1970-01-01
dlcarbide (Cr5C2) Heptachromium tricarbide (CrTCj) Chromium chlorides: CrCl2 CrClj Chromium dichloride (CrC^) Chromium trichloride (CrC...methane (see Propane) Dysprosia (see Dysprosium oxide) Dysprosium Dysprosium trichloride hexahydrate (DyClj-6HjO) Dysprosium oxide (DyjOj...Dysprosium sesquioxide (see Dysprosium oxide) Didysprosium trioxide (see Dysprosium oxide) Erbia (see Erbium oxide) Erbium Erbium trichloride
Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons
NASA Astrophysics Data System (ADS)
Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.
2015-07-01
Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).
2015-01-01
by the graduate fellow’s faculty committee. C O R P O R A T I O N Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Portfolio Approach to Dysprosium Policy Design David L. An Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Permanent Magnet ................................................ xxiv Dysprosium, the Most Critical Rare Earth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaques, Brian; Butt, Darryl P.; Marx, Brian M.
A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavingsmore » in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)« less
An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.
Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro
2013-01-01
Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.
Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang
2013-11-21
Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.
Semiconductor composition containing iron, dysprosium, and terbium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.
An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.
Conzone, Samuel D; Brown, Roger F; Day, Delbert E; Ehrhardt, Gary J
2002-05-01
Dysprosium lithium borate (DyLB) glass microspheres were investigated for use in the radiation synovectomy treatment of rheumatoid arthritis. In vitro testing focused on weight loss and cation dissolution from glass microspheres immersed in simulated synovial fluid (SSF) at 37 degrees C for up to 64 days. In vivo testing was performed by injecting glass microspheres into the stifle joints of Sprague-Dawley rats and monitoring the biodegradability of the microspheres and the tissue response within the joints. The DyLB microspheres reacted nonuniformly in SSF with the majority of lithium and boron being dissolved, whereas nearly all of the dysprosium (>99.7%) remained in the reacted microspheres. Because the DyLB glasses released negligible amounts of dysprosium while reacting with SSF, they are considered safe for radiation synovectomy from the standpoint of unwanted radiation release from the joint capsule. Furthermore, the DyLB microspheres fragmented, degraded, and reacted with body fluids while in the joints of rats without histologic evidence of joint damage. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 260--268, 2002; DOI 10.1002/jbm.10047
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9511 Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new...
Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.
Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song
2011-09-14
Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized. This journal is © The Royal Society of Chemistry 2011
Shang, Hong; Zeng, Suyuan; Wang, Hailong; Dou, Jianmin; Jiang, Jianzhuang
2015-01-01
Two tetrakis(phthalocyaninato) dysprosium(III)-cadmium(II) single-molecule magnets (SMMs) with different extent of phthalocyanine peripheral substitution and therefore different coordination geometry for the Dy ions were revealed to exhibit different SMM behavior, providing an easy way to tuning and controlling the molecular structure and in turn the magnetic properties of tetrakis(tetrapyrrole) lanthanide SMMs through simple tetrapyrrole peripheral substitution. PMID:25744587
{Delta}I = 2 energy staggering in normal deformed dysprosium nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.A.; Brown, T.B.; Archer, D.E.
1996-12-31
Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
NASA Technical Reports Server (NTRS)
Flood, D. J.
1974-01-01
A measurement technique was devised which permits direct observation of the magnetic entropy of solids as a function of applied magnetic field. Measurements were made of the magnetic entropy, in the temperature range 2 to 20 K, of polycrystalline samples of dysprosium titanium oxide (Dy2Ti2O7) to determine its suitability for use as the working substance of a magnetic refrigerator. Magnetization measurements were also made at 4.2 K and below to provide additional information on the nature of the compound. The measurements indicated that crystalline electric fields perturbed the ground state of the dysprosium ions, removed the 16-fold degeneracy predicted by Hund's rules, and left only a twofold degeneracy in its place. A positive, temperature independent contribution to the magnetization was observed in the saturation region, which indicated that the doublet ground-state wave function was perturbed by a nearby unpopulated upper energy level.
Maskalick, Nicholas J.
1988-08-30
Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.
Relaxation dynamics of dysprosium(III) single molecule magnets.
Guo, Yun-Nan; Xu, Gong-Feng; Guo, Yang; Tang, Jinkui
2011-10-21
Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs. This journal is © The Royal Society of Chemistry 2011
Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots
NASA Astrophysics Data System (ADS)
Hosseini, Morteza; Ganjali, Mohammad R.; Vaezi, Zahra; Faridbod, Farnoush; Arabsorkhi, Batool; Sheikhha, Mohammad H.
2014-03-01
The intensity of emitted light from CdSe quantum dots (QDs)-H2O2 is described as a novel chemiluminescence (CL) reaction for determination of dysprosium. This reaction is based on the catalytic effect of Dy3+ ions, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 8.3 × 10-7-5.0 × 10-6 M, the detection limit of 6.0 × 10-8 M, and the relative standard deviation for five determinations of 2.5 × 10-6 M Dy3+ 3.2%. The main experimental advantage of the proposed method is its selective to Dy3+ ions compared with common coexisting cations, therefore, it was successfully applied for the determination of dysprosium ions in water samples.
Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber.
Majewski, Matthew R; Woodward, Robert I; Carreé, Jean-Yves; Poulain, Samuel; Poulain, Marcel; Jackson, Stuart D
2018-04-15
Optical emission from rare-earth-doped fluoride fibers has thus far been limited to less than 4 μm. We extend emission beyond this limit by employing an indium fluoride (InF 3 ) glass fiber as the host, which exhibits an increased infrared transparency over commonly used zirconium fluoride (ZBLAN). Near-infrared pumping of a dysprosium-doped InF 3 fiber results in broad emission centered around 4.3 μm, representing the longest emission yet achieved from a fluoride fiber. The first laser emission in an InF 3 fiber is also demonstrated from the 3 μm dysprosium transition. Finally, a frequency domain excited state lifetime measurement comparison between fluoride hosts suggests that multiphonon effects are significantly reduced in indium fluoride fiber, paving the way to more efficient, longer wavelength lasers compared to ZBLAN fibers.
Glass microspheres for medical applications
NASA Astrophysics Data System (ADS)
Conzone, Samuel David
Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass microspheres containing 3.7 GBq of 186Re and 8.5 GBq of 188Re could be used to deliver a 100 Gy dose to a cancerous tumor, while limiting the total body dose caused by rhenium dissolution to approximately 1 mGy.
Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik
2014-10-21
Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.
Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.
Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun
2016-02-01
Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.
Making two dysprosium atoms rotate —Einstein-de Haas effect revisited
NASA Astrophysics Data System (ADS)
Górecki, Wojciech; Rzążewski, Kazimierz
2016-10-01
We present a numerical study of the behaviour of two magnetic dipolar atoms trapped in a harmonic potential and exhibiting the standard Einstein-de Haas effect while subject to a time-dependent homogeneous magnetic field. Using a simplified description of the short-range interaction and the full expression for the dipole-dipole forces we show that under experimentally realisable conditions two dysprosium atoms may be pumped to a high (l > 20) value of the relative orbital angular momentum.
Nilsen, Joseph
1991-01-01
An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.
2009-08-15
In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.
Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop
2017-05-01
Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.
Berger, Claudia A; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo
2016-08-07
The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.
NASA Astrophysics Data System (ADS)
Salama, E.; Soliman, H. A.
2018-07-01
In this paper, thermoluminescence glow curves of gamma irradiated magnesium borate glass doped with dysprosium were studied. The number of interfering peaks and in turn the number of electron trap levels are determined using the Repeated Initial Rise (RIR) method. At different heating rates (β), the glow curves were deconvoluted into two interfering peaks based on the results of RIR method. Kinetic parameters such as trap depth, kinetic order (b) and frequency factor (s) for each electron trap level is determined using the Peak Shape (PS) method. The obtained results indicated that, the magnesium borate glass doped with dysprosium has two electron trap levels with the average depth energies of 0.63 and 0.79 eV respectively. These two traps have second order kinetic and are formed at low temperature region. The obtained results due to the glow curve analysis could be used to explain some observed properties such as, high thermal fading and light sensitivity for such thermoluminescence material. In this work, systematic procedures to determine the kinetic parameters of any thermoluminescence material are successfully introduced.
Structure of dysprosium(111) dl-tartrate dimer in aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevela, V.V.; Vulfson, S.G.; Salnikov, Y.I.
1994-10-01
The paramagnetic birefringence method was supplemented by numerical simulation to determine the molar paramagnetic-birefringence constant of the dysprosium dl-tartrate dimer Dy{sub 2}(d-L)(l-L){sup 2-} (I), where d-L{sup 4-} and l-L{sup 4-} are the deprotonated d- and l-tartaric acid molecules, respectively. The structure of the ligand and hydration surroundings of I was modeled by molecular mechanic calculations (the Dashevskii-Pylamovatyi model). It is shown that adequate results can be obtained only if one takes into account the coordination of I to the Na{sup +} ion.
Poly[[[μ3-N′-(carboxymethyl)ethylenediamine-N,N,N′-triacetato]dysprosium(III)] trihydrate
Zhuang, Xiaomei; Long, Qingping; Wang, Jun
2010-01-01
In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carboxymethyl)ethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H⋯O hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network. PMID:21588859
Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.
1997-12-02
Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.
Page, Ralph H.; Schaffers, Kathleen I.; Payne, Stephen A.; Krupke, William F.; Beach, Raymond J.
1997-01-01
Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid
NASA Astrophysics Data System (ADS)
Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo
2016-07-01
The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01351A
Ishikawa, Naoto; Mizuno, Yoshifumi; Takamatsu, Satoshi; Ishikawa, Tadahiko; Koshihara, Shin-ya
2008-11-17
Chemically induced longitudinal contraction of the square-antiprism coordination polyhedron of a peripherically substituted bis(phthalocyaninato)dysprosiumate(III), a dysprosium-based single-4f-ionic single-molecule magnet having a J z = +/- (13)/ 2 Kramers doublet ground state, resulted in drastic changes in dynamical magnetism including a doubling of the energy barrier, a 2-order-of-magnitude decrease of the spin reversal rate, a significant rise of the blocking temperature, and the first observation of the emergence of a large remanent magnetization.
Accurate Determination of the Dynamical Polarizability of Dysprosium
NASA Astrophysics Data System (ADS)
Ravensbergen, C.; Corre, V.; Soave, E.; Kreyer, M.; Tzanova, S.; Kirilov, E.; Grimm, R.
2018-06-01
We report a measurement of the dynamical polarizability of dysprosium atoms in their electronic ground state at the optical wavelength of 1064 nm, which is of particular interest for laser trapping experiments. Our method is based on collective oscillations in an optical dipole trap, and reaches unprecedented accuracy and precision by comparison with an alkali atom (potassium) as a reference species. We obtain values of 184.4(2.4) and 1.7(6) a.u. for the scalar and tensor polarizability, respectively. Our experiments have reached a level that permits meaningful tests of current theoretical descriptions and provides valuable information for future experiments utilizing the intriguing properties of heavy lanthanide atoms.
Crystallographic phases in heavy rare earth metals under megabar pressures
NASA Astrophysics Data System (ADS)
Samudrala, G. K.; Vohra, Y. K.
2012-07-01
Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.
Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less
Two-species five-beam magneto-optical trap for erbium and dysprosium
NASA Astrophysics Data System (ADS)
Ilzhöfer, P.; Durastante, G.; Patscheider, A.; Trautmann, A.; Mark, M. J.; Ferlaino, F.
2018-02-01
We report on the first realization of a two-species magneto-optical trap (MOT) for the highly magnetic erbium and dysprosium atoms. The MOT operates on an intercombination line for the respective species. Owing to the narrow-line character of such a cooling transition and the action of gravity, we demonstrate a trap geometry employing only five beams in the orthogonal configuration. We observe that the mixture is cooled and trapped very efficiently, with up to 5 ×108 Er atoms and 109 Dy atoms at temperatures of about 10 μ K . Our results offer an ideal starting condition for the creation of a dipolar quantum mixture of highly magnetic atoms.
Performance assessment of imaging plates for the JHR transfer Neutron Imaging System
NASA Astrophysics Data System (ADS)
Simon, E.; Guimbal, P. AB(; )
2018-01-01
The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.
Chilton, Nicholas F; Deacon, Glen B; Gazukin, Olga; Junk, Peter C; Kersting, Berthold; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Schleife, Frederik; Shome, Mahasish; Turner, David R; Walker, Julia A
2014-03-03
Three complexes of the form [Ln(III)3(OQ)9] (Ln = Gd, Tb, Dy; OQ = 8-quinolinolate) have been synthesized and their magnetic properties studied. The trinuclear complexes adopt V-shaped geometries with three bridging 8-quinolinolate oxygen atoms between the central and peripheral eight-coordinate metal atoms. The magnetic properties of these three complexes differ greatly. Variable-temperature direct-current (dc) magnetic susceptibility measurements reveal that the gadolinium and terbium complexes display weak antiferromagnetic nearest-neighbor magnetic exchange interactions. This was quantified in the isotropic gadolinium case with an exchangecoupling parameter of J = -0.068(2) cm(-1). The dysprosium compound displays weak ferromagnetic exchange. Variable-frequency and -temperature alternating-current magnetic susceptibility measurements on the anisotropic cases reveal that the dysprosium complex displays single-molecule-magnet behavior, in zero dc field, with two distinct relaxation modes of differing time scales within the same molecule. Analysis of the data revealed anisotropy barriers of Ueff = 92 and 48 K for the two processes. The terbium complex, on the other hand, displays no such behavior in zero dc field, but upon application of a static dc field, slow magnetic relaxation can be observed. Ab initio and electrostatic calculations were used in an attempt to explain the origin of the experimentally observed slow relaxation of the magnetization for the dysprosium complex.
Analysis of soft x-ray emission spectra of laser-produced dysprosium, erbium and thulium plasmas
NASA Astrophysics Data System (ADS)
Sheil, John; Dunne, Padraig; Higashiguchi, Takeshi; Kos, Domagoj; Long, Elaine; Miyazaki, Takanori; O'Reilly, Fergal; O'Sullivan, Gerard; Sheridan, Paul; Suzuki, Chihiro; Sokell, Emma; White, Elgiva; Kilbane, Deirdre
2017-03-01
Soft x-ray emission spectra of dysprosium, erbium and thulium ions created in laser-produced plasmas were recorded with a flat-field grazing-incidence spectrometer in the 2.5-8 nm spectral range. The ions were produced using an Nd:YAG laser of 7 ns pulse duration and the spectra were recorded at various power densities. The experimental spectra were interpreted with the aid of the Cowan suite of atomic structure codes and the flexible atomic code. At wavelengths above 5.5 nm the spectra are dominated by overlapping n = 4 - n = 4 unresolved transition arrays from adjacent ion stages. Below 6 nm, n = 4 - n = 5 transitions also give rise to a series of interesting overlapping spectral features.
Preparation and properties of porous microspheres made from borate glass.
Conzone, Samuel D; Day, Delbert E
2009-02-01
Dysprosium lithium-borate glass microspheres and particles, ranging from 45 to 150 microm in diameter, were reacted with a 0.25 M phosphate solution at 37 degrees C, whose pH was either 3 or 8.8. The glass reacted nonuniformly and was converted into a porous, amorphous, hydrated, dysprosium phosphate reaction product. The amorphous product had the same volume and shape (pseudomorphic) as the unreacted glass, and could be dried without cracking. After heating at 300 degrees C for 1 h, the amorphous reaction product had a specific surface area of approximately 200 m(2)/g, a pore size of approximately 30 nm, and nominal crushing strength of approximately 10 MPa. When the reaction product was heated to 600 degrees C for 15 min, the specific surface area decreased to approximately 90 m(2)/g and the nominal crushing strength increased to 35 MPa. Heating above 615 degrees C converted the amorphous dysprosium phosphate product into crystalline DyPO(4), which contained open porosity until heated above 800 degrees C for 15 min. Highly porous materials of different chemical composition can be prepared by chemically reacting a borate-based glass with an aqueous solution at low-temperature (<100 degrees C). These highly porous materials are easy to process, and are considered candidates for controlled drug delivery, catalysis, chromatographic separation, filtration, and as bioactive materials.
Watt-level dysprosium fiber laser at 315 μm with 73% slope efficiency
NASA Astrophysics Data System (ADS)
Woodward, R. I.; Majewski, M. R.; Bharathan, G.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.
2018-04-01
Rare-earth-doped fiber lasers are emerging as promising high-power mid-infrared sources for the 2.6-3.0 {\\mu}m and 3.3-3.8 {\\mu}m regions based on erbium and holmium ions. The intermediate wavelength range, however, remains vastly underserved, despite prospects for important manufacturing and defense applications. Here, we demonstrate the potential of dysprosium-doped fiber to solve this problem, with a simple in-band pumped grating-stabilized linear cavity generating up to 1.06 W at 3.15 {\\mu}m. A slope efficiency of 73% with respect to launched power (77% relative to absorbed power) is achieved: the highest value for any mid-infrared fiber laser to date, to the best of our knowledge. Opportunities for further power and efficiency scaling are also discussed.
Systematic optimization of laser cooling of dysprosium
NASA Astrophysics Data System (ADS)
Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick
2018-06-01
We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.
Arendt, Paul N.; Foltyn, Stephen R.; Stan, Liliana; Usov, Igor O.; Wang, Haiyan
2010-06-15
Articles are provided including a base substrate having a layer of an IBAD oriented material thereon, and, a layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the layer of an IBAD oriented material. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates.
Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Scales, Nicholas
2014-11-15
Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO{sub 2}){sub 3} (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}]·2.5H{sub 2}O (2) contains nine-fold coordinated Dy polyhedra linking together through μ{sub 2}-bridging oxalate anions into a 2D hexagonalmore » layered structure. Both [Dy{sub 2}(Pr){sub 6}(H{sub 2}O){sub 4}]·(HPr){sub 0.5} (3) [Pr=(C{sub 2}H{sub 5}CO{sub 2}){sup −1}] and [Dy{sub 2}(Bu){sub 6}(H{sub 2}O){sub 4}] (4) [Bu=(C{sub 3}H{sub 7}CO{sub 2}){sup −1}] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. - Graphical abstract: Four dysprosium (Dy) complexes with formate, propionate, butyrate and oxalate ligands have been synthesized and characterized. The Dy formato complex has a 3D pillared metal organic framework and the structure is stable up to 360 °C whilst the complexes with longer alkyl chained mono-carboxylates possess similar di-nuclear structures. The Dy oxalato complex has a 2D hexagonal (honeycomb-type) structure. Their Raman vibration modes have been investigated. - Highlights: • New Dysprosium complexes with formate, propionate, butyrate and oxalate ligands. • Crystal structures range from dimers to two and three dimensional frameworks. • Vibrational modes have been investigated and correlated to the structures. • The complexes are thermal robust and stable to over 300 °C.« less
Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.
Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang
2015-03-01
NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P < 0.0001). The daily total Zn intake was not significantly different among the three groups. There were no significant differences in fractional Zn absorption (FZA) (P = 0.3895), dysprosium recovery (P = 0.7498) and Zn absorption (P = 0.5940) among the three groups. Therefore, NaFeEDTA-fortified soy sauce does not affect Zn bioavailability in children.
Bernot, Kevin; Luzon, Javier; Bogani, Lapo; Etienne, Mael; Sangregorio, Claudio; Shanmugam, Muralidharan; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante
2009-04-22
A mixed theoretical and experimental approach was used to determine the local magnetic anisotropy of the dysprosium(III) ion in a low-symmetry environment. The susceptibility tensor of the monomeric species having the formula [Dy(hfac)(3)(NIT-C(6)H(4)-OEt)(2)], which contains nitronyl nitroxide (NIT-R) radicals, was determined at various temperatures through angle-resolved magnetometry. These results are in agreement with ab initio calculations performed using the complete active space self-consistent field (CASSCF) method, validating the predictive power of this theoretical approach for complex systems containing rare-earth ions, even in low-symmetry environments. Susceptibility measurements performed with the applied field along the easy axis eventually permitted a detailed analysis of the temperature and field dependence of the magnetization, providing evidence that the Dy ion transmits an antiferromagnetic interaction between radicals but that the Dy-radical interaction is ferromagnetic.
Theoretical study of some experimentally relevant states of dysprosium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzuba, V. A.; Flambaum, V. V.
2010-05-15
Configuration interaction method is used to calculate transition amplitudes and other properties of the low states of dysprosium which are used in cooling and in the study of the time variation of the fine structure constant and violation of fundamental symmetries. The branching ratio for the cooling state to decay to states other than ground states is found to be smaller than 10{sup -4}. The matrix element of the weak interaction between degenerate states at E=19797.96 cm{sup -1} is about 4 Hz which is consistent with the experimental limit |H{sub W}|=|2.3{+-}2.9(stat.){+-}0.7(syst.)| Hz [A. T. Nguyen, D. Budker, D. DeMille, andmore » M. Zolotorev, Phys. Rev. A 56, 3453 (1997)] and points to feasibility of its experimental measurement. Applications include the search for physics beyond the standard model using the parity nonconservation (PNC) isotopic chain approach.« less
Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V
2015-04-01
Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Cressault, Yann; Teulet, Philippe; Zissis, Georges
2016-07-01
The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.
Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui
2016-06-28
An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.
Resonance region measurements of dysprosium and rhenium
NASA Astrophysics Data System (ADS)
Leinweber, Gregory; Block, Robert C.; Epping, Brian E.; Barry, Devin P.; Rapp, Michael J.; Danon, Yaron; Donovan, Timothy J.; Landsberger, Sheldon; Burke, John A.; Bishop, Mary C.; Youmans, Amanda; Kim, Guinyun N.; Kang, yeong-rok; Lee, Man Woo; Drindak, Noel J.
2017-09-01
Neutron capture and transmission measurements have been performed, and resonance parameter analysis has been completed for dysprosium, Dy, and rhenium, Re. The 60 MeV electron accelerator at RPI Gaerttner LINAC Center produced neutrons in the thermal and epithermal energy regions for these measurements. Transmission measurements were made using 6Li glass scintillation detectors. The neutron capture measurements were made with a 16-segment NaI multiplicity detector. The detectors for all experiments were located at ≈25 m except for thermal transmission, which was done at ≈15 m. The dysprosium samples included one highly enriched 164Dy metal, 6 liquid solutions of enriched 164Dy, two natural Dy metals. The Re samples were natural metals. Their capture yield normalizations were corrected for their high gamma attenuation. The multi-level R-matrix Bayesian computer code SAMMY was used to extract the resonance parameters from the data. 164Dy resonance data were analyzed up to 550 eV, other Dy isotopes up to 17 eV, and Re resonance data up to 1 keV. Uncertainties due to resolution function, flight path, burst width, sample thickness, normalization, background, and zero time were estimated and propagated using SAMMY. An additional check of sample-to-sample consistency is presented as an estimate of uncertainty. The thermal total cross sections and neutron capture resonance integrals of 164Dy and Re were determined from the resonance parameters. The NJOY and INTER codes were used to process and integrate the cross sections. Plots of the data, fits, and calculations using ENDF/B-VII.1 resonance parameters are presented.
Poneti, Giordano; Bernot, Kevin; Bogani, Lapo; Caneschi, Andrea; Sessoli, Roberta; Wernsdorfer, Wolfgang; Gatteschi, Dante
2007-05-14
A control of the dynamics of the magnetisation is chemically achieved in a ring-like Dy-radical based molecule, allowing the estimation of the quantum tunneling frequency with a (4)He-cooled susceptometer.
Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe
2015-03-01
The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingoez, A.; Lapierre, Alain; Nguyen, A.-T.
2005-12-15
We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 {mu}Torr of H{sub 2}, N{sub 2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H{sub 2} and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O{sub 2} are extracted from measurements usingmore » air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A 69, 22105 (2004)].« less
Limit on the temporal variation of the fine-structure constant using atomic dysprosium.
Cingöz, A; Lapierre, A; Nguyen, A-T; Leefer, N; Budker, D; Lamoreaux, S K; Torgerson, J R
2007-01-26
Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.
Investigations on structural, optical and magnetic properties of Dy-doped zinc ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Vinosha, P. Annie; Deepapriya, S.; Rodney, John. D.; Das, S. Jerome
2018-04-01
A persuasive and thriftily feasible homogeneous co-precipitation route was adopted to fabricate dysprosium (Dy) doped zinc ferrite (Zn1-xDyxFe2O4)nanoparticles in order to examine their structural, optical and magnetic properties. Theas-synthesized Zn1-xDyxFe2O4 was studied for its momentous applications in photo-degradation of organic Methylene Blue (MB) dye. The paper marksthe connotation of zinc ferrite nanocatalyst in Photo-Fenton degradation. The chemical composition of dysprosium has a decisive feature of this research work. From X-ray diffraction analysis (XRD), spinel phase formation of theas-synthesized Zn1-xDyxFe2O4 nanoparticles was observedand the crystallite size was foundto increase as the doping concentration increased. Theabsorption bands peaked between 600-400 cm-l waspragmatic by Fourier Transform Infrared spectral analysis (FTIR). Transmission Electron Microscopy (TEM) micrograph elucidated the morphology and the speck size of as-synthesized nanoparticles. Surface area and pore size were determined by Brunauer-Emmett-Teller (BET) technique.
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...
2014-04-03
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
NASA Astrophysics Data System (ADS)
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
2017-01-01
The atomic volume of rare earth metal dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 and 7 K in a diamond anvil cell using angle dispersive X-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close-packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (TN) that changes rapidly with increasing pressure. Our experimental measurement shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature TN at all pressures up to 35 GPa.
Perovskite catalysts for oxidative coupling
Campbell, K.D.
1991-06-25
Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
Perovskite catalysts for oxidative coupling
Campbell, Kenneth D.
1991-01-01
Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
mixture. The separation of the different components in these compound earths has been no easy task, since terbium and dysprosium in the lanthanides. By irradiating different sorts of heavy atoms with neutrons Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center
Single molecule magnet behaviour in robust dysprosium-biradical complexes.
Bernot, Kevin; Pointillart, Fabrice; Rosa, Patrick; Etienne, Mael; Sessoli, Roberta; Gatteschi, Dante
2010-09-21
A Dy-biradical complex was synthesized and characterized down to very low temperature. ac magnetic measurements reveal single molecule magnet behaviour visible without any application of dc field. The transition to the quantum tunneling regime is evidenced. Photophysical and EPR measurements provide evidence of the excellent stability of these complexes in solution.
Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements
Mocko, Veronika; Taylor, Wayne A.; Nortier, Francois M.; ...
2015-04-29
The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm –3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized bymore » MC-ICP-MS to determine the 163Ho/ 165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less
Dysprosium complexes with mono-/di-carboxylate ligands-From simple dimers to 2D and 3D frameworks
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Bhadbhade, Mohan; Scales, Nicholas; Karatchevtseva, Inna; Price, Jason R.; Lu, Kim; Lumpkin, Gregory R.
2014-11-01
Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO2)3 (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy2(C2O4)3(H2O)6]·2.5H2O (2) contains nine-fold coordinated Dy polyhedra linking together through μ2-bridging oxalate anions into a 2D hexagonal layered structure. Both [Dy2(Pr)6(H2O)4]·(HPr)0.5 (3) [Pr=(C2H5CO2)-1] and [Dy2(Bu)6(H2O)4] (4) [Bu=(C3H7CO2)-1] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated.
Melo, Fernando Menegatti de; Almeida, Sabrina da Nobrega; Uezu, Noemi Saori; Ramirez, Carlos Alberto Ospina; Santos, Antonio Domingues Dos; Toma, Henrique Eisi
2018-06-01
The extraction of dysprosium (Dy3+) ions from aqueous solution was carried out successfully, using magnetite (Fe3O4) nanoparticles functionalized with diethylenetriaminepentaacetic acid (MagNP@DTPA). The process was monitored by energy dispersive X-ray fluorescence spectroscopy, as a function of concentration, proceeding according to a Langmuir isotherm with an equilibrium constant of 2.57 × 10-3 g(MagNP) L-1 and a saturation limit of 63.2 mgDy/gMagNP. The presence of paramagnetic Dy3+ ions attached to the superparamagnetic nanoparticles led to an overall decrease of magnetization. By imaging the nanoparticles surface using scanning transmission electron microscopy equipped with high resolution elemental analysis, it was possible to probe the binding of the Dy3+ ions to DTPA, and to show their distribution in a region of negative magnetic field gradients. This finding is coherent with the observed decrease of magnetization, associated with the antiferromagnetic coupling between the lanthanide ions and the Fe3O4 core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less
Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion
NASA Astrophysics Data System (ADS)
Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.
2017-04-01
The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.
Possibility for precise Weinberg-angle measurement in centrosymmetric crystals with axis
NASA Astrophysics Data System (ADS)
Mukhamedjanov, T. N.; Sushkov, O. P.
2006-03-01
We demonstrate that parity-nonconserving interaction due to the nuclear weak charge QW leads to a nonlinear magnetoelectric effect in centrosymmetric paramagnetic crystals. It is shown that the effect exists only in crystals with special symmetry axis k . Kinematically, the correlation (correction to energy) has the form HPNC∝QWE•[B×k](B•k) , where B and E are external magnetic and electric fields. This gives rise to the magnetic induction MPNC∝QW{k(B•[k×E])+[k×E](B•k)} . To be specific, we consider rare-earth-metal trifluorides and, in particular, dysprosium trifluoride which looks the most suitable for experiment. We estimate the optimal temperature for the experiment to be of a few kelvin. For the magnetic field B=1T and the electric field E=10kV/cm , the expected magnetic induction is 4πMPNC˜0.5×10-11G , six orders of magnitude larger than the best sensitivity currently under discussion. Dysprosium has several stable isotopes, and so comparison of the effects for different isotopes provides the possibility for precise measurement of the Weinberg angle.
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
2017-01-01
The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less
Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Veronika; Taylor, Wayne A.; Nortier, Francois M.
The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm –3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized bymore » MC-ICP-MS to determine the 163Ho/ 165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less
Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi
2018-01-19
An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hart, Matthew
This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short-term (2015) and mid-term (2020) scenarios could be between: 1,984 to 6,475 tons (2015) and 3,487 to 13,763 tons (2020) of neodymium; 331 to 864 tons (2015) and 587 to 1,834 tons (2020) of dysprosium; 123 to 325 tons (2015) and 219 to 687 tons (2020) of terbium; finally, zero to 871 tons (2015) and zero to 1,493 tons (2020) of praseodymium. Hybrid vehicle sales in non-U.S. countries could account for a large portion of magnetic rare earth consumption. Wind turbine and related rare earth consumption growth will also be driven by non-U.S. countries, especially developing nations like China. Despite wind turbines using bigger magnets, the sheer volume of hybrids sold and non-U.S. consumers could account for most future consumption of permanent magnets and their rare earths.
Rare Earths; The Fraternal Fifteen (Rev.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gschneidner, Jr., Karl A.
1966-01-01
Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.
Characterization and Luminescence Properties of Color-Tunable Dy3+-Doped BaY2ZnO5 Nanophosphors
NASA Astrophysics Data System (ADS)
Sonika; Khatkar, S. P.; Khatkar, Avni; Kumar, Rajesh; Taxak, V. B.
2015-01-01
Dy3+-doped BaY2ZnO5 nanophosphors were successfully synthesized by use of a solution combustion process. The effects of sintering temperature and dysprosium concentration on the structural and luminescence characteristics of the phosphors were investigated. X-ray diffraction (XRD) analysis confirmed the formation of pure orthorhombic BaY2ZnO5 with the space group Pbnm at 1100°C. Morphological investigation revealed spherical nanoparticles with smooth surfaces. The luminescence features of the nanophosphor were studied by use of photoluminescence excitation (PLE) and photoluminescence emission (PL), with luminescence decay curves and color ( x, y) coordinates. On excitation at 355 nm, BaY2ZnO5 nanophosphor doped with trivalent dysprosium ion emits white light as a mixture of blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emission. Concentration quenching is explained on the basis of cross-relaxation between intermediate Dy3+ states. Thus, BaY2ZnO5:Dy3+ nanophosphor may be suitable for producing efficient white light for ultraviolet-light-emitting diodes (UV-LEDs), fluorescent lamps, and a variety of optical display panels.
Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh
2015-06-07
Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less
New limits on variation of the fine-structure constant using atomic dysprosium.
Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D
2013-08-09
We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17) yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.
Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B
2015-12-01
We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. Copyright © 2015 John Wiley & Sons, Ltd.
An experimental analysis of a doped lithium fluoride direct absorption solar receiver
NASA Technical Reports Server (NTRS)
Kesseli, James; Pollak, Tom; Lacy, Dovie
1988-01-01
An experimental analysis of two key elements of a direct absorption solar receiver for use with Brayton solar dynamic systems was conducted. Experimental data are presented on LiF crystals doped with dysprosium, samarium, and cobalt fluorides. In addition, a simulation of the cavity/window environment was performed and a posttest inspection was conducted to evaluate chemical reactivity, transmissivity, and condensation rate.
Rare Earth Element Concentrations in Geothermal Wells at the Puna Geothermal Field, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Andrew; Zierenberg, Robert
Rare earth element concentrations in the geothermal wells at the Puna geothermal field, Hawaii. Samples taken from geothermal wells KS-5, KS-6W, KS-9W, KS-14E, and KS-16N. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples collected on November 11-17, 2016.
Laser Materials Search and Characterization
2014-05-30
AgBr doped with dysprosium ions are obtained by extrusion, and their optical and spectral properties are studied. Task 3. Waveguides based on LiF...fluoride are obtained by extrusion for the first time. Task 4. Spectroscopic properties of Dy3+ ions in chalcogenide crystals and fibers are studied...Task 5. Crystals and ceramics doped with rare-earth ions , as well as glasses and crystals doped with bismuth ions , are synthesized. Their
NASA Astrophysics Data System (ADS)
Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.
2012-08-01
A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).
Hu, He; Zhang, Yifan; Shukla, Sourabh; Gu, Yuning; Yu, Xin; Steinmetz, Nicole F
2017-09-26
The increasing prevalence of ultra-high-field magnetic resonance imaging (UHFMRI) in biomedical research and clinical settings will improve the resolution and diagnostic accuracy of MRI scans. However, better contrast agents are needed to achieve a satisfactory signal-to-noise ratio. Here, we report the synthesis of a bimodal contrast agent prepared by loading the internal cavity of tobacco mosaic virus (TMV) nanoparticles with a dysprosium (Dy 3+ ) complex and the near-infrared fluorescence (NIRF) dye Cy7.5. The external surface of TMV was conjugated with an Asp-Gly-Glu-Ala (DGEA) peptide via a polyethylene glycol linker to target integrin α 2 β 1 . The resulting nanoparticle (Dy-Cy7.5-TMV-DGEA) was stable and achieved a high transverse relaxivity in ultra-high-strength magnetic fields (326 and 399 mM -1 s -1 at 7 and 9.4 T, respectively). The contrast agent was also biocompatible (low cytotoxicity) and targeted PC-3 prostate cancer cells and tumors in vitro and in vivo as confirmed by bimodal NIRF imaging and T 2 -mapping UHFMRI. Our results show that Dy-Cy7.5-TMV-DGEA is suitable for multiscale MRI scanning from the cellular level to the whole body, particularly in the context of UHFMRI applications.
Rare Earth Element Concentrations from Wells at the Don A. Campbell Geothermal Plant, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Andrew; Zierenberg, Robert
* Requires permission of originators for use. Rare earth element concentrations in thermal springs from the wells at the Don A. Campbell geothermal plant, Nevada. Samples taken from geothermal wells 85-11, 65-11, 54-11, and 64-11. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples from Don A. Campbell, Nevada collected on October 14, 2016.
Application of Atomic Fluorescence to Measurement of Combustion Temperature in Solid Propellants.
1986-12-04
into a cytal (yttrium- aluminum -garnet) is shown to be an ideal seed, the fluoresce. f which is stimulated by the ultra-violet output of a Nd:YAG...been successfully employed in atmospheric flames for making thermometric measurements. However, because of the amorphous nature of energetic materials...be determined. R. 6 A .6 An example of this type of behavior is found in trivalent dysprosium, doped at 3% in yttrium- aluminum -garnet (Dy+3 :YAG
Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence
1989-09-01
at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined
Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant
2016-03-01
Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.
NASA Astrophysics Data System (ADS)
Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho
2015-09-01
A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.
Development of Nanomaterials for Nuclear Energetics
NASA Astrophysics Data System (ADS)
Petrunin, V. F.
Structure and properties peculiarities of the nanocrystalline powders give the opportunity to design new and to develop a modernization of nuclear energy industry materials. It was shown experimentally, that addition of 5-10% uranium dioxide nanocrystalline powder to traditional coarse powder allows to decrease the sintering temperature or to increase the fuel tablets size of grain. Similar perspectives for the technology of neutron absorbing tablets of control-rod modernization are shown by nanopowder of dysprosium hafnate changing instead now using boron carbide. It is powders in nanocrystalline state get an opportunity to sinter them and to receive compact tablet with 8,2-8,4 g/cm2 density for automatic defence system of nuclear reactor. Resource of dysprosium hafnate ceramics can be 18-20 years instead 4-5 years for boron carbide. To step up the radiation-damage stability of fuel element jacket material was suggested to strengthen a heat-resistant ferrite-martensite steel by Y2O3 nanocrystalline powder addition. Nanopowder with size of particles 560 nm and crystallite size 9 nm was prepeared by chemical coprecipitation method. To make lighter the container for transport and provisional disposal of exposed fuel from nuclear reactor a new boron-aluminium alloy called as boral was developed. This composite armed with nanopowders of boron-containing materials and heavy metals oxides can replace succesburnt-up corrosion-resistant steels.
2010-06-01
heat removal technique and its efficiency , the gain medium itself is the bottleneck for non-distortive heat removal―simply due to low thermal...dysprosium (Dy) has been demonstrated by photoluminescence (PL), electroluminescence (EL), and/or cathodoluminescence (CL) (2, 3). As the RE dopant...provides the highest level of laser efficiency due to the pump and signal mode confinement within a crystalline-guided structure) has been designed. The
Surface analysis of model systems: From a metal-graphite interface to an intermetallic catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwolek, Emma J.
This thesis summarizes research completed on two different model systems. In the first system, we investigate the deposition of the elemental metal dysprosium on highly-oriented pyrolytic graphite (HOPG) and its resulting nucleation and growth. The goal of this research is to better understand the metal-carbon interactions that occur on HOPG and to apply those to an array of other carbon surfaces. This insight may prove beneficial to developing and using new materials for electronic applications, magnetic applications and catalysis.
On the specific electrophysical properties of n-InSe single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdinov, A. Sh., E-mail: abdinov-axmed@yahoo.com; Babaeva, R. F., E-mail: babaeva-rena@yandex.ru; Rzaev, R. M., E-mail: abdinov-axmed@yandex.ru
2016-01-15
The temperature dependences of physical parameters (the conductivity and the Hall constant) are experimentally investigated for pure indium-selenide (n-InSe) crystals and those lightly doped with rareearth elements (gadolinium, holmium, and dysprosium). It is established that the obtained results depend on the origin of the samples under investigation and prove to be contradictory for different samples. The obtained experimental results are treated taking into account the presence of chaotic large-scale defects and drift barriers caused by them in these samples.
Static high-pressure structural studies on Dy to 119 GPa
NASA Astrophysics Data System (ADS)
Patterson, Reed; Saw, Cheng K.; Akella, Jagannadham
2004-05-01
Structural phase transitions in the rare-earth metal dysprosium have been studied in a diamond anvil cell to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp→Sm-type→dhcp→hR24 (hexagonal)→bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa, respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.
2015-04-01
antigen ( PSMA ) of prostate cancer cells would then be synthesized and tested with both in vitro and in vivo experiments. Major Findings: We found that the...simplified chemistry. 15. SUBJECT TERMS MRI Contrast Agent, T2 contrast, Prostate Cancer, PSMA Targeted Agent, Early Detection and Diagnosis, Dysprosium... PSMA ), which is significantly over-expressed by prostate cancer cells, has proven to be an excellent target for imaging prostate cancer in mouse
Sun, Han-wen; Wu, Yuan-yuan; Li, Li-qing
2009-03-01
A novel trivalence dysprosium(Dy(3+))-sensitized chemiluminescence method was developed for the first time for the determination of enoxacin (ENX) using flow-injection sampling based on the chemiluminescence (CL) associated with the reaction of the Dy(3+)-cerium(Ce(IV))-S(2)O(3) (2-)-ENX system and the Dy(3+)-MnO(4) (-) S(2)O(3) (2-)-ENX system. The analytical conditions for CL emission were investigated and optimized. The relationship between the CL intensity of ENX and its concentration has good linearity, with a correlation coefficient of 0.9984-0.9994. The limit of detection (LOD, 3sigma) was 0.20 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-Ce(IV)-H(2)SO(4) system and 0.22 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-MnO(4) (-)-HNO(3) system. The relative standard deviation (RSD, n = 11) was 1.8% for 11 determinations of 60 ng/mL ENX. The proposed method was applied to the analysis of ENX in injections, serum and urine samples with a recovery of 98%-105%. A possible mechanism for this sensitized CL reaction is discussed by comparing the CL spectra with the fluorescence emission spectra. The proposed method represents a wide linear range, high sensitivity and accuracy, and can be used for the routine determination of ENX in pharmaceutical preparations and biological fluids. Copyright 2009 John Wiley & Sons, Ltd.
Li, Ya Jie; Li, Min; Liu, Xiao Bing; Ren, Tong Xiang; Li, Wei Dong; Yang, Chun; Wu, Meng; Yang, Lin Li; Ma, Yu Xia; Wang, Jun; Piao, Jian Hua; Yang, Li Chen; Yang, Xiao Guang
2017-06-01
To determine the dietary zinc absorption in a Chinese elderly population and provide the basic data for the setting of zinc (Zn) recommended nutrient intakes (RNI) for Chinese elderly people. A total of 24 elderly people were recruited for this study and were administered oral doses of 3 mg 67Zn and 1.2 mg dysprosium on the fourth day. The primary macronutrients, energy, and phytic acid in the representative diet were examined based on the Chinese National Standard Methods. Fecal samples were collected during the experimental period and analyzed for zinc content, 67Zn isotope ratio, and dysprosium content. The mean (± SD) zinc intake from the representative Chinese diet was 10.6 ± 1.5 mg/d. The phytic acid-to-zinc molar ratio in the diet was 6.4. The absorption rate of 67Zn was 27.9% ± 9.2%. The RNI of zinc, which were calculated by the absorption rate in elderly men and women, were 10.4 and 9.2 mg/d, respectively. This study got the dietary Zn absorption in a Chinese elderly population. We found that Zn absorption was higher in elderly men than in elderly women. The current RNI in elderly female is lower than our finding, which indicates that more attention is needed regarding elderly females' zinc status and health. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chasteler, R.M.; Nitschke, J.M.; Firestone, R.B.
Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between {sup 170}Er ions and {sup nat}W targets. On-line mass separation was used together with {beta}- and {gamma}-ray spectroscopy in these studies. At mass {ital A}=169, the heaviest known dysprosium isotope, 39(8) s,{sup 169}Dy, was identified. It was observed to {beta}{sup {minus}} decay to the ground state of {sup 169}Ho or through a level at 1578 keV. In the {ital A}=171 mass chain, a partial decay scheme for 55(3)-s {sup 171}Ho was determined.
Laser spectroscopy of phonons and rotons in superfluid helium doped with Dy atoms
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Borel, A.; Kono, K.
2018-03-01
We report the results of a high-resolution laser-spectroscopy study of dysprosium atoms injected into superfluid 4He. A special attention is paid to the transitions between the inner 4 f and 5 d electronic shells of Dy. The characteristic gap is observed between the zero-phonon line and the phonon wing in the experimental excitation spectrum that arises due to the peculiar structure of the phonon-roton spectrum of superfluid He. This observation resolves the longstanding discrepancy between the studies of bulk superfluid He and He nanodroplets.
Static High Pressure Structural studies on Dy to 119 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J R; Saw, C K; Akella, J
2003-11-12
Structural phase transitions in the rare-earth metal Dysprosium have been studied in a Diamond Anvil Cell (DAC) to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp {yields} Sm-type {yields} dhcp {yields} hR24 (hexagonal) {yields} bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.
Jayakumar, Samydurai; Louven, Kathrin; Strohmann, Carsten; Kumar, Kamal
2017-12-11
The active complexes of chiral N,N'-dioxide ligands with dysprosium and magnesium salts catalyze the hetero-Diels-Alder reaction between 2-aza-3-silyloxy-butadienes and alkylidene oxindoles to selectively form 3,3'- and 3,4'-piperidinoyl spirooxindoles, respectively, in very high yields and with excellent enantioselectivities. The exo-selective asymmetric cycloaddition successfully regaled the construction of sp 3 -rich and highly substituted natural-product-based spirooxindoles supporting many chiral centers, including contiguous all-carbon quaternary centers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decay of the neutron-rich isotope 171Ho and the identification of 169Dy
NASA Astrophysics Data System (ADS)
Chasteler, R. M.; Nitschke, J. M.; Firestone, R. B.; Vierinen, K. S.; Wilmarth, P. A.
1990-10-01
Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between 170Er ions and natW targets. On-line mass separation was used together with β- and γ-ray spectroscopy in these studies. At mass A=169, the heaviest known dysprosium isotope, 39(8) s,169Dy, was identified. It was observed to β- decay to the ground state of 169Ho or through a level at 1578 keV. In the A=171 mass chain, a partial decay scheme for 55(3)-s 171Ho was determined.
Alaska's rare earth deposits and resource potential
Barker, James C.; Van Gosen, Bradley S.
2012-01-01
Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drryl P. Butt; Brian Jaques
Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.
Controlling the width of self-assembled dysprosium silicide nanowires on the Si(001) surface.
Cui, Y; Chung, J; Nogami, J
2012-02-01
We present STM data that show that it is possible to use a metal induced 2 × 7 reconstruction of Si(001) to narrow the width distribution of Dy silicide nanowires. This behavior is distinct from the effect of the 7 × 7 reconstruction on the Si(111) surface, where the 7 × 7 serves as a static template and the deposited metal avoids the unit cell boundaries on the substrate. In this case, the 2 × 7 is a dynamic template, and the nanowires nucleate at anti-phase boundaries between 2 × 7 reconstruction domains.
Exploration of dysprosium: the most critical element for Japan
NASA Astrophysics Data System (ADS)
Watanabe, Y.
2012-04-01
Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.
Paszkowicz, Wojciech; Ermakova, Olga; López-Solano, Javier; Mujica, Andrés; Muñoz, Alfonso; Minikayev, Roman; Lathe, Christian; Gierlotka, Stanisław; Nikolaenko, Irina; Dabkowska, Hanna
2014-01-15
Dysprosium orthovanadate, DyVO4, belongs to a family of zircon-type orthovanadates showing a phase transition to scheelite-type structures at moderate pressures below 10 GPa. In the present study, the equations of state (EOSs) for both these phases were determined for the first time using high-pressure x-ray diffraction experiments and ab initio calculations based on the density functional theory. Structural parameters for scheelite-type DyVO4 were calculated from x-ray powder diffraction data as well. The high-pressure experiments were performed under pseudo-hydrostatic conditions at pressures up to 8.44 GPa and 5.5 GPa for the stable zircon-type and metastable (quenched) scheelite-type samples, respectively. Assuming as a compression model the Birch-Murnaghan EOS, we obtained the EOS parameters for both phases. The experimental bulk moduli (K0) for zircon-type and scheelite-type DyVO4 are 118(4) GPa and 153(6) GPa, respectively. Theoretical equations of state were determined by ab initio calculations using the PBE exchange-correlation energy functional of Perdew, Burke, and Ernzerhof. These calculations provide K0 values of 126.1 GPa and 142.9 GPa for zircon-type and scheelite-type DyVO4, respectively. The reliability of the present experimental and theoretical results is supported by (i) the consistency between the values yielded by the two methods (the discrepancy in K0 is as low as about 7% for each of the studied polymorphs) and (ii) their similarity to results obtained under similar compression conditions (hydrostatic or pseudo-hydrostatic) for other rare-earth orthovanadates, such as YVO4 and TbVO4.
Tse, Pui-Kwan
2011-01-01
Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2003-04-01
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2005-09-13
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Nannan; Fu, Benwei; Key Laboratory of Marine, Mechanical and Manufacturing Engineering of the Ministry of Transport, Dalian 116026
Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98 nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.
Magnetic separation of Dy(III) ions from homogeneous aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulko, B., E-mail: Barbara.Pulko@tu-dresden.de; Yang, X.; Lei, Z.
2014-12-08
The possibility to enrich paramagnetic dysprosium(III) ions in a magnetic field gradient is proved by means of interferometry, which may open the route for a magnetic separation of rare earth ions from aqueous solutions. The separation dynamics are studied for three different concentrations of DyCl{sub 3} and compared with those found recently in a sulphate solution of the 3d ion Mn(II). In view of the similar-sized hydration spheres for Dy(III) and Mn(II), the slower separation dynamics in DyCl{sub 3} is attributed to both a higher densification coefficient and the strong impact of Brownian motion due to the absence of ion-pairmore » clusters.« less
Qian, Kang; Baldoví, José J.; Zhang, Yi-Quan; Overgaard, Jacob; Wang, Bing-Wu
2015-01-01
A dysprosium based single-ion magnet is synthesized and characterized by the angular dependence of the single-crystal magnetic susceptibility. Ab initio and effective electrostatic analyses are performed using the molecular structures determined from single crystal X-ray diffraction at 20 K, 100 K and 300 K. Contrary to the common assumption, the results reveal that the structural thermal effects that may affect the energy level scheme and magnetic anisotropy below 100 K are negligible. PMID:29568416
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1974-01-01
Samples of ASTM type A jet fuel were analyzed for trace-element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vandium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1975-01-01
Samples of ASTM type A jet fuel were analyzed for trace element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vanadium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
NASA Astrophysics Data System (ADS)
Costa Milan, David; Pinilla Cienfuegos, Elena; Cardona Serra, Salvador; Coronado Miralles, Eugenio; Untiedt Lecuona, Carlos
2013-03-01
Scanning Tunneling Microscope (STM) and scanning Tunnelling spectroscopy (STS) techniques have been used to study the Preyssler type Polyoxometalate K12[DyP5W30O110] molecules deposited on Highly Oriented Pyrolytic Graphite surface (HOPG). Chainlike arrangements of clusters containing two or three molecules, as well as different cluster sizes are observed. As many structural artifacts are present on the graphite surface, like Moiré patterns, that could look like the molecular deposits, we have studied their STS and size to ensure the presence of the POM molecules on the surface. This article shows the possibility of addressing POMs on a flat surface to obtain their electronic properties through STS.
Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.; Freire, Ricardo O.
2014-01-01
Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945
NASA Astrophysics Data System (ADS)
Halimah, M. K.; Ami Hazlin, M. N.; Muhammad, F. D.
2018-04-01
A series of glass samples with chemical formula {[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}1 - x(Dy2O3)x where x = 0.01, 0.02, 0.03, 0.04 and 0.05 M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO4, BO3, TeO4 and TeO3 vibrational groups. The density of the glass systems is increased with the addition of Dy2O3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy2O3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3 + ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Generation of white light The generation of the white light can be achieved by using two emission bands which comprise of the yellow and blue emission. The white light emission of the glass systems is confirmed by using the Commission International de I'Eclairage 1931 (CIE 1931) chromaticity diagram. The colour coordinate of the zinc borotellurite glass systems doped Dy2O3 is tabulated in Table 3 while Fig. 10 represents the colour chromaticity diagram of Dy2O3 doped zinc borotellurite glass systems. Based on the result obtained, the CIE coordinate for the zinc borotellurite glass doped with dysprosium oxide lies closed to the standard white light point which located at x = 0.333 and y = 0.333 [63,64]. This suggests that the zinc borotellurite glass doped with Dy2O3 may be useful for the solid state lighting application.
Rare earth elements: end use and recyclability
Goonan, Thomas G.
2011-01-01
Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pete McGrail
This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The raremore » earth element uptake testing was conducted at room temperature.« less
STABILIZED RARE EARTH OXIDES FOR A CONTROL ROD AND METHOD OF PREPARATION
McNees, R.A.; Potter, R.A.
1964-01-14
A method is given for preparing mixed oxides of the formula MR/sub x/O/ sub 12/ wherein M is tungsten or molybdenum and R is a rare earth in the group consisting of samarium, europium, dysprosium, and gadolinium and x is 4 to 5. Oxides of this formula, and particularly the europiumcontaining species, are useful as control rod material for water-cooled nuclear reactors owing to their stability, favorable nuclear properties, and resistance to hydration. These oxides may be utilized as a dispersion in a stainlesssteel matrix. Preparation of these oxides is effected by blending tungsten oxide or molybdenum oxide with a rare earth oxide, compressing the mixture, and firing at an elevated temperature in an oxygen-containing atmosphere. (AEC)
Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms
NASA Astrophysics Data System (ADS)
Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman
2018-04-01
We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.
Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu
2017-09-19
Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biological fabrication of cellulose fibers with tailored properties
NASA Astrophysics Data System (ADS)
Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R.; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen
2017-09-01
Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material’s functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.
Optical properties of Dy3+ doped YBO3 phosphor
NASA Astrophysics Data System (ADS)
Nair, Ramya G.; Nigam, Sandeep; Sudarsan, V.; Vatsa, R. K.
2018-04-01
Dysprosium doped YBO3 luminescent particleis synthesized via poly-ol method and by subsequent annealing at 800°C. The synthesized material has been characterized for structure properties using powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR)spectroscopy. Photoluminescence properties of these samples are studiedby means of steady state measurements and decay curve. The phosphor shows characteristic transitions of Dy3+ in the excitation and emission spectra. Colour purity is determined in terms of yellow/blue ratio, which is found to be 1.8. The higher ratio of yellow/blue indicates that Dy3+ preferentially occupies the asymmetric site in host lattice. The average lifetime is found to be 1.1ms. The chromatic properties of the phosphor have been found to have chromaticity coordinates x = 0.245, y = 0.274.
The AMBRE Project: r-process element abundances in the Milky Way thin and thick discs
NASA Astrophysics Data System (ADS)
Guiglion, Guillaume; de Laverny, Patrick; Recio-Blanco, Alejandra; Worley, C. Clare
2018-04-01
Chemical evolution of r-process elements in the Milky Way disc is still a matter of debate. We took advantage of high resolution HARPS spectra from the ESO archive in order to derive precise chemical abundances of 3 r-process elements Eu, Dy & Gd for a sample of 4 355 FGK Milky Way stars. The chemical analysis has been performed thanks to the automatic optimization pipeline GAUGUIN. Based on the [α/Fe] ratio, we chemically characterized the thin and the thick discs, and present here results of these 3 r-process element abundances in both discs. We found an unexpected Gadolinium and Dysprosium enrichment in the thick disc stars compared to Europium, while these three elements track well each other in the thin disc.
Visible luminescence of dysprosium ions in oxyhalide lead borate glasses.
Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A
2011-08-15
Visible luminescence of Dy(3+) ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to (4)F(9/2)→(6)H(15/2) (blue) and (4)F(9/2)→(6)H(13/2) (yellow) transitions of Dy(3+). Luminescence decays from (4)F(9/2) state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX(2) (X=F, Cl) content. An introduction of PbX(2) to the borate glass results in the increasing of (4)F(9/2) lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy(3+) and O(2-)/X(-) ions. Copyright © 2010 Elsevier B.V. All rights reserved.
Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun
2018-06-18
Conductive-bridge random access memory (CBRAM) has become one of the most suitable candidates for non-volatile memory in next-generation information and communication technology. The resistive switching mechanism of CBRAM depends on the formation/annihilation of the conductive filament (CF) between the active metal electrode and the inert electrode. However, excessive ion injection from the active electrode into the solid electrolyte is reduces the uniformity and reliability of the resistive switching devices. To solve this problem, we investigated the resistive switching characteristics of a modified active electrode with different compositions of Cu<sub>x</sub>-Sn<sub><sub>1-x </sub></sub>(0.13 < X < 0.55). The resistive switching characteristics were further improved by inserting a dysprosium (Dy) or lutetium (Lu) buffer layer at the interface of Cu<sub>x</sub>-Sn<sub>1-x</sub>/Al<sub>2</sub>O<sub>3</sub>. Electrical analysis of the optimal Cu<sub>0.27</sub>-Sn<sub>0.73</sub>/Lu-based CBRAM exhibited stable resistive switching behavior with low operation voltage (SET: 0.7 V and RESET: -0.3 V), a high on/off resistive ratio (10<sup>6</sup>), cyclic endurance (>10<sup>4</sup>), and long-term retention (85℃/10 years). To achieve these performance parameters, CFs were locally formed inside the electrolyte using a modified CuSn active electrode, and the amount of Cu-ion injection was reduced by inserting the Dy or Lu buffer layer between the CuSn active electrode and the electrolyte. In particular, conductive-atomic force microscopy results at the Dy/ or Lu/Al<sub>2</sub>O<sub>3</sub> interface directly showed and defined the diameter of the CF. © 2018 IOP Publishing Ltd.
Pugh, Thomas
2017-01-01
Single-molecule magnets (SMMs) are coordination compounds that exhibit magnetic bistability below a characteristic blocking temperature. Research in this field continues to evolve from its fundamental foundations towards applications of SMMs in information storage and spintronic devices. Synthetic chemistry plays a crucial role in targeting the properties that could ultimately produce SMMs with technological potential. The ligands in SMMs are invariably based on non-metals; we now report a series of dysprosium SMMs (in addition to their magnetically dilute analogues embedded in yttrium matrices) that contain ligands with the metalloid element antimony as the donor atom, i.e. [(η5-Cp′2Dy){μ-Sb(H)Mes}]3 (1-Dy) and [(η5-Cp′2Dy)3{μ-(SbMes)3Sb}] (2-Dy), which contain the stibinide ligand [Mes(H)Sb]– and the unusual Zintl-like ligand [Sb4Mes3]3–, respectively (Cp′ = methylcyclopentadienyl; Mes = mesityl). The zero-field anisotropy barriers in 1-Dy and 2-Dy are U eff = 345 cm–1 and 270 cm–1, respectively. Stabilization of the antimony-ligated SMMs is contingent upon careful control of reaction time and temperature. With longer reaction times and higher temperatures, the stibine pro-ligands are catalytically dehydrocoupled by the rare-earth precursor complexes. NMR spectroscopic studies of the yttrium-catalysed dehydrocoupling reactions reveal that 1-Y and 2-Y are formed during the catalytic cycle. By implication, 1-Dy and 2-Dy should also be catalytic intermediates, hence the nature of these complexes as SMMs in the solid-state and as catalysts in solution introduces a strategy whereby new molecular magnets can be identified by intercepting species formed during catalytic reactions. PMID:28451326
NASA Astrophysics Data System (ADS)
Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano
2003-09-01
The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395 T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration ( GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.
Halimah, M K; Ami Hazlin, M N; Muhammad, F D
2018-04-15
A series of glass samples with chemical formula {[(TeO 2 ) 0.7 (B 2 O 3 ) 0.3 ] 0.7 (ZnO) 0.3 } 1-x (Dy 2 O 3 ) x where x=0.01, 0.02, 0.03, 0.04 and 0.05M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO 4 , BO 3, TeO 4 and TeO 3 vibrational groups. The density of the glass systems is increased with the addition of Dy 2 O 3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy 2 O 3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Copyright © 2017 Elsevier B.V. All rights reserved.
White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.
Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T
2017-06-01
Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.
Radiological Hazard of Spallation Products in Accelerator-Driven System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, M.; Stankovskii, A.; Artisyuk, V.
The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domainmore » in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdinov, A. Sh., E-mail: abdinov-axmed@yandex.ru; Babayeva, R. F., E-mail: Babaeva-Rena@yandex.ru; Amirova, S. I.
2013-08-15
In the temperature range T = 77-600 K, the dependence of the charge-carrier mobility ({mu}) on the initial dark resistivity is experimentally investigated at 77 K ({rho}d{sub 0}), as well as on the temperature and the level (N) of rare-earth doping with such elements as gadolinium (Gd), holmium (Ho), and dysprosium (Dy) in n-type indium-monoselenide (InSe) crystals. It is established that the anomalous behavior of the dependences {mu}(T), {mu}({rho}d{sub 0}), and {mu}(N) found from the viewpoint of the theory of charge-carrier mobility in crystalline semiconductors is related, first of all, to partial disorder in indium-monoselenide crystals and can be attributedmore » to the presence of random drift barriers in the free energy bands.« less
Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H
2017-08-22
Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.
NASA Astrophysics Data System (ADS)
Hamzah, S. A.; Saeed, M. A.; Wagiran, H.; Hashim, I. H.
2017-10-01
This article reports TL response for different glass modifier and doping concentration. Alkali oxides (Na2O and Li2O) and alkali earth oxide (CaO) will be used as a glass modifier for strontium borate based glass. The samples were prepared by melt quenching technique. Dy2O3 concentrations ranging from 0.00 to 0.70 mol% and exposure doses of 1 to 9 Gy will be varied. All glass samples exhibit the prominent peak temperature positioned at 186 oC to 232 oC. From all the samples, one of the samples shows an excellent linearity dose response, higher TL and show good reproducibility after 5 cycles exposure which is sodium strontium borate doped with 0.1 mol% Dy2O3 (optimum concentration).
Magnetic relaxation pathways in lanthanide single-molecule magnets.
Blagg, Robin J; Ungur, Liviu; Tuna, Floriana; Speak, James; Comar, Priyanka; Collison, David; Wernsdorfer, Wolfgang; McInnes, Eric J L; Chibotaru, Liviu F; Winpenny, Richard E P
2013-08-01
Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.
Controlling interactions between highly magnetic atoms with Feshbach resonances.
Kotochigova, Svetlana
2014-09-01
This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.
Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry
NASA Astrophysics Data System (ADS)
Kirschner, Franziska K. K.; Flicker, Felix; Yacoby, Amir; Yao, Norman Y.; Blundell, Stephen J.
2018-04-01
We present a proposal for applying nanoscale magnetometry to the search for magnetic monopoles in the spin ice materials holmium and dysprosium titanate. Employing Monte Carlo simulations of the dipolar spin ice model, we find that when cooled to below 1.5 K these materials exhibit a sufficiently low monopole density to enable the direct observation of magnetic fields from individual monopoles. At these temperatures we demonstrate that noise spectroscopy can capture the intrinsic fluctuations associated with monopole dynamics, allowing one to isolate the qualitative effects associated with both the Coulomb interaction between monopoles and the topological constraints implied by Dirac strings. We describe in detail three different nanoscale magnetometry platforms (muon spin rotation, nitrogen-vacancy defects, and nanoscale arrays of superconducting quantum interference devices) that can be used to detect monopoles in these experiments and analyze the advantages of each.
A physicochemical research of the Dy-Sn-O system
NASA Astrophysics Data System (ADS)
Malinovskaya, Tatyana; Lysak, Ilya; Zhek, Valentina; Kuznetsova, Svetlana
2017-11-01
A physicochemical research of the processes of phase composition formation in the materials of the Dy-Sn-O system was performed. Phase composition was taking place in the course of thermal treatment of dysprosium (III) and tin (IV) codeposition products. These were codeposited from nitrate solutions at pH 7, and 25% ammonia water was used as the precipitant. Using thermal and X-ray diffraction analysis, it was found that in the above system at 90 wt. % of Dy2O3 and 10 wt. % of SnO2, when the precursors were heated above 600°C there are no solid solutions. In the meanwhile, at temperatures below 1000°C there is only one phase, Dy2O3. At temperatures above 1000°C, the system becomes bi-phase and includes Dy2O3 and Dy2Sn2O7.
An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.
Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J
2015-07-06
Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review
Van den Eeckhout, Koen; Poelman, Dirk; Smet, Philippe F.
2013-01-01
During the past few decades, the research on persistent luminescent materials has focused mainly on Eu2+-doped compounds. However, the yearly number of publications on non-Eu2+-based materials has also increased steadily. By now, the number of known persistent phosphors has increased to over 200, of which over 80% are not based on Eu2+, but rather, on intrinsic host defects, transition metals (manganese, chromium, copper, etc.) or trivalent rare earths (cerium, terbium, dysprosium, etc.). In this review, we present an overview of these non-Eu2+-based persistent luminescent materials and their afterglow properties. We also take a closer look at some remaining challenges, such as the excitability with visible light and the possibility of energy transfer between multiple luminescent centers. Finally, we summarize the necessary elements for a complete description of a persistent luminescent material, in order to allow a more objective comparison of these phosphors. PMID:28811409
NASA Astrophysics Data System (ADS)
Wang, Wen-Min; Zhao, Xiao-Yu; Qiao, Hui; Bai, Li; Han, Hong-Fei; Fang, Ming; Wu, Zhi-Lei; Zou, Ji-Yong
2017-09-01
In search of simple approaches to rationally modulate the single-molecule magnet behaviour in polynuclear lanthanide compound, a new system containing two structurally closely related dinuclear dysprosium complexes, namely [Dy2(hfac)4L2] (1) and [Dy2(hfac)4L‧2] (2) (hfac = hexafluoroacetylacetonate, HL = 2-[4-methylaniline-imino]methyl]-8-hydroxyquinoline and HL' = 2-[(3,4-dimethylaniline)-imino]methyl]-8-hydroxyquinoline), are successfully synthesized and the structure-dependent magnetic properties are investigated. The two Dy2 compounds display only slight variations in the coordination geometries of the center Dy(III) ion but display remarkably different single-molecule magnet behaviors with the anisotropic barriers (ΔE/kB) of 9.91 K for 1 and 20.57 K for 2. The different magnetic relaxation behaviors of the two Dy2 complexes mainly originate from the different chemical environments of the central DyIII ions.
Dysprosium-159 for transmission imaging and bone mineral analysis.
Rao, D V; Govelitz, G F; Sastry, K S
1977-01-01
The suitability of the intense Kalpha x rays of terbium emitted in the electron-capture decay of 159Dy for use in transmission imaging and bone mineral analysis is investigated. It is found that this radionuclide offers all the advantages of radiations from 210 Pb and none of the disadvantages inherent in the use of the latter. Yields of the Kalpha and Kbeta x rays of terbium and the 58-keV gamma rays emitted in 159 Dy decay are determined using a high-resolution Si(Li) photon spectrometer. Attenuation coefficients for these photons in gadolinium (critical) absorber are measured in a narrow-beam geometry. For Tb Kbeta x rays, whose average energy is only about 0.4 keV above the K edge or Gd, our experimental attenuation coefficient is about 10% less than the theoretical value given by Storm and Israel. Transmission images of regular and irregular bones obtained using 159Dy are presented.
Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7.
Morris, D J P; Tennant, D A; Grigera, S A; Klemke, B; Castelnovo, C; Moessner, R; Czternasty, C; Meissner, M; Rule, K C; Hoffmann, J-U; Kiefer, K; Gerischer, S; Slobinsky, D; Perry, R S
2009-10-16
Sources of magnetic fields-magnetic monopoles-have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes-classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.
Superconducting composite with multilayer patterns and multiple buffer layers
Wu, X.D.; Muenchausen, R.E.
1993-10-12
An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.
Bridgman growth and luminescence properties of dysprosium doped lead potassium niobate crystal
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Tian, Tian; Yang, Bobo; Xu, Jiayue; Liu, Hongde
2017-06-01
Dy-doped lead potassium niobate (Pb2KNb5O15, PKN) single crystal was grown by the modified vertical Bridgman method through spontaneous nucleation. The crystal was brownish, transparent and inclusion free. Five excitation peaks of Dy3+ ions were clearly seen from near ultraviolet region to blue range. It was unique that the excitation peaks in blue range were more intense, especially the one centered at 455 nm. The emission bands consisted of blue, yellow and red emissions, which were at about 487 nm, 573 nm and 662 nm respectively. The CIE chromaticity diagram of PKN:Dy indicated that white light and yellow light could be emitted when the crystal was excited under near ultraviolet light and blue light, respectively. Thus PKN:Dy crystal is a candidate material whose emitting light could be tunable through changing the excited light wavelength.
Metallic rare-earth silicide nanowires on silicon surfaces.
Dähne, Mario; Wanke, Martina
2013-01-09
The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).
Biological fabrication of cellulose fibers with tailored properties.
Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen
2017-09-15
Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material's functionality. In vitro model cultures of upland cotton ( Gossypium hirsutum ) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Dysprosium-free melt-spun permanent magnets.
Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W
2014-02-12
Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.
Boyle, Timothy J; Bunge, Scott D; Clem, Paul G; Richardson, Jacob; Dawley, Jeffrey T; Ottley, Leigh Anna M; Rodriguez, Mark A; Tuttle, Bruce A; Avilucea, Gabriel R; Tissot, Ralph G
2005-03-07
Using either an ammoniacal route, the reaction between DyCl3, Na0, and HOR in liquid ammonia, or preferentially reacting Dy(N(SiMe3)2)3 with HOR in a solvent, we isolated a family of dysprosium alkoxides as [Dy(mu-ONep)2(ONep)]4 (1), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(THF)]2(mu-ONep) (2), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(py)]2(mu-ONep) (3), [Dy3(mu3-OBut)2(mu-OBut3(OBut)4(HOBut)2] (4), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(THF)2] (5), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(py)2] (6), (DMP)Dy(mu-DMP)4[Dy(DMP)2(NH3)]2 (7), [Dy(eta6-DMP)(DMP)2]2 (8), Dy(DMP)3(THF)3 (9), Dy(DMP)3(py)3 (10), Dy(DIP)3(NH3)2 (11), [Dy(eta6-DIP)(DIP)2]2 (12), Dy(DIP)3(THF)2 (13), Dy(DIP)3(py)3 (14), Dy(DBP)3(NH3) (15), Dy(DBP)3 (16), Dy(DBP)3(THF) (17), Dy(DBP)3(py)2 (18), [Dy(mu-TPS)(TPS2]2 (19), Dy(TPS)3(THF)3 (20), and Dy(TPS)3(py)3 (21), where ONep = OCH2CMe3, OBut) = OCMe3, DMP = OC6H3(Me)(2)-2,6, DIP = OC6H3(CHMe2)(2)-2,6, DBP = OC6H3(CMe3)(2)-2,6, TPS = OSi(C6H5)3, tol = toluene, THF = tetrahydrofuran, and py = pyridine. We were not able to obtain X-ray quality crystals of compounds 2, 8, and 9. The structures observed and data collected for the Dy compounds are consistent with those reported for its other congeners. A number of these precursors were used as Dy dopants in Pb(Zr0.3Ti0.7)O3 (PZT 30/70) thin films, with compound 12 yielding the highest-quality films. The resulting Pb0.94Dy0.04(Zr0.3Ti0.7)O3 [PDyZT (4/30/70)] had similar properties to PZT (30/70), but showed substantial resistance to polarization reversal fatigue.
Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application
NASA Astrophysics Data System (ADS)
Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.
2015-06-01
In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.
NASA Astrophysics Data System (ADS)
Chen, Xi; Lin, Zheng-Zhe
2018-05-01
Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.
Sub-molecular modulation of a 4f driven Kondo resonance by surface-induced asymmetry
NASA Astrophysics Data System (ADS)
Warner, Ben; El Hallak, Fadi; Atodiresei, Nicolae; Seibt, Philipp; Prüser, Henning; Caciuc, Vasile; Waters, Michael; Fisher, Andrew J.; Blügel, Stefan; van Slageren, Joris; Hirjibehedin, Cyrus F.
2016-09-01
Coupling between a magnetic impurity and an external bath can give rise to many-body quantum phenomena, including Kondo and Hund's impurity states in metals, and Yu-Shiba-Rusinov states in superconductors. While advances have been made in probing the magnetic properties of d-shell impurities on surfaces, the confinement of f orbitals makes them difficult to access directly. Here we show that a 4f driven Kondo resonance can be modulated spatially by asymmetric coupling between a metallic surface and a molecule containing a 4f-like moment. Strong hybridization of dysprosium double-decker phthalocyanine with Cu(001) induces Kondo screening of the central magnetic moment. Misalignment between the symmetry axes of the molecule and the surface induces asymmetry in the molecule's electronic structure, spatially mediating electronic access to the magnetic moment through the Kondo resonance. This work demonstrates the important role that molecular ligands have in mediating electronic and magnetic coupling and in accessing many-body quantum states.
NASA Astrophysics Data System (ADS)
Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.
2018-04-01
The influence of post-deposition annealing on the structure, particle morphology and photoluminescence properties of dysprosium (Dy3+) doped La0.5Gd1.5SiO5 thin films grown on Si(111) substrates at different substrate temperatures using pulsed laser deposition (PLD) technique were studied. The X-ray diffractometer results showed an improved crystallinity after post-annealing. The topography and morphology of the post-annealed films were studied using atomic force microscopy and field emission scanning electron microscopy respectively. The elemental composition in the surface region of the films were analyzed using energy dispersive X-ray spectroscopy. The photoluminescence studies showed an improved luminescent after post-annealing. The cathodoluminescence properties of the films are also reported. The CIE colour coordinates calculated from the photoluminescence and cathodoluminescence data suggest that the films can have potential application in white light emitting diode (LED) and field emission display (FED) applications.
Cryogenic Field Measurement of Pr2Fe14B Undulator and Performance Enhancement Options at the NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanabe, T.; Chubar, O.; Harder, David A.
2009-09-27
Short period (14.5mm) hybrid undulator arrays composed of Praseodymium Iron Boron (Pr{sub 2}Fe{sub 14}B) magnets (CR53, NEOMAX, Inc.) and vanadium permendur poles have been fabricated at Brookhaven National Laboratory. Unlike Neodymium Iron Boron (Nd{sub 2}Fe{sub 14}B) magnets which exhibit spin reorientation at temperatures below 150K, PrFeB arrays monotonically increase performance with lower operating temperature. It opens up the posibility for use in operating a cryo-permanent magnet undulator (CPMU) in the range of 40K to 60K where very efficient cryocoolers are available. Magnetic flux density profiles were measured at various temperature ranges from room temperature down to liquid helium (LHe) usingmore » the Vertical Testing Facility (VTF) at the National Snchrotron Light Source-II (NSLS-II). Temperature variations of phase error have been characterized. In addition, we examined the use of textured Dysprosium (Dy) poles to replace permendur poles to obtain further improvement in performance.« less
High temperature thermometric phosphors
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
High temperature thermometric phosphors
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
High temperature thermometric phosphors for use in a temperature sensor
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1998-03-24
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
NASA Astrophysics Data System (ADS)
Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik
2014-09-01
This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.
Two novel 2D lanthanide sulfate frameworks: Syntheses, structures, and luminescence properties
NASA Astrophysics Data System (ADS)
Li, Zhong-Yi; Zhang, Chi; Zhang, Fu-Li; Zhang, Fu-Qiang; Zhang, Xiang-Fei; Li, Su-Zhi; Cao, Guang-Xiu; Zhai, Bin
2016-03-01
Two novel lanthanide-sulfate compounds, [Ln2(SO4)3(H2O)8] (Ln = Tb (1) and Dy (2)), have been synthesized under hydrothermal reactions. X-ray crystal structure analyses reveal that 1 and 2 are isomorphous and crystallize in monoclinic C2/c pace group, showing a layered structure. The layers bear a rare quasi-honeycomb metal arrangement, which is fastened by μ3 = η1:η1:η1 and μ2 = η1:η1 sulfates. If assigning the μ3 = η1:η1:η1 sulfate as a 3-connected node and the Ln3+ ion as a 4-connected node, the network can be rationalized as a binodal (3,4)-connected V2O5 topology with a Schäfli symbol of (42·63·8) (42·6). In addition, the infrared, thermogravimetric analysis and luminescent properties were also studied. Complexes 1 and 2 exhibit outstanding thermal stability and characteristic terbium and dysprosium luminescence.
Modified Pechini's method to prepare LaAlO3:RE thermoluminescent materials
NASA Astrophysics Data System (ADS)
Rivera-Montalvo, T.; Morales-Hernandez, A.; Barrera-Angeles, A. A.; Alvarez-Romero, R.; Falcony, C.; Zarate-Medina, J.
2017-11-01
This work presents an alternative method to prepare rare-earth doped lanthanum aluminates materials for thermoluminescent (TL) dosimetry applications. Modified Pechini´s method was using to prepare praseodymium doped LaAlO3 powders. LaAlO3:Pr3+ powders were prepared using La(NO3)3·6H2O, Al(NO3)3·6H2O, Pr(NO3)3·6H2O, citric acid, and ethylene glycol. The solution was heated to 80 °C for its polyesterification reaction. The obtained powders were submitted at different thermal treatment from 700 up to 1600 °C. The structural and morphological characterizations were carried out using X-ray diffraction (XRD) and scanning electron microscopy techniques. TL glow curves of the X-ray irradiated samples showed one peak for europium and praseodymium dopants, meanwhile for powders doped with dysprosium ion showed two peaks. The technique is low cost, faster and it produces homogeneous particles can be used as thermoluminescent phosphors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; ...
2017-06-05
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
Pico-level DNA sensing by hetero-polymetalate, Na10{Dy2W10O30(µ-S)6}·80H2O, cluster
NASA Astrophysics Data System (ADS)
Dutta, Taposhree; Ganguly, Jhuma; Sarkar, Sabyasachi
2018-04-01
The polyoxometalate dysprosium cluster, (Dy-S-W POM) , Na10[Dy2W10O30(µ-S)6]·80H2O, shows remarkable dsDNA denaturation property. In the presence of 0.22 µmol of this Dy-S-W POM, the melting temperature (Tm) of calf-thymus (CT) dsDNA is decreased to 62.35 °C. Dy-S-W POM shows bleaching of methylene blue (MB). Addition of CT-DNA in the MB bleached solution of Dy-S-W POM apparently intercalates MB. Such trapped MB by CT-DNA responds to its re-oxidation by elemental sulfur formed in the bleaching process involving Dy-S-W POM. This reduction-oxidation property of MB with Dy-S-W POM led to the detection of pico (13.20 pmol) level of DNA even by naked eye, which will be helpful for rapid trace DNA detection in forensic science and DNA-related diagnostics, complimenting time-consuming sophisticated methodology.
Peeters, J M; Seppenwoolde, J-H; Bartels, L W; Bakker, C J G
2006-03-21
Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of scan techniques, tracking speeds and, preferably, field strengths. Paramagnetic markers do not satisfy all of these requirements. Ferro- and ferrimagnetic materials were therefore investigated with a vibrating sample magnetometer and compared with the strongly paramagnetic dysprosium oxide. Results indicated that the magnetic behaviour of stainless steel type AISI 410 corresponds the best with ideal marker properties. Markers with different magnetic moments were constructed and tested in in vitro and in vivo experiments. The appearance of the corresponding artefacts was field strength independent above magnetic saturation of 1.5 T. Generally, the contrast-to-noise ratio decreased at increasing tracking speed and decreasing magnetic moment. Device depiction was most consistent at a frame rate of 20 frames per second.
Wang, Shaoxu; Li, Yan; Huang, Zihang; Li, Hui
2013-12-01
A simple route of in situ polymerization by the chemical oxidation method was successfully employed to synthesize polyaniline/dysprosium oxide (PANI/Dy2O3) composites. The synthesized materials were characterized by Fourier transform infrared spectra and X-ray diffraction. The thermal stability of the composite was studied by thermogravimetry (TG). The electrochemical performance of the composites was investigated by cyclic voltammetry and alternating current impedance spectroscopy with a three-electrode system. TG results suggested that the thermal stability of PANI/Dy2O3 composites showed a tendency to first increase and then decrease with increasing Dy2O3 amount. Electrochemical experiments indicated that the composite electrodes showed a lower capacitance than that of pure PANI, which may be attributed to the interaction between PANI and Dy2O3 in the composites. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Selective Extraction and Recovery of Nd and Dy from Nd-Fe-B Magnet Scrap by Utilizing Molten MgCl2
NASA Astrophysics Data System (ADS)
Shirayama, Sakae; Okabe, Toru H.
2018-06-01
Fundamental experiments are conducted with the aim of developing an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap. Molten magnesium dichloride (MgCl2) was chosen as an extraction medium, which can selectively chlorinate and extract REEs in magnet alloys. Dysprosium-containing Nd-Fe-B magnet alloy was immersed in molten MgCl2 at 1273 K (1000 °C) for 3 to 12 hours. The results of the experiments clearly show that the REEs in the magnetic alloy were successfully extracted into the molten salt, while the Fe-B alloy remained in a solid form. The extraction ratios of Nd and Dy were at most 87 and 78 mass pct, respectively. After the extraction experiment, excess MgCl2 and Mg were removed by vacuum distillation and the rare earth chlorides were recovered. Thus, the feasibility of this method for efficient recovery of rare earths using molten MgCl2 is demonstrated.
Modeling the Value Recovery of Rare Earth Permanent Magnets at End-of-Life
Cong, Liang; Jin, Hongyue; Fitsos, Pete; ...
2015-05-21
Permanent magnets containing rare earth elements (REEs) such as Dysprosium and Neodymium offer an advantage over non-REE containing magnets (e.g. ferrite or AlNiCo) in terms of power relative to size. However, REE availability has varied significantly in recent years leading to volatility in the cost of rare earth permanent magnets (REPMs). The supply of REEs can be increased by recycling consumer products and industrial machinery that contain REPMs at product end-of-life (EOL). This paper discusses the REE recovery process for EOL products. The optimal dismantling of products is examined with an emphasis placed on obtaining used REPMs. The challenge ofmore » collecting, managing, transporting, and processing used products is addressed through the development of a cost model for REPM recovery. This model is used to investigate several EOL strategies for recovering REPMs. Sensitivity analysis is conducted to identify the key factors that influence value recovery economics. A hard disk drive serves as a case study for model demonstration.« less
NASA Astrophysics Data System (ADS)
Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman
2017-04-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.
Formation of dysprosium carbide on the graphite (0001) surface
Lii-Rosales, Ann; Zhou, Yinghui; Wallingford, Mark; ...
2017-07-12
When using scanning tunneling microscopy, we characterize a surface carbide that forms such that Dy is deposited on the basal plane of graphite. In order to form carbide islands on terraces, Dy is first deposited at 650–800 K, which forms large metallic islands. Upon annealing at 1000 K, these clusters convert to carbide. Deposition directly at 1000 K is ineffective because nucleation on terraces is inhibited. Reaction is signaled by the fact that each carbide cluster is partially or totally surrounded by an etch pit. The etch pit is one carbon layer deep for most carbide clusters. Carbide clusters aremore » also identifiable by striations on their surfaces. Based on mass balance, and assuming that only the surface layer of carbon is involved in the reaction, the carbide has stoichiometry D y 2 C . This is Dy-rich compared with the most common bulk carbide Dy C 2 , which may reflect limited surface carbon transport to the carbide.« less
Predictive model for ionic liquid extraction solvents for rare earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabda, Mariusz; Oleszek, Sylwia; Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze
2015-12-31
The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effectivemore » extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.« less
Selective Extraction and Recovery of Nd and Dy from Nd-Fe-B Magnet Scrap by Utilizing Molten MgCl2
NASA Astrophysics Data System (ADS)
Shirayama, Sakae; Okabe, Toru H.
2018-02-01
Fundamental experiments are conducted with the aim of developing an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap. Molten magnesium dichloride (MgCl2) was chosen as an extraction medium, which can selectively chlorinate and extract REEs in magnet alloys. Dysprosium-containing Nd-Fe-B magnet alloy was immersed in molten MgCl2 at 1273 K (1000 °C) for 3 to 12 hours. The results of the experiments clearly show that the REEs in the magnetic alloy were successfully extracted into the molten salt, while the Fe-B alloy remained in a solid form. The extraction ratios of Nd and Dy were at most 87 and 78 mass pct, respectively. After the extraction experiment, excess MgCl2 and Mg were removed by vacuum distillation and the rare earth chlorides were recovered. Thus, the feasibility of this method for efficient recovery of rare earths using molten MgCl2 is demonstrated.
Liu, Jiang; Chen, Yan-Cong; Jiang, Zhong-Xia; Liu, Jun-Liang; Jia, Jian-Hua; Wang, Long-Fei; Li, Quan-Wen; Tong, Ming-Liang
2015-05-07
The perturbation to the ligand field around the lanthanide ion may significantly contribute to the magnetic dynamics of single molecule magnets. This can be demonstrated by two typical Dy4 cluster-based single molecular magnets (SMMs), [Dy4X2(μ3-OH)2(μ-OH)2(2,2-bpt)4(H2O)4]X2·2H2O·4EtOH (X = Cl and Br for and , respectively), which were constructed by using 3,5-bis(pyridin-2-yl)-1,2,4-triazole (2,2-bptH) as the polynuclear-chelating ligand. Alternating-current (ac) magnetic susceptibility measurements show that the energy barriers in complexes and were immensely enhanced by comparing with our previous work due to the optimization of the ligand field around Dy(III) ions. Remarkably, their high thermal active barriers at 190 K () and 197 K () under a zero applied external dc magnetic field are also among the highest within the reported tetranuclear lanthanide-based SMMs.
Levels in 227Ac populated in the 230Th( p, α) reaction
NASA Astrophysics Data System (ADS)
Burke, D. G.; Garrett, P. E.; Qu, Tao
2003-09-01
The 230,232Th(p, α) 227,229Ac reactions were studied using 20 MeV protons and a magnetic spectrograph to analyze the reaction products. Relative populations of levels in 229Ac correlated well with previously published (t, α) results for the same final levels, showing that the similarity of the two reactions observed empirically in the deformed rare earth region extends to actinides. The most strongly populated level in 227Ac is at 639 keV, and is assigned as the 1/2 +[4 0 0] bandhead. The 435 keV level, previously adopted as the 1/2 +[6 6 0] bandhead, also has a significant intensity that is attributed to Δ N=2 mixing between these two K=1/2 proton orbitals. The Δ N=2 matrix element estimated from these data is ˜80 keV, similar to values observed for the same two Nilsson states as neutron orbitals in the dysprosium isotopes.
Qin, Yaru; Zhang, Haifeng; Sun, Hao; Pan, Yangdan; Ge, Yu; Li, Yahong; Zhang, Yi-Quan
2017-11-02
The utilization of 2-ethoxy-6-{[(2-hydroxy-3-methoxybenzyl)imino]methyl}phenol (H 2 L) as a chelating ligand, in combination with the employment of alcohols (EtOH and MeOH) as auxiliary ligands, in 4 f-metal chemistry afforded two series of dinuclear lanthanide complexes of compositions [Ln 2 L 2 (NO 3 ) 2 (EtOH) 2 ] (Ln=Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7)) and [Ln 2 L 2 (NO 3 ) 2 (MeOH) 2 ] (Ln=Sm (8), Eu (9), Gd (10), Tb (11), Dy (12), Ho (13), Er (14)). The structures of 1-14 were determined by single-crystal X-ray crystallography. Complexes 1-7 are isomorphous. The two lanthanide(III) ions in 1-7 are doubly bridged by two deprotonated aminophenoxide oxygen atoms of two μ 2 :η 0 :η 1 :η 2 :η 1 :η 1 :η 0 -L 2- ligands. One nitrogen atom, two oxygen atoms of the NO 3 - anion, two methoxide oxygen atoms of two ligand sets, and one oxygen atom of the terminally coordinated EtOH molecule complete the distorted dodecahedron geometry of each lanthanide(III) ion. Compounds 8-14 are isomorphous and their structures are similar to those of 1-7. The slight difference between 1-7 and 8-14 stems from purposefully replacing the EtOH ligands in 1-7 with MeOH in 8-14. Direct-current magnetic susceptibility studies in the 2-300 K range reveal weak antiferromagnetic interactions for 3, 4, 7, 10, 11, and 14, and ferromagnetic interactions at low temperature for 5, 6, 12, and 13. Complexes 5 and 12 exhibit single-molecule magnet (SMM) behavior with energy barriers of 131.3 K for 5 and 198.8 K for 12. The energy barrier is significantly enhanced by dexterously regulating the terminal ligands. To rationalize the observed difference in the magnetic behavior, complete-active-space self-consistent field (CASSCF) calculations were performed on two Dy 2 complexes. Subtle variation in the angle between the magnetic axes and the vector connecting two dysprosium(III) ions results in a weaker influence on the tunneling gap of individual dysprosium(III) ions by the dipolar field in 12. This work proposes an efficient strategy for synthesizing Dy 2 SMMs with high energy barriers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of perturbation theory to lattice calculations based on method of cyclic characteristics
NASA Astrophysics Data System (ADS)
Assawaroongruengchot, Monchai
Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the computing time when both direct and adjoint solutions are required. A problem that arises for the generalized adjoint problem is that the direct use of the negative external generalized adjoint sources in the adjoint solution algorithm results in negative generalized adjoint functions. A coupled flux biasing/decontamination scheme is applied to make the generalized adjoint functions positive using the adjoint functions in such a way that it can be used for the multigroup rebalance technique. Next we consider the application of the perturbation theory to the reactor problems. Since the coolant void reactivity (CVR) is a important factor in reactor safety analysis, we have decided to select this parameter for optimization studies. We consider the optimization and adjoint sensitivity techniques for the adjustments of CVR at beginning of burnup cycle (BOC) and k eff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice. The sensitivity coefficients are evaluated using the perturbation theory based on the integral transport equations. Three sets of parameters for CVR-BOC and keff-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR at beginning of cycle (CBCVR-BOC). To approximate the sensitivity coefficient at EOC, we perform constant-power burnup/depletion calculations for 600 full power days (FPD) using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Sensitivity analyses of CVR and eigenvalue are included in the study. In addition the optimization and adjoint sensitivity techniques are applied to the CBCVR-BOC and keff-EOC adjustment of the ACR lattices with Gadolinium in the central pin. Finally we apply these techniques to the CVR-BOC, CVR-EOC and keff-EOC adjustment of a CANDU lattice of which the burnup period is extended from 300 to 450 FPDs. The cases with the central pin containing either Dysprosium or Gadolinium in the natural Uranium are considered in our study. (Abstract shortened by UMI.)
Magnetic blocking in a linear iron(I) complex.
Zadrozny, Joseph M; Xiao, Dianne J; Atanasov, Mihail; Long, Gary J; Grandjean, Fernande; Neese, Frank; Long, Jeffrey R
2013-07-01
Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2](-), for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field. This S = complex exhibits an effective spin-reversal barrier of Ueff = 226(4) cm(-1), the largest yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.
Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery
NASA Technical Reports Server (NTRS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
Photodissociation spectroscopy of the dysprosium monochloride molecular ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Alexander, E-mail: alexander.dunning@gmail.com; Schowalter, Steven J.; Puri, Prateek
2015-09-28
We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl{sup +}. The photodissociation cross section for the photon energy range 35 500 cm{sup −1} to 47 500 cm{sup −1} is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43 000 cm{sup −1}. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl{sup +} is extremely complex due to the presence of multiple open electronic shells,more » including the 4f{sup 10} configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy{sup +} ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.« less
Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode.
Jelínková, Helena; Doroshenko, Maxim E; Jelínek, Michal; Sulc, Jan; Osiko, Vyacheslav V; Badikov, Valerii V; Badikov, Dmitrii V
2013-08-15
In this Letter, we demonstrate the pulsed and CW operation of the Dy:PbGa(2)S(4) laser directly pumped by the 1.7 μm laser diode. In the pulsed regime (pulse duration 5 ms; repetition rate 20 Hz), the maximum mean output power of 9.5 mW was obtained with the slope efficiency of 9.3% with respect to the absorbed pump power. The generated wavelength was 4.32 μm, and the laser beam cross section was approximately Gaussian on both axes. Stable CW laser generation was also successfully obtained with the maximum output power of 67 mW and the slope efficiency of 8%. Depopulation of the lower laser level by 1.7 μm pump radiation absorption followed by 1.3 μm upconversion fluorescence was demonstrated. These results show the possibility of construction of the compact diode-pumped solid-state pulsed or CW laser generating at 4.3 μm in the power level of tens mW operating at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik
2014-09-03
This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less
NASA Astrophysics Data System (ADS)
Basha, Ahmad Fouad; Basha, Mohammad Ahmad-Fouad
2017-12-01
Polymer composites of a system of Polyvinylpyrrolidone (PVP)/gelatin/DyCl3.6H2O were prepared in three groups that have different concentrations of PVP/gelatin contents to study the effect of neutron irradiation on their structural and optical properties. Results showed that the interaction of neutrons led to various complex phenomena, mainly bond breaking, main chain scission and intermolecular cross-linking. These processes introduced defects inside the material that were responsible for the changes in their optical and structural properties. All the calculated parameters were found to be dependent on the irradiation fluence in a uniform manner that makes these materials excellent candidates in the applications of dosimetry and radiology. Moreover, the sensitivity of the three groups of composites to the irradiation doses was found to be different. The variation in the structure of the composite group that contains the least PVP content was found to be less significant; hence, these materials were more stable against high doses that make them suitable for high radiation dose applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanabe, Toshiya; Chubar, Oleg; Harder, David A.
2010-06-23
Short period (14.5mm) hybrid undulator arrays composed of Praseodymium Iron Boron (Pr{sub 2}Fe{sub 14}B) magnets (CR53, NEOMAX, Inc.) and vanadium permendur poles have been fabricated at Brookhaven National Laboratory. Unlike Neodymium Iron Boron (Nd{sub 2}Fe{sub 14}B) magnets which exhibit spin reorientation at a temperatures below 150 K, PrFeB arrays monotonically increase performance with lower operating temperature. It opens up the possibility for use in operating a cryo-permanent magnet undulator (CPMU) in the range of 40 K to 60 K where very efficient cryocoolers are available. Magnetic flux density profiles were measured at various temperature ranges from room temperature down tomore » liquid helium (LHe) using the Vertical Testing Facility (VTF) at the National Synchrotron Light Source-II (NSLS-II). Temperature variations of phase error have been characterized. In addition, we examined the use of textured Dysprosium (Dy) poles to replace permendur poles to obtain further improvement in performance.« less
Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal
2015-03-06
Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hridya, S.; Kavitha, V. S.; Chalana, S. R.; Reshmi Krishnan, R.; Sreeja Sreedharan, R.; Suresh, S.; Nampoori, V. P. N.; Sankararaman, S.; Prabhu, Radhakrishna; Mahadevan Pillai, V. P.
2017-11-01
Barium tungstate films with different Dy3+ doping concentrations, namely 0 wt.%, 1 wt.%, 3 wt.% and 5 wt.%, are deposited on cleaned quartz substrate by radio frequency magnetron sputtering technique and the prepared films are annealed at a temperature of 700°C. The structural, morphological and optical properties of the annealed films are studied using techniques such as x-ray diffraction (XRD), micro-Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and photoluminescence spectroscopy. XRD analysis shows that all the films are well-crystallized in nature with a monoclinic barium tungstate phase. The presence of characteristic modes of the tungstate group in the Raman spectra supports the formation of the barium tungstate phase in the films. Scanning electron microscopic images of the films present a uniform dense distribution of well-defined grains with different sizes. All the doped films present a broad emission in the 390-500 nm region and its intensity increases up to 3 wt.% and thereafter decreases due to usual concentration quenching.
High temperature thermometric phosphors for use in a temperature sensor
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1998-01-01
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
NASA Astrophysics Data System (ADS)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.
2017-09-01
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.
Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide
NASA Astrophysics Data System (ADS)
Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.
2018-05-01
Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.
Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K
2009-03-25
Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.
Pathak, Arjun K.; Khan, M.; Gschneidner, Jr., K. A.; ...
2015-11-06
Magnetic properties of Ce and Co co-doped (Nd 1-xCe x) 2Fe 14-yCo yB compounds have been investigated both in bulk polycrystalline and rapidly solidified nanostructured ribbon forms. For certain Ce concentrations the materials exhibit spin re-orientation transitions below 140 K. The Curie temperatures, saturation magnetizations, and other magnetic properties relevant for applications as permanent magnets are controlled by Ce and Co substitutions for Nd and Fe, respectively. Most importantly, the results show that Ce, Co co-doped compounds are excellent replacements for several Dy-based high performance permanent magnets (dysprosium is one of the critical elements and is, therefore, in short supply).more » As a result, the high temperature (>375 K) magnetic properties for Nd–Ce–Fe–Co–B based alloys show promise not only as a replacement for Dy-doped Nd 2Fe 14B permanent magnets, but the new alloys also require significantly lower amounts of Nd, which too is the critical element that can be replaced by a more abundant Ce.« less
Research of green emitting rare-earth doped materials as potential quantum-cutter
NASA Astrophysics Data System (ADS)
Moine, Bernard; Beauzamy, Lena; Gredin, Patrick; Wallez, Gilles; Labeguerie, Jessica
2008-03-01
Because the energy of vacuum ultraviolet (VUV) photons emitted by xenon plasma discharge is more than twice that of visible photons, quantum cutting appears to be a promising process in rare-earth doped materials in order to obtain efficient phosphors for mercury free lighting devices as well as for plasma display panels. With an aim of application, it is important to take into account the emitting color of the developed new phosphors. Most of the time, this leads to use systems with at least two kinds of rare earth ions: one of them playing the role of energy sensitizer, and the other one being in charge of emitting the light of the suitable color. We focus our attention on green rare-earth doped materials. In order to get very efficient phosphors, it is not only necessary to get the highest possible quantum yield, but also to have a material characterized by a strong absorption in the VUV range. Borate and fluoride matrices doped with Dy 3+/Tb 3+ couples of ions are selected according to the position of the 5d band of dysprosium as green emitters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalimova, M. B., E-mail: shamb@samsu.ru; Sachuk, N. V.
2015-08-15
The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distributionmore » of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.« less
Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R
2015-08-18
The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.
NASA Astrophysics Data System (ADS)
Martinez, Ana Maria; Støre, Anne; Osen, Karen Sende
2018-04-01
Electrolytic production of light rare earth elements and alloys takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds, and side cathode reactions could largely be minimized by a good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The oxide content of the fluoride melts REF3-LiF (RE = Nd, Dy) at different compositions and temperatures were experimentally determined by carbothermal analysis of melt samples. The highest solubility values of oxide species, added as Dy2O3 and Dy2(CO3)3, were obtained to be of ca. 3 wt pct (expressed as Dy2O3) in the case of the equimolar DyF3-LiF melt at 1323 K (1050 °C). The oxide saturation values increased with the amount of REF3 present in the molten bath and the working temperature.
Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric
In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates.
Guo, Yun-Nan; Chen, Xiao-Hua; Xue, Shufang; Tang, Jinkui
2012-04-02
Complexation of dysprosium(III) with the heterodonor chelating ligand o-vanillin picolinoylhydrazone (H(2)ovph) in the presence of a carbonato ligand affords two novel Dy(6) and Dy(8) clusters, namely, [Dy(6)(ovph)(4)(Hpvph)(2)Cl(4)(H(2)O)(2)(CO(3))(2)]·CH(3)OH·H(2)O·CH(3)CN (2) and [Dy(8)(ovph)(8)(CO(3))(4)(H(2)O)(8)]·12CH(3)CN·6H(2)O (3). Compound 2 is composed of three petals of the Dy(2) units linked by two carbonato ligands, forming a triangular prism arrangement, while compound 3 possesses an octanuclear core with an unprecedented tub conformation, in which Dy(ovph) fragments are attached to the sides of the carbonato core. The static and dynamic magnetic properties are reported and discussed. In the Dy(6) aggregate, three Dy(2) "skeletons", having been well preserved (see the scheme), contribute to the single-molecule-magnet behavior with a relatively slow tunneling rate, while the Dy(8) cluster only exhibits a rather small relaxation barrier.
White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses
NASA Astrophysics Data System (ADS)
Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.
2017-04-01
Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with decreasing of the temperature. The results of the investigations in this work confirmed that the present Dy-doped lanthanum calcium phosphate oxide and oxyfluoride glasses perform high potential for using as efficient luminescence materials for solid-state lighting applications, especially for white LEDs. Furthermore, the oxyfluoride glass sample provides more luminescence potential than the oxide glass sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Paramananda; Gupta, Santosh K., E-mail: santufrnd@gmail.com; Natarajan, V.
2015-04-15
Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4}more » sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.« less
Scarcity of rare earth elements.
de Boer, M A; Lammertsma, K
2013-11-01
Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burns, Corey P; Wilkins, Branford O; Dickie, Courtney M; Latendresse, Trevor P; Vernier, Larry; Vignesh, Kuduva R; Bhuvanesh, Nattamai S; Nippe, Michael
2017-07-25
We utilized a rigid ligand platform PyCp 2 2- (PyCp 2 2- = [2,6-(CH 2 C 5 H 3 ) 2 C 5 H 3 N] 2- ) to isolate dinuclear Dy 3+ complexes [(PyCp 2 )Dy-(μ-O 2 SOCF 3 )] 2 (1) and [(PyCp 2 )Dy-(μ-Cl)] 2 (3) as well as the mononuclear complex (PyCp 2 )Dy(OSO 2 CF 3 )(thf) (2). Compounds 1 and 2 are the first examples of organometallic Dy 3+ complexes featuring triflate binding. The isolation of compounds 1 and 3 allows us to comparatively evaluate the effects of the bridging anions on the magnetization dynamics of the dinuclear systems. Our investigations show that although the exchange coupling interactions differ for 1 and 3, the dynamic magnetic properties are dominated by relaxation via the first excited state Kramers doublet of the individual Dy sites. Compounds 1 and 3 exhibit barriers to magnetization reversal (U eff = 49 cm -1 ) that can be favorably compared to those of the previously reported examples of [Cp 2 Dy(μ-Cl)] 2 (U eff = 26 cm -1 ) and [Cp 2 Dy(thf)(μ-Cl)] 2 (U eff = 34 cm -1 ).
Jamming Behavior of Domain Walls in an Antiferromagnetic Film
NASA Astrophysics Data System (ADS)
Sinha, Sunil
2014-03-01
Over the last few years, attempts have been made to unify many aspects of the freezing behavior of glasses, granular materials, gels, supercooled liquids, etc. into a general conceptual framework of what is called jamming behavior. This occurs when particles reach packing densities high enough that their motions become highly restricted. A general phase diagram has been proposed onto which various materials systems, e.g glasses or granular materials, can be mapped. We will discuss some recent applications of resonant and non-resonant soft X-ray Grazing Incidence Scattering to mesoscopic science, for example the study of magnetic domain wall fluctuations in thin films. For these studies, we use resonant magnetic x-ray scattering with a coherent photon beam and the technique of X-ray Photon Correlation Spectroscopy. find that at the ordering temperature the domains of an antiferromagnetic system, namely Dysprosium metal, behave very much also like a jammed system and their associated fluctuations exhibit behavior which exhibit some of the universal characteristics of jammed systems, such as non-exponential relaxation and Vogel-Fulcher type freezing. Work supported by Basic Energy Sciences, U.S. Dept. of Energy under Grant Number: DE-SC0003678.
Superconducting composite with multilayer patterns and multiple buffer layers
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Ternary germanides RERhGe2 (RE = Y, Gd-Ho) - New representatives of the YIrGe2 type
NASA Astrophysics Data System (ADS)
Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer
2016-11-01
The YIrGe2 type ternary germanides RERhGe2 (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe2 was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F2 values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe2] polyanion is stabilized through covalent Rh-Ge (243-261 pm) and Ge-Ge (245-251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE5Rh4Ge10 (≡ RERh0.8Ge2) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe2 and Curie-Weiss paramagnetism for RERhGe2 with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at TN = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively.
NASA Astrophysics Data System (ADS)
Reddy Yadav, L. S.; Raghavendra, M.; Sudheer Kumar, K. H.; Dhananjaya, N.; Nagaraju, G.
2018-04-01
ZnO nanoparticles doped with trivalent dysprosium ions (Dy3+) were prepared through the green combustion technique using E. tirucalli plant latex as a fuel. The fundamental and optical properties of the samples are examined via the X-ray diffraction, FTIR, UV-visible analytical methods and morphology by scanning electron microscope and transmission electron microscope. Rietveld refinement results show that the ZnO : Dy3+ were crystallized in the wurtzite hexagonal structure with space group P63mc (No. 186). The average particle size of ZnO : Dy3+ prepared with the different concentration of latex was found to be in the range 30-38nm, which is also confirmed by TEM analysis. A rapid and convenient method for the one-pot preparation of N-formamide derivatives aromatic amines and amino acid esters has been developed using Dy3+ doped ZnO as a catalytic agent. This method provides an efficient and much improved modification over reported protocols regarding yield, clean and work-up procedure milder reaction conditions. In this work, Pongamiapinnata oil was recycled for the preparation of biodiesel via Dy3+ doped ZnO as a catalytic agent.
Magnetic Properties and Magnetic Phase Diagrams of Trigonal DyNi3Ga9
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Matsumoto, Yuji; Nakamura, Shota; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Inoue, Katsuya; Ohara, Shigeo
2017-12-01
We report the crystal structure, magnetic properties, and magnetic phase diagrams of single crystalline DyNi3Ga9 studied using X-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. DyNi3Ga9 crystallizes in the chiral structure with space group R32. The dysprosium ions, which are responsible for the magnetism in this compound, form a two-dimensional honeycomb structure on a (0001) plane. We show that DyNi3Ga9 exhibits successive phase transitions at TN = 10 K and T'N = 9 K. The former suggests quadrupolar ordering, and the latter is attributed to the antiferromagnetic order. It is considered that DyNi3Ga9 forms the canted-antiferromagnetic structure below T'N owing to a small hysteresis loop of the low-field magnetization curve. We observe the strong easy-plane anisotropy, and the multiple-metamagnetic transitions with magnetization-plateaus under the field applied along the honeycomb plane. For Hallel [2\\bar{1}\\bar{1}0], the plateau-region arises every 1/6 for saturation magnetization. The magnetic phase diagrams of DyNi3Ga9 are determined for the fields along principal-crystal axes.
A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it; Spigarelli, Stefano
2011-10-15
Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K weremore » carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: {yields} TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. {yields} The evaluation has been extended to different compression temperature conditions. {yields} Linear and Quadratic sum has been proposed and validated. {yields} Hall-Petch was found to be the most prominent strengthening contributions.« less
Relaxation-based distance measurements between a nitroxide and a lanthanide spin label
NASA Astrophysics Data System (ADS)
Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.
2008-10-01
Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.
Thermal history sensors for non-destructive temperature measurements in harsh environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.
2014-02-18
The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature informationmore » can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.« less
A survey of 16 rare Earth elements in the major foods in China.
Jiang, Ding Guo; Yang, Jie; Zhang, Shuo; Yang, Da Jin
2012-06-01
The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 16 rare earth elements (REEs), and to provide the basic data for establishing and revising food safety standards for REEs. Sixteen REEs in foods were measured by inductively coupled plasma-mass spectrometry (ICP-MS) in the labs of the Centers for Disease Control and Prevention of four provinces and two municipalities, during 2009-2010. 1 231 samples were analyzed and 19 121 concentration data of 16 REEs were collected. The REEs levels in the investigated foods varied significantly. The concentrations of cerium (Ce), dysprosium (Dy), yttrium (Y), lanthanum (La), and neodymium (Nd) were relatively high, while the remaining eleven REEs were at low levels. The mean values of total rare earth element oxides (REOs) in cereals, fresh vegetables, fresh aquatic products, fresh meats and eggs varied from 0.052 mg/kg to 0.337 mg/kg. 16 REEs in the major foods were at very low contamination levels in the investigated regions. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
Strategic coating of NdFeB magnets with Dy to improve the coercivity of permanent magnets
Ucar, Huseyin; Parker, David S.; Nlebedim, I. C.; ...
2015-12-25
Here, we present a method, supported by theoretical analysis, for optimizing the usage of the critical rare earth element dysprosium in Nd 2Fe 14B (NdFeB)-based permanent magnets. In this method, we use Dy selectively in locations such as magnet edges and faces, where demagnetization factors are most significant, rather than uniformly throughout the bulk sample. A 200 nm thick Dy film was sputtered onto commercial N-38, NdFeB magnets with a thickness of 3 mm and post-annealed at temperatures from 600 - 700 C. Magnets displayed enhanced coercivities after post-annealing. Furthermore, our experimental results indicate as large as a 5 percentmore » increase in the energy product of NdFeB magnets, achieved for a total Dy weight percentage of 0.06 percent, much less than that used in commercial grade Dy-NdFeB magnets. Finally, by assuming all Dy diffused into NdFeB magnets, the improvement in energy product corresponds to a saving of over 1% Dy (critical element). Magnets manufactured using this technique will therefore be higher performing and significantly less expensive than those made presently.« less
Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...
2015-06-24
In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less
NASA Astrophysics Data System (ADS)
Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.
2018-05-01
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.
Colloidal chromic phosphate /sup 32/P synovectomy in antigen-induced arthritis in the rabbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howson, M.P.; Shepard, N.L.; Mitchell, N.S.
1988-04-01
Radioisotopes have been employed in the therapy of chronic arthritis, in particular, rheumatoid arthritis for many years. A variety of isotopes have been popularized, and in the last ten years a colloidal solution of radioactive chromic phosphate /sup 32/P has been in use apparently with equivalent efficacy to others such as /sup 169/erbium, /sup 90/yttrium, and /sup 165/dysprosium. No controlled studies on this modality have been reported and few animal studies were found. The efficacy of therapeutic doses of /sup 32/P as a medical synovectomy and its effect on rabbit joints with antigen-induced arthritis were observed in 62 arthritic kneemore » joints in 31 adult rabbits treated on one side with 0.1 microCi of /sup 32/P, the opposite serving as control. The animals were observed over a period of 11 months and examined by histologic and biochemical means. The synovium showed no evidence of radiation necrosis in treated joints. Cartilage of treated and control joints showed similar changes consistent with chronic arthritis, persistent synovitis, progressive chondrocyte degeneration, and decreased matrix metachromasia. The radiosynovectomy had neither removed synovium nor protected the cartilage. Its efficacy in humans is therefore questionable.« less
Fowler, Robert Andrew; Fossheim, Sigrid L; Mestas, Jean-Louis; Ngo, Jacqueline; Canet-Soulas, Emmanuelle; Lafon, Cyril
2013-12-01
This work examines the use of lanthanide-based contrast agents and magnetic resonance imaging in monitoring liposomal behavior in vivo. Dysprosium (Dy) and gadolinium (Gd) chelates, Dy-diethylenetriaminepentaacetic acid bismethylamide (Dy-DTPA-BMA) and Gd-DTPA-BMA, were encapsulated in pegylated distearoylphosphatidylethanolamine-based (saturated) liposomes, and then intravenously injected into Copenhagen rats with subcutaneous Dunning AT2 xenografts. Liposome-encapsulated Dy chelate shortens transverse relaxation times (T(2) and T(2)*) of tissue; thus, liposomal accumulation in the tumor can be monitored by observing the decrease in T(2)* relaxation time over time. The tumor was treated at the time of maximum liposomal accumulation (48 h) with confocal, cavitating high-intensity focused ultrasound to induce liposomal payload release. Using liposome-encapsulated Gd chelate at high enough concentrations and saturated liposomal phospholipids induces an exchange-limited longitudinal (T(1)) relaxation when the liposomes are intact; when the liposomes are released, exchange limitation is relieved, thus allowing in vivo observation of payload release as a decrease in tumor T(1). Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Spectroscopy and energy transfer in lead borate glasses doubly doped with Tm3+ and Dy3+ ions
NASA Astrophysics Data System (ADS)
Górny, Agata; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.
2018-03-01
Lead borate glasses singly and doubly doped with Tm3+ and Dy3+ were prepared by traditional melt-quenching technique. The emission spectra of rare earths in studied glass systems were registered under different excitation wavelengths. The observed emission bands are located in the visible spectral region. They correspond to 1D2 → 3F4 (blue) and 1G4 → 3H6 (blue) transitions of Tm3+ as well as 4F9/2 → 6H15/2 (blue), 4F9/2 → 6H13/2 (yellow) and 4F9/2 → 6H11/2 (red) transitions of Dy3+. Moreover, the energy transfer process from Tm3+ to Dy3+ was observed. The luminescence bands originating to characteristic transitions of thulium and dysprosium ions are present on emission spectra under direct excitation of Tm3+. Luminescence lifetimes for the excited states of Tm3+ and Dy3+ ions in lead borate glass were also determined based on decay measurements. The luminescence intensities and lifetimes depend significantly on the relative concentrations of the optically active dopants.
Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François
2017-10-19
Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.
Designing an extended energy range single-sphere multi-detector neutron spectrometer
NASA Astrophysics Data System (ADS)
Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Esposito, A.; Pola, A.; Introini, M. V.; Mazzitelli, G.; Quintieri, L.; Buonomo, B.
2012-06-01
This communication describes the design specifications for a neutron spectrometer consisting of 31 thermal neutron detectors, namely Dysprosium activation foils, embedded in a 25 cm diameter polyethylene sphere which includes a 1 cm thick lead shell insert that degrades the energy of neutrons through (n,xn) reactions, thus allowing to extension of the energy range of the response up to hundreds of MeV neutrons. The new spectrometer, called SP2 (SPherical SPectrometer), relies on the same detection mechanism as that of the Bonner Sphere Spectrometer, but with the advantage of determining the whole neutron spectrum in a single exposure. The Monte Carlo transport code MCNPX was used to design the spectrometer in terms of sphere diameter, number and position of the detectors, position and thickness of the lead shell, as well as to obtain the response matrix for the final configuration. This work focuses on evaluating the spectrometric capabilities of the SP2 design by simulating the exposure of SP2 in neutron fields representing different irradiation conditions (test spectra). The simulated SP2 readings were then unfolded with the FRUIT unfolding code, in the absence of detailed pre-information, and the unfolded spectra were compared with the known test spectra. The results are satisfactory and allowed approving the production of a prototypal spectrometer.
Thermalization near Integrability in a Dipolar Quantum Newton's Cradle
NASA Astrophysics Data System (ADS)
Tang, Yijun; Kao, Wil; Li, Kuan-Yu; Seo, Sangwon; Mallayya, Krishnanand; Rigol, Marcos; Gopalakrishnan, Sarang; Lev, Benjamin L.
2018-04-01
Isolated quantum many-body systems with integrable dynamics generically do not thermalize when taken far from equilibrium. As one perturbs such systems away from the integrable point, thermalization sets in, but the nature of the crossover from integrable to thermalizing behavior is an unresolved and actively discussed question. We explore this question by studying the dynamics of the momentum distribution function in a dipolar quantum Newton's cradle consisting of highly magnetic dysprosium atoms. This is accomplished by creating the first one-dimensional Bose gas with strong magnetic dipole-dipole interactions. These interactions provide tunability of both the strength of the integrability-breaking perturbation and the nature of the near-integrable dynamics. We provide the first experimental evidence that thermalization close to a strongly interacting integrable point occurs in two steps: prethermalization followed by near-exponential thermalization. Exact numerical calculations on a two-rung lattice model yield a similar two-timescale process, suggesting that this is generic in strongly interacting near-integrable models. Moreover, the measured thermalization rate is consistent with a parameter-free theoretical estimate, based on identifying the types of collisions that dominate thermalization. By providing tunability between regimes of integrable and nonintegrable dynamics, our work sheds light on the mechanisms by which isolated quantum many-body systems thermalize and on the temporal structure of the onset of thermalization.
Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging.
Tesch, Annemarie; Wenisch, Christoph; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Warncke, Paul; Fischer, Dagmar; Müller, Frank A
2017-12-01
Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu 3+ ) and dysprosium (Dy 3+ ), respectively. Co-doping of Eu 3+ and Dy 3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy 3+ . Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multimodal co-doped HAp features enhanced PL properties due to an energy transfer from Dy 3+ sensitizer to Eu 3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3L/(mmol·s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter
The YIrGe{sub 2} type ternary germanides RERhGe{sub 2} (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe{sub 2} was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F{sup 2} values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe{sub 2}] polyanion is stabilized through covalent Rh–Ge (243–261 pm) and Ge–Ge (245–251 pm) bonding. The close structural relationship with the slightlymore » rhodium-poorer germanides RE{sub 5}Rh{sub 4}Ge{sub 10} (≡ RERh{sub 0.8}Ge{sub 2}) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe{sub 2} and Curie-Weiss paramagnetism for RERhGe{sub 2} with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at T{sub N} = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively. - Graphical abstract: The germanides RERhGe{sub 2} (RE = Y, Gd-Ho) are new representatives of the YIrGe{sub 2} type.« less
Harris, Michael; Henoumont, Céline; Peeters, Wannes; Toyouchi, Shuichi; Vander Elst, Luce; Parac-Vogt, Tatjana N
2018-05-29
Lanthanides, holmium(iii), dysprosium(iii), and terbium(iii), were coordinated to an amphiphilic DOTA bis-coumarin derivative and then further assembled with an amphiphilic europium(iii) DTPA bis-coumarin derivative into mono-disperse micelles. The self-assembled micelles were characterized and assessed for their potential as bimodal contrast agents for high field magnetic resonance and optical imaging applications. All micelles showed a high transverse relaxation (r2) of 46, 34, and 30 s-1 mM-1 at 500 MHz and 37 °C for Dy(iii), Ho(iii) and Tb(iii), respectively, which is a result of the high magnetic moment of these lanthanides and the long rotational correlation time of the micelles. The quantum yield in aqueous solution ranged from 1.8% for Tb/Eu to 1.4% for Dy/Eu and 1.0% for the Ho/Eu micelles. Multi-photon excited emission spectroscopy has shown that due to the two-photon absorption of the coumarin chromophore the characteristic Eu(iii) emission could be observed upon excitation at 800 nm, demonstrating the usefulness of the system for in vivo fluorescence imaging applications. To the best of our knowledge, this is the first example reporting the potential of a holmium(iii) chelate as a negative MRI contrast agent.
Applied magnetism: A supply-driven materials challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; McCall, Scott K.
Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Bipin Kumar, E-mail: bipinbhu@yahoo.com; Kumar, Arun; Amity Institute of Applied Science, Amity University, Noida, Uttar Pradesh 201303
Herein, a novel green emitting long-persistent Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor was synthesized in a single phase form using facile solid state reaction method under the reducing atmosphere of 10% H{sub 2} and 90% N{sub 2}. The resulting phosphor exhibits hyper-sensitive strong broad green emission, peaking at 510 nm upon 340 nm excitation wavelength, which is attributed to the 4f{sup 6}5d{sup 1}-4f{sup 7} transitions of emission center of europium (Eu{sup 2+}) ions. Moreover, the incorporation of dysprosium (Dy{sup 3+}) ions, which act as effective hole trap centers with appropriate depth, largely enhances the photoluminescence characteristics and greatly improves the persistentmore » intense luminescence behavior of Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor under ultraviolet (UV) excitation. In addition, with the optimum doping concentration and sufficient UV excitation time period, the as-synthesized phosphor can be persisted afterglow for time duration ∼4 h with maximum luminescence intensity. Thus, these results suggest that this phosphor could be expected as an ultimate choice for next generation advanced luminescent materials in security applications such as latent finger-marks detection, photo-masking induced phosphorescent images, and security code detection.« less
Magnetocaloric properties of rare-earth substituted DyCrO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDannald, A.; Jain, M., E-mail: menka.jain@uconn.edu; Department of Physics, University of Connecticut, Storrs, Connecticut 06269
Recently, there has been a focus on the need for efficient refrigeration technology without the use of expensive or harmful working fluids, especially at temperatures below 30 K. Solid state refrigeration, based on the magnetocaloric effect, provides a possible solution to this problem. The rare-earth chromites (RCrO{sub 3}), especially DyCrO{sub 3}, with its large magnetic moment dysprosium ion, are potential candidates for such an application. The Dy{sup 3+} ordering transition at low temperatures (<10 K) likely causes a large magnetocaloric response in this material. This study investigates the possibility of tuning the magnetocaloric properties through the use of rare-earth substitution. Both Y{supmore » 3+} and Ho{sup 3+} substitutions were found to decrease the magnetocaloric response by disrupting the R{sup 3+} ordering. Whereas Er{sup 3+} substitution was found to increase the magnetocaloric response, likely due to an increase in the R{sup 3+} ordering temperature. The large magnetocaloric entropy change of Er{sup 3+} substituted DyCrO{sub 3} (10.92 J/kg K with a relative cooling power of 237 J/kg at 40 kOe and 5 K) indicates that this material system is well suited for low temperature (<30 K) solid state refrigeration applications.« less
Adhikary, Amit; Sheikh, Javeed Ahmad; Biswas, Soumava; Konar, Sanjit
2014-06-28
The synthesis, crystal structure and magnetic properties of four polynuclear lanthanide coordination complexes having molecular formulae, [Gd3(2)(1)L(H2O)8(Cl)](Cl)4·10H2O (1), [Dy3L(2)(1)(H2O)9](Cl)5·6H2O (2) [Gd6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (3) and [Dy6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (4) (where H2L(1) = bis[(2-pyridyl)methylene]pyridine-2,6-dicarbohydrazide and H4L(2) = bis[2-hydroxy-benzylidene]pyridine-2,6-dicarbohydrazide) are reported. Structural investigation by X-ray crystallography reveals similar structural features for complexes 1 and 2 and they exhibit butterfly like shapes of the molecules. Non-covalent interactions between the molecules create double helical arrangements for both molecules. Complexes 3 and 4 are isostructural and the core structures feature four distorted hemi-cubanes connected by vertex sharing. Magnetic studies unveil significant magnetic entropy changes for complexes 1, 3 and slow relaxation of magnetization for both dysprosium analogues 2 and 4.
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
Kwolek, Emma J.; Lei, Huaping; Lii-Rosales, Ann; ...
2016-06-13
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. As a result, this island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond
2017-01-01
Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. PMID:28059121
Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions
NASA Astrophysics Data System (ADS)
Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.
2012-06-01
Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology,more » particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Applied magnetism: A supply-driven materials challenge
Rios, Orlando; McCall, Scott K.
2016-05-27
Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less
Magnetic Behavior of a Dy8 Molecular Nanomagnet
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Stamatatos, Theocharis
2015-03-01
As part of a study of quantum tunneling in a newly synthesized family of dysprosium-based molecular magnets that exhibit a chiral spin structure, we report initial investigations of the magnetic response of a Dy8 cluster with the formula (Et4N)4[Dy8O(nd)8(NO3)10(H2O)2] .2MeCN. The molecular complex contains triangular arrangements of exchange coupled Dy(III) ions. The compound forms an approximate snub-square Archimedean lattice unit. The measured magnetization of this network of four triangles suggests the presence of multiple spin chiral vortexes. Single crystal susceptibility and magnetization measurements indicate the presence of a hard-axis direction and an easy plane. These principal orientations have been investigated in magnetic fields up to 5 Tesla for temperatures between 1.8 and 100 K using a SQUID-based Quantum Design MPMS magnetometer. Complex easy plane magnetic hysteresis loops emerge at lower temperatures measured using Hall probe magnetometry at sub 1 K temperatures. The analysis of these measurements will be discussed and compared with results of theoretical calculations. Work supported by ARO W911NF-13-1-1025 (CCNY), NSF-DMR-1309202 (NYU); the synthesis of the Dy8 cluster was supported by NSERC (Discovery grant to Th.C.S.).
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwolek, Emma J.; Lii-Rosales, Ann; Department of Chemistry, Iowa State University, Ames, Iowa 50011
2016-12-07
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
Ultrasmall lanthanide-doped nanoparticles as multimodal platforms
NASA Astrophysics Data System (ADS)
Yust, Brian G.; Pedraza, Francisco J.; Sardar, Dhiraj K.
2014-03-01
Recently, there has been a great amount of interest in nanoparticles which are able to provide a platform with high contrast for multiple imaging modalities in order to advance the tools available to biomedical researchers and physicians. However, many nanoparticles do not have ideal properties to provide high contrast in different imaging modes. In order to address this, ultrasmall lanthanide doped oxide and fluoride nanoparticles with strong NIR to NIR upconversion fluorescence and a strong magnetic response for magnetic resonance imaging (MRI) have been developed. Specifically, these nanoparticles incorporate gadolinium, dysprosium, or a combination of both into the nano-crystalline host to achieve the magnetic properties. Thulium, erbium, and neodymium codopants provide the strong NIR absorption and emission lines that allow for deeper tissue imaging since near infrared light is not strongly absorbed or scattered by most tissues within this region. This also leads to better image quality and lower necessary excitation intensities. As a part of the one pot synthesis, these nanoparticles are coated with peg, pmao, or d-glucuronic acid to make them water soluble, biocompatible, and bioconjugable due to the available carboxyl or amine groups. Here, the synthesis, morphological characterization, magnetic response, NIR emission, and the quantum yield will be discussed. Cytotoxicity tested through cell viability at varying concentrations of nanoparticles in growth media will also be discussed.
Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K
2016-01-04
The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.
Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju
2015-09-08
Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; ...
2017-01-06
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Synthesis, characterization and processing of active rare earth-doped chalcohalide glasses
NASA Astrophysics Data System (ADS)
Debari, Roberto Mauro
Applications for infrared-transmitting non-oxide glass fibers span a broad range of topics. They can be used in the military, the medical field, telecommunications, and even in agriculture. Rare earth ions are used as dopants in these glasses in order to stimulate emissions in the infrared spectral region. In order to extend the host glass transmission further into the infrared, selenium atoms were substituted for sulfur in the established Ge-S-I chalcohalide glass system and the fundamental properties of these latter glasses were explored. Over 30 different compositions in the Ge-Se-I glass system were investigated as to their thermal and optical properties. The resulting optimum host with a composition of Ge15Se80I5 has a broad transmission range from 0.7 mum to 17.0 mum and a high working range over 145°C. The host glass also exhibited a Tg of 125°C, making rotational casting of a cladding tube for rod-and-tube fiberization a possibility. The base glass was doped with 1000 to 4000 ppm/wt of erbium, dysprosium, or neodymium. When doped with Er3+-ions, absorptions at 1.54 mum and 3.42 mum were observed. Nd3+-doping resulted in an absorption peak near 4.24 mum and Dy3+ ions caused absorption at 1.30 mum. Fluorescence emissions were found for neodymium at 1.396 mum with a FWHM of 74 nm, and for dysprosium at 1.145 mum with a FWHM of 75 nm, at 1.360 mum with a FWHM of 98 rim and at 1.674 mum with a FWHM of 60 nm. High optical quality tubes of the host glass could be formed using rotational casting in silica ampoules. Glass tubes, 4 to 6 cm long with a 1 cm outer diameter and a tailored inner-hole diameter ranging from 0.4 to 0.6 cm could be synthesized by this process with excellent dimensional tolerances around the circumference as well as along the length. A preform of this size provided 25 continuous meters of unclad fiber with diameters ranging from 140 to 200 mum. A UV-curable acrylate cladding was applied via an external coating cup. An x-ray analysis of the resulting fiber verified the constituents of the fiber. Due to tradeoffs between thermal properties, optical properties and rare earth solubility, the Ge-Se-I glass system must still be optimized prior to use as an active fiber device. Nevertheless, the viability of this host system has been demonstrated in this investigation. Some very promising advantages to adding halides to chalcogenide glass systems have been confirmed, including the tailoring of glass transition temperatures, enhancement of rare earth solubility, expanded fluorescence emissions in the IR, and suppression of some impurity absorption bands. Also, the potential for rod-and-tube fiberization utilizing the rotational casting method for tube synthesis has been established along with its resulting pristine core-clad interface. This research provides a foundation for active fiber device applications in the 2 to 10 mum spectral region.
Fast magnetic resonance fingerprinting for dynamic contrast-enhanced studies in mice.
Gu, Yuning; Wang, Charlie Y; Anderson, Christian E; Liu, Yuchi; Hu, He; Johansen, Mette L; Ma, Dan; Jiang, Yun; Ramos-Estebanez, Ciro; Brady-Kalnay, Susann; Griswold, Mark A; Flask, Chris A; Yu, Xin
2018-05-09
The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T 1 and T 2 mapping in DCE-MRI studies in mice. The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T 1 and T 2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. The T 1 and T 2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T 1 and T 2 mapping with 2-minute temporal resolution in DCE-MRI studies. Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners. © 2018 International Society for Magnetic Resonance in Medicine.
Woo, Hyunsuk; Vishwanath, Sujaya Kumar; Jeon, Sanghun
2018-03-07
The next-generation electronic society is dependent on the performance of nonvolatile memory devices, which has been continuously improving. In the last few years, many memory devices have been introduced. However, atomic switches are considered to be a simple and reliable basis for next-generation nonvolatile devices. In general, atomic switch-based resistive switching is controlled by electrochemical metallization. However, excess ion injection from the entire area of the active electrode into the switching layer causes device nonuniformity and degradation of reliability. Here, we propose the fabrication of a high-performance atomic switch based on Cu x -Se 1- x by inserting lanthanide (Ln) metal buffer layers such as neodymium (Nd), samarium (Sm), dysprosium (Dy), or lutetium (Lu) between the active metal layer and the electrolyte. Current-atomic force microscopy results confirm that Cu ions penetrate through the Ln-buffer layer and form thin conductive filaments inside the switching layer. Compared with the Pt/Cu x -Se 1- x /Al 2 O 3 /Pt device, the optimized Pt/Cu x -Se 1- x /Ln/Al 2 O 3 /Pt devices show improvement in the on/off resistance ratio (10 2 -10 7 ), retention (10 years/85 °C), endurance (∼10 000 cycles), and uniform resistance state distribution.
Zhang, Wenzhong; Hietala, Sami; Khriachtchev, Leonid; Hatanpää, Timo; Doshi, Bhairavi; Koivula, Risto
2018-06-21
The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The "tetrad effect" is observed from a dilute Ln 3+ mixture. However, smaller Ln 3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.
NASA Astrophysics Data System (ADS)
Zulfiqar Ali Ahamed, Sd.; Madhukar Reddy, C.; Deva Prasad Raju, B.
2013-05-01
Lead containing barium zinc lithium fluoroborate (LBZLFB) glasses doped with different concentrations of trivalent dysprosium ions were synthesized by conventional melt quenching method and characterized through the XRD, DSC, FTIR, FT-Raman, optical absorption, photoluminescence and decay curve analysis. X-ray diffraction studies revealed amorphous nature of the studied glass matrices. The thermal behavior has been reported by recording DSC thermograms. Coexistence of trigonal BO3 and tetrahedral BO4 units was evidenced by IR and Raman spectroscopy. Judd-Ofelt intensity parameters have been evaluated for 1.0 mol% Dy3+ ions doped LBZLFB glass. The measuring branching ratios are reasonably high for transitions 4F9/2 → 6H15/2 and 6H13/2 suggesting that the emission at 486 and 577 nm, respectively can give rise to lasing action in the visible region. From the visible emission spectra, the yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were estimated. A combination of blue and yellow emissions has emerged in the glasses, which allows the observation of white light when the glasses are excited by the ultraviolet/blue light. These Dy3+ doped glasses are studied for their utility for white light generation under 454 nm excitation and the present LBZLFB glass is more suitable for generation of white light for blue LED chips.
Puype, Franky; Samsonek, Jiří; Knoop, Jan; Egelkraut-Holtus, Marion; Ortlieb, Markus
2015-01-01
In order to confirm the possibility that recycled fractions from the waste electrical and electronic equipment (WEEE) stream were illegally entering the European market in black polymeric food-contact articles (FCAs), bromine quantification, brominated flame retardant (BFR) identification combined with WEEE-relevant elemental analysis and polymer impurity analysis were performed. From the 10 selected FCAs, seven samples contained a bromine level ranging from 57 to 5975 mg kg− 1, which is lower than expected to achieve flame retardancy. The BFRs that were present were tetrabromobisphenol A (TBBPA), decabromodiphenylether (decaBDE), decabromodiphenylethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Typical elements used in electronic equipment and present in WEEE were detected either at trace level or at elevated concentrations. In all cases when bromine was detected at higher concentrations, concurrently antimony was also detected, which confirms the synergetic use of antimony in combination with BFRs. This study describes also the measurement of rare earth elements where combinations of cerium, dysprosium, lanthanum, neodymium, praseodymium and yttrium were detected in four of the seven BFR-positive samples. Additionally, polymer purity was investigated where in all cases foreign polymer fractions were detected. Despite the fact that this study was carried out on a very small amount of samples, there is a significant likelihood that WEEE has been used for the production of FCAs. PMID:25599136
Win, Kyaw San; Ueda, Koichiro; Kondo, Seiji
2015-09-01
In this study, we aimed to evaluate the effects of six levels of orchardgrass hay (GH) proportion (0%, 10%, 20%, 30%, 40% or 50% of dry matter) in finely chopped corn silage (CS)-based diets on digesta kinetics of CS and GH in the rumen. Six non-lactating, rumen-cannulated Holstein cows were used in a 6 × 6 Latin square design. Ruminal digesta kinetics was measured by ruminal dosing of feed particle markers (dysprosium for CS, erbium for GH) followed by fecal sampling. The increase of GH proportion had a quadratic effect (P < 0.01) on total tract digestibility of neutral detergent fiber (NDF) and acid detergent fiber. The proportion of GH did not affect the particle size distribution of rumen digesta, total weight of dry matter or NDF in the rumen. The rates of large particle size reduction in the rumen for CS tended to increase linearly with increasing GH proportion (P = 0.077). A quadratic effect (P < 0.05) was found with increasing the GH proportion for the ruminal passage rate of small GH particles, but not for CS particles. The results suggested that associative effects between CS and GH could be generated on rumen digesta kinetics when cows were fed a CS-based diet with an increased proportion of GH. © 2015 Japanese Society of Animal Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Stephen A.; Nacham, Omprakash; Clark, Kevin D.
Magnetic ionic liquids (MILs) are distinguished from traditional ionic liquids (ILs) by the incorporation of a paramagnetic component within their chemical structure. Hydrophobic MILs are novel solvents that can be used in many applications, including liquid–liquid extraction (LLE) and catalysis. Low viscosity and low water solubility are essential features that determine their feasibility in LLE. Here, we synthesized extremely hydrophobic MILs by using transition and rare earth metal hexafluoroacetylacetonate chelated anions paired with the trihexyl(tetradecyl)phosphonium ([P 66614 +]) cation. Hydrophobic MILs exhibiting water solubilities less than 0.01% (v/v) were synthesized in a rapid two-step procedure. Furthermore, the viscosities of themore » MILs are among some of the lowest ever reported for hydrophobic MILs (276.5–927.9 centipoise (cP) at 23.7 °C) dramatically improving the ease of handling these liquids. For the first time, the magnetic properties of MILs possessing hexafluoroacetylacetonate chelated metal anions synthesized in this study are reported using a superconducting quantum interference device (SQUID) magnetometer. We also achieved an effective magnetic moments (μ eff) as high as 9.7 and 7.7 Bohr magnetons (μ B) by incorporating high spin dysprosium and gadolinium ions, respectively, into the anion component of the MIL. The low viscosity, high hydrophobicity, and large magnetic susceptibility of these MILs make them highly attractive and promising solvents for separations and purification, liquid electrochromic materials, catalytic studies, as well as microfluidic applications.« less
Applications of bauxite residue: A mini-review.
Verma, Ajay S; Suri, Narendra M; Kant, Suman
2017-10-01
Bauxite residue is the waste generated during alumina production by Bayer's process. The amount of bauxite residue (40-50 wt%) generated depends on the quality of bauxite ore used for the processing. High alkalinity and high caustic content in bauxite residue causes environmental risk for fertile soil and ground water contamination. The caustic (NaOH) content in bauxite residue leads to human health risks, like dermal problems and irritation to eyes. Moreover, disposal of bauxite residue requires a large area; such problems can only be minimised by utilising bauxite residue effectively. For two decades, bauxite residue has been used as a binder in cement industries and filler/reinforcement for composite materials in the automobile industry. Valuable metals and oxides, like alumina (Al 2 O 3 ), titanium oxide (TiO 2 ) and iron oxide Fe 2 O 3 , were extracted from bauxite residue to reduce waste. Bauxite residue was utilised in construction and structure industries to make geopolymers. It was also used in the making of glass-ceramics and a coating material. Recently bauxite residue has been utilised to extract rare earth elements like scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd) and dysprosium (Dy). In this review article, the mineralogical characteristics of bauxite residue are summarised and current progresses on utilisation of bauxite residue in different fields of science and engineering are presented in detail.
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad
2016-08-01
In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.
NASA Astrophysics Data System (ADS)
Sharma, Vishal; Das, Amrita; Kumar, Vinay
2016-01-01
In this work, europium and dysprosium doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) nanophosphor is synthesized and its novel application for the detection of latent fingerprints on various contact surfaces is reported. The SrAl2O4:Eu2+,Dy3+ is synthesized using a combustion method and shows long-lasting afterglow luminescence. The powder particles are characterized using field emission scanning electron microscopy (FE-SEM), SEM-energy dispersive x-ray analysis, x-ray diffraction and photoluminescence spectrophotometry. The FE-SEM image analysis reveals that the nanoparticles are mostly 8-15 nm in size with an irregular spherical shape. This nano-structured powder was applied to fresh and aged fingerprints deposited on porous, semi-porous and non-porous contact surfaces, such as ordinary colored paper, glossy paper, glass, aluminum foil, a yellow foil chocolate wrapper, a soft drink can, a PET bottle, a compact disc and a computer mouse. The results are reproducible and show great sensitivity and high contrast in the developed fingermark regions on these surfaces. These nanophosphor particles also show a strong and long-lasting afterglow property, making them a suitable candidate for use as a fingerprint developing agent on luminescent and highly patterned surfaces. These kinds of powders have shown that they can remove the interference from background luminescence, which is not possible using ordinary luminescent fingerprinting powders.
The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets
NASA Astrophysics Data System (ADS)
Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver
2015-02-01
Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.
Unobtainium? Critical Elements for New Energy Technologies
NASA Astrophysics Data System (ADS)
Jaffe, Robert
2011-03-01
I will report on a recently completed study jointly sponsored by the APS Panel on Public Affairs (POPA) and the Material Research Society (MRS). The twin pressures of increasing demand for energy and increasing concern about anthropogenic climate change have stimulated research into new sources of energy and novel ways to harvest, transmit, store, transform or conserve it. At the same time, advances in physics, chemistry, and material science have enabled researchers to identify chemical elements with properties that can be finely tuned to their specific needs and to employ them in new energy-related technologies. Elements like dysprosium, gallium, germanium, indium, lanthanum, neodymium, rhenium, or tellurium, which were once laboratory curiosities, now figure centrally when novel energy systems are discussed. Many of these elements are not at present mined, refined, or traded in large quantities. However new technologies can only impact our energy needs if they can be scaled from laboratory, to demonstration, to massive implementation. As a result, some previously unfamiliar elements will be needed in great quantities. We refer to these elements as energy-critical elements (ECEs). Although the technologies in which they are employed and their abundance in the Earth's crust vary greatly, ECEs have many features in common. The purpose of the POPA/MRS study was to evaluate constraints on availability of energy-critical elements and to make recommendations that can help avoid these obstructions.
Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu Chunhong; Liu Yingli; Song Yuanqiang
2011-06-15
Z-type hexaferrite has great potential applications as anti-EMI material for magnetic devices in the GHz region. In this work, Dy-doped Z-type hexaferrites with nominal stoichiometry of Ba{sub 3}Co{sub 2}Dy{sub x}Fe{sub 24-x}O{sub 41} (x 0.0, 0.05, 0.5, 1.0) were prepared by an improved solid-state reaction method. The effects of rare earth oxide (Dy{sub 2}O{sub 3}) addition on the phase composition, microstructure and electromagnetic properties of the ceramics were investigated. Structure and micromorphology characterizations indicate that certain content of Dy doping will cause the emergence of the second phase Dy{sub 3}Fe{sub 5}O{sub 12} at the grain boundaries of the majority phase Z-typemore » hexaferrite, due to which the straightforward result is the grain refinement during the successive sintering process. Permeability spectra measurements show that the initial permeability reaches its maximum of 17 at 300 MHz with x = 0.5, while the cutoff frequency keeps above 800 MHz. The apparent specific anisotropy field H{sub K} of Dy-doped Z-type hexaferrites decreases with x increasing. The relationships among phase composition, grain size, permeability spectra, and anisotropy are theoretically investigated, and according to the analysis, Dy doping effects on its magnetic properties can be well explained and understood.« less
Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam
2018-05-18
In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.
Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E
2012-03-20
The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.
NASA Astrophysics Data System (ADS)
Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.
2013-12-01
Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.
Effect of Neutron Absorbers Mixed in or Coating the Fuel of a 1-MWt Lithium-Cooled Space Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Benjamin W.; Los Alamos National Laboratory, Los Alamos, NM 87545; Poston, David I.
2005-02-06
The goal of this study was to determine the effect of various neutron poisons (boron, dysprosium, erbium, and gadolinium) on a 1-MWt, lithium-cooled liquid-metal reactor. The isotopes were considered to be in-fuel poisons, as well as poisons coating the fuel. One way to quantify the effectiveness of a poison in meeting accident-condition requirements is by defining the safety margin as the difference between keff at the beginning of life and keff during the accident scenarios. The isotope that showed the most potential in increasing the safety margin for the wet-sand/water case was 157Gd. The safety margin was 10%-20% greater usingmore » 157Gd as an in-fuel poison as opposed to a coating, depending on the poison quantity. However, the most limiting condition (i.e., the accident scenario with the highest keff, thus the lowest safety margin) is when the reactor is submerged in wet sand. None of the isotopes considered significantly affected the safety margin for the dry-sand case. However, the poison isotopes considered may have applicability for meeting the wet-sand/water keff requirements or as burnable poisons in a moderated system. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.« less
Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina
2017-12-12
Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.
NASA Astrophysics Data System (ADS)
Tajuddin, H. A.; WanHassan, W. M. S.; Abdul Sani, S. F..; Shaharin, Nurul Syazlin
2017-10-01
This study presents the thermoluminescent (TL) dosimetric properties of calcium borate glass with various dopant concentration of dysprosium (Dy). Calcium borate glass is a new potential material to be used in radiation measurement with absorption coefficient that is close to human bone. A series of glasses based on chemical equation xCaO-(100-x) B2O3 system, x = 0.1, 0.2, 0.3, 0.4, 0.5 (0< x <100) % weight have been prepared by melt quenching method. The X-ray diffraction analysis of glass samples were carried out and the result showed a broad peak, which confirmed the amorphous nature of the glass. The 70B2O3-30CaO glass sample was found as the most stable among other glass samples studied. Present work focuses on 70B2O3-30CaO glass of (0.01-0.4) mol% Dy-doped in order to investigate the thermoluminescence (TL) properties, in particular, dose-response and fading. The glass samples were irradiated to dose range of 0.5-4.0 Gy subjected to 6MV photon irradiations of LINAC Primus MLC 3339. TL response of 0.3 mol% Dy-doped 70B2O3-30CaO glass was found to produce highest response, with good linear dose- response relationship.
Curry, J J; Estupiñán, E G; Henins, A; Lapatovich, W P; Shastri, S D; Hardis, J E
2013-09-28
The vapors in equilibrium with condensates of DyI3, DyI3/InI, TmI3, and TmI3/TlI were observed over the temperature range from 900 K to 1400 K using x-ray induced fluorescence. The total densities of each element (Dy, Tm, In, Tl, and I) in the vapor, summed over all atomic and molecular species, were determined. Dramatic enhancements in the total vapor densities of Dy and Tm were observed in the vapors over DyI3/InI and TmI3/TlI as compared to the vapors over pure DyI3 and pure TmI3, respectively. An enhancement factor exceeding 10 was observed for Dy at T ≈ 1020 K, decreasing to 0 at T ≈ 1250 K. An enhancement factor exceeding 20 was observed for Tm at T ≈ 1040 K, decreasing to 0 at T ≈ 1300 K. Such enhancements are expected from the formation of the vapor-phase hetero-complexes DyInI4 and TmTlI4. Numerical simulations of the thermo-chemical equilibrium suggest the importance of additional complexes in liquid phases. A description of the measurement technique is given. Improvements in the absolute calibration lead to an approximately 40% correction to previously reported preliminary results [J. J. Curry et al., Chem. Phys. Lett. 507, 52 (2011); Appl. Phys. Lett. 100, 083505 (2012)].
Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses
NASA Astrophysics Data System (ADS)
Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.
2014-12-01
This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.
Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics
Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.; ...
2015-02-16
The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomesmore » the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm 2 V –1 s –1 for carrier densities above 10 20 cm –3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.« less
Dy3+ doped cubic zirconia nanostructures prepared via ultrasound route for display applications
NASA Astrophysics Data System (ADS)
Yadav, H. J. Amith; Eraiah, B.; Nagabhushana, H.; Basavaraj, R. B.; Deepthi, N. H.
2017-05-01
White light emitting dysprosium (Dy) doped Zirconia (ZrO2) nanostructures were prepared first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that the product was highly crystalline in nature with cubic phase. Various reaction parameters such as, effect of sonication time, concentration of the surfactant was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 4.13 - 4.53 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 10-20 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Dy doped Zirconia nanostructures at an excitation wavelength of 350 nm. The emission peaks were observed at 480, 574 and 666 nm which corresponds to Dy3+ ion transitions. The 3 mol% Dy3+ doped ZrO2 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in white region. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing solid state lighting application.
Feyerabend, Frank; Fischer, Janine; Holtz, Jakob; Witte, Frank; Willumeit, Regine; Drücker, Heiko; Vogt, Carla; Hort, Norbert
2010-05-01
Degradable magnesium alloys for biomedical application are on the verge of being used clinically. Rare earth elements (REEs) are used to improve the mechanical properties of the alloys, but in more or less undefined mixtures. For some elements of this group, data on toxicity and influence on cells are sparse. Therefore in this study the in vitro cytotoxicity of the elements yttrium (Y), neodymium (Nd), dysprosium (Dy), praseodymium (Pr), gadolinium (Gd), lanthanum (La), cerium (Ce), europium (Eu), lithium (Li) and zirconium (Zr) was evaluated by incubation with the chlorides (10-2000 microM); magnesium (Mg) and calcium (Ca) were tested at higher concentrations (200 and 50mM, respectively). The influence on viability of human osteosarcoma cell line MG63, human umbilical cord perivascular (HUCPV) cells and mouse macrophages (RAW 264.7) was determined, as well as the induction of apoptosis and the expression of inflammatory factors (TNF-alpha, IL-1alpha). Significant differences between the applied cells could be observed. RAW exhibited the highest and HUCPV the lowest sensitivity. La and Ce showed the highest cytotoxicity of the analysed elements. Of the elements with high solubility in magnesium alloys, Gd and Dy seem to be more suitable than Y. The focus of magnesium alloy development for biomedical applications should include most defined alloy compositions with well-known tissue-specific and systemic effects. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Field, Frank R; Wallington, Timothy J; Everson, Mark; Kirchain, Randolph E
2017-12-19
A comprehensive component-level assessment of several strategic and minor metals (SaMMs), including copper, manganese, magnesium, nickel, tin, niobium, light rare earth elements (LREEs; lanthanum, cerium, praseodymium, neodymium, promethium, and samarium), cobalt, silver, tungsten, heavy rare earth elements (yttrium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium), and gold, use in the 2013 model year Ford Fiesta, Focus, Fusion, and F-150 is presented. Representative material contents in cars and light-duty trucks are estimated using comprehensive, component-level data reported by suppliers. Statistical methods are used to accommodate possible errors within the database and provide estimate bounds. Results indicate that there is a high degree of variability in SaMM use and that SaMMs are concentrated in electrical, drivetrain, and suspension subsystems. Results suggest that trucks contain greater amounts of aluminum, nickel, niobium, and silver and significantly greater amounts of magnesium, manganese, gold, and LREEs. We find tin and tungsten use in automobiles to be 3-5 times higher than reported by previous studies which have focused on automotive electronics. Automotive use of strategic and minor metals is substantial, with 2013 vehicle production in the United States, Canada, EU15, and Japan alone accounting for approximately 20% of global production of Mg and Ta and approximately 5% of Al, Cu, and Sn. The data and analysis provide researchers, recyclers, and decision-makers additional insight into the vehicle content of strategic and minor metals of current interest.
Fuma, Shoichi; Kawaguchi, Isao; Kubota, Yoshihisa; Yoshida, Satoshi; Kawabata, Zen'ichiro; Polikarpov, Gennady G
2012-02-01
Effects of chronic γ-irradiation were investigated in the aquatic microcosm consisting of flagellate algae Euglena gracilis as producers, ciliate protozoa Tetrahymena thermophila as consumers and bacteria Escherichia coli as decomposers. At 1.1 Gy day(-1), no effects were observed. At 5.1 Gy day(-1), cell densities of E. coli showed a tendency to be lower than those of controls. At 9.7 and 24.7 Gy day(-1), population decrease was observed in E. coli. E. gracilis and T. thermophila died out after temporal population decrease and subsequent population increase in T. thermophila. It is likely that this temporal population increase was an indirect effect due to interspecies interactions. Effect dose rates of γ-rays were compared with effect concentrations of some metals using the radiochemoecological conceptual model and the effect index for microcosm. Comparison of these community-level effects data with environmental exposure data suggests that ionising radiation, gadolinium and dysprosium have low risks to affect aquatic microbial communities while manganese, nickel and copper have considerable risks. Effects of chronic irradiation were smaller than those of acute irradiation, and an acute to chronic ratio was calculated to be 28 by dividing an acute dose by chronic daily dose rate at which the effect index was 10%. This ratio would be useful for community-level extrapolation from acute to chronic radiation effects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
Dickie, Courtney M; Laughlin, Alexander L; Wofford, Joshua D; Bhuvanesh, Nattamai S; Nippe, Michael
2017-12-01
Single-molecule magnets (SMMs) are considered viable candidates for next-generation data storage and quantum computing. Systems featuring switchability of their magnetization dynamics are particularly interesting with respect to accessing more complex logic gates and device architectures. Here we show that transition metal based redox events can be exploited to enable reversible switchability of slow magnetic relaxation of magnetically anisotropic lanthanide ions. Specifically, we report anionic homoleptic bis-diamidoferrocene complexes of Dy 3+ (oblate) and Er 3+ (prolate) which can be reversibly oxidized by one electron to yield their respective charge neutral redox partners (Dy: [1] - , 1 ; Er: [2] - , 2 ). Importantly, compounds 1 and 2 are thermally stable which allowed for detailed studies of their magnetization dynamics. We show that the Dy 3+ [1] - / 1 system can function as an "on"/"off" or a "slow"/"fast" redox switchable SMM system in the absence or presence of applied dc fields, respectively. The Er 3+ based [2] - / 2 system features "on"/"off" switchability of SMM properties in the presence of applied fields. Results from electrochemical investigations, UV-vis-NIR spectroscopy, and 57 Fe Mössbauer spectroscopy indicate the presence of significant electronic communication between the mixed-valent Fe ions in 1 and 2 in both solution and solid state. This comparative evaluation of redox-switchable magnetization dynamics in low coordinate lanthanide complexes may be used as a potential blueprint toward the development of future switchable magnetic materials.
Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.
The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomesmore » the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm 2 V –1 s –1 for carrier densities above 10 20 cm –3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.« less
Gnapareddy, Bramaramba; Ahn, Sang Jung; Dugasani, Sreekantha Reddy; Kim, Jang Ah; Amin, Rashid; Mitta, Sekhar Babu; Vellampatti, Srivithya; Kim, Byeonghoon; Kulkarni, Atul; Kim, Taesung; Yun, Kyusik; LaBean, Thomas H; Park, Sung Ha
2015-11-01
We present two free-solution annealed DNA nanostructures consisting of either cross-tile CT1 or CT2. The proposed nanostructures exhibit two distinct structural morphologies, with one-dimensional (1D) nanotubes for CT1 and 2D nanolattices for CT2. When we perform mica-assisted growth annealing with CT1, a dramatic dimensional change occurs where the 1D nanotubes transform into 2D nanolattices due to the presence of the substrate. We assessed the coverage percentage of the 2D nanolattices grown on the mica substrate with CT1 and CT2 as a function of the concentration of the DNA monomer. Furthermore, we fabricated a scaffold cross-tile (SCT), which is a new design of a modified cross-tile that consists of four four-arm junctions with a square aspect ratio. For SCT, eight oligonucleotides are designed in such a way that adjacent strands with sticky ends can produce continuous arms in both the horizontal and vertical directions. The SCT was fabricated via free-solution annealing, and self-assembled SCT produces 2D nanolattices with periodic square cavities. All structures were observed via atomic force microscopy. Finally, we fabricated divalent nickel ion (Ni(2+))- and trivalent dysprosium ion (Dy(3+))-modified 2D nanolattices constructed with CT2 on a quartz substrate, and the ion coordinations were examined via Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martinez, Ana Maria; Osen, Karen Sende; Støre, Anne; Gudbrandsen, Henrik; Kjos, Ole Sigmund; Solheim, Asbjørn; Wang, Zhaohui; Oury, Alexandre; Namy, Patrick
2018-04-01
Electrolytic production of light rare earth elements and rare earth alloys with transition elements takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds and side cathode reactions could largely be minimized by good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The Dy2O3 feed rate needed for stable cell operation was studied by following up the anode voltage and gas analysis. On-line analysis of the cell off-gases by FTIR showed that the electrochemical reaction for the formation of Dy-Fe alloy gives mainly CO gas and that CF4 is starting to evolve gradually at anode voltages of ca. 3.25 V. The limiting current density for the discharge of the oxide ions at the graphite anode was in the range of 0.1 to 0.18 A cm-2 at dissolved Dy2O3 contents of ca. 1 wt pct. Modeling of the laboratory cell reactor was also carried out by implementing two models, i.e., an electrical model simulating the current density distribution at the electrodes and a laminal bubbly flow model that explains the electrolyte velocity induced by gas bubble production at the anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mithlesh, E-mail: mithlesh@barc.gov.in; Gupta, Santosh K.; Kadam, R.M.
2016-02-15
Highlights: • ZnAl{sub 2}O{sub 4}:Dy{sup 3+} spinel synthesized using sol–gel method. • Characterized by XRD, SEM and PL spectroscopy. • Investigations of emission, excitation and lifetime properties. • Evaluation of defect centers and trap parameters of the system. • Evaluation of CIE indices of near white light emitting phosphor. - Abstract: ZnAl{sub 2}O{sub 4}:Dy{sup 3+} nanoparticles were synthesized using citrate sol–gel method and characterized systematically using X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy. Emission spectrum of pure ZnAl{sub 2}O{sub 4} shows intense violet blue emission under ultra violet irradiation. Based on electron paramagnetic resonance (EPR) results; it was attributedmore » to presence of singly ionized oxygen vacancy centres in ZnAl{sub 2}O{sub 4}. On doping Dy{sup 3+} in ZnAl{sub 2}O{sub 4}, complete host–dopant energy transfer does not take place. Local structural investigation and lifetime measurements reveal that dysprosium ion is distributed between both Zn{sup 2+} and Al{sup 3+} sites. Near white light from ZnAl{sub 2}O{sub 4}:Dy{sup 3+} is attributed to combined host and dopant luminescence. The trap parameters such as activation energy (E) and frequency factor (s) for TSL glow peak 165 °C were determined using different heating rate method. Thermally stimulated emission showed the presence of oxygen related defect centre.« less
NASA Astrophysics Data System (ADS)
Nagaraju, G.; Ravindranatha Reddy, K.; Rajagopal Reddy, V.
2017-11-01
The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights (BH) of as-deposited and 200 °C annealed SBDs are 0.80 eV ( I-V)/0.93 eV (C-V) and 0.87 eV (I-V)/1.03 eV (C-V). However, the BH rises to 0.99 eV (I-V)/ 1.18 eV(C-V) and then slightly deceases to 0.92 eV (I-V)/1.03 eV (C-V) after annealing at 300 °C and 400 °C. The utmost BH is attained after annealing at 300 °C and thus the optimum annealing for SBD is 300 °C. By applying Cheung’s functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung’s and Ψ S-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the N SS decreases up to 300 °C annealing and then slightly increases after annealing at 400 °C. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.
Karasawa, Masanobu; Ishii, Kazuyuki
2018-05-03
We have investigated the demagnetization of a ferrimagnetic substrate, Bi, Al-substituted dysprosium iron garnet (Bi0.8Dy2.2Fe4.3Al0.7O12), based on selective pulsed laser irradiation of a molecular thin film consisting of μ-oxo-bis[hydroxyl{2,9(or 10),16(or 17),23(or 24)-tetra-tert-butylphthalocyanato}silicon] ((SiPc)2) and poly(vinylidene fluoride), and succeeded in reproducing photothermal energy transfer from a molecular thin film to an inorganic magnetic substrate in a submicrometer-order and a submicrosecond time scale using numerical analysis. After the instant temperature rise due to nanosecond pulsed laser irradiation of the (SiPc)2-based film, followed by heat transfer from the film to the neighboring magnetic substrate, demagnetization of the magnetic substrate was spectroscopically monitored by the decrease in its magnetic circular dichroism (MCD) intensity. The MCD intensity decreased with increasing pulsed laser energy, which reflects the fact that the submicrometer-order region of the substrate was demagnetized as a result of temperature rise reaching high Curie temperature. This heat transfer phenomenon resulting in the demagnetization of the magnetic substrate was numerically analyzed in a submicrometer-order and a submicrosecond time scale using the finite difference method: the demagnetized regions were calculated to be the same order of magnitude as those experimentally evaluated. These results would provide a more detailed understanding of photothermal energy transfer in organic-inorganic hybrid materials, which would be useful for developing photofunctional materials.
Ibrahim, Masooma; Moreno-Pineda, Eufemio; Anson, Christopher E.; Powell, Annie K.
2018-01-01
The reaction of [α-P2W15O56]12− with MnII and DyIII in an aqueous basic solution led to the isolation of an all inorganic heterometallic aggregate Na10(OH2)42[{Dy(H2O)6}2Mn4P4W30O112(H2O)2]·17H2O (Dy2Mn4-P2W15). Single-crystal X-ray diffraction revealed that Dy2Mn4-P2W15 crystallizes in the triclinic system with space group P1¯, and consists of a tetranuclear manganese(II)-substituted sandwich-type phosphotungstate [Mn4(H2O)2(P2W15O56)2]16− (Mn4-P2W15), Na, and DyIII cations. Compound Dy2Mn4-P2W15 exhibits a 1D ladder-like chain structure based on sandwich-type segments and dysprosium cations as linkers, which are further connected into a three-dimensional open framework by sodium cations. The title compound was structurally and compositionally characterized in solid state by single-crystal XRD, powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TGA), and elemental analyses. Further, the absorption and emission electronic spectra in aqueous solutions of Dy2Mn4-P2W15 and Mn4-P2W15 were studied. Also, magnetic properties were studied and compared with the magnetic behavior of [Mn4(H2O)2(P2W15O56)2]16−. PMID:29342122
Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China.
Wang, Bin; Yan, Lailai; Huo, Wenhua; Lu, Qun; Cheng, Zixi; Zhang, Jingxu; Li, Zhiwen
2017-01-01
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives. Copyright © 2016 Elsevier Ltd. All rights reserved.
R 5T 4 compounds - unique multifunctional intermetallics for basic research and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudryk, Yaroslav
The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd 2Fe 14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result ofmore » a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.« less
A Market Model for Evaluating Technologies That Impact Critical-Material Intensity
NASA Astrophysics Data System (ADS)
Iyer, Ananth V.; Vedantam, Aditya
2016-07-01
A recent Critical Materials Strategy report highlighted the supply chain risk associated with neodymium and dysprosium, which are used in the manufacturing of neodymium-iron-boron permanent magnets (PM). In response, the Critical Materials Institute is developing innovative strategies to increase and diversify primary production, develop substitutes, reduce material intensity and recycle critical materials. Our goal in this paper is to propose an economic model to quantify the impact of one of these strategies, material intensity reduction. Technologies that reduce material intensity impact the economics of magnet manufacturing in multiple ways because of: (1) the lower quantity of critical material required per unit PM, (2) more efficient use of limited supply, and (3) the potential impact on manufacturing cost. However, the net benefit of these technologies to a magnet manufacturer is an outcome of an internal production decision subject to market demand characteristics, availability and resource constraints. Our contribution in this paper shows how a manufacturer's production economics moves from a region of being supply-constrained, to a region enabling the market optimal production quantity, to a region being constrained by resources other than critical materials, as the critical material intensity changes. Key insights for engineers and material scientists are: (1) material intensity reduction can have a significant market impact, (2) benefits to manufacturers are non-linear in the material intensity reduction, (3) there exists a threshold value for material intensity reduction that can be calculated for any target PM application, and (4) there is value for new intellectual property (IP) when existing manufacturing technology is IP-protected.
DOE R&D Accomplishments Database
Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.
1998-06-01
The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.
Toxicity of irradiated advanced heavy water reactor fuels.
Priest, N D; Richardson, R B; Edwards, G W R
2013-02-01
The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar
2016-04-01
A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.
NASA Astrophysics Data System (ADS)
Kharat, Shahaji P.; Swadipta, Roy; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V.
2017-10-01
We report on the enhanced magnetostrictive properties of nanocrystalline Dysprosium (Dy3+) substituted iron-rich cobalt ferrites (Co0.8Fe(2.2-x)DyxO4, referred to as CFDO). The CFDO samples with a variable Dy concentration (x = 0.000-0.075) were synthesized by the sol-gel auto-combustion method. The phase purity and crystal structure were confirmed from X-ray diffraction analyses coupled with Rietveld refinement. Surface morphology analysis using scanning electron microscopy imaging indicates the agglomerated magnetic particles with a non-uniform particle size distribution, which is desirable to transfer the strain. The magnetostriction coefficient (λ11) measurements indicate that the CFDO with Dy concentration x = 0.025 exhibits the highest strain sensitivity, (dλ/dH) ˜1.432 nm/A (for H ≤ 1000 Oe). On the other hand, the magnetostriction coefficient (λ12) measurements indicate that the Dy concentration x = 0.075 exhibits the larger (dλ/dH) ˜ 0.615 nm/A (for H ≤ 1000 Oe). The maximum λ11value of 166 ppm (at H = 3300 Oe) was observed for a compound with Dy concentration x = 0.050. Magnetization measurements indicate that the saturation magnetization and coercivity of CFDO samples are dependent on the Dy3+content; the highest value of squareness ratio of 0.424 was observed for x = 0.050. The interplay between strain sensitivity (dλ/dH) and instantaneous susceptibility (dM/dH), as derived from magnetostriction and magnetization results, demonstrates that these CFDO materials may be useful for developing torque/stress sensors, as a constituent magnetostrictive phase for making the magnetoelectric composite materials and thus suitable for magnetoelectric sensor applications.
White light generation in Dy3+-doped fluorosilicate glasses for W-LED applications
NASA Astrophysics Data System (ADS)
Krishnaiah, K. Venkata; Jayasankar, C. K.
2011-05-01
Dysprosium doped fluorosilicate (SNbKZLF:SiO2-Nb2O5-K2O-ZnF2-LiF) glasses have been prepared and studied through excitation, emission and decay rate analysis. Sharp emission peaks were observed at 485 nm (blue) and 577 nm (yellow) under 387 nm excitation, which are attributed to 4F9/2 --> 6H15/2 and 4F9/2 --> 6H13/2 transitions, respectively, of Dy3+ ions. The yellow-to-blue intensity ratio increases (0.85 to 1.19) with increase in Dy3+ ion concentration. The decay rates exhibit single exponential for lower concentrations and turns into non-exponential for higher concentrations. The non-exponential nature of the decay rates are well-fitted to the Inokuti-Hirayama model for S = 6, which indicates that the nature of the energy transfer between donor and acceptor ions is of dipole-dipole type. The lifetime for the 4F9/2 level of Dy3+ ion decreases (0.42 to 0.14 ms), whereas energy transfer parameter increases (0.11 to 0.99) with increase of Dy3+ ion concentration (0.05 to 4.0 mol %). The chromaticity coordinates have been calculated from the emission spectra and analyzed with Commission International de I'Eclairage diagram. The chromaticity coordinates appeared in the white light region for all concentrations of Dy3+ ions in the present glasses. The correlated color temperature value decreases from 5597 K (closer to the day light value of 5500 K) to 4524 K with increase of Dy2O3 ion concentration from 0.01 to 4.0 mol %. These results indicate that Dy3+:SNbKZLF glasses can be considered as a potential host material for the development of white light emitting diodes.
Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotchkiss, R.S.; Song, S.K.; Ling, C.S.
The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosedmore » as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.« less
NASA Astrophysics Data System (ADS)
Ditta, Allah; Khan, Muhammad Azhar; Junaid, Muhammad; Khalil, R. M. Arif; Warsi, Muhammad Farooq
2017-02-01
Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni0.4Co0.6Fe2O4) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm3) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13-26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm-1 (υ2) to 600 cm-1 (υ1) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.
Critical Metals in Strategic Low-carbon Energy Technologies
NASA Astrophysics Data System (ADS)
Moss, R. L.
2012-04-01
Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guozhen; Conn, Charlotte E.; Drummond, Calum J.
2010-01-12
Eight lanthanide(III) oleates have been prepared and characterized. The chelation and self-assembly structures of these rare-earth oleates have been studied by elemental analysis, Fourier transfer infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. Elemental analysis and FTIR results indicate that three oleate anions are complexed with one lanthanide cation and, with the exception of anhydrous cerium(III) oleate, form either a mono- or a hemihydrate. The X-ray analysis showed that the neat lanthanide soaps have a lamellar bilayer structure at room temperature. The thermal behavior has been investigated by cross-polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analysismore » (TGA). POM scans showed that all the lanthanide oleates form a lamellar phase in the presence of excess water. Small-angle X-ray scattering (SAXS) and XRD were used to investigate the internal structure of the bulk lanthanide oleates in excess water, and these X-ray results confirmed that the lanthanide oleates do not swell in water. Select lanthanide oleates were dispersed in water to form nonswelling lamellar submicrometer particles, confirmed by dynamic light scattering (DLS) and synchrotron SAXS measurements. NMR results indicated that colloidal dispersions of lanthanide oleates containing paramagnetic ions, such as gadolinium(III), terbium(III), and dysprosium(III), have a significant effect on the longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times of protons in water. Time-resolved fluorescence measurements have demonstrated that colloidal dispersions of europium(III) oleate exhibit strong luminescence. The rare earth metal soaps exemplify the potential of self-assembled chelating amphiphiles as contrast agents in medical imaging modalities such as magnetic resonance imaging (MRI) and fluorescence imaging.« less
NASA Astrophysics Data System (ADS)
Jelínková, Helena; Doroshenko, Maxim E.; Šulc, Jan; Němec, Michal; Jelínek, Michal; Osiko, Vjatcheslav V.; Badikov, Valerii V.; Badikov, Dmitri V.
2016-03-01
On the basis of our previous Dy3+:PbGa2S4 laser study, laser output wavelength temporal evolution as well as tuning possibilities in the range 4.3-4.7 μm were investigated. Active crystal was pumped by a fiber-coupled Brightlase Ultra- 50 diode laser (1.7 μm, max. power 7.5 W). Laser resonator was formed by flat dichroic pumping mirror (T = 70%@1.7 μm, R~100% @ 3.5 - 5 μm) and a concave (r = 200 mm) output coupler with R~99% @ 3.5 - 5 μm. The laser output wavelength dependence on the pump pulse duration and its evolution during the pulse was investigated first without any spectrally-selective element in the cavity. At pump pulse duration of 1 ms, generation just near Dy3+ fluorescence maximum of 4.35 μm has been observed. Prolongation of the pulse up to 5 ms led to similar lasing at 4.35 μm in the first millisecond, followed by simultaneous generation at 4.35 and 4.38 μm in the next millisecond, and further lasing at 4.6 μm till the end of the pump pulse. Increase of pump pulse duration up to 10 ms led to similar oscillation pulse development followed by generation at 4.6 μm only. Furthermore, output wavelength tuning using MgF2 birefringent filter as a cavity spectral selective element was investigated under 10 ms pumping. Almost continuous tuning without any significant dip has been observed within spectral range from 4.3 up to 4.7 μm. Due to practically closed cavity mean output power in the maximum of tuning curve was in the order of 400 μW.
Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A
2015-11-01
Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.
Yang, Song; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Feng, Zhijun; Wei, Yun; Miao, Hui; Guo, Liping; Wang, Fenhua; Zhang, Guangchao; Gu, Xiaoxia; Mu, Xiaolong
2014-02-14
The reactions of different pyrrolyl-functionalized indoles with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) produced different kinds of rare-earth metal amido complexes. Reactions of N-((1H-pyrrol-2-yl)methylene)-2-(1H-indol-3-yl)ethanamine with rare-earth metal amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) in toluene or THF at temperatures of 75-80 °C afforded the novel trinuclear rare-earth metal amido complexes incorporating the indolyl ligand in μ-η(5):η(1) bonding modes and a μ3-O group, which is believed to originate from cleavage of the THF ring based on experimental results. Reactions of 2-(1H-indol-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methylene)ethanamine with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Dy) produced mononuclear ytterbium and dysprosium amides having the indolyl ligand in an η(1) bonding fashion. The results indicate that substituents not only have an influence on reactivity, but also have an influence on the bonding of the indolyl ligands with metals. The catalytic activities of the novel lanthanide amido complexes for the hydrophosphonylation of both aromatic and aliphatic aldehydes and ketones were explored. The results indicate that these complexes display a high catalytic activity for the C-P bond formation under mild conditions when using low catalyst loadings (0.1 mol% for aldehydes and ketones). Thus, it provides a potential way to prepare α-hydroxy phosphonates.
Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli
2014-08-04
The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).
Bhunia, Asamanjoy; Gamer, Michael T; Ungur, Liviu; Chibotaru, Liviu F; Powell, Annie K; Lan, Yanhua; Roesky, Peter W; Menges, Fabian; Riehn, Christoph; Niedner-Schatteburg, Gereon
2012-09-17
The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.
Majee, Mithun Chandra; Towsif Abtab, Sk Md; Mondal, Dhrubajyoti; Maity, Manoranjan; Weselski, Marek; Witwicki, Maciej; Bieńko, Alina; Antkowiak, Michał; Kamieniarz, Grzegorz; Chaudhury, Muktimoy
2018-03-06
A new family of [3 + 3] hexanuclear 3d-4f complexes [(μ 3 -CO 3 ){Co II Ln III L(μ 3 -OH)(OH 2 )} 3 ]-(ClO 4 )·mC 2 H 5 OH·nH 2 O (1-5) [Ln = La (1), Gd (2), Tb (3), Dy (4), and Ho (5)] have been prepared in moderate to high yields (62-78%) following a self-assembly reaction between the ligand 6,6',6''-(nitrilotris(methylene))tris-(2-methoxy-4-methylphenol) (H 3 L), Co(OAc) 2 ·4H 2 O and the lanthanide ion precursors in the mandatory presence of tetrabutylammonium hydroxide. During the reaction, atmospheric carbon dioxide is fixed in the product molecule as a bridging carbonato ligand which connects all the three lanthanide centers of this molecular assembly through a rare η 2 :η 2 :η 2 -μ 3 mode of bridging as revealed from X-ray crystallography. The metal centers in all these compounds, except the Gd III analogue (2), are coupled in antiferromagnetic manner while the nature of coupling in the CoGd complex is ferromagnetic. DFT calculations revealed that this ferromagnetic interaction occurs most likely by the Co II -Gd III superexchange, mediated via the bridging oxygen atoms. Only the Co II -Dy III compound (4) displayed a slow relaxation of the magnetization at a very low temperature as established by AC susceptibility measurements. The data provides an estimation of the activation energy U/k B = 9.2 K and the relaxation time constant τ 0 = 1.0 × 10 -7 s.
Carpenter, David; Boutin, Céline; Allison, Jane E.; Parsons, Jessica L.; Ellis, Deanna M.
2015-01-01
Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a concern in contaminated areas. PMID:26076480
Recovery and Separation of Rare Earth Elements Using Salmon Milt
Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Watanabe, Yusuke; Fan, Qiaohui; Honma, Tetsuo; Tanaka, Kazuya
2014-01-01
Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption–desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt. PMID:25490035
Zhang, Guangchao; Wei, Yun; Guo, Liping; Zhu, Xiancui; Wang, Shaowu; Zhou, Shuangliu; Mu, Xiaolong
2015-02-02
Two series of new dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in novel μ-η(2) :η(1) :η(1) hapticities are synthesized and characterized. Treatment of [RE(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of 3-(tBuN=CH)C8 H5 NH (L1 ) in THF gives the dinuclear rare-earth metal alkyl complexes trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH(CH2 SiMe3 )}Ind)RE(thf)(CH2 SiMe3 )]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C=N group is transferred to the amido group by alkyl CH2 SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μ-η(2) :η(1) :η(1) bonding modes, forming the dinuclear rare-earth metal alkyl complexes. When L1 is reduced to 3-(tBuNHCH2 )C8 H5 NH (L2 ), the reaction of [Yb(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of L2 in THF, interestingly, generated the trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (major) and cis-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (minor) complexes. The catalytic activities of these dinuclear rare-earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio- and stereoselectivities for isoprene 1,4-cis-polymerization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.
The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less
Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.
2004-01-01
The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten, uranium, vanadium, yttrium, ytterbium, zinc, and zirconium in these springs and seeps. Biological observations include physical setting, vegetation, invertebrate habitats, and invertebrate microhabitats.
Selected trace elements in the Sacramento River, California: occurrence and distribution.
Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P
2012-05-01
The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.
Selected trace elements in the Sacramento River, California: Occurrence and distribution
Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.
2012-01-01
The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.
Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron
NASA Astrophysics Data System (ADS)
Tsang, Yuen H.; El-Taher, Atalla E.; King, Terence A.; Chang, Kuang-Po; Jackson, Stuart D.
2006-04-01
Wavelengths around 1.15 μm, 1.3 μm and 1.7 μm can be used to pump Dy-doped ZBLAN fibre in order to generate ~3 μm with high efficiency. Previously the generation of 2.9 μm from the Dy-ZBLAN fibre was demonstrated by pumping with 1.1 μm Yb-silica fibre laser sources. The laser slope efficiency and lasing threshold demonstrated was about ~5% and ~1.78 W. In this investigation, the longer wavelength absorption band ( 6H 9/2 , 6F 11/2) centred at 1.3 μm of Dy 3+-doped ZBLAN is utilised and the lasing transition around ~3 μm takes places from 6H 13/2 --> 6H 15/2. With this pumping scheme the Stokes' efficiency is expected to be up to ~45%. A quasi-continuous wave Dy 3+-ZBLAN fibre laser pumped by a ~1.3 μm Nd:YAG laser and operating at 2.96 μm with a bandwidth (FWHM) of ~14 nm has been demonstrated. For a 60cm fibre length, a threshold of 0.5W and a slope efficiency of ~20% with respect to the absorbed pump power was observed. The overall pump absorption in the fibre was around 84%. The cavity reflectivities at 2.9 μm were 99% and 50%. The demonstrated slope efficiency was 45% of the Stokes' limit. The slope efficiency was around four times higher and the threshold around 3.6 times lower than the previous performance demonstrated by using the 1.1 μm Yb fibre laser pumping scheme. The higher performance achieved compared to the 1.1 μm pump scheme is due to the higher Stokes' limit, lower pump ESA losses and higher cavity reflectivity. About 590 cm -1 Raman Stokes shift has also detected by using 514.5 nm and 488 nm Ar ion laser as excitation pump sources.
Carpenter, David; Boutin, Céline; Allison, Jane E; Parsons, Jessica L; Ellis, Deanna M
2015-01-01
Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a concern in contaminated areas.
Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O
2017-10-01
Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.
CaSO4:DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry
NASA Astrophysics Data System (ADS)
Bahl, Shaila; Lochab, S. P.; Kumar, Pratik
2016-02-01
With the advent of newer techniques for dose reduction coupled with the development of more sensitive detectors, the radiation doses in radiological medical investigation are decreasing. Nevertheless, keeping the tenet in mind that all radiation doses could entail risk, there is a need to develop more sensitive dosimeters capable of measuring low doses. This paper gives the account of the development of a new and sensitive phosphor CaSO4:Dy,Mn and its characterization. The standard production procedure based on the recrystallization method was used to prepare CaSO4:Dy,Mn. The Thermoluminescence (TL) studies were carried out by exposing it with gamma radiation (Cs-137) from 10 μGy to 100 Gy. The theoretical studies to determine the number of peaks and kinetic parameters related to the TL glow peaks in CaSO4:Dy,Mn was performed using the Computerized Glow Curve Deconvolution (CGCD) method. Experiments were performed to determine optimum concentration of the dopants Dysprosium (Dy) and Mangnese (Mn) in the host CaSO4 so that maximum sensitivity of the phosphor may be achieved. The optimum dopant concentration turned out to be 0.1 mol%. As there were two dopants Dy and Mn their relative ratio were varied in steps of 0.025 keeping the concentration of total dopant (Dy and Mn) 0.1 mol% always. The maximum TL intensity was seen in the CaSO4:Dy(0.025),Mn(0.075) combination. The TL sensitivity of this phosphor was found to be about 2 and 1.8 times higher than that of popular phosphor CaSO4:Dy and LiF:Mg,Cu,P (TLD-700H) respectively. This new phosphor CaSO4:Dy,Mn showed fading of 11% which is similar to that of the standard phosphor CaSO4:Dy. The paper concludes that the new, highly sensitive TL phosphor CaSO4:Dy,Mn has shown higher sensitivity and hence the potential to replace commonly used CaSO4:Dy.
Mambrini, M; Peyraud, J L
1997-01-01
To validate a method for analysing indigestible marker excretion patterns in terms of digesta passage, the mean retention time (MRT) of long hay, ground hay and concentrate, marked, respectively, with thulium, ytterbium and dysprosium was measured in the total digestive tract (TMRT) and in the stomachs (SMRT) of four cows fed on a diet of hay in the long form (17.7 kg DM/day). The MRT of the particulate and liquid phases in the intestines was obtained after faecal particles labelled by Europium and Chromium EDTA were pulse dosed through the duodenal cannula. Following test meals, total faecal collection and spot sampling of duodenal digesta were performed at fixed intervals. TMRT were 51.7, 45.6, 40.6 h and SMRT were 39.5, 31.9 and 28.0 h, respectively, for hay, ground hay and concentrate. The MRT of the liquids in the rumen (8.7 h) was shorter than the SMRT of particles but there was no differential passage between liquids and particles after the duodenum. Intestinal MRT averaged 11 h and was partitioned into 7.5 and 3.5, respectively, for MRT in the tubular sections and the caecum-proximal colon. The compartmental analysis of the faecal patterns of markers given during a test meal gives the following results. The time associated with the descending part of faecal kinetics (respectively, 25.3 and 22.9 h for hay and concentrate) is directly related to the escape of feed particles from the rumen. The delay of first appearance of markers mostly reflects transit in the post duodenal tubular sections for the concentrate. The time associated with the ascending part (respectively, 16.9 and 9.4 h for hay and concentrate) represents the time required to reduce the size of the forage particles (7 h according to the difference between TMRT of long and ground hay direct measurements) and caecal mixing (3.5 h) as well as other compartments or processes that are not clearly identified.
Groen, C P; Oskam, A; Kovács, A
2000-12-25
The structure, bonding and vibrational properties of the mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes were studied using various quantum chemical methods (HF, MP2 and the Becke3-Lee-Yang-Parr exchange-correlation density functional) in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. Our comparative study indicated the superiority of MP2 theory while the HF and B3-LYP methods as well as less sophisticated basis sets failed for the correct energetic relations. In particular, f polarization functions on Li and X proved to be important for the Li...X interaction in the complexes. From the three characteristic structures of such complexes, possessing 1-(C3v), 2-(C2v), or 3-fold coordination (C3v) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are located considerably lower on the potential energy surface then the monodentate isomer. Therefore only the bi- and tridentate isomers have chemical relevance. The monodentate isomer is only a high-lying local minimum in the case of X = F. For X = Cl, Br, and I this structure is found to be a second-order saddle point. The bidentate structure was found to be the global minimum for the systems with X = F, Cl, and Br. However, the relative stability with respect to the tridentate structure is very small (1-5 kJ/mol) for the heavier halide derivatives and the relative order is reversed in the case of the iodides. The energy difference between the three structures and the dissociation energy decrease in the row F to I. The ionic bonding in the complexes was characterized by natural charges and a topological analysis of the electron density distribution according to Bader's theorem. Variation of the geometrical and bonding characteristics between the lanthanum and dysprosium complexes reflects the effect of "lanthanide contraction". The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of LiLnX4 molecules.
Magnetic and magnetocaloric properties of iron subs tituted holmium chromite and dysprosium chromite
Yin, Shiqi; Sharma, Vinit; McDannald, Austin; ...
2016-01-11
In this work, structural, magnetic, and magnetocaloric properties of HoCrO 3 and Fe substituted HoCrO 3 and DyCrO 3 (i.e. HoCr 0.7Fe 0.3O 3 and DyCr 0.7Fe 0.3O 3) powder samples were synthesized via a solution route. The structural properties of the samples were examined by Raman spectroscopy and x-ray diffraction techniques, which were further confirmed using first-principle calculations. The dc magnetic measurements indicate that the Cr 3+ ordering temperatures for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples are 140 K, 174 K, and 160 K, respectively. The ac magnetic measurements not only confirmedmore » the Cr 3+ ordering transitions in these samples (obtained using dc magnetic measurements), but also clearly showed the Ho 3+ ordering at ~10 K in the present HoCrO 3 and HoCr 0.7Fe 0.3O 3 samples, which to our knowledge, is the first ac magnetic evidence of Ho 3+ ordering in this system. The effective magnetic moments were determined to be 11.67μB, 11.30μB, and 11.27μB for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively. For the first time, the magnetocaloric properties of HoCrO 3 and HoCr 0.7Fe 0.3O 3 were studied here, showing their potential for applications in magnetic refrigeration. In an applied dc magnetic field of 7 T, the maximum magnetocaloric value were determined to be 7.2 (at 20 K), 6.83 (at 20 K), 13.08 J/kg K (at 5 K) and the relative cooling power were 408, 387, and 500 J/kg for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively.« less
NASA Astrophysics Data System (ADS)
Flambaum, Victor
2016-05-01
Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz symmetry and Einstein equivalence principle. Finally, we explore a possibility to explain the DAMA collaboration claim of dark matter detection by the dark matter scattering on electrons. We have shown that the electron relativistic effects increase the ionization differential cross section up to 3 orders of magnitude [9].
Ettehadi Gargari, Jafar; Sid Kalal, Hossein; Shakeri, Alireza; Khanchi, Alireza
2017-11-01
In this study, we used Silica/polyvinyl imidazole core-shell nanoparticles impregnated with sodium dihydrogen phosphate (SiO 2 /PVI/H 2 PO 4 - NPs) for adsorption of samarium and dysprosium ions from aqueous solutions. The effects of the pH, adsorbent dose, contact time, and initial concentration of the adsorbate on the Core-shell nanoparticles adsorption capacity have been studied. The pH value for maximum removal of Sm (III) and Dy (III) on the core-shell nanoparticles surface were found to be 4. The saturated capacity of SiO 2 /PVI/H 2 PO 4 - NPs was up to 160mg.g -1 and 150mg.g -1 at 25°C for Sm (III) and Dy (III) ions respectively. The obtained uptake data were analyzed by the Langmuir and Freundlich equations using a linearized correlation coefficient at room temperature. The Freundlich isotherm was found to fit well with the equilibrium data. The adsorption kinetics could be modeled by a pseudo-second-order rate expression. Thermodynamic investigation revealed the adsorption process of the studied ions is entropy driven. Furthermore, the performance of regeneration and reutilization were studied. The adsorbed Sm (III) and Dy (III) can be desorbed by 0.5mol/L HCl, with the desorption percentage of 90% for Sm (III) and Dy (III). After five adsorption-desorption cycles, the adsorption capacity shows a slight decrease (about 15%), implying that the SiO 2 /PVI/H 2 PO 4 - NPs can be used as an effective adsorbent for the removal and recovery of Sm(III) and Dy(III) from aqueous solution. The colloid stability of the SiO 2 /PVI/H 2 PO 4 - NPs was investigated by dynamic light scattering measurements. The SiO 2 /PVI/H 2 PO 4 - NPs are stable in adsorption media after five adsorption - desorption cycles. The high stability of SiO 2 /PVI/H 2 PO 4 - NPs can be attributed to steric stabilization by polyvinyl imidazole adsorbed on SiO 2 nanoparticle surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fang; Mozharivskyj, Y.; Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru
The Dy–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analysis. The system contains the 12 known compounds DyNi{sub 10}Si{sub 2}, DyNi{sub 5}Si{sub 3}, DyNi{sub 6}Si{sub 6}, DyNi{sub 4}Si, DyNi{sub 2}Si{sub 2}, Dy{sub 2}Ni{sub 3}Si{sub 5}, DyNiSi{sub 3}, Dy{sub 3}Ni{sub 6}Si{sub 2}, DyNiSi{sub 2}, DyNiSi, Dy{sub 3}NiSi{sub 3}, Dy{sub 3}NiSi{sub 2}, and the new compounds Dy{sub 34}Ni{sub 16−27}Si{sub 50−39} (AlB{sub 2}-type), Dy{sub 2}Ni{sub 15.2−14.1}Si{sub 1.8−2.9} (Th{sub 2}Zn{sub 17}-type), ∼Dy{sub 11}Ni{sub 65}Si{sub 24}, ∼Dy{sub 16}Ni{sub 62}Si{sub 22} (unknown structures), DyNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), Dy{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), DyNi{sub 2}Si (YPd{sub 2}Si-type), ∼Dy{sub 40}Ni{sub 47}Si{submore » 13} and ∼Dy{sub 5}Ni{sub 2}Si{sub 3} (unknown structures). Quasi–binary solid solutions were detected at 1070 (870 K) for Dy{sub 2}Ni{sub 17}, DyNi{sub 5}, DyNi{sub 7}, DyNi{sub 3}, DyNi{sub 2}, DyNi, DySi{sub 2} and DySi{sub 1.67}. No detectable solubility is observed for the other binary compounds of the Dy–Ni–Si system. The crystal structures of new phases RNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), R{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), RNi{sub 2}Si (YPd{sub 2}Si-type) and R{sub 3}Ni{sub 12}Si{sub 4} (Gd{sub 3}Ru{sub 4}Al{sub 12}-type), with R=Y, Gd–Tm, has been studied. Magnetic properties of few representative compounds are also reported. - Graphical abstract: The Dy–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analysis. The system contains the 12 known compounds DyNi{sub 10}Si{sub 2}, DyNi{sub 5}Si{sub 3}, DyNi{sub 6}Si{sub 6}, DyNi{sub 4}Si, DyNi{sub 2}Si{sub 2}, Dy{sub 2}Ni{sub 3}Si{sub 5}, DyNiSi{sub 3}, Dy{sub 3}Ni{sub 6}Si{sub 2}, DyNiSi{sub 2}, DyNiSi, Dy{sub 3}NiSi{sub 3}, Dy{sub 3}NiSi{sub 2}, and the new compounds Dy{sub 34}Ni{sub 16−27}Si{sub 50−39}, Dy{sub 2}Ni{sub 15.2−14.1}Si{sub 1.8−2.9}, ∼Dy{sub 11}Ni{sub 65}Si{sub 24}, ∼Dy{sub 16}Ni{sub 62}Si{sub 22}, DyNi{sub 7}Si{sub 6}, Dy{sub 3}Ni{sub 8}Si, DyNi{sub 2}Si, ∼Dy{sub 40}Ni{sub 47}Si{sub 13} and ∼Dy{sub 5}Ni{sub 2}Si{sub 3}. Quasi–binary solid solutions were detected for Dy{sub 2}Ni{sub 17}, DyNi{sub 5}, DyNi{sub 7}, DyNi{sub 3}, DyNi{sub 2}, DyNi, DySi{sub 2} and DySi{sub 1.67}. The crystal structures and magnetic properties of new phases RNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), R{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), RNi{sub 2}Si (YPd{sub 2}Si-type) and R{sub 3}Ni{sub 12}Si{sub 4} (Gd{sub 3}Ru{sub 4}Al{sub 12}-type), with R=Y, Gd–Tm, are also reported. - Highlights: • Dy–Ni–Si isothermal section was obtained at 870 K/1070 K. • Twelve known ternary dysprosium nickel silicides were confirmed in Dy–Ni–Si. • Nine new dysprosium nickel silicides were detected in Dy–Ni–Si. • Seventeen new rare earth nickel silicides were detected in (Y, Gd–Tm)–Ni–Si. • Tb{sub 3}Ni{sub 8}Si, Dy{sub 3}Ni{sub 8}Si, Ho{sub 3}Ni{sub 12}Si{sub 4} and DyNi{sub 2}Si show ferromagnetic-like ordering.« less
Thermoluminescent Mechanisms in Calcium Sulphate Doped with Dysprosium.
NASA Astrophysics Data System (ADS)
Matthews, Robert James
Thermoluminescent (TL) mechanisms in CaSO(,4):Dy caused by ionizing irradiation are investigated. Influences of the background impurities on the structure of the glow curve are determined and are correlated with known electron spin resonance (ESR) results. These are combined with fading studies that determine the TL process as bimolecular or monomolecular and the order of the kinetics involved. The TL emission spectrum is determined for all temperature regions of the TL emission to 400(DEGREES)C; optical absorption (OA) in the visible provides information on the valence state of the Dy ion. Photo stimulated transfer of TL (PTTL) helps determine the influence of traps deeper than 400(DEGREES)C, while studies of CaSO(,4):Dy in the scanning electron microscope (SEM) operated in the cathodoluminescent (CL) mode provide information on processes occurring during electron bombardment and on the distribution of Dy in CaSO(,4). The information from these studies is combined to form comprehensive models of the TL mechanisms responsible for the TL glow peaks.(,). The glow peak occurring between 130(DEGREES)C and 260(DEGREES)C, usually designated as the dosimetric peak, was determined to be the result of two primary processes. In the first mechanism, the SO(,3)('-) radical recombines with an oxygen interstitial (O(,i)('-)) associated with the Dy('3+) in charge compensation. The recombination energy is given up as TL. In the second mechanism, it is concluded that divalent Dy release electrons to the conduction band in a non-radiative process. The liberated electron recombines with a hole center at a remote SO(,4)(' -) site. The recombination energy is either transferred to trivalent Dy, which emits TL, or this energy causes the (SO(,4)('-))* to disassociate and form an SO(,3)(' -) and an O(,i)('-). These defects are thought to recombine at about 300(DEGREES)C. In the low temperature region (room temperature to 130(DEGREES)C), the monovalent cation, particularly Na('+) acting as charge compensation for the trivalent Dy, stabilizes the SO(,4)('-) radical and the SO(,2)(' -) radical produced during irradiation. These are determined to be monomolecular type defect comples. The TL mechanisms proposed for the dosimetric region (130(DEGREES)C - 260(DEGREES)C) and the low temperature region (RT - 130(DEGREES)C) are those most consistent with all the results of the various methods of research.
Anthropogenic Cycles of Rare Earth Elements
NASA Astrophysics Data System (ADS)
Du, X.; Graedel, T. E.
2009-12-01
This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from mining to use to recycling quantifying the cycles for Japan, China and the U.S. as three representative types of consumers and paying attention to aspects of resource sustainability. Being well aware of the stages in the metal life cycle helps the sustainable development and policy making in long term. The goal is to consider REE resource availability, sustainability, and development strategies in the future that can sustain a reliable, steady, uninterrupted REE supply on the global market.
PEPSI deep spectra. II. Gaia benchmark stars and other M-K standards
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Ilyin, I.; Weber, M.
2018-04-01
Context. High-resolution échelle spectra confine many essential stellar parameters once the data reach a quality appropriate to constrain the various physical processes that form these spectra. Aim. We provide a homogeneous library of high-resolution, high-S/N spectra for 48 bright AFGKM stars, some of them approaching the quality of solar-flux spectra. Our sample includes the northern Gaia benchmark stars, some solar analogs, and some other bright Morgan-Keenan (M-K) spectral standards. Methods: Well-exposed deep spectra were created by average-combining individual exposures. The data-reduction process relies on adaptive selection of parameters by using statistical inference and robust estimators. We employed spectrum synthesis techniques and statistics tools in order to characterize the spectra and give a first quick look at some of the science cases possible. Results: With an average spectral resolution of R ≈ 220 000 (1.36 km s-1), a continuous wavelength coverage from 383 nm to 912 nm, and S/N of between 70:1 for the faintest star in the extreme blue and 6000:1 for the brightest star in the red, these spectra are now made public for further data mining and analysis. Preliminary results include new stellar parameters for 70 Vir and α Tau, the detection of the rare-earth element dysprosium and the heavy elements uranium, thorium and neodymium in several RGB stars, and the use of the 12C to 13C isotope ratio for age-related determinations. We also found Arcturus to exhibit few-percent Ca II H&K and Hα residual profile changes with respect to the KPNO atlas taken in 1999. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT) and the Vatican Advanced Technology Telescope (VATT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Leibniz-Institute for Astrophysics Potsdam (AIP), and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.
A Study on the Applications of Quantum Optical Coherence to Nano-Optics
NASA Astrophysics Data System (ADS)
Hakami, Jabir Wali
Optically controlled dipole-dipole interaction at submicrometers and subwavelength scales leads to many interesting phenomenon and remarkable potential applications in quantum optics, condensed matter physics, and today's micro-devices. In this dissertation, we study the applications of quantum optical coherence to nano-optics in the following systems and aspects. On the one hand, chiral metamaterials has been previously reported as excellent candidates to realize both attractive and repulsive Casimir forces, where the existence of a repulsive Casimir force depends upon the strength of the chirality. On the other hand, nanoscale integration of metal nanoparticles and semiconductors is particularly interesting because the strengths of both materials are combined in such a hybrid system. In the first part of this work, we proposed a technical scheme to coherently control of the Casimir interaction energy with two identical chirality mediums. We took explicit caution regarding the requirements of passivity and causal response of the materials, since these requirements are essential for the application of the Lifshitz formula. The rare-earth metals' atomic species, for instance, dysprosium, is proposed as an applicable medium for the forthcoming studies of possible experimental implementation of our technique. Secondly, we fully investigated the coherent control of the quantum optical properties of spontaneous emission spectra of a semiconductor quantum dot coupled to a metallic nanoparticle. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. In the third part, we propose a robust protocol to study the entanglement generation in a hybrid structure consisting of two quantum dots in the proximity of a metallic nanoshell. The entanglement arises impulsively due to common coupling to the plasmonic nanostructure, without demanding postselective measurement or mediating the dissipative environment. The long-lived entangled states can be created deterministically by optimizing the shell thickness as well as the ratio of the distances between the quantum dots and the surface of the shell. The loss of the system is greatly reduced even when the quantum dots are ultraclose to the shell, which signifies a slow decay rate of the coherence information and longtime entanglement preservation.
Global critical materials markets: An agent-based modeling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riddle, Matthew; Macal, Charles M.; Conzelmann, Guenter
As part of efforts to position the United States as a leader in clean energy technology production, the U. S. Department of Energy (DOE) issued two Critical Materials Strategy reports, which assessed 16 materials on the basis of their importance to clean energy development and their supply risk ( U.S. Department of Energy (DOE), 2010 and DOE, 2011). To understand the implications for clean energy of disruptions in supplies of critical materials, it is important to understand supply chain dynamics from mining to final product production. As a case study of critical material supply chains, we focus on the supplymore » of two rare earth metals, neodymium (Nd) and dysprosium (Dy), for permanent magnets used in wind turbines, electric vehicles and other applications. We introduce GCMat, a dynamic agent-based model that includes interacting agents at five supply chain stages consisting of mining, metal refining, magnet production, final product production and demand. Agents throughout the supply chain make pricing, production and inventory management decisions. Deposit developers choose which deposits to develop based on market conditions and detailed data on 57 rare earth deposits. Wind turbine and electric vehicle producers choose from a set of possible production technologies that require different amounts of rare earths. We ran the model under a baseline scenario and four alternative scenarios with different demand and production technology inputs. Model results from 2010 to 2013 fit well with historical data. Projections through 2025 show a number of possible future price, demand, and supply trajectories. For each scenario, we highlight reasons for turning points under market conditions, for differences between Nd and Dy markets, and for differences between scenarios. Because GCMat can model causal dynamics and provide fine-grain representation of agents and their decisions, it provides explanations for turning points under market conditions that are not otherwise available from other modeling approaches. Our baseline projections show very different behaviors for Nd and Dy prices. Nd prices continue to drop and remain low even at the end of our simulation period as new capacity comes online and leads to a market in which production capacity outpaces demand. Dy price movements, on the other hand, change directions several times with several key turning points related to inventory behaviors of particular agents in the supply chain and asymmetric supply and demand trends. Scenario analyses show the impact of stronger demand growth for rare earths, and in particular finds that Nd price impacts are significantly delayed as compared to Dy. This is explained by the substantial excess production capacity for Nd in the early simulation years that keeps prices down. Scenarios that explore the impact of reducing the Dy content of magnets show the intricate interdependencies of these two markets as price trends for both rare earths reverse directions – reducing the Dy content of magnets reduces Dy demand, which drives down Dy prices and translates into lower magnet prices. This in turn raises the demand for magnets and therefore the demand for Nd and eventually drives up the Nd price.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provo, James L., E-mail: jlprovo@verizon.net
2015-07-15
A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymiummore » (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be obtained with a bulk film oxygen level of ∼0.54 oxygen as determined by microprobe analysis when an evaporation rate of ∼0.313 mg/cm{sup 2} min was used in an atmosphere of D{sub 2} or T{sub 2} gas at a system deposition pressure of 1 × 10{sup −3 }Torr (1.33 × 10{sup −1 }Pa) in an evaporation time of ∼2 min. Platelet type (i.e., a film microstructure showing an overlay of flat plates with large grain sizes) film structures were observed for most films with some film mechanical properties determined (i.e., grain size and Vickers μ-hardness), and reduced stress levels were seen with initial normalized differential (tensile) stress levels being (1.0–4.0) × 10{sup 8 }dyne/cm{sup 2} for tritium loaded samples and (1.5 ± 0.5) × 10{sup 9 }dyne/cm{sup 2} for deuterium loaded samples. Also, stress aging characteristics were determined for some hydride films prepared in a radioactive tritium gas atmosphere. Tritium loading, however, had the undesirable characteristic of having to dispose of the internal processing system fixtures, which can be minimized, but the reactive evaporation technique produced desirable thin films.« less
Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renier, J.A.
2002-04-17
Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron.more » Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized water reactor fuel core was chosen for the study, and state-of-the-art neutronic reactor core computer codes were used for analysis. Power distribution, fuel burnup, reactivity due to burnable poisons and other fission products, spectrum shift, core reactivity, moderator void coefficients, as well as other parameters were calculated as a function of time and fuel burnup. The results not only showed advantages of separation of burnable poison isotopes but revealed benefits to be achieved by careful selection of the configuration of even naturally occurring elements used as burnable poisons. The savings in terms of additional days of operation is shown in Figure 1, where the savings is plotted for each of six favorable isotopes in the four configurations. The benefit of isotope separation is most dramatic for dysprosium, but even the time savings in the case of gadolinium is several days. For a modern nuclear plant, one day's worth of electricity is worth about one million dollars, so the resulting savings of only a few days is considerable. It is also apparent that the amount of savings depends upon the configuration of the burnable poison.« less
SUMMARY TECHNICAL REPORT ON FEED MATERIALS FOR THE PERIOD APRIL 1, 1959 TO JUNE 30, 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, J.W. ed.
1959-07-20
Anaconda Acld, Kermac, Moab, Rifle, and Texas Zinc uranium concentrates were evaluated (the laboratory portlon of feed material evaluation). Laboratory equilibrium tests and Pilot Plant 2-inch-column extraction tests demonstrated effective distribution of uranium into a TBPkerosene solvent from aqueous phases containing as little as 0.5N HNO/sub 3/ and varying amounts of added metal nitrates (NaNO/sub 3/). The concentration of assoclated nitric acid in dilute aqueous nitric acld solutions was determined after values were obtained for the equillbrium constant for the reaction of tri-n-butyl phosphate with associated nitric acid and for the equilibrium distribution constant for the partition of associated nitricmore » acld into tri-n-butyl phosphate. Optimum partition of uranium into tri-n-butyl phosphate was realized in the laboratory by using an aqueous uranyl nitrate solution containing sufficient hydrogen ions to promote extraction and a low concentration of associated nitric acid. An Ohmart system for controlling the uranium profile in the A'' extractlon column was installed on Refinery pulse columns. Use of this system improved control but did not stop all column upsets. The effect of 13 to l89 ppm sodium contaminatlon upon hydrofluorination conversion of teraperature at the site of the reaction. Uranyl sulfate was shown to undergo an enantiotroplc transitlon at 755 deg C and to decompose to U/sub 3/O/sub 8/ in an atmosphere of oxygen sulfur dioxide, which gases are evolved during decoraposition. Decontamination of sodium, calcium, nickel, magnesium, gadolinium, and dysprosium was achieved in a laboratory investigatlon of the ADU process. UO/sub 2/ produced by reductions programmed from 700 to ll00 deg F was hydrofluorinated at programmed temperatures of 550 to 1100 deg F and isothermally at ll00 deg F. Good conversion was obtained for material whose source was ADU calcined at 1200 deg F. Uranium derbles were classified by the present method of derby grading and were then examined for slag coverage, slag volume, and slag weight. There was a high degree of overlap of these parameters for adjacent grades. A hydraulic separator for separatlng uranlum from magnesium and magnesium fluorlde was fabrlcated. Excellent separatlon was obtained for +l6 mesh material. A hydrochloric acid dissolution- UF/sub 4/ precipitation process for routing scrap materials to the reductlon-to- metal step was examined. The purification obtained was noted, and process conditions were varied to determine their effect upon UF/sub 4/ density, UF/sub 4/ purity and precipitation time. Three types of uranium scrap were subjected to the HCl dissolution-aqueous precipitation Winlo process to determine the purification achieved. Green salt made from dolomitlc bomb liner residues was found to be grossly contaminated. Acceptable green salt was raade from pickle liquor treated with formaldehyde and from pickle liquor plus black oxide. Nominal 80% yields were obtained in the recovery of magnesium metal by reaction of calcium carblde with magnesium fluoride slag and in the recovery of HF by the reactlon of sulfuric acid wlth magnesium fluoride slag. A sample holder for use in quantitative preferred orientation studies was fabricated. The holder, designed to fit a North American Philips Gonionweter, will accommodate specimens up to l 13/16 inches in diameter and incorporates a precision ball bearing. A satisfactory technique was developed for the analysis of uranium metal for traces of fluoride. A direct flame photometric method is glven for the determination of magnesium in uranium ore concentrates. No chemical separation step is required, except for high-iron-content ores. (auth)« less
SISGR: Atom chip microscopy: A novel probe for strongly correlated materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lev, Benjamin L.
Microscopy techniques co-opted from nonlinear optics and high energy physics have complemented solid-state probes in elucidating the order manifest in condensed matter materials. Up until now, however, no attempts have been made to use modern techniques of ultracold atomic physics to directly explore properties of strongly correlated or topologically protected materials. Our current program is focused on introducing a novel magnetic field microscopy technique into the toolbox of imaging probes. Our prior DOE ESPM program funded the development of a novel instrument using a dilute gas Bose-Einstein condensate (BEC) as a scanning probe capable of measuring tiny magnetic (and electric)more » DC and AC fields above materials. We successfully built the world's first “scanning cryogenic atom chip microscope” [1], and we now are in the process of characterizing its performance before using the instrument to take the first wide-area images of transport flow within unconventional superconductors, pnictides and oxide interfaces (LAO/STO), topological insulators, and colossal magnetoresistive manganites. We will do so at temperatures outside the capability of scanning SQUIDs, with ~10x better resolution and without 1/f-noise. A notable goal will be to measure the surface-to-bulk conductivity ratio in topological insulators in a relatively model-independent fashion [2]. We have completed the construction of this magnetic microscope, shown in Figure 1. The instrument uses atom chips—substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for ultracold thermal gases and BECs—to enable single-shot and raster-scanned large-field-of-view detection of magnetic fields. The fields emanating from electronic transport may be detected at the 10-7 flux quantum (Φ0) level and below (see Fig. 2); that is, few to sub-micron resolution of sub-nanotesla fields over single-shot, millimeter-long detection lengths. By harnessing the extreme sensitivity of atomic clocks and BECs to external perturbations, we are now in a position to use atom chips for imaging transport in new regimes. Scanning quantum gas atom chip microscopy introduces three very important features to the toolbox of high-resolution scanning microscopy of strongly correlated or topological materials: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level [3,4]; no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic spatial resolution; DC to MHz detection bandwidth; freedom from 1/f flicker noise at low frequencies; and, perhaps most importantly, the complete decoupling of probe and sample temperatures. The atom chip microscope can operate at maximum sensitivity and resolution without regard to the substrate temperature. While the BEC is among the coldest objects realizable (100 nK temperatures are typical), the atom chip substrate can be positioned 1 μm away from the BEC and be as hot as 400 K or as cold as the cryostat can cool. This is because unlike superconducting probes, whose temperature is closely coupled to nearby materials, quantum gases are immune to radiative heating. The energy gap between a Rb atom’s ground state and first excited state far exceeds the typical energy of room-temperature blackbody radiation; such atoms are therefore transparent to radiation heating by materials at room temperature or below. We experimentally demonstrated a new atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≤100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime [1]. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracold gas, which itself may remain in the focus of a high-resolution imaging system. See Fig. 3. We confine 100-nK BECs of 104 87Rb atoms near a gold-mirrored 100-μm-thick silicon substrate. The substrate can be cooled to 35 K without use of a heat shield, while the atom chip, 120-μm away, remains at room temperature. Atoms may be imaged with 1-μm resolution and retrapped every 16 s, allowing rapid data collection. Straightforward improvements will allow us to push sample temperatures close to 4 K, and improve imaging resolution from 1 μm down to a few-100 nm, thereby providing 10-9 Φ0 detection sensitivity. We will test the utility of this technique by imaging the magnetic fields emanating from electronic transport and domain percolation in several interesting examples of strongly correlated or topologically protected materials. STM, transport, and x-ray scattering experiments have, among others, revealed the existence of a quantum liquid crystal state in iron (pnictide) and cuprate superconductors. This strongly correlated state of matter could also be detected by imaging the fluctuating transport (spatially and in time) of electrons as the phase/regime boundary is crossed between the pnictide non-Fermi liquid (cuprate strange metal) and the pnictide magnetic phase (cuprate pseudogap regime). Our ability to image wide-area inhomogeneous current flow from room-temperature to <10 K will allow us to study the developing domain structure and transport near twin boundary interfaces through the TN~50-150 K nematic transition recently identified in bulk transport experiments by Ian Fisher's group in underdoped Fe-arsinide superconductors [6]. Again, this highlights a main feature of our cryogenic atom chip microscope: the ability to image transport regardless of the sample temperature since the BEC, at nK temperatures, is transparent to blackbody radiation, even when held a microns from the surface. References: 3) S. Aigner et al., Long-range order in electronic transport through disordered metal films, Science 319 319 (2008). 4) S. Wildermuth, et al. Sensing electric and magnetic fields with Bose-Einstein condensates, Appl. Phys. Lett. 88, 264103 (2006). 5) M. Lu, N. Q. Burdick, S.-H. Youn, and B. L. Lev, Strongly Dipolar Bose-Einstein Condensate of Dysprosium, PRL 107, 190401 (2011). 6) J.-H. Chu, J. Analytis, K. De Greve, P. Mcmahon, A. Islam, Y. Yamamoto, and I. Fisher, In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor, Science 329, 824 (2010). Publications: 1) M. A. Naides, R. W. Turner, R. A. Lai, J. M. DiSciacca, and B. L. Lev, Trapping ultracold gases near cryogenic materials with rapid reconfigurability, Applied Physics Letters 103, 251112 (2013). 2) B. Dellabetta, T. L. Hughes, M. J. Gilbert, and B. L. Lev, Imaging topologically protected transport with quantum degenerate gases, Phys. Rev. B 85, 205442 (2012).« less
Frequency Standards and Metrology
NASA Astrophysics Data System (ADS)
Maleki, Lute
2009-04-01
Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5: its construction and performance (Invited) / T. Li ... [et al.].Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects (Invited) / E. A. Burt ... [et al.]. Research of frequency standards in SIOM - atomic frequency standards based on coherent storage (Invited) / B. Yan ... [et al.]. The PTB fountain clock ensemble preliminary characterization of the new fountain CSF2 / N. Nemitz ... [et al.]. The pulsed optically pumped clock: microwave and optical detection / S. Micalizio ... [et al.]. Research on characteristics of pulsed optically pumped rubidium frequency standard / J. Deng ... [et al.]. Status of the continuous cold fountain clocks at METAS-LTF / A. Joyet ... [et al.]. Experiments with a new [symbol]Hg+ ion clock / E. A. Burt ... [et al.]. Optimising a high-stability CW laser-pumped rubidium gas-cell frequency standard / C. Affolderbach ... [et al.]. Raman-Ramsey Cs cell atomic clock / R. Boudot ... [et al.] -- pt. VIII. Microwave resonators & oscillators. Solutions and ultimate limits in temperature compensation of metallic cylindrical microwave resonators (Invited) / A. De Marchi. Cryogenic sapphire oscillators (Invited) / J. G. Hartnett, E. N. Ivanov and M. E. Tobar. Ultra-stable optical cavity: design and experiments / J. Millo ... [et al.]. New results for whispering gallery mode cryogenic sapphire maser oscillators / K. Benmessai ... [et al.] -- pt. IX. Advanced techniques. Fundamental noise-limited optical phase locking at Femtowatt light levels (Invited) / J. Dick ... [et al.]. Microwave and optical frequency transfer via optical fibre / G. Marra ... [et al.]. Ultra-stable laser source for the [symbol]Sr+ single-ion optical frequency standard at NRC / P. Dubé, A. A. Madej and J. E. Bernard. Clock laser system for a strontium lattice clock / T. Legero ... [et al.]. Measurement noise floor for a long-distance optical carrier transmission via fiber / G. Grosche ... [et al.]. Optical frequency transfer over 172 KM of installed fiber / S. Crane -- pt. X. Miniature systems. Chip-scale atomic devices: precision atomic instruments based on MEMS (Invited) / J. Kitching ... [et al.]. CSAC - the chip-scale atomic clock (Invited) / R. Lutwak ... [et al.]. Reaching a few 10[symbol] stability level with a compact cold atom clock / F. X. Esnault ... [et al.]. Evaluation of Lin||Lin CPT for compact and high performance frequency standard / E. Breschi ... [et al.] -- pt. XI. Time scales. Atomic time scales TAI and TI(BIPM): present status and prospects (Invited) / G. Petit. Weight functions for biases in atomic frequency standards / J. H. Shirley -- pt. XII. Interferometers. Definition and construction of noise budget in atom interferometry (Invited) / E. D'Ambriosio. Characterization of a cold atom gyroscope (Invited) / A. Landragin ... [et al.]. A mobile atom interferometer for high precision measurements of local gravity / M. Schmidt ... [et al.]. Demonstration of atom interferometer comprised of geometric beam splitters / Hiromitsu Imai and Atsuo Morinaga -- pt. XIII. New directions. Active optical clocks (Invited) / J. Chen. Prospects for a nuclear optical frequency standard based on Thorium-229 (Invited) / E. Peik ... [et al.]. Whispering gallery mode oscillators and optical comb generators (Invited) / A. B. Matsko ... [et al.]. Frequency comparison using energy-time entangled photons / A. Stefanov -- List of participants.
EDITORIAL: Ultrafast magnetization processes
NASA Astrophysics Data System (ADS)
Hillebrands, Burkard
2008-09-01
This Cluster Issue of Journal of Physics D: Applied Physics is devoted to ultrafast magnetization processes. It reports on the scientific yield of the Priority Programme 1133 'Ultrafast Magnetization Processes' which was funded by the Deutsche Forschungsgemeinschaft in the period 2002-2008 in three successive two-year funding periods, supporting research of 17-18 groups in Germany. Now, at the end of this Priority Programme, the members feel that the achievements made in the course of the programme merit communication to the international scientific community in a concerted way. Therefore, each of the projects of the last funding period presents a key result in a published contribution to this Cluster Issue. The purpose of the funding by a Priority Programme is to advance knowledge in an emerging field of research through collaborative networked support over several locations. Priority Programmes are characterized by their enhanced quality of research through the use of new methods and forms of collaboration in emerging fields, by added value through interdisciplinary cooperation, and by networking. The aim of the Priority Programme 1133 'Ultrafast Magnetization Processes' may be well characterized by the call for projects in June 2001 after the programme was approved by the Deutsche Forschungsgemeinschaft: 'The aim of the priority programme is the achievement of a basic understanding of the temporal evolution of fast magnetization processes in magnetically ordered films, multilayers and micro-structured systems. The challenge lies in the advancement of the field of ultrafast magnetization processes into the regime of a few femtoseconds to nanoseconds, a topic not yet well explored. A general aim is to understand the fundamental mechanisms needed for applications in ultrafast magneto-electronic devices. The fundamental topic to be addressed is the response of the magnetization of small structures upon the application of pulsed magnetic fields, laser pulses or injected spin-polarized electron pulses on short time scales, ranging from a small disturbance of the system up to the reversal of the magnetization direction.' Now, seven years later, the subject of ultrafast magnetization processes has grown into a mainstream research direction in modern magnetism. The major international conferences on magnetism, such as the Annual Conference on Magnetism and Magnetic Materials (MMM), the INTERMAG, the International Conference of Magnetism, as well as many regional conferences, schedule dedicated sessions to ultrafast magnetization processes, very often several of them. The large share in research in this field from German scientists has been made possible by this Priority Programme. Since its beginning, new developments have been picked up by the Priority Programme 1133 and addressed by projects. Spin torque phenomena in spin dynamics, although foreseen at the time of establishing the Priority Programme, have been taken up. The field of dissipation has been addressed and extended by several groups, with contributions both from theoretical and experimental groups. A first set of contributions addresses ultrafast dynamics and materials. T Roth et al [article 164001] in this issue] study the dynamics of coercivity in ultrafast pump-probe experiments on the femtosecond time scale. They show that an all optical pump-probe technique is, in general, not suitable for gaining access to the time-dependent behaviour of the coercivity, since the switching in a fixed external field is an irreversible process. They comment on the possible mechanisms leading to the observed reduction of the coercivity with increasing pump power and propose a potential solution to clarify the origin of such a behaviour. B Heitkamp et al [164002] discuss the femtosecond spin dynamics of ferromagnetic CoPt thin films and nanodots, which they probe using spin-polarized photoemission electron microscopy. They show by photoelectron spin analysis, that enhanced optical near fields can be used to induce a local demagnetization of the sample following femtosecond laser excitation. A B Schmidt et al [164003] report a new access to the surface electronic structure of fcc Co films combining spin-resolved one- and two-photon photoemission. The knowledge of surface states is important for interpreting time-resolved measurements of ultrafast magnetization dynamics in this material. An extension of ultrafast dynamics has been made by several groups. A Melnikov et al [164004] report on the ultrafast dynamics at lanthanide surfaces such as Gd(0001) and Tb(0001) using time-resolved second-harmonic generation and photoelectron spectroscopy. These surfaces exhibit a rich dynamics including a collective response of the crystal lattice and the magnetization. Effects of phonon-magnon scattering are discussed. M Fiebig et al [164005] report on experiments of ultrafast magnetization dynamics in antiferromagnetic compounds, and show that the magnetization dynamics in these systems differs noticeably from that of ferromagnetic compounds. They use optical second-harmonic generation and linear reflection to monitor the evolution of the antiferromagnetic order parameter subsequent to an intense optical excitation. In a theory paper, the local light-induced spin manipulation in two-magnetic-centre metallic chains is studied by T Hardenstein et al [164006] using highly correlational ab initio calculations. They show that, as an example of local spin manipulation, the spin on the iron side of a Co-Na-Fe cluster can be switched. S Halm et al [164007] present evidence to manipulate spin states in a diluted magnetic semiconductor on a submicrometer length scale via the magnetic fringe fields of micro-structured magnets. By optically switching the magnetization of the ferromagnet, the magnetization in the semiconductor is manipulated and the limits of a dynamical interaction between the spin states in the ferromagnet and the magnetic semiconductor are discussed. A second set of contributions addresses the field of spin waves and dynamic spin torque phenomena. C W Sandweg et al [164008] discuss the modification of the thermal spin wave spectrum by a domain wall in a narrow stripe and report the observation of a localized mode near the domain wall using the new technique of Brillouin light scattering microscopy. Time-resolved measurements are often made using a stroboscopic approach, thus missing non-periodic responses. P Möhrke et al [164009] report single-shot Kerr magnetometer measurements to observe the real time-domain wall motion in permalloy nanowires. The dynamics in magnetic disks is studied by I Neudecker et al [164010] using in-plane magnetic microwave fields for excitation. The effect of current-induced magnetization dynamics in single and double layer magnetic nanopillars is reported by N Müsgens et al [164011]. A spin-polarized charge current can modify the damping properties of spin waves in magnetic nanostructures. This is reported by V E Demidov et al [164012] using space-resolved Brillouin light scattering. They also present results regarding nonlinear spin-wave propagation and mode coupling in magnetic stripes and squares. D V Berkov and N L Gorn [164013] report on their results of nonlinear magnetization dynamics in nanodevices induced by a spin-polarized current using micromagnetic simulation. A third set of contributions focuses on dissipation phenomena ranging from a phenomenological description to the investigation of the microscopic origin(s). In a theory paper, M Fähnle et al [164014] revisit the Gilbert equation and discuss anisotropic and non-local damping of the magnetization dynamics. They derive their results by a combination of the breathing Fermi surface model with a variant of the ab initio density functional electron theory given by the magnetic force theorem. On the experimental side, S Serrano-Guisan et al [164015] address Gilbert damping in Ni81Fe19 thin films and microstructures using anisotropic magnetoresistance and pulsed inductive microwave magnetometry to measure the time-resolved precessional magnetization dynamics. The intrinsic and non-local Gilbert damping in polycrystalline Ni films is also addressed by J Walowski et al [164016] using femtosecond laser pulses. Several spin-wave modes are observed and their dissipation is studied. Non-local damping by spin currents emitted into a non-magnetic metallic layer of either vanadium, palladium or dysprosium is studied. Dissipation in small magnetic Ni81Fe19 rings is studied using Brillouin light scattering microscopy by H Schultheiss et al [164017]. They investigate the spatial profiles and the decay constants of spin-wave quasi-eigenmodes. We hope that this cluster of papers will help to stimulate and advance a better understanding of this very interesting field of ultrafast magnetization processes.