study demonstrates that there are opposing forces that regulate telomere cohesion. The observation that cells respond to unresolved telomere cohesion by delaying (but not completely disrupting) anaphase progression suggests a mechanism for tolerating excess cohesion and maintaining telomere integrity. This attempt to deal with telomere damage may be ultimately futile for aging fibroblasts but useful for cancer cells.

  10. Novel Telomere-Anchored PCR Approach for Studying Sexual Stage Telomeres in Aspergillus nidulans

    PubMed Central

    Wang, Nengding; Rizvydeen, Saajidha; Vahedi, Mithaq; Vargas Gonzalez, Daysi M.; Allred, Amanda L.; Perry, Dustin W.; Mirabito, Peter M.; Kirk, Karen E.

    2014-01-01

    Telomere length varies between germline and somatic cells of the same organism, leading to the hypothesis that telomeres are lengthened during meiosis. However, little is known about the meiotic telomere length in many organisms. In the filamentous fungus Aspergillus nidulans, the telomere lengths in hyphae and asexual spores are invariant. No study using existing techniques has determined the telomere length of the sexual ascospores due to the relatively low abundance of pure meiotic cells in A. nidulans and the small quantity of DNA present. To address this, we developed a simple and sensitive PCR strategy to measure the telomere length of A. nidulans meiotic cells. This novel technique, termed “telomere-anchored PCR,” measures the length of the telomere on chromosome II-L using a small fraction of the DNA required for the traditional terminal restriction fragment (TRF) Southern analysis. Using this approach, we determined that the A. nidulans ascospore telomere length is virtually identical to telomeres of other cell types from this organism, approximately 110 bp, indicating that a surprisingly strict telomere length regulation exists in the major cell types of A. nidulans. When the hyphal telomeres were measured in a telomerase reverse transcriptase (TERT) knockout strain, small decreases in length were readily detected. Thus, this technique can detect telomeres in relatively rare cell types and is particularly sensitive in measuring exceptionally short telomeres. This rapid and inexpensive telomere-anchored PCR method potentially can be utilized in other filamentous fungi and types of organisms. PMID:24927411

  11. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton

    PubMed Central

    Horn, Henning F.; Kim, Dae In; Wright, Graham D.; Wong, Esther Sook Miin; Roux, Kyle J.

    2013-01-01

    Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression. PMID:24062341

  12. The role of telomeres and vitamin D in cellular aging and age-related diseases.

    PubMed

    Pusceddu, Irene; Farrell, Christopher-John L; Di Pierro, Angela Maria; Jani, Erika; Herrmann, Wolfgang; Herrmann, Markus

    2015-10-01

    Aging is a complex biological process characterized by a progressive decline of organ functions leading to an increased risk of age-associated diseases and death. Decades of intensive research have identified a range of molecular and biochemical pathways contributing to aging. However, many aspects regarding the regulation and interplay of these pathways are insufficiently understood. Telomere dysfunction and genomic instability appear to be of critical importance for aging at a cellular level. For example, age-related diseases and premature aging syndromes are frequently associated with telomere shortening. Telomeres are repetitive nucleotide sequences that together with the associated sheltrin complex protect the ends of chromosomes and maintain genomic stability. Recent studies suggest that micronutrients, such as vitamin D, folate and vitamin B12, are involved in telomere biology and cellular aging. In particular, vitamin D is important for a range of vital cellular processes including cellular differentiation, proliferation and apoptosis. As a result of the multiple functions of vitamin D it has been speculated that vitamin D might play a role in telomere biology and genomic stability. Here we review existing knowledge about the link between telomere biology and cellular aging with a focus on the role of vitamin D. We searched the literature up to November 2014 for human studies, animal models and in vitro experiments that addressed this topic.

  13. Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche

    PubMed Central

    Yang, Ting-Lin B.; Chen, Qijun; Deng, Jennifer T.; Jagannathan, Geetha; Tobias, John W.; Schultz, David C.; Wang, Shan; Lengner, Christopher J.; Rustgi, Anil K.; Lynch, John P.; Johnson, F. Brad

    2017-01-01

    Critical telomere shortening (for example, secondary to partial telomerase deficiency in the rare disease dyskeratosis congenita) causes tissue pathology, but underlying mechanisms are not fully understood. Mice lacking telomerase (for example, mTR−/− telomerase RNA template mutants) provide a model for investigating pathogenesis. In such mice, after several generations of telomerase deficiency telomeres shorten to the point of uncapping, causing defects most pronounced in high-turnover tissues including intestinal epithelium. Here we show that late-generation mTR−/− mutants experience marked downregulation of Wnt pathway genes in intestinal crypt epithelia, including crypt base columnar stem cells and Paneth cells, and in underlying stroma. The importance of these changes was revealed by rescue of crypt apoptosis and Wnt pathway gene expression upon treatment with Wnt pathway agonists. Rescue was associated with reduced telomere-dysfunction-induced foci and anaphase bridges, indicating improved telomere capping. Thus a mutually reinforcing feedback loop exists between telomere capping and Wnt signalling, and telomere capping can be impacted by extracellular cues in a fashion independent of telomerase. PMID:28303901

  14. Telomere Shortening Exposes Functions for the Mouse Werner and Bloom Syndrome Genes

    PubMed Central

    Du, Xiaobing; Shen, Johnny; Kugan, Nishan; Furth, Emma E.; Lombard, David B.; Cheung, Catherine; Pak, Sally; Luo, Guangbin; Pignolo, Robert J.; DePinho, Ronald A.; Guarente, Leonard; Johnson, F. Brad

    2004-01-01

    The Werner and Bloom syndromes are caused by loss-of-function mutations in WRN and BLM, respectively, which encode the RecQ family DNA helicases WRN and BLM, respectively. Persons with Werner syndrome displays premature aging of the skin, vasculature, reproductive system, and bone, and those with Bloom syndrome display more limited features of aging, including premature menopause; both syndromes involve genome instability and increased cancer. The proteins participate in recombinational repair of stalled replication forks or DNA breaks, but the precise functions of the proteins that prevent rapid aging are unknown. Accumulating evidence points to telomeres as targets of WRN and BLM, but the importance in vivo of the proteins in telomere biology has not been tested. We show that Wrn and Blm mutations each accentuate pathology in later-generation mice lacking the telomerase RNA template Terc, including acceleration of phenotypes characteristic of latest-generation Terc mutants. Furthermore, pathology not observed in Terc mutants but similar to that observed in Werner syndrome and Bloom syndrome, such as bone loss, was observed. The pathology was accompanied by enhanced telomere dysfunction, including end-to-end chromosome fusions and greater loss of telomere repeat DNA compared with Terc mutants. These findings indicate that telomere dysfunction may contribute to the pathogenesis of Werner syndrome and Bloom syndrome. PMID:15367665

  15. The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster.

    PubMed

    Singh, Anand K; Lakhotia, Subhash C

    2016-06-01

    Unlike the telomerase-dependent mammalian telomeres, HeT-A, TART, and TAHRE (HTT) retroposon arrays regulate Drosophila telomere length. Cap prevents telomeric associations (TAs) and telomeric fusions (TFs). Our results suggest important roles of Hrb87F in telomeric HTT array and cap maintenance in Drosophila. All chromosome arms, except 2L, in Df(3R)Hrb87F homozygotes (Hrb87F-null) displayed significantly elongated telomeres with amplified HTT arrays and high TAs, all of which resolved without damage. Presence of FLAG-tagged Hrb87F (FLAG-Hrb87F) on cap and subtelomeric regions following hsFLAG-Hrb87F transgene expression in Df(3R)Hrb87F homozygotes suppressed TAs without affecting telomere length. A normal X-chromosome telomere expanded within five generations in Hrb87F-null background and displayed high TAs, but not when hsFLAG-Hrb87F was co-expressed. Tel (1) /Gaiano line or HP1 loss-of-function mutant-derived expanded telomeres carry Hrb87F on cap and HTT arrays while Hrb87F-null telomeres have HP1 and HOAP on caps and expanded HTT arrays. ISWI, seen only on cap on normal telomeres, was abundant on Hrb87F-null expanded HTT arrays. Extended telomeres derived from Tel (1) (Gaiano) or HP1-null mutation background interact with those from Hrb87F-null, since while the end association frequency was negligible in Df(3R)Hrb87F/+ nuclei, it increased significantly in co-presence of Tel (1) or HP1-null-based expanded telomere/s. Together, these suggest complex interactions between members of the proteome of telomere so that absence of any key member leads to telomere expansion and/or enhanced TAs/TFs. HTT expansion in Hrb87F-null condition is not developmental but a germline event presumably because absence of Hrb87F in germline may deregulate HTT retroposition/replication leading to telomere elongation.

  16. Telomere dynamics may link stress exposure and ageing across generations

    PubMed Central

    Haussmann, Mark F.; Heidinger, Britt J.

    2015-01-01

    Although exposure to stressors is known to increase disease susceptibility and accelerate ageing, evidence is accumulating that these effects can span more than one generation. Stressors experienced by parents have been reported to negatively influence the longevity of their offspring and even grand offspring. The mechanisms underlying these long-term, cross-generational effects are still poorly understood, but we argue here that telomere dynamics are likely to play an important role. In this review, we begin by surveying the current connections between stress and telomere dynamics. We then lay out the evidence that exposure to stressors in the parental generation influences telomere dynamics in offspring and potentially subsequent generations. We focus on evidence in mammalian and avian studies and highlight several promising areas where our understanding is incomplete and future investigations are critically needed. Understanding the mechanisms that link stress exposure across generations requires interdisciplinary studies and is essential to both the biomedical community seeking to understand how early adversity impacts health span and evolutionary ecologists interested in how changing environmental conditions are likely to influence age-structured population dynamics. PMID:26538535

  17. Telomere dynamics may link stress exposure and ageing across generations.

    PubMed

    Haussmann, Mark F; Heidinger, Britt J

    2015-11-01

    Although exposure to stressors is known to increase disease susceptibility and accelerate ageing, evidence is accumulating that these effects can span more than one generation. Stressors experienced by parents have been reported to negatively influence the longevity of their offspring and even grand offspring. The mechanisms underlying these long-term, cross-generational effects are still poorly understood, but we argue here that telomere dynamics are likely to play an important role. In this review, we begin by surveying the current connections between stress and telomere dynamics. We then lay out the evidence that exposure to stressors in the parental generation influences telomere dynamics in offspring and potentially subsequent generations. We focus on evidence in mammalian and avian studies and highlight several promising areas where our understanding is incomplete and future investigations are critically needed. Understanding the mechanisms that link stress exposure across generations requires interdisciplinary studies and is essential to both the biomedical community seeking to understand how early adversity impacts health span and evolutionary ecologists interested in how changing environmental conditions are likely to influence age-structured population dynamics.

  18. The terminal DNA structure of mammalian chromosomes.

    PubMed Central

    McElligott, R; Wellinger, R J

    1997-01-01

    In virtually all eukaryotic organisms, telomeric DNA is composed of a variable number of short direct repeats. While the primary sequence of telomeric repeats has been determined for a great variety of species, the actual physical DNA structure at the ends of a bona fide metazoan chromosome with a centromere is unknown. It is shown here that an overhang of the strand forming the 3' ends of the chromosomes, the G-rich strand, is found at mammalian chromosome ends. Moreover, on at least some telomeres, the overhangs are > or = 45 bases long. Such surprisingly long overhangs were present on chromosomes derived from fully transformed tissue culture cells and normal G0-arrested peripheral leukocytes. Thus, irrespective of whether the cells were actively dividing or arrested, a very similar terminal DNA arrangement was found. These data suggest that the ends of mammalian and possibly all vertebrate chromosomes consist of an overhang of the G-rich strand and that these overhangs may be considerably larger than previously anticipated. PMID:9218811

  19. Need telomere maintenance? Call 911

    PubMed Central

    Francia, Sofia; Weiss, Robert S; d'Adda di Fagagna, Fabrizio

    2007-01-01

    "Natura non facit saltum" (nature makes no leap) the Latins used to say, meaning that nature does not like discontinuities. Cells make no exception and indeed any discontinuity in the DNA double helix is promptly detected, triggering an alteration of cell proliferation and an attempt to repair. Yet, linear chromosomes bear DNA ends that are compatible with normal cell proliferation and they escape, under normal conditions, any repair. How telomeres, the chromosomes tips, achieve that is not fully understood. We recently observed that the Rad9/Hus1/Rad1 (911) complex, previously known for its functions in DNA metabolism and DNA damage responses, is constitutively associated with telomeres and plays an important role in their maintenance. Here, we summarize the available data and discuss the potential mechanisms of 911 action at telomeres. PMID:17229321

  20. Need telomere maintenance? Call 911.

    PubMed

    Francia, Sofia; Weiss, Robert S; d'Adda di Fagagna, Fabrizio

    2007-01-17

    "Natura non facit saltum" (nature makes no leap) the Latins used to say, meaning that nature does not like discontinuities. Cells make no exception and indeed any discontinuity in the DNA double helix is promptly detected, triggering an alteration of cell proliferation and an attempt to repair. Yet, linear chromosomes bear DNA ends that are compatible with normal cell proliferation and they escape, under normal conditions, any repair. How telomeres, the chromosomes tips, achieve that is not fully understood. We recently observed that the Rad9/Hus1/Rad1 (911) complex, previously known for its functions in DNA metabolism and DNA damage responses, is constitutively associated with telomeres and plays an important role in their maintenance. Here, we summarize the available data and discuss the potential mechanisms of 911 action at telomeres.

  1. Bortezomib-mediated down-regulation of telomerase and disruption of telomere homeostasis contributes to apoptosis of malignant cells

    PubMed Central

    Ci, Xinyu; Li, Bingnan; Ma, Xueping; Kong, Feng; Zheng, Chengyun; Björkholm, Magnus; Jia, Jihui; Xu, Dawei

    2015-01-01

    Bortezomib inhibits the ubiquitin/proteasome pathway to achieve its anti-cancer effect and its well characterized activity is the NF-κB inhibition through which the anti-apoptotic bcl-2 expression is down-regulated and apoptosis is subsequently induced. However, the downstream molecular targets of bortezomib are still incompletely defined. Because telomere stabilization via activation of telomerase, induction of telomerase reverse transcriptase (hTERT) and appropriate expression of shelterin proteins is essential to cancer development and progression, we investigated the effect of bortezomib on telomere homeostasis/function in malignant cells. The bortezomib treatment of leukemic (HEL) and gastric cancer cells (BGC-823) led to significant inhibition of hTERT and telomerase expression, widespread dysregulation of shelterin protein expression, and telomere shortening, thereby triggering telomere dysfunction and DNA damage. hTERT over-expression attenuated bortezomib-induced telomere shortening, abnormal shelterin expression and telomere dysfunction. Importantly, bortezomib-mediated apoptosis of malignant cells was partially prevented by hTERT over-expression. Mechanistically, hTERT first robustly enhances bcl2 expression and maintains significantly high residual levels of bcl2 even in bortezomib-treated HEL cells. Second, hTERT protects against bortezomib-induced DNA damage. Our findings collectively reveal a profound impact of bortezomib on telomere homeostasis/function. Down-regulation of hTERT expression and telomere dysfunction induced by bortezomib both contribute to its cancer cell killing actions. It is evident from the present study that hTERT can confer resistance of malignant cells to bortezomib-based target cancer therapy, which may have important clinical implications. PMID:26472030

  2. Danazol Treatment for Telomere Diseases

    PubMed Central

    Townsley, Danielle M.; Dumitriu, Bogdan; Liu, Delong; Biancotto, Angélique; Weinstein, Barbara; Chen, Christina; Hardy, Nathan; Mihalek, Andrew D.; Lingala, Shilpa; Kim, Yun Ju; Yao, Jianhua; Jones, Elizabeth; Gochuico, Bernadette R.; Heller, Theo; Wu, Colin O.; Calado, Rodrigo T.; Scheinberg, Phillip; Young, Neal S.

    2016-01-01

    BACKGROUND Genetic defects in telomere maintenance and repair cause bone marrow failure, liver cirrhosis, and pulmonary fibrosis, and they increase susceptibility to cancer. Historically, androgens have been useful as treatment for marrow failure syndromes. In tissue culture and animal models, sex hormones regulate expression of the telomerase gene. METHODS In a phase 1–2 prospective study involving patients with telomere diseases, we administered the synthetic sex hormone danazol orally at a dose of 800 mg per day for a total of 24 months. The goal of treatment was the attenuation of accelerated telomere attrition, and the primary efficacy end point was a 20% reduction in the annual rate of telomere attrition measured at 24 months. The occurrence of toxic effects of treatment was the primary safety end point. Hematologic response to treatment at various time points was the secondary efficacy end point. RESULTS After 27 patients were enrolled, the study was halted early, because telomere attrition was reduced in all 12 patients who could be evaluated for the primary end point; in the intention-to-treat analysis, 12 of 27 patients (44%; 95% confidence interval [CI], 26 to 64) met the primary efficacy end point. Unexpectedly, almost all the patients (11 of 12, 92%) had a gain in telomere length at 24 months as compared with baseline (mean increase, 386 bp [95% CI, 178 to 593]); in exploratory analyses, similar increases were observed at 6 months (16 of 21 patients; mean increase, 175 bp [95% CI, 79 to 271]) and 12 months (16 of 18 patients; mean increase, 360 bp [95% CI, 209 to 512]). Hematologic responses occurred in 19 of 24 patients (79%) who could be evaluated at 3 months and in 10 of 12 patients (83%) who could be evaluated at 24 months. Known adverse effects of danazol — elevated liver-enzyme levels and muscle cramps — of grade 2 or less occurred in 41% and 33% of the patients, respectively. CONCLUSIONS In our study, treatment with danazol led to telomere

  3. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis.

    PubMed

    Ikeda, Atsuko; Muneoka, Tetsuya; Murakami, Suguru; Hirota, Ayaka; Yabuki, Yukari; Karashima, Takefumi; Nakazono, Kota; Tsuruno, Masahiro; Pichler, Harald; Shirahige, Katsuhiko; Kodama, Yukiko; Shimamoto, Toshi; Mizuta, Keiko; Funato, Kouichi

    2015-07-15

    In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.

  4. The JIL-1 Kinase Affects Telomere Expression in the Different Telomere Domains of Drosophila

    PubMed Central

    Silva-Sousa, Rute; Casacuberta, Elena

    2013-01-01

    In Drosophila, the non-LTR retrotransposons HeT-A, TART and TAHRE build a head-to-tail array of repetitions that constitute the telomere domain by targeted transposition at the end of the chromosome whenever needed. As a consequence, Drosophila telomeres have the peculiarity to harbor the genes in charge of telomere elongation. Understanding telomere expression is important in Drosophila since telomere homeostasis depends in part on the expression of this genomic compartment. We have recently shown that the essential kinase JIL-1 is the first positive regulator of the telomere retrotransposons. JIL-1 mediates chromatin changes at the promoter of the HeT-A retrotransposon that are necessary to obtain wild type levels of expression of these telomere transposons. With the present study, we show how JIL-1 is also needed for the expression of a reporter gene embedded in the telomere domain. Our analysis, using different reporter lines from the telomere and subtelomere domains of different chromosomes, indicates that JIL-1 likely acts protecting the telomere domain from the spreading of repressive chromatin from the adjacent subtelomere domain. Moreover, the analysis of the 4R telomere suggests a slightly different chromatin structure at this telomere. In summary, our results strongly suggest that the action of JIL-1 depends on which telomere domain, which chromosome and which promoter is embedded in the telomere chromatin. PMID:24244743

  5. Acquisition of telomere repeat sequences by transfected DNA integrated at the site of a chromosome break

    SciTech Connect

    Murnane, J.P.; Lohchung Yu )

    1993-02-01

    Rearrangement of the human genome is an important element in both cancer biology and genetic disease. Rearrangements that have been observed include deletions, translocations, chromosome breakage or loss, and gene amplification. Transfection of the DNA into mammalian cells can created instability in the genome. The characterization of DNA rearrangement associated with transfected DNA may provide information about the general mechanisms involved in genomic instability. This genomic instability is an important aspect of tumor cell progression. This research examines chromosome breakage and rearrangement that results in interstitial telomere repeat sequences within the human genome. These sequences could promote genomic instability because short repeat sequences can be recombination hotspots. Also, DNA rearrangements involving telomere repeat sequences can be associated with chromosome breaks. The introduction of telomere repeat sequences at spontaneous or ionizing radiation-induced DNA strand breaks may therefore also be a mechanism of chromosome fragmentation. 52 refs., 7 figs.

  6. Maintenance of very long telomeres by recombination in the Kluyveromyces lactis stn1-M1 mutant involves extreme telomeric turnover, telomeric circles, and concerted telomeric amplification.

    PubMed

    Xu, Jianing; McEachern, Michael J

    2012-08-01

    Some cancers utilize the recombination-dependent process of alternative lengthening of telomeres (ALT) to maintain long heterogeneous telomeres. Here, we studied the recombinational telomere elongation (RTE) of the Kluyveromyces lactis stn1-M1 mutant. We found that the total amount of the abundant telomeric DNA in stn1-M1 cells is subject to rapid variation and that it is likely to be primarily extrachromosomal. Rad50 and Rad51, known to be required for different RTE pathways in Saccharomyces cerevisiae, were not essential for the production of either long telomeres or telomeric circles in stn1-M1 cells. Circles of DNA containing telomeric repeats (t-circles) either present at the point of establishment of long telomeres or introduced later into stn1-M1 cells each led to the formation of long tandem arrays of the t-circle's sequence, which were incorporated at multiple telomeres. These tandem arrays were extraordinarily unstable and showed evidence of repeated rounds of concerted amplification. Our results suggest that the maintenance of telomeres in the stn1-M1 mutant involves extreme turnover of telomeric sequences from processes including both large deletions and the copying of t-circles.

  7. The controversial telomeres of lily plants.

    PubMed

    de la Herrán, R; Cuñado, N; Navajas-Pérez, R; Santos, J L; Ruiz Rejón, C; Garrido-Ramos, M A; Ruiz Rejón, M

    2005-01-01

    The molecular structure of the exceptional telomeres of six plant species belonging to the order Asparagales and two species of the order Liliales was analyzed using Southern blot and fluorescence in situ hybridization. Three different situations were found, namely: i) In the two Liliales species, Tulipa australis (Liliaceae) and Merendera montana (Colchicaceae), the chromosome ends display hybridization signals with oligonucleotides resembling telomere repeats of both plants (TTTAGGG)n and vertebrates (TTAGGG)n. ii) Asparagales species such as Phormium tenax (Hemerocallidaceae), Muscari comosum (Hyacinthaceae), Narcissus jonquilla (Amaryllidaceae) and Allium sativum (Alliaceae) lack both the plant telomere repeats and the vertebrate telomere repeats. iii) Two other Asparagales species, Aloe vera (Asphodelaceae) and an Iris hybrid (Iridaceae), display positive hybridization with the vertebrate telomere repeats but not with the plant telomere repeats. Southern blot hybridization revealed concurring results. On this basis, the composition of the telomere structure in this plant group is discussed.

  8. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4

    PubMed Central

    Liddiard, Kate; Ruis, Brian; Takasugi, Taylor; Harvey, Adam; Ashelford, Kevin E.; Hendrickson, Eric A.; Baird, Duncan M.

    2016-01-01

    Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution. PMID:26941250

  9. Super-telomeres in transformed human fibroblasts.

    PubMed

    Chiodi, Ilaria; Belgiovine, Cristina; Zongaro, Samantha; Ricotti, Roberta; Horard, Beatrice; Lossani, Andrea; Focher, Federico; Gilson, Eric; Giulotto, Elena; Mondello, Chiara

    2013-08-01

    Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process. Just after telomerase catalytic subunit (hTERT) expression, cen3tel telomeres shortened despite the presence of telomerase activity. At a later stage and concomitantly with transformation, cells started elongating telomeres, which reached a mean length greater than 100kb in about 900 population doublings. Super-telomeres were stable and compatible with cell growth and tumorigenesis. Telomere extension was associated with increasing levels of telomerase activity that were linked to the deregulation of endogenous telomerase RNA (hTERC) and exogenous telomerase reverse transcriptase (hTERT) expression. Notably, the increase in hTERC levels paralleled the increase in telomerase activity, suggesting that this subunit plays a role in regulating enzyme activity. Telomeres ranging in length between 10 and more than 100kb were maintained in an extendible state although TRF1 and TRF2 binding increased with telomere length. Super-telomeres neither influenced subtelomeric region global methylation nor the expression of the subtelomeric gene FRG1, attesting the lack of a clear-cut relationship between telomere length, subtelomeric DNA methylation and expression in human cells. The cellular levels of the telomeric proteins hTERT, TRF1, TRF2 and Hsp90 rose with transformation and were independent of telomere length, pointing to a role of these proteins in tumorigenesis.

  10. Telomeres thrown for a loop.

    PubMed

    Haber, James E

    2004-11-19

    A remarkable paper from the de Lange lab (Wang et al., 2004) in a recent issue of Cell reveals that homologous recombination can result in the abrupt shortening of telomeres in a process that appears to involve reciprocal crossing over within the t-loop structure that protects chromosome ends.

  11. yKu70/yKu80 and Rif1 Regulate Silencing Differentially at Telomeres in Candida glabrata▿ ‡

    PubMed Central

    Rosas-Hernández, Lluvia L.; Juárez-Reyes, Alejandro; Arroyo-Helguera, Omar E.; De Las Peñas, Alejandro; Pan, Shih-Jung; Cormack, Brendan P.; Castaño, Irene

    2008-01-01

    Candida glabrata, a common opportunistic fungal pathogen, adheres efficiently to mammalian epithelial cells in culture. This interaction in vitro depends mainly on the adhesin Epa1, one of a large family of cell wall proteins. Most of the EPA genes are located in subtelomeric regions, where they are transcriptionally repressed by silencing. In order to better characterize the transcriptional regulation of the EPA family, we have assessed the importance of C. glabrata orthologues of known regulators of subtelomeric silencing in Saccharomyces cerevisiae. To this end, we used a series of strains containing insertions of the reporter URA3 gene within different intergenic regions throughout four telomeres of C. glabrata. Using these reporter strains, we have assessed the roles of SIR2, SIR3, SIR4, HDF1 (yKu70), HDF2 (yKu80), and RIF1 in mediating silencing at four C. glabrata telomeres. We found that, whereas the SIR proteins are absolutely required for silencing of the reporter genes and the native subtelomeric EPA genes, the Rif1 and the Ku proteins regulate silencing at only a subset of the analyzed telomeres. We also mapped a cis element adjacent to the EPA3 locus that can silence a reporter gene when placed at a distance of 31 kb from the telomere. Our data show that silencing of the C. glabrata telomeres varies from telomere to telomere. In addition, recruitment of silencing proteins to the subtelomeres is likely, for certain telomeres, to depend both on the telomeric repeats and on particular discrete silencing elements. PMID:18836091

  12. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus

    PubMed Central

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M.; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C.; Young, Neal S.

    2015-01-01

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools. PMID:25962353

  13. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus.

    PubMed

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C; Young, Neal S

    2015-08-15

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools.

  14. Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds

    PubMed Central

    Boonekamp, Jelle J.; Mulder, G. A.; Salomons, H. Martijn; Dijkstra, Cor; Verhulst, Simon

    2014-01-01

    Developmental stressors often have long-term fitness consequences, but linking offspring traits to fitness prospects has remained a challenge. Telomere length predicts mortality in adult birds, and may provide a link between developmental conditions and fitness prospects. Here, we examine the effects of manipulated brood size on growth, telomere dynamics and post-fledging survival in free-living jackdaws. Nestlings in enlarged broods achieved lower mass and lost 21% more telomere repeats relative to nestlings in reduced broods, showing that developmental stress accelerates telomere shortening. Adult telomere length was positively correlated with their telomere length as nestling (r = 0.83). Thus, an advantage of long telomeres in nestlings is carried through to adulthood. Nestling telomere shortening predicted post-fledging survival and recruitment independent of manipulation and fledgling mass. This effect was strong, with a threefold difference in recruitment probability over the telomere shortening range. By contrast, absolute telomere length was neither affected by brood size manipulation nor related to survival. We conclude that telomere loss, but not absolute telomere length, links developmental conditions to subsequent survival and suggest that telomere shortening may provide a key to unravelling the physiological causes of developmental effects on fitness. PMID:24789893

  15. Chromosomal distribution of the telomere sequence (TTAGGG)(n) in the Equidae.

    PubMed

    Lear, T L

    2001-01-01

    Telomeres are a class of repetitive DNA sequences that are located at chromosome termini and that act to stabilize the chromosome ends. The rapid karyotypic evolution of the genus Equus has given rise to ten taxa, all with different diploid chromosome numbers. Using fluorescence in situ hybridization (FISH) we localized the mammalian telomere sequence, (TTAGGG)(n), to the chromosomes of nine equid taxa. TTAGGG signal was located at chromosome termini in all species, however additional signal was seen at interstitial sites on some chromosomes in the Burchell's zebra, Equus quagga burchelli, the Hartmann's zebra, Equus zebra hartmannae, and at large heterochromatin-associated regions on the chromosomes of the donkey, Equus asinus. The interstitial signal in the zebras may be a relic of an ancient telomere-telomere fusion and mark the point at which two ancestral chromosomes may have fused. For the donkey, the heterochromatin-associated signal may represent degenerate telomere-like satellite sequences and identify a second type of satellite DNA for this taxon.

  16. Telomeres and Telomerase in Cardiovascular Diseases.

    PubMed

    Yeh, Jih-Kai; Wang, Chao-Yung

    2016-09-01

    Telomeres are tandem repeat DNA sequences present at the ends of each eukaryotic chromosome to stabilize the genome structure integrity. Telomere lengths progressively shorten with each cell division. Inflammation and oxidative stress, which are implicated as major mechanisms underlying cardiovascular diseases, increase the rate of telomere shortening and lead to cellular senescence. In clinical studies, cardiovascular risk factors such as smoking, obesity, sedentary lifestyle, and hypertension have been associated with short leukocyte telomere length. In addition, low telomerase activity and short leukocyte telomere length have been observed in atherosclerotic plaque and associated with plaque instability, thus stroke or acute myocardial infarction. The aging myocardium with telomere shortening and accumulation of senescent cells limits the tissue regenerative capacity, contributing to systolic or diastolic heart failure. In addition, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments. In this review, we summarize the current understanding of telomeres and telomerase in the aging process and their association with cardiovascular diseases. In addition, we discuss therapeutic interventions targeting the telomere system in cardiovascular disease treatments.

  17. Telomeres and Telomerase in Cardiovascular Diseases

    PubMed Central

    Yeh, Jih-Kai; Wang, Chao-Yung

    2016-01-01

    Telomeres are tandem repeat DNA sequences present at the ends of each eukaryotic chromosome to stabilize the genome structure integrity. Telomere lengths progressively shorten with each cell division. Inflammation and oxidative stress, which are implicated as major mechanisms underlying cardiovascular diseases, increase the rate of telomere shortening and lead to cellular senescence. In clinical studies, cardiovascular risk factors such as smoking, obesity, sedentary lifestyle, and hypertension have been associated with short leukocyte telomere length. In addition, low telomerase activity and short leukocyte telomere length have been observed in atherosclerotic plaque and associated with plaque instability, thus stroke or acute myocardial infarction. The aging myocardium with telomere shortening and accumulation of senescent cells limits the tissue regenerative capacity, contributing to systolic or diastolic heart failure. In addition, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments. In this review, we summarize the current understanding of telomeres and telomerase in the aging process and their association with cardiovascular diseases. In addition, we discuss therapeutic interventions targeting the telomere system in cardiovascular disease treatments. PMID:27598203

  18. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells.

    PubMed

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S

    2016-05-01

    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P < 0.0001 and P = 0.0078, respectively. There were no statistically significant differences in the numbers of telomere aggregates or the nuclear volumes between the tumor and normal epithelial cells. Secondary analyses examined the effects of age on 3D telomere

  19. Do Telomeres Adapt to Physiological Stress? Exploring the Effect of Exercise on Telomere Length and Telomere-Related Proteins

    PubMed Central

    Ludlow, Andrew T.; Ludlow, Lindsay W.; Roth, Stephen M.

    2013-01-01

    Aging is associated with a tissue degeneration phenotype marked by a loss of tissue regenerative capacity. Regenerative capacity is dictated by environmental and genetic factors that govern the balance between damage and repair. The age-associated changes in the ability of tissues to replace lost or damaged cells is partly the cause of many age-related diseases such as Alzheimer's disease, cardiovascular disease, type II diabetes, and sarcopenia. A well-established marker of the aging process is the length of the protective cap at the ends of chromosomes, called telomeres. Telomeres shorten with each cell division and with increasing chronological age and short telomeres have been associated with a range of age-related diseases. Several studies have shown that chronic exposure to exercise (i.e., exercise training) is associated with telomere length maintenance; however, recent evidence points out several controversial issues concerning tissue-specific telomere length responses. The goals of the review are to familiarize the reader with the current telomere dogma, review the literature exploring the interactions of exercise with telomere phenotypes, discuss the mechanistic research relating telomere dynamics to exercise stimuli, and finally propose future directions for work related to telomeres and physiological stress. PMID:24455708

  20. Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins.

    PubMed

    Ludlow, Andrew T; Ludlow, Lindsay W; Roth, Stephen M

    2013-01-01

    Aging is associated with a tissue degeneration phenotype marked by a loss of tissue regenerative capacity. Regenerative capacity is dictated by environmental and genetic factors that govern the balance between damage and repair. The age-associated changes in the ability of tissues to replace lost or damaged cells is partly the cause of many age-related diseases such as Alzheimer's disease, cardiovascular disease, type II diabetes, and sarcopenia. A well-established marker of the aging process is the length of the protective cap at the ends of chromosomes, called telomeres. Telomeres shorten with each cell division and with increasing chronological age and short telomeres have been associated with a range of age-related diseases. Several studies have shown that chronic exposure to exercise (i.e., exercise training) is associated with telomere length maintenance; however, recent evidence points out several controversial issues concerning tissue-specific telomere length responses. The goals of the review are to familiarize the reader with the current telomere dogma, review the literature exploring the interactions of exercise with telomere phenotypes, discuss the mechanistic research relating telomere dynamics to exercise stimuli, and finally propose future directions for work related to telomeres and physiological stress.

  1. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.

  2. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  3. Sepsis Induces Telomere Shortening: a Potential Mechanism Responsible for Delayed Pathophysiological Events in Sepsis Survivors?

    PubMed Central

    Oliveira, Naara Mendes; Rios, Ester CS; de Lima, Thais Martins; Victorino, Vanessa Jacob; Barbeiro, Hermes; da Silva, Fabiano Pinheiro; Szabo, Csaba; Soriano, Francisco Garcia

    2016-01-01

    Sepsis survivors suffer from additional morbidities, including higher risk of readmissions, nervous system disturbances and cognitive dysfunction, and increased mortality, even several years after the initial episode of sepsis. In many ways, the phenotype of sepsis survivors resembles the phenotype associated with accelerated aging. Since telomere shortening is a hallmark of aging, we investigated whether sepsis also leads to telomere shortening. Male balb/c mice were divided into two groups: the control group received 100 μl of normal saline intraperitoneally (i.p.) and the sepsis group received 15 mg/kg of bacterial lipopolysaccharide i.p. After 48 h, animals were euthanized to collect blood, spleen and kidney. The human component of our study utilized blood samples obtained from patients in the trauma department and samples collected 7 d later in those patients who developed sepsis. Telomere length was measured by quantitative polymerase chain reaction. Since oxidative stress is a known inducer of telomere shortening, thiobarbituric acid–reactive substances and superoxide dismutase activity were analyzed to evaluate oxidative stress burden. Induction of endotoxemia in mice resulted in significant telomere shortening in spleen and kidney. Blood cells from patients who progressed to sepsis also exhibited a statistically significant reduction of telomere length. Endotoxemia in mice also induced an early-onset increase in oxidative stress markers but was not associated with a downregulation of telomerase protein expression. We conclude that endotoxemia and sepsis induce telomere shortening in various tissues and hypothesize that this may contribute to the pathogenesis of the delayed pathophysiological events in sepsis survivors. PMID:27925632

  4. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines.

    PubMed

    Aschacher, T; Wolf, B; Enzmann, F; Kienzl, P; Messner, B; Sampl, S; Svoboda, M; Mechtcheriakova, D; Holzmann, K; Bergmann, M

    2016-01-07

    A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.

  5. The impact of voluntary exercise on relative telomere length in a rat model of developmental stress

    PubMed Central

    2012-01-01

    Background Exposure to early adverse events can result in the development of later psychopathology, and is often associated with cognitive impairment. This may be due to accelerated cell aging, which can be catalogued by attritioned telomeres. Exercise enhances neurogenesis and has been proposed to buffer the effect of psychological stress on telomere length. This study aimed to investigate the impact of early developmental stress and voluntary exercise on telomere length in the ventral hippocampus (VH) and prefrontal cortex (PFC) of the rat. Forty-five male Sprague–Dawley rats were categorised into four groups: maternally separated runners (MSR), maternally separated non-runners (MSnR), non-maternally separated runners (nMSR) and non-maternally separated non-runners (nMSnR). Behavioural analyses were conducted to assess anxiety-like behaviour and memory performance in the rats, after which relative telomere length was measured using qPCR. Results Maternally separated (MS) rats exhibited no significant differences in either anxiety levels or memory performance on the elevated-plus maze and the open field compared to non-maternally separated rats at 49 days of age. Exercised rats displayed increased levels of anxiety on the day that they were removed from the cages with attached running wheels, as well as improved spatial learning and temporal recognition memory compared to non-exercised rats. Exploratory post-hoc analyses revealed that maternally separated non-exercised rats exhibited significantly longer telomere length in the VH compared to those who were not maternally separated; however, exercise appeared to cancel this effect since there was no difference in VH telomere length between maternally separated and non-maternally separated runners. Conclusions The increased telomere length in the VH of maternally separated non-exercised rats may be indicative of reduced cellular proliferation, which could, in turn, indicate hippocampal dysfunction. This effect on

  6. The impact of voluntary exercise on relative telomere length in a rat model of developmental stress.

    PubMed

    Botha, Martmari; Grace, Laurian; Bugarith, Kishor; Russell, Vivienne A; Kidd, Martin; Seedat, Soraya; Hemmings, Sian M J

    2012-12-27

    Exposure to early adverse events can result in the development of later psychopathology, and is often associated with cognitive impairment. This may be due to accelerated cell aging, which can be catalogued by attritioned telomeres. Exercise enhances neurogenesis and has been proposed to buffer the effect of psychological stress on telomere length. This study aimed to investigate the impact of early developmental stress and voluntary exercise on telomere length in the ventral hippocampus (VH) and prefrontal cortex (PFC) of the rat. Forty-five male Sprague-Dawley rats were categorised into four groups: maternally separated runners (MSR), maternally separated non-runners (MSnR), non-maternally separated runners (nMSR) and non-maternally separated non-runners (nMSnR). Behavioural analyses were conducted to assess anxiety-like behaviour and memory performance in the rats, after which relative telomere length was measured using qPCR. Maternally separated (MS) rats exhibited no significant differences in either anxiety levels or memory performance on the elevated-plus maze and the open field compared to non-maternally separated rats at 49 days of age. Exercised rats displayed increased levels of anxiety on the day that they were removed from the cages with attached running wheels, as well as improved spatial learning and temporal recognition memory compared to non-exercised rats. Exploratory post-hoc analyses revealed that maternally separated non-exercised rats exhibited significantly longer telomere length in the VH compared to those who were not maternally separated; however, exercise appeared to cancel this effect since there was no difference in VH telomere length between maternally separated and non-maternally separated runners. The increased telomere length in the VH of maternally separated non-exercised rats may be indicative of reduced cellular proliferation, which could, in turn, indicate hippocampal dysfunction. This effect on telomere length was not observed

  7. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection.

    PubMed

    Bellon, Marcia; Nicot, Christophe

    2017-10-05

    The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein-Barr virus (EBV), Hepatitis B/C/D virus (HBV/HCV/HDV), human herpesvirus 8 (HHV-8), human immunodeficiency virus (HIV), human T-cell leukemia virus type I (HTLV-I), human papillomavirus (HPV), herpes simplex virus-1/2(HSV-1/2), and Varicella-Zoster virus (VZV). Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.

  8. C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins.

    PubMed

    Raices, Marcela; Verdun, Ramiro E; Compton, Sarah A; Haggblom, Candy I; Griffith, Jack D; Dillin, Andrew; Karlseder, Jan

    2008-03-07

    Single-strand extensions of the G strand of telomeres are known to be critical for chromosome-end protection and length regulation. Here, we report that in C. elegans, chromosome termini possess 3' G-strand overhangs as well as 5' C-strand overhangs. C tails are as abundant as G tails and are generated by a well-regulated process. These two classes of overhangs are bound by two single-stranded DNA binding proteins, CeOB1 and CeOB2, which exhibit specificity for G-rich or C-rich telomeric DNA. Strains of worms deleted for CeOB1 have elongated telomeres as well as extended G tails, whereas CeOB2 deficiency leads to telomere-length heterogeneity. Both CeOB1 and CeOB2 contain OB (oligo-saccharide/oligo-nucleotide binding) folds, which exhibit structural similarity to the second and first OB folds of the mammalian telomere binding protein hPOT1, respectively. Our results suggest that C. elegans telomere homeostasis relies on a novel mechanism that involves 5' and 3' single-stranded termini.

  9. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome.

    PubMed

    Huang, Yan; Hidalgo-Bravo, Alberto; Zhang, Enjie; Cotton, Victoria E; Mendez-Bermudez, Aaron; Wig, Gunjan; Medina-Calzada, Zahara; Neumann, Rita; Jeffreys, Alec J; Winney, Bruce; Wilson, James F; Clark, Duncan A; Dyer, Martin J; Royle, Nicola J

    2014-01-01

    Linear chromosomes are stabilized by telomeres, but the presence of short dysfunctional telomeres triggers cellular senescence in human somatic tissues, thus contributing to ageing. Approximately 1% of the population inherits a chromosomally integrated copy of human herpesvirus 6 (CI-HHV-6), but the consequences of integration for the virus and for the telomere with the insertion are unknown. Here we show that the telomere on the distal end of the integrated virus is frequently the shortest measured in somatic cells but not the germline. The telomere carrying the CI-HHV-6 is also prone to truncations that result in the formation of a short telomere at a novel location within the viral genome. We detected extra-chromosomal circular HHV-6 molecules, some surprisingly comprising the entire viral genome with a single fully reconstituted direct repeat region (DR) with both terminal cleavage and packaging elements (PAC1 and PAC2). Truncated CI-HHV-6 and extra-chromosomal circular molecules are likely reciprocal products that arise through excision of a telomere-loop (t-loop) formed within the CI-HHV-6 genome. In summary, we show that the CI-HHV-6 genome disrupts stability of the associated telomere and this facilitates the release of viral sequences as circular molecules, some of which have the potential to become fully functioning viruses.

  10. TRF2 dysfunction elicits DNA damage responses associated with senescence in proliferating neural cells and differentiation of neurons.

    PubMed

    Zhang, Peisu; Furukawa, Katsutoshi; Opresko, Patricia L; Xu, Xiangru; Bohr, Vilhelm A; Mattson, Mark P

    2006-04-01

    Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.

  11. Telomere G-Overhang Length Measurement Method 2: G-Tail Telomere HPA.

    PubMed

    Tahara, Hidetoshi

    2017-01-01

    Both telomere length and telomere G-tail length are altered in human diseases such as cancer and age-related diseases. While most methods for measurement of G-tail and telomere length require electrophoresis, centrifugation, radioisotope labeling and autoradiography, G-tail telomere HPA provides a convenient and useful tool for the examination of G-tail length with a high-throughput platform using genomic DNA or cell lysate. G-tail telomere HPA may be applicable for clinical diagnostics as well as drug target screening.

  12. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  13. Timeless preserves telomere length by promoting efficient DNA replication through human telomeres.

    PubMed

    Leman, Adam R; Dheekollu, Jayaraju; Deng, Zhong; Lee, Seung Woo; Das, Mukund M; Lieberman, Paul M; Noguchi, Eishi

    2012-06-15

    A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.

  14. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances

    PubMed Central

    Robin, Jérôme D.; Ludlow, Andrew T.; Batten, Kimberly; Magdinier, Frédérique; Stadler, Guido; Wagner, Kathyrin R.; Wright, Woodring E.

    2014-01-01

    While global chromatin conformation studies are emerging, very little is known about the chromatin conformation of human telomeres. Most studies have focused on the role of telomeres as a tumor suppressor mechanism. Here we describe how telomere length regulates gene expression long before telomeres become short enough to produce a DNA damage response (senescence). We directly mapped the interactions adjacent to specific telomere ends using a Hi-C (chromosome capture followed by high-throughput sequencing) technique modified to enrich for specific genomic regions. We demonstrate that chromosome looping brings the telomere close to genes up to 10 Mb away from the telomere when telomeres are long and that the same loci become separated when telomeres are short. Furthermore, expression array analysis reveals that many loci, including noncoding RNAs, may be regulated by telomere length. We report three genes (ISG15 [interferon-stimulated gene 15 kd], DSP [Desmoplakin], and C1S [complement component 1s subcomplement]) located at three different subtelomeric ends (1p, 6p, and 12p) whose expressions are altered with telomere length. Additionally, we confirmed by in situ analysis (3D-FISH [three-dimensional fluorescence in situ hybridization]) that chromosomal looping occurs between the loci of those genes and their respective telomere ends. We term this process TPE-OLD for “telomere position effect over long distances.” Our results suggest a potential novel mechanism for how telomere shortening could contribute to aging and disease initiation/progression in human cells long before the induction of a critical DNA damage response. PMID:25403178

  15. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells.

    PubMed

    Arora, Rajika; Lee, Yongwoo; Wischnewski, Harry; Brun, Catherine M; Schwarz, Tobias; Azzalin, Claus M

    2014-10-21

    A fraction of cancer cells maintain telomeres through the telomerase-independent, 'Alternative Lengthening of Telomeres' (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA-DNA hybrids between telomeric DNA and the long noncoding RNA TERRA, and is a key mediator of telomere maintenance in ALT cells. RNaseH1 associated to telomeres specifically in ALT cells and its depletion led to telomeric hybrid accumulation, exposure of single-stranded telomeric DNA, activation of replication protein A at telomeres and abrupt telomere excision. Conversely, overexpression of RNaseH1 weakened the recombinogenic nature of ALT telomeres and led to telomere shortening. Altering cellular RNaseH1 levels did not perturb telomere homoeostasis in telomerase-positive cells. RNaseH1 maintains regulated levels of telomeric RNA-DNA hybrids at ALT telomeres to trigger HR without compromising telomere integrity too severely.

  16. Problem-Solving Test: Telomere Replication

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    The Nobel Prize in Physiology or Medicine in 2009 was awarded to Elizabeth H. Blackburn, Carol W. Greider, and Jack W. Szostak for the discovery of "how chromosomes are protected by telomeres and the enzyme telomerase." The discovery has important implications in the processes of cellular aging and carcinogenesis. Telomeres are satellite DNA…

  17. Genomic Instability in Newborn with Short Telomeres

    PubMed Central

    Moreno-Palomo, Jennifer; Creus, Amadeu; Marcos, Ricard; Hernández, Alba

    2014-01-01

    Telomere length is considered to be a risk factor in adults due to its proved association with cancer incidence and mortality. Since newborn present a wide interindividual variation in mean telomere length, it is relevant to demonstrate if these differences in length can act also as an early risk indicator. To answer this question, we have measured the mean telomere length of 74 samples of cord blood from newborns and studied its association with the basal genetic damage, measured as the frequency of binucleated cells carrying micronuclei. In addition, we have challenged the cells of a subgroup of individuals (N = 35) against mitomycin-C (MMC) to establish their sensitivity to induced genomic instability. Results indicate that newborn with shorter telomeres present significantly higher levels of genetic damage when compared to those with longer telomeres. In addition, the cellular response to MMC was also significantly higher among those samples from subjects with shorter telomeres. Independently of the causal mechanisms involved, our results show for the first time that telomere length at delivery influence both the basal and induced genetic damage of the individual. Impact Individuals born with shorter telomeres may be at increased risk, especially for those biological processes triggered by genomic instability as is the case of cancer and other age-related diseases. PMID:24622247

  18. Problem-Solving Test: Telomere Replication

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    The Nobel Prize in Physiology or Medicine in 2009 was awarded to Elizabeth H. Blackburn, Carol W. Greider, and Jack W. Szostak for the discovery of "how chromosomes are protected by telomeres and the enzyme telomerase." The discovery has important implications in the processes of cellular aging and carcinogenesis. Telomeres are satellite DNA…

  19. Unwinding protein complexes in ALTernative telomere maintenance.

    PubMed

    Bhattacharyya, Saumitri; Sandy, April; Groden, Joanna

    2010-01-01

    Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA-binding proteins and a number of three dimensional nucleic acid structures including G-quartets and D-loops. A number of studies suggest that the BLM and WRN recQ-like helicases play important roles in recombination-mediated mechanisms of telomere elongation or Alternative Lengthening of Telomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and WRN localize within ALT-associated nuclear bodies in telomerase-negative immortalized cell lines and interact with the telomere-specific proteins POT1, TRF1 and TRF2. Helicase activity is modulated by these interactions. BLM functions in DNA double-strand break repair processes such as non-homologous end joining, homologous recombination-mediated repair, resolution of stalled replication forks and synthesis-dependent strand annealing, although its precise functions at the telomeres are speculative. WRN also functions in DNA replication, recombination and repair, and in addition to its helicase domain, includes an exonuclease domain not found in other recQ-like helicases. The biochemical properties of BLM and WRN are, therefore, important in biological processes other than DNA replication, recombination and repair. In this review, we discuss some previous and recent findings of human rec-Q-like helicases and their role in telomere elongation during ALT processes.

  20. Dynamics of telomeric DNA turnover in yeast.

    PubMed Central

    McEachern, Michael J; Underwood, Dana Hager; Blackburn, Elizabeth H

    2002-01-01

    Telomerase adds telomeric DNA repeats to telomeric termini using a sequence within its RNA subunit as a template. We characterized two mutations in the Kluyveromyces lactis telomerase RNA gene (TER1) template. Each initially produced normally regulated telomeres. One mutation, ter1-AA, had a cryptic defect in length regulation that was apparent only if the mutant gene was transformed into a TER1 deletion strain to permit extensive replacement of basal wild-type repeats with mutant repeats. This mutant differs from previously studied delayed elongation mutants in a number of properties. The second mutation, TER1-Bcl, which generates a BclI restriction site in newly synthesized telomeric repeats, was indistinguishable from wild type in all phenotypes assayed: cell growth, telomere length, and in vivo telomerase fidelity. TER1-Bcl cells demonstrated that the outer halves of the telomeric repeat tracts turn over within a few hundred cell divisions, while the innermost few repeats typically resisted turnover for at least 3000 cell divisions. Similarly deep but incomplete turnover was also observed in two other TER1 template mutants with highly elongated telomeres. These results indicate that most DNA turnover in functionally normal telomeres is due to gradual replicative sequence loss and additions by telomerase but that there are other processes that also contribute to turnover. PMID:11805045

  1. One Identity or More for Telomeres?

    PubMed Central

    Giraud-Panis, Marie-Josèphe; Pisano, Sabrina; Benarroch-Popivker, Delphine; Pei, Bei; Le Du, Marie-Hélène; Gilson, Eric

    2013-01-01

    A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization. PMID:23509004

  2. Stem cell expansion during carcinogenesis in stem cell-depleted conditional telomeric repeat factor 2 null mutant mice.

    PubMed

    Bojovic, B; Ho, H-Y; Wu, J; Crowe, D L

    2013-10-24

    To examine the role of telomeric repeat-binding factor 2 (TRF2) in epithelial tumorigenesis, we characterized conditional loss of TRF2 expression in the basal layer of mouse epidermis. These mice exhibit some characteristics of dyskeratosis congenita, a human stem cell depletion syndrome caused by telomere dysfunction. The epidermis in conditional TRF2 null mice exhibited DNA damage response and apoptosis, which correlated with stem cell depletion. The stem cell population in conditional TRF2 null epidermis exhibited shorter telomeres than those in control mice. Squamous cell carcinomas induced in conditional TRF2 null mice developed with increased latency and slower growth due to reduced numbers of proliferating cells as the result of increased apoptosis. TRF2 null epidermal stem cells were found in both primary and metastatic tumors. Despite the low-grade phenotype of the conditional TRF2 null primary tumors, the number of metastatic lesions was similar to control cancers. Basal cells from TRF2 null tumors demonstrated extreme telomere shortening and dramatically increased numbers of telomeric signals by fluorescence in situ hybridization due to increased genomic instability and aneuploidy in these cancers. DNA damage response signals were detected at telomeres in TRF2 null tumor cells from these mice. The increased genomic instability in these tumors correlated with eightfold expansion of the transformed stem cell population compared with that in control cancers. We concluded that genomic instability resulting from loss of TRF2 expression provides biological advantages to the cancer stem cell population.

  3. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles.

    PubMed

    Tichy, Elisia D; Sidibe, David K; Tierney, Matthew T; Stec, Michael J; Sharifi-Sanjani, Maryam; Hosalkar, Harish; Mubarak, Scott; Johnson, F Brad; Sacco, Alessandra; Mourkioti, Foteini

    2017-10-10

    Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Telomere Maintenance Mechanisms in Cancer: Clinical Implications

    PubMed Central

    Reddel, Roger R

    2014-01-01

    The presence of immortal cell populations with an up-regulated telomere maintenance mechanism (TMM) is an almost univer-sal characteristic of cancers, whereas normal somatic cells are unable to prevent proliferation-associated telomere shortening and have a limited proliferative potential. TMMs and related aspects of telomere structure and function therefore appear to be ideal targets for the development of anticancer therapeutics. Such treatments would be targeted to a specific cancer-related molecular abnormality, and also be broad-spectrum in that they would be expected to be potentially applicable to most cancers. However, the telomere biology of normal and malignant human cells is a relatively young research field with large numbers of unanswered questions, so the optimal design of TMM-targeted therapeutic approaches remains unclear. This review outlines the opportunities and challenges presented by telomeres and TMMs for clinical management of cancer. PMID:24975603

  5. The telomere repeat motif of basal Metazoa.

    PubMed

    Traut, Walther; Szczepanowski, Monika; Vítková, Magda; Opitz, Christian; Marec, Frantisek; Zrzavý, Jan

    2007-01-01

    In most eukaryotes the telomeres consist of short DNA tandem repeats and associated proteins. Telomeric repeats are added to the chromosome ends by telomerase, a specialized reverse transcriptase. We examined telomerase activity and telomere repeat sequences in representatives of basal metazoan groups. Our results show that the 'vertebrate' telomere motif (TTAGGG)( n ) is present in all basal metazoan groups, i.e. sponges, Cnidaria, Ctenophora, and Placozoa, and also in the unicellular metazoan sister group, the Choanozoa. Thus it can be considered the ancestral telomere repeat motif of Metazoa. It has been conserved from the metazoan radiation in most animal phylogenetic lineages, and replaced by other motifs-according to our present knowledge-only in two major lineages, Arthropoda and Nematoda.

  6. ATR contributes to telomere maintenance in human cells

    PubMed Central

    Pennarun, Gaëlle; Hoffschir, Françoise; Revaud, Deborah; Granotier, Christine; Gauthier, Laurent R.; Mailliet, Patrick; Biard, Denis S.; Boussin, François D.

    2010-01-01

    Telomere maintenance is essential to preserve genomic stability and involves several telomere-specific proteins as well as DNA replication and repair proteins. The kinase ATR, which has a crucial function in maintaining genome integrity from yeast to human, has been shown to be involved in telomere maintenance in several eukaryotic organisms, including yeast, Arabidopsis and Drosophila. However, its role in telomere maintenance in mammals remains poorly explored. Here, we report by using telomere-fluorescence in situ hybridization (Telo-FISH) on metaphase chromosomes that ATR deficiency causes telomere instability both in primary human fibroblasts from Seckel syndrome patients and in HeLa cells. The telomere aberrations resulting from ATR deficiency (i.e. sister telomere fusions and chromatid-type telomere aberrations) are mainly generated during and/or after telomere replication, and involve both leading and lagging strand telomeres as shown by chromosome orientation-FISH (CO-FISH). Moreover, we show that ATR deficiency strongly sensitizes cells to the G-quadruplex ligand 360A, enhancing sister telomere fusions and chromatid-type telomere aberrations involving specifically the lagging strand telomeres. Altogether, these data reveal that ATR plays a critical role in telomere maintenance during and/or after telomere replication in human cells. PMID:20147462

  7. Interaction theory of mammalian mitochondria.

    PubMed

    Nakada, K; Inoue, K; Hayashi, J

    2001-11-09

    We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit.

  8. Telomere shortening in leukocyte subpopulations in depression

    PubMed Central

    2014-01-01

    Background Telomere shortening is a normal age-related process. However, premature shortening of telomeres in leukocytes – as has been reported in depression – may increase the risk for age-related diseases. While previous studies investigated telomere length in peripheral blood mononuclear cells (PBMCs) as a whole, this study investigated specific changes in the clonal composition of white blood cells of the adaptive immune system (CD4+ helper and CD8+ cytotoxic T lymphocytes, and CD20+ B lymphocytes). Methods Forty-four females with a history of unipolar depression were investigated and compared to fifty age-matched female controls. Telomere lengths were compared between three groups: 1) individuals with a history of depression but currently no clinically relevant depressive symptoms, 2) individuals with a history of depression with relevant symptoms of depression, and 3) healthy age-matched controls. Telomere length was assessed using quantitative fluorescence in situ hybridization (qFISH). Results Both groups with a history of unipolar depression (with and without current depressive symptoms) showed significantly shorter telomeres in all three lymphocyte subpopulations. The effect was stronger in CD8+ and CD20+ cells than in CD4+ cells. Individuals with a history of depression and with (without) current symptoms exhibited a CD8+ telomere length shortening corresponding to an age differential of 27.9 (25.3) years. Conclusions A history of depression is associated with shortened telomeres in the main effector populations of the adaptive immune system. Shorter telomeres seem to persist in individuals with lifetime depression independently of the severity of depressive symptoms. CD8+ cytotoxic T cells and CD20+ B cells seem to be particularly affected in depression. The total number of depressive episodes did not influence telomere length in the investigated adaptive immune cell populations. PMID:24996455

  9. The Role of Telomere Dysfunction in Driving Genomic Instability

    SciTech Connect

    Robert L Ullrich; Susan Bailey

    2008-01-17

    The mechanistic role of radiation-induced genomic instability in radiation carcinogenesis is an attractive hypothesis that remains to be rigorously tested. There are few in vivo studies on which to base judgments, but work in our laboratory with mouse models of radiogenic mammary neoplasia provided the first indications that certain forms of genetically predisposed radiation-induced genomic instability may contribute to tumor development. The central goal of this research project is to more firmly establish the mechanistic basis of this radiation-associated genomic instability and, from this, to assess whether such induced instability might play a major role in tumorigenesis at low doses of low LET radiation. In the case of mouse mammary tumors, susceptibility to induced instability is expressed as an autosomal recessive trait in mammary epithelial cells and is manifest largely as excess chromatid damage. Recently published studies associate this form of instability with DNA repair deficiency, polymorphic variation in the gene encoding DNA-PKcs (Prkdc), and mammary associated susceptibility. The underlying hypothesis being tested in this project is that tumor-associated genomic instability is preferentially expressed in certain recombinogenic genomic domains and that these may be cell lineage/individual-specific.

  10. Novel features of telomere biology revealed by the absence of telomeric DNA methylation.

    PubMed

    Vega-Vaquero, Alejandro; Bonora, Giancarlo; Morselli, Marco; Vaquero-Sedas, María I; Rubbi, Liudmilla; Pellegrini, Matteo; Vega-Palas, Miguel A

    2016-08-01

    Cytosine methylation regulates the length and stability of telomeres, which can affect a wide variety of biological features, including cell differentiation, development, or illness. Although it is well established that subtelomeric regions are methylated, the presence of methylated cytosines at telomeres has remained controversial. Here, we have analyzed multiple bisulfite sequencing studies to address the methylation status of Arabidopsis thaliana telomeres. We found that the levels of estimated telomeric DNA methylation varied among studies. Interestingly, we estimated higher levels of telomeric DNA methylation in studies that produced C-rich telomeric strands with lower efficiency. However, these high methylation estimates arose due to experimental limitations of the bisulfite technique. We found a similar phenomenon for mitochondrial DNA: The levels of mitochondrial DNA methylation detected were higher in experiments with lower mitochondrial read production efficiencies. Based on experiments with high telomeric C-rich strand production efficiencies, we concluded that Arabidopsis telomeres are not methylated, which was confirmed by methylation-dependent restriction enzyme analyses. Thus, our studies indicate that telomeres are refractory to de novo DNA methylation by the RNA-directed DNA methylation machinery. This result, together with previously reported data, reveals that subtelomeric DNA methylation controls the homeostasis of telomere length. © 2016 Vega-Vaquero et al.; Published by Cold Spring Harbor Laboratory Press.

  11. FANCD2 limits BLM-dependent telomere instability in the alternative lengthening of telomeres pathway.

    PubMed

    Root, Heather; Larsen, Andrew; Komosa, Martin; Al-Azri, Fakhriya; Li, Ren; Bazett-Jones, David P; Stephen Meyn, M

    2016-08-01

    Fanconi anemia and Bloom syndrome are genomic instability syndromes caused by mutations in proteins that participate in overlapping DNA repair and replication pathways. Here, we show that the monoubiquitinated form of the Fanconi Anemia protein FANCD2 acts in opposition to the BLM DNA helicase to restrain telomere replication and recombination in human cells that utilize the Alternative Lengthening of Telomeres (ALT) pathway. ALT relies on exchanges of telomeric DNA to maintain telomeres, a process that we show FANCD2 suppresses. Depletion of FANCD2 results in a hyper-ALT phenotype, including an increase in extrachromosomal telomeric repeat DNAs, putative recombinational byproducts that we show exist as intertwined complexes forming the nucleic acid component of ALT-associated PML bodies. Increases in telomeric DNA are suppressed by loss of BLM but not RAD51, occur without parallel upregulation of shelterin proteins TRF1 and TRF2, and are associated with increased frequencies of deprotected and fragile telomeres. Inactivation of the FA pathway does not trigger ALT, as FANCD2 depleted telomerase positive cells do not acquire ALT-like phenotypes. We observe frequent fragile telomeres in ALT cells, suggesting that telomere sequences are prone to replication problems. We propose that, in ALT cells, FANCD2 promotes intramolecular resolution of stalled replication forks in telomeric DNA while BLM facilitates their resection and subsequent involvement in the intermolecular exchanges that drive ALT. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Telomere Chromatin Condensation Assay (TCCA): a novel approach to study structural telomere integrity.

    PubMed

    Gonzalez-Vasconcellos, Iria; Alonso-Rodríguez, Silvia; López-Baltar, Isidoro; Fernández, José Luis

    2015-01-01

    Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA.

  13. An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres

    SciTech Connect

    Wang, Yisong; Giannone, Richard J; Wu, Jun; Gomez, Marla V; Liu, Yie

    2005-01-01

    Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert -/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert -/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cell types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert -/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert +/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert -/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.

  14. ERCC1 and telomere status in breast tumours treated with neoadjuvant chemotherapy and their association with patient prognosis

    PubMed Central

    Gay‐Bellile, Mathilde; Romero, Pierre; Cayre, Anne; Véronèse, Lauren; Privat, Maud; Singh, Shalini; Combes, Patricia; Kwiatkowski, Fabrice; Abrial, Catherine; Bignon, Yves‐Jean; Vago, Philippe; Penault‐Llorca, Frédérique

    2016-01-01

    Abstract Dysfunctional telomeres and DNA damage repair (DDR) play important roles in cancer progression. Studies have reported correlations between these factors and tumour aggressiveness and clinical outcome in breast cancer. We studied the characteristics of telomeres and expression of ERCC1, a protein involved in a number of DNA repair pathways and in telomere homeostasis, to assess their prognostic value, alone or in combination, in 90 residual breast tumours after treatment with neoadjuvant chemotherapy (NCT). ERCC1 status was investigated at different molecular levels (protein and gene expression and gene copy‐number variations) by immunohistochemistry, qRT‐PCR and quantitative multiplex fluorescent‐PCR (QMF‐PCR). A comprehensive analysis of telomere characteristics was performed using qPCR for telomere length and qRT‐PCR for telomerase (hTERT), tankyrase 1 (TNKS) and shelterin complex (TRF1, TRF2, POT1, TPP1, RAP1 and TIN2) gene expression. Short telomeres, high hTERT and TNKS expression and low ERCC1 protein expression were independently associated with worse survival outcome. Interestingly, ERCC1 gains and losses correlated with worse disease‐free (p = 0.026) and overall (p = 0.043) survival as compared to survival of patients with normal gene copy‐numbers. Unsupervised hierarchical clustering of all ERCC1 and telomere parameters identified four subgroups with distinct prognosis. In particular, a cluster combining low ERCC1, ERCC1 gene alterations, dysfunctional telomeres and high hTERT and a cluster with high TNKS and shelterin expression correlated with poor disease‐free (HR= 5.41, p= 0.0044) and overall survival (HR= 6.01, p= 0.0023) irrespective of tumour stage and grade. This comprehensive study demonstrates that telomere dysfunction and DDR can contribute synergistically to tumour progression and chemoresistance. These parameters are predictors of clinical outcome in breast cancer patients treated with NCT and could be useful

  15. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    PubMed Central

    2014-01-01

    The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development. PMID:25247188

  16. A Kinase-Independent Role for the Rad3ATR-Rad26ATRIP Complex in Recruitment of Tel1ATM to Telomeres in Fission Yeast

    PubMed Central

    Subramanian, Lakxmi; Nakamura, Toru M.

    2010-01-01

    ATM and ATR are two redundant checkpoint kinases essential for the stable maintenance of telomeres in eukaryotes. Previous studies have established that MRN (Mre11-Rad50-Nbs1) and ATRIP (ATR Interacting Protein) interact with ATM and ATR, respectively, and recruit their partner kinases to sites of DNA damage. Here, we investigated how Tel1ATM and Rad3ATR recruitment to telomeres is regulated in fission yeast. Quantitative chromatin immunoprecipitation (ChIP) assays unexpectedly revealed that the MRN complex could also contribute to the recruitment of Tel1ATM to telomeres independently of the previously established Nbs1 C-terminal Tel1ATM interaction domain. Recruitment of Tel1ATM to telomeres in nbs1-c60Δ cells, which lack the C-terminal 60 amino acid Tel1ATM interaction domain of Nbs1, was dependent on Rad3ATR-Rad26ATRIP, but the kinase domain of Rad3ATR was dispensable. Thus, our results establish that the Rad3ATR-Rad26ATRIP complex contributes to the recruitment of Tel1ATM independently of Rad3ATR kinase activity, by a mechanism redundant with the Tel1ATM interaction domain of Nbs1. Furthermore, we found that the N-terminus of Nbs1 contributes to the recruitment of Rad3ATR-Rad26ATRIP to telomeres. In response to replication stress, mammalian ATR–ATRIP also contributes to ATM activation by a mechanism that is dependent on the MRN complex but independent of the C-terminal ATM interaction domain of Nbs1. Since telomere protection and DNA damage response mechanisms are very well conserved between fission yeast and mammalian cells, mammalian ATR–ATRIP may also contribute to the recruitment of ATM to telomeres and to sites of DNA damage independently of ATR kinase activity. PMID:20140190

  17. Duplicative activation mechanisms of two trypanosome telomeric VSG genes with structurally simple 5' flanks.

    PubMed

    Matthews, K R; Shiels, P G; Graham, S V; Cowan, C; Barry, J D

    1990-12-25

    In the mammalian bloodstream, African trypanosomes express variant surface glycoprotein (VSG) genes from a family of long and complex telomeric expression sites. VSG switching generally occurs by the duplication of different VSG genes into these sites by gene conversion involving a series of 70 base pair (70bp) repeats in the 5' flank. In contrast, when VSG is first synthesised by trypanosomes in the tsetse fly at the metacyclic stage, a separate set of telomeric expression sites is activated. These latter telomeres appear not to act as recipients in gene conversion. We have found that the structure of two such expression sites is simple, with very short 70bp repeat regions and very little other sequence in common with bloodstream expression sites. However, the two telomeres readily act as donors in VSG gene conversion in the bloodstream and we show for one a consistent association of the conversion 5' end point with the short 70bp repeat region. These findings help explain why a very predictable set of VSGs is expressed in the tsetse fly and have implications for VSG gene conversion mechanisms.

  18. Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults.

    PubMed

    Tyrka, Audrey R; Carpenter, Linda L; Kao, Hung-Teh; Porton, Barbara; Philip, Noah S; Ridout, Samuel J; Ridout, Kathryn K; Price, Lawrence H

    2015-06-01

    Cellular aging plays a role in longevity and senescence, and has been implicated in medical and psychiatric conditions, including heart disease, cancer, major depression and posttraumatic stress disorder. Telomere shortening and mitochondrial dysfunction are thought to be central to the cellular aging process. The present study examined the association between mitochondrial DNA (mtDNA) copy number and telomere length in a sample of medically healthy adults. Participants (total n=392) were divided into 4 groups based on the presence or absence of early life adversity and lifetime psychopathology: No Adversity/No Disorder, n=136; Adversity/No Disorder, n=91; No Adversity/Disorder, n=46; Adversity/Disorder, n=119. Telomere length and mtDNA copy number were measured using quantitative polymerase chain reaction. There was a positive correlation between mtDNA and telomere length in the entire sample (r=0.120, p<0.001) and in each of the four groups of participants (No Adversity/No Disorder, r=0.291, p=0.001; Adversity/No Disorder r=0.279, p=0.007; No Adversity/Disorder r=0.449, p=0.002; Adversity/Disorder, r=0.558, p<0.001). These correlations remained significant when controlling for age, smoking, and body mass index and establish an association between mtDNA and telomere length in a large group of women and men both with and without early adversity and psychopathology, suggesting co-regulation of telomeres and mitochondrial function. The mechanisms underlying this association may be important in the pathophysiology of age-related medical conditions, such as heart disease and cancer, as well as for stress-associated psychiatric disorders.

  19. Stabilization of telomeres in nonlinear models of proliferating cell lines.

    PubMed

    Dyson, Janet; Sánchez, Eva; Villella-Bressan, Rosanna; Webb, Glenn F

    2007-02-07

    We analyse an age-structured model of telomere loss in a proliferating cell population. The cell population is divided into telomere classes, which shorten each round of division. The model consists of a nonlinear system of partial differential equations for the telomere classes. We prove that if the highest telomere class is exempted from mortality, then all the classes stabilize to a nontrivial equilibrium dependent on the initial state of cells in the highest telomere class.

  20. Telomere shortening and survival in free-living corvids.

    PubMed

    Salomons, H M; Mulder, G A; van de Zande, L; Haussmann, M F; Linskens, M H K; Verhulst, S

    2009-09-07

    Evidence accumulates that telomere shortening reflects lifestyle and predicts remaining lifespan, but little is known of telomere dynamics and their relation to survival under natural conditions. We present longitudinal telomere data in free-living jackdaws (Corvus monedula) and test hypotheses on telomere shortening and survival. Telomeres in erythrocytes were measured using pulsed-field gel electrophoresis. Telomere shortening rates within individuals were twice as high as the population level slope, demonstrating that individuals with short telomeres are less likely to survive. Further analysis showed that shortening rate in particular predicted survival, because telomere shortening was much accelerated during a bird's last year in the colony. Telomere shortening was also faster early in life, even after growth was completed. It was previously shown that the lengths of the shortest telomeres best predict cellular senescence, suggesting that shorter telomeres should be better protected. We test the latter hypothesis and show that, within individuals, long telomeres shorten faster than short telomeres in adults and nestlings, a result not previously shown in vivo. Moreover, survival selection in adults was most conspicuous on relatively long telomeres. In conclusion, our longitudinal data indicate that the shortening rate of long telomeres may be a measure of 'life stress' and hence holds promise as a biomarker of remaining lifespan.

  1. Telomere-Targeted Retrotransposons in the Rice Blast Fungus Magnaporthe oryzae: Agents of Telomere Instability

    PubMed Central

    Starnes, John H.; Thornbury, David W.; Novikova, Olga S.; Rehmeyer, Cathryn J.; Farman, Mark L.

    2012-01-01

    The fungus Magnaporthe oryzae is a serious pathogen of rice and other grasses. Telomeric restriction fragments in Magnaporthe isolates that infect perennial ryegrass (prg) are hotspots for genomic rearrangement and undergo frequent, spontaneous alterations during fungal culture. The telomeres of rice-infecting isolates are very stable by comparison. Sequencing of chromosome ends from a number of prg-infecting isolates revealed two related non-LTR retrotransposons (M. oryzae Telomeric Retrotransposons or MoTeRs) inserted in the telomere repeats. This contrasts with rice pathogen telomeres that are uninterrupted by other sequences. Genetic evidence indicates that the MoTeR elements are responsible for the observed instability. MoTeRs represent a new family of telomere-targeted transposons whose members are found exclusively in fungi. PMID:22446319

  2. Cloned cows with short telomeres deliver healthy offspring with normal-length telomeres.

    PubMed

    Miyashita, Norikazu; Kubo, Yasuaki; Yonai, Miharu; Kaneyama, Kanako; Saito, Norio; Sawai, Ken; Minamihashi, Akira; Suzuki, Toshiyuki; Kojima, Toshiyuki; Nagai, Takashi

    2011-10-01

    Dolly, the first mammal cloned from a somatic cell, had shorter telomeres than age-matched controls and died at an early age because of disease. To investigate longevity and lifetime performance in cloned animals, we produced cloned cows with short telomeres using oviductal epithelial cells as donor cells. At 5 years of age, despite the presence of short telomeres, all cloned cows delivered multiple healthy offspring following artificial insemination with conventionally processed spermatozoa from noncloned bulls, and their milk production was comparable to that of donor cows. Moreover, this study revealed that the offspring had normal-length telomeres in their leukocytes and major organs. Thus, cloned animals have normal functional germ lines, and therefore germ line function can completely restore telomere lengths in clone gametes by telomerase activity, resulting in healthy offspring with normal-length telomeres.

  3. Telomere Length in Elite Athletes.

    PubMed

    Muniesa, Carlos A; Verde, Zoraida; Diaz-Ureña, Germán; Santiago, Catalina; Gutiérrez, Fernando; Díaz, Enrique; Gómez-Gallego, Félix; Pareja-Galeano, Helios; Soares-Miranda, Luisa; Lucia, Alejandro

    2016-12-05

    Growing evidence suggests that regular, moderate-intensity physical activity is associated with an attenuation of leucocyte telomere length (LTL) shortening. However, more controversy exists regarding higher exercise loads, such as those imposed by elite sports participation. We have investigated LTL differences between young elite athletes (n=61, 54% men, aged [mean±SD] 27.2±4.9 years) and their healthy non-smoker, physically inactive controls (n=64, 52% men, 28.9±6.3 years) using analysis of variance (ANOVA). Elite athletes had, on average, higher LTL than controls subjects (0.89±0.26 vs 0.78±0.31, p=0.013 for the group effect, with no significant sex [p=0.995] or age effect [p=0.114]). Our results suggest that young elite athletes have longer telomeres than their inactive peers. Further research might assess the LTL of elite athletes of varying ages compared to both age-matched active and inactive individuals, respectively.

  4. Telomere profiling: toward glioblastoma personalized medicine.

    PubMed

    Ferrandon, Sylvain; Saultier, Paul; Carras, Julien; Battiston-Montagne, Priscillia; Alphonse, Gersende; Beuve, Michael; Malleval, Céline; Honnorat, Jérôme; Slatter, Tania; Hung, Noelyn; Royds, Janice; Rodriguez-Lafrasse, Claire; Poncet, Delphine

    2013-02-01

    Despite a standard of care combining surgery, radiotherapy (RT), and temozolomide chemotherapy, the average overall survival (OS) of glioblastoma patients is only 15 months, and even far lower when the patient cannot benefit from this combination. Therefore, there is a strong need for new treatments, such as new irradiation techniques. Against this background, carbon ion hadrontherapy, a new kind of irradiation, leads to a greater biological response of the tumor, while minimizing adverse effects on healthy tissues in comparison with RT. As carbon ion hadrontherapy is restricted to RT-resistant patients, photon irradiation resistance biomarkers are needed. Long telomeres and high telomerase activity have been widely associated with photon radioresistance in other cancers. Moreover, telomere protection, telomere function, and telomere length (TL) also depend on the shelterin protein complex (TRF1, TRF2, TPP1, POT1, TIN2, and hRAP1). We thus decided to evaluate an enlarged telomeric status (TL, telomerase catalytic subunit, and the shelterin component expression level) as a potential radioresistance biomarker in vitro using cellular models and ex vivo using patient tumor biopsies. In addition, nothing was known about the role of telomeres in carbon ion response. We thus evaluated telomeric status after both types of irradiation. We report here a significant correlation between TL and the basal POT1 expression level and photon radioresistance, in vitro, and a significant increase in the OS of patients with long telomeres or a high POT1 level, in vivo. POT1 expression was predictive of patient response irrespective of the TL. Strikingly, these correlations were lost, in vitro, when considering carbon irradiation. We thus propose (1) a model of the implications of telomeric damage in the cell response to both types of irradiation and (2) assessment of the POT1 expression level and TL using patient tumor biopsies to identify radioresistant patients who could benefit from

  5. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  6. Short Telomeres, but Not Telomere Attrition Rates, Are Associated With Carotid Atherosclerosis.

    PubMed

    Toupance, Simon; Labat, Carlos; Temmar, Mohamed; Rossignol, Patrick; Kimura, Masayuki; Aviv, Abraham; Benetos, Athanase

    2017-08-01

    Short telomeres are associated with atherosclerosis. However, the temporal relationship between atherosclerosis and telomere length is unclear. The objective of this work was to examine the temporal formation and progression of carotid atherosclerotic plaques in relation to telomere dynamics. In a longitudinal study, comprising 154 French men and women (aged 31-76 years at baseline), carotid plaques were quantified by echography, and telomere length on leucocytes was measured by Southern blots at baseline and follow-up examinations. Telomere attrition rates during the 9.5-year follow-up period were not different in individuals with plaques at both baseline and follow-up examinations (23.3±2.0 base pairs/y) than in individuals who developed plaques during the follow-up period (26.5±2.0 base pairs/y) and those without plaques at either baseline or follow-up examination (22.5±2.3 base pairs/y; P=0.79). At baseline, telomere length was associated with presence of carotid plaques (P=0.02) and with the number of regions with plaques (P=0.005). An interaction (P=0.03) between age and the presence of plaques was observed, such that the association between plaques and telomere length was more pronounced at a younger age. In conclusion, carotid atherosclerosis is not associated with increased telomere attrition during a 9.5-year follow-up period. Short telomere length is more strongly associated with early-onset than late-onset carotid atherosclerosis. Our results support the thesis that heightened telomere attrition during adult life might not explain the short telomeres observed in subjects with atherosclerotic disease. Rather, short telomeres antecedes the clinical manifestation of the disease. © 2017 American Heart Association, Inc.

  7. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres.

    PubMed

    Denham, Joshua; O'Brien, Brendan J; Prestes, Priscilla R; Brown, Nicholas J; Charchar, Fadi J

    2016-01-15

    Leukocyte telomeres shorten with age, and excessive shortening is associated with age-related cardiometabolic diseases. Exercise training may prevent disease through telomere length maintenance although the optimal amount of exercise that attenuates telomere attrition is unknown. Furthermore, the underlying molecular mechanisms responsible for the enhanced telomere maintenance observed in endurance athletes is poorly understood. We quantified the leukocyte telomere length and analyzed the expression of telomere-regulating genes in endurance athletes and healthy controls (both n = 61), using quantitative PCR. We found endurance athletes have significantly longer (7.1%, 208-416 nt) leukocyte telomeres and upregulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression compared with controls in age-adjusted analysis. The telomere length and telomere-regulating gene expression differences were no longer statistically significant after adjustment for resting heart rate and relative V̇O(2 max) (all P > 0.05). Resting heart rate emerged as an independent predictor of leukocyte telomere length and TERT and TPP1 mRNA expression in stepwise regression models. To gauge whether volume of exercise was associated with leukocyte telomere length, we divided subjects into running and cycling tertiles (distance covered per week) and found individuals in the middle and highest tertiles had longer telomeres than individuals in the lowest tertile. These data emphasize the importance of cardiorespiratory fitness and exercise training in the prevention of biological aging. They also support the concept that moderate amounts of exercise training protects against biological aging, while higher amounts may not elicit additional benefits.

  8. Escherichia coli Producing Colibactin Triggers Premature and Transmissible Senescence in Mammalian Cells

    PubMed Central

    Secher, Thomas; Samba-Louaka, Ascel; Oswald, Eric; Nougayrède, Jean-Philippe

    2013-01-01

    Cellular senescence is an irreversible state of proliferation arrest evoked by a myriad of stresses including oncogene activation, telomere shortening/dysfunction and genotoxic insults. It has been associated with tumor activation, immune suppression and aging, owing to the secretion of proinflammatory mediators. The bacterial genotoxin colibactin, encoded by the pks genomic island is frequently harboured by Escherichia coli strains of the B2 phylogenetic group. Mammalian cells exposed to live pks+ bacteria exhibit DNA-double strand breaks (DSB) and undergo cell-cycle arrest and death. Here we show that cells that survive the acute bacterial infection with pks+ E. coli display hallmarks of cellular senescence: chronic DSB, prolonged cell-cycle arrest, enhanced senescence-associated β-galactosidase (SA-β-Gal) activity, expansion of promyelocytic leukemia nuclear foci and senescence-associated heterochromatin foci. This was accompanied by reactive oxygen species production and pro-inflammatory cytokines, chemokines and proteases secretion. These mediators were able to trigger DSB and enhanced SA-β-Gal activity in bystander recipient cells treated with conditioned medium from senescent cells. Furthermore, these senescent cells promoted the growth of human tumor cells. In conclusion, the present data demonstrated that the E. coli genotoxin colibactin induces cellular senescence and subsequently propel bystander genotoxic and oncogenic effects. PMID:24116215

  9. Molecular Cytogenetic Analysis of Telomere Rearrangements

    PubMed Central

    Martin, Christa Lese; Ledbetter, David H.

    2015-01-01

    Genomic imbalances involving the telomeric regions of human chromosomes, which contain the highest gene concentration in the genome, are proposed to have severe phenotypic consequences. For this reason, it is important to identify telomere rearrangements and assess their contribution to human pathology. This unit describes the structure and function of human telomeres and outlines several FISH-based methodologies that can be employed to study these unique regions of human chromosomes. It is a revision of the original version of the unit published in 2000, now including an introductory section describing advances in the discipline that have taken place since the original publication. PMID:25599669

  10. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end-resection

    PubMed Central

    Segura-Bayona, Sandra; Peuscher, Marieke H.; van der Torre, Jaco; Wevers, Brigitte A.; Orthwein, Alexandre; Durocher, Daniel; Jacobs, Jacqueline J.L.

    2015-01-01

    Appropriate repair of DNA lesions and the inhibition of DNA repair activities at telomeres are critical to prevent genomic instability. By fuelling the generation of genetic alterations and by compromising cell viability, genomic instability is a driving force in cancer and aging1, 2. Here we identify MAD2L2 (also known as MAD2B or REV7) through functional genetic screening as a novel factor controlling DNA repair activities at mammalian telomeres. We show that MAD2L2 accumulates at uncapped telomeres and promotes non-homologous end-joining (NHEJ)-mediated fusion of deprotected chromosome ends and genomic instability. MAD2L2 depletion causes elongated 3′ telomeric overhangs, implying that MAD2L2 inhibits 5′ end-resection. End-resection blocks NHEJ while committing to homology-directed repair (HDR) and is under control of 53BP1, RIF1 and PTIP3. Consistent with MAD2L2 promoting NHEJ-mediated telomere fusion by inhibiting 5′ end-resection, knockdown of the nucleases CTIP or EXO1 partially restores telomere-driven genomic instability in MAD2L2-depleted cells. Control of DNA repair by MAD2L2 is not limited to telomeres. MAD2L2 also accumulates and inhibits end-resection at irradiation (IR)-induced DNA double-strand breaks (DSBs) and promotes end-joining of DSBs in multiple settings, including during immunoglobulin class switch recombination (CSR). These activities of MAD2L2 depend on ATM kinase activity, RNF8, RNF168, 53BP1 and RIF1, but not on PTIP, REV1 and REV3, the latter two acting with MAD2L2 in translesion synthesis (TLS)4. Together our data establish MAD2L2 as a critical contributor to the control of DNA repair activity by 53BP1 that promotes NHEJ by inhibiting 5′ end-resection downstream of RIF1. PMID:25799990

  11. Extreme variability in the Xp:Yp pseudoautosomal telomere revealed by telomere variant repeat mapping

    SciTech Connect

    Baird, D.M.; Jeffreys A.J.; Royle, N.J.

    1994-09-01

    The presence of telomere variant repeat units in the proximal regions of human telomeres has been demonstrated but the distribution of these repeats and the extent of allelic variation has not been examined. We have developed a PCR based system to assay the distribution of standard (TTAGGG) and variant (TGAGGG, TCAGGG) repeats at the proximal end of the Xp:Yp telomere repeat array. The 1 kb of DNA immediately adjacent to this telomere exhibits a high level of base substitutional polymorphism. In individuals heterozygous for a flanking polymorphism, allele specific primers have been designed to discriminate between the alleles and, in conjunction with a primer complementary to either TTAGGG, TGAGGG or TCAGGG repeats, to determine the distribution of telomere and variant repeat units at the proximal end of an individual telomere. Among the 41 Xp:Yp telomeres mapped to date only 5 are identical and composed solely of (TTAGGG) repeats at the proximal end. The remaining 36 mapped telomeres are all different, although a subset show similarities and are found in association with the same flanking DNA haplotype, suggesting a common ancestry. The telomere variant repeat mapping technique can be used to examine the turnover of these sequences in human populations and in somatic tissues and tumors.

  12. Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase.

    PubMed

    Fajkus, Petr; Peška, Vratislav; Sitová, Zdeňka; Fulnečková, Jana; Dvořáčková, Martina; Gogela, Roman; Sýkorová, Eva; Hapala, Jan; Fajkus, Jiří

    2016-02-01

    Phylogenetic divergence in Asparagales plants is associated with switches in telomere sequences. The last switch occurred with divergence of the genus Allium (Amaryllidaceae) from the other Allioideae (formerly Alliaceae) genera, resulting in uncharacterized telomeres maintained by an unknown mechanism. To characterize the unknown Allium telomeres, we applied a combination of bioinformatic processing of transcriptomic and genomic data with standard approaches in telomere biology such as BAL31 sensitivity tests, terminal restriction fragment analysis, the telomere repeat amplification protocol (TRAP), and fluorescence in situ hybridization (FISH). Using these methods, we characterize the unusual telomeric sequence (CTCGGTTATGGG)n present in Allium species, demonstrate its synthesis by telomerase, and characterize the telomerase reverse transcriptase (TERT) subunit of Allium cepa. Our findings open up the possibility of studying the molecular details of the evolutionary genetic change in Allium telomeres and its possible role in speciation. Experimental studies addressing the implications of this change in terms of the interplay of telomere components may now be designed to shed more light on telomere functions and evolution in general.

  13. Telomeric transcriptome from Chironomus riparius (Diptera), a species with noncanonical telomeres.

    PubMed

    Martínez-Guitarte, J L; de la Fuente, M; Morcillo, G

    2014-06-01

    Although there are alternative telomere structures, most telomeres contain DNA arrays of short repeats (6-26 bp) maintained by telomerase. Like other diptera, Chironomus riparius has noncanonical telomeres and three subfamilies, TsA, TsB and TsC, of longer sequences (176 bp) are found at their chromosomal ends. Reverse transcription PCR was used to show that different RNAs are transcribed from these sequences. Only one strand from TsA sequences seems to render a noncoding RNA (named CriTER-A); transcripts from both TsB strands were found (CriTER-B and αCriTER-B) but no TsC transcripts were detected. Interestingly, these sequences showed a differential transcriptional response upon heat shock, and they were also differentially affected by inhibitors of RNA polymerase II and RNA polymerase III. A computer search for transcription factor binding sites revealed putative regulatory cis-elements within the transcribed sequence, reinforcing the experimental evidence which suggests that the telomeric repeat might function as a promoter. This work describes the telomeric transcriptome of an insect with non-telomerase telomeres, confirming the evolutionary conservation of telomere transcription. Our data reveal differences in the regulation of telomeric transcripts between control and stressful environmental conditions, supporting the idea that telomeric RNAs could have a relevant role in cellular metabolism in insect cells.

  14. MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap.

    PubMed

    Shibuya, Hiroki; Hernández-Hernández, Abrahan; Morimoto, Akihiro; Negishi, Lumi; Höög, Christer; Watanabe, Yoshinori

    2015-11-19

    In meiosis, telomeres attach to the inner nuclear membrane (INM) and drive the chromosome movement required for homolog pairing and recombination. Here, we address the question of how telomeres are structurally adapted for the meiotic task. We identify a multi-subunit meiotic telomere-complex, TERB1/2-MAJIN, which takes over telomeric DNA from the shelterin complex in mouse germ cells. TERB1/2-MAJIN initially assembles on the INM sequestered by its putative transmembrane subunit MAJIN. In early meiosis, telomere attachment is achieved by the formation of a chimeric complex of TERB1/2-MAJIN and shelterin. The chimeric complex matures during prophase into DNA-bound TERB1/2-MAJIN by releasing shelterin, forming a direct link between telomeric DNA and the INM. These hierarchical processes, termed "telomere cap exchange," are regulated by CDK-dependent phosphorylation and the DNA-binding activity of MAJIN. Further, we uncover a positive feedback between telomere attachment and chromosome movement, revealing a comprehensive regulatory network underlying meiosis-specific telomere function in mammals.

  15. Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres.

    PubMed Central

    Siriaco, Giorgia M; Cenci, Giovanni; Haoudi, Abdelali; Champion, Larry E; Zhou, Chun; Gatti, Maurizio; Mason, James M

    2002-01-01

    In most eukaryotes telomeres are extended by telomerase. Drosophila melanogaster, however, lacks telomerase, and telomere-specific non-LTR retrotransposons, HeT-A and TART, transpose specifically to chromosome ends. A Drosophila strain, Gaiano, that has long telomeres has been identified. We extracted the major Gaiano chromosomes into an Oregon-R genetic background and examined the resulting stocks after 60 generations. In situ hybridization using HeT-A and TART sequences showed that, in stocks carrying either the X or the second chromosome from Gaiano, only the Gaiano-derived chromosomes display long telomeres. However, in stocks carrying the Gaiano third chromosome, all telomeres are substantially elongated, indicating that the Gaiano chromosome 3 carries a factor that increases HeT-A and TART addition to the telomeres. We show that this factor, termed Telomere elongation (Tel), is dominant and localizes as a single unit to 69 on the genetic map. The long telomeres tend to associate with each other in both polytene and mitotic cells. These associations depend on telomere length rather than the presence of Tel. Associations between metaphase chromosomes are resolved during anaphase, suggesting that they are mediated by either proteinaceous links or DNA hydrogen bonding, rather than covalent DNA-DNA bonds. PMID:11805059

  16. Telomere Attachment, Meiotic Chromosome Condensation, Pairing, and Bouquet Stage Duration Are Modified in Spermatocytes Lacking Axial Elements

    PubMed Central

    Liebe, Bodo; Alsheimer, Manfred; Höög, Christer; Benavente, Ricardo; Scherthan, Harry

    2004-01-01

    During the extended prophase to the meiosis I division, chromosomes assemble axial elements (AE) along replicated sister chromatids whose ends attach to the inner nuclear membrane (NM) via a specialized conical thickening. Here, we show at the EM level that in Sycp3-/- spermatocyte chromosomes lack the AE and the conical end thickening, but still they attach their telomeres to the inner NM with an electron-dense plate that contains T2AG3 repeats. Immunofluorescence detected telomere proteins, SCP2, and the meiosis-specific cohesin STAG3 at the Sycp3-/- telomere. Bouquet stage spermatocytes were approximately threefold enriched, and the number of telomere but not centromere signals was reduced to the haploid in advanced Sycp3-/- spermatocytes, which indicates a special mode of homolog pairing at the mammalian telomere. Fluorescence in situ hybridization with mouse chromosome 8- and 12-specific subsatellite probes uncovered reduced levels of regional homolog pairing, whereas painting of chromosomes 13 revealed partial or complete juxtapositioning of homologs; however, condensation of Sycp3-/- bivalents was defective. Electron microscopic analysis of AE-deficient spermatocytes revealed that transverse filaments formed short structures reminiscent of the synaptonemal complex central region, which likely mediate stable homolog pairing. It appears that the AE is required for chromosome condensation, rapid exit from the bouquet stage, and fine-tuning of homolog pairing. PMID:14657244

  17. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time.

    PubMed

    Hiraga, Shin-ichiro; Robertson, E Douglas; Donaldson, Anne D

    2006-04-05

    Chromosome ends in Saccharomyces cerevisiae are positioned in clusters at the nuclear rim. We report that Ctf18, Ctf8, and Dcc1, the subunits of a Replication Factor C (RFC)-like complex, are essential for the perinuclear positioning of telomeres. In both yeast and mammalian cells, peripheral nuclear positioning of chromatin during G1 phase correlates with late DNA replication. We find that the mislocalized telomeres of ctf18 cells still replicate late, showing that late DNA replication does not require peripheral positioning during G1. The Ku and Sir complexes have been shown to act through separate pathways to position telomeres, but in the absence of Ctf18 neither pathway can act fully to maintain telomere position. Surprisingly CTF18 is not required for Ku or Sir4-mediated peripheral tethering of a nontelomeric chromosome locus. Our results suggest that the Ctf18 RFC-like complex modifies telomeric chromatin to make it competent for normal localization to the nuclear periphery.

  18. Mapping the telomere integrated genome of human herpesvirus 6A and 6B.

    PubMed

    Arbuckle, Jesse H; Pantry, Shara N; Medveczky, Maria M; Prichett, Joshua; Loomis, Kristin S; Ablashi, Dharam; Medveczky, Peter G

    2013-07-20

    Human herpesvirus 6B (HHV-6B) is the causative agent of roseola infantum. HHV-6A and 6B can reactivate in immunosuppressed individuals and are linked with severe inflammatory response, organ rejection and central nervous system diseases. About 0.85% of the US and UK population carries an integrated HHV-6 genome in all nucleated cells through germline transmission. We have previously reported that the HHV-6A genome integrated in telomeres of patients suffering from neurological dysfunction and also in telomeres of tissue culture cells. We now report that HHV-6B also integrates in telomeres during latency. Detailed mapping of the integrated viral genomes demonstrates that a single HHV-6 genome integrates and telomere repeats join the left end of the integrated viral genome. When HEK-293 cells carrying integrated HHV-6A were exposed to the histone deacetylase inhibitor Trichostatin A, circularization and/or formation of concatamers were detected and this assay could be used to distinguish between lytic replication and latency.

  19. Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance

    PubMed Central

    Silva, Sonia; Altmannova, Veronika; Luke-Glaser, Sarah; Henriksen, Peter; Gallina, Irene; Yang, Xuejiao; Choudhary, Chunaram; Luke, Brian; Krejci, Lumir

    2016-01-01

    Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance. PMID:26966248

  20. Identification of TERRA locus unveils a telomere protection role through association to nearly all chromosomes

    PubMed Central

    de Silanes, Isabel López; Graña, Osvaldo; De Bonis, Maria Luigia; Dominguez, Orlando; Pisano, David G; Blasco, Maria A

    2014-01-01

    Telomeric RNAs (TERRAs) are UUAGGG repeat-containing RNAs that are transcribed from the subtelomere towards the telomere. The precise genomic origin of TERRA has remained elusive. Using a whole-genome RNA-sequencing approach, we identify novel mouse transcripts arising mainly from the subtelomere of chromosome 18, and to a lesser extend chromosome 9, that resemble TERRA in several key aspects. Those transcripts contain UUAGGG-repeats and are heterogeneous in size, fluctuate in abundance in a TERRA-like manner during the cell cycle, are bound by TERRA RNA-binding proteins and are regulated in a manner similar to TERRA in response to stress and the induction of pluripotency. These transcripts are also found to associate with nearly all chromosome ends and downregulation of the transcripts that originate from chromosome 18 causes a reduction in TERRA abundance. Interestingly, downregulation of either chromosome 18 transcripts or TERRA results in increased number of telomere dysfunction-induced foci, suggesting a protective role at telomeres. PMID:25182072

  1. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers.

    PubMed

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-08-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Exome Sequencing Links Mutations in PARN and RTEL1 with Familial Pulmonary Fibrosis and Telomere Shortening

    PubMed Central

    Stuart, Bridget D.; Choi, Jungmin; Zaidi, Samir; Xing, Chao; Holohan, Brody; Chen, Rui; Choi, Mihwa; Dharwadkar, Pooja; Torres, Fernando; Girod, Carlos E.; Weissler, Jonathan; Fitzgerald, John; Kershaw, Corey; Klesney-Tait, Julia; Mageto, Yolanda; Shay, Jerry W.; Ji, Weizhen; Bilguvar, Kaya; Mane, Shrikant; Lifton, Richard P.; Garcia, Christine Kim

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial pulmonary fibrosis kindreds. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no prior connection to telomere biology or disease, with five novel heterozygous damaging mutations in unrelated cases and none in controls (P-value = 1.3 × 10−8); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more novel damaging and missense variants at conserved residues in cases than controls (P = 1.6 × 10−6). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths and epigenetic inheritance of short telomeres was seen in family members. Together these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction. PMID:25848748

  3. Progressive cis-inhibition of telomerase upon telomere elongation.

    PubMed Central

    Marcand, S; Brevet, V; Gilson, E

    1999-01-01

    In yeast, the constant length of telomeric DNA results from a negative regulation of telomerase by the telomere itself. Here we follow the return to equilibrium of an abnormally shortened telomere. We observe that telomere elongation is restricted to a few base pairs per generation and that its rate decreases progressively with increasing telomere length. In contrast, in the absence of telomerase or in the presence of an over-elongated telomere, the degradation rate linked to the succession of generations appears to be constant, i.e. independent of telomere length. Together, these results indicate that telomerase is gradually inhibited at its site of action by the elongating telomere. The implications of this finding for the dynamics of telomere length regulation are discussed in this study. PMID:10369690

  4. Significant correlation of species longevity with DNA double strand break recognition but not with telomere length.

    PubMed

    Lorenzini, Antonello; Johnson, F Brad; Oliver, Anthony; Tresini, Maria; Smith, Jasmine S; Hdeib, Mona; Sell, Christian; Cristofalo, Vincent J; Stamato, Thomas D

    2009-01-01

    The identification of the cellular mechanisms responsible for the wide differences in species lifespan remains one of the major unsolved problems of the biology of aging. We measured the capacity of nuclear protein to recognize DNA double strand breaks (DSBs) and telomere length of skin fibroblasts derived from mammalian species that exhibit wide differences in longevity. Our results indicate DNA DSB recognition increases exponentially with longevity. Further, an analysis of the level of Ku80 protein in human, cow, and mouse suggests that Ku levels vary dramatically between species and these levels are strongly correlated with longevity. In contrast mean telomere length appears to decrease with increasing longevity of the species, although not significantly. These findings suggest that an enhanced ability to bind to DNA ends may be important for longevity. A number of possible roles for increased levels of Ku and DNA-PKcs are discussed.

  5. Maternal telomere length inheritance in the king penguin

    PubMed Central

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age. PMID:25052413

  6. Telomere length and heredity: Indications of paternal inheritance.

    PubMed

    Nordfjäll, Katarina; Larefalk, Asa; Lindgren, Petter; Holmberg, Dan; Roos, Göran

    2005-11-08

    Cellular telomere length is linked to replicative life span. Telomere repeats are lost in peripheral blood cells in vivo by age, and women show less telomere attrition than men. Previous reports have indicated that telomere length and chromosome-specific telomere-length patterns partly are inherited. The mode of heredity has not been clarified, but a link to the X chromosome was recently suggested. We analyzed peripheral mononuclear cells from 49 unrelated families for telomere length using a real-time PCR method. Short-term cultured Epstein-Barr virus-transformed lymphoblasts from the same individuals (n = 130) were analyzed for ability to maintain telomere length and possible gender-linked inheritance. A statistically significant association between telomere lengths comparing father-son (P = 0.011, n = 20) and father-daughter (P = 0.005, n = 22) pairs was found. However, no correlation was observed between mother-daughter (P = 0.463, n = 23) or mother-son (P = 0.577, n = 18). The father-offspring correlation was highly significant (P < 0.0001), in contrast to mother-offspring (P = 0.361). Epstein-Barr virus cultures demonstrated in most cases telomere preservation inversely related to initial mononuclear cell telomere length with short telomeres displaying the most pronounced elongation. Telomere length is inherited, and evidence for a father-to-offspring heritage of this trait was obtained, whereas in vitro telomere length maintenance was found to be dependent on the initial telomere length.

  7. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts

    PubMed Central

    Turner, S.; Wong, H.P.; Rai, J.; Hartshorne, G.M.

    2010-01-01

    Telomeres are repeated sequences that protect the ends of chromosomes and harbour DNA repair proteins. Telomeres shorten during each cell division in the absence of telomerase. When telomere length becomes critically short, cell senescence occurs. Telomere length therefore reflects both cellular ageing and capacity for division. We have measured telomere length in human germinal vesicle (GV) oocytes and preimplantation embryos, by quantitative fluorescence in situ hybridization (Q-FISH), providing baseline data towards our hypothesis that telomere length is a marker of embryo quality. The numbers of fluorescent foci suggest that extensive clustering of telomeres occurs in mature GV stage oocytes, and in preimplantation embryos. When calculating average telomere length by assuming that each signal presents one telomere, the calculated telomere length decreased from the oocyte to the cleavage stages, and increased between the cleavage stages and the blastocyst (11.12 versus 8.43 versus 12.22 kb, respectively, P < 0.001). Other methods of calculation, based upon expected maximum and minimum numbers of telomeres, confirm that telomere length in blastocysts is significantly longer than cleavage stages. Individual blastomeres within an embryo showed substantial variation in calculated average telomere length. This study implies that telomere length changes according to the stage of preimplantation embryo development. PMID:20573647

  8. Telomere length and heredity: Indications of paternal inheritance

    PubMed Central

    Nordfjäll, Katarina; Larefalk, Åsa; Lindgren, Petter; Holmberg, Dan; Roos, Göran

    2005-01-01

    Cellular telomere length is linked to replicative life span. Telomere repeats are lost in peripheral blood cells in vivo by age, and women show less telomere attrition than men. Previous reports have indicated that telomere length and chromosome-specific telomere-length patterns partly are inherited. The mode of heredity has not been clarified, but a link to the X chromosome was recently suggested. We analyzed peripheral mononuclear cells from 49 unrelated families for telomere length using a real-time PCR method. Short-term cultured Epstein–Barr virus-transformed lymphoblasts from the same individuals (n = 130) were analyzed for ability to maintain telomere length and possible gender-linked inheritance. A statistically significant association between telomere lengths comparing father–son (P = 0.011, n = 20) and father–daughter (P = 0.005, n = 22) pairs was found. However, no correlation was observed between mother–daughter (P = 0.463, n = 23) or mother–son (P = 0.577, n = 18). The father–offspring correlation was highly significant (P < 0.0001), in contrast to mother–offspring (P = 0.361). Epstein–Barr virus cultures demonstrated in most cases telomere preservation inversely related to initial mononuclear cell telomere length with short telomeres displaying the most pronounced elongation. Telomere length is inherited, and evidence for a father-to-offspring heritage of this trait was obtained, whereas in vitro telomere length maintenance was found to be dependent on the initial telomere length. PMID:16258070

  9. Maternal telomere length inheritance in the king penguin.

    PubMed

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age.

  10. Portrait of replication stress viewed from telomeres.

    PubMed

    Ishikawa, Fuyuki

    2013-07-01

    Genetic instability is the driving force of the malignant progression of cancer cells. Recently, replication stress has attracted much attention as a source of genetic instability that gives rise to an accumulation of mutations during the lifespan of individuals. However, the molecular details of the process are not fully understood. Here, recent progress in understanding how genetic alterations accumulate at telomeres will be reviewed. In particular, two aspects of telomere replication will be discussed in this context, covering conventional semi-conservative replication, and DNA synthesis by telomerase plus the C-strand fill-in reactions. Although these processes are seemingly telomere-specific, I will emphasize the possibility that the molecular understanding of the telomere events may shed light on genetic instability at other genetic loci in general.

  11. Arabidopsis thaliana telomeres exhibit euchromatic features

    PubMed Central

    Vaquero-Sedas, María I.; Gámez-Arjona, Francisco M.; Vega-Palas, Miguel A.

    2011-01-01

    Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K92Me and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K92Me or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation. PMID:21071395

  12. Treating Cancer by Targeting Telomeres and Telomerase

    PubMed Central

    Ivancich, Marko; Schrank, Zachary; Wojdyla, Luke; Leviskas, Brandon; Kuckovic, Adijan; Sanjali, Ankita; Puri, Neelu

    2017-01-01

    Telomerase is expressed in more than 85% of cancer cells. Tumor cells with metastatic potential may have a high telomerase activity, allowing cells to escape from the inhibition of cell proliferation due to shortened telomeres. Human telomerase primarily consists of two main components: hTERT, a catalytic subunit, and hTR, an RNA template whose sequence is complimentary to the telomeric 5′-dTTAGGG-3′ repeat. In humans, telomerase activity is typically restricted to renewing tissues, such as germ cells and stem cells, and is generally absent in normal cells. While hTR is constitutively expressed in most tissue types, hTERT expression levels are low enough that telomere length cannot be maintained, which sets a proliferative lifespan on normal cells. However, in the majority of cancers, telomerase maintains stable telomere length, thereby conferring cell immortality. Levels of hTERT mRNA are directly related to telomerase activity, thereby making it a more suitable therapeutic target than hTR. Recent data suggests that stabilization of telomeric G-quadruplexes may act to indirectly inhibit telomerase action by blocking hTR binding. Telomeric DNA has the propensity to spontaneously form intramolecular G-quadruplexes, four-stranded DNA secondary structures that are stabilized by the stacking of guanine residues in a planar arrangement. The functional roles of telomeric G-quadruplexes are not completely understood, but recent evidence suggests that they can stall the replication fork during DNA synthesis and inhibit telomere replication by preventing telomerase and related proteins from binding to the telomere. Long-term treatment with G-quadruplex stabilizers induces a gradual reduction in the length of the G-rich 3’ end of the telomere without a reduction of the total telomere length, suggesting that telomerase activity is inhibited. However, inhibition of telomerase, either directly or indirectly, has shown only moderate success in cancer patients. Another

  13. Telomeric armor: the layers of end protection

    PubMed Central

    Oganesian, Liana; Karlseder, Jan

    2009-01-01

    Summary The linear nature of eukaryotic chromosomes necessitates protection of their physical ends, the telomeres, because the DNA-repair machinery can misconstrue the ends as double-stranded DNA breaks. Thus, protection is crucial for avoiding an unwarranted DNA-damage response that could have catastrophic ramifications for the integrity and stability of the linear genome. In this Commentary, we attempt to define what is currently understood by the term `telomere protection'. Delineating the defining boundaries of chromosome-end protection is important now more than ever, as it is becoming increasingly evident that, although unwanted DNA repair at telomeres must be avoided at all costs, the molecular players involved in recognition, signaling and repair of DNA damage might also serve to protect telomeres. PMID:19910493

  14. PinX1, a telomere repeat-binding factor 1 (TRF1)-interacting protein, maintains telomere integrity by modulating TRF1 homeostasis, the process in which human telomerase reverse Transcriptase (hTERT) plays dual roles.

    PubMed

    Yoo, Jeong Eun; Park, Young Nyun; Oh, Bong-Kyeong

    2014-03-07

    TRF1, a telomere-binding protein, is important for telomere protection and homeostasis. PinX1 interacts with TRF1, but the physiological consequences of their interaction in telomere protection are not yet understood. Here we investigated PinX1 function on TRF1 stability in HeLa cells. PinX1 overexpression stabilized TRF1, but PinX1 depletion by siRNA led to TRF1 degradation, TRF1 ubiquitination, and less TRF1 telomere association. The depletion also induced DNA damage responses at telomeres and chromosome instability. These telomere dysfunctional phenotypes were in fact due to TRF1 deficiency. We also report that hTERT, a catalytic component of telomerase, plays dual roles in the TRF1 steady state pathway. PinX1-mediated TRF1 stability was not observed in hTERT-negative immortal cells, but was pronounced when hTERT was ectopically expressed in the cells, suggesting that hTERT may be needed in the PinX1-mediated TRF1 stability pathway. Interestingly, the knockdown of both PinX1 and hTERT in HeLa cells stabilized TRF1, suppressed DNA damage response activation, and restored chromosome stability. In summary, our findings suggested that PinX1 may maintain telomere integrity by regulating TRF1 stability and that hTERT may act as both a positive and a negative regulator of TRF1 homeostasis in a PinX1-dependent manner.

  15. Localization of the modified base J in telomeric VSG gene expression sites of Trypanosoma brucei.

    PubMed

    van Leeuwen, F; Wijsman, E R; Kieft, R; van der Marel, G A; van Boom, J H; Borst, P

    1997-12-01

    African trypanosomes such as Trypanosoma brucei undergo antigenic variation in the bloodstream of their mammalian hosts by regularly changing the variant surface glycoprotein (VSG) gene expressed. The transcribed VSG gene is invariably located in a telomeric expression site. There are multiple expression sites and one way to change the VSG gene expressed is by activating a new site and inactivating the previously active one. The mechanisms that control expression site switching are unknown, but have been suggested to involve epigenetic regulation. We have found previously that VSG genes in silent (but not active) expression sites contain modified restriction endonuclease cleavage sites, and we have presented circumstantial evidence indicating that this is attributable to the presence of a novel modified base beta-D-glucosyl-hydroxymethyluracil, or J. To directly test this, we have generated antisera that specifically recognize J-containing DNA and have used these to determine the precise location of this modified thymine in the telomeric VSG expression sites. By anti J-DNA immunoprecipitations, we found that J is present in telomeric VSG genes in silenced expression sites and not in actively transcribed telomeric VSG genes. J was absent from inactive chromosome-internal VSG genes. DNA modification was also found at the boundaries of expression sites. In the long 50-bp repeat arrays upstream of the promoter and in the telomeric repeat arrays downstream of the VSG gene, J was found both in silent and active expression sites. This suggests that silencing results in a gradient of modification spreading from repetitive DNA flanks into the neighboring expression site sequences. In this paper, we discuss the possible role of J in silencing of expression sites.

  16. Telomeres and the ethics of human cloning.

    PubMed

    Allhoff, Fritz

    2004-01-01

    In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.

  17. Telomerase Mechanism of Telomere Synthesis.

    PubMed

    Wu, R Alex; Upton, Heather E; Vogan, Jacob M; Collins, Kathleen

    2017-06-20

    Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.

  18. Telomeres and the natural lifespan limit in humans.

    PubMed

    Steenstrup, Troels; Kark, Jeremy D; Verhulst, Simon; Thinggaard, Mikael; Hjelmborg, Jacob V B; Dalgård, Christine; Kyvik, Kirsten Ohm; Christiansen, Lene; Mangino, Massimo; Spector, Timothy D; Petersen, Inge; Kimura, Masayuki; Benetos, Athanase; Labat, Carlos; Sinnreich, Ronit; Hwang, Shih-Jen; Levy, Daniel; Hunt, Steven C; Fitzpatrick, Annette L; Chen, Wei; Berenson, Gerald S; Barbieri, Michelangela; Paolisso, Giuseppe; Gadalla, Shahinaz M; Savage, Sharon A; Christensen, Kaare; Yashin, Anatoliy I; Arbeev, Konstantin G; Aviv, Abraham

    2017-04-01

    An ongoing debate in demography has focused on whether the human lifespan has a maximal natural limit. Taking a mechanistic perspective, and knowing that short telomeres are associated with diminished longevity, we examined whether telomere length dynamics during adult life could set a maximal natural lifespan limit. We define leukocyte telomere length of 5 kb as the 'telomeric brink', which denotes a high risk of imminent death. We show that a subset of adults may reach the telomeric brink within the current life expectancy and more so for a 100-year life expectancy. Thus, secular trends in life expectancy should confront a biological limit due to crossing the telomeric brink.

  19. Telomere--the twilight to immortality.

    PubMed

    Shukla, Samarth; Acharya, Sourya; Rajput, Devendra; Vagha, S; Grover, Shobha

    2010-09-01

    Besides forming a very important component of the chromosome, the telomeres have extremely significant modes of action and functions, right from maintaining a basic infrastructure and integrity of the chromosome vis a vis the other chromosomes, telomeres are responsible for the cell divisions and replicative senescence of the cell. The number of mitotic divisions which a cell will go through in its life span while passing through the cell cycle is governed inturn by these telomeres, the crux of the entire functioning of these chromosomal components suggests that they are the ticking clocks of the cell and when they diminish or are worn out so does the cell reach it's senility at the fag end of it's replicative life--resulting fate being--the cell is sent to it's grave yard (the final destination). Clinical implications include--regulation of cell life spans, regulating the cell's replicative behavior and it's utility in forming cells which usually are impossible to divide or replicate, telomeres regulate the cloning process,the telomeres play a major role in predicting the fate of a neoplastic cell and finally enhancing the life span of a single cell, the organ, the body as a whole by enzymes which expand the telomeres--the telomerase.

  20. Telomere Shortening and Associated Chromosomal Instability in Peripheral Blood Lymphocytes of Patients With Hodgkin's Lymphoma Prior to Any Treatment Are Predictive of Second Cancers

    SciTech Connect

    M'kacher, Radhia . E-mail: mkacher@igr.fr; Bennaceur-Griscelli, Annelise; Girinsky, Theodore; Koscielny, Serge; Delhommeau, Francois; Dossou, Julien; Violot, Dominique; Leclercq, Evelyne; Courtier, Marie Helene; Beron-Gaillard, Nadine; Assaf, Elias; Ribrag, Vincent; Carde, Patrice; Bourhis, Jean |; Feneux, Daniele; Bernheim, Alain; Parmentier, Claude

    2007-06-01

    Purpose: To investigate a potential link between telomere length, chromosomal instability, and the advent of a second cancer (SC) in patients with Hodgkin's lymphoma (HL), who are known to be at risk for SCs. This study was premised on the finding that telomere dysfunction and DNA repair pathways were related to many pathologic conditions. Methods and Materials: Three cohorts of patients with HL were studied: 73 who were prospectively followed >5 years after diagnosis (prospective HL cohort), 28 who developed a SC (SC HL cohort), and 18 long-term survivors with no evidence of disease or complication since their initial treatment (NED HL cohort). Telomere length was analyzed by a telomeric restriction fragment assay in peripheral blood lymphocytes. Thirty healthy donors and 70 patients with a newly diagnosed solid tumor were the control population. Results: Compared with controls, patients from the prospective HL cohort, before any treatment, showed age-independent shorter telomeres (mean, 8.3 vs. 11.7 kb in healthy donors; <6 kb in 18% in HL patients), increased spontaneous chromosomal abnormalities, and increased in vitro radiation sensitivity (p < 10{sup -4} each). After treatment, telomere shortening was associated with cytogenetic profiles characterized by the persistence of complex chromosomal rearrangement and clonal aberrations. Moreover, the two cases of SC in the prospective HL patients had short telomeres and CCR initially. In addition, the SC HL cohort was characterized by markedly short telomeres (6.6 vs. 9.7 kb in the NED HL cohort), the presence of complex chromosome rearrangements, and increased in vitro radiation sensitivity. Conclusions: An intimate relationship between pre-treatment telomere shortening, chromosomal instability, radiation sensitivity and occurrence of SC was found in HL patients.

  1. Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype.

    PubMed

    Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim

    2014-10-01

    Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres

    PubMed Central

    Kosiyatrakul, Settapong T.

    2015-01-01

    Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis. PMID:26195664

  3. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA

    PubMed Central

    Školáková, Petra; Foldynová-Trantírková, Silvie; Bednářová, Klára; Fiala, Radovan; Vorlíčková, Michaela; Trantírek, Lukáš

    2015-01-01

    There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10–15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5′-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5′-C-rich and 3′-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model. PMID:25855805

  4. Biological activity of the G-quadruplex ligand RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) is associated with telomere capping alteration.

    PubMed

    Leonetti, Carlo; Amodei, Sarah; D'Angelo, Carmen; Rizzo, Angela; Benassi, Barbara; Antonelli, Anna; Elli, Raffaella; Stevens, Malcolm F G; D'Incalci, Maurizio; Zupi, Gabriella; Biroccio, Annamaria

    2004-11-01

    This study had two goals: 1) to evaluate the biological effect of the novel pentacyclic acridine 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) on human melanoma lines possessing long telomeres, and 2) to elucidate the relationship between G-quadruplex-based telomerase inhibitor-induced cellular effects and telomere length/dysfunction. The cellular pharmacological effects of RHPS4 have been evaluated by treating melanoma lines with increasing concentrations of RHPS4. A dose-dependent inhibition of cell proliferation was observed in all the lines during short-term treatment. Flow cytometric analysis demonstrated that RHPS4 induced a dose-dependent accumulation of cells in the S-G(2)/M phase of cell cycle. The RHPS4-induced cell cycle alteration was irreversible even at low doses, and the cells died from apoptosis. At high RHPS4 concentration, apoptosis was accompanied by the induction of a senescence phenotype: large cell size, vacuolated cytoplasm, and beta-galactosidase activity. The short-term biological activity of RHPS4 was not caused by telomere shortening, but it was associated with telomere dysfunction, in terms of presence of telomeric fusions, polynucleated cells, and typical images of telophase bridge. In conclusion, our results demonstrate that the G-quadruplex ligand RHPS4 can function in a telomere length-independent manner through its ability to cause telomere-capping alteration.

  5. The C-terminal extension of human telomerase reverse transcriptase is necessary for high affinity binding to telomeric DNA.

    PubMed

    Tomlinson, Christopher G; Holien, Jessica K; Mathias, Jordan A T; Parker, Michael W; Bryan, Tracy M

    2016-01-01

    The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from short telomere syndromes, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic analyses and molecular modelling of a disease-associated mutant in the C-terminal extension of the reverse transcriptase subunit of human telomerase. The kinetic analyses revealed that the mutation substantially impacts the affinity of telomerase for telomeric DNA, but the magnitude of this impact varies for primers with different 3' ends. Molecular dynamics simulations corroborate this finding, revealing that the mutation results in greater movement of a nearby loop, impacting the DNA-RNA helix differentially with different DNA primers. Thus, the data indicate that this region is the location of one of the enzyme conformational changes responsible for the long-standing observation that off-rates of telomerase vary with telomeric 3' end sequence. Our data provide a molecular basis for a disease-associated telomerase mutation, and the first direct evidence for a role of the C-terminal extension in DNA binding affinity, a function analogous to the "thumb" domain of retroviral reverse transcriptases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Short communication: Ovine leukocyte telomere length is associated with variation in the cortisol response to systemic bacterial endotoxin challenge.

    PubMed

    Yip, L; Oh, S Y; Li, Z; You, Q; Quinton, V M; Gilchrist, G C; Karrow, N A

    2016-04-01

    Stress has been associated with biological aging and numerous age-related diseases. This may be due, in part, to accelerated shortening of telomeres, which are critical genomic structures that cap and protect chromosomal ends. Dysfunction of the hypothalamic-pituitary-adrenal axis may indirectly contribute to telomere shortening if an animal reacts too strongly or weakly to a stressor, leading to accelerated biological aging. In this study, outbred Rideau-Arcott sheep were stress challenged with Escherichia coli endotoxin and classified as high, middle, or low cortisol responders to investigate a potential relationship between cortisol response and age, and telomere length. In the present study, no association was found between age and telomere length. The study, however, revealed shorter telomeres in high and low cortisol responders compared with the middle cortisol responders, which suggests that health and longevity may be compromised in extreme high- and low-stress-responding sheep. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Recombinogenic Telomeres in Diploid Sorex granarius (Soricidae, Eulipotyphla) Fibroblast Cells

    PubMed Central

    Draskovic, I.; Minina, J. M.; Karamysheva, T. V.; Novo, C. L.; Liu, W.-Y.; Porreca, R. M.; Gibaud, A.; Zvereva, M. E.; Skvortsov, D. A.; Rubtsov, N. B.

    2014-01-01

    The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism. PMID:24842907

  8. [Association study of telomere length with idiopathic male infertility].

    PubMed

    Shuyuan, Liu; Changjun, Zhang; Haiying, Peng; Xiaoqin, Huang; Hao, Sun; Keqin, Lin; Kai, Huang; Jiayou, Chu; Zhaoqing, Yang

    2015-11-01

    Telomeres are evolutionary conserved, multifunctional DNA-protein complexes located at the ends of eukaryotic chromosomes. Telomeres maintain chromosome stability and genome integrity and also play an important role in meiosis which aid in synapsis, homologous recombination, and segregation. Sperm telomere has been reported to play an important role in fertilization and embryo development. Nowadays, the association between telomere and reproduction is one of the major areas of interest, however whether sperm telomere associated with male infertility is not clear. In this study, in order to find out the association between Chinese idiopathic infertility and sperm telomere length, we analyzed the difference of sperm telomere length between idiopathic infertile men and normal fertile men, as well as the correlations between sperm telomere length and human semen characteristics. We analyzed 126 Chinese idiopathic infertile men and 138 normal fertile men for sperm telomere length by using quantitative PCR. We found that the relative sperm mean telomere length of infertile men was significantly shorter than that of fertile men (2.894 ± 0.115 vs. 4.016 ± 0.603, P=5.097 x 10⁻⁵). Both sperm count and semen progressive motility are related with telomere length. Our results suggest that sperm telomere length is associated with idiopathic male infertility of China and we proposed the possibility that shorter telomeres in sperm chromosome will reduce spermatogenesis and sperm functions, which finally affected the fertility of male.

  9. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    SciTech Connect

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  10. Spatially confined polymer chains: implications of chromatin fibre flexibility and peripheral anchoring on telomere telomere interaction

    NASA Astrophysics Data System (ADS)

    Gehlen, L. R.; Rosa, A.; Klenin, K.; Langowski, J.; Gasser, S. M.; Bystricky, K.

    2006-04-01

    We simulate the extension of spatially confined chromatin fibres modelled as polymer chains and examine the effect of the flexibility of the fibre and its degree of freedom. The developed formalism was used to analyse experimental data of telomere-telomere distances in living yeast cells in the absence of confining factors as identified by the proteins Sir4 and yKu70. Our analysis indicates that intrinsic properties of the chromatin fibre, in particular its elastic properties and flexibility, can influence the juxtaposition of the telomeric ends of chromosomes. However, measurements in intact yeast cells showed that the telomeres of chromosomes 3 and 6 come even closer together than the parameters of constraint imposed on the simulations would predict. This juxtaposition was specific to telomeres on one contiguous chromosome and overrode a tendency for separation that is imposed by anchoring.

  11. Origin of human chromosome 2: An ancestral telomere-telomere fusion

    SciTech Connect

    Ijdo, J.W.; Baldini, A.; Ward, D.C.; Reeders, S.T.; Wells, R.A. )

    1991-10-15

    The authors identified two allelic genomic cosmids from human chromosome 2, c8.1 and c29B, each containing two inverted arrays of the vertebrate telomeric repeat in a head-to-head arrangement, 5{prime}(TTAGGG){sub n}-(CCCTAA){sub m}3{prime}. Sequences flanking this telomeric repeat are characteristic of present-day human pretelomeres. BAL-31 nuclease experiments with yeast artificial chromosome clones of human telomeres and fluorescence in situ hybridization reveal that sequences flanking these inverted repeats hybridize both to band 2q13 and to different, but overlapping, subsets of human chromosome ends. They conclude that the locus cloned in cosmids c8.1 and c29B is the relic of an ancient telomere-telomere fusion and marks the point at which two ancestral ape chromosomes fused to give rise to human chromosome 2.

  12. Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends

    PubMed Central

    Li, Jing-Ru; Yu, Tai-Yuan; Chien, I-Chieh; Lu, Chia-Ying; Lin, Jing-Jer; Li, Hung-Wen

    2014-01-01

    Telomerase, a ribonucleoprotein complex, is responsible for maintaining the telomere length at chromosome ends. Using its RNA component as a template, telomerase uses its reverse transcriptase activity to extend the 3′-end single-stranded, repetitive telomeric DNA sequence. Pif1, a 5′-to-3′ helicase, has been suggested to regulate telomerase activity. We used single-molecule experiments to directly show that Pif1 helicase regulates telomerase activity by removing telomerase from telomere ends, allowing the cycling of the telomerase for additional extension processes. This telomerase removal efficiency increases at longer ssDNA gaps and at higher Pif1 concentrations. The enhanced telomerase removal efficiency by Pif1 at the longer single-stranded telomeric DNA suggests a way of how Pif1 regulates telomerase activity and maintains telomere length. PMID:24981509

  13. Telomere length variation: A potential new telomere biomarker for lung cancer risk

    PubMed Central

    Sun, Bing; Wang, Ying; Kota, Krishna; Shi, Yaru; Motlak, Salaam; Makambi, Kepher; Loffredo, Christopher A.; Shields, Peter G.; Yang, Qin; Harris, Curtis C.; Zheng, Yun-Ling

    2015-01-01

    Objectives In this report the associations between telomere length variation (TLV), mean telomere length in blood lymphocytes and lung cancer risk were examined. Materials and Methods The study design is case-control. Cases (N = 191) were patients newly diagnosed with histologically confirmed non-small cell lung cancer. Controls (N = 207) were healthy individuals recruited from the same counties as cases and matched to cases on age and gender. Telomere fluorescent in situ hybridization was used to measure telomere features using short-term cultured blood lymphocytes. Logistic regression was used to estimate the strength of association between telomere features and lung cancer risk. Results Telomere length variation across all chromosomal ends was significantly associated with lung cancer risk; adjusted odds ratios 4.67 [95% confidence interval (CI): 1.46 – 14.9] and 0.46 (95% CI: 0.25 – 0.84) for younger (age ≤ 60) and older (age > 60) individuals, respectively. TLV and mean telomere length jointly affected lung cancer risk: when comparing individuals with short telomere length and high TLV to those with long telomere length and low TLV, adjusted odd ratios were 8.21 (95% CI: 1.71 – 39.5) and 0.33 (95% CI: 0.15 – 0.72) for younger and older individuals, respectively. Conclusions TLV in blood lymphocytes is significantly associated with lung cancer risk and the associations were modulated by age. TLV in combination with mean telomere length might be useful in identifying high risk population for lung cancer computerized tomography screening. PMID:25840848

  14. Orgasmic dysfunction

    MedlinePlus

    Inhibited sexual excitement; Sex - orgasmic dysfunction; Anorgasmia; Sexual dysfunction - orgasmic; Sexual problem - orgasmic ... of knowledge about sexual function Negative feelings about sex (often learned in childhood or teen years) Shyness ...

  15. Erectile Dysfunction

    MedlinePlus

    ... PCF? Featured Blue Jacket Fashion Show Contact Us Erectile Dysfunction Regardless of whether the nerves were spared during ... time returning to pre-treatment function. Management of Erectile Dysfunction When a man is sexually aroused, the erectile ...

  16. Variants in TERT influencing telomere length are associated with paranoid schizophrenia risk.

    PubMed

    Rao, Shuquan; Ye, Ning; Hu, Huiling; Shen, Yan; Xu, Qi

    2016-04-01

    Schizophrenia is one of the most severe psychiatric disorders, with a high heritability of up to 80%. Several studies have reported telomere dysfunction in schizophrenia, and common variants in the telomerase reverse transcriptase (TERT) gene. TERT is a key component of the telomerase complex that maintains telomere length by addition of telomere repeats to telomere ends, and has repeatedly shown association with mean lymphocyte telomere length (LTL). Thus, we hypothesized that TERT may be a novel susceptibility gene for schizophrenia. Using a Taqman protocol, we genotyped eight tag SNPs from the TERT locus in 1,072 patients with paranoid schizophrenia and 1,284 control subjects from a Chinese Han population. We also measured mean LTL in 98 cases and 109 controls using a quantitative PCR-based technique. Chi-square tests showed that two SNPs, rs2075786 (P = 0.0009, OR = 0.76, 95%CI = 0.65-0.90) and rs4975605 (P = 0.0026, OR = 0.73, 95%CI = 0.60-0.90), were associated with a protective effect, while rs10069690 was associated with risk of paranoid schizophrenia (P = 0.0044, OR = 1.23, 95%CI = 1.07-1.42). Additionally, the rs2736118-rs2075786 haplotype showed significant association with paranoid schizophrenia (P = 0.0013). Moreover, mean LTL correlated with rs2075786 genotypes was significantly shorter in the patient group than the control group. The present results suggest that the TERT gene may be a novel candidate involved in the development of paranoid schizophrenia. © 2016 Wiley Periodicals, Inc.

  17. Telomere structure and maintenance gene variants and risk of five cancer types.

    PubMed

    Karami, Sara; Han, Younghun; Pande, Mala; Cheng, Iona; Rudd, James; Pierce, Brandon L; Nutter, Ellen L; Schumacher, Fredrick R; Kote-Jarai, Zsofia; Lindstrom, Sara; Witte, John S; Fang, Shenying; Han, Jiali; Kraft, Peter; Hunter, David J; Song, Fengju; Hung, Rayjean J; McKay, James; Gruber, Stephen B; Chanock, Stephen J; Risch, Angela; Shen, Hongbing; Haiman, Christopher A; Boardman, Lisa; Ulrich, Cornelia M; Casey, Graham; Peters, Ulrike; Amin Al Olama, Ali; Berchuck, Andrew; Berndt, Sonja I; Bezieau, Stephane; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Caporaso, Neil; Chan, Andrew T; Chang-Claude, Jenny; Christiani, David C; Cunningham, Julie M; Easton, Douglas; Eeles, Rosalind A; Eisen, Timothy; Gala, Manish; Gallinger, Steven J; Gayther, Simon A; Goode, Ellen L; Grönberg, Henrik; Henderson, Brian E; Houlston, Richard; Joshi, Amit D; Küry, Sébastien; Landi, Mari T; Le Marchand, Loic; Muir, Kenneth; Newcomb, Polly A; Permuth-Wey, Jenny; Pharoah, Paul; Phelan, Catherine; Potter, John D; Ramus, Susan J; Risch, Harvey; Schildkraut, Joellen; Slattery, Martha L; Song, Honglin; Wentzensen, Nicolas; White, Emily; Wiklund, Fredrik; Zanke, Brent W; Sellers, Thomas A; Zheng, Wei; Chatterjee, Nilanjan; Amos, Christopher I; Doherty, Jennifer A

    2016-12-15

    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10(-5) ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk. © 2016 UICC.

  18. Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids

    PubMed Central

    Nanavaty, Vishal; Sandhu, Ranjodh; Jehi, Sanaa E.; Pandya, Unnati M.

    2017-01-01

    Abstract Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription. PMID:28334836

  19. Extreme Telomere Length Dimorphism in the Tasmanian Devil and Related Marsupials Suggests Parental Control of Telomere Length

    PubMed Central

    Bender, Hannah S.; Murchison, Elizabeth P.; Pickett, Hilda A.; Deakin, Janine E.; Strong, Margaret A.; Conlan, Carly; McMillan, Daniel A.; Neumann, Axel A.; Greider, Carol W.; Hannon, Gregory J.; Reddel, Roger R.; Graves, Jennifer A. Marshall.

    2012-01-01

    Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago. PMID:23049977

  20. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length.

    PubMed

    Bender, Hannah S; Murchison, Elizabeth P; Pickett, Hilda A; Deakin, Janine E; Strong, Margaret A; Conlan, Carly; McMillan, Daniel A; Neumann, Axel A; Greider, Carol W; Hannon, Gregory J; Reddel, Roger R; Graves, Jennifer A Marshall

    2012-01-01

    Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.

  1. Multiple facets of TPP1 in telomere maintenance

    PubMed Central

    Rajavel, Malligarjunan; Mullins, Michael R.; Taylor, Derek J.

    2014-01-01

    Telomeres are nucleoprotein complexes that cap the ends of all linear chromosomes and function to prevent aberrant repair and end-to-end chromosome fusions. In somatic cells, telomere shortening is a natural part of the aging process as it occurs with each round of cell division. In germ and stem cells, however, the enzyme telomerase synthesizes telomere DNA to counter-balance telomere shortening and help maintain cellular proliferation. Of the primary telomere end-binding proteins, TPP1 has recently emerged as a primary contributor in protecting telomere DNA and in recruiting telomerase to the telomere ends. In this review, we summarize the current knowledge regarding the role of TPP1 in telomere maintenance. PMID:24780581

  2. Single-Molecule Studies of Telomeres and Telomerase.

    PubMed

    Parks, Joseph W; Stone, Michael D

    2017-05-22

    Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.

  3. Innate sexuality determines the mechanisms of telomere maintenance.

    PubMed

    Tasaka, Kenta; Yokoyama, Naoki; Nodono, Hanae; Hoshi, Motonori; Matsumoto, Midori

    2013-01-01

    Recently, telomere length has been shown to be differentially regulated in asexually and sexually reproducing planarians. In addition, it was found that asexual worms maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual worms only achieve telomere elongation through sexual reproduction. We have established an experimental bioassay system to induce switching from asexual to sexual reproduction in planarians, that is, sexualization. In this study, the relationship between the reproductive mode and telomere maintenance was investigated using innate asexually reproducing worms, innate sexually reproducing worms, and experimentally sexualized worms. Here, we show that innate asexual planarians maintain telomere length during cell division and that innate sexual planarians exhibit telomere shortening. However, experimental sexualized worms maintain telomere length during cell division. These results indicate that innate sexuality is linked to the mechanism of telomere maintenance.

  4. Telomere length and telomerase activity in the context of menopause.

    PubMed

    Pines, A

    2013-12-01

    Telomere length is a marker of cell aging, since shorter telomeres and a higher rate of telomere shortening with time are associated with poorer health status and survival. Various factors may determine telomere length and the function of the telomere maintenance system, including the hereditary load and several modifiable variables such as diet and lifestyle. Telomere length and telomerase activity were investigated extensively in a variety of diseases, such as malignancies (i.e. breast and colon cancer), cardiovascular disease and its related metabolic risk factors, cognitive, mental and psychiatric conditions, and many others. Some evidence points at an association between longer endogenous estrogen exposure (length of reproductive years of life) and greater telomere length and lower telomerase activity. However, there is probably no correlation in regard to menopause per se or the use of hormone therapy. Changing the nutrition and implementing healthy lifestyles may improve the telomere/telomerase parameters in postmenopausal women, but better understanding of this system is still needed.

  5. Insomnia and Telomere Length in Older Adults

    PubMed Central

    Carroll, Judith E.; Esquivel, Stephanie; Goldberg, Alyssa; Seeman, Teresa E.; Effros, Rita B.; Dock, Jeffrey; Olmstead, Richard; Breen, Elizabeth C.; Irwin, Michael R.

    2016-01-01

    Study Objectives: Insomnia, particularly in later life, may raise the risk for chronic diseases of aging and mortality through its effect on cellular aging. The current study examines the effects of insomnia on telomere length, a measure of cellular aging, and tests whether insomnia interacts with chronological age to increase cellular aging. Methods: A total of 126 males and females (60–88 y) were assessed for insomnia using the Diagnostic and Statistical Manual IV criterion for primary insomnia and the International Classification of Sleep Disorders, Second Edition for general insomnia (45 insomnia cases; 81 controls). Telomere length in peripheral blood mononuclear cells (PBMC) was determined using real-time quantitative polymerase chain reaction (qPCR) methodology. Results: In the analysis of covariance model adjusting for body mass index and sex, age (60–69 y versus 70–88 y) and insomnia diagnosis interacted to predict shorter PBMC telomere length (P = 0.04). In the oldest age group (70–88 y), PBMC telomere length was significantly shorter in those with insomnia, mean (standard deviation) M(SD) = 0.59(0.2) compared to controls with no insomnia M(SD) = 0.78(0.4), P = 0.04. In the adults aged 60–69 y, PBMC telomere length was not different between insomnia cases and controls, P = 0.44. Conclusions: Insomnia is associated with shorter PBMC telomere length in adults aged 70–88 y, but not in those younger than 70 y, suggesting that clinically severe sleep disturbances may increase cellular aging, especially in the later years of life. These findings highlight insomnia as a vulnerability factor in later life, with implications for risk for diseases of aging. Citation: Carroll JE, Esquivel S, Goldberg A, Seeman TE, Effros RB, Dock J, Olmstead R, Breen EC, Irwin MR. Insomnia and telomere length in older adults. SLEEP 2016;39(3):559–564. PMID:26715231

  6. Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease.

    PubMed

    Birch, Jodie; Barnes, Peter J; Passos, Joao F

    2017-10-04

    Cellular senescence, the irreversible loss of replicative capacity in somatic cells, plays a causal role in the development of age-related pathology and in a number of age-related chronic inflammatory diseases. The ageing lung is marked by an increasing number of senescent cells, and evidence is mounting that senescence may directly contribute to a number of age-related respiratory diseases, including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Telomere dysfunction and alterations in mitochondrial homeostasis frequently occur in cellular senescence and are important to the development of the often detrimental senescence-associated secretory phenotype (SASP). The roles of telomeres, the mitochondria and cellular senescence in lung ageing and disease are discussed. Therapeutic interventions targeting cellular senescence are considered for delaying or potentially reversing age-related respiratory disease. Copyright © 2017. Published by Elsevier Inc.

  7. Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins.

    PubMed

    Peska, V; Sýkorová, E; Fajkus, J

    2008-01-01

    While most Solanaceae genera (e.g.Solanum, Nicotiana) possess Arabidopsis-type telomeres of (TTTAGGG)n maintained by telomerase, the genera Cestrum, Vestia and Sessea (Cestrum group) lack these telomeres. Here we show that in the Cestrum-group the activity of telomerase has been lost. Nevertheless, proteins binding the single-stranded G-rich strand of the Arabidopsis-type and related human-type (TTAGGG)n telomeric sequences are present in nuclear extracts of both Nicotiana and Cestrum species. These proteins may have a role in telomere function or other cellular activities. In addition to characterizing DNA binding specificity and molecular weights of these proteins, we searched in both N. tabacum (tobacco) and C. parqui for the presence of POT1-like proteins, involved in telomere capping and telomerase regulation. Analysis of POT1-like proteins available on public databases and cloned by us from C. parqui, revealed the N-terminal OB folds typical for this protein family and a novel, plant-specific conserved C-terminal OB-fold domain (CTOB). We propose that CTOB is involved in protein-protein interactions.

  8. Runaway telomere elongation caused by telomerase RNA gene mutations.

    PubMed

    McEachern, M J; Blackburn, E H

    1995-08-03

    The ribonucleoprotein enzyme telomerase adds telomeric DNA onto chromosome ends and is normally regulated so that telomeric DNA lengths are kept within defined bounds. In the telomerase RNA gene from the yeast Kluyveromyces lactis, specific mutations that alter telomeric DNA sequences result in telomeres elongating to up to 100 times their normal length and impair cell growth. Some mutations cause immediate elongation whereas others behave like genetic time bombs, causing elongation only after a latent period of hundreds of generations.

  9. TOR links starvation responses to telomere length maintenance.

    PubMed

    Kupiec, Martin; Weisman, Ronit

    2012-06-15

    Telomeres are nucleoprotein structures that protect the ends of eukaryotic chromosomes and play important roles in ensuring the genome's integrity. Telomere length is maintained by complex mechanisms that ensure length homeostasis. Recent work has linked telomere length maintenance to the Tor protein kinases, which are central regulators of cellular growth. Here we summarize these results, which suggest a link between nutrient availability, telomere length maintenance and chronological lifespan.

  10. The latent cytomegalovirus decreases telomere length by microcompetition

    PubMed Central

    Javaherian, Adrian

    2015-01-01

    Reduced telomere length has been associated with aging and age-related diseases. Latent infection with the Cytomegalovirus (CMV) induces telomere shortening in the infected cells. Latent CMV infection may cause reduced telomere length via GABP transcription factor deficiency, according to the Microcompetition Theory. Microcompetition and viral-induced transcription factor deficiency is important since most people harbor a latent viral infection.

  11. A quantitative assay for telomere protection in Saccharomyces cerevisiae.

    PubMed Central

    DuBois, Michelle L; Haimberger, Zara W; McIntosh, Martin W; Gottschling, Daniel E

    2002-01-01

    Telomeres are the protective ends of linear chromosomes. Telomeric components have been identified and described by their abilities to bind telomeric DNA, affect telomere repeat length, participate in telomeric DNA replication, or modulate transcriptional silencing of telomere-adjacent genes; however, their roles in chromosome end protection are not as well defined. We have developed a genetic, quantitative assay in Saccharomyces cerevisiae to measure whether various telomeric components protect chromosome ends from homologous recombination. This "chromosomal cap" assay has revealed that the telomeric end-binding proteins, Cdc13p and Ku, both protect the chromosome end from homologous recombination, as does the ATM-related kinase, Tel1p. We propose that Cdc13p and Ku structurally inhibit recombination at telomeres and that Tel1p regulates the chromosomal cap, acting through Cdc13p. Analysis with recombination mutants indicated that telomeric homologous recombination events proceeded by different mechanisms, depending on which capping component was compromised. Furthermore, we found that neither telomere repeat length nor telomeric silencing correlated with chromosomal capping efficiency. This capping assay provides a sensitive in vivo approach for identifying the components of chromosome ends and the mechanisms by which they are protected. PMID:12136006

  12. Characterization of Arabidopsis thaliana telomeres isolated in yeast.

    PubMed Central

    Richards, E J; Chao, S; Vongs, A; Yang, J

    1992-01-01

    In an effort to learn more about the genomic organization of chromosomal termini in plants we employed a functional complementation strategy to isolate Arabidopsis thaliana telomeres in the yeast, Saccharomyces cerevisiae. Eight yeast episomes carrying A. thaliana telomeric sequences were obtained. The plant sequences carried on two episomes, YpAtT1 and YpAtT7, were characterized in detail. The telomeric origins of YpAtT1 and YpAtT7 insert DNAs were confirmed by demonstrating that corresponding genomic sequences are preferentially degraded during exonucleolytic digestion. The isolated telomeric restriction fragments contain G-rich repeat arrays characteristic of A. thaliana telomeres, as well as subterminal telomere-associated sequences (TASs). DNA sequence analysis revealed the presence of variant telomeric repeats at the centromere-proximal border of the terminal block of telomere repeats. The TAS flanking the telomeric G-rich repeat in YpAtT7 corresponds to a repetitive element present at other A. thaliana telomeres, while more proximal sequences are unique to one telomere. The YpAtT1 TAS is unique in the Landsberg strain of A. thaliana from which the clone originated; however, the Landsberg TAS cross-hybridizes weakly to a second telomere in the strain Columbia. Restriction analysis with cytosine methylation-sensitive endonucleases indicated that both TASs are highly methylated in the genome. Images PMID:1508688

  13. Single-molecule choreography between telomere proteins and G quadruplexes.

    PubMed

    Hopfner, Karl-Peter

    2014-06-10

    Telomeric DNA binds proteins to protect chromosome ends, but it also adopts G quadruplex (GQ) structures. Two new studies by Hwang and colleagues (in this issue of Structure) and Ray and colleagues (published elsewhere) use single molecule imaging to reveal how GQs affect the binding of different telomere associated proteins. The data suggest that GQs play important roles in regulating accessibility of telomeres.

  14. Telomeres: the beginnings and ends of eukaryotic chromosomes.

    PubMed

    Zakian, Virginia A

    2012-07-15

    The ends of eukaryotic chromosomes are called telomeres. This article provides a short history of telomere and telomerase research starting with the pioneering work of Muller and McClintock through the molecular era of telomere biology. These studies culminated in the 2009 Nobel Prize in Medicine. Critical findings that moved the field forward and that suggest directions for future research are emphasized.

  15. Chromothripsis and Kataegis Induced by Telomere Crisis.

    PubMed

    Maciejowski, John; Li, Yilong; Bosco, Nazario; Campbell, Peter J; de Lange, Titia

    2015-12-17

    Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here, we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 μm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 hr after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis.

  16. Chromothripsis and kataegis induced by telomere crisis

    PubMed Central

    Maciejowski, John; Li, Yilong; Bosco, Nazario; Campbell, Peter J.; de Lange, Titia

    2015-01-01

    Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 μm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 h after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis. PMID:26687355

  17. Means to the ends: The role of telomeres and telomere processing machinery in metastasis.

    PubMed

    Robinson, Nathaniel J; Schiemann, William P

    2016-12-01

    Despite significant clinical advancements, cancer remains a leading cause of mortality throughout the world due largely to the process of metastasis and the dissemination of cancer cells from their primary tumor of origin to distant secondary sites. The clinical burden imposed by metastasis is further compounded by a paucity of information regarding the factors that mediate metastatic progression. Linear chromosomes are capped by structures known as telomeres, which dictate cellular lifespan in humans by shortening progressively during successive cell divisions. Although telomere shortening occurs in nearly all somatic cells, telomeres may be elongated via two seemingly disjoint pathways: (i) telomerase-mediated extension, and (ii) homologous recombination-based alternative lengthening of telomeres (ALT). Both telomerase and ALT are activated in various human cancers, with more recent evidence implicating both pathways as potential mediators of metastasis. Here we review the known roles of telomere homeostasis in metastasis and posit a mechanism whereby metastatic activity is determined by a dynamic fluctuation between ALT and telomerase, as opposed to the mere activation of a generic telomere elongation program. Additionally, the pleiotropic nature of the telomere processing machinery makes it an attractive therapeutic target for metastasis, and as such, we also explore the therapeutic implications of our proposed mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Decreasing initial telomere length in humans intergenerationally understates age-associated telomere shortening

    PubMed Central

    Holohan, Brody; De Meyer, Tim; Batten, Kimberly; Mangino, Massimo; Hunt, Steven C; Bekaert, Sofie; De Buyzere, Marc L; Rietzschel, Ernst R; Spector, Tim D; Wright, Woodring E; Shay, Jerry W

    2015-01-01

    Telomere length shortens with aging, and short telomeres have been linked to a wide variety of pathologies. Previous studies suggested a discrepancy in age-associated telomere shortening rate estimated by cross-sectional studies versus the rate measured in longitudinal studies, indicating a potential bias in cross-sectional estimates. Intergenerational changes in initial telomere length, such as that predicted by the previously described effect of a father’s age at birth of his offspring (FAB), could explain the discrepancy in shortening rate measurements. We evaluated whether changes occur in initial telomere length over multiple generations in three large datasets and identified paternal birth year (PBY) as a variable that reconciles the difference between longitudinal and cross-sectional measurements. We also clarify the association between FAB and offspring telomere length, demonstrating that this effect is substantially larger than reported in the past. These results indicate the presence of a downward secular trend in telomere length at birth over generational time with potential public health implications. PMID:25952108

  19. SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    PubMed Central

    Wan, Bingbing; Yin, Jinhu; Horvath, Kent; Sarkar, Jaya; Chen, Yong; Wu, Jian; Wan, Ke; Lu, Jian; Gu, Peili; Yu, Eun Young; Lue, Neal F.; Chang, Sandy

    2014-01-01

    Summary SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance. PMID:24012755

  20. Decreasing initial telomere length in humans intergenerationally understates age-associated telomere shortening.

    PubMed

    Holohan, Brody; De Meyer, Tim; Batten, Kimberly; Mangino, Massimo; Hunt, Steven C; Bekaert, Sofie; De Buyzere, Marc L; Rietzschel, Ernst R; Spector, Tim D; Wright, Woodring E; Shay, Jerry W

    2015-08-01

    Telomere length shortens with aging, and short telomeres have been linked to a wide variety of pathologies. Previous studies suggested a discrepancy in age-associated telomere shortening rate estimated by cross-sectional studies versus the rate measured in longitudinal studies, indicating a potential bias in cross-sectional estimates. Intergenerational changes in initial telomere length, such as that predicted by the previously described effect of a father's age at birth of his offspring (FAB), could explain the discrepancy in shortening rate measurements. We evaluated whether changes occur in initial telomere length over multiple generations in three large datasets and identified paternal birth year (PBY) as a variable that reconciles the difference between longitudinal and cross-sectional measurements. We also clarify the association between FAB and offspring telomere length, demonstrating that this effect is substantially larger than reported in the past. These results indicate the presence of a downward secular trend in telomere length at birth over generational time with potential public health implications.

  1. The yeast telomere length regulator TEL2 encodes a protein that binds to telomeric DNA.

    PubMed Central

    Kota, R S; Runge, K W

    1998-01-01

    TEL2 is required for telomere length regulation and viability in Saccharomyces cerevisiae. To investigate the mechanism by which Tel2p regulates telomere length, the majority (65%) of the TEL2 ORF was fused to the 3'-end of the gene for maltose binding protein, expressed in bacteria and the purified protein used in DNA binding studies. Rap1p, the major yeast telomere binding protein, recognizes a 13 bp duplex site 5'-GGTGTGTGGGTGT-3' in yeast telomeric DNA with high affinity. Gel shift experiments revealed that the MBP-Tel2p fusion binds the double-stranded yeast telomeric Rap1p site in a sequence-specific manner. Analysis of mutated sites showed that MBP-Tel2p could bind 5'-GTGTGTGG-3' within this 13 bp site. Methylation interference analysis revealed that Tel2p contacts the 5'-terminal guanine in the major groove. MBP-Tel2p did not bind duplex telomeric DNA repeats from vertebrates, Tetrahymena or Oxytricha. These results suggest that Tel2p is a DNA binding protein that recognizes yeast telomeric DNA. PMID:9490802

  2. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism

    PubMed Central

    Phatak, P; Cookson, J C; Dai, F; Smith, V; Gartenhaus, R B; Stevens, M F G; Burger, A M

    2007-01-01

    The pentacyclic acridinium methosulfate salt RHPS4 induces the 3′single-stranded guanine-rich telomeric overhang to fold into a G-quadruplex structure. Stabilisation of the latter is incompatible with an attachment of telomerase to the telomere and thus G-quadruplex ligands can effectively inhibit both the catalytic and capping functions of telomerase. In this study, we examined mechanisms underlying telomere uncapping by RHPS4 in uterus carcinoma cells (UXF1138L) with short telomeres and compared the susceptibility of bulk and clonogenic cancer cells to the G-quadruplex ligand. We show that treatment of UXF1138L cells with RHPS4 leads to the displacement of the telomerase catalytic subunit (hTERT) from the nucleus, induction of telomere-initiated DNA-damage signalling and chromosome fusions. We further report that RHPS4 is more potent against cancer cells that grow as colonies in soft agar than cells growing as monolayers. Human cord blood and HEK293T embryonic kidney cell colony forming units, however, were more resistant to RHPS4. RHPS4-treated UXF1138L xenografts had a decreased clonogenicity, showed loss of nuclear hTERT expression and an induction of mitotic abnormalities compared with controls. Although single-agent RHPS4 had limited in vivo efficacy, a combination of RHPS4 with the mitotic spindle poison Taxol caused tumour remissions and further enhancement of telomere dysfunction. PMID:17406367

  3. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism.

    PubMed

    Phatak, P; Cookson, J C; Dai, F; Smith, V; Gartenhaus, R B; Stevens, M F G; Burger, A M

    2007-04-23

    The pentacyclic acridinium methosulfate salt RHPS4 induces the 3'single-stranded guanine-rich telomeric overhang to fold into a G-quadruplex structure. Stabilisation of the latter is incompatible with an attachment of telomerase to the telomere and thus G-quadruplex ligands can effectively inhibit both the catalytic and capping functions of telomerase. In this study, we examined mechanisms underlying telomere uncapping by RHPS4 in uterus carcinoma cells (UXF1138L) with short telomeres and compared the susceptibility of bulk and clonogenic cancer cells to the G-quadruplex ligand. We show that treatment of UXF1138L cells with RHPS4 leads to the displacement of the telomerase catalytic subunit (hTERT) from the nucleus, induction of telomere-initiated DNA-damage signalling and chromosome fusions. We further report that RHPS4 is more potent against cancer cells that grow as colonies in soft agar than cells growing as monolayers. Human cord blood and HEK293T embryonic kidney cell colony forming units, however, were more resistant to RHPS4. RHPS4-treated UXF1138L xenografts had a decreased clonogenicity, showed loss of nuclear hTERT expression and an induction of mitotic abnormalities compared with controls. Although single-agent RHPS4 had limited in vivo efficacy, a combination of RHPS4 with the mitotic spindle poison Taxol caused tumour remissions and further enhancement of telomere dysfunction.

  4. Telomere stability and development of ctc1 mutants are rescued by inhibition of EJ recombination pathways in a telomerase-dependent manner

    PubMed Central

    Amiard, Simon; Olivier, Margaux; Allain, Elisabeth; Choi, Kyuha; Smith-Unna, Richard; Henderson, Ian R.; White, Charles I.; Gallego, Maria Eugenia

    2014-01-01

    The telomeres of linear eukaryotic chromosomes are protected by caps consisting of evolutionarily conserved nucleoprotein complexes. Telomere dysfunction leads to recombination of chromosome ends and this can result in fusions which initiate chromosomal breakage–fusion–bridge cycles, causing genomic instability and potentially cell death or cancer. We hypothesize that in the absence of the recombination pathways implicated in these fusions, deprotected chromosome ends will instead be eroded by nucleases, also leading to the loss of genes and cell death. In this work, we set out to specifically test this hypothesis in the plant, Arabidopsis. Telomere protection in Arabidopsis implicates KU and CST and their absence leads to chromosome fusions, severe genomic instability and dramatic developmental defects. We have analysed the involvement of end-joining recombination pathways in telomere fusions and the consequences of this on genomic instability and growth. Strikingly, the absence of the multiple end-joining pathways eliminates chromosome fusion and restores normal growth and development to cst ku80 mutant plants. It is thus the chromosomal fusions, per se, which are the underlying cause of the severe developmental defects. This rescue is mediated by telomerase-dependent telomere extension, revealing a competition between telomerase and end-joining recombination proteins for access to deprotected telomeres. PMID:25274733

  5. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation

    PubMed Central

    Lian, Hui-Yong; Robertson, E. Douglas; Hiraga, Shin-ichiro; Alvino, Gina M.; Collingwood, David; McCune, Heather J.; Sridhar, Akila; Brewer, Bonita J.; Raghuraman, M. K.; Donaldson, Anne D.

    2011-01-01

    DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length–mediated control of replication timing requires the TG1–3 repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG1–3 tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG1–3 repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed. PMID:21441303

  6. c-Myc quadruplex-forming sequence Pu-27 induces extensive damage in both telomeric and nontelomeric regions of DNA.

    PubMed

    Islam, Md Ashraful; Thomas, Shelia D; Murty, Vundavalli V; Sedoris, Kara J; Miller, Donald M

    2014-03-21

    Quadruplex-forming DNA sequences are present throughout the eukaryotic genome, including in telomeric DNA. We have shown that the c-Myc promoter quadruplex-forming sequence Pu-27 selectively kills transformed cells (Sedoris, K. C., Thomas, S. D., Clarkson, C. R., Muench, D., Islam, A., Singh, R., and Miller, D. M. (2012) Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol. Cancer Ther. 11, 66-76). In this study, we show that Pu-27 induces profound DNA damage, resulting in striking chromosomal abnormalities in the form of chromatid or chromosomal breaks, radial formation, and telomeric DNA loss, which induces γ-H2AX in U937 cells. Pu-27 down-regulates telomeric shelterin proteins, DNA damage response mediators (RAD17 and RAD50), double-stranded break repair molecule 53BP1, G2 checkpoint regulators (CHK1 and CHK2), and anti-apoptosis gene survivin. Interestingly, there are no changes of DNA repair molecules H2AX, BRCA1, and the telomere maintenance gene, hTERT. ΔB-U937, where U937 cells stably transfected with deleted basic domain of TRF2 is partially sensitive to Pu-27 but exhibits no changes in expression of shelterin proteins. However, there is an up-regulation of CHK1, CHK2, H2AX, BRCA1, and survivin. Telomere dysfunction-induced foci assay revealed co-association of TRF1with γ-H2AX in ATM deficient cells, which are differentially sensitive to Pu-27 than ATM proficient cells. Alt (alternating lengthening of telomere) cells are relatively resistant to Pu-27, but there are no significant changes of telomerase activity in both Alt and non-Alt cells. Lastly, we show that this Pu-27-mediated sensitivity is p53-independent. The data therefore support two conclusions. First, Pu-27 induces DNA damage within both telomeric and nontelomeric regions of the genome. Second, Pu-27-mediated telomeric damage is due, at least in part, to compromise of the telomeric shelterin protein complex.

  7. Medaka fish exhibits longevity gender gap, a natural drop in estrogen and telomere shortening during aging: a unique model for studying sex-dependent longevity

    PubMed Central

    2013-01-01

    for studying the direct effect of increased estrogen on telomere length and longevity without the breast cancer complications reported in rodents. The findings strongly support the notion that O. latipes is a unique non-mammalian model for validation of estrogenic influence on telomere and longevity in vertebrates. This laboratory model fish is of potential significance for deciphering the ostensibly conserved mechanism(s) of sex-associated longevity in vertebrates. PMID:24364913

  8. Leukocyte telomere length variation due to DNA extraction method.

    PubMed

    Denham, Joshua; Marques, Francine Z; Charchar, Fadi J

    2014-12-04

    Telomere length is indicative of biological age. Shorter telomeres have been associated with several disease and health states. There are inconsistencies throughout the literature amongst relative telomere length measured by quantitative PCR (qPCR) and different extraction methods or kits used. We quantified whole-blood leukocyte telomere length using the telomere to single copy gene (T/S) ratio by qPCR in 20 young (18-25 yrs) men after extracting DNA using three common extraction methods: Lahiri and Nurnberger (high salt) method, PureLink Genomic DNA Mini kit (Life Technologies) and QiaAmp DNA Mini kit (Qiagen). Telomere length differences of DNA extracted from the three extraction methods was assessed by one-way analysis of variance (ANOVA). DNA purity differed between extraction methods used (P=0.01). Telomere length was impacted by the DNA extraction method used (P=0.01). Telomeres extracted using the Lahiri and Nurnberger method (mean T/S ratio: 2.43, range: 1.57-3.02) and PureLink Genomic DNA Mini Kit (mean T/S ratio: 2.57, range: 2.24-2.80) did not differ (P=0.13). Likewise, QiaAmp and Purelink-extracted telomeres were not statistically different (P=0.14). The Lahiri-extracted telomeres, however, were significantly shorter than those extracted using the QiaAmp DNA Mini Kit (mean T/S ratio: 2.71, range: 2.32-3.02; P=0.003). DNA purity was associated with telomere length. There are discrepancies between the length of leukocyte telomeres extracted from the same individuals according to the DNA extraction method used. DNA purity could be responsible for the discrepancy in telomere length but this will require validation studies. We recommend using the same DNA extraction kit when quantifying leukocyte telomere length by qPCR or when comparing different cohorts to avoid erroneous associations between telomere length and traits of interest.

  9. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins

    PubMed Central

    Vedelek, Balázs; Blastyák, András; Boros, Imre M.

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction. PMID:26566042

  10. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.

    PubMed

    Vedelek, Balázs; Blastyák, András; Boros, Imre M

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.

  11. Structure of the Drosophila HeT-A transposon: a retrotransposon-like element forming telomeres.

    PubMed

    Danilevskaya, O; Slot, F; Pavlova, M; Pardue, M L

    1994-06-01

    Telomeres of Drosophila appear to be very different from those of other organisms. A transposable element, HeT-A, plays a major role in forming telomeres and may be the sole structural element, since telomerase-generated repeats are not found. HeT-A transposes only to chromosome ends. It appears to be a retrotransposon but has novel structural features, which may be related to its telomere functions. A consensus sequence from cloned HeT-A elements defines an element of approximately 6 kb. The coding region has retrotransposon-like overlapping open reading frames (ORFs) with a -1 frameshift in a sequence resembling the frameshift region of the mammalian HIV-1 retrovirus. Both the HeT-A ORFs contain motifs suggesting RNA binding. HeT-A-specific features include a long non-coding region, 3' of the ORFs, which makes up about half of the element. This region has a regular array of imperfect sequence repeats and ends with oligo(A), marking the end of the element and suggesting a polyadenylated RNA transposition intermediate. This 3' repeat region may have a structural role in heterochromatin. The most distal part of each complete HeT-A on the chromosome, the region 5' of the ORFs, has unusual conserved features, which might produce a terminal structure for the chromosome.

  12. Tetrafluoroethylene telomerization initiated by benzoyl peroxide

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. I.; Kuzina, S. I.; Kiryukhin, D. P.

    2017-03-01

    The radical telomerization of tetrafluoroethylene initiated by benzoyl peroxide (BP) photolysis at λ ≥ 365 nm is studied in acetone, dichloromethane, carbon tetrachloride, and Freon 114B2 at 25°C. The products of synthesis are a mixture of telomers of different molar masses, segregated into soluble and insoluble fractions. To characterize the radicals initiating telomerization, crystalline BP and its solution in ethanol are subjected to low-temperature (77 K) photolysis, with the liquid system serving as a model for BP behavior in solutions of telogens. It is established that radicals are not only initiators but also participate in chain termination reactions, lowering the telomers' molar mass and thus raising the proportion of the soluble fraction. Telomerization initiated by an initiator compound versus initiation by gamma radiation are compared and discussed.

  13. Insomnia and Telomere Length in Older Adults.

    PubMed

    Carroll, Judith E; Esquivel, Stephanie; Goldberg, Alyssa; Seeman, Teresa E; Effros, Rita B; Dock, Jeffrey; Olmstead, Richard; Breen, Elizabeth C; Irwin, Michael R

    2016-03-01

    Insomnia, particularly in later life, may raise the risk for chronic diseases of aging and mortality through its effect on cellular aging. The current study examines the effects of insomnia on telomere length, a measure of cellular aging, and tests whether insomnia interacts with chronological age to increase cellular aging. A total of 126 males and females (60-88 y) were assessed for insomnia using the Diagnostic and Statistical Manual IV criterion for primary insomnia and the International Classification of Sleep Disorders, Second Edition for general insomnia (45 insomnia cases; 81 controls). Telomere length in peripheral blood mononuclear cells (PBMC) was determined using real-time quantitative polymerase chain reaction (qPCR) methodology. In the analysis of covariance model adjusting for body mass index and sex, age (60-69 y versus 70-88 y) and insomnia diagnosis interacted to predict shorter PBMC telomere length (P = 0.04). In the oldest age group (70-88 y), PBMC telomere length was significantly shorter in those with insomnia, mean (standard deviation) M(SD) = 0.59(0.2) compared to controls with no insomnia M(SD) = 0.78(0.4), P = 0.04. In the adults aged 60-69 y, PBMC telomere length was not different between insomnia cases and controls, P = 0.44. Insomnia is associated with shorter PBMC telomere length in adults aged 70-88 y, but not in those younger than 70 y, suggesting that clinically severe sleep disturbances may increase cellular aging, especially in the later years of life. These findings highlight insomnia as a vulnerability factor in later life, with implications for risk for diseases of aging. © 2016 Associated Professional Sleep Societies, LLC.

  14. Comparison of telomere length and association with progenitor cell markers in lacrimal gland between Sjögren syndrome and non-Sjögren syndrome dry eye patients.

    PubMed

    Kawashima, Motoko; Kawakita, Tetsuya; Maida, Yoshiko; Kamoi, Mizuka; Ogawa, Yoko; Shimmura, Shigeto; Masutomi, Kenkichi; Tsubota, Kazuo

    2011-01-01

    Indicators of aging such as disruption of telomeric function due to shortening may be more frequent in dysfunctional lacrimal gland. The aims of this study were to 1) determine the viability of quantitative fluorescence in situ hybridization of telomeres (telo-FISH) for the assessment of telomere length in lacrimal gland in Sjögren and non- Sjögren syndrome patients; and 2) investigate the relationship between progenitor cell markers and telomere length in both groups. Quantitative fluorescence in situ hybridization with a peptide nucleic acid probe complementary to the telomere repeat sequence was performed on frozen sections from human lacrimal gland tissues. The mean fluorescence intensity of telomere spots was automatically quantified by image analysis as relative telomere length in lacrimal gland epithelial cells. Immunostaining for p63, nucleostemin, ATP-binding cassette, sub-family G, member 2 (ABCG2), and nestin was also performed. Telomere intensity in the Sjögren syndrome group (6,785.0±455) was significantly lower than that in the non-Sjögren syndrome group (7,494.7±477; p=0.02). Among the samples from the non-Sjögren syndrome group, immunostaining revealed that p63 was expressed in 1-3 acinar cells in each acinar unit and continuously in the basal layer of duct cells. In contrast, in the Sjögren syndrome group, p63 and nucleostemin showed a lower level of expression. ABCG2 was expressed in acinar cells in both sjogren and non-Sjogren syndrome. The results of this study indicate that 1) telo-FISH is a viable method of assessing telomere length in lacrimal gland, and 2) telomere length in Sjögren syndrome is shorter and associated with lower levels of expression of p63 and nucleostemin than in non-Sjögren syndrome.

  15. Comparison of telomere length and association with progenitor cell markers in lacrimal gland between Sjögren syndrome and non-Sjögren syndrome dry eye patients

    PubMed Central

    Kawashima, Motoko; Maida, Yoshiko; Kamoi, Mizuka; Ogawa, Yoko; Shimmura, Shigeto; Masutomi, Kenkichi; Tsubota, Kazuo

    2011-01-01

    Purpose Indicators of aging such as disruption of telomeric function due to shortening may be more frequent in dysfunctional lacrimal gland. The aims of this study were to 1) determine the viability of quantitative fluorescence in situ hybridization of telomeres (telo-FISH) for the assessment of telomere length in lacrimal gland in Sjögren and non- Sjögren syndrome patients; and 2) investigate the relationship between progenitor cell markers and telomere length in both groups. Methods Quantitative fluorescence in situ hybridization with a peptide nucleic acid probe complementary to the telomere repeat sequence was performed on frozen sections from human lacrimal gland tissues. The mean fluorescence intensity of telomere spots was automatically quantified by image analysis as relative telomere length in lacrimal gland epithelial cells. Immunostaining for p63, nucleostemin, ATP-binding cassette, sub-family G, member 2 (ABCG2), and nestin was also performed. Results Telomere intensity in the Sjögren syndrome group (6,785.0±455) was significantly lower than that in the non-Sjögren syndrome group (7,494.7±477; p=0.02). Among the samples from the non-Sjögren syndrome group, immunostaining revealed that p63 was expressed in 1–3 acinar cells in each acinar unit and continuously in the basal layer of duct cells. In contrast, in the Sjögren syndrome group, p63 and nucleostemin showed a lower level of expression. ABCG2 was expressed in acinar cells in both sjogren and non-Sjogren syndrome. Conclusions The results of this study indicate that 1) telo-FISH is a viable method of assessing telomere length in lacrimal gland, and 2) telomere length in Sjögren syndrome is shorter and associated with lower levels of expression of p63 and nucleostemin than in non-Sjögren syndrome. PMID:21655359

  16. The role of telomere dynamics in aging and cancer

    NASA Astrophysics Data System (ADS)

    Blagoev, Krastan; Goodwin, Edwin

    2006-03-01

    Telomere length changes are far more dynamic than previously thought. In addition to a gradual loss of ˜100 base pairs per telomere in each cell division, losses as well as gains may occur within a single cell cycle. We are investigating how telomere exchange, extension, and deletion affect the proliferative potential of telomerase-negative somatic cells. Experimental techniques are being devised to detect dynamic telomere processes and quantify both the frequency and length changes of each. In parallel, a ``dynamic telomere model'' is being used that incorporates telomere dynamics to study how the telomere size distribution evolves with time. This is an essential step towards understanding the role that telomere dynamics play in the normal aging of tissues and organisms. The model casts light on relationships not otherwise easily explained by a deterministic ``mitotic clock,'' or to what extent the shortest initial telomere determines the onset of senescence. We also expect to identify biomarkers that will correlate with aging better than average telomere length and to shed light on the transition to unlimited growth found in telomerase-negative tumor cells having the ALT (alternative lengthening of telomeres) phenotype, and to evaluate strategies to suppress the growth of these tumors.

  17. Changes of telomere status with aging: An update.

    PubMed

    Ishikawa, Naoshi; Nakamura, Ken-Ichi; Izumiyama-Shimomura, Naotaka; Aida, Junko; Matsuda, Yoko; Arai, Tomio; Takubo, Kaiyo

    2016-03-01

    Accumulated data have shown that most human somatic cells or tissues show irreversible telomere shortening with age, and that there are strong associations between telomere attrition and aging-related diseases, including cancers, diabetes and cognitive disorders. Although it has been largely accepted that telomere attrition is one of the major causes of aging-related disorders, critical aspects of telomere biology remain unresolved, especially the lack of standardized methodology for quantification of telomere length. Another frustrating issue is that no potentially promising methods for safe prevention of telomere erosion, or for telomere elongation, have been devised. Here, we review several methods for quantification of telomere length currently utilized worldwide, considering their advantages and drawbacks. We also summarize the results of our recent studies of human cells and tissues, mainly using quantitative fluorescence in situ hybridization and Southern blotting, including those derived from patients with progeria-prone Werner syndrome and trisomy 21, and several strains of induced pluripotent stem cells. We discuss the possible merits of using telomere shortness as an indicator, or a new marker, for diagnosis of precancerous states and aging-related disorders. In addition, we describe newly found factors that are thought to impact telomere dynamics, providing a new avenue for examining the unsolved issues related to telomere restoration and maintenance. © 2016 Japan Geriatrics Society.

  18. Telomere length regulation during cloning, embryogenesis and ageing.

    PubMed

    Schaetzlein, S; Rudolph, K L

    2005-01-01

    Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes with an essential role in chromosome capping. Owing to the end-replication problem of DNA polymerase, telomeres shorten during each cell division. When telomeres become critically short, they loose their capping function, which in turn induces a DNA damage-like response. This mechanism inhibits cell proliferation at the senescence stage and there is evidence that it limits the regenerative capacity of tissues and organs during chronic diseases and ageing. The holoenzyme telomerase synthesises telomeric DNA de novo, but, in humans, it is active only during embryogenesis, in immature germ cells and in a subset of stem/progenitor cells during postnatal life. Telomere length can be maintained or increased by telomerase, a process that appears to be regulated by a variety of telomere-binding proteins that control telomerase recruitment and activity at the telomeres. During embryogenesis, telomerase is strongly activated at the morula/blastocyst transition. At this transition, telomeres are significantly elongated in murine and bovine embryos. Early embryonic telomere elongation is telomerase dependent and leads to a rejuvenation of telomeres in cloned bovine embryos. Understanding of the molecular mechanisms underlying this early embryonic telomere elongation programme is of great interest for medical research in the fields of regeneration, cell therapies and therapeutic cloning.

  19. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  20. Telomere length and genetic anticipation in Lynch syndrome.

    PubMed

    Seguí, Nuria; Pineda, Marta; Guinó, Elisabet; Borràs, Ester; Navarro, Matilde; Bellido, Fernando; Moreno, Victor; Lázaro, Conxi; Blanco, Ignacio; Capellá, Gabriel; Valle, Laura

    2013-01-01

    Telomere length variation has been associated with increased risk of several types of tumors, and telomere shortening, with genetic anticipation in a number of genetic diseases including hereditary cancer syndromes. No conclusive studies have been performed for Lynch syndrome, a hereditary colorectal cancer syndrome caused by germline mutations in the DNA mismatch repair genes. Here we evaluate telomere length in Lynch syndrome, both as a cancer risk factor and as a mechanism associated with anticipation in the age of cancer onset observed in successive generations of Lynch syndrome families. Leukocyte telomere length was measured in 244 mismatch repair gene mutation carriers from 96 Lynch syndrome families and in 234 controls using a monochrome multiplex quantitative PCR method. Cancer-affected mutation carriers showed significantly shorter telomeres than cancer-free mutation carriers. In addition, cancer-affected carriers showed the most pronounced shortening of telomere length with age, compared with unaffected carriers. The anticipation in the age of cancer onset observed in successive generations was not associated with telomere shortening, although, interestingly, all mother-son pairs showed telomere shortening. In conclusion, cancer-affected mismatch repair gene mutation carriers have distinct telomere-length pattern and dynamics. However, anticipation in the age of onset is not explained by telomere shortening. Pending further study, our findings suggest that telomere attrition might explain the previously reported dependence of cancer risk on the parent-of-origin of mismatch repair gene mutations.

  1. Telomere Length and Genetic Anticipation in Lynch Syndrome

    PubMed Central

    Seguí, Nuria; Pineda, Marta; Guinó, Elisabet; Borràs, Ester; Navarro, Matilde; Bellido, Fernando; Moreno, Victor; Lázaro, Conxi; Blanco, Ignacio; Capellá, Gabriel; Valle, Laura

    2013-01-01

    Telomere length variation has been associated with increased risk of several types of tumors, and telomere shortening, with genetic anticipation in a number of genetic diseases including hereditary cancer syndromes. No conclusive studies have been performed for Lynch syndrome, a hereditary colorectal cancer syndrome caused by germline mutations in the DNA mismatch repair genes. Here we evaluate telomere length in Lynch syndrome, both as a cancer risk factor and as a mechanism associated with anticipation in the age of cancer onset observed in successive generations of Lynch syndrome families. Leukocyte telomere length was measured in 244 mismatch repair gene mutation carriers from 96 Lynch syndrome families and in 234 controls using a monochrome multiplex quantitative PCR method. Cancer-affected mutation carriers showed significantly shorter telomeres than cancer-free mutation carriers. In addition, cancer-affected carriers showed the most pronounced shortening of telomere length with age, compared with unaffected carriers. The anticipation in the age of cancer onset observed in successive generations was not associated with telomere shortening, although, interestingly, all mother-son pairs showed telomere shortening. In conclusion, cancer-affected mismatch repair gene mutation carriers have distinct telomere-length pattern and dynamics. However, anticipation in the age of onset is not explained by telomere shortening. Pending further study, our findings suggest that telomere attrition might explain the previously reported dependence of cancer risk on the parent-of-origin of mismatch repair gene mutations. PMID:23637804

  2. Telomere length in bipolar disorder and lithium response.

    PubMed

    Squassina, Alessio; Pisanu, Claudia; Corbett, Nathan; Alda, Martin

    2017-06-01

    Telomeres consist of exanucleotide tandem repeats and proteins complexes at the end of chromosome ends. Telomeres shorten at each cell division, and as such telomere length is a marker of cellular age. Accelerated telomere shortening and cell senescence have been associated with a number of chronic medical conditions, including psychiatric disorders, where increased prevalence of age-related disorders and shorter telomere length have been reported. Shorter telomeres in psychiatric patients are thought to be the consequence of allostatic load, consisting in the overactivation of allostatic systems due to chronic exposure to severe medical conditions and failure to adapt to chronic stressful stimuli. Most of the studies on telomere length in psychiatry have focused on major depressive disorder, but recent findings have shown shorter leukocyte telomere length in bipolar disorder patients and suggested that lithium may counteract telomeres shortening. These findings provided new insights into the pathophysiology of bipolar disorder and the mechanism of action of lithium. In this review we will present findings from the literature on telomere length in bipolar disorder, with a specific focus on lithium. We will also discuss advances and limitations of published work as well as methodological issues and potential confounding factors that should be taken into account when designing research protocols to study telomere length. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  3. Essential role of the Cdk2 activator RingoA in meiotic telomere tethering to the nuclear envelope

    PubMed Central

    Mikolcevic, Petra; Isoda, Michitaka; Shibuya, Hiroki; del Barco Barrantes, Ivan; Igea, Ana; Suja, José A.; Shackleton, Sue; Watanabe, Yoshinori; Nebreda, Angel R.

    2016-01-01

    Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO) mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic defects virtually identical to those observed in Cdk2 KO mice including non-homologous chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO spermatocytes display severely affected telomere tethering as well as impaired distribution of Sun1, a protein essential for the attachment of telomeres to the nuclear envelope. Our results identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins. PMID:27025256

  4. Relative telomere lengths in tumor and normal mucosa are related to disease progression and chromosome instability profiles in colorectal cancer

    PubMed Central

    Jorissen, Robert N.; Hampson, Debbie; Ghosh, Anil; Sengupta, Neel; Thaha, Mohamed; Ahmed, Shafi; Kirwan, Michael; Aleva, Floor; Propper, David; Feakins, Roger M.; Vulliamy, Tom; Elwood, Ngaire J.; Tian, Pei; Ward, Robyn L.; Hawkins, Nicholas J.; Xu, Zheng-Zhou; Molloy, Peter L.; Jones, Ian T.; Croxford, Matthew; Gibbs, Peter; Silver, Andrew; Sieber, Oliver M.

    2016-01-01

    Telomeric dysfunction is linked to colorectal cancer (CRC) initiation. However, the relationship of normal tissue and tumor telomere lengths with CRC progression, molecular features and prognosis is unclear. Here, we measured relative telomere length (RTL) by real-time quantitative PCR in 90 adenomas (aRTL), 419 stage I-IV CRCs (cRTL) and adjacent normal mucosa (nRTL). Age-adjusted RTL was analyzed against germline variants in telomere biology genes, chromosome instability (CIN), microsatellite instability (MSI), CpG island methylator phenotype (CIMP), TP53, KRAS, BRAF mutations and clinical outcomes. In 509 adenoma or CRC patients, nRTL decreased with advancing age. Female gender, proximal location and the TERT rs2736100 G allele were independently associated with longer age-adjusted nRTL. Adenomas and carcinomas exhibited telomere shortening in 79% and 67% and lengthening in 7% and 15% of cases. Age-adjusted nRTL and cRTL were independently associated with tumor stage, decreasing from adenoma to stage III and leveling out or increasing from stage III to IV, respectively. Cancer MSI, CIMP, TP53, KRAS and BRAF status were not related to nRTL or cRTL. Near-tetraploid CRCs exhibited significantly longer cRTLs than CIN- and aneuploidy CRCs, while cRTL was significantly shorter in CRCs with larger numbers of chromosome breaks. Age-adjusted nRTL, cRTL or cRTL:nRTL ratios were not associated with disease-free or overall survival in stage II/III CRC. Taken together, our data show that both normal mucosa and tumor RTL are independently associated with CRC progression, and highlight divergent associations of CRC telomere length with tumor CIN profiles. PMID:27167335

  5. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

    PubMed

    Moravec, Martin; Wischnewski, Harry; Bah, Amadou; Hu, Yan; Liu, Na; Lafranchi, Lorenzo; King, Megan C; Azzalin, Claus M

    2016-07-01

    Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Sch