Sample records for dystrophy fld mutation

  1. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reue, K.; Rehnmark, S.; Cohen, R.D.

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and thesemore » droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.« less

  2. Atf6 plays protective and pathologic roles in fatty liver disease due to endoplasmic reticulum stress

    PubMed Central

    Cinaroglu, Ayca; Gao, Chuan; Imrie, Dru; Sadler, Kirsten C.

    2011-01-01

    Many etiologies of fatty liver disease (FLD) are associated with hyper-activation of one of the three pathways that comprise the unfolded protein response (UPR), a harbinger of endoplasmic reticulum (ER) stress. The UPR is mediated by pathways initiated by PERK, IRE1a/XBP1and ATF6, and each of these pathways have been implicated as either protective or pathological in FLD. We use zebrafish with FLD and hepatic ER stress to explore the relationship between Atf6 and steatosis. Mutation of the foie gras (foigr) gene causes FLD and hepatic ER stress. Prolonged treatment of wild-type larvae with a dose of tunicamycin that causes chronic ER stress phenocopies foigr. In contrast, acute exposure to a high dose of tunicamycin robustly activates the UPR but is less effective at inducing steatosis. The Srebp transcription factors are not required for steatosis in any of these models. Instead, depleting larvae of active Atf6 either through mbtps1 mutation or atf6 morpholino injection protects against steatosis caused by chronic ER stress whereas it exacerbates steatosis caused by acute tunicamycin treatment. Conclusion ER stress causes FLD. Loss of Atf6 prevents steatosis caused by chronic ER stress but can also potentiate steatosis caused by acute ER stress. This demonstrates that Atf6 can play both protective and pathological roles in FLD. PMID:21538441

  3. Complete and Partial LCAT Deficiency are Differentially Associated with Atherosclerosis.

    PubMed

    Oldoni, Federico; Baldassarre, Damiano; Castelnuovo, Samuala; Ossoli, Alice; Amato, Mauro; van Capelleveen, Julian; Hovingh, G Kees; de Groot, Eric; Bochem, Andrea; Simonelli, Sara; Barbieri, Simone; Veglia, Fabrizio; Franceschini, Guido; Kuivenhoven, Jan Albert; Holleboom, Adriaan G; Calabresi, Laura

    2018-05-10

    Background -Lecithin:cholesterol acyltransferase (LCAT) is the sole enzyme that esterifies cholesterol in plasma. Its role in the supposed protection from atherogenesis remains unclear since mutations in LCAT causing Fish-Eye Disease (FED) or Familial LCAT Deficiency (FLD) have been reported to be associated with more or instead less carotid atherosclerosis, respectively. This discrepancy may be associated with the loss of cholesterol esterification on only apolipoprotein (apo) A-I (FED) or on both apoA-I and apoB-containing lipoproteins (FLD), an aspect that has thus far not been investigated. Methods -Seventy-four heterozygotes for LCAT mutations recruited from Italy and the Netherlands were assigned to FLD (n=33) or FED (n=41) groups and compared to 280 controls. Subclinical atherosclerosis was assessed using carotid intima-media thickness (IMT). Results -Compared to controls, total cholesterol was lower by 16% (-32.9 mg/dL) and 7% (-14.9 mg/dL), and HDL cholesterol was lower by 29% (-16.7 mg/dL) and 36% (-20.7 mg/dL) in the FLD and FED groups, respectively. FLD subjects displayed a significant 18% lower LDL cholesterol compared with FED (101.9±35.0 vs 123.6±47.4 mg/dL, P=0.047) and controls (122.6±35.0 mg/dL, P=0.003). Remarkably, all three IMT parameters were lower in FLD compared to FED and controls (accounting for age, sex, BMI, smoking, hypertension, family history of cardiovascular disease and plasma lipids). After additional correction for nationality and ultrasonographic methods, average and maximum IMT remained significantly lower when comparing FLD to FED (0.59mm vs 0.73mm, P=0.003, and 0.87mm vs 1.24mm, P<0.001, respectively). By contrast, the common carotid IMT (corrected for age, sex, BMI, smoking, hypertension, family history of cardiovascular disease, and plasma lipids) was higher in FED compared to controls (0.69mm versus 0.65mm, P=0.05), but this significance was lost after adjustment for nationality and ultrasonographic machine. Conclusions -In this head-to-head comparison, FLD and FED mutations were shown to be associated with decreased and increased atherosclerosis, respectively. We propose that this discrepancy is related to the capacity of LCAT to generate cholesterol esters on apoB-containing lipoproteins. While this capacity is lost in FLD, it is unaffected in FED. These results are important when considering LCAT as a target to decrease atherosclerosis.

  4. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes?

    PubMed

    Nguyen, Huy Quang; Nguyen, Nhung Viet; Contamin, Lucie; Tran, Thanh Hoa Thi; Vu, Thuong Thi; Nguyen, Hung Van; Nguyen, Ngoc Lan Thi; Nguyen, Son Thai; Dang, Anh Duc; Bañuls, Anne-Laure; Nguyen, Van Anh Thi

    2017-06-01

    In Vietnam, a country with high tuberculosis (137/100.000 population) and multidrug-resistant (MDR)-TB burdens (7.8/100.000 population), little is known about the molecular signatures of drug resistance in general and more particularly of second line drug (SLD) resistance. This study is specifically focused on Mycobacterium tuberculosis isolates resistant to four first-line drugs (FLDs) that make TB much more difficult to treat. The aim is to determine the proportion of SLD resistance in these quadruple drug resistant isolates and the genetic determinants linked to drug resistance to better understand the genetic processes leading to quadruple and extremely drug resistance (XDR). 91 quadruple (rifampicin, isoniazid, ethambutol and streptomycin) FLD resistant and 55 susceptible isolates were included. Spoligotyping and 24-locus MIRU-VNTR techniques were performed and 9 genes and promoters linked to FLD and SLD resistance were sequenced. SLD susceptibility testing was carried out on a subsample of isolates. High proportion of quadruple-FLD resistant isolates was resistant to fluoroquinolones (27%) and second-line injectable drugs (30.2%) by drug susceptibility testing. The sequencing revealed high mutation diversity with prevailing mutations at positions katG315, inhA-15, rpoB531, embB306, rrs1401, rpsL43 and gyrA94. The sensitivity and specificity were high for most drug resistances (>86%), but the sensitivity was lower for injectable drug resistances (<69%). The mutation patterns revealed 23.1% of pre-XDR and 7.7% of XDR isolates, mostly belonging to Beijing family. The genotypic diversity and the variety of mutations reflect the existence of various evolutionary paths leading to FLD and SLD resistance. Nevertheless, particular mutation patterns linked to high-level resistance and low fitness costs seem to be favored. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Borate transporter SLC4A11 mutations cause both Harboyan syndrome and non‐syndromic corneal endothelial dystrophy

    PubMed Central

    Desir, Julie; Moya, Graciela; Reish, Orit; Van Regemorter, Nicole; Deconinck, Hilde; David, Karen L; Meire, Françoise M; Abramowicz, Marc J

    2007-01-01

    Harboyan syndrome, or corneal dystrophy and perceptive deafness (CDPD), consists of congenital corneal endothelial dystrophy and progressive perceptive deafness, and is transmitted as an autosomal recessive trait. CDPD and autosomal recessive, non‐syndromic congenital hereditary endothelial corneal dystrophy (CHED2) both map at overlapping loci at 20p13, and mutations of SLC4A11 were reported recently in CHED2. A genotype study on six families with CDPD and on one family with either CHED or CDPD, from various ethnic backgrounds (in the seventh family, hearing loss could not be assessed because of the proband's young age), is reported here. Novel SLC4A11 mutations were found in all patients. Why some mutations cause hearing loss in addition to corneal dystrophy is presently unclear. These findings extend the implication of the SLC4A11 borate transporter beyond corneal dystrophy to perceptive deafness. PMID:17220209

  6. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    PubMed

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Analysis of TGFBI gene mutation in a Chinese family affected with Reis-Bucklers corneal dystrophy].

    PubMed

    Guan, Tao; Zhang, Lingjie; Xu, Dejian; Wu, Haijian; Zheng, Libin

    2017-10-10

    To analyze the clinical features and TGFBI gene mutation in a Chinese family affected with Reis-Bucklers corneal dystrophy. Genomic DNA was extracted from 53 members including 9 patients from the family. The 17 exons and splice region of introns of the TGFBI gene were amplified by PCR and directly sequenced. All family members were subjected to ophthalmologic examination. A heterozygous mutation (R124L) was found in exon 4 of the TGFBI gene among all patients from the family. The same mutation was not found among unaffected family members. The inheritance pattern of the family was identified as autosomal dominant, and the Reis-Bucklers corneal dystrophy in the family was diagnosed as the geographic type. The R124L mutation of the TGFBI gene probably underlies the pathogenesis of Reis-Bucklers corneal dystrophy in this Chinese family. Molecular genetic approach is useful for the proper diagnosis of this type of corneal dystrophy.

  8. LAMA2-related myopathy: Frequency among congenital and limb-girdle muscular dystrophies.

    PubMed

    Løkken, Nicoline; Born, Alfred Peter; Duno, Morten; Vissing, John

    2015-10-01

    Muscular dystrophy caused by LAMA2-gene mutations is an autosomal recessive disease typically presenting as a severe, early-onset congenital muscular dystrophy (CMD). However, milder cases with a limb-girdle type muscular dystrophy (LGMD) have been described. In this study, we assessed the frequency and phenotypic spectrum of LAMA2-related muscular dystrophy in CMD (n = 18) and LGMD2 (n = 128) cohorts identified in the last 15 years in eastern Denmark. The medical history, brain-MRI, muscle pathology, muscle laminin-α2 expression, and genetic analyses were assessed. Molecular genetics revealed 2 pathogenic LAMA2 mutations in 5 of 18 CMD and 3 of 128 LGMD patients, corresponding to a LAMA2-mutation frequency of 28% in the CMD and 2.3% in the LGMD cohorts, respectively. This study demonstrates a wide clinical spectrum of LAMA2-related muscular dystrophy and its prevalence in an LGMD2 cohort, which indicates that LAMA2 muscular dystrophy should be included in the LGMD2 nomenclature. © 2015 Wiley Periodicals, Inc.

  9. Mild and severe muscular dystrophy caused by a single {gamma}-sarcoglycan mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, E.M.; Boennemann, C.G.; Lidov, H.G.W.

    1996-11-01

    Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein {gamma}-sarcoglycan. The previous mutation analysis of {gamma}-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the {gamma}-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding {gamma}-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the {gamma}-sarcoglycan gene. Thesemore » patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of {alpha}-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the {gamma}-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from {gamma}-sarcoglycan gene mutations. 19 refs., 5 figs., 3 tabs.« less

  10. Pathogenic mutations of TGFBI and CHST6 genes in Chinese patients with Avellino, lattice, and macular corneal dystrophies.

    PubMed

    Huo, Ya-nan; Yao, Yu-feng; Yu, Ping

    2011-09-01

    To investigate gene mutations associated with three different types of corneal dystrophies (CDs), and to establish a phenotype-genotype correlation. Two patients with Avellino corneal dystrophy (ACD), four patients with lattice corneal dystrophy type I (LCD I) from one family, and three patients with macular corneal dystrophy type I (MCD I) were subjected to both clinical and genetic examinations. Slit lamp examination was performed for all the subjects to assess their corneal phenotypes. Genomic DNA was extracted from peripheral blood leukocytes. The coding regions of the human transforming growth factor β-induced (TGFBI) gene and carbohydrate sulfotransferase 6 (CHST6) gene were amplified by polymerase chain reaction (PCR) and subjected to direct sequencing. DNA samples from 50 healthy volunteers were used as controls. Clinical examination showed three different phenotypes of CDs. Genetic examination identified that two ACD subjects were associated with homozygous R124H mutation of TGFBI, and four LCD I subjects were all associated with R124C heterozygous mutation. One MCD I subject was associated with a novel S51X homozygous mutation in CHST6, while the other two MCD I subjects harbored a previously reported W232X homozygous mutation. Our study highlights the prevalence of codon 124 mutations in the TGFBI gene among the Chinese ACD and LCD I patients. Moreover, we found a novel mutation among MCD I patients.

  11. A novel mutation of the Keratin 12 gene responsible for a severe phenotype of Meesmann's corneal dystrophy

    PubMed Central

    Sullivan, Lori S.; Baylin, Eric B.; Font, Ramon; Daiger, Stephen P.; Pepose, Jay S.; Clinch, Thomas E.; Nakamura, Hisashi; Zhao, Xinping C.

    2007-01-01

    Purpose To determine if a mutation within the coding region of the keratin 12 gene (KRT12) is responsible for a severe form of Meesmann's corneal dystrophy. Methods A family with clinically identified Meesmann's corneal dystrophy was recruited and studied. Electron microscopy was performed on scrapings of corneal epithelial cells from the proband. Mutations in the KRT12 gene were sought using direct genomic sequencing of leukocyte DNA from two affected and two unaffected family members. Subsequently, the observed mutation was screened in all available family members using polymerase chain reaction and direct sequencing. Results A heterozygous missense mutation (Arg430Pro) was found in exon 6 of KRT12 in all 14 affected individuals studied. Unaffected family members and 100 normal controls were negative for this mutation. Conclusions We have identified a novel mutation in the KRT12 gene that is associated with a symptomatic phenotype of Meesmann's corneal dystrophy. This mutation results in a substitution of proline for arginine in the helix termination motif that may disrupt the normal helix, leading to a dramatic structural change of the keratin 12 protein. PMID:17653038

  12. Molecular dynamics simulations of the Bcl-2 protein to predict the structure of its unordered flexible loop domain.

    PubMed

    Raghav, Pawan Kumar; Verma, Yogesh Kumar; Gangenahalli, Gurudutta U

    2012-05-01

    B-cell lymphoma (Bcl-2) protein is an anti-apoptotic member of the Bcl-2 family. It is functionally demarcated into four Bcl-2 homology (BH) domains: BH1, BH2, BH3, BH4, one flexible loop domain (FLD), a transmembrane domain (TM), and an X domain. Bcl-2's BH domains have clearly been elucidated from a structural perspective, whereas the conformation of FLD has not yet been predicted, despite its important role in regulating apoptosis through its interactions with JNK-1, PKC, PP2A phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and FKBP38. Many important residues that regulate Bcl-2 anti-apoptotic activity are present in this domain, for example Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural elucidation of the FLD would likely help in attempts to accurately predict the effect of mutating these residues on the overall structure of the protein and the interactions of other proteins in this domain. Therefore, we have generated an increased quality model of the Bcl-2 protein including the FLD through modeling. Further, molecular dynamics (MD) simulations were used for FLD optimization, to predict the flexibility, and to determine the stability of the folded FLD. In addition, essential dynamics (ED) was used to predict the collective motions and the essential subspace relevant to Bcl-2 protein function. The predicted average structure and ensemble of MD-simulated structures were submitted to the Protein Model Database (PMDB), and the Bcl-2 structures obtained exhibited enhanced quality. This study should help to elucidate the structural basis for Bcl-2 anti-apoptotic activity regulation through its binding to other proteins via the FLD.

  13. Pathogenic mutations of TGFBI and CHST6 genes in Chinese patients with Avellino, lattice, and macular corneal dystrophies

    PubMed Central

    Huo, Ya-nan; Yao, Yu-feng; Yu, Ping

    2011-01-01

    Objective: To investigate gene mutations associated with three different types of corneal dystrophies (CDs), and to establish a phenotype-genotype correlation. Methods: Two patients with Avellino corneal dystrophy (ACD), four patients with lattice corneal dystrophy type I (LCD I) from one family, and three patients with macular corneal dystrophy type I (MCD I) were subjected to both clinical and genetic examinations. Slit lamp examination was performed for all the subjects to assess their corneal phenotypes. Genomic DNA was extracted from peripheral blood leukocytes. The coding regions of the human transforming growth factor β-induced (TGFBI) gene and carbohydrate sulfotransferase 6 (CHST6) gene were amplified by polymerase chain reaction (PCR) and subjected to direct sequencing. DNA samples from 50 healthy volunteers were used as controls. Results: Clinical examination showed three different phenotypes of CDs. Genetic examination identified that two ACD subjects were associated with homozygous R124H mutation of TGFBI, and four LCD I subjects were all associated with R124C heterozygous mutation. One MCD I subject was associated with a novel S51X homozygous mutation in CHST6, while the other two MCD I subjects harbored a previously reported W232X homozygous mutation. Conclusions: Our study highlights the prevalence of codon 124 mutations in the TGFBI gene among the Chinese ACD and LCD I patients. Moreover, we found a novel mutation among MCD I patients. PMID:21887843

  14. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa.

    PubMed

    Trichonas, George; Traboulsi, Elias I; Ehlers, Justis P

    2017-01-01

    Ultra-widefield fundus autofluorescence (UW-FAF) allows the characterization of the peripheral retinal features of vitreoretinal diseases. The purpose of this study was to examine possible genotypic/phenotypic correlations of UW-FAF patterns in patients with a variety of retinal dystrophies and retinitis pigmentosa (RP). An IRB-approved retrospective consecutive case series study was performed of genetically characterized retinal dystrophy or RP patients who underwent UW-FAF imaging. UW-FAF was performed with the Optos 200Tx system. Clinical variables, genotypic analysis, and phenotypic characteristics were reviewed. Seventeen patients were identified who had identified mutations in retinal dystrophy or RP genes and who also had undergone UW-FAF. Three patients had X-linked RP with RPGR mutations. Six patients had autosomal dominant RP (four with RHO mutations and one with a PRPF31 mutation, and one with RDS/PRPH2 mutation). Four patients had autosomal recessive RP (four with USH2A mutations). Three patients had Leber Congenital Amaurosis (LCA) with mutations including CRB1, CEP290, and RPGRIP1. Macular hyperautofluorescence was noted in all patients. A ring of hyperautofluorescence was clear in patients with RHO and USH2A mutations, and patients with USH2A mutations demonstrated a second ring of hyperautofluorescence. In the periphery, patients with RHO or RPGR mutations exhibited hyperautofluorescence with patchy areas of hypoautofluorescence. Patients with USH2A mutations had a distinctive pattern of diffuse and homogeneous peripheral hypoautofluorescence. UW-FAF may provide important information to facilitate diagnosis and further research is needed to better characterize this technology as an imaging biomarker for genotype association in retinal dystrophies and RP.

  15. Molecular genetics of Leber congenital amaurosis in Chinese: New data from 66 probands and mutation overview of 159 probands.

    PubMed

    Xu, Yan; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Xin, Wei; Wang, Panfeng; Sun, Wenmin; Huang, Li; Guo, Xiangming; Zhang, Qingjiong

    2016-08-01

    Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    PubMed

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  17. The importance of genetic diagnosis for Duchenne muscular dystrophy

    PubMed Central

    Aartsma-Rus, Annemieke; Ginjaar, Ieke B; Bushby, Kate

    2016-01-01

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy are caused by mutations in the dystrophin-encoding DMD gene. Large deletions and duplications are most common, but small mutations have been found as well. Having a correct diagnosis is important for family planning and providing proper care to patients according to published guidelines. With mutation-specific therapies under development for DMD, a correct diagnosis is now also important for assessing whether patients are eligible for treatments. This review discusses different mutations causing DMD, diagnostic techniques available for making a genetic diagnosis for children suspected of DMD and the importance of having a specific genetic diagnosis in the context of emerging genetic therapies for DMD. PMID:26754139

  18. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2017-12-11

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  19. Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing.

    PubMed

    Xu, Yan; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong

    2015-01-01

    Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704-5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy.

  20. [Myotonic dystrophy - a new insight into a well-known disease].

    PubMed

    Lusakowska, Anna; Sułek-Piatkowska, Anna

    2010-01-01

    Myotonic dystrophy (DM), the most common dystrophy in adults, is an autosomal dominant disease characterized by a variety of multisystemic features. Two genetically distinct forms of DM are identified - type 1 (DM1), the classic form first described by Steinert, and type 2 (DM2), identified by Ricker. DM1 is caused by trinucleotide expansion of CTG in the myotonic dystrophy protein kinase gene, whereas in DM2 the expansion of tetranucleotide repeats (CCTG) in the zinc finger protein 9 gene was identified. Both mutations are dynamic and are located in non-coding parts of the genes. Phenotype variability of DM1 and DM2 is caused by a molecular mechanism due to mutated RNA toxicity. This paper reviews the clinical features of both types of myotonic dystrophies and summarizes current views on pathogenesis of myotonic dystrophy.

  1. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    PubMed Central

    Saksens, Nicole T.M.; Krebs, Mark P.; Schoenmaker-Koller, Frederieke E.; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B.; Charette, Jeremy R.; Letteboer, Stef J.; Neveling, Kornelia; van Moorsel, Tamara W.; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P.M.; Boon, Camiel J.F.; Roepman, Ronald; Leroy, Bart P.; Peachey, Neal S.; Hoyng, Carel B.; Nishina, Patsy M.; den Hollander, Anneke I.

    2015-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  2. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2.

    PubMed

    Witting, N; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest that this unusual phenotype is caused by translation re-initiation downstream from the mutation site. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan.

    PubMed

    Carss, Keren J; Stevens, Elizabeth; Foley, A Reghan; Cirak, Sebahattin; Riemersma, Moniek; Torelli, Silvia; Hoischen, Alexander; Willer, Tobias; van Scherpenzeel, Monique; Moore, Steven A; Messina, Sonia; Bertini, Enrico; Bönnemann, Carsten G; Abdenur, Jose E; Grosmann, Carla M; Kesari, Akanchha; Punetha, Jaya; Quinlivan, Ros; Waddell, Leigh B; Young, Helen K; Wraige, Elizabeth; Yau, Shu; Brodd, Lina; Feng, Lucy; Sewry, Caroline; MacArthur, Daniel G; North, Kathryn N; Hoffman, Eric; Stemple, Derek L; Hurles, Matthew E; van Bokhoven, Hans; Campbell, Kevin P; Lefeber, Dirk J; Lin, Yung-Yao; Muntoni, Francesco

    2013-07-11

    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Homozygosity Mapping in Patients with Cone–Rod Dystrophy: Novel Mutations and Clinical Characterizations

    PubMed Central

    Littink, Karin W.; Koenekoop, Robert K.; van den Born, L. Ingeborgh; Collin, Rob W. J.; Moruz, Luminita; Veltman, Joris A.; Roosing, Susanne; Zonneveld, Marijke N.; Omar, Amer; Darvish, Mahshad; Lopez, Irma; Kroes, Hester Y.; van Genderen, Maria M.; Hoyng, Carel B.; Rohrschneider, Klaus; van Schooneveld, Mary J.; Cremers, Frans P. M.

    2010-01-01

    Purpose. To determine the genetic defect and to describe the clinical characteristics in a cohort of mainly nonconsanguineous cone–rod dystrophy (CRD) patients. Methods. One hundred thirty-nine patients with diagnosed CRD were recruited. Ninety of them were screened for known mutations in ABCA4, and those carrying one or two mutations were excluded from further research. Genome-wide homozygosity mapping was performed in the remaining 108. Known genes associated with autosomal recessive retinal dystrophies located within a homozygous region were screened for mutations. Patients in whom a mutation was detected underwent further ophthalmic examination. Results. Homozygous sequence variants were identified in eight CRD families, six of which were nonconsanguineous. The variants were detected in the following six genes: ABCA4, CABP4, CERKL, EYS, KCNV2, and PROM1. Patients carrying mutations in ABCA4, CERKL, and PROM1 had typical CRD symptoms, but a variety of retinal appearances on funduscopy, optical coherence tomography, and autofluorescence imaging. Conclusions. Homozygosity mapping led to the identification of new mutations in consanguineous and nonconsanguineous patients with retinal dystrophy. Detailed clinical characterization revealed a variety of retinal appearances, ranging from nearly normal to extensive retinal remodeling, retinal thinning, and debris accumulation. Although CRD was initially diagnosed in all patients, the molecular findings led to a reappraisal of the diagnosis in patients carrying mutations in EYS, CABP4, and KCNV2. PMID:20554613

  5. Muscular dystrophies due to defective glycosylation of dystroglycan

    PubMed Central

    Muntoni, F; Brockington, M; Godfrey, C; Ackroyd, M; Robb, S.; Manzur, A; Kinali, M; Mercuri, E; Kaluarachchi, M; Feng, L; Jimenez-Mallebrera, C.; Clement, E; Torelli, S; Sewry, CA; Brown, SC

    2007-01-01

    Summary Muscular dystrophies are a clinically and genetically heterogeneous group of disorders. Until recently most of the proteins associated with muscular dystrophies were believed to be proteins of the sarcolemma associated with reinforcing the plasma membrane or in facilitating its re-sealing following injury. In the last few years a novel and frequent pathogenic mechanism has been identified that involves the abnormal glycosylation of alpha-dystroglycan (ADG). This peripheral membrane protein undergoes complex and crucial glycosylation steps that enable it to interact with LG domain containing extracellular matrix proteins such as laminins, agrin and perlecan. Mutations in six genes (POMT1, POMT2, POMGnT1, fukutin, FKRP and LARGE) have been identified in patients with reduced glycosylation of ADG. While initially a clear correlation between gene defect and phenotype was observed for each of these 6 genes (for example, Walker Warburg syndrome was associated with mutations in POMT1 and POMT2, Fukuyama congenital muscular dystrophy associated with fukutin mutations, and Muscle Eye Brain disease associated with POMGnT1 mutations), we have recently demonstrated that allelic mutations in each of these 6 genes can result in a much wider spectrum of clinical conditions. Thus, the crucial aspect in determining the phenotypic severity is not which gene is primarily mutated, but how severely the mutation affects the glycosylation of ADG. Systematic mutation analysis of these 6 glycosyltransferases in patients with a dystroglycan glycosylation disorder identifies mutations in approximately 65% suggesting that more genes have yet to be identified. PMID:18646561

  6. Homozygous nonsense mutation in SGCA is a common cause of limb-girdle muscular dystrophy in Assiut, Egypt.

    PubMed

    Reddy, Hemakumar M; Hamed, Sherifa A; Lek, Monkol; Mitsuhashi, Satomi; Estrella, Elicia; Jones, Michael D; Mahoney, Lane J; Duncan, Anna R; Cho, Kyung-Ah; Macarthur, Daniel G; Kunkel, Louis M; Kang, Peter B

    2016-10-01

    The genetic causes of limb-girdle muscular dystrophy (LGMD) have been studied in numerous countries, but such investigations have been limited in Egypt. A cohort of 30 families with suspected LGMD from Assiut, Egypt, was studied using immunohistochemistry, homozygosity mapping, Sanger sequencing, and whole exome sequencing. Six families were confirmed to have pathogenic mutations, 4 in SGCA and 2 in DMD. Of these, 3 families harbored a single nonsense mutation in SGCA, suggesting that this may be a common mutation in Assiut, Egypt, originating from a founder effect. The Assiut region in Egypt appears to share at least several of the common LGMD genes found in other parts of the world. It is notable that 4 of the 6 mutations were ascertained by means of whole exome sequencing, even though it was the last approach adopted. This illustrates the power of this technique for identifying causative mutations for muscular dystrophies. Muscle Nerve 54: 690-695, 2016. © 2016 Wiley Periodicals, Inc.

  7. Novel mutations of the carbohydrate sulfotransferase-6 (CHST6) gene causing macular corneal dystrophy in India.

    PubMed

    Sultana, Afia; Sridhar, Mittanamalli S; Jagannathan, Aparna; Balasubramanian, Dorairajan; Kannabiran, Chitra; Klintworth, Gordon K

    2003-12-22

    Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients.

  8. Lecithin:Cholesterol Acyltransferase Activation by Sulfhydryl-Reactive Small Molecules: Role of Cysteine-31

    PubMed Central

    Freeman, Lita A.; Demosky, Stephen J.; Konaklieva, Monika; Kuskovsky, Rostislav; Aponte, Angel; Ossoli, Alice F.; Gordon, Scott M.; Koby, Ross F.; Manthei, Kelly A.; Shen, Min; Vaisman, Boris L.; Shamburek, Robert D.; Jadhav, Ajit; Calabresi, Laura; Gucek, Marjan; Tesmer, John J.G.; Levine, Rodney L.

    2017-01-01

    Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive β-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators. PMID:28576974

  9. High-Resolution Adaptive Optics Retinal Image Analysis at Early Stage Central Areolar Choroidal Dystrophy With PRPH2 Mutation.

    PubMed

    Gocho, Kiyoko; Akeo, Keiichiro; Itoh, Naoko; Kameya, Shuhei; Hayashi, Takaaki; Katagiri, Satoshi; Gekka, Tamaki; Ohkuma, Yasuhiro; Tsuneoka, Hiroshi; Takahashi, Hiroshi

    2016-12-01

    To report the clinical features of Japanese patients at Stage 1 and 2 of central areolar choroidal dystrophy (CACD). Five family members had comprehensive ophthalmic examinations including adaptive optics (AO) retinal imaging. Mutation analysis of the PRPH2 gene was performed by Sanger sequencing. The protocol conformed to the tenets of the Declaration of Helsinki and was approved by the institutional review board of The Jikei University School of Medicine. Four family members had a heterozygous PRPH2 mutation, p.R172Q; however, one member with a mutation did not show any ophthalmological abnormalities. Two patients had mild parafoveal retinal dystrophy and a reduction of cone density determined by AO analysis. The results indicate that the parafoveal cone photoreceptors can be affected even at the early stage of CACD. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:1115-1126.]. Copyright 2016, SLACK Incorporated.

  10. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  11. Eosinophilic myositis as first manifestation in a patient with type 2 myotonic dystrophy CCTG expansion mutation and rheumatoid arthritis.

    PubMed

    Meyer, Alain; Lannes, Béatrice; Carapito, Raphaël; Bahram, Seiamak; Echaniz-Laguna, Andoni; Geny, Bernard; Sibilia, Jean; Gottenberg, Jacques Eric

    2015-02-01

    Eosinophilic myositis is characterized by eosinophilic infiltration of skeletal muscles. In the absence of an identifiable causative factor or source (including parasitic infection, intake of drugs or L-tryptophan, certain systemic disorders as well as malignant diseases), the diagnosis of idiopathic eosinophilic myositis is usually retained. However, some muscular dystrophies have been recently identified in this subset of eosinophilic myositis. Here, we report a patient with an 8 kb CCTG expansion in intron 1 of the CNBP gene, a mutation characteristic of myotonic dystrophy type 2 (DM2), whose first manifestation was "idiopathic" eosinophilic myositis. This report suggests that in "idiopathic" eosinophilic myositis, clinicians should consider muscular dystrophies, including DM2. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.

    PubMed

    Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M

    2015-04-01

    An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed. © 2015 Stichting International Foundation for Animal Genetics.

  13. Phase 3 Extension Study of Ataluren (PTC124) in Patients With Nonsense Mutation Dystrophinopathy

    ClinicalTrials.gov

    2018-01-16

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  14. Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy.

    PubMed

    Sultana, A; Sridhar, M S; Klintworth, G K; Balasubramanian, D; Kannabiran, C

    2005-11-01

    Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy. Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by grayish white opacities in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, which codes for the enzyme corneal N-acetylglucosamine-6-sulfotransferase. This enzyme catalyzes the sulfation of keratan sulfate, an important component of corneal proteoglycans. We screened 31 patients from 26 families with MCD for mutations in the coding region of the CHST6 gene. Twenty-six different mutations were identified, of which 14 mutations are novel. The novel mutations are one nonsense mutation found in one patient (Trp2Ter), one frameshift (insertion plus deletion) mutation in two patients (His335fs), and 12 missense mutations (Leu3Met, Ser54Phe, Val56Arg, Ala73Thr, Ser98Leu, Cys165Trp, Ser167Phe, Phe178Cys, Leu193Pro, Pro204Arg, Arg272Ser, and Arg334Cys) in 11 patients. These data demonstrate a high degree of allelic heterogeneity of the CHST6 gene in patient populations with MCD from Southern India, where this disease may have a relatively higher prevalence than in outbred communities.

  15. Sarcolemmal alpha and gamma sarcoglycan protein deficiencies in Turkish siblings with a novel missense mutation in the alpha sarcoglycan gene.

    PubMed

    Diniz, Gulden; Tosun Yildirim, Hulya; Akinci, Gulcin; Hazan, Filiz; Ozturk, Aysel; Yararbas, Kanay; Tukun, Ajlan

    2014-06-01

    The sarcoglycan alpha gene, also known as the adhalin gene, is located on chromosome 17q21; mutations in this gene are associated with limb-girdle muscular dystrophy type 2D. We describe two Turkish siblings with findings consistent with limb-girdle muscular dystrophy type 2D. The evaluation excluded a dystrophinopathy, which is the most common form of muscular dystrophy. Both siblings had very high levels of creatinine phosphokinase and negative molecular tests for deletions and duplications of the dystrophin gene. The older boy presented at 8 years of age with an inability to climb steps and an abnormal gait. His younger brother was 5 years old and had similar symptoms. The muscle biopsy evaluation was performed only in the older brother. The muscle biopsy showed dystrophic features as well as a deficiency in the expression of two different glycoproteins: the alpha sarcoglycan and the gamma sarcoglycan. Sarcolemmal expressions of dystrophin and other sarcoglycans (beta and delta) were diffusely present. DNA analysis demonstrated the presence of previously unknown homozygous mutations [c.226 C > T (p.L76 F)] in exon 3 in the sarcoglycan alpha genes of both siblings. Similar heterozygous point mutations at the same locus were found in both parents, but the genes of beta, delta, and gamma sarcoglycan were normal in the remaining family members. We describe two siblings with limb-girdle muscular dystrophy type 2D with a novel missense mutation. These patients illustrate that the differential diagnosis of muscular dystrophies is impossible with clinical findings alone. Therefore, a muscle biopsy and DNA analysis remain essential methods for diagnosis of muscle diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Phenotypic behavior of C2C12 myoblasts upon expression of the dystrophy-related caveolin-3 P104L and TFT mutants.

    PubMed

    Fanzani, Alessandro; Stoppani, Elena; Gualandi, Laura; Giuliani, Roberta; Galbiati, Ferruccio; Rossi, Stefania; Fra, Anna; Preti, Augusto; Marchesini, Sergio

    2007-10-30

    Caveolin-3 (Cav-3) is the main scaffolding protein present in myofiber caveolae. We transfected C2C12 myoblasts with dominant negative forms of Cav-3, P104L or DeltaTFT, respectively, which cause the limb-girdle muscular dystrophy 1-C. Both these forms triggered Cav-3 loss during C2C12 cell differentiation. The P104L mutation reduced myofiber formation by impaired AKT signalling, accompanied by dramatic expression of the E3 ubiquitin ligase Atrogin. On the other hand, the DeltaTFT mutation triggered hypertrophic myotubes sustained by prolonged AKT activation, but independent of increased levels of follistatin and interleukin 4 expression. These data suggest that separated mutations within the same dystrophy-related gene may cause muscle degeneration through different mechanisms.

  17. Mutations in LAMA1 Cause Cerebellar Dysplasia and Cysts with and without Retinal Dystrophy

    PubMed Central

    Aldinger, Kimberly A.; Mosca, Stephen J.; Tétreault, Martine; Dempsey, Jennifer C.; Ishak, Gisele E.; Hartley, Taila; Phelps, Ian G.; Lamont, Ryan E.; O’Day, Diana R.; Basel, Donald; Gripp, Karen W.; Baker, Laura; Stephan, Mark J.; Bernier, Francois P.; Boycott, Kym M.; Majewski, Jacek; Parboosingh, Jillian S.; Innes, A. Micheil; Doherty, Dan

    2014-01-01

    Cerebellar dysplasia with cysts (CDC) is an imaging finding typically seen in combination with cobblestone cortex and congenital muscular dystrophy in individuals with dystroglycanopathies. More recently, CDC was reported in seven children without neuromuscular involvement (Poretti-Boltshauser syndrome). Using a combination of homozygosity mapping and whole-exome sequencing, we identified biallelic mutations in LAMA1 as the cause of CDC in seven affected individuals (from five families) independent from those included in the phenotypic description of Poretti-Boltshauser syndrome. Most of these individuals also have high myopia, and some have retinal dystrophy and patchy increased T2-weighted fluid-attenuated inversion recovery (T2/FLAIR) signal in cortical white matter. In one additional family, we identified two siblings who have truncating LAMA1 mutations in combination with retinal dystrophy and mild cerebellar dysplasia without cysts, indicating that cysts are not an obligate feature associated with loss of LAMA1 function. This work expands the phenotypic spectrum associated with the lamininopathy disorders and highlights the tissue-specific roles played by different laminin-encoding genes. PMID:25105227

  18. R124C mutation of the betaIGH3 gene leads to remarkable phenotypic variability in a Greek four-generation family with lattice corneal dystrophy type 1.

    PubMed

    Hellenbroich, Y; Tzivras, G; Neppert, B; Schwinger, E; Zühlke, C

    2001-01-01

    Five autosomal dominantly inherited corneal dystrophies are caused by missense mutations in the betaIGH3 gene on chromosome 5q31. Here we describe the clinical features and the analysis of the betaIGH3 gene in a Greek four-generation family with lattice corneal dystrophy type 1 (CDL1). Sequencing of the betaIGH3 cDNA from an affected family member revealed the R124C mutation. More recent data indicate that this is probably a mutation hot spot in CDL1. We could not find a common haplotype with another CDL1 family with the R124C mutation demonstrating that this mutation occurs independently in different families. The clinical course of the disease showed a remarkable variability between the affected family members. To investigate a possible role between the phenotypic variability and apolipoprotein E (ApoE), which co-localises with amyloid deposits in CDL1, we determined the ApoE genotype of all family members. The resulting data revealed no association with the variable clinical course. Copyright 2001 S. Karger AG, Basel

  19. Mutation in the Auxiliary Calcium-Channel Subunit CACNA2D4 Causes Autosomal Recessive Cone Dystrophy

    PubMed Central

    Wycisk, Katharina Agnes; Zeitz, Christina; Feil, Silke; Wittmer, Mariana; Forster, Ursula; Neidhardt, John; Wissinger, Bernd; Zrenner, Eberhart; Wilke, Robert; Kohl, Susanne; Berger, Wolfgang

    2006-01-01

    Retinal signal transmission depends on the activity of high voltage–gated l-type calcium channels in photoreceptor ribbon synapses. We recently identified a truncating frameshift mutation in the Cacna2d4 gene in a spontaneous mouse mutant with profound loss of retinal signaling and an abnormal morphology of ribbon synapses in rods and cones. The Cacna2d4 gene encodes an l-type calcium-channel auxiliary subunit of the α2δ type. Mutations in its human orthologue, CACNA2D4, were not yet known to be associated with a disease. We performed mutation analyses of 34 patients who received an initial diagnosis of night blindness, and, in two affected siblings, we detected a homozygous nucleotide substitution (c.2406C→A) in CACNA2D4. The mutation introduces a premature stop codon that truncates one-third of the corresponding open reading frame. Both patients share symptoms of slowly progressing cone dystrophy. These findings represent the first report of a mutation in the human CACNA2D4 gene and define a novel gene defect that causes autosomal recessive cone dystrophy. PMID:17033974

  20. Generation of muscular dystrophy model rats with a CRISPR/Cas system.

    PubMed

    Nakamura, Katsuyuki; Fujii, Wataru; Tsuboi, Masaya; Tanihata, Jun; Teramoto, Naomi; Takeuchi, Shiho; Naito, Kunihiko; Yamanouchi, Keitaro; Nishihara, Masugi

    2014-07-09

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.

  1. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    ERIC Educational Resources Information Center

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  2. A case report: Becker muscular dystrophy presenting with epilepsy and dysgnosia induced by duplication mutation of Dystrophin gene.

    PubMed

    Miao, Jing; Feng, Jia-Chun; Zhu, Dan; Yu, Xue-Fan

    2016-12-12

    Becker muscular dystrophy (BMD), a genetic disorder of X-linked recessive inheritance, typically presents with gradually progressive muscle weakness. The condition is caused by mutations of Dystrophin gene located at Xp21.2. Epilepsy is an infrequent manifestation of BMD, while cases of BMD with dysgnosia are extremely rare. We describe a 9-year-old boy with BMD, who presented with epilepsy and dysgnosia. Serum creatine kinase level was markedly elevated (3665 U/L). Wechsler intelligence tests showed a low intelligence quotient (IQ = 65). Electromyogram showed slight myogenic changes and skeletal muscle biopsy revealed muscular dystrophy. Immunohistochemical staining showed partial positivity of sarcolemma for dystrophin-N. Multiplex ligation-dependent probe amplification revealed a duplication mutation in exons 37-44 in the Dystrophin gene. The present case report helps to better understand the clinical and genetic features of BMD.

  3. [Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].

    PubMed

    Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi

    2010-02-01

    The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.

  4. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    PubMed

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  5. Genetics Home Reference: Meesmann corneal dystrophy

    MedlinePlus

    ... Smith FJ, Rochels R, Uitto J, McLEAN WH. Molecular genetics of Meesmann's corneal dystrophy: ancestral and novel mutations ... Free article on PubMed Central Smith F. The molecular genetics of keratin disorders. Am J Clin Dermatol. 2003; ...

  6. The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation

    NASA Astrophysics Data System (ADS)

    Sicinski, Piotr; Geng, Yan; Ryder-Cook, Allan S.; Barnard, Eric A.; Darlison, Mark G.; Barnard, Pene J.

    1989-06-01

    The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned, and the sequence has been used in the polymerase chain reaction to amplify normal and mdx dystrophin transcripts in the area of the mdx mutation. Sequence analysis of the amplification products showed that the mdx mouse has a single base substitution within an exon, which causes premature termination of the polypeptide chain.

  7. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    PubMed

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  8. Reliability of kinetic visual field testing in children with mutation-proven retinal dystrophies: Implications for therapeutic clinical trials.

    PubMed

    Dedania, Vaidehi S; Liu, Jerry Y; Schlegel, Dana; Andrews, Chris A; Branham, Kari; Khan, Naheed W; Musch, David C; Heckenlively, John R; Jayasundera, K Thiran

    2018-01-01

    Kinetic visual field testing is used to monitor disease course in retinal dystrophy clinical care and treatment response in treatment trials, which are increasingly recruiting children. This study investigates Goldmann visual field (GVF) changes in young children with mutation-proven retinal dystrophies as they age and with progression of the retinal degeneration. Retrospective review of children ≤ 17 years old with a mutation-proven retinal dystrophy. Objective clinical disease activity was assessed by a retinal degeneration specialist masked to GVF results. Digital quantification of GVF area was performed. Twenty-nine children (58 eyes), ages 5-16, were identified. GVF area increased with age despite progression in 20 children and clinical stability in nine children. Mean ± standard error increase in GVF area/year was 333 ± 130 mm 2 (I4e, p = 0.012), 720 ± 155 mm 2 (III4e, p < 0.001), and 759 ± 167 mm 2 (IV4e, p < 0.001), with greater increases at earlier ages. Repeatability coefficients were 7381 mm 2 (I4e), 9379 mm 2 (III4e), and 10346 mm 2 (IV4e), indicating a large variability. At 2.5 years after the baseline GVF the area increased ≥ 20%, the criterion for positive treatment outcome defined in recent published therapeutic trials, in 38% (I4e), 34% (III4e), and 33% (IV4e) of eyes. In a substantial proportion of children with mutation-proven retinal dystrophies, there is a significant increase in GVF area with age, particularly those < 12 years, despite progression or stability of disease. These findings suggest that change in GVF area in children with retinal dystrophies can be an unreliable measure of response to treatment and on which to base appropriate counseling about visual impairment.

  9. Emerging genetic therapies to treat Duchenne muscular dystrophy

    PubMed Central

    Nelson, Stanley F.; Crosbie, Rachelle H.; Miceli, M. Carrie; Spencer, Melissa J.

    2010-01-01

    Purpose of review Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called `exon skipping' and `nonsense codon suppression'. Recent findings A drug, PTC124, was identified that suppresses nonsense codon translation termination. PTC124 can lead to restoration of some dystrophin expression in human Duchenne muscular dystrophy muscles with mutations resulting in premature stops. Two drugs developed for exon skipping, PRO051 and AVI-4658, result in the exclusion of exon 51 from mature mRNA. They can restore the translational reading frame to dystrophin transcripts from patients with a particular subset of dystrophin gene deletions and lead to some restoration of dystrophin expression in affected boys' muscle in vivo. Both approaches have concluded phase I trials with no serious adverse events. Summary These novel therapies that act to correct the primary genetic defect of dystrophin deficiency are among the first generation of therapies tailored to correct specific mutations in humans. Thus, they represent paradigm forming approaches to personalized medicine with the potential to lead to life changing treatment for those affected by Duchenne muscular dystrophy. PMID:19745732

  10. Genetics Home Reference: Bietti crystalline dystrophy

    MedlinePlus

    ... broken down and converted into energy, but the enzyme's specific function is not well understood. CYP4V2 gene mutations that cause Bietti crystalline dystrophy impair or eliminate the function of this enzyme and are believed to affect lipid breakdown. However, ...

  11. Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in trans as Modifiers

    PubMed Central

    Shankar, Suma P.; Hughbanks-Wheaton, Dianna K.; Birch, David G.; Sullivan, Lori S.; Conneely, Karen N.; Bowne, Sara J.; Stone, Edwin M.; Daiger, Stephen P.

    2016-01-01

    Purpose We determined the phenotypic variation, disease progression, and potential modifiers of autosomal dominant retinal dystrophies caused by a splice site founder mutation, c.828+3A>T, in the PRPH2 gene. Methods A total of 62 individuals (19 families) harboring the PRPH2 c.828+3A>T mutation, had phenotype analysis by fundus appearance, electrophysiology, and visual fields. The PRPH2 haplotypes in trans were sequenced for potential modifying variants and generalized estimating equations (GEE) used for statistical analysis. Results Several distinct phenotypes caused by the PRPH2 c.828+3A>T mutation were observed and fell into two clinical categories: Group I (N = 44) with mild pattern dystrophies (PD) and Group II (N = 18) with more severe cone-rod dystrophy (CRD), retinitis pigmentosa (RP), and central areolar chorioretinal dystrophy (CACD). The PRPH2 Gln304-Lys310-Asp338 protein haplotype in trans was found in Group I only (29.6% vs. 0%), whereas the Glu304-Lys310-Gly338 haplotype was predominant in Group II (94.4% vs. 70.4%). Generalized estimating equations analysis for PD versus the CRD/CACD/RP phenotypes in individuals over 43 years alone with the PRPH2 haplotypes in trans and age as predictors, adjusted for correlation within families, confirmed a significant effect of haplotype on severity (P = 0.03) with an estimated odds ratio of 7.16 (95% confidence interval [CI] = [2.8, 18.4]). Conclusions The PRPH2 c.828+3A>T mutation results in multiple distinct phenotypes likely modified by protein haplotypes in trans; the odds of having the CACD/RP-like phenotype (versus the PD phenotype) are 7.16 times greater with a Glu304-Lys310-Gly338 haplotype in trans. Further functional studies of the modifying haplotypes in trans and PRPH2 splice variants may offer therapeutic targets. PMID:26842753

  12. Characteristics of Japanese Patients with Becker Muscular Dystrophy and Intermediate Muscular Dystrophy in a Japanese National Registry of Muscular Dystrophy (Remudy): Heterogeneity and Clinical Variation.

    PubMed

    Mori-Yoshimura, Madoka; Mitsuhashi, Satomi; Nakamura, Harumasa; Komaki, Hirofumi; Goto, Kanako; Yonemoto, Naohiro; Takeuchi, Fumi; Hayashi, Yukiko K; Murata, Miho; Takahashi, Yuji; Nishino, Ichizo; Takeda, Shin'ichi; Kimura, En

    2018-01-01

    Obtaining an adequate number of patients to conduct a natural history study for rare diseases such as Becker muscular dystrophy (BMD) is difficult. The present study used data from Remudy, a national registry for neuromuscular diseases in Japan, to conduct a phenotypic analysis of BMD. We analyzed Remudy data of participants with dystrophinopathy. All participants who were aged 17 and older and were ambulant at age 13 were included in this study. Participants were divided into two groups: those with BMD who were ambulant at age 17, and those with intermediate muscular dystrophy (IMD) who lost ambulation by age 17. Frequent mutations were analyzed by age at ambulation, cardiopulmonary function, and genotype. For clinical comparisons, participants who were administered steroids were excluded. From July 2009 through September 2015, 192 participants had registered with Remudy. Mean participant age was 34.80±13.3 (range, 17-78) years, and 52.1% of participants were ambulant. Of the entire study population, 50.5% had cardiomyopathy and 35.9% had respiratory failure. Three participants required invasive ventilation and 30 required non-invasive ventilation. Nineteen of the 30 non-invasive ventilator users were part-time users. In total, 138 (71.9%) had BMD and 54 (28.1%) had IMD. The most frequent mutation was ex45_ex47del (36 participants). Among participants with frequent in-frame mutations, those with the ex45-49del mutation lost their ambulation earlier than those with the ex45_ex47del mutation. A total of 67 different exon deletions and duplications were identified in the study population. We clarified the clinical phenotypes of Japanese patients with BMD/IMD using data from Remudy. Our results suggest that not only IMD but also BMD are associated with risk of respiratory dysfunction.

  13. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    NASA Astrophysics Data System (ADS)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  14. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Daniela; Palmio, Johanna; Evilä, Anni

    A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family showmore » an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.« less

  15. Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy

    PubMed Central

    Maugeri, Alessandra; Klevering, B. Jeroen; Rohrschneider, Klaus; Blankenagel, Anita; Brunner, Han G.; Deutman, August F.; Hoyng, Carel B.; Cremers, Frans P. M.

    2000-01-01

    The photoreceptor cell–specific ATP-binding cassette transporter gene (ABCA4; previously denoted “ABCR”) is mutated in most patients with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients with isolated CRD, all from Germany and The Netherlands . Single-strand conformation–polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans. PMID:10958761

  16. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  17. Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy.

    PubMed

    Yu, Hong-Hao; Zhao, Heng; Qing, Yu-Bo; Pan, Wei-Rong; Jia, Bao-Yu; Zhao, Hong-Ye; Huang, Xing-Xu; Wei, Hong-Jiang

    2016-10-09

    Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD . Two piglets were obtained after embryo transfer, one of piglets was identified as DMD -modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD -modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD -modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig.

  18. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses, lipidoses, mucolipidoses), and several skin diseases (X-linked ichthyosis, keratosis follicularis spinolosa decalvans). The management of the corneal dystrophies varies with the specific disease. Some are treated medically or with methods that excise or ablate the abnormal corneal tissue, such as deep lamellar endothelial keratoplasty (DLEK) and phototherapeutic keratectomy (PTK). Other less debilitating or asymptomatic dystrophies do not warrant treatment. The prognosis varies from minimal effect on the vision to corneal blindness, with marked phenotypic variability. PMID:19236704

  19. Mutations in PCYT1A cause spondylometaphyseal dysplasia with cone-rod dystrophy.

    PubMed

    Yamamoto, Guilherme L; Baratela, Wagner A R; Almeida, Tatiana F; Lazar, Monize; Afonso, Clara L; Oyamada, Maria K; Suzuki, Lisa; Oliveira, Luiz A N; Ramos, Ester S; Kim, Chong A; Passos-Bueno, Maria Rita; Bertola, Débora R

    2014-01-02

    Spondylometaphyseal dysplasia with cone-rod dystrophy is a rare autosomal-recessive disorder characterized by severe short stature, progressive lower-limb bowing, flattened vertebral bodies, metaphyseal involvement, and visual impairment caused by cone-rod dystrophy. Whole-exome sequencing of four individuals affected by this disorder from two Brazilian families identified two previously unreported homozygous mutations in PCYT1A. This gene encodes the alpha isoform of the phosphate cytidylyltransferase 1 choline enzyme, which is responsible for converting phosphocholine into cytidine diphosphate-choline, a key intermediate step in the phosphatidylcholine biosynthesis pathway. A different enzymatic defect in this pathway has been previously associated with a muscular dystrophy with mitochondrial structural abnormalities that does not have cartilage and/or bone or retinal involvement. Thus, the deregulation of the phosphatidylcholine pathway may play a role in multiple genetic diseases in humans, and further studies are necessary to uncover its precise pathogenic mechanisms and the entirety of its phenotypic spectrum. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Cardiac manifestations of congenital LMNA-related muscular dystrophy in children: three case reports and recommendations for care.

    PubMed

    Heller, Felice; Dabaj, Ivana; Mah, Jean K; Bergounioux, Jean; Essid, Aben; Bönnemann, Carsten G; Rutkowski, Anne; Bonne, Gisèle; Quijano-Roy, Susana; Wahbi, Karim

    2017-08-01

    Skeletal and cardiac muscle laminopathies, caused by mutations in the lamin A/C gene, have a clinical spectrum from congenital LMNA-related muscular dystrophy to later-onset Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, and dilated cardiomyopathy. Although cardiac involvement is observed at all ages, it has only been well described in adults. We present the evolution of cardiac disease in three children with congenital muscular dystrophy presentation of LMNA-related muscular dystrophy. In this series, atrial arrhythmia was the presenting cardiac finding in all three patients. Heart failure developed up to 5 years later. Symptoms of right heart failure, including diarrhoea and peripheral oedema, preceded a rapid decline in left ventricular ejection fraction. Recommendations for cardiac surveillance and management in these patients are made.

  1. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    PubMed

    Klevering, B Jeroen; Yzer, Suzanne; Rohrschneider, Klaus; Zonneveld, Marijke; Allikmets, Rando; van den Born, L Ingeborgh; Maugeri, Alessandra; Hoyng, Carel B; Cremers, Frans P M

    2004-12-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.

  2. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy.

    PubMed

    Vissing, John; Barresi, Rita; Witting, Nanna; Van Ghelue, Marijke; Gammelgaard, Lise; Bindoff, Laurence A; Straub, Volker; Lochmüller, Hanns; Hudson, Judith; Wahl, Christoph M; Arnardottir, Snjolaug; Dahlbom, Kathe; Jonsrud, Christoffer; Duno, Morten

    2016-08-01

    Limb girdle muscular dystrophy type 2A is the most common limb girdle muscular dystrophy form worldwide. Although strict recessive inheritance is assumed, patients carrying a single mutation in the calpain 3 gene (CAPN3) are reported. Such findings are commonly attributed to incomplete mutation screening. In this investigation, we report 37 individuals (age range: 21-85 years, 21 females and 16 males) from 10 families in whom only one mutation in CAPN3 could be identified; a 21-bp, in-frame deletion (c.643_663del21). This mutation co-segregated with evidence of muscle disease and autosomal dominant transmission in several generations. Evidence of muscle disease was indicated by muscle pain, muscle weakness and wasting, significant fat replacement of muscles on imaging, myopathic changes on muscle biopsy and loss of calpain 3 protein on western blotting. Thirty-one of 34 patients had elevated creatine kinase or myoglobin. Muscle weakness was generally milder than observed in limb girdle muscular dystrophy type 2A, but affected the same muscle groups (proximal leg, lumbar paraspinal and medial gastrocnemius muscles). In some cases, the weakness was severely disabling. The 21-bp deletion did not affect mRNA maturation. Calpain 3 expression in muscle, assessed by western blot, was below 15% of normal levels in the nine mutation carriers in whom this could be tested. Haplotype analysis in four families from three different countries suggests that the 21-bp deletion is a founder mutation. This study provides strong evidence that heterozygosity for the c.643_663del21 deletion in CAPN3 results in a dominantly inherited muscle disease. The normal expression of mutated mRNA and the severe loss of calpain 3 on western blotting, suggest a dominant negative effect with a loss-of-function mechanism affecting the calpain 3 homodimer. This renders patients deficient in calpain 3 as in limb girdle muscular dystrophy type 2A, albeit in a milder form in most cases. Based on findings in 10 families, our study indicates that a dominantly inherited pattern of calpainopathy exists, and should be considered in the diagnostic work-up and genetic counselling of patients with calpainopathy and single-allele aberrations in CAPN3. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophinmore » lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.« less

  4. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials.

    PubMed

    Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S; Verschuuren, Jan J; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E; Muntoni, Francesco

    2011-12-01

    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy.

  5. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials

    PubMed Central

    Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S.; Verschuuren, Jan J.; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E.

    2011-01-01

    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy. PMID:22102647

  6. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegoraro, E.; Wessel, H.B.; Schwartz, L.

    1994-06-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limb-girdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carries who show preferential inactivation ofmore » the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here the authors study X-inactivation patterns of 13 female dystrophinopathy patients - 10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. They show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in the assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, the results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. The results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. 58 refs., 7 figs., 2 tabs.« less

  7. Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA.

    PubMed

    Ritelli, Marco; Morlino, Silvia; Giacopuzzi, Edoardo; Carini, Giulia; Cinquina, Valeria; Chiarelli, Nicola; Majore, Silvia; Colombi, Marina; Castori, Marco

    2017-01-01

    Filamin A is an X-linked, ubiquitous actin-binding protein whose mutations are associated to multiple disorders with limited genotype-phenotype correlations. While gain-of-function mutations cause various bone dysplasias, loss-of-function variants are the most common cause of periventricular nodular heterotopias with variable soft connective tissue involvement, as well as X-linked cardiac valvular dystrophy (XCVD). The term "Ehlers-Danlos syndrome (EDS) with periventricular heterotopias" has been used in females with neurological, cardiovascular, integument and joint manifestations, but this nosology is still a matter of debate. We report the clinical and molecular update of an Italian family with an X-linked recessive soft connective tissue disorder and which was described, in 1975, as the first example of EDS type V of the Berlin nosology. The cutaneous phenotype of the index patient was close to classical EDS and all males died for a lethal cardiac valvular dystrophy. Whole exome sequencing identified the novel c.1829-1G>C splice variation in FLNA in two affected cousins. The nucleotide change was predicted to abolish the canonical splice acceptor site of exon 13 and to activate a cryptic acceptor site 15 bp downstream, leading to in frame deletion of five amino acid residues (p.Phe611_Gly615del). The predicted in frame deletion clusters with all the mutations previously identified in XCVD and falls within the N-terminus rod 1 domain of filamin A. Our findings expand the male-specific phenotype of FLNA mutations that now includes classical-like EDS with lethal cardiac valvular dystrophy, and offer further insights for the genotype-phenotype correlations within this spectrum. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Leigh syndrome with Fukuyama congenital muscular dystrophy: a case report.

    PubMed

    Kondo, Hidehito; Tanda, Koichi; Tabata, Chihiro; Hayashi, Kohei; Kihara, Minako; Kizaki, Zenro; Taniguchi-Ikeda, Mariko; Mori, Masato; Murayama, Kei; Ohtake, Akira

    2014-09-01

    We report the first case of Leigh syndrome (LS) with Fukuyama congenital muscular dystrophy (FCMD). A neonate suffered from lactic acidosis and subsequently presented with poor feeding, muscle weakness, hypotonia, cardiopulmonary dysfunction, and hydrocephalus. He died at 17 months. The findings of brain magnetic resonance imaging indicated some specific features of both LS and FCMD, and FCMD gene mutation was detected. Decreased mitochondrial respiratory complex I and II activity was noted. Mitochondrial DNA sequencing showed no pathogenic mutation. A case with complex I+II deficiency has rarely been reported, suggesting a nuclear gene mutation. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Diagnosis of becker muscular dystrophy: Results of Re-analysis of DNA samples.

    PubMed

    Straathof, Chiara S M; Van Heusden, Dave; Ippel, Pieternella F; Post, Jan G; Voermans, Nicol C; De Visser, Marianne; Brusse, Esther; Van Den Bergen, Janneke C; Van Der Kooi, Anneke J; Verschuuren, Jan J G M; Ginjaar, Hendrika B

    2016-01-01

    The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients. © 2015 Wiley Periodicals, Inc.

  10. Cardiomyopathy in becker muscular dystrophy: Overview.

    PubMed

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-06-26

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed.

  11. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  12. Chimeric protein identification of dystrophic, Pierson and other laminin polymerization residues

    PubMed Central

    McKee, Karen K.; Aleksandrova, Maya; Yurchenco, Peter D.

    2018-01-01

    Laminin polymerization is a key step of basement membrane self-assembly that depends on the binding of the three different N-terminal globular LN domains. Several mutations in the LN domains cause LAMA2-deficient muscular dystrophy and LAMB2-deficient Pierson syndrome. These mutations may affect polymerization. A novel approach to identify the amino acid residues required for polymerization has been applied to an analysis of these and other laminin LN mutations. The approach utilizes laminin-nidogen chimeric fusion proteins that bind to recombinant non-polymerizing laminins to provide a missing functional LN domain. Single amino acid substitutions introduced into these chimeras were tested to determine if polymerization activity and the ability to assemble on cell surfaces were lost. Several laminin-deficient muscular dystrophy mutations, renal Pierson syndrome mutations, and Drosophila mutations causing defects of heart development were identified as ones causing loss of laminin polymerization. In addition, two novel residues required for polymerization were identified in the laminin γ1 LN domain. PMID:29408412

  13. Genetics and emerging treatments for Duchenne and Becker muscular dystrophy.

    PubMed

    Wein, Nicolas; Alfano, Lindsay; Flanigan, Kevin M

    2015-06-01

    Mutations in the DMD gene result in Duchenne or Becker muscular dystrophy due to absent or altered expression of the dystrophin protein. The more severe Duchenne muscular dystrophy typically presents around ages 2 to 5 with gait disturbance, and historically has led to the loss of ambulation by age 12. It is important for the practicing pediatrician, however, to be aware of other presenting signs, such as delayed motor or cognitive milestones, or elevated serum transaminases. Becker muscular dystrophy is milder, often presenting after age 5, with ambulation frequently preserved past 20 years and sometimes into late decades. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evaluation of Narrative Abilities in Patients Suffering from Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Marini, A.; Lorusso, M. L.; D'Angelo, M. G.; Civati, F.; Turconi, A. C.; Fabbro, F.; Bresolin, N.

    2007-01-01

    The present work investigated cognitive, linguistic and narrative abilities in a group of children suffering from Duchenne Muscular Dystrophy, an allelic X-linked recessive disorder caused by mutations in the gene encoding dystrophin. The patients showed mildly reduced IQ with lower Verbal than Performance Intelligence Quotient and were mildly…

  15. Cardiomyopathy in becker muscular dystrophy: Overview

    PubMed Central

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-01-01

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  16. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative tomore » Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.« less

  17. Unilateral retinitis pigmentosa and cone-rod dystrophy

    PubMed Central

    Farrell, Donald F

    2009-01-01

    Purpose: The purpose of this paper is to report 14 new cases of unilateral retinitis pigmentosa and three new cases of cone-rod dystrophy and to compare the similarities and dissimilarities to those found in the bilateral forms of these disorders. Methods: A total of 272 cases of retinitis pigmentosa and 167 cases of cone-rod dystrophy were studied by corneal full field electroretinograms and electrooculograms. The student t-test was used to compare categories. Results: The percentage of familial and nonfamilial cases was the same for the bilateral and unilateral forms of the disease. In our series, unilateral retinitis pigmentosa makes up approximately 5% of the total population of retinitis pigmentosa, while unilateral cone-rod dystrophy makes up only about 2% of the total. In the familial forms of unilateral retinitis pigmentosa the most common inheritance pattern was autosomal dominant and all affected relatives had bilateral disease. Conclusion: Unilateral retinitis pigmentosa and cone-rod dystrophy appear to be directly related to the more common bilateral forms of these disorders. The genetic mechanisms which account for asymmetric disorders are not currently understood. It may be a different unidentified mutation at a single loci or it is possible that nonlinked mutations in multiple loci account for this unusual disorder. PMID:19668577

  18. A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss.

    PubMed

    Servián-Morilla, Emilia; Takeuchi, Hideyuki; Lee, Tom V; Clarimon, Jordi; Mavillard, Fabiola; Area-Gómez, Estela; Rivas, Eloy; Nieto-González, Jose L; Rivero, Maria C; Cabrera-Serrano, Macarena; Gómez-Sánchez, Leonardo; Martínez-López, Jose A; Estrada, Beatriz; Márquez, Celedonio; Morgado, Yolanda; Suárez-Calvet, Xavier; Pita, Guillermo; Bigot, Anne; Gallardo, Eduard; Fernández-Chacón, Rafael; Hirano, Michio; Haltiwanger, Robert S; Jafar-Nejad, Hamed; Paradas, Carmen

    2016-11-01

    Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experiments demonstrated that the mutation reduces O-glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle-specific α-dystroglycan hypoglycosylation not present in patients' fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7 + cells. A robust rescue of the myogenesis was demonstrated by increasing Notch signaling. None of these alterations were found in muscles from secondary dystroglycanopathy patients. These data suggest that a key pathomechanism for this novel form of muscular dystrophy is Notch-dependent loss of satellite cells. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.

    PubMed

    Hightower, Rylie M; Alexander, Matthew S

    2018-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.

  20. Genetic Modifiers of Duchenne and Facioscapulohumeral Muscular Dystrophies

    PubMed Central

    Hightower, Rylie M.; Alexander, Matthew S.

    2017-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost, have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. PMID:28877560

  1. The muscular dystrophies associated with central nervous system lesions: a brief review from a standpoint of the localization and function of causative genes.

    PubMed

    Yamamoto, Tomoko; Hiroi, Atsuko; Osawa, Makiko; Shibata, Noriyuki

    2014-01-01

    The muscular dystrophies have been traditionally classified based mainly on clinical manifestation and mode of inheritance. Owing to the discoveries of causative genes, new terminologies derived from each gene, such as dystrophinopathy, α-dystroglycanopathy, sarcoglycanopathy and fukutinopathy, have also become common. Mutations of each gene may cause several clinical phenotypes. Some muscular dystrophies accompany central nervous system (CNS) lesions, especially in the congenital muscular dystrophies. Cobblestone lissencephaly (type II lissencephaly) is a well-known CNS malformation observed in severe forms of α-dystroglycanopathy. Moreover, CNS involvement has been reported in other muscular dystrophies, such as Duchenne muscular dystrophy. In this review, genes related to the muscular dystrophies associated with CNS lesions are briefly described along with the molecular characteristics of each gene and the pathomechanism of the CNS lesions. Understanding of both the clinicopathological characteristics of these CNS lesions and their molecular mechanisms is important for the diagnosis, care of patients, and development of new therapeutic strategies.

  2. Flavodoxin 1 of Azotobacter vinelandii: characterization and role in electron donation to purified assimilatory nitrate reductase.

    PubMed Central

    Gangeswaran, R; Eady, R R

    1996-01-01

    Flavodoxins synthesized by Azotobacter vinelandii strain UW 36 during growth on nitrate as nitrogen source were separated by FPLC on a Mono Q column into two species, flavodoxin 1 (AvFld 1) and flavodoxin 2 (AvFld 2). Both proteins migrated as single bands on SDS/PAGE. AvFld 1 was approx. 5-fold more abundant than AvFld 2 in the unresolved flavodoxin mixture. N-terminal amino acid analysis showed the sequence of AvFld 2 to correspond to the nif F gene product, an electron donor to nitrogenase. The sequences also show that these species corresponded to the flavodoxins Fld A and Fld B isolated from N2-grown cultures of the closely related organism Azotobacter throococcum [Bagby, Barker, Hill, Eady and Thorneley (1991) Biochem.J.277, 313-319]. Electrospray mass spectrometry gave M, values for the polypeptides of 19430 +/- 3 and 19533 +/- 5 respectively. 31P-NMR measurements showed that in addition to the phosphate associated with the FMN (delta = -136.3 p.p.m. and -135.48 p.p.m.), AvFld 1 had a signal at delta = -142.1 p.p.m. and AvFld 2 at delta = -138.59 p.p.m. present in substoichiometric amounts with FMN. These appeared to arise from unstable species since they were readily lost on further manipulation of the proteins. The mid-point potentials of the semiquinone hydroquinone redox couples were -330 mV and -493 mV for AvFld 1 and AvFld 2 respectively, but only AvFld 1 was competent in donating electrons to the purified assimilatory nitrate reductase of A. vinelandii to catalyse the reduction of nitrate to nitrite. Flavodoxin isolated from NH4(+)-grown cells (Fld 3) also functioned as electron donor at half the rate of AvFld 1, but ferredoxin 1 from A. chroococcum did not. PMID:8694750

  3. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    PubMed

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  4. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  5. Next-generation sequencing to solve complex inherited retinal dystrophy: A case series of multiple genes contributing to disease in extended families.

    PubMed

    Jones, Kaylie D; Wheaton, Dianna K; Bowne, Sara J; Sullivan, Lori S; Birch, David G; Chen, Rui; Daiger, Stephen P

    2017-01-01

    With recent availability of next-generation sequencing (NGS), it is becoming more common to pursue disease-targeted panel testing rather than traditional sequential gene-by-gene dideoxy sequencing. In this report, we describe using NGS to identify multiple disease-causing mutations that contribute concurrently or independently to retinal dystrophy in three relatively small families. Family members underwent comprehensive visual function evaluations, and genetic counseling including a detailed family history. A preliminary genetic inheritance pattern was assigned and updated as additional family members were tested. Family 1 (FAM1) and Family 2 (FAM2) were clinically diagnosed with retinitis pigmentosa (RP) and had a suspected autosomal dominant pedigree with non-penetrance (n.p.). Family 3 (FAM3) consisted of a large family with a diagnosis of RP and an overall dominant pedigree, but the proband had phenotypically cone-rod dystrophy. Initial genetic analysis was performed on one family member with traditional Sanger single gene sequencing and/or panel-based testing, and ultimately, retinal gene-targeted NGS was required to identify the underlying cause of disease for individuals within the three families. Results obtained in these families necessitated further genetic and clinical testing of additional family members to determine the complex genetic and phenotypic etiology of each family. Genetic testing of FAM1 (n = 4 affected; 1 n.p.) identified a dominant mutation in RP1 (p.Arg677Ter) that was present for two of the four affected individuals but absent in the proband and the presumed non-penetrant individual. Retinal gene-targeted NGS in the fourth affected family member revealed compound heterozygous mutations in USH2A (p. Cys419Phe, p.Glu767Serfs*21). Genetic testing of FAM2 (n = 3 affected; 1 n.p.) identified three retinal dystrophy genes ( PRPH2 , PRPF8 , and USH2A ) with disease-causing mutations in varying combinations among the affected family members. Genetic testing of FAM3 (n = 7 affected) identified a mutation in PRPH2 (p.Pro216Leu) tracking with disease in six of the seven affected individuals. Additional retinal gene-targeted NGS testing determined that the proband also harbored a multiple exon deletion in the CRX gene likely accounting for her cone-rod phenotype; her son harbored only the mutation in CRX , not the familial mutation in PRPH2 . Multiple genes contributing to the retinal dystrophy genotypes within a family were discovered using retinal gene-targeted NGS. Families with noted examples of phenotypic variation or apparent non-penetrant individuals may offer a clue to suspect complex inheritance. Furthermore, this finding underscores that caution should be taken when attributing a single gene disease-causing mutation (or inheritance pattern) to a family as a whole. Identification of a disease-causing mutation in a proband, even with a clear inheritance pattern in hand, may not be sufficient for targeted, known mutation analysis in other family members.

  6. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shomrat, R.; Gluck, E.; Legum, C.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and themore » remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.« less

  7. Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCMi002BMD-A-9 ∆45-55).

    PubMed

    Gowran, Aoife; Spaltro, Gabriella; Casalnuovo, Federica; Vigorelli, Vera; Spinelli, Pietro; Castiglioni, Elisa; Rovina, Davide; Paganini, Stefania; Di Segni, Marina; Gervasini, Cristina; Nigro, Patrizia; Pompilio, Giulio

    2018-04-01

    Becker muscular dystrophy (BMD) is a dystrophinopathy caused by mutations in the dystrophin gene on chromosome Xp21. BMD mutations result in truncated semi-functional dystrophin isoforms. Consequently, less severe clinical symptoms become apparent later in life compared to Duchenne muscular dystrophy. Dermal fibroblasts from a BMD patient were electroporated with episomal plasmids containing reprogramming factors to create the induced pluripotent stem cell line: CCMi002BMD-A-9 that showed pluripotent markers, were karyotypically normal and capable of trilineage differentiation. MLPA analyses performed on DNA extracted from CCMi002BMD-A-9 showed an in-frame deletion of exons 45 to 55 (CCMi002BMD-A-9 Δ45-55). Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. A Novel Mutation in DMD (c.10797+5G>A) Causes Becker Muscular Dystrophy Associated with Intellectual Disability.

    PubMed

    Banihani, Rudaina; Baskin, Berivan; Halliday, William; Kobayashi, Jeff; Kawamura, Anne; McAdam, Laura; Ray, Peter N; Yoon, Grace

    2016-04-01

    Severe intellectual disability has been reported in a subgroup of patients with Duchenne muscular dystrophy but is not typically associated with Becker muscular dystrophy. The authors report a 13-year-old boy, with severe intellectual disability (Wechsler Intelligence Scales for Children-IV, Full Scale IQ < 0.1 percentile), attention-deficit hyperactivity disorder, and mild muscle weakness. He had elevated serum creatine kinase and dystrophic changes on muscle biopsy. Dystrophin immunohistochemistry revealed decreased staining with the C-terminal and mid-rod antibodies and essentially absent staining of the N-terminal immunostain. Sequencing of muscle mRNA revealed aberrant splicing due to a c.10797+5G > A mutation in DMD. Dystrophinopathy may be associated with predominantly cognitive impairment and neurobehavioral disorder, and should be considered in the differential diagnosis of unexplained cognitive or psychiatric disturbance in males.

  9. Association between serum alpha-fetoprotein levels and fatty liver disease: A cross-sectional study

    PubMed Central

    Xu, Ping; Xu, Cheng-Fu; Wan, Xing-Yong; Yu, Chao-Hui; Shen, Chao; Chen, Peng; Xu, Gen-Yun; Li, You-Ming

    2014-01-01

    AIM: To investigate the association between serum alpha-fetoprotein (AFP) levels and fatty liver disease (FLD) in a Chinese population. METHODS: A cross-sectional study was performed among subjects who presented for a health examination at the First Affiliated Hospital, College of Medicine, Zhejiang University in 2013. FLD was diagnosed based on an ultrasonography examination. Serum AFP levels were measured with a chemiluminescence immunoassay. RESULTS: Of the 9800 subjects enrolled, 2601 were diagnosed with FLD. Subjects with FLD had higher serum AFP levels than those without the disease. Subjects with high serum AFP levels had a higher prevalence of FLD, metabolic syndrome, and its components. Univariate logistic analysis showed that elevated serum AFP levels were associated with an increased risk of FLD (OR = 1.057, 95%CI: 1.031-1.084). However, after adjusting for covariates, AFP no longer remained significantly associated with the risk factors for FLD. CONCLUSION: Our results suggest that serum AFP levels are significantly associated with FLD and that AFP acts as a cofactor, but not as an independent factor, for FLD. PMID:25206293

  10. Investigation of Poor Academic Achievement in Children with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Hinton, V. J.; De Vivo, D. C.; Fee, R.; Goldstein, E.; Stern, Y.

    2004-01-01

    Duchenne Muscular Dystrophy (DMD) is a neurogenetic developmental disorder that presents with progressive muscular weakness. It is caused by a mutation in a gene that results in the absence of specific products that normally localize to muscle cells and the central nervous system (CNS). The majority of affected individuals have IQs within the…

  11. Clinical, pathological, and genetic features of limb-girdle muscular dystrophy type 2A with new calpain 3 gene mutations in seven patients from three Japanese families.

    PubMed

    Kawai, H; Akaike, M; Kunishige, M; Inui, T; Adachi, K; Kimura, C; Kawajiri, M; Nishida, Y; Endo, I; Kashiwagi, S; Nishino, H; Fujiwara, T; Okuno, S; Roudaut, C; Richard, I; Beckmann, J S; Miyoshi, K; Matsumoto, T

    1998-11-01

    We report on the clinical, pathological, and genetic features of 7 patients with limb-girdle muscular dystrophy type 2A (LGMD2A) from three Japanese families. The mean age of onset was 9.7+/-3.1 years (mean+/-SD), and loss of ambulance occurred at 38.5+/-2.1 years. Muscle atrophy was predominant in the pelvic and shoulder girdles, and proximal limb muscles. Muscle pathology revealed dystrophic changes. In two families, an identical G to C mutation at position 1080 the in calpain 3 gene was identified, and a frameshift mutation (1796insA) was found in the third family. The former mutation results in a W360R substitution in the proteolytic site of calpain 3, and the latter in a deletion of the Ca2+-binding domain.

  12. [Application of targeted capture technology and next generation sequencing in molecular diagnosis of inherited myopathy].

    PubMed

    Fu, Xiaona; Liu, Aijie; Yang, Haipo; Wei, Cuijie; Ding, Juan; Wang, Shuang; Wang, Jingmin; Yuan, Yun; Jiang, Yuwu; Xiong, Hui

    2015-10-01

    To elucidate the usefulness of next generation sequencing for diagnosis of inherited myopathy, and to analyze the relevance between clinical phenotype and genotype in inherited myopathy. Related genes were selected for SureSelect target enrichment system kit (Panel Version 1 and Panel Version 2). A total of 134 patients who were diagnosed as inherited myopathy clinically underwent next generation sequencing in Department of Pediatrics, Peking University First Hospital from January 2013 to June 2014. Clinical information and gene detection result of the patients were collected and analyzed. Seventy-seven of 134 patients (89 males and 45 females, visiting ages from 6-month-old to 26-year-old, average visiting age was 6 years and 1 month) underwent next generation sequencing by Panel Version 1 in 2013, and 57 patients underwent next generation sequencing by Panel Version 2 in 2014. The gene detection revealed that 74 patients had pathogenic gene mutations, and the positive rate of genetic diagnosis was 55.22%. One patient was diagnosed as metabolic myopathy. Five patients were diagnosed as congenital myopathy; 68 were diagnosed as muscular dystrophy, including 22 with congenital muscular dystrophy 1A (MDC1A), 11 with Ullrich congenital muscular dystrophy (UCMD), 6 with Bethlem myopathy (BM), 12 with Duchenne muscular dystrophy (DMD) caused by point mutations in DMD gene, 5 with LMNA-related congenital muscular dystrophy (L-CMD), 1 with Emery-Dreifuss muscular dystrophy (EDMD), 7 with alpha-dystroglycanopathy (α-DG) patients, and 4 with limb-girdle muscular dystrophy (LGMD) patients. Next generation sequencing plays an important role in diagnosis of inherited myopathy. Clinical and biological information analysis was essential for screening pathogenic gene of inherited myopathy.

  13. Contact lens fitting in a patient with Alport syndrome and posterior polymorphous corneal dystrophy: a case report.

    PubMed

    Rosa, Juliana Maria da Silva; Andrade Sobrinho, Marcelo Vicente de; Lipener, César

    2016-02-01

    Alport Syndrome is a hereditary disease that is caused by a gene mutation and affects the production of collagen in basement membranes; this condition causes hemorrhagic nephritis associated with deafness and ocular changes. The X-linked form of this disease is the most common and mainly affects males. Typical ocular findings are dot-and-fleck retinopathy, anterior lenticonus, and posterior polymorphous corneal dystrophy. Some cases involving polymorphous corneal dystrophy and corneal ectasia have been previously described. Here we present a case report of a 33-year-old female with Alport syndrome, posterior polymorphous corneal dystrophy, and irregular astigmatism, whose visual acuity improved with a rigid gas permeable contact lens.

  14. 'Laminopathies': A wide spectrum of human diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013

    2007-06-10

    Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less

  15. Emerging strategies for cell and gene therapy of the muscular dystrophies

    PubMed Central

    Muir, Lindsey A.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications. PMID:19555515

  16. A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family.

    PubMed

    Audo, Isabelle; Bujakowska, Kinga; Mohand-Saïd, Saddek; Tronche, Sophie; Lancelot, Marie-Elise; Antonio, Aline; Germain, Aurore; Lonjou, Christine; Carpentier, Wassila; Sahel, José-Alain; Bhattacharya, Shomi; Zeitz, Christina

    2011-01-01

    To identify the genetic defect of a consanguineous Portuguese family with rod-cone dystrophy and varying degrees of decreased audition. A detailed ophthalmic and auditory examination was performed on a Portuguese patient with severe autosomal recessive rod-cone dystrophy. Known genetic defects were excluded by performing autosomal recessive retinitis pigmentosa (arRP) genotyping microarray analysis and by Sanger sequencing of the coding exons and flanking intronic regions of eyes shut homolog-drosophila (EYS) and chromosome 2 open reading frame 71 (C2orf71). Subsequently, genome-wide homozygosity mapping was performed in DNA samples from available family members using a 700K single nucleotide polymorphism (SNP) microarray. Candidate genes present in the significantly large homozygous regions were screened for mutations using Sanger sequencing. The largest homozygous region (~11 Mb) in the affected family members was mapped to chromosome 9, which harbors deafness, autosomal recessive 31 (DFNB31; a gene previously associated with Usher syndrome). Mutation analysis of DFNB31 in the index patient identified a novel one-base-pair deletion (c.737delC), which is predicted to lead to a truncated protein (p.Pro246HisfsX13) and co-segregated with the disease in the family. Ophthalmic examination of the index patient and the affected siblings showed severe rod-cone dystrophy. Pure tone audiometry revealed a moderate hearing loss in the index patient, whereas the affected siblings were reported with more profound and early onset hearing impairment. We report a novel truncating mutation in DFNB31 associated with severe rod-cone dystrophy and varying degrees of hearing impairment in a consanguineous family of Portuguese origin. This is the second report of DFNB31 implication in Usher type 2.

  17. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    PubMed

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  18. A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping

    PubMed Central

    Walmsley, Gemma L.; Arechavala-Gomeza, Virginia; Fernandez-Fuente, Marta; Burke, Margaret M.; Nagel, Nicole; Holder, Angela; Stanley, Rachael; Chandler, Kate; Marks, Stanley L.; Muntoni, Francesco; Shelton, G. Diane; Piercy, Richard J.

    2010-01-01

    Background Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. Methodology/Principal Findings Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD. PMID:20072625

  19. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families†

    PubMed Central

    Chang, Wendy; Winder, Thomas L.; LeDuc, Charles A.; Simpson, Lynn L.; Millar, William S.; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A.; Chung, Wendy K.

    2009-01-01

    Objective Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. Method We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. Results We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. Conclusion These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. PMID:19266496

  20. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families.

    PubMed

    Chang, Wendy; Winder, Thomas L; LeDuc, Charles A; Simpson, Lynn L; Millar, William S; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A; Chung, Wendy K

    2009-06-01

    Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Hypothesis: neoplasms in myotonic dystrophy

    PubMed Central

    Hilbert, James E.; Martens, William; Thornton, Charles A.; Moxley, Richard T.; Greene, Mark H.

    2011-01-01

    Tumorigenesis is a multi-step process due to an accumulation of genetic mutations in multiple genes in diverse pathways which ultimately lead to loss of control over cell growth. It is well known that inheritance of rare germline mutations in genes involved in tumorigenesis pathways confer high lifetime risk of neoplasia in affected individuals. Furthermore, a substantial number of multiple malformation syndromes include cancer susceptibility in their phenotype. Studies of the mechanisms underlying these inherited syndromes have added to the understanding of both normal development and the pathophysiology of carcinogenesis. Myotonic dystrophy (DM) represents a group of autosomal dominant, multisystemic diseases that share the clinical features of myotonia, muscle weakness, and early-onset cataracts. Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) result from unstable nucleotide repeat expansions in their respective genes. There have been multiple reports of tumors in individuals with DM, most commonly benign calcifying cutaneous tumors known as pilomatricomas. We provide a summary of the tumors reported in DM and a hypothesis for a possible mechanism of tumorigenesis. We hope to stimulate further study into the potential role of DM genes in tumorigenesis, and help define DM pathogenesis, and facilitate developing novel treatment modalities. PMID:19642006

  2. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism

    PubMed Central

    Meola, Giovanni; Cardani, Rosanna

    2015-01-01

    Abstract Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert’s disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies. PMID:27858759

  3. Limb Girdle Muscular Dystrophy Type 2E Due to a Novel Large Deletion in SGCB Gene.

    PubMed

    Ghafouri-Fard, Soudeh; Hashemi-Gorji, Feyzollah; Fardaei, Majid; Miryounesi, Mohammad

    2017-01-01

    Autosomal recessive limb-girdle muscular dystrophies (LGMD type 2) are a group of clinically and genetically heterogeneous diseases with the main characteristics of weakness and wasting of the pelvic and shoulder girdle muscles. Among them are sarcoglycanopathies caused by mutations in at least four genes named SGCA, SGCB, SGCG and SGCD. Here we report a consanguineous Iranian family with two children affected with LGMD type 2E. Mutation analysis revealed a novel homozygous exon 2 deletion of SGCB gene in the patients with the parents being heterozygous for this deletion. This result presents a novel underlying genetic mechanism for LGMD type 2E.

  4. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse.

    PubMed

    Fletcher, Sue; Honeyman, Kaite; Fall, Abbie M; Harding, Penny L; Johnsen, Russell D; Steinhaus, Joshua P; Moulton, Hong M; Iversen, Patrick L; Wilton, Stephen D

    2007-09-01

    Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.

  5. Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis

    PubMed Central

    Tsuboi, Masaya; Watanabe, Manabu; Nibe, Kazumi; Yoshimi, Natsuko; Kato, Akihisa; Sakaguchi, Masahiro; Yamato, Osamu; Tanaka, Miyuu; Kuwamura, Mitsuru; Kushida, Kazuya; Harada, Tomoyuki; Chambers, James Kenn; Sugano, Sumio; Uchida, Kazuyuki; Nakayama, Hiroyuki

    2017-01-01

    Whole exome sequencing (WES) has become a common tool for identifying genetic causes of human inherited disorders, and it has also recently been applied to canine genome research. We conducted WES analysis of neuroaxonal dystrophy (NAD), a neurodegenerative disease that sporadically occurs worldwide in Papillon dogs. The disease is considered an autosomal recessive monogenic disease, which is histopathologically characterized by severe axonal swelling, known as “spheroids,” throughout the nervous system. By sequencing all eleven DNA samples from one NAD-affected Papillon dog and her parents, two unrelated NAD-affected Papillon dogs, and six unaffected control Papillon dogs, we identified 10 candidate mutations. Among them, three candidates were determined to be “deleterious” by in silico pathogenesis evaluation. By subsequent massive screening by TaqMan genotyping analysis, only the PLA2G6 c.1579G>A mutation had an association with the presence or absence of the disease, suggesting that it may be a causal mutation of canine NAD. As a human homologue of this gene is a causative gene for infantile neuroaxonal dystrophy, this canine phenotype may serve as a good animal model for human disease. The results of this study also indicate that WES analysis is a powerful tool for exploring canine hereditary diseases, especially in rare monogenic hereditary diseases. PMID:28107443

  6. Novel mutations in DNAJB6 gene cause a very severe early-onset limb-girdle muscular dystrophy 1D disease.

    PubMed

    Palmio, Johanna; Jonson, Per Harald; Evilä, Anni; Auranen, Mari; Straub, Volker; Bushby, Kate; Sarkozy, Anna; Kiuru-Enari, Sari; Sandell, Satu; Pihko, Helena; Hackman, Peter; Udd, Bjarne

    2015-11-01

    DNAJB6 is the causative gene for limb-girdle muscular dystrophy 1D (LGMD1D). Four different coding missense mutations, p.F89I, p.F93I, p.F93L, and p.P96R, have been reported in families from Europe, North America and Asia. The previously known mutations cause mainly adult-onset proximal muscle weakness with moderate progression and without respiratory involvement. A Finnish family and a British patient have been studied extensively due to a severe muscular dystrophy. The patients had childhood-onset LGMD, loss of ambulation in early adulthood and respiratory involvement; one patient died of respiratory failure aged 32. Two novel mutations, c.271T > A (p.F91I) and c.271T > C (p.F91L), in DNAJB6 were identified by whole exome sequencing as a cause of this severe form of LGMD1D. The results were confirmed by Sanger sequencing. The anti-aggregation effect of the mutant DNAJB6 was investigated in a filter-trap based system using transient transfection of mammalian cell lines and polyQ-huntingtin as a model for an aggregation-prone protein. Both novel mutant proteins show a significant loss of ability to prevent aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comprehensive analysis of Stargardt macular dystrophy patients reveals new genotype-phenotype correlations and unexpected diagnostic revisions

    PubMed Central

    Zaneveld, Jacques; Siddiqui, Sorath; Li, Huajin; Wang, Xia; Wang, Hui; Wang, Keqing; Li, Hui; Ren, Huanan; Lopez, Irma; Dorfman, Allison; Khan, Ayesha; Wang, Feng; Salvo, Jason; Gelowani, Violet; Li, Yumei; Sui, Ruifang; Koenekoop, Robert; Chen, Rui

    2014-01-01

    Purpose Stargardt macular dystrophy (STGD) results in early central vision loss. We sought to explain the genetic cause of STGD in a cohort of 88 patients from three different cultural backgrounds. Methods Next Generation Sequencing using a novel capture panel was used to search for disease causing mutations. Unsolved patients were clinically re-examined and tested for copy number variations (CNVs) as well as intronic mutations. Results We determined the cause of disease in 67% of our patients. Our analysis identified 35 novel ABCA4 alleles. Eleven patients had mutations in genes not previously reported to cause STGD. Finally, 45% of our unsolved patients had single deleterious mutations in ABCA4, a recessive disease gene. No likely pathogenic CNVs were identified. Conclusions This study expands our knowledge of STGD by identifying dozens of novel STGD causing alleles. The frequency of patients with single mutations in ABCA4 is higher than controls, indicating these mutations contribute to disease. Eleven patients were explained by mutations outside ABCA4 underlining the need to genotype all retinal disease genes to maximize genetic diagnostic rates. Few ABCA4 mutations were observed in our French Canadian patients. This population may contain an unidentified founder mutation. Our results indicate that CNVs are unlikely to be a major cause of STGD. PMID:25474345

  8. Genetic diagnosis of Duchenne and Becker muscular dystrophy using multiplex ligation-dependent probe amplification in Rwandan patients.

    PubMed

    Uwineza, Annette; Hitayezu, Janvier; Murorunkwere, Seraphine; Ndinkabandi, Janvier; Kalala Malu, Celestin Kaputu; Caberg, Jean Hubert; Dideberg, Vinciane; Bours, Vincent; Mutesa, Leon

    2014-04-01

    Duchenne and Becker muscular dystrophies are the most common clinical forms of muscular dystrophies. They are genetically X-linked diseases caused by a mutation in the dystrophin (DMD) gene. A genetic diagnosis was carried out in six Rwandan patients presenting a phenotype of Duchenne and Becker muscular dystrophies and six asymptomatic female carrier relatives using multiplex ligation-dependent probe amplification (MLPA). Our results revealed deletion of the exons 48-51 in one patient, an inherited deletion of the exons 8-21 in two brothers and a de novo deletion of the exons 46-50 in the fourth patient. No copy number variation was found in two patients. Only one female carrier presented exon deletion in the DMD gene. This is the first cohort of genetic analysis in Rwandan patients affected by Duchenne and Becker muscular dystrophies. This report confirmed that MLPA assay can be easily implemented in low-income countries.

  9. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    PubMed

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  10. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21)

    PubMed Central

    Heon, Elise; Kim, Gunhee; Qin, Sophie; Garrison, Janelle E.; Tavares, Erika; Vincent, Ajoy; Nuangchamnong, Nina; Scott, C. Anthony; Slusarski, Diane C.; Sheffield, Val C.

    2016-01-01

    Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer’s vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration. PMID:27008867

  11. Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination.

    PubMed

    Coppieters, Frauke; Ascari, Giulia; Dannhausen, Katharina; Nikopoulos, Konstantinos; Peelman, Frank; Karlstetter, Marcus; Xu, Mingchu; Brachet, Cécile; Meunier, Isabelle; Tsilimbaris, Miltiadis K; Tsika, Chrysanthi; Blazaki, Styliani V; Vergult, Sarah; Farinelli, Pietro; Van Laethem, Thalia; Bauwens, Miriam; De Bruyne, Marieke; Chen, Rui; Langmann, Thomas; Sui, Ruifang; Meire, Françoise; Rivolta, Carlo; Hamel, Christian P; Leroy, Bart P; De Baere, Elfride

    2016-08-04

    Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals' lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. What do mouse models of muscular dystrophy tell us about the DAPC and its components?

    PubMed

    Whitmore, Charlotte; Morgan, Jennifer

    2014-12-01

    There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  13. A novel FKRP-related muscular dystrophy founder mutation in South African Afrikaner patients with a phenotype suggestive of a dystrophinopathy.

    PubMed

    Mudau, M M; Essop, F; Krause, A

    2016-12-21

    Fukutin-related protein (FKRP) muscular dystrophy is an autosomal recessive disorder caused by mutations in the FKRP gene. The condition is often misdiagnosed as a dystrophinopathy. A previously unreported mutation, c.1100T>C in exon 4 of FKRP, had been identified in homozygous form in two white South African (SA) Afrikaner patients clinically diagnosed with a dystrophinopathy. To investigate whether the c.1100T>C mutation and the common European FKRP mutation c.826C>A are present in other patients of Afrikaner origin with suspected dystrophinopathy, and whether a founder haplotype exists. The c.1100T>C mutation was initially tested for using an amplification refractory mutation system technique in 45 white SA Afrikaner patients who had tested negative using multiplex ligation probe amplification screening for exonic deletions/duplications in the dystrophin gene. Sequencing analysis was used to confirm the c.1100T>C mutation and screen for the c.826C>A mutation. Two cohorts (each numbering 100) of Afrikaans and other white controls were screened for the c.1100T>C and c.826C>A mutations, respectively. Of the 45 patients, 8 patients (17.8%) were homozygous for c.1100T>C, 2 (4.4%) were compound heterozygotes for c.1100T>C and c.826C>A, and 1 (2.2%) was heterozygous for c.1100T>C with a second unidentified mutation. The c.1100T>C mutation was found in 1/100 controls, but no heterozygotes for the c.826C>A mutation were identified. Linked marker analysis for c.1100T>C showed a common haplotype, suggesting a probable founder mutation in the SA Afrikaner population. FKRP mutations may be relatively common in Afrikaners, and screening should be considered in patients who have a suggestive phenotype and test negative for a dystrophinopathy. This test will be useful for offering diagnostic, carrier and prenatal testing for affected individuals and their families. As FKRP muscular dystrophy is autosomal recessive in inheritance, the implications of a positive diagnosis in a family differ significantly from those of an X-linked dystrophinopathy.

  14. Spectrum of ABCA4 (ABCR) gene mutations in Spanish patients with autosomal recessive macular dystrophies.

    PubMed

    Paloma, E; Martínez-Mir, A; Vilageliu, L; Gonzàlez-Duarte, R; Balcells, S

    2001-06-01

    The ABCA4 gene has been involved in several forms of inherited macular dystrophy. In order to further characterize the complex genotype-phenotype relationships involving this gene, we have performed a mutation analysis of ABCA4 in 14 Spanish patients comprising eight STGD (Stargardt), four FFM (fundus flavimaculatus), and two CRD (Cone-rod dystrophy) patients. SSCP (single-strand conformation polymorphism) analysis and DNA sequencing of the coding and 5' upstream regions of this gene allowed the identification of 16 putatively pathogenic alterations, nine of which are novel. Most of these were missense changes, and no patient was found to carry two null alleles. Overall, the new data agree with a working model relating the different pathogenic phenotypes to the severity of the mutations. When considering the information presented here together with that of previous reports, a picture of the geographic distribution of three particular mutations emerges. The R212C change has been found in French, Italian, Dutch, German, and Spanish but not in British patients. In the Spanish collection, R212C was found in a CRD patient, indicating that it may be a rather severe change. In contrast, c.2588G>C, a very common mild allele in the Dutch population, is rarely found in Southern Europe. Interestingly, the c.2588G>C mutation has been found in a double mutant allele together with the missense R1055W. Finally, the newly described L1940P was found in two unrelated Spanish patients, and may be a moderate to severe allele. Copyright 2001 Wiley-Liss, Inc.

  15. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy

    PubMed Central

    Imani, Saber; Cheng, Jingliang; Shasaltaneh, Marzieh Dehghan; Wei, Chunli; Yang, Lisha; Fu, Shangyi; Zou, Hui; Khan, Md. Asaduzzaman; Zhang, Xianqin; Chen, Hanchun; Zhang, Dianzheng; Duan, Chengxia; Lv, Hongbin; Li, Yumei; Chen, Rui; Fu, Junjiang

    2018-01-01

    Stargardt disease-4 (STGD4) is an autosomal dominant complex, genetically heterogeneous macular degeneration/dystrophy (MD) disorder. In this paper, we used targeted next generation sequencing and multiple molecular dynamics analyses to identify and characterize a disease-causing genetic variant in four generations of a Chinese family with STGD4-like MD. We found a novel heterozygous missense mutation, c.734T>C (p.L245P) in the PROM1 gene. Structurally, this mutation most likely impairs PROM1 protein stability, flexibility, and amino acid interaction network after changing the amino acid residue Leucine into Proline in the basic helix-loop-helix leucine zipper domain. Molecular dynamic simulation and principal component analysis provide compelling evidence that this PROM1 mutation contributes to disease causativeness or susceptibility variants in patients with STGD4-like MD. Thus, this finding defines new approaches in genetic characterization, accurate diagnosis, and prevention of STGD4-like MD. PMID:29416601

  16. Identification of de novo mutations of Duchénnè/Becker muscular dystrophies in southern Spain.

    PubMed

    Garcia, Susana; de Haro, Tomás; Zafra-Ceres, Mercedes; Poyatos, Antonio; Gomez-Capilla, Jose A; Gomez-Llorente, Carolina

    2014-01-01

    Duchénnè/Becker muscular dystrophies (DMD/BMD) are X-linked diseases, which are caused by a de novo gene mutation in one-third of affected males. The study objectives were to determine the incidence of DMD/BMD in Andalusia (Spain) and to establish the percentage of affected males in whom a de novo gene mutation was responsible. Multiplex ligation-dependent probe amplification (MLPA) technology was applied to determine the incidence of DMD/BMD in 84 males with suspicion of the disease and 106 female relatives. Dystrophin gene exon deletion (89.5%) or duplication (10.5%) was detected in 38 of the 84 males by MLPA technology; de novo mutations account for 4 (16.7%) of the 24 mother-son pairs studied. MLPA technology is adequate for the molecular diagnosis of DMD/BMD and establishes whether the mother carries the molecular alteration responsible for the disease, a highly relevant issue for genetic counseling.

  17. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy

    PubMed Central

    Sarparanta, Jaakko; Jonson, Per Harald; Golzio, Christelle; Sandell, Satu; Luque, Helena; Screen, Mark; McDonald, Kristin; Stajich, Jeffrey M.; Mahjneh, Ibrahim; Vihola, Anna; Raheem, Olayinka; Penttilä, Sini; Lehtinen, Sara; Huovinen, Sanna; Palmio, Johanna; Tasca, Giorgio; Ricci, Enzo; Hackman, Peter; Hauser, Michael; Katsanis, Nicholas; Udd, Bjarne

    2012-01-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to 7q36 over a decade ago1, but its genetic cause has remained elusive. We have studied nine LGMD families from Finland, the U.S., and Italy, and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar-myopathy-causing protein BAG3. Our data provide the genetic cause of LGMD1D, suggest that the pathogenesis is mediated by defective chaperone function, and highlight how mutations expressed ubiquitously can exert their effect in a tissue-, cellular compartment-, and isoform-specific manner. PMID:22366786

  18. Elevated TGF β2 serum levels in Emery-Dreifuss muscular dystrophy: implications for myocyte and tenocyte differentiation and fibrogenic processes.

    PubMed

    Bernasconi, Pia; Carboni, Nicola; Ricci, Giulia; Siciliano, Gabriele; Politano, Luisa; Maggi, Lorenzo; Mongini, Tiziana; Vercelli, Liliana; Rodolico, Carmelo; Biagini, Elena; Boriani, Giuseppe; Ruggiero, Lucia; Santoro, Lucio; Schena, Elisa; Prencipe, Sabino; Evangelisti, Camilla; Pegoraro, Elena; Morandi, Lucia; Columbaro, Marta; Lanzuolo, Chiara; Sabatelli, Patrizia; Cavalcante, Paola; Cappelletti, Cristina; Bonne, Gisèle; Muchir, Antoine; Lattanzi, Giovanna

    2018-04-25

    Among rare diseases caused by mutations in LMNA gene, Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B are characterized by muscle weakness and wasting, joint contractures, cardiomyopathy with conduction system disorders. Circulating biomarkers for these pathologies have not been identified. Here, we analyzed the secretome of a cohort of patients affected by these muscular laminopathies in the attempt to identify a common signature. Multiplex cytokine assay showed that transforming growth factor beta 2 (TGF β2) and interleukin 17 serum levels are consistently elevated in the vast majority of examined patients, while interleukin 6 and basic fibroblast growth factor are altered in subgroups of patients. Levels of TGF β2 are also increased in fibroblast and myoblast cultures established from patient biopsies as well as in serum from mice bearing the H222P Lmna mutation causing Emery-Dreifuss muscular dystrophy in humans. Both patient serum and fibroblast conditioned media activated a TGF β2-dependent fibrogenic program in normal human myoblasts and tenocytes and inhibited myoblast differentiation. Consistent with these results, a TGF β2 neutralizing antibody avoided fibrogenic marker activation and myogenesis impairment. Cell intrinsic TGF β2-dependent mechanisms were also determined in laminopathic cells, where TGF β2 activated AKT/mTOR phosphorylation. These data show that TGF β2 contributes to the pathogenesis of Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B and can be considered a potential biomarker of those diseases. Further, the evidence of TGF β2 pathogenetic effects in tenocytes provides the first mechanistic insight into occurrence of joint contractures in muscular laminopathies.

  19. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions.

    PubMed

    Koenekoop, Robert K; Lopez, Irma; den Hollander, Anneke I; Allikmets, Rando; Cremers, Frans P M

    2007-07-01

    Human retinal dystrophies have unparalleled genetic and clinical diversity and are currently linked to more than 185 genetic loci. Genotyping is a crucial exercise, as human gene-specific clinical trials to study photoreceptor rescue are on their way. Testing confirms the diagnosis at the molecular level and allows for a more precise prognosis of the possible future clinical evolution. As treatments are gene-specific and the 'window of opportunity' is time-sensitive; accurate, rapid and cost-effective genetic testing will play an ever-increasing crucial role. The gold standard is sequencing but is fraught with excessive costs, time, manpower issues and finding non-pathogenic variants. Therefore, no centre offers testing of all currently 132 known genes. Several new micro-array technologies have emerged recently, that offer rapid, cost-effective and accurate genotyping. The new disease chips from Asper Ophthalmics (for Stargardt dystrophy, Leber congenital amaurosis [LCA], Usher syndromes and retinitis pigmentosa) offer an excellent first pass opportunity. All known mutations are placed on the chip and in 4 h a patient's DNA is screened. Identification rates (identifying at least one disease-associated mutation) are currently approximately 70% (Stargardt), approximately 60-70% (LCA) and approximately 45% (Usher syndrome subtype 1). This may be combined with genotype-phenotype correlations that suggest the causal gene from the clinical appearance (e.g. preserved para-arteriolar retinal pigment epithelium suggests the involvement of the CRB1 gene in LCA). As approximately 50% of the retinal dystrophy genes still await discovery, these technologies will improve dramatically as additional novel mutations are added. Genetic testing will then become standard practice to complement the ophthalmic evaluation.

  20. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport.

    PubMed

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R; Mans, Dorus A; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E C; Yap, Zhi Min; Letteboer, Stef J F; Taylor, S Paige; Herridge, Warren; Johnson, Colin A; Scambler, Peter J; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M; Beales, Philip L; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M; Witman, George B

    2015-06-05

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.

  1. [Advances in genome editing technologies for treating muscular dystrophy.

    PubMed

    Makita, Yukimasa; Hozumi, Hiroyuki; Hotta, Akitsu

    Recent advances in genome editing technologies have opened the possibility for treating genetic diseases, such as Duchenne muscular dystrophy(DMD), by correcting the causing gene mutations in dystrophin gene. In fact, there are several reports that demonstrated the restoration of the mutated dystrophin gene in DMD patient-derived iPS cell or functional recovery of forelimb grip strength in DMD model mice. For future clinical applications, there are several aspects that need to be taken into consideration:efficient delivery of the genome editing components, risk of off-target mutagenesis and immunogenicity against genome editing enzyme. In this review, we summarize the current status and future prospective of the research in applying genome editing technologies to DMD.

  2. Gene Therapy for Hemophilia and Duchenne Muscular Dystrophy in China.

    PubMed

    Liu, Xionghao; Liu, Mujun; Wu, Lingqian; Liang, Desheng

    2018-02-01

    Gene therapy is a new technology that provides potential for curing monogenic diseases caused by mutations in a single gene. Hemophilia and Duchenne muscular dystrophy (DMD) are ideal target diseases of gene therapy. Important advances have been made in clinical trials, including studies of adeno-associated virus vectors in hemophilia and antisense in DMD. However, issues regarding the high doses of viral vectors required and limited delivery efficiency of antisense oligonucleotides have not yet been fully addressed. As an alternative strategy to classic gene addition, genome editing based on programmable nucleases has also shown promise to correct mutations in situ. This review describes the recent progress made by Chinese researchers in gene therapy for hemophilia and DMD.

  3. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  4. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy

    PubMed Central

    Amoasii, Leonela; Long, Chengzu; Li, Hui; Mireault, Alex A.; Shelton, John M.; Sanchez-Ortiz, Efrain; McAnally, John R.; Bhattacharyya, Samadrita; Schmidt, Florian; Grimm, Dirk; Hauschka, Stephen D.; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders. PMID:29187645

  5. Fukutin-related protein localizes to the Golgi apparatus and mutations lead to mislocalization in muscle in vivo.

    PubMed

    Keramaris-Vrantsis, Elizabeth; Lu, Pei J; Doran, Timothy; Zillmer, Allen; Ashar, Jignya; Esapa, Christopher T; Benson, Matthew A; Blake, Derek J; Rosenfeld, Jeffrey; Lu, Qi L

    2007-10-01

    Mutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo. Both normal human and mouse FKRPs localize in part of the Golgi apparatus in muscle fibers. Mutations in the FKRP gene invariably altered the localization of the protein, leading to endoplasmic reticulum retention within cells and diminished Golgi localization in muscle fibers. Our results therefore suggest that an individual missense point mutation can confer at least two independent effects on the protein, causing (1) reduction or loss of the presumed glycosyltransferase activity directly and (2) mislocalization that could further alter the function of the protein. The complexity of the effect of individual missense point mutations may partly explain the wide variation of the FKRP-related myopathies.

  6. Vegetation Red-edge Spectral Modeling for Solar-induced Chlorophyll Fluorescence Retrieval at O2-B Band

    NASA Astrophysics Data System (ADS)

    Huang, C.; Zhang, L.; Qiao, N.; Zhang, X.; Li, Y.

    2015-12-01

    Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been considered an ideal probe in monitoring global vegetation photosynthesis. However, challenges in accurate estimate of faint SIF (less than 5% of the total reflected radiation in near infrared bands) from the observed apparent reflected radiation greatly limit its wide applications. Currently, the telluric O2-B (~688nm) and O2-A (~761nm) have been proved to be capable of SIF retrieval based on Fraunhofer line depth (FLD) principle. They may still work well even using conventional ground-based commercial spectrometers with typical spectral resolutions of 2~5 nm and high enough signal-to-noise ratio (e.g., the ASD spectrometer). Nevertheless, almost all current FLD based algorithms were mainly developed for O2-A, a few concentrating on the other SIF emission peak in O2-B. One of the critical reasons is that it is very difficult to model the sudden varying reflectance around O2-B band located in the red-edge spectral region (about 680-800 nm). This study investigates a new method by combining the established inverted Gaussian reflectance model (IGM) and FLD principle using diurnal canopy spectra with relative low spectral resolutions of 1 nm (FluorMOD simulations) and 3 nm (measured by ASD spectrometer) respectively. The IGM has been reported to be an objective and good method to characterize the entire vegetation red-edge reflectance. Consequently, the proposed SIF retrieval method (hereinafter called IGMFLD) could exploit all the spectral information along the whole red-edge (680-800 nm) to obtain more reasonable reflectance and fluorescence correction coefficients than traditional FLD methods such as the iFLD. Initial results show that the IGMFLD can better capture the spectrally non-linear characterization of the reflectance in 680-800 nm and thereby yields much more accurate SIFs in O2-B than typical FLD methods, including sFLD, 3FLD and iFLD (see figure 1). Finally, uncertainties and prospect of the IGM-FLD, in contrast with sFLD, 3FLD and iFLD, were discussed here. This study may provide a test-bed for developing more robust methods to retrieve SIF in O2-B from aircraft (e.g. AisaIBIS fluorescence imager) or satellite (FLEX-FLORIS) remote sensing measurements.

  7. The Role of a Novel Myosin Isoform in Prostate Cancer Metastasis

    DTIC Science & Technology

    2013-10-01

    of unconventional myosin function and targeting, Annu. Rev. Cell Dev. Biol. 27 (2011) 133–155. [42] W. Kliche, S. Fujita- Becker , M. Kollmar, D.J...tissue-specific diseases (laminopathies), including Emery–Dreifuss muscular dystrophy , Dunnigan-type familial partial lipodystrophy (FPLD), and...structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies , cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823

  8. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  9. Dropped head congenital muscular dystrophy caused by de novo mutations in LMNA.

    PubMed

    Karaoglu, Pakize; Quizon, Nicolas; Pergande, Matthias; Wang, Haicui; Polat, Ayşe Ipek; Ersen, Ayca; Özer, Erdener; Willkomm, Lena; Hiz Kurul, Semra; Heredia, Raúl; Yis, Uluç; Selcen, Duygu; Çirak, Sebahattin

    2017-04-01

    Dropped head syndrome is an easily recognizable clinical presentation of Lamin A/C-related congenital muscular dystrophy. Patients usually present in the first year of life with profound neck muscle weakness, dropped head, and elevated serum creatine kinase. Two patients exhibited head drop during infancy although they were able to sit independently. Later they developed progressive axial and limb-girdle weakness. Creatine kinase levels were elevated and muscle biopsies of both patients showed severe dystrophic changes. The distinctive clinical hallmark of the dropped head led us to the diagnosis of Lamin A/C-related congenital muscular dystrophy, with a pathogenic de novo mutation p.Glu31del in the head domain of the Lamin A/C gene in both patients. Remarkably, one patient also had a central involvement with white matter changes on brain magnetic resonance imaging. Lamin A/C-related dropped-head syndrome is a rapidly progressive congenital muscular dystrophy and may lead to loss of ambulation, respiratory insufficiency, and cardiac complications. Thus, the genetic diagnosis of dropped-head syndrome as L-CMD and the implicated clinical care protocols are of vital importance for these patients. This disease may be underdiagnosed, as only a few genetically confirmed cases have been reported. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Adaptive Immune Response Impairs the Efficacy of Autologous Transplantation of Engineered Stem Cells in Dystrophic Dogs

    PubMed Central

    Sitzia, Clementina; Farini, Andrea; Jardim, Luciana; Razini, Paola; Belicchi, Marzia; Cassinelli, Letizia; Villa, Chiara; Erratico, Silvia; Parolini, Daniele; Bella, Pamela; da Silva Bizario, Joao Carlos; Garcia, Luis; Dias-Baruffi, Marcelo; Meregalli, Mirella; Torrente, Yvan

    2016-01-01

    Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin. PMID:27506452

  11. Asymptomatic dystrophinopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrone, A.; Hoffman, E.P.; Hoop, R.C.

    1997-03-31

    A 4-year-old girl was referred for evaluation for a mild but persistent serum aspartate aminotransferase (AST) elevation detected incidentally during routine blood screening for a skin infection. Serum creatine kinase activity was found to be increased. Immuno-histochemical study for dystrophin in her muscle biopsy showed results consistent with a carrier state for muscular dystrophy. Molecular work-up showed the proposita to be a carrier of a deletion mutation of exon 48 of the dystrophin gene. Four male relatives also had the deletion mutation, yet showed no clinical symptoms of muscular dystrophy (age range 8-58 yrs). Linkage analysis of the dystrophin genemore » in the family showed a spontaneous change of an STR45 allele, which could be due to either an intragenic double recombination event, or CA repeat length mutation leading to identical size alleles. To our knowledge, this is the first documentation of an asymptomatic dystrophinopathy in multiple males of advanced age. Based on molecular findings, this family would be given a diagnosis of Becker muscular dystrophy. This diagnosis implies the development of clinical symptoms, even though this family is clearly asymptomatic. This report underscores the caution which must be exercised when giving presymptomatic diagnoses based on molecular studies. 28 refs., 4 figs., 1 tab.« less

  12. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.

    PubMed

    Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M

    2015-11-02

    Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.

  13. Genetic diagnosis as a tool for personalized treatment of Duchenne muscular dystrophy.

    PubMed

    Bello, Luca; Pegoraro, Elena

    2016-12-01

    Accurate definition of genetic mutations causing Duchenne muscular dystrophy (DMD) has always been relevant in order to provide genetic counseling to patients and families, and helps to establish the prognosis in the case where the distinction between Duchenne, Becker, or intermediate muscular dystrophy is not obvious. As molecular treatments aimed at dystrophin restoration in DMD are increasingly available as commercialized drugs or within clinical trials, genetic diagnosis has become an indispensable tool in order to determine eligibility for these treatments. DMD patients in which multiplex ligation-dependent probe amplification (MLPA) or similar techniques show a deletion suitable to exon skipping of exons 44, 45, 51, or 53, may be currently treated with AONs targeting these exons, in the context of clinical trials, or, as is the case for exon 51 skipping in the United States, with the first commercialized drug (eteplirsen). Patients who test negative at MLPA, but in whom DMD gene sequencing shows a nonsense mutation, may be amenable for treatment with stop codon readthrough compounds such as ataluren. Novel molecular approaches such as CRISPR-Cas9 targeting of specific DMD mutations are still in the preclinical stages, but appear promising. In conclusion, an accurate genetic diagnosis represents the entrance into a new scenario of personalized medicine in DMD.

  14. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping

    PubMed Central

    Gao, Quan Q.; Wyatt, Eugene; Goldstein, Jeff A.; LoPresti, Peter; Castillo, Lisa M.; Gazda, Alec; Petrossian, Natalie; Earley, Judy U.; Hadhazy, Michele; Barefield, David Y.; Demonbreun, Alexis R.; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M.

    2015-01-01

    Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations. PMID:26457733

  15. Molecular Diagnosis of Putative Stargardt Disease by Capture Next Generation Sequencing

    PubMed Central

    Shi, Wei; Huang, Ping; Min, Qingjie; Li, Minghan; Yu, Xinping; Wu, Yaming; Zhao, Guangyu; Tong, Yi; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-01-01

    Stargardt Disease (STGD) is the commonest genetic form of juvenile or early adult onset macular degeneration, which is a genetically heterogeneous disease. Molecular diagnosis of STGD remains a challenge in a significant proportion of cases. To address this, seven patients from five putative STGD families were recruited. We performed capture next generation sequencing (CNGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Seven disease-causing mutations in ABCA4 and two in PROM1 were identified by CNGS, which provides a confident genetic diagnosis in these five families. We also provided a genetic basis to explain the differences among putative STGD due to various mutations in different genes. Meanwhile, we show for the first time that compound heterozygous mutations in PROM1 gene could cause cone-rod dystrophy. Our findings support the enormous potential of CNGS in putative STGD molecular diagnosis. PMID:24763286

  16. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes.

    PubMed

    Trivedi, Jaya R; Bundy, Brian; Statland, Jeffrey; Salajegheh, Mohammad; Rayan, Dipa Raja; Venance, Shannon L; Wang, Yunxia; Fialho, Doreen; Matthews, Emma; Cleland, James; Gorham, Nina; Herbelin, Laura; Cannon, Stephen; Amato, Anthony; Griggs, Robert C; Hanna, Michael G; Barohn, Richard J

    2013-07-01

    Non-dystrophic myotonias are rare diseases caused by mutations in skeletal muscle chloride and sodium ion channels with considerable phenotypic overlap between diseases. Few prospective studies have evaluated the sensitivity of symptoms and signs of myotonia in a large cohort of patients. We performed a prospective observational study of 95 participants with definite or clinically suspected non-dystrophic myotonia recruited from six sites in the USA, UK and Canada between March 2006 and March 2009. We used the common infrastructure and data elements provided by the NIH-funded Rare Disease Clinical Research Network. Outcomes included a standardized symptom interview and physical exam; the Short Form-36 and the Individualized Neuromuscular Quality of Life instruments; electrophysiological short and prolonged exercise tests; manual muscle testing; and a modified get-up-and-go test. Thirty-two participants had chloride channel mutations, 34 had sodium channel mutations, nine had myotonic dystrophy type 2, one had myotonic dystrophy type 1, and 17 had no identified mutation. Phenotype comparisons were restricted to those with sodium channel mutations, chloride channel mutations, and myotonic dystrophy type 2. Muscle stiffness was the most prominent symptom overall, seen in 66.7% to 100% of participants. In comparison with chloride channel mutations, participants with sodium mutations had an earlier age of onset of stiffness (5 years versus 10 years), frequent eye closure myotonia (73.5% versus 25%), more impairment on the Individualized Neuromuscular Quality of Life summary score (20.0 versus 9.44), and paradoxical eye closure myotonia (50% versus 0%). Handgrip myotonia was seen in three-quarters of participants, with warm up of myotonia in 75% chloride channel mutations, but also 35.3% of sodium channel mutations. The short exercise test showed ≥10% decrement in the compound muscle action potential amplitude in 59.3% of chloride channel participants compared with 27.6% of sodium channel participants, which increased post-cooling to 57.6% in sodium channel mutations. In evaluation of patients with clinical and electrical myotonia, despite considerable phenotypic overlap, the presence of eye closure myotonia, paradoxical myotonia, and an increase in short exercise test sensitivity post-cooling suggest sodium channel mutations. Outcomes designed to measure stiffness or the electrophysiological correlates of stiffness may prove useful for future clinical trials, regardless of underlying mutation, and include patient-reported stiffness, bedside manoeuvres to evaluate myotonia, muscle specific quality of life instruments and short exercise testing.

  17. Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization.

    PubMed

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S; Kristensen, Torsten; Otzen, Daniel E; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J; Nielsen, Niels Chr

    2013-12-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3' containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. © 2013.

  18. Patients with Duchenne muscular dystrophy are significantly shorter than those with Becker muscular dystrophy, with the higher incidence of short stature in Dp71 mutated subgroup.

    PubMed

    Matsumoto, Masaaki; Awano, Hiroyuki; Lee, Tomoko; Takeshima, Yasuhiro; Matsuo, Masafumi; Iijima, Kazumoto

    2017-11-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) are caused by mutations in the dystrophin gene and are characterized by severe and mild progressive muscle wasting, respectively. Short stature has been reported as a feature of DMD in the Western hemisphere, but not yet confirmed in Orientals. Height of young BMD has not been fully characterized. Here, height of ambulant and steroid naive Japanese 179 DMD and 42 BMD patients between 4 and 10 years of age was retrospectively examined using height standard deviation score (SDS). The mean height SDS of DMD was -1.08 SD that was significantly smaller than normal (p < 0.001), indicating short stature of Japanese DMD. Furthermore, the mean height SDS of BMD was -0.27 SD, suggesting shorter stature than normal. Remarkably, the mean height SDS of DMD was significantly smaller than that of BMD (p < 0.0001). In DMD higher incidence of short stature (height SDS < -2.5 SD) was observed in Dp71 subgroup having mutations in dystrophin exons 63-79 than others having mutations in exons 1-62 (27.8% vs. 7.5%, p = 0.017). These suggested that height is influenced by dystrophin in not only DMD but also BMD and that dystrophin Dp71 has a role in height regulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mutation in Transforming Growth Factor Beta Induced protein associated with Granular Corneal Dystrophy Type 1 Reduces the Proteolytic Susceptibility through Local Structural Stabilization#

    PubMed Central

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S.; Kristensen, Torsten; Otzen, Daniel E.; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J.; Nielsen, Niels Chr.

    2014-01-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3′ containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. PMID:24129074

  20. Prevalence and risk factors of fatty liver disease in the Shuiguohu district of Wuhan city, central China

    PubMed Central

    Wang, Zhongli; Xia, Bing; Ma, Chunwei; Hu, Zhengguo; Chen, Xiangqun; Cao, Ping

    2007-01-01

    Background Fatty liver disease (FLD) is highly prevalent in Western countries, but recent data have shown that FLD is also emerging in China. Aim To investigate the prevalence and risk factors of FLD in the Shuiguohu district of Wuhan city, central China, during 1995–2004. Methods 12247 individuals (7179 men and 5068 women) over 18 years of age who were living in the area were investigated for FLD in the Zhongnan Hospital of Wuhan University from 1995 to 2004. FLD was determined by the ultrasonographic method. Height, weight, blood pressure, fasting blood sugar, alanine aminotransferase, total cholesterol and triglyceride were determined by routine laboratory methods. Results The prevalence of FLD was 12.5% in 1995, and rose gradually to 24.5% by 2003–4. The prevalence was twice as high in men (28.1%) as in women (13.8%), and increased with age in females, and males <60 years of age. Multivariate analysis showed that several risk factors were profoundly associated with the prevalence of FLD, including male sex, old age, obesity, hyperlipidaemia (cholesterol or triglyceride), fasting hyperglycemia and hypertension. Conclusion The prevalence of FLD in the Shuiguohu district of Wuhan city, central China, was shown to have increased during the 10‐year period, 1995 to 2004. The FLD was found to be closely associated with sex, age, obesity and other metabolic syndrome features. PMID:17344575

  1. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.

    PubMed

    Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M

    2018-05-03

    Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.

  2. Linkage Study Revealed Complex Haplotypes in a Multifamily due to Different Mutations in CAPN3 Gene in an Iranian Ethnic Group.

    PubMed

    Mojbafan, Marzieh; Tonekaboni, Seyed Hassan; Abiri, Maryam; Kianfar, Soudeh; Sarhadi, Ameneh; Nilipour, Yalda; Tavakkoly-Bazzaz, Javad; Zeinali, Sirous

    2016-07-01

    Calpainopathy is an autosomal recessive form of limb girdle muscular dystrophies which is caused by mutation in CAPN3 gene. In the present study, co-segregation of this disorder was analyzed with four short tandem repeat markers linked to the CAPN3 gene. Three apparently unrelated Iranian families with same ethnicity were investigated. Haplotype analysis and sequencing of the CAPN3 gene were performed. DNA sample from one of the patients was simultaneously sent for next-generation sequencing. DNA sequencing identified two mutations. It was seen as a homozygous c.2105C>T in exon 19 in one family, a homozygous novel mutation c.380G>A in exon 3 in another family, and a compound heterozygote form of these two mutations in the third family. Next-generation sequencing also confirmed our results. It was expected that, due to the rare nature of limb girdle muscular dystrophies, affected individuals from the same ethnic group share similar mutations. Haplotype analysis showed two different homozygote patterns in two families, yet a compound heterozygote pattern in the third family as seen in the mutation analysis. This study shows that haplotype analysis would help in determining presence of different founders.

  3. A Streamlined Protocol for Molecular Testing of the DMD Gene within a Diagnostic Laboratory: A Combination of Array Comparative Genomic Hybridization and Bidirectional Sequence Analysis

    PubMed Central

    Marquis-Nicholson, Renate; Lai, Daniel; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Purpose. The aim of this study was to develop a streamlined mutation screening protocol for the DMD gene in order to confirm a clinical diagnosis of Duchenne or Becker muscular dystrophy in affected males and to clarify the carrier status of female family members. Methods. Sequence analysis and array comparative genomic hybridization (aCGH) were used to identify mutations in the dystrophin DMD gene. We analysed genomic DNA from six individuals with a range of previously characterised mutations and from eight individuals who had not previously undergone any form of molecular analysis. Results. We successfully identified the known mutations in all six patients. A molecular diagnosis was also made in three of the four patients with a clinical diagnosis who had not undergone prior genetic screening, and testing for familial mutations was successfully completed for the remaining four patients. Conclusion. The mutation screening protocol described here meets best practice guidelines for molecular testing of the DMD gene in a diagnostic laboratory. The aCGH method is a superior alternative to more conventional assays such as multiplex ligation-dependent probe amplification (MLPA). The combination of aCGH and sequence analysis will detect mutations in 98% of patients with the Duchenne or Becker muscular dystrophy. PMID:23476807

  4. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    PubMed

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  5. Prominent Optic Disc Featured in Inherited Retinopathy.

    PubMed

    Todorova, M G; Bojinova, R I; Valmaggia, C; Schorderet, D F

    2017-04-01

    Background We investigated the relationship between prominent optic disc (POD) and inherited retinal dystrophy (IRD). Patients and Methods A cross-sectional consecutive study was performed in 10 children and 11 adults of 7 non-related families. We performed clinical phenotyping, including a detailed examination, fundus autofluorescence, and colour fundus and OCT imaging. Genetic testing was subsequently performed for all family members presenting retinal pathology. Results In 4 members of a 3-generation family, hyperfluorescent deposits on the surface of POD were related to a p.(L224M) heterozygous mutation in BEST1 . In the second family, one member presented deposits located on the surface on hyperaemic OD and a compound p.(R141H);(A195V) mutation in BEST1 . In the third family, POD was observed in father and child with early onset cone-rod dystrophy and a novel autosomal recessive p.(W31*) homozygous mutation in ABCA4 . In the fourth family, POD with "mulberry-like" deposits and attenuated vessels were observed in a 7-year old girl, with a mutation in USH1A , and with early onset rod-cone dystrophy, associated with hearing loss. In the fifth family, blurry OD with tortuous vessels was observed in 4 consanguineous female carriers and a hemizygous boy with a p.(R200H) mutation in the X-linked retinoschisis RS1 . In the sixth family, a mother and her son were both affected with POD and attenuated peripapillary vessels, and presented with a p.(Y836C) heterozygous mutation in TOPORS , thus confirming autosomal dominant RP. In the seventh family, in 3 family members with POD, compound p.(L541P;A1038 V);(G1961E) mutations in ABCA4 confirmed the diagnosis of Stargardt disease. Conclusions A variety of OD findings are found in a genetically heterogeneous group of IRDs. In the presence of POD, an inherited progressive photoreceptor disease should be ruled out. Georg Thieme Verlag KG Stuttgart · New York.

  6. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    PubMed

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  7. Polymorphic Fibrillation of the Destabilized Fourth Fasciclin-1 Domain Mutant A546T of the Transforming Growth Factor-β-induced Protein (TGFBIp) Occurs through Multiple Pathways with Different Oligomeric Intermediates*

    PubMed Central

    Andreasen, Maria; Nielsen, Søren B.; Runager, Kasper; Christiansen, Gunna; Nielsen, Niels Chr.; Enghild, Jan J.; Otzen, Daniel E.

    2012-01-01

    Mutations in the transforming growth factor β-induced protein (TGFBIp) are linked to the development of corneal dystrophies in which abnormal protein deposition in the cornea leads to a loss of corneal transparency and ultimately blindness. Different mutations give rise to phenotypically distinct corneal dystrophies. Most mutations are located in the fourth fasciclin-1 domain (FAS1–4). The amino acid substitution A546T in the FAS1–4 domain is linked to the development of lattice corneal dystrophy with amyloid deposits in the superficial and deep stroma, classifying it as an amyloid disease. Here we provide a detailed description of the fibrillation of the isolated FAS1–4 domain carrying the A546T substitution. The A546T substitution leads to a significant destabilization of FAS1–4 and induces a partially folded structure with increased surface exposure of hydrophobic patches. The mutation also leads to two distinct fibril morphologies. Long straight fibrils composed of pure β-sheet structure are formed at lower concentrations, whereas short and curly fibrils containing a mixture of α-helical and β-sheet structures are formed at higher concentrations. The formation of short and curly fibrils is preceded by the formation of a small number of oligomeric species with high membrane permeabilization potential and rapid fibril formation. The long straight fibrils are formed more slowly and through progressively bigger oligomers that lose their membrane permeabilization potential as fibrillation proceeds beyond the lag phase. These different fibril classes and associated biochemical differences may lead to different clinical symptoms associated with the mutation. PMID:22893702

  8. Molecular Analysis-Based Genetic Characterization of a Cohort of Patients with Duchenne and Becker Muscular Dystrophy in Eastern China.

    PubMed

    Zhao, Hui-Hui; Sun, Xue-Ping; Shi, Ming-Chao; Yi, Yong-Xiang; Cheng, Hong; Wang, Xing-Xia; Xu, Qing-Cheng; Ma, Hong-Ming; Wu, Hao-Quan; Jin, Qing-Wen; Niu, Qi

    2018-04-05

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders caused by mutations in dystrophin gene. Multiplex polymerase chain reaction (multiplex PCR) and multiplex ligation-dependent probe amplification (MLPA) are the most common methods for detecting dystrophin gene mutations. This study aimed to contrast the two methods and discern the genetic characterization of patients with DMD/BMD in Eastern China. We collected 121 probands, 64 mothers of probands, and 15 fetuses in our study. The dystrophin gene was detected by multiplex PCR primarily in 28 probands, and MLPA was used in multiplex PCR-negative cases subsequently. The dystrophin gene of the remaining 93 probands and 62 female potential carriers was tested by MLPA directly. In fetuses, multiplex PCR and MLPA were performed on 4 fetuses and 10 fetuses, respectively. In addition, sequencing was also performed in 4 probands with negative MLPA. We found that 61.98% of the subjects had genetic mutations including deletions (50.41%) and duplications (11.57%). There were 43.75% of mothers as carriers of the mutation. In 15 fetuses, 2 out of 7 male fetuses were found to be unhealthy and 2 out of 8 female fetuses were found to be carriers. Exons 3-26 and 45-52 have the maximum frequency in mutation regions. In the frequency of exons individually, exon 47 and exon 50 were the most common in deleted regions and exons 5, 6, and 7 were found most frequently in duplicated regions. MLPA has better productivity and sensitivity than multiplex PCR. Prenatal diagnosis should be applied in DMD high-risk fetuses to reduce the disease incidence. Furthermore, it is the responsibility of physicians to inform female carriers the importance of prenatal diagnosis.

  9. Relationships between total lightning, deep convection, and tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Xu, Weixin; Rutledge, Steven A.; Zhang, Wenjuan

    2017-07-01

    This study investigates the characteristics of total lightning in the inner core (INCO, 0-100 km) and outer rainband (OB, 200-400 km) of tropical cyclones (TC). Relationships between flash density (FLD), convective intensity, and TC intensity change are further examined. FLD shows a bimodal structure with a strong maximum in the eyewall (INCO, 0-50 km) and a secondary maximum in the OB. FLD maximizes under conditions of warmest sea surface temperature (SST) and large values of vertical wind shear. Compared to OB FLD, INCO FLD is less sensitive to SST increase but shows greater variability in relation to shear. Intensifying TCs have substantially lower INCO (but higher OB) FLD compared to weakening and neutral TCs. Similar trends are shown in radar quantities (volume of 30 dBZ echoes in the mixed phase). rapidly intensifying (RI) TCs also show significantly smaller FLD and VOL30 than slowly intensifying TCs, indicating the potential of these parameters in forecasting RI. INCO (OB) FLD decreases (increases) 12-18 h preceding the onset of RI, while INCO (OB) FLD increases (decreases) 6-12 h prior to TC weakening. These relationships between lightning and TC intensity change (+24 h) are generally maintained regardless of prior (-24 h) TC intensity change status. However, convective depth and vertically integrated ice content in the INCO increased preceding TC intensification, suggesting the lack of supercooled liquid content and establishment of glaciated conditions (evident by an increase in the 20 dBZ and decrease in the 30 dBZ echo volume) in the INCO of intensifying TCs, especially RI.

  10. Generation of induced pluripotent stem cells from a patient with Best Dystrophy carrying 11q12.3 (BEST1 (VMD2)) mutation.

    PubMed

    Hsu, Chih-Chien; Lu, Huai-En; Chuang, Jen-Hua; Ko, Yu-Ling; Tsai, Yi-Ching; Tai, Hsiao-Yun; Yarmishyn, Aliaksandr A; Hwang, De-Kuang; Wang, Mong-Lien; Yang, Yi-Ping; Chen, Shih-Jen; Peng, Chi-Hsien; Chiou, Shih-Hwa; Lin, Tai-Chi

    2018-04-03

    Best disease (BD), also termed Best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and central visual loss. In this report, we generated an induced pluripotent stem cell (iPSC) line, TVGH-iPSC-012-04, from the peripheral blood mononuclear cells of a female patient with BD by using the Sendai virus delivery system. The resulting iPSCs retained the disease-causing DNA mutation, expressed pluripotent markers and could differentiate into three germ layers. We believe that BD patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease. Copyright © 2018. Published by Elsevier B.V.

  11. Genetic analysis of CHST6 and TGFBI in Turkish patients with corneal dystrophies: Five novel variations in CHST6

    PubMed Central

    Yaylacioglu Tuncay, Fulya; Kayman Kurekci, Gülsüm; Guntekin Ergun, Sezen; Pasaoglu, Ozge Tugce; Akata, Rustu Fikret; Dincer, Pervin Rukiye

    2016-01-01

    Purpose To identify pathogenic variations in carbohydrate sulfotransferase 6 (CHST6) and transforming growth factor, beta-induced (TGFBI) genes in Turkish patients with corneal dystrophy (CD). Methods In this study, patients with macular corneal dystrophy (MCD; n = 18), granular corneal dystrophy type 1 (GCD1; n = 12), and lattice corneal dystrophy type 1 (LCD1; n = 4), as well as 50 healthy controls, were subjected to clinical and genetic examinations. The level of antigenic keratan sulfate (AgKS) in the serum samples of patients with MCD was determined with enzyme-linked immunosorbent assay (ELISA) to immunophenotypically subtype the patients as MCD type I and MCD type II. DNA was isolated from venous blood samples from the patients and controls. Variations were analyzed with DNA sequencing in the coding region of CHST6 in patients with MCD and exons 4 and 12 in TGFBI in patients with LCD1 and GCD1. Clinical characteristics and the detected variations were evaluated to determine any existing genotype–phenotype correlations. Results The previously reported R555W mutation in TGFBI was detected in 12 patients with GCD1, and the R124C mutation in TGFBI was detected in four patients with LCD1. Serum AgKS levels indicated that 12 patients with MCD were in subgroup I, and five patients with MCD were in subgroup II. No genetic variation was detected in the coding region of CHST6 for three patients with MCD type II. In other patients with MCD, three previously reported missense variations (c. 1A>T, c.738C>G, and c.631 C>T), three novel missense variations (c.164 T>C, c.526 G>A, c. 610 C>T), and two novel frameshift variations (c.894_895 insG and c. 462_463 delGC) were detected. These variations did not exist in the control chromosomes, 1000 Genomes, and dbSNP. Conclusions This is the first molecular analysis of TGFBI and CHST6 in Turkish patients with different types of CD. We detected previously reported, well-known hot spot mutations in TGFBI in the patients with GCD1 and LCD1. Eight likely pathogenic variations in CHST6, five of them novel, were reported in patients with MCD, which enlarges the mutational spectrum of MCD. PMID:27829782

  12. Genetic analysis of CHST6 and TGFBI in Turkish patients with corneal dystrophies: Five novel variations in CHST6.

    PubMed

    Yaylacioglu Tuncay, Fulya; Kayman Kurekci, Gülsüm; Guntekin Ergun, Sezen; Pasaoglu, Ozge Tugce; Akata, Rustu Fikret; Dincer, Pervin Rukiye

    2016-01-01

    To identify pathogenic variations in carbohydrate sulfotransferase 6 ( CHST6 ) and transforming growth factor, beta-induced ( TGFBI ) genes in Turkish patients with corneal dystrophy (CD). In this study, patients with macular corneal dystrophy (MCD; n = 18), granular corneal dystrophy type 1 (GCD1; n = 12), and lattice corneal dystrophy type 1 (LCD1; n = 4), as well as 50 healthy controls, were subjected to clinical and genetic examinations. The level of antigenic keratan sulfate (AgKS) in the serum samples of patients with MCD was determined with enzyme-linked immunosorbent assay (ELISA) to immunophenotypically subtype the patients as MCD type I and MCD type II. DNA was isolated from venous blood samples from the patients and controls. Variations were analyzed with DNA sequencing in the coding region of CHST6 in patients with MCD and exons 4 and 12 in TGFBI in patients with LCD1 and GCD1. Clinical characteristics and the detected variations were evaluated to determine any existing genotype-phenotype correlations. The previously reported R555W mutation in TGFBI was detected in 12 patients with GCD1, and the R124C mutation in TGFBI was detected in four patients with LCD1. Serum AgKS levels indicated that 12 patients with MCD were in subgroup I, and five patients with MCD were in subgroup II. No genetic variation was detected in the coding region of CHST6 for three patients with MCD type II. In other patients with MCD, three previously reported missense variations (c. 1A>T, c.738C>G, and c.631 C>T), three novel missense variations (c.164 T>C, c.526 G>A, c. 610 C>T), and two novel frameshift variations (c.894_895 insG and c. 462_463 delGC) were detected. These variations did not exist in the control chromosomes, 1000 Genomes, and dbSNP. This is the first molecular analysis of TGFBI and CHST6 in Turkish patients with different types of CD. We detected previously reported, well-known hot spot mutations in TGFBI in the patients with GCD1 and LCD1. Eight likely pathogenic variations in CHST6 , five of them novel, were reported in patients with MCD, which enlarges the mutational spectrum of MCD.

  13. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    PubMed Central

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively. PMID:26536238

  14. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING.

    PubMed

    Hafler, Brian P

    2017-03-01

    Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.

  15. Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned

    PubMed Central

    Fernandez-San Jose, Patricia; Liu, Yichuan; March, Michael; Pellegrino, Renata; Golhar, Ryan; Corton, Marta; Blanco-Kelly, Fiona; López-Molina, Maria Isabel; García-Sandoval, Blanca; Guo, Yiran; Tian, Lifeng; Liu, Xuanzhu; Guan, Liping; Zhang, Jianguo; Keating, Brendan; Xu, Xun

    2015-01-01

    This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies. PMID:26197217

  16. LRRTM4-C538Y novel gene mutation is associated with hereditary macular degeneration with novel dysfunction of ON-type bipolar cells.

    PubMed

    Kawamura, Yuichi; Suga, Akiko; Fujimaki, Takuro; Yoshitake, Kazutoshi; Tsunoda, Kazushige; Murakami, Akira; Iwata, Takeshi

    2018-05-14

    The macula is a unique structure in higher primates, where cone and rod photoreceptors show highest density in the fovea and the surrounding area, respectively. The hereditary macular dystrophies represent a heterozygous group of rare disorders characterized by central visual loss and atrophy of the macula and surrounding retina. Here we report an atypical absence of ON-type bipolar cell response in a Japanese patient with autosomal dominant macular dystrophy (adMD). To identify a causal genetic mutation for the adMD, we performed whole-exome sequencing (WES) on four affected and four-non affected members of the family for three generations, and identified a novel p.C538Y mutation in a post-synaptic gene, LRRTM4. WES analysis revealed seven rare genetic variations in patients. We further referred to our in-house WES data from 1360 families with inherited retinal diseases, and found that only p.C538Y mutation in LRRTM4 was associated with adMD-affected patients. Combinatorial filtration using public database of single-nucleotide polymorphism frequency and genotype-phenotype annotated database identified novel mutation in atypical adMD.

  17. Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene.

    PubMed

    Klevering, B Jeroen; Blankenagel, Anita; Maugeri, Alessandra; Cremers, Frans P M; Hoyng, Carel B; Rohrschneider, Klaus

    2002-06-01

    To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were reviewed after molecular analysis revealed mutations in the ABCA4 gene. In two of the patients both the photopic and scotopic electroretinogram were nonrecordable. In the remainder, the photopic cone b-wave amplitudes appeared to be more seriously affected than the scotopic rod b-wave amplitudes. Although the clinical presentation was heterogeneous, all patients experienced visual loss early in life, impaired color vision, and a central scotoma. Fundoscopy revealed evidence of early-onset maculopathy, sometimes accompanied by involvement of the retinal periphery in the later stages of the disease. Mutations in the ABCA4 gene are the pathologic cause of the CRD-like dystrophy in these patients, and the resultant clinical pictures are complex and heterogeneous. Given this wide clinical spectrum of CRD-like phenotypes associated with ABCA4 mutations, detailed clinical subclassifications are difficult and may not be very useful.

  18. Clinical characteristics of occult macular dystrophy in family with mutation of RP1l1 gene.

    PubMed

    Tsunoda, Kazushige; Usui, Tomoaki; Hatase, Tetsuhisa; Yamai, Satoshi; Fujinami, Kaoru; Hanazono, Gen; Shinoda, Kei; Ohde, Hisao; Akahori, Masakazu; Iwata, Takeshi; Miyake, Yozo

    2012-06-01

    To report the clinical characteristics of occult macular dystrophy (OMD) in members of one family with a mutation of the RP1L1 gene. Fourteen members with a p.Arg45Trp mutation in the RP1L1 gene were examined. The visual acuity, visual fields, fundus photographs, fluorescein angiograms, full-field electroretinograms, multifocal electroretinograms, and optical coherence tomographic images were examined. The clinical symptoms and signs and course of the disease were documented. All the members with the RP1L1 mutation except one woman had ocular symptoms and signs of OMD. The fundus was normal in all the patients during the entire follow-up period except in one patient with diabetic retinopathy. Optical coherence tomography detected the early morphologic abnormalities both in the photoreceptor inner/outer segment line and cone outer segment tip line. However, the multifocal electroretinograms were more reliable in detecting minimal macular dysfunction at an early stage of OMD. The abnormalities in the multifocal electroretinograms and optical coherence tomography observed in the OMD patients of different durations strongly support the contribution of RP1L1 mutation to the presence of this disease.

  19. Eteplirsen in the treatment of Duchenne muscular dystrophy

    PubMed Central

    Lim, Kenji Rowel Q; Maruyama, Rika; Yokota, Toshifumi

    2017-01-01

    Duchenne muscular dystrophy is a fatal neuromuscular disorder affecting around one in 3,500–5,000 male births that is characterized by progressive muscular deterioration. It is inherited in an X-linked recessive fashion and is caused by loss-of-function mutations in the DMD gene coding for dystrophin, a cytoskeletal protein that stabilizes the plasma membrane of muscle fibers. In September 2016, the US Food and Drug Administration granted accelerated approval for eteplirsen (or Exondys 51), a drug that acts to promote dystrophin production by restoring the translational reading frame of DMD through specific skipping of exon 51 in defective gene variants. Eteplirsen is applicable for approximately 14% of patients with DMD mutations. This article extensively reviews and discusses the available information on eteplirsen to date, focusing on pharmacological, efficacy, safety, and tolerability data from preclinical and clinical trials. Issues faced by eteplirsen, particularly those relating to its efficacy, will be identified. Finally, the place of eteplirsen and exon skipping as a general therapeutic strategy in Duchenne muscular dystrophy treatment will be discussed. PMID:28280301

  20. Rhabdomyolysis featuring muscular dystrophies.

    PubMed

    Lahoria, Rajat; Milone, Margherita

    2016-02-15

    Rhabdomyolysis is a potentially life threatening condition of various etiology. The association between rhabdomyolysis and muscular dystrophies is under-recognized in clinical practice. To identify muscular dystrophies presenting with rhabdomyolysis at onset or as predominant feature. We retrospectively reviewed clinical and laboratory data of patients with a genetically confirmed muscular dystrophy in whom rhabdomyolysis was the presenting or main clinical manifestation. Thirteen unrelated patients (males=6; females=7) were identified. Median age at time of rhabdomyolysis was 18 years (range, 2-47) and median duration between the first episode of rhabdomyolysis and molecular diagnosis was 2 years. Fukutin-related protein (FKRP) muscular dystrophy (n=6) was the most common diagnosis, followed by anoctaminopathy-5 (n=3), calpainopathy-3 (n=2) and dystrophinopathy (n=2). Four patients experienced recurrent rhabdomyolysis. Eight patients were asymptomatic and 3 reported myalgia and exercise intolerance prior to the rhabdomyolysis. Exercise (n=6) and fever (n=4) were common triggers; rhabdomyolysis was unprovoked in 3 patients. Twelve patients required hospitalization. Baseline CK levels were elevated in all patients (median 1200 IU/L; range, 600-3600). Muscular dystrophies can present with rhabdomyolysis; FKRP mutations are particularly frequent in causing such complication. A persistently elevated CK level in patients with rhabdomyolysis warrants consideration for underlying muscular dystrophy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Genetic and clinical evaluation of juvenile retinoschisis.

    PubMed

    Kim, Judy E; Ruttum, Mark S; Koeberl, Matthew J; Hassemer, Eryn L; Sidjanin, D J

    2009-04-01

    Juvenile retinoschisis is a rare retinal dystrophy caused by RS1 gene mutations.(1) Clinical examinations and molecular testing definitively diagnosed juvenile retinoschisis in 2 male infants, one of whom had a novel mutation not previously reported in the United States. Genetic testing may be the simplest way to confirm this diagnosis in infants.

  2. Genetic and clinical evaluation of juvenile retinoschisis

    PubMed Central

    Kim, Judy E.; Ruttum, Mark S.; Koeberl, Matthew J.; Hassemer, Eryn L.; Sidjanin, D. J.

    2014-01-01

    Juvenile retinoschisis is a rare retinal dystrophy caused by RS1 gene mutations.1 Clinical examinations and molecular testing definitively diagnosed juvenile retinoschisis in 2 male infants, one of whom had a novel mutation not previously reported in the United States. Genetic testing may be the simplest way to confirm this diagnosis in infants. PMID:19393523

  3. Novel Mutations in the ZEB1 Gene Identified in Czech and British Patients With Posterior Polymorphous Corneal Dystrophy

    PubMed Central

    Liskova, Petra; Tuft, Stephen J.; Gwilliam, Rhian; Ebenezer, Neil D.; Jirsova, Katerina; Prescott, Quincy; Martincova, Radka; Pretorius, Marike; Sinclair, Neil; Boase, David L.; Jeffrey, Margaret J.; Deloukas, Panos; Hardcastle, Alison J.; Filipec, Martin; Bhattacharya, Shomi S.

    2009-01-01

    We describe the search for mutations in six unrelated Czech and four unrelated British families with posterior polymorphous corneal dystrophy (PPCD); a relatively rare eye disorder. Coding exons and intron/exon boundaries of all three genes (VSX1, COL8A2, and ZEB1/TCF8) previously reported to be implicated in the pathogenesis of this disorder were screened by DNA sequencing. Four novel pathogenic mutations were identified in four families; two deletions, one nonsense, and one duplication within exon 7 in the ZEB1 gene located at 10p11.2. We also genotyped the Czech patients to test for a founder haplotype and lack of disease segregation with the 20p11.2 locus we previously described. Although a systematic clinical examination was not performed, our investigation does not support an association between ZEB1 changes and self reported non-ocular anomalies. In the remaining six families no disease causing mutations were identified thereby indicating that as yet unidentified gene(s) are likely to be responsible for PPCD. PMID:17437275

  4. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy.

    PubMed

    Nakamura, Akinori; Fueki, Noboru; Shiba, Naoko; Motoki, Hirohiko; Miyazaki, Daigo; Nishizawa, Hitomi; Echigoya, Yusuke; Yokota, Toshifumi; Aoki, Yoshitsugu; Takeda, Shin'ichi

    2016-07-01

    Few cases of dystrophinopathy show an asymptomatic phenotype with mutations in the 5' (exons 3-7) hot spot in the Duchenne muscular dystrophy (DMD) gene. Our patient showed increased serum creatine kinase levels at 12 years of age. A muscle biopsy at 15 years of age led to a diagnosis of Becker muscular dystrophy. The patient showed a slight decrease in cardiac function at the age of 21 years and was administered a β-blocker, but there was no muscle involvement even at the age of 27 years. A deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene was detected, and dystrophin protein expression was ∼15% that of control level. We propose that in-frame deletion of exons 3-9 may produce a functional protein, and that multiexon skipping therapy targeting these exons may be feasible for severe dystrophic patients with a mutation in the 5' hot spot of the DMD gene.

  5. GPR56-Related Polymicrogyria: Clinicoradiologic Profile of 4 Patients.

    PubMed

    Desai, Neelu A; Udani, Vrajesh

    2015-11-01

    Bilateral frontoparietal polymicrogyria is an autosomal recessive cortical malformation associated with abnormalities of neuronal migration, white matter changes, and mild brainstem and cerebellar abnormalities. Affected patients present with delayed milestones, intellectual disability, epilepsy, ataxia, and eye movement abnormalities. The clinicoradiologic profile resembles congenital muscular dystrophy. However, no muscle disease or characteristic eye abnormalities of congenial muscular dystrophy are detected in these children. GPR56 is the only confirmed gene associated with bilateral frontoparietal polymicrogyria. Antenatal diagnosis is possible if the index case is genetically confirmed. Four patients from different Indian families with a distinct clinicoradiologic profile resembling congenital muscular dystrophy with mutations in the GPR56 gene are described. © The Author(s) 2015.

  6. CHST6 mutations in North American subjects with macular corneal dystrophy: a comprehensive molecular genetic review.

    PubMed

    Klintworth, Gordon K; Smith, Clayton F; Bowling, Brandy L

    2006-03-10

    To evaluate mutations in the carbohydrate sulfotransferase-6 (CHST6) gene in American subjects with macular corneal dystrophy (MCD). We analyzed CHST6 in 57 patients from 31 families with MCD from the United States, 57 carriers (parents or children), and 27 unaffected blood relatives of affected subjects. We compared the observed nucleotide sequences with those found by numerous investigators in other populations with MCD and in controls. In 24 families, the corneal disorder could be explained by mutations in the coding region of CHST6 or in the region upstream of this gene in both the maternal and paternal chromosome. In most instances of MCD a homozygous or heterozygous missense mutation in exon 3 of CHST6 was found. Six cases resulted from a deletion upstream of CHST6. Nucleotide changes within the coding region of CHST6 are predicted to alter the encoded protein significantly within evolutionary conserved parts of the encoded sulfotransferase. Our findings support the hypothesis that CHST6 mutations are cardinal to the pathogenesis of MCD. Moreover, the observation that some cases of MCD cannot be explained by mutations in CHST6 suggests that MCD may result from other subtle changes in CHST6 or from genetic heterogeneity.

  7. Visual function in patients with cone-rod dystrophy (CRD) associated with mutations in the ABCA4(ABCR) gene.

    PubMed

    Birch, D G; Peters, A Y; Locke, K L; Spencer, R; Megarity, C F; Travis, G H

    2001-12-01

    Mutations in the ABCA4(ABCR) gene cause autosomal recessive Stargardt disease (STGD). ABCR mutations were identified in patients with cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) by direct sequencing of all 50 exons in 40 patients. Of 10 patients with RP, one contained two ABCR mutations suggesting a compound heterozygote. This patient had a characteristic fundus appearance with attenuated vessels, pale disks and bone-spicule pigmentation. Rod electroretinograms (ERGs) were non-detectable, cone ERGs were greatly reduced in amplitude and delayed in implicit time, and visual fields were constricted to 10 degrees diameter. Eleven of 30 (37%) patients with CRD had mutations in ABCR. In general, these patients showed reduced but detectable rod ERG responses, reduced and delayed cone responses, and poor visual acuity. Rod photoresponses to high intensity flashes were of reduced maximum amplitude but showed normal values for the gain of phototransduction. Most CRD patients with mutations in ABCR showed delayed recovery of sensitivity (dark adaptation) following exposure to bright light. Pupils were also significantly smaller in these patients compared to controls at 30 min following light exposure, consistent with a persistent 'equivalent light' background due to the accumulation of a tentatively identified 'noisy' photoproduct. Copyright 2001 Academic Press.

  8. Cone opsins, colour blindness and cone dystrophy: Genotype-phenotype correlations.

    PubMed

    Gardner, J C; Michaelides, M; Hardcastle, A J

    2016-05-25

    X-linked cone photoreceptor disorders caused by mutations in the OPN1LW (L) and OPN1MW (M) cone opsin genes on chromosome Xq28 include a range of conditions from mild stable red-green colour vision deficiencies to severe cone dystrophies causing progressive loss of vision and blindness. Advances in molecular genotyping and functional analyses of causative variants, combined with deep retinal phenotyping, are unravelling genetic mechanisms underlying the variability of cone opsin disorders.

  9. COUP-TFII regulates satellite cell function and muscular dystrophy.

    PubMed

    Xie, Xin; Tsai, Sophia Y; Tsai, Ming-Jer

    2016-10-03

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disease caused by mutations in the dystrophin gene. Although dystrophin deficiency in myofiber triggers the disease's pathological changes, the degree of satellite cell (SC) dysfunction defines disease progression. Here, we have identified chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) hyperactivity as a contributing factor underlying muscular dystrophy in a dystrophin-deficient murine model of DMD. Ectopic expression of COUP-TFII in murine SCs led to Duchenne-like dystrophy in the muscles of control animals and exacerbated degenerative myopathies in dystrophin-deficient mice. COUP-TFII-overexpressing mice exhibited regenerative failure that was attributed to deficient SC proliferation and myoblast fusion. Mechanistically, we determined that COUP-TFII coordinated a regenerative program through combined regulation of multiple promyogenic factors. Furthermore, inhibition of COUP-TFII preserved SC function and counteracted the muscle weakness associated with Duchenne-like dystrophy in the murine model, suggesting that targeting COUP-TFII is a potential treatment for DMD. Together, our findings reveal a regulatory role of COUP-TFII in the development of muscular dystrophy and open up a potential therapeutic opportunity for managing disease progression in patients with DMD.

  10. Molecular evidence that the p55 gene is not responsible for either of two Xq28-linked disorders: Emery-Deifuss muscular dystrophy and dyskeratosis congenita

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzenberg, A.B.; Pan, Y.; Das, S.

    1994-05-01

    Mapping studies have indicated that over two dozen genetic diseases lie on Xq28, the distal long arm of the X chromosome. In most cases the responsible gene has not yet been isolated. Most of these diseases occur at low frequency, and together with small family sizes and the lack of associated cytogenetic aberrations, this characteristic has made isolation of the genes difficult. Identification of the genes responsible for inherited disorders should eventually lead to a greater understanding of biochemical and developmental pathways. We and others are attempting to find these genes by examining genes that are candidates by virtue ofmore » their map location. One candidate is the Xq28-linked gene MPP-1, which encodes the p55 protein. In this study, we asked whether mutations in the p55 gene are present in patients affected with the Xq28-linked disorders dyskeratosis congenita and Emergy-Dreifuss muscular dystrophy. The p55 cDNA is [approx]2 kb in length. The strategy for mutation detection in this sequence involved reverse transciption (RT)-PCR amplification of patient and control cDNA, yielding five sets of overlapping fragments, each set consisting of 400 bp, followed by SSCP analysis of each fragment. In no case was a true mutation in the p55 gene discovered. Therefore, it is highly unlikely that mutations in the p55 gene are responsible for any cases of dyskeratosis congenita or Emergy-Dreifuss muscular dystrophy.« less

  11. A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus.

    PubMed

    Barateau, Alice; Vadrot, Nathalie; Vicart, Patrick; Ferreiro, Ana; Mayer, Michèle; Héron, Delphine; Vigouroux, Corinne; Buendia, Brigitte

    2017-01-01

    A-type lamins, the intermediate filament proteins participating in nuclear structure and function, are encoded by LMNA. LMNA mutations can lead to laminopathies such as lipodystrophies, premature aging syndromes (progeria) and muscular dystrophies. Here, we identified a novel heterozygous LMNA p.R388P de novo mutation in a patient with a non-previously described severe phenotype comprising congenital muscular dystrophy (L-CMD) and lipodystrophy. In culture, the patient's skin fibroblasts entered prematurely into senescence, and some nuclei showed a lamina honeycomb pattern. C2C12 myoblasts were transfected with a construct carrying the patient's mutation; R388P-lamin A (LA) predominantly accumulated within the nucleoplasm and was depleted at the nuclear periphery, altering the anchorage of the inner nuclear membrane protein emerin and the nucleoplasmic protein LAP2-alpha. The mutant LA triggered a frequent and severe nuclear dysmorphy that occurred independently of prelamin A processing, as well as increased histone H3K9 acetylation. Nuclear dysmorphy was not significantly improved when transfected cells were treated with drugs disrupting microtubules or actin filaments or modifying the global histone acetylation pattern. Therefore, releasing any force exerted at the nuclear envelope by the cytoskeleton or chromatin did not rescue nuclear shape, in contrast to what was previously shown in Hutchinson-Gilford progeria due to other LMNA mutations. Our results point to the specific cytotoxic effect of the R388P-lamin A mutant, which is clinically related to a rare and severe multisystemic laminopathy phenotype.

  12. Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy.

    PubMed

    Batchelor, Clare L; Winder, Steve J

    2006-04-01

    The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.

  13. Functional changes in Becker muscular dystrophy: implications for clinical trials in dystrophinopathies.

    PubMed

    Bello, Luca; Campadello, Paola; Barp, Andrea; Fanin, Marina; Semplicini, Claudio; Sorarù, Gianni; Caumo, Luca; Calore, Chiara; Angelini, Corrado; Pegoraro, Elena

    2016-09-01

    We performed a 1-year longitudinal study of Six Minute Walk Test (6MWT), North Star Ambulatory Assessment (NSAA), and timed function tests in Becker muscular dystrophy (BMD). Skeletal muscle dystrophin was quantified by immunoblot. We grouped deletions ending on exon 45 ("del 45-x", n = 28) or 51 ("del x-51", n = 10); isolated exon 48 deletion ("del 48", n = 10); and other mutations (n = 21). Only patients in the "del 45-x" or "other" groups became non-ambulatory (n = 5, log-rank p = n.s.) or unable to run (n = 22, p < 0.001). All measures correlated positively with dystrophin quantity and negatively with age, and were significantly more impaired in the "del 45-x" and "other" groups. After one year, NSAA score decreased significantly (-0.9 ± 1.6, p < 0.001); in the "del 45-x" group, both NSAA (-1.3 ± 1.7, p = 0.001) and 6MWT (-12 ± 31 m, p = 0.059) decreased. We conclude that patients with "del x-51" or "del 48" mutations have mild or asymptomatic BMD, while "del 45-x" mutations cause comparatively severe weakness, and functional deterioration in 1 year. Furthermore, exon 51 skipping could be more effective than exon 45 skipping in Duchenne muscular dystrophy.

  14. Novel mutations of CHST6 in Iranian patients with macular corneal dystrophy

    PubMed Central

    Salehi, Zivar; Houshmand, Masoud; Mohamadi, Mohamad Javad; Promehr, Leila Azizade; Mozafarzadeh, Zahra

    2009-01-01

    Purpose To characterize mutations within the carbohydrate sulfotransferase 6 (CHST6) gene in Iranian subjects from 12 families with macular corneal dystrophy (MCD). Methods Genomic DNA was extracted from peripheral blood of 20 affected patients and 60 healthy volunteers followed by polymerase chain reaction (PCR) and direct sequencing of the CHST6 coding region. The observed nucleotide sequences were then compared with those found by investigators in other populations with MCD and in the controls. Results Analysis of CHST6 revealed 11 different mutations. These mutations were comprised of six novel missense mutations (p.F55L, p.P132L, p.S136G, p.C149Y, p.D203Y, and p.H249R), one novel nonsense mutation (p.S48X), one novel frame shift (after P297), and three previously reported missense mutations (p.P31L, p.C165Y, and p.R127C). The majority of the detected MCD mutations are located in the binding sites or the binding pocket, except the p.P31L and p.H249R mutations. Conclusions Nucleotide changes within the coding region of CHST6 are predicted to significantly alter the encoded sulfotransferase within the evolutionary conserved sequences. Our findings show that CHST6 mutations are responsible for the pathogenesis of MCD in Iranian patients. Moreover, the observation that some cases of MCD cannot be explained by mutations in the coding region of CHST6 suggests that MCD may result from possible upstream rearrangements in the CHST6 genomic region. PMID:19223992

  15. Novel mutations of CHST6 in Iranian patients with macular corneal dystrophy.

    PubMed

    Birgani, Shiva Akbari; Salehi, Zivar; Houshmand, Masoud; Mohamadi, Mohamad Javad; Promehr, Leila Azizade; Mozafarzadeh, Zahra

    2009-01-01

    To characterize mutations within the carbohydrate sulfotransferase 6 (CHST6) gene in Iranian subjects from 12 families with macular corneal dystrophy (MCD). Genomic DNA was extracted from peripheral blood of 20 affected patients and 60 healthy volunteers followed by polymerase chain reaction (PCR) and direct sequencing of the CHST6 coding region. The observed nucleotide sequences were then compared with those found by investigators in other populations with MCD and in the controls. Analysis of CHST6 revealed 11 different mutations. These mutations were comprised of six novel missense mutations (p.F55L, p.P132L, p.S136G, p.C149Y, p.D203Y, and p.H249R), one novel nonsense mutation (p.S48X), one novel frame shift (after P297), and three previously reported missense mutations (p.P31L, p.C165Y, and p.R127C). The majority of the detected MCD mutations are located in the binding sites or the binding pocket, except the p.P31L and p.H249R mutations. Nucleotide changes within the coding region of CHST6 are predicted to significantly alter the encoded sulfotransferase within the evolutionary conserved sequences. Our findings show that CHST6 mutations are responsible for the pathogenesis of MCD in Iranian patients. Moreover, the observation that some cases of MCD cannot be explained by mutations in the coding region of CHST6 suggests that MCD may result from possible upstream rearrangements in the CHST6 genomic region.

  16. Performance of fluorescence retrieval methods and fluorescence spectrum reconstruction under various sensor spectral configurations

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhao, Feng

    2015-10-01

    Solar-induced chlorophyll fluorescence is closely related to photosynthesis and can serve as an indicator of plant status. Several methods have been proposed to retrieve fluorescence signal (Fs) either at specific spectral bands or within the whole fluorescence emission region. In this study, we investigated the precision of the fluorescence signal obtained through these methods under various sensor spectral characteristics. Simulated datasets generated by the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model with known `true' Fs as well as an experimental dataset are exploited to investigate four commonly used Fs retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD), and the Spectral Fitting Methods (SFMs). Fluorescence Spectrum Reconstruction (FSR) method is also investigated using simulated datasets. The sensor characteristics of spectral resolution (SR) and signal-to-noise ratio (SNR) are taken into account. According to the results, finer SR and SNR both lead to better accuracy. Lowest precision is obtained for the FLD method with strong overestimation. Some improvements are made by the 3FLD method, but it still tends to overestimate. Generally, the iFLD method and the SFMs provide better accuracy. As to FSR, the shape and magnitude of reconstructed Fs are generally consistent with the `true' Fs distributions when fine SR is exploited. With coarser SR, however, though R2 of the retrieved Fs may be high, large bias is likely to be obtained as well.

  17. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    PubMed Central

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  18. Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy.

    PubMed

    Parodi, Maurizio Battaglia; Iacono, Pierluigi; Del Turco, Claudia; Bandello, Francesco

    2014-12-01

    To describe fundus autofluorescence (FAF) on short-wavelength FAF and near-infrared FAF in the subclinical form of Best vitelliform macular dystrophy. Cross-sectional prospective study. Patients affected by the subclinical form of Best vitelliform macular dystrophy (positive testing for BEST1 gene mutation, fully preserved best-corrected visual acuity, normal fundus appearance) were recruited. Each patient underwent a complete ophthalmologic examination, including electro-oculogram (EOG), short-wavelength FAF, near-infrared FAF, spectral-domain OCT (SD OCT), and microperimetry. Main outcome measure was the identification of abnormal FAF patterns. Forty-six patients showing mutations in the BEST1 gene were examined. Forty patients presented a bilateral Best vitelliform macular dystrophy, 2 patients showed a unilateral Best vitelliform macular dystrophy, and 4 patients had a bilateral subclinical form. Patients with the unilateral form (2 eyes) and patients with the subclinical form (8 eyes) were analyzed. Three BEST1 sequence variants were identified: c.73C>T (p.Arg25Trp), c.28G>A (p.Ala10Thr), and c.652C>G (p.Arg218Gly). Short-wavelength FAF was normal in all eyes. Near-infrared FAF detected a pattern consisting of a central hypo-autofluorescence surrounded by a round area of hyper-autofluorescence. A bilateral reduced EOG response was detected in 1 patient. SD OCT revealed a thicker, well-defined, and more reflective interdigitation zone in 2 patients (4 eyes, 40%). Microperimetry of the central 10 degrees revealed a slight, diffuse reduction of retinal sensitivity. Mean retinal sensitivity within the central 2 and 4 degrees was lower and matched the hypo-autofluorescent area detected on near-infrared FAF. Additional relative scotomata were detected within the 10-degree area. No change in clinical, functional, or FAF pattern was found over the follow-up. Subclinical Best vitelliform macular dystrophy is characterized by the absence of biomicroscopic fundus abnormality and fully preserved visual acuity, but shows an abnormal near-infrared FAF pattern, with central hypo-autofluorescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy

    PubMed Central

    Bengtsson, Niclas E.; Hall, John K.; Odom, Guy L.; Phelps, Michael P.; Andrus, Colin R.; Hawkins, R. David; Hauschka, Stephen D.; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2017-01-01

    Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders. PMID:28195574

  20. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center.

    PubMed

    Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee

    2017-05-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.

  1. Plasma amino acid profile associated with fatty liver disease and co-occurrence of metabolic risk factors.

    PubMed

    Yamakado, Minoru; Tanaka, Takayuki; Nagao, Kenji; Imaizumi, Akira; Komatsu, Michiharu; Daimon, Takashi; Miyano, Hiroshi; Tani, Mizuki; Toda, Akiko; Yamamoto, Hiroshi; Horimoto, Katsuhisa; Ishizaka, Yuko

    2017-11-03

    Fatty liver disease (FLD) increases the risk of diabetes, cardiovascular disease, and steatohepatitis, which leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, the early detection of FLD is necessary. We aimed to find a quantitative and feasible model for discriminating the FLD, based on plasma free amino acid (PFAA) profiles. We constructed models of the relationship between PFAA levels in 2,000 generally healthy Japanese subjects and the diagnosis of FLD by abdominal ultrasound scan by multiple logistic regression analysis with variable selection. The performance of these models for FLD discrimination was validated using an independent data set of 2,160 subjects. The generated PFAA-based model was able to identify FLD patients. The area under the receiver operating characteristic curve for the model was 0.83, which was higher than those of other existing liver function-associated markers ranging from 0.53 to 0.80. The value of the linear discriminant in the model yielded the adjusted odds ratio (with 95% confidence intervals) for a 1 standard deviation increase of 2.63 (2.14-3.25) in the multiple logistic regression analysis with known liver function-associated covariates. Interestingly, the linear discriminant values were significantly associated with the progression of FLD, and patients with nonalcoholic steatohepatitis also exhibited higher values.

  2. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy.

    PubMed

    van den Bergen, J C; Schade van Westrum, S M; Dekker, L; van der Kooi, A J; de Visser, M; Wokke, B H A; Straathof, C S; Hulsker, M A; Aartsma-Rus, A; Verschuuren, J J; Ginjaar, H B

    2014-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) are both caused by mutations in the DMD gene. Out-of-frame mutations in DMD lead to absence of the dystrophin protein, while in-frame BMD mutations cause production of internally deleted dystrophin. Clinically, patients with DMD loose ambulance around the age of 12, need ventilatory support at their late teens and die in their third or fourth decade due to pulmonary or cardiac failure. BMD has a more variable disease course. The disease course of patients with BMD with specific mutations could be very informative to predict the outcome of the exon-skipping therapy, aiming to restore the reading-frame in patients with DMD. Patients with BMD with a mutation equalling a DMD mutation after successful exon skipping were selected from the Dutch Dystrophinopathy Database. Information about disease course was gathered through a standardised questionnaire. Cardiac data were collected from medical correspondence and a previous study on cardiac function in BMD. Forty-eight patients were included, representing 11 different mutations. Median age of patients was 43 years (range 6-67). Nine patients were wheelchair users (26-56 years). Dilated cardiomyopathy was present in 7/36 patients. Only one patient used ventilatory support. Three patients had died at the age of 45, 50 and 76 years, respectively. This study provides mutation specific data on the course of disease in patients with BMD. It shows that the disease course of patients with BMD, with a mutation equalling a 'skipped' DMD mutation is relatively mild. This finding strongly supports the potential benefit of exon skipping in patients with DMD.

  3. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING

    PubMed Central

    HAFLER, BRIAN P.

    2017-01-01

    Purpose Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. Methods A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Results Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Conclusion Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies. PMID:27753762

  4. Isolation of Genes Involved in Rac Induced Invasion and Metastasis of Breast Carcinoma Cells

    DTIC Science & Technology

    2001-08-01

    dystrophy kinase-related Cdc42-binding kinase acts 64 oetGPernCaL.adMcr,1..(20) Myotonic4dystrophyrkinaseoretatedCdc42-bindingekrnasezatson. The cell...kinase homologous to myotonic dystrophy kinase. EMBO J. J. Biol. Chem. 273, 5542-5548. 15, 1885-1893. 97. Fukata, Y., Oshiro, N., Kinoshita, N., Kawano... Becker , D., Williams, D.S., Thorpe, J., Fleming, J., Brown, S.D. and Steel, K.P.: A missense mutation in myosin VIIA prevents aminoglycoside accumulation

  5. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

    PubMed Central

    Nichols, Bailey; Takeda, Shin’ichi; Yokota, Toshifumi

    2015-01-01

    Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular dystrophies (sarcoglycanopathies), are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS), which is localized at the muscle membrane by DGC members (dystrophin and syntrophins), plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ) and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain. PMID:26230713

  6. Identification of wheat varieties with a parallel-plate capacitance sensor using fisher linear discriminant analysis

    USDA-ARS?s Scientific Manuscript database

    Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...

  7. The ABCA4 2588G>C Stargardt mutation: single origin and increasing frequency from South-West to North-East Europe.

    PubMed

    Maugeri, Alessandra; Flothmann, Kris; Hemmrich, Nadine; Ingvast, Sofie; Jorge, Paula; Paloma, Eva; Patel, Reshma; Rozet, Jean-Michel; Tammur, Jaana; Testa, Francesco; Balcells, Susana; Bird, Alan C; Brunner, Han G; Hoyng, Carel B; Metspalu, Andres; Simonelli, Francesca; Allikmets, Rando; Bhattacharya, Shomi S; D'Urso, Michele; Gonzàlez-Duarte, Roser; Kaplan, Josseline; te Meerman, Gerard J; Santos, Rosário; Schwartz, Marianne; Van Camp, Guy; Wadelius, Claes; Weber, Bernhard H F; Cremers, Frans P M

    2002-03-01

    Inherited retinal dystrophies represent the most important cause of vision impairment in adolescence, affecting approximately 1 out of 3000 individuals. Mutations of the photoreceptor-specific gene ABCA4 (ABCR) are a common cause of retinal dystrophy. A number of mutations have been repeatedly reported for this gene, notably the 2588G>C mutation which is frequent in both patients and controls. Here we ascertained the frequency of the 2588G>C mutation in a total of 2343 unrelated random control individuals from 11 European countries and 241 control individuals from the US, as well as in 614 patients with STGD both from Europe and the US. We found an overall carrier frequency of 1 out of 54 in Europe, compared with 1 out of 121 in the US, confirming that the 2588G>C ABCA4 mutation is one of the most frequent autosomal recessive mutations in the European population. Carrier frequencies show an increasing gradient in Europe from South-West to North-East. The lowest carrier frequency, 0 out of 199 (0%), was found in Portugal; the highest, 11 out of 197 (5.5%), was found in Sweden. Haplotype analysis in 16 families segregating the 2588G>C mutation showed four intragenic polymorphisms invariably present in all 16 disease chromosomes and sharing of the same allele for several markers flanking the ABCA4 locus in most of the disease chromosomes. These results indicate a single origin of the 2588G>C mutation which, to our best estimate, occurred between 2400 and 3000 years ago.

  8. Genetics Home Reference: myotonic dystrophy

    MedlinePlus

    ... mutated gene produces an expanded version of messenger RNA , which is a molecular blueprint of the gene ... the production of proteins. The abnormally long messenger RNA forms clumps inside the cell that interfere with ...

  9. Identification of novel mutations of the CHST6 gene in Vietnamese families affected with macular corneal dystrophy in two generations.

    PubMed

    Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi

    2003-08-01

    To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).

  10. Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2.

    PubMed

    Mitsuhashi, Satomi; Boyden, Steven E; Estrella, Elicia A; Jones, Takako I; Rahimov, Fedik; Yu, Timothy W; Darras, Basil T; Amato, Anthony A; Folkerth, Rebecca D; Jones, Peter L; Kunkel, Louis M; Kang, Peter B

    2013-12-01

    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. PRPF3-Associated Autosomal Dominant Retinitis Pigmentosa and CYP4V2-Associated Bietti's Crystalline Corneoretinal Dystrophy Coexist in a Multigenerational Chinese Family.

    PubMed

    Meng, Xiaohong; Li, Qiyou; Guo, Hong; Xu, Haiwei; Li, Shiying; Yin, Zhengqin

    2017-01-01

    To characterize the clinical and molecular genetic characteristics of a large, multigenerational Chinese family showing different phenotypes. A pedigree consisted of 56 individuals in 5 generations was recruited. Comprehensive ophthalmic examinations were performed in 16 family members affected. Mutation screening of CYP4V2 was performed by Sanger sequencing. Next-generation sequencing (NGS) was performed to capture and sequence all exons of 47 known retinal dystrophy-associated genes in two affected family members who had no mutations in CYP4V2 . The detected variants in NGS were validated by Sanger sequencing in the family members. Two compound heterozygous CYP4V2 mutations (c.802-8_810del17insGC and c.992A>C) were detected in the proband who presented typical clinical features of BCD. One missense mutation (c.1482C>T, p.T494M) in the PRPF3 gene was detected in 9 out of 22 affected family members who manifested classical clinical features of RP. Our results showed that two compound heterozygous CYP4V2 mutations caused BCD, and one missense mutation in PRPF3 was responsible for adRP in this large family. This study suggests that accurate phenotypic diagnosis, molecular diagnosis, and genetic counseling are necessary for patients with hereditary retinal degeneration in some large mutigenerational family.

  12. Identifying mutations in Tunisian families with retinal dystrophy.

    PubMed

    Habibi, Imen; Chebil, Ahmed; Falfoul, Yosra; Allaman-Pillet, Nathalie; Kort, Fedra; Schorderet, Daniel F; El Matri, Leila

    2016-11-22

    Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.

  13. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    PubMed

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Muscle MRI and functional outcome measures in Becker muscular dystrophy.

    PubMed

    Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena

    2017-11-22

    Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.

  15. Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase.

    Treesearch

    Richard J. Baerends; Grietje J. Sulter; Thomas W. Jeffries; James M. Cregg; Marten Veenhuis

    2002-01-01

    Glutathione-dependent formaldehyde dehydrogenase (FLD) is a key enzyme required for the catabolism of methanol as a carbon source and certain primary amines, such as methylamine as nitrogen sources in methylotrophic yeasts. Here we describe the molecular characterization of the FLD1 gene from the yeast Hansenula polymorpha. Unlike the recently described Pichia pastoris...

  16. Use of the Polymerase Chain Reaction and Complementary DNA Probes in the Detection of Duchenne Muscular Dystrophy Carriers

    DTIC Science & Technology

    1990-01-01

    dominant or X-linked mutations, for example DMD and lethal osteogenesis imperfecta (1, 97). This phenomenon is the result of a dual population of...of the mutations. Am J Hum Genet 1988; 43: 620-29. 97. Cohn DH, Starman B, Blumberg B, Byers PH. Recurrence of lethal osteogenesis imperfecta due to

  17. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F

    1998-04-01

    Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

  18. Early Events in the Amyloid Formation of the A546T Mutant of Transforming Growth Factor β-Induced Protein in Corneal Dystrophies Compared to the Nonfibrillating R555W and R555Q Mutants.

    PubMed

    Koldsø, Heidi; Andersen, Ole Juul; Nikolajsen, Camilla Lund; Scavenius, Carsten; Sørensen, Charlotte S; Underhaug, Jarl; Runager, Kasper; Nielsen, Niels Chr; Enghild, Jan J; Schiøtt, Birgit

    2015-09-15

    The human transforming growth factor β-induced protein (TGFBIp) is involved in several types of corneal dystrophies where protein aggregation and amyloid fibril formation severely impair vision. Most disease-causing mutations are located in the last of four homologous fasciclin-1 (FAS1) domains of the protein, and it has been shown that when isolated, the fourth FAS1 domain (FAS1-4) mimics the behavior of full-length TGFBIp. In this study, we use molecular dynamics simulations and principal component analysis to study the wild-type FAS1-4 domain along with three disease-causing mutations (R555W, R555Q, and A546T) to decipher any internal difference in dynamical properties of the domains that may explain their varied stabilities and aggregation properties. In addition, we use a protein-protein docking method in combination with chemical cross-linking experiments and mass spectrometry of the cross-linked species to obtain information about interaction faces between identical FAS1-4 domains. The results show that the pathogenic mutations A546T and R555W affect the packing in the hydrophobic core of FAS1-4 in different directions. We further show that the FAS1-4 monomers associate using their β-rich regions, consistent with peptides observed to be part of the amyloid fibril core in lattice corneal dystrophy patients.

  19. Calpain 3 is important for muscle regeneration: evidence from patients with limb girdle muscular dystrophies.

    PubMed

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten; Angelini, Corrado; Vissing, John; Krag, Thomas O

    2012-03-23

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD) with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC), vimentin, MyoD and myogenin and counting internally nucleated fibers. We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  20. Clinical and molecular findings in three Lebanese families with Bietti crystalline dystrophy: report on a novel mutation.

    PubMed

    Haddad, Nour Maya N; Waked, Naji; Bejjani, Riad; Khoueir, Ziad; Chouery, Eliane; Corbani, Sandra; Mégarbané, André

    2012-01-01

    Bietti crystalline dystrophy (BCD) is a rare autosomal recessive disorder caused by mutation of the cytochrome P450, family 4, subfamily V, polypeptide 2 (CYP4V2) gene and characterized by retinal pigmentary abnormalities and scattered deposits of crystals in the retina and the marginal cornea. The aim of this study was to investigate the spectrum of mutations in CYP4V2 in Lebanese families, and to characterize the phenotype of patients affected with BCD. Nine patients from three unrelated Lebanese families were clinically and molecularly investigated. Detailed characterization of the patients' phenotype was performed with comprehensive ophthalmic examination, color vision study, fundus photography, visual field testing, retinal fluorescein angiography, electroretinography, and electrooculography. One family was followed for 12 years. The 11 exons of the CYP4V2 gene were sequenced. Symptoms consisting of night blindness, loss of paracentral visual field, and disturbed color vision were apparent during the third decade of life. Ophthalmoscopy revealed posterior pole crystalline deposits and areas of retinal pigment epithelium atrophy. Fluorescein angiography disclosed geographic areas of the pigment epithelium layer and choriocapillaris atrophy in the posterior pole and fundus periphery. The most striking findings were those of normal electroretinographic responses in some patients and clinical heterogeneity. Two mutations in CYP4V2 were found: p.I111T (c.332T>C) in exon 3 in two families and the novel p.V458M (c.1372G>A) mutation in exon 9 in one family. These patients are affected with Bietti crystalline dystrophy without corneal involvement. Variation in disease severity and electroretinographic responses suggests that environmental or additional genetic factors influence the course of the retinal disease. The CYP4V2 p.I111T (c.332T>C) mutant allele may be especially prevalent among patients with BCD in Lebanon, resulting from a single founder.

  1. Cognitive and Neurobehavioral Profile in Boys With Duchenne Muscular Dystrophy.

    PubMed

    Banihani, Rudaina; Smile, Sharon; Yoon, Grace; Dupuis, Annie; Mosleh, Maureen; Snider, Andrea; McAdam, Laura

    2015-10-01

    Duchenne muscular dystrophy is a progressive neuromuscular condition that has a high rate of cognitive and learning disabilities as well as neurobehavioral disorders, some of which have been associated with disruption of dystrophin isoforms. Retrospective cohort of 59 boys investigated the cognitive and neurobehavioral profile of boys with Duchenne muscular dystrophy. Full-scale IQ of < 70 was seen in 27%; learning disability in 44%, intellectual disability in 19%; attention-deficit/hyperactivity disorder in 32%; autism spectrum disorders in 15%; and anxiety in 27%. Mutations affecting Dp260 isoform and 5'untranslated region of Dp140 were observed in 60% with learning disability, 50% intellectual disability, 77% with autism spectrum disorders, and 94% with anxiety. No statistically significant correlation was noted between comorbidities and dystrophin isoforms; however, there is a trend of cumulative loss of dystrophin isoforms with declining full-scale IQ. Enhanced psychology testing to include both cognitive and neurobehavioral disorders is recommended for all individuals with Duchenne muscular dystrophy. © The Author(s) 2015.

  2. Co-incidence of Turner syndrome and Duchenne muscular dystrophy - an important problem for the clinician.

    PubMed

    Kaczorowska, Ewa; Zimowski, Janusz; Cichoń-Kotek, Monika; Mrozińska, Agnieszka; Purzycka, Joanna; Wierzba, Jolanta; Limon, Janusz; Lipska-Ziętkiewicz, Beata S

    Turner syndrome is a relatively common chromosomal disorder which affects about one in 2000 live born females. Duchenne muscular dystrophy is an X-linked recessive disorder affecting 1:3600 live born males. Considering the above, the coexistence of these two diseases may occur only anecdotally. Here, we report a 4 ½ year-old female with classical 45,X Turner syndrome who also had Duchenne muscular dystrophy caused by a point mutation in the dystrophin gene (c.9055delG). The patient showed the typical phenotype of Turner syndrome including distinctive dysmorphic features (short neck, low posterior hairline, wide position of nipples), aortic coarctation and feet lymphedema. Besides, she presented with an unusually early beginning of muscular dystrophy symptoms with infantile-onset motor developmental delay, intellectual disability and early calf muscular hypertrophy. The coexistence of an X-linked recessive disorder should be considered in women affected by Turner syndrome presenting with additional atypical clinical features.

  3. Prenatal molecular diagnosis of inherited neuromuscular diseases: Duchenne/Becker muscular dystrophy, myotonic dystrophy type 1 and spinal muscular atrophy.

    PubMed

    Esposito, Gabriella; Ruggiero, Raffaella; Savarese, Maria; Savarese, Giovanni; Tremolaterra, Maria Roberta; Salvatore, Francesco; Carsana, Antonella

    2013-12-01

    Neuromuscular disease is a broad term that encompasses many diseases that either directly, via an intrinsic muscle disorder, or indirectly, via a nerve disorder, impairs muscle function. Here we report the experience of our group in the counselling and molecular prenatal diagnosis of three inherited neuromuscular diseases, i.e., Duchenne/Becker muscular dystrophy (DMD/BMD), myotonic dystrophy type 1 (DM1), spinal muscular atrophy (SMA). We performed a total of 83 DMD/BMD, 15 DM1 and 54 SMA prenatal diagnoses using a combination of technologies for either direct or linkage diagnosis. We identified 16, 5 and 10 affected foetuses, respectively. The improvement of analytical procedures in recent years has increased the mutation detection rate and reduced the analytical time. Due to the complexity of the experimental procedures and the high, specific professional expertise required for both laboratory activities and the related counselling, these types of analyses should be preferentially performed in reference molecular diagnostic centres.

  4. Prevalence and Characteristics of Chinese Patients With Duchenne and Becker Muscular Dystrophy: A Territory Wide Collaborative Study in Hong Kong.

    PubMed

    Chan, Sophelia H S; Lo, Ivan F M; Cherk, Sharon W W; Cheng, Wai Wai; Fung, Eva L W; Yeung, Wai Lan; Ngan, Mary; Lee, Wing Cheong; Kwong, Ling; Wong, Suet Na; Ma, Che Kwan; Tai, Shuk Mui; Ng, Grace S F; Wu, Shun Ping; Wong, Virginia C N

    2015-01-01

    The aim of this collaborative study on Duchenne muscular dystrophy and Becker muscular dystrophy is to determine the prevalence and to develop data on such patients as a prelude to the development of registry in Hong Kong. Information on clinical and molecular findings, and patient care, was systematically collected in 2011 and 2012 from all Pediatric Neurology Units in Hong Kong. Ninety patients with dystrophinopathy were identified, and 83% has Duchenne muscular dystrophy. The overall prevalence of dystrophinopathy in Hong Kong in 2010 is 1.03 per 10 000 males aged 0 to 24 years. Among the Duchenne group, we observed a higher percentage (40.6%) of point mutations with a lower percentage (45.3%) of exon deletions in our patients when compared with overseas studies. Although we observed similar percentage of Duchenne group received scoliosis surgery, ventilation support, and cardiac treatment when compared with other countries, the percentage (25%) of steroid use is lower.

  5. Prevalence and Characteristics of Chinese Patients With Duchenne and Becker Muscular Dystrophy

    PubMed Central

    Lo, Ivan F. M.; Cherk, Sharon W. W.; Cheng, Wai Wai; Fung, Eva L. W.; Yeung, Wai Lan; Ngan, Mary; Lee, Wing Cheong; Kwong, Ling; Wong, Suet Na; Ma, Che Kwan; Tai, Shuk Mui; Ng, Grace S. F.; Wu, Shun Ping; Wong, Virginia C. N.

    2015-01-01

    The aim of this collaborative study on Duchenne muscular dystrophy and Becker muscular dystrophy is to determine the prevalence and to develop data on such patients as a prelude to the development of registry in Hong Kong. Information on clinical and molecular findings, and patient care, was systematically collected in 2011 and 2012 from all Pediatric Neurology Units in Hong Kong. Ninety patients with dystrophinopathy were identified, and 83% has Duchenne muscular dystrophy. The overall prevalence of dystrophinopathy in Hong Kong in 2010 is 1.03 per 10 000 males aged 0 to 24 years. Among the Duchenne group, we observed a higher percentage (40.6%) of point mutations with a lower percentage (45.3%) of exon deletions in our patients when compared with overseas studies. Although we observed similar percentage of Duchenne group received scoliosis surgery, ventilation support, and cardiac treatment when compared with other countries, the percentage (25%) of steroid use is lower. PMID:28503591

  6. Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.

    PubMed

    Marquardt, S; Boss, P K; Hadfield, J; Dean, C

    2006-01-01

    A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical set of activities the autonomous promotion pathway comprises sub-pathways of genes with different biochemical functions that all share FLC as a target. One sub-pathway involves FCA and FY, which interact to regulate RNA processing of FLC. Several of the identified components (FY, FVE, and FLD) are homologous to yeast and mammalian proteins with rather generic roles in gene regulation. So why do mutations in these genes specifically show a late-flowering phenotype in Arabidopsis? One reason, found during the analysis of fy alleles, is that the mutant alleles identified in flowering screens can be hypomorphic, they still have partial function. A broader role for the autonomous promotion pathway is supported by a microarray analysis which has identified genes mis-regulated in fca mutants, and whose expression is also altered in fy mutants.

  7. Autonomic dysfunction in muscular dystrophy: a theoretical framework for muscle reflex involvement

    PubMed Central

    Smith, Scott A.; Downey, Ryan M.; Williamson, Jon W.; Mizuno, Masaki

    2014-01-01

    Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy. PMID:24600397

  8. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes

    PubMed Central

    2009-01-01

    Background One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. Conclusion This automated process allows laboratories to discover DNA variations in a short time and at low cost. PMID:19835634

  9. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes.

    PubMed

    Bennett, Richard R; Schneider, Hal E; Estrella, Elicia; Burgess, Stephanie; Cheng, Andrew S; Barrett, Caitlin; Lip, Va; Lai, Poh San; Shen, Yiping; Wu, Bai-Lin; Darras, Basil T; Beggs, Alan H; Kunkel, Louis M

    2009-10-18

    One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive.These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels.The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. This automated process allows laboratories to discover DNA variations in a short time and at low cost.

  10. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles.

    PubMed

    Furuta, Mitsuru; Sumi-Akamaru, Hisae; Takahashi, Masanori P; Hayashi, Yukiko K; Nishino, Ichizo; Mochizuki, Hideki

    2016-09-01

    Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy

    PubMed Central

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B.; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S. Vasantha; Chandak, Giriraj Ratan

    2012-01-01

    Purpose Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3. PMID:22876130

  12. Novel mutations in the CHST6 gene associated with macular corneal dystrophy in southern India.

    PubMed

    Warren, John F; Aldave, Anthony J; Srinivasan, M; Thonar, Eugene J; Kumar, Abha B; Cevallos, Vicky; Whitcher, John P; Margolis, Todd P

    2003-11-01

    To further characterize the role of the carbohydrate sulfotransferase (CHST6) gene in macular corneal dystrophy (MCD) through identification of causative mutations in a cohort of affected patients from southern India. Genomic DNA was extracted from buccal epithelium of 75 patients (51 families) with MCD, 33 unaffected relatives, and 48 healthy volunteers. The coding region of the CHST6 gene was evaluated by means of polymerase chain reaction amplification and direct sequencing. Subtyping of MCD into types I and II was performed by measuring serum levels of antigenic keratan sulfate. Seventy patients were classified as having type I MCD, and 5 patients as having type II MCD. Analysis of the CHST6 coding region in patients with type I MCD identified 11 homozygous missense mutations (Leu22Arg, His42Tyr, Arg50Cys, Arg50Leu, Ser53Leu, Arg97Pro, Cys102Tyr, Arg127Cys, Arg205Gln, His249Pro, and Glu274Lys), 2 compound heterozygous missense mutations (Arg93His and Ala206Thr), 5 homozygous deletion mutations (delCG707-708, delC890, delA1237, del1748-1770, and delORF), and 2 homozygous replacement mutations (ACCTAC 1273 GGT, and GCG 1304 AT). One patient with type II MCD was heterozygous for the C890 deletion mutation, whereas 4 possessed no CHST6 coding region mutations. A variety of previously unreported mutations in the coding region of the CHST6 gene are associated with type I MCD in a cohort of patients in southern India. An improved understanding of the genetic basis of MCD allows for earlier, more accurate diagnosis of affected individuals, and may provide the foundation for the development of novel disease treatments.

  13. Novel mutations in the helix termination motif of keratin 3 and keratin 12 in 2 Taiwanese families with Meesmann corneal dystrophy.

    PubMed

    Chen, Ying-Ting; Tseng, Sung-Huei; Chao, Sheau-Chiou

    2005-11-01

    To analyze mutations of the keratin 3 gene (KRT3) and keratin 12 gene (KRT12) in 2 Taiwanese families with Meesmann corneal dystrophy (MCD). Diagnosis of MCD was confirmed by slit-lamp examination of the cornea in 4 members of family 1 and 6 members of family 2. All exons and flanking intron boundaries of KRT3 and KRT12 were amplified by polymerase chain reaction (PCR), and products were subjected to direct sequencing. Restriction fragment length polymorphism analysis (RFLP) with created mismatch primers, Bst XI and Nsp I, was used to confirm the presence of the mutations in affected individuals in family 1 and family 2, respectively. A novel heterozygous missense mutation (1508G-->C), predicting the substitution of a proline for an arginine (R503P) was detected in the helix termination motif of the keratin 3 polypeptide in family 1. Another novel heterozygous missense mutation (1286A-->G), predicting the substitution of a cysteine for a tyrosine at codon 429 (Y429C) was detected in the helix termination motif of the keratin 12 polypeptide in family 2. These 2 mutations were excluded from 50 normal controls by RFLP analysis, indicating that they were not common polymorphisms. A novel missense mutation (R503P) in KRT3 and another novel missense mutation (Y429C) in KRT12 lead to MCD in 2 unrelated Taiwanese families. The mutant codons in our study are all located in the highly conserved alpha-helix-termination motif, which is essential for keratin filament assembly. Mutation at this area may account for the disruption of keratin filament assembly, leading to MCD.

  14. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  15. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy.

    PubMed

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S Vasantha; Chandak, Giriraj Ratan; Kumar, Arun

    2012-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

  16. Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.

    PubMed

    Long, Chengzu; Amoasii, Leonela; Bassel-Duby, Rhonda; Olson, Eric N

    2016-11-01

    Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing. PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9-mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1, were also reviewed. Multiple proof-of-concept studies reveal the feasibility and efficacy of genome-editing-meditated correction of monogenic neuromuscular diseases in cultured cells and animal models. Genome editing is a rapidly evolving technology with enormous translational potential once efficacy, delivery, and safety issues are addressed. The clinical impact of this technology is that genome editing can permanently correct disease-causing mutations and circumvent the hurdles of traditional gene- and cell-based therapies.

  17. Genome Editing of Monogenic Neuromuscular Diseases

    PubMed Central

    Long, Chengzu; Amoasii, Leonela; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    IMPORTANCE Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. OBJECTIVES To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing. EVIDENCE REVIEW PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, andmyotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9–mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1, were also reviewed. FINDINGS Multiple proof-of-concept studies reveal the feasibility and efficacy of genome-editing–meditated correction of monogenic neuromuscular diseases in cultured cells and animal models. CONCLUSIONS AND RELEVANCE Genome editing is a rapidly evolving technology with enormous translational potential once efficacy, delivery, and safety issues are addressed. The clinical impact of this technology is that genome editing can permanently correct disease-causing mutations and circumvent the hurdles of traditional gene- and cell-based therapies. PMID:27668807

  18. Genetics Home Reference: tibial muscular dystrophy

    MedlinePlus

    ... I, Eymard B, Pardal-Fernández JM, Hammouda el-H, Richard I, Illa I, Udd B. Truncating mutations ... Citation on PubMed Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt ...

  19. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls.

    PubMed

    Fanin, Marina; Angelini, Corrado

    2015-08-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology. © 2015 Wiley Periodicals, Inc.

  20. Analyzing the impact of sensor characteristics on retrieval methods of solar-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Wenjuan; Zhao, Feng; Yang, Lizi

    2017-02-01

    In this study, we evaluated the influence of retrieval algorithms and sensor characteristics, such as spectral resolution (SR) and signal to noise ratio (SNR), on the retrieval accuracy of fluorescence signal (Fs). Here Fs was retrieved by four commonly used retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD) and the spectral fitting method (SFM). Fs was retrieved in the oxygen A band centered at around 761nm (O2-A). We analyzed the impact of sensor characteristics on four retrieval methods based on simulated data which were generated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), and obtained consistent conclusions when compared with experimental data. Results presented in this study indicate that both retrieval algorithms and sensor characteristics affect the retrieval accuracy of Fs. When applied to the actual measurement, we should choose the instrument with higher performance and adopt appropriate retrieval method according to measuring instruments and conditions.

  1. Novel mutations in CRB1 and ABCA4 genes cause Leber congenital amaurosis and Stargardt disease in a Swedish family

    PubMed Central

    Jonsson, Frida; Burstedt, Marie S; Sandgren, Ola; Norberg, Anna; Golovleva, Irina

    2013-01-01

    This study aimed to identify genetic mechanisms underlying severe retinal degeneration in one large family from northern Sweden, members of which presented with early-onset autosomal recessive retinitis pigmentosa and juvenile macular dystrophy. The clinical records of affected family members were analysed retrospectively and ophthalmological and electrophysiological examinations were performed in selected cases. Mutation screening was initially performed with microarrays, interrogating known mutations in the genes associated with recessive retinitis pigmentosa, Leber congenital amaurosis and Stargardt disease. Searching for homozygous regions with putative causative disease genes was done by high-density SNP-array genotyping, followed by segregation analysis of the family members. Two distinct phenotypes of retinal dystrophy, Leber congenital amaurosis and Stargardt disease were present in the family. In the family, four patients with Leber congenital amaurosis were homozygous for a novel c.2557C>T (p.Q853X) mutation in the CRB1 gene, while of two cases with Stargardt disease, one was homozygous for c.5461-10T>C in the ABCA4 gene and another was carrier of the same mutation and a novel ABCA4 mutation c.4773+3A>G. Sequence analysis of the entire ABCA4 gene in patients with Stargardt disease revealed complex alleles with additional sequence variants, which were evaluated by bioinformatics tools. In conclusion, presence of different genetic mechanisms resulting in variable phenotype within the family is not rare and can challenge molecular geneticists, ophthalmologists and genetic counsellors. PMID:23443024

  2. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    PubMed

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies.

    PubMed

    McInerney-Leo, A M; Harris, J E; Leo, P J; Marshall, M S; Gardiner, B; Kinning, E; Leong, H Y; McKenzie, F; Ong, W P; Vodopiutz, J; Wicking, C; Brown, M A; Zankl, A; Duncan, E L

    2015-12-01

    Short-rib thoracic dystrophies (SRTDs) are congenital disorders due to defects in primary cilium function. SRTDs are recessively inherited with mutations identified in 14 genes to date (comprising 398 exons). Conventional mutation detection (usually by iterative Sanger sequencing) is inefficient and expensive, and often not undertaken. Whole exome massive parallel sequencing has been used to identify new genes for SRTD (WDR34, WDR60 and IFT172); however, the clinical utility of whole exome sequencing (WES) has not been established. WES was performed in 11 individuals with SRTDs. Compound heterozygous or homozygous mutations were identified in six confirmed SRTD genes in 10 individuals (IFT172, DYNC2H1, TTC21B, WDR60, WDR34 and NEK1), giving overall sensitivity of 90.9%. WES data from 993 unaffected individuals sequenced using similar technology showed two individuals with rare (minor allele frequency <0.005) compound heterozygous variants of unknown significance in SRTD genes (specificity >99%). Costs for consumables, laboratory processing and bioinformatic analysis were

  4. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins.

    PubMed

    Capitanchik, Charlotte; Dixon, Charles; Swanson, Selene K; Florens, Laurence; Kerr, Alastair R W; Schirmer, Eric C

    2018-06-18

    Nuclear envelopathies/laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. One possible explanation of this tissue specificity is that tissue-specific partners become disrupted from larger complexes, but a little investigated alternate hypothesis is that the mutated proteins themselves have tissue-specific splice variants. Here, we analyze RNA-Seq datasets to identify muscle-specific splice variants of nuclear envelope genes that could be relevant to the study of laminopathies, particularly muscular dystrophies, that are not currently annotated in sequence databases. Notably, we found novel isoforms or tissue-specificity of isoforms for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, a regulator of the emerin gene that is linked to Emery-Dreifuss muscular dystrophy. Interestingly, the muscle-specific exon in Lmo7 is rich in serine phosphorylation motifs, suggesting an important regulatory function. Evidence for muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies was also found. Tissue-specific variants were also indicated for several nucleoporins including Nup54, Nup133, Nup153 and Nup358/RanBP2. We confirmed expression of novel Lmo7 and RanBP2 variants with RT-PCR and found that specific knockdown of the Lmo7 variant caused a reduction in myogenic index during mouse C2C12 myogenesis. Global analysis revealed an enrichment of tissue-specific splice variants for nuclear envelope proteins in general compared to the rest of the genome, suggesting that splice variants contribute to regulating its tissue-specific functions.

  5. Serum Creatinine Distinguishes Duchenne Muscular Dystrophy from Becker Muscular Dystrophy in Patients Aged ≤3 Years: A Retrospective Study.

    PubMed

    Wang, Liang; Chen, Menglong; He, Ruojie; Sun, Yiming; Yang, Juan; Xiao, Lulu; Cao, Jiqing; Zhang, Huili; Zhang, Cheng

    2017-01-01

    Here, we investigated correlations between serum creatinine (SCRN) levels and clinical phenotypes of dystrophinopathy in young patients. Sixty-eight patients with dystrophinopathy at the Neuromuscular Clinic, The First Affiliated Hospital, Sun Yat-sen University, were selected for this study. The diagnosis of dystrophinopathy was based on clinical manifestation, biochemical changes, and molecular analysis. Some patients underwent muscle biopsies; SCRN levels were tested when patients were ≤3 years old, and reading frame changes were analyzed. Each patient was followed up, and motor function and clinical phenotype were assessed when the same patients were ≥4 years old. Our findings indicated that in young patients, lower SCRN levels were associated with increased disease severity ( p  < 0.01) and that SCRN levels were the highest in patients exhibiting mild Becker muscular dystrophy (BMD) ( p  < 0.001) and the lowest in patients with Duchenne muscular dystrophy (DMD) ( p  < 0.01) and were significantly higher in patients carrying in-frame mutations than in patients carrying out-of-frame mutations ( p  < 0.001). SCRN level cutoff values for identifying mild BMD [18 µmol/L; area under the curve (AUC): 0.947; p  < 0.001] and DMD (17 µmol/L; AUC: 0.837; p  < 0.001) were established. These results suggest that SCRN might be a valuable biomarker for distinguishing DMD from BMD in patients aged ≤3 years and could assist in the selection of appropriate treatment strategies.

  6. Serum Creatinine Distinguishes Duchenne Muscular Dystrophy from Becker Muscular Dystrophy in Patients Aged ≤3 Years: A Retrospective Study

    PubMed Central

    Wang, Liang; Chen, Menglong; He, Ruojie; Sun, Yiming; Yang, Juan; Xiao, Lulu; Cao, Jiqing; Zhang, Huili; Zhang, Cheng

    2017-01-01

    Here, we investigated correlations between serum creatinine (SCRN) levels and clinical phenotypes of dystrophinopathy in young patients. Sixty-eight patients with dystrophinopathy at the Neuromuscular Clinic, The First Affiliated Hospital, Sun Yat-sen University, were selected for this study. The diagnosis of dystrophinopathy was based on clinical manifestation, biochemical changes, and molecular analysis. Some patients underwent muscle biopsies; SCRN levels were tested when patients were ≤3 years old, and reading frame changes were analyzed. Each patient was followed up, and motor function and clinical phenotype were assessed when the same patients were ≥4 years old. Our findings indicated that in young patients, lower SCRN levels were associated with increased disease severity (p < 0.01) and that SCRN levels were the highest in patients exhibiting mild Becker muscular dystrophy (BMD) (p < 0.001) and the lowest in patients with Duchenne muscular dystrophy (DMD) (p < 0.01) and were significantly higher in patients carrying in-frame mutations than in patients carrying out-of-frame mutations (p < 0.001). SCRN level cutoff values for identifying mild BMD [18 µmol/L; area under the curve (AUC): 0.947; p < 0.001] and DMD (17 µmol/L; AUC: 0.837; p < 0.001) were established. These results suggest that SCRN might be a valuable biomarker for distinguishing DMD from BMD in patients aged ≤3 years and could assist in the selection of appropriate treatment strategies. PMID:28533764

  7. Prevalence and risk factors for farmer's lung in greenhouse farmers: an epidemiological study of 5,880 farmers from Northeast China.

    PubMed

    Liu, Shuo; Chen, Donghong; Fu, Shuang; Ren, Yangang; Wang, Lingling; Zhang, Yibing; Zhao, Mingjing; He, Xiaoyu; Wang, Xiaoge

    2015-03-01

    The objectives of this epidemiological study were to evaluate the prevalence of farmer's lung disease (FLD) and to explore the potential risk factors for FLD among Chinese greenhouse farmers. A total of 835 plastic film greenhouses, including 5,880 active farmers who engaged in crop cultivation or poultry farming, were randomly selected from the rural regions of Northeastern China. These farmers participated in the study by answering a medical questionnaire. 5,420 greenhouse farmers accepted and answered questionnaires in full (response rate, 92.18 %). Prevalence of FLD among these farmers was 5.7 % (308/5,420). Besides, a number of classic risk factors for FLD were identified, such as years of age, shorter time interval for re-entry greenhouse, ventilation frequency of greenhouse more than once per 4 h, the area of greenhouses greater than 30 m(2) but without a ventilation facility, ventilation duration less than 30 min every time, greenhouse with height less than 1.8 m, greenhouse with humidity greater than 65 %, frequent exposure to moldy materials in greenhouse, living inside greenhouse, and et al. FLD is and will continue to be a real health problem for Chinese farmers. If these preventive measures are implemented, the prevalence of FLD in Chinese greenhouse farmers might be greatly reduced.

  8. Consequences of a novel caveolin-3 mutation in a large German family.

    PubMed

    Fischer, Dirk; Schroers, Anja; Blümcke, Ingmar; Urbach, Horst; Zerres, Klaus; Mortier, Wilhelm; Vorgerd, Matthias; Schröder, Rolf

    2003-02-01

    Mutations in the human caveolin-3 gene (cav-3) on chromosome 3p25 have been described in limb girdle muscular dystrophy, rippling muscle disease, hyperCKemia, and distal myopathy. Here, we describe the genetic, myopathological, and clinical findings in a large German family harboring a novel heterozygous mutation (GAC-->GAA) in codon 27 of the cav-3 gene. This missense mutation causes an amino acid change from asparagine to glutamate (Asp27Glu) in the N-terminal region of the Cav-3 protein, which leads to a drastic decrease of Cav-3 protein expression in skeletal muscle tissue. In keeping with an autosomal dominant mode of inheritance, this novel cav-3 mutation was found to cosegregate with neuromuscular involvement in the reported family. Ultrastructural analysis of Cav-3-deficient muscle showed an abnormal folding of the plasma membrane as well as multiple vesicular structures in the subsarcolemmal region. Neurological examination of all nine subjects from three generations harboring the novel cav-3 mutation showed clear evidence of rippling muscle disease. However, only two of these nine patients showed isolated signs of rippling muscle disease without muscle weakness or atrophy, whereas five had additional signs of a distal myopathy and two fulfilled the diagnostic criteria of a coexisting limb girdle muscular dystrophy. These findings indicate that mutations in the human cav-3 gene can lead to different and overlapping clinical phenotypes even within the same family. Different clinical phenotypes in caveolinopathies may be attributed to so far unidentified modifying factors/genes in the individual genetic background of affected patients.

  9. Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1

    PubMed Central

    Savić Pavićević, Dušanka; Miladinović, Jelena; Brkušanin, Miloš; Šviković, Saša; Djurica, Svetlana; Brajušković, Goran; Romac, Stanka

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling. PMID:23586035

  10. Whole exome sequencing using Ion Proton system enables reliable genetic diagnosis of inherited retinal dystrophies

    PubMed Central

    Riera, Marina; Navarro, Rafael; Ruiz-Nogales, Sheila; Méndez, Pilar; Burés-Jelstrup, Anniken; Corcóstegui, Borja; Pomares, Esther

    2017-01-01

    Inherited retinal dystrophies (IRD) comprise a wide group of clinically and genetically complex diseases that progressively affect the retina. Over recent years, the development of next-generation sequencing (NGS) methods has transformed our ability to diagnose heterogeneous diseases. In this work, we have evaluated the implementation of whole exome sequencing (WES) for the molecular diagnosis of IRD. Using Ion ProtonTM system, we simultaneously analyzed 212 genes that are responsible for more than 25 syndromic and non-syndromic IRD. This approach was used to evaluate 59 unrelated families, with the pathogenic variant(s) successfully identified in 71.18% of cases. Interestingly, the mutation detection rate varied substantially depending on the IRD subtype. Overall, we found 63 different mutations (21 novel) in 29 distinct genes, and performed in vivo functional studies to determine the deleterious impact of variants identified in MERTK, CDH23, and RPGRIP1. In addition, we provide evidences that support CDHR1 as a gene responsible for autosomal recessive retinitis pigmentosa with early macular affectation, and present data regarding the disease mechanism of this gene. Altogether, these results demonstrate that targeted WES of all IRD genes is a reliable, hypothesis-free approach, and a cost- and time-effective strategy for the routine genetic diagnosis of retinal dystrophies. PMID:28181551

  11. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy.

    PubMed

    Hofhuis, Julia; Bersch, Kristina; Büssenschütt, Ronja; Drzymalski, Marzena; Liebetanz, David; Nikolaev, Viacheslav O; Wagner, Stefan; Maier, Lars S; Gärtner, Jutta; Klinge, Lars; Thoms, Sven

    2017-03-01

    The multi-C2 domain protein dysferlin localizes to the plasma membrane and the T-tubule system in skeletal muscle; however, its physiological mode of action is unknown. Mutations in the DYSF gene lead to autosomal recessive limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Here, we show that dysferlin has membrane tubulating capacity and that it shapes the T-tubule system. Dysferlin tubulates liposomes, generates a T-tubule-like membrane system in non-muscle cells, and links the recruitment of phosphatidylinositol 4,5-bisphosphate to the biogenesis of the T-tubule system. Pathogenic mutant forms interfere with all of these functions, indicating that muscular wasting and dystrophy are caused by the dysferlin mutants' inability to form a functional T-tubule membrane system. © 2017. Published by The Company of Biologists Ltd.

  12. Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies

    PubMed Central

    Loganathan, Sampath K.; Schneider, Hans-Peter; Morgan, Patricio E.; Deitmer, Joachim W.

    2016-01-01

    SLC4A11, a member of the SLC4 family of bicarbonate transporters, is a widely expressed integral membrane protein, abundant in kidney and cornea. Mutations of SLC4A11 cause some cases of the blinding corneal dystrophies, congenital hereditary endothelial dystrophy, and Fuchs endothelial corneal dystrophy. These diseases are marked by fluid accumulation in the corneal stroma, secondary to defective fluid reabsorption by the corneal endothelium. The role of SLC4A11 in these corneal dystrophies is not firmly established, as SLC4A11 function remains unclear. To clarify the normal function(s) of SLC4A11, we characterized the protein following expression in the simple, low-background expression system Xenopus laevis oocytes. Since plant and fungal SLC4A11 orthologs transport borate, we measured cell swelling associated with accumulation of solute borate. The plant water/borate transporter NIP5;1 manifested borate transport, whereas human SLC4A11 did not. SLC4A11 supported osmotically driven water accumulation that was electroneutral and Na+ independent. Studies in oocytes and HEK293 cells could not detect Na+-coupled HCO3− transport or Cl−/HCO3− exchange by SLC4A11. SLC4A11 mediated electroneutral NH3 transport in oocytes. Voltage-dependent OH− or H+ movement was not measurable in SLC4A11-expressing oocytes, but SLC4A11-expressing HEK293 cells manifested low-level cytosolic acidification at baseline. In mammalian cells, but not oocytes, OH−/H+ conductance may arise when SLC4A11 activates another protein or itself is activated by another protein. These data argue against a role of human SLC4A11 in bicarbonate or borate transport. This work provides additional support for water and ammonia transport by SLC4A11. When expressed in oocytes, SLC4A11 transported NH3, not NH3/H+. PMID:27558157

  13. Outcome of ABCA4 disease-associated alleles in autosomal recessive retinal dystrophies: retrospective analysis in 420 Spanish families.

    PubMed

    Riveiro-Alvarez, Rosa; Lopez-Martinez, Miguel-Angel; Zernant, Jana; Aguirre-Lamban, Jana; Cantalapiedra, Diego; Avila-Fernandez, Almudena; Gimenez, Ascension; Lopez-Molina, Maria-Isabel; Garcia-Sandoval, Blanca; Blanco-Kelly, Fiona; Corton, Marta; Tatu, Sorina; Fernandez-San Jose, Patricia; Trujillo-Tiebas, Maria-Jose; Ramos, Carmen; Allikmets, Rando; Ayuso, Carmen

    2013-11-01

    To provide a comprehensive overview of all detected mutations in the ABCA4 gene in Spanish families with autosomal recessive retinal disorders, including Stargardt's disease (arSTGD), cone-rod dystrophy (arCRD), and retinitis pigmentosa (arRP), and to assess genotype-phenotype correlation and disease progression in 10 years by considering the type of variants and age at onset. Case series. A total of 420 unrelated Spanish families: 259 arSTGD, 86 arCRD, and 75 arRP. Spanish families were analyzed through a combination of ABCR400 genotyping microarray, denaturing high-performance liquid chromatography, and high-resolution melting scanning. Direct sequencing was used as a confirmation technique for the identified variants. Screening by multiple ligation probe analysis was used to detect possible large deletions or insertions in the ABCA4 gene. Selected families were analyzed further by next generation sequencing. DNA sequence variants, mutation detection rates, haplotypes, age at onset, central or peripheral vision loss, and night blindness. Overall, we detected 70.5% and 36.6% of all expected ABCA4 mutations in arSTGD and arCRD patient cohorts, respectively. In the fraction of the cohort where the ABCA4 gene was sequenced completely, the detection rates reached 73.6% for arSTGD and 66.7% for arCRD. However, the frequency of possibly pathogenic ABCA4 alleles in arRP families was only slightly higher than that in the general population. Moreover, in some families, mutations in other known arRP genes segregated with the disease phenotype. An increasing understanding of causal ABCA4 alleles in arSTGD and arCRD facilitates disease diagnosis and prognosis and also is paramount in selecting patients for emerging clinical trials of therapeutic interventions. Because ABCA4-associated diseases are evolving retinal dystrophies, assessment of age at onset, accurate clinical diagnosis, and genetic testing are crucial. We suggest that ABCA4 mutations may be associated with a retinitis pigmentosa-like phenotype often as a consequence of severe (null) mutations, in cases of long-term, advanced disease, or both. Patients with classical arRP phenotypes, especially from the onset of the disease, should be screened first for mutations in known arRP genes and not ABCA4. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Retinitis Pigmentosa with EYS Mutations Is the Most Prevalent Inherited Retinal Dystrophy in Japanese Populations.

    PubMed

    Arai, Yuuki; Maeda, Akiko; Hirami, Yasuhiko; Ishigami, Chie; Kosugi, Shinji; Mandai, Michiko; Kurimoto, Yasuo; Takahashi, Masayo

    2015-01-01

    The aim of this study was to gain information about disease prevalence and to identify the responsible genes for inherited retinal dystrophies (IRD) in Japanese populations. Clinical and molecular evaluations were performed on 349 patients with IRD. For segregation analyses, 63 of their family members were employed. Bioinformatics data from 1,208 Japanese individuals were used as controls. Molecular diagnosis was obtained by direct sequencing in a stepwise fashion utilizing one or two panels of 15 and 27 genes for retinitis pigmentosa patients. If a specific clinical diagnosis was suspected, direct sequencing of disease-specific genes, that is, ABCA4 for Stargardt disease, was conducted. Limited availability of intrafamily information and decreasing family size hampered identifying inherited patterns. Differential disease profiles with lower prevalence of Stargardt disease from European and North American populations were obtained. We found 205 sequence variants in 159 of 349 probands with an identification rate of 45.6%. This study found 43 novel sequence variants. In silico analysis suggests that 20 of 25 novel missense variants are pathogenic. EYS mutations had the highest prevalence at 23.5%. c.4957_4958insA and c.8868C>A were the two major EYS mutations identified in this cohort. EYS mutations are the most prevalent among Japanese patients with IRD.

  15. Skeletal muscle biopsy analysis in reducing body myopathy and other FHL1-related disorders.

    PubMed

    Malfatti, Edoardo; Olivé, Montse; Taratuto, Ana Lía; Richard, Pascale; Brochier, Guy; Bitoun, Marc; Gueneau, Lucie; Laforêt, Pascal; Stojkovic, Tanya; Maisonobe, Thierry; Monges, Soledad; Lubieniecki, Fabiana; Vasquez, Gabriel; Streichenberger, Nathalie; Lacène, Emmanuelle; Saccoliti, Maria; Prudhon, Bernard; Alexianu, Marilena; Figarella-Branger, Dominique; Schessl, Joachim; Bonnemann, Carsten; Eymard, Bruno; Fardeau, Michel; Bonne, Gisèle; Romero, Norma Beatriz

    2013-09-01

    FHL1 mutations have been associated with various disorders that include reducing body myopathy (RBM), Emery-Dreifuss-like muscular dystrophy, isolated hypertrophic cardiomyopathy, and some overlapping conditions. We report a detailed histochemical, immunohistochemical, electron microscopic, and immunoelectron microscopic analyses of muscle biopsies from 18 patients carrying mutations in FHL1: 14 RBM patients (Group 1), 3 Emery-Dreifuss muscular dystrophy patients (Group 2), and 1 patient with hypertrophic cardiomyopathy and muscular hypertrophy (Group 2). Group 1 muscle biopsies consistently showed RBs associated with cytoplasmic bodies. The RBs showed prominent FHL1 immunoreactivity whereas desmin, αB-crystallin, and myotilin immunoreactivity surrounded RBs. By electron microscopy, RBs were composed of electron-dense tubulofilamentous material that seemed to spread progressively between the myofibrils and around myonuclei. By immunoelectron microscopy, FHL1 protein was found exclusively inside RBs. Group 2 biopsies showed mild dystrophic abnormalities without RBs; only minor nonspecific myofibrillar abnormalities were observed under electron microscopy. Molecular analysis revealed missense mutations in the second FHL1 LIM domain in Group 1 patients and ins/del or missense mutations within the fourth FHL1 LIM domain in Group 2 patients. Our findings expand the morphologic features of RBM, clearly demonstrate the localization of FHL1 in RBs, and further illustrate major morphologic differences among different FHL1-related myopathies.

  16. Exome capture sequencing identifies a novel mutation in BBS4

    PubMed Central

    Wang, Hui; Chen, Xianfeng; Dudinsky, Lynn; Patenia, Claire; Chen, Yiyun; Li, Yumei; Wei, Yue; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard Alan; Lupski, James R.; Mardon, Graeme; Gibbs, Richard A.; Perkins, Brian D.

    2011-01-01

    Purpose Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. Methods Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. Results A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. Conclusions This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function. PMID:22219648

  17. THE FUNDUS PHENOTYPE ASSOCIATED WITH THE p.Ala243Val BEST1 MUTATION.

    PubMed

    Khan, Kamron N; Islam, Farrah; Moore, Anthony T; Michaelides, Michel

    2018-03-01

    To describe a highly recognizable and reproducible retinal phenotype associated with a specific BEST1 mutation-p.Ala243Val. Retrospective review of consecutive cases where genetic testing has identified p.Ala243Val BEST1 as the cause of disease. Electronic patient records were used to extract demographic, as well as functional and anatomical data. These data were compared with those observed with the most common BEST1 genotype, p.Arg218Cys. Eight individuals (six families) were identified with the p.Ala243Val BEST1 mutation and seven patients with the pathologic variant p.Arg218Cys. No patients with mutation of codon 243 knowingly had a family history of retinal disease, whereas all patients with the p.Arg218Cys variant did. The maculopathy was bilateral in all cases. The p.Ala243Val mutation was associated with a pattern dystrophy-type appearance, most visible with near-infrared reflectance and fundus autofluorescence imaging. This phenotype was never observed with any other genotype. This mutation was associated with an older median age of symptom onset (median = 42, interquartile range = 22) compared with those harboring the p.Arg218Cys mutation (median = 18, interquartile range = 12; Mann-Whitney U test; P < 0.05). Despite their older age, the final recorded acuity seemed to be better in the p.Ala243Val group (median = 0.55, interquartile range = 0.6475; median = 0.33, interquartile range = 0.358), although this did not reach statistical significance (Mann-Whitney U test; P > 0.05). The mutation p.Ala243Val is associated with highly recognizable and reproducible pattern dystrophy-like phenotype. Patients develop symptoms at a later age and tend to have better preservation of electrooculogram amplitudes.

  18. Mutation analysis of the carbohydrate sulfotransferase gene in Vietnamese with macular corneal dystrophy.

    PubMed

    Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Kanai, Atsushi

    2003-08-01

    Mutations in a new carbohydrate sulfotransferase gene (CHST6) encoding corneal N-acetylglucosamine-6-sulfotransferase (C-GlcNac-6-ST) have been identified as the cause of macular corneal dystrophy (MCD) in various ethnicities. This study was conducted to examine the CHST6 gene in Vietnamese with MCD. Nineteen unrelated families, including 35 patients and 38 unaffected relatives were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals served as control subjects. Genomic DNA was extracted from leukocytes. Analysis of the CHST6 gene was performed with polymerase chain reaction and direct sequencing. Corneal buttons were studied histopathologically. A slit lamp examination revealed clinical features of MCD with gray-white opacities and stromal haze between. On histopathology, corneal sections showed positive staining with colloidal iron. Sequencing of the CHST6 gene revealed six homozygous and three compound heterozygous mutations. The homozygous mutations, including L59P, V66L, R211Q, W232X, Y268C, and 1067-1068ins(GGCCGTG) were detected, respectively, in two, one, eight, one, one, and two families. Compound heterozygous mutations R211Q/Q82X, S51L/Y268C, and Y268C/1067-1068ins(GGCCGTG) were identified, each in one family. A single heterozygous change at codon 76 (GTG-->ATG) was detected in family L, resulting in a valine-to-methionine substitution (V76M). None of these mutations was detected in the control group. Mutations identified in the CHST6 gene cosegregated with the disease phenotype in all but one family studied and thus caused MCD. Among these, the R211Q detected in 9 of 19 families may be the most common mutation in Vietnamese. These data also indicate that significant allelic heterogeneity exists for MCD.

  19. The common missense mutation D489N in TRIM32 causing limb girdle muscular dystrophy 2H leads to loss of the mutated protein in knock-in mice resulting in a Trim32-null phenotype.

    PubMed

    Kudryashova, Elena; Struyk, Arie; Mokhonova, Ekaterina; Cannon, Stephen C; Spencer, Melissa J

    2011-10-15

    Mutations in tripartite motif protein 32 (TRIM32) are responsible for several hereditary disorders that include limb girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathy (STM) and Bardet Biedl syndrome. Most LGMD2H mutations in TRIM32 are clustered in the NHL β-propeller domain at the C-terminus and are predicted to interfere with homodimerization. To get insight into TRIM32's role in the pathogenesis of LGMD2H and to create an accurate model of disease, we have generated a knock-in mouse (T32KI) carrying the c.1465G > A (p.D489N) mutation in murine Trim32 corresponding to the human LGMD2H/STM pathogenic mutation c.1459G > A (p.D487N). Our data indicate that T32KI mice have both a myopathic and a neurogenic phenotype, very similar to the one described in the Trim32-null mice that we created previously. Analysis of Trim32 gene expression in T32KI mice revealed normal mRNA levels, but a severe reduction in mutant TRIM32 (D489N) at the protein level. Our results suggest that the D489N pathogenic mutation destabilizes the protein, leading to its degradation, and results in the same mild myopathic and neurogenic phenotype as that found in Trim32-null mice. Thus, one potential mechanism of LGMD2H might be destabilization of mutated TRIM32 protein leading to a null phenotype.

  20. Glucocorticoid Steroid and Alendronate Treatment Alleviates Dystrophic Phenotype with Enhanced Functional Glycosylation of α-Dystroglycan in Mouse Model of Limb-Girdle Muscular Dystrophy with FKRPP448L Mutation.

    PubMed

    Wu, Bo; Shah, Sapana N; Lu, Peijuan; Richardson, Stephanie M; Bollinger, Lauren E; Blaeser, Anthony; Madden, Kyle L; Sun, Yubo; Luckie, Taylor M; Cox, Michael D; Sparks, Susan; Harper, Amy D; Lu, Qi Long

    2016-06-01

    Fukutin-related protein-muscular dystrophy is characterized by defects in glycosylation of α-dystroglycan with variable clinical phenotypes, most commonly as limb-girdle muscular dystrophy 2I. There is no effective therapy available. Glucocorticoid steroids have become the standard treatment for Duchenne and other muscular dystrophies with serious adverse effects, including excessive weight gain, immune suppression, and bone loss. Bisphosphonates have been used to treat Duchenne muscular dystrophy for prevention of osteoporosis. Herein, we evaluated prednisolone and alendronate for their therapeutic potential in the FKRPP448L-mutant mouse representing moderate limb-girdle muscular dystrophy 2I. Mice were treated with prednisolone, alendronate, and both in combination for up to 6 months. Prednisolone improved muscle pathology with significant reduction in muscle degeneration, but had no effect on serum creatine kinase levels and muscle strength. Alendronate treatment did not ameliorate muscle degeneration, but demonstrated a limited enhancement on muscle function test. Combined treatment of prednisolone and alendronate provided best improvement in muscle pathology with normalized fiber size distribution and significantly reduced serum creatine kinase levels, but had limited effect on muscle force generation. The use of alendronate significantly mitigated the bone loss. Prednisolone alone and in combination with alendronate enhance functionally glycosylated α-dystroglycan. These results, for the first time, demonstrate the efficacy and feasibility of this alliance treatment of the two drugs for fukutin-related protein-muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast.

    PubMed

    Wolinski, Heimo; Hofbauer, Harald F; Hellauer, Klara; Cristobal-Sarramian, Alvaro; Kolb, Dagmar; Radulovic, Maja; Knittelfelder, Oskar L; Rechberger, Gerald N; Kohlwein, Sepp D

    2015-11-01

    Yeast Fld1 and Ldb16 resemble mammalian seipin, implicated in neutral lipid storage. Both proteins form a complex at the endoplasmic reticulum-lipid droplet (LD) interface. Malfunction of this complex either leads to LD clustering or to the generation of supersized LD (SLD) in close vicinity to the nuclear envelope, in response to altered phospholipid (PL) composition. We show that similar to mutants lacking Fld1, deletion of LDB16 leads to abnormal proliferation of a subdomain of the nuclear envelope, which is tightly associated with clustered LD. The human lipin-1 ortholog, the PAH1 encoded phosphatidic acid (PA) phosphatase, and its activator Nem1 are highly enriched at this site. The specific accumulation of PA-binding marker proteins indicates a local enrichment of PA in the fld1 and ldb16 mutants. Furthermore, we demonstrate that clustered LD in fld1 or ldb16 mutants are transformed to SLD if phosphatidylcholine synthesis is compromised by additional deletion of the phosphatidylethanolamine methyltransferase, Cho2. Notably, treatment of wild-type cells with oleate induced a similar LD clustering and nuclear membrane proliferation phenotype as observed in fld1 and ldb16 mutants. These data suggest that the Fld1-Ldb16 complex affects PA homeostasis at an LD-forming subdomain of the nuclear envelope. Lack of Fld1-Ldb16 leads to locally elevated PA levels that induce an abnormal proliferation of nER membrane structures and the clustering of associated LD. We suggest that the formation of SLD is a consequence of locally altered PL metabolism at this site. Copyright © 2015. Published by Elsevier B.V.

  2. Serum creatinine level: a supplemental index to distinguish Duchenne muscular dystrophy from Becker muscular dystrophy.

    PubMed

    Zhang, Huili; Zhu, Yuling; Sun, Yiming; Liang, Yingyin; Li, Yaqin; Zhang, Yu; Deng, Langhui; Wen, Xingxuan; Zhang, Cheng

    2015-01-01

    To improve assessment of dystrophinopathy, the aim of this study was to identify whether serum creatinine (Crn) level reflects disease severity. Biochemical, Vignos score, and genetic data were collected on 212 boys with dystrophinopathy. Serum Crn level had a strong inverse correlation with Vignos score by simple correlation (r = -0.793) and partial correlation analysis after adjustment for age, height, and weight (r = -0.791; both P < 0.01). Serum Crn level was significantly higher in patients with in-frame than out-of-frame mutations (Z = -4.716,  P < 0.01) and in Becker muscular dystrophy (BMD) patients than Duchenne muscular dystrophy (DMD) patients at ages 4, 5, 7, and 9 yr (all P < 0.0125). After adjusting for age, height, and weight, BMD patients still had a significantly higher serum Crn level than DMD patients (β = 7.140,  t = 6.277,  P < 0.01). Serum Crn level reflected disease severity and may serve as a supplemental index to distinguish DMD from BMD in clinical practice.

  3. Filamin 2 (Fln2)

    PubMed Central

    Thompson, Terri G.; Chan, Yiu-Mo; Hack, Andrew A.; Brosius, Melissa; Rajala, Michael; Lidov, Hart G.W.; McNally, Elizabeth M.; Watkins, Simon; Kunkel, Louis M.

    2000-01-01

    Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin–glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin–glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a γ- and δ-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy. PMID:10629222

  4. Predicting FLDs Using a Multiscale Modeling Scheme

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Loy, C.; Wang, E.; Hegadekatte, V.

    2017-09-01

    The measurement of a single forming limit diagram (FLD) requires significant resources and is time consuming. We have developed a multiscale modeling scheme to predict FLDs using a combination of limited laboratory testing, crystal plasticity (VPSC) modeling, and dual sequential-stage finite element (ABAQUS/Explicit) modeling with the Marciniak-Kuczynski (M-K) criterion to determine the limit strain. We have established a means to work around existing limitations in ABAQUS/Explicit by using an anisotropic yield locus (e.g., BBC2008) in combination with the M-K criterion. We further apply a VPSC model to reduce the number of laboratory tests required to characterize the anisotropic yield locus. In the present work, we show that the predicted FLD is in excellent agreement with the measured FLD for AA5182 in the O temper. Instead of 13 different tests as for a traditional FLD determination within Novelis, our technique uses just four measurements: tensile properties in three orientations; plane strain tension; biaxial bulge; and the sheet crystallographic texture. The turnaround time is consequently far less than for the traditional laboratory measurement of the FLD.

  5. Testing the Fraunhofer line discriminator by sensing fluorescent dye

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.

    1969-01-01

    The experimental Fraunhofer Line Discriminator (FLD) has detected increments of Rhodamine WT dye as small as 1 ppb in 1/2 meter depths. It can be inferred that increments considerably smaller than 1 ppb will be detectable in depths considerably greater than 1/2 meter. Turbidity of the water drastically reduces luminescence or even completely blocks the transmission of detectable luminescence to the FLD. Attenuation of light within the water by turbidity and by the dye itself are the major factors to be considered in interpreting FLD records and in relating luminescence coefficient to dye concentration. An airborne test in an H-19 helicopter established feasibility of operating the FLD from the aircraft power supply, and established that the rotor blades do not visibly affect the monitoring of incident solar radiation.

  6. An Overview of Recent Therapeutics Advances for Duchenne Muscular Dystrophy.

    PubMed

    Mah, Jean K

    2018-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. Mutations of the DMD gene destabilize the dystrophin associated glycoprotein complex in the sarcolemma. Ongoing mechanical stress leads to unregulated influx of calcium ions into the sarcoplasm, with activation of proteases, release of proinflammatory cytokines, and mitochondrial dysfunction. Cumulative damage and reparative failure leads to progressive muscle necrosis, fibrosis, and fatty replacement. Although there is presently no cure for DMD, scientific advances have led to many potential disease-modifying treatments, including dystrophin replacement therapies, upregulation of compensatory proteins, anti-inflammatory agents, and other cellular targets. Recently approved therapies include ataluren for stop codon read-through and eteplirsen for exon 51 skipping of eligible individuals. The purpose of this chapter is to summarize the clinical features of DMD, to describe current outcome measures used in clinical studies, and to highlight new emerging therapies for affected individuals.

  7. Abnormal sympathetic innervation of the heart in a patient with Emery-Dreifuss muscular dystrophy.

    PubMed

    Fujiita, Takashi; Shimizu, Masami; Kaku, Bunji; Kanaya, Hounin; Horita, Yuki; Uno, Yoshihide; Yamazaki, Tsukasa; Ohka, Takio; Sakata, Kenji; Mabuchi, Hiroshi

    2005-07-01

    A 33-year-old man was admitted for general malaise and vomiting. An electrocardiogram showed a complete atrioventricular block and an echocardiogram showed right atrial dilatation and normal wall motion of left ventricle (LV). Gene analysis showed nonsense mutation in the STA gene, which codes for emerin, and Emery-Dreifuss muscular dystrophy was diagnosed. An endomyocardial biopsy of right ventricle showed mild hypertrophy of myocytes. Myocardial scintigraphic studies with Tc-99m methoxyisobutylisonitrile (MIBI) and I-123-betamethyl-p-iodophenylpentadecanoic acid (BMIPP) scintigrams showed no abnormalities. In contrast, I-123 metaiodobenzylguanidine (MIBG) scintigrams showed a diffuse and severe decrease in accumulation of MIBG in the heart. Six months later, his LV wall motion on echocardiograms developed diffuse hypokinesis. These results suggest that the abnormality on I-123 MIBG myocardial scintigrams may predict LV dysfunction in Emery-Dreifuss muscular dystrophy.

  8. Novel mutation in the CHST6 gene causes macular corneal dystrophy in a black South African family.

    PubMed

    Carstens, Nadia; Williams, Susan; Goolam, Saadiah; Carmichael, Trevor; Cheung, Ming Sin; Büchmann-Møller, Stine; Sultan, Marc; Staedtler, Frank; Zou, Chao; Swart, Peter; Rice, Dennis S; Lacoste, Arnaud; Paes, Kim; Ramsay, Michèle

    2016-07-20

    Macular corneal dystrophy (MCD) is a rare autosomal recessive disorder that is characterized by progressive corneal opacity that starts in early childhood and ultimately progresses to blindness in early adulthood. The aim of this study was to identify the cause of MCD in a black South African family with two affected sisters. A multigenerational South African Sotho-speaking family with type I MCD was studied using whole exome sequencing. Variant filtering to identify the MCD-causal mutation included the disease inheritance pattern, variant minor allele frequency and potential functional impact. Ophthalmologic evaluation of the cases revealed a typical MCD phenotype and none of the other family members were affected. An average of 127 713 variants per individual was identified following exome sequencing and approximately 1.2 % were not present in any of the investigated public databases. Variant filtering identified a homozygous E71Q mutation in CHST6, a known MCD-causing gene encoding corneal N-acetyl glucosamine-6-O-sulfotransferase. This E71Q mutation results in a non-conservative amino acid change in a highly conserved functional domain of the human CHST6 that is essential for enzyme activity. We identified a novel E71Q mutation in CHST6 as the MCD-causal mutation in a black South African family with type I MCD. This is the first description of MCD in a black Sub-Saharan African family and therefore contributes valuable insights into the genetic aetiology of this disease, while improving genetic counselling for this and potentially other MCD families.

  9. Decreased cerebral perfusion in Duchenne muscular dystrophy patients.

    PubMed

    Doorenweerd, Nathalie; Dumas, Eve M; Ghariq, Eidrees; Schmid, Sophie; Straathof, Chiara S M; Roest, Arno A W; Wokke, Beatrijs H; van Zwet, Erik W; Webb, Andrew G; Hendriksen, Jos G M; van Buchem, Mark A; Verschuuren, Jan J G M; Asllani, Iris; Niks, Erik H; van Osch, Matthias J P; Kan, Hermien E

    2017-01-01

    Duchenne muscular dystrophy is caused by dystrophin gene mutations which lead to the absence of the protein dystrophin. A significant proportion of patients suffer from learning and behavioural disabilities, in addition to muscle weakness. We have previously shown that these patients have a smaller total brain and grey matter volume, and altered white matter microstructure compared to healthy controls. Patients with more distal gene mutations, predicted to affect dystrophin isoforms Dp140 and Dp427, showed greater grey matter reduction. Now, we studied if cerebral blood flow in Duchenne muscular dystrophy patients is altered, since cerebral expression of dystrophin also occurs in vascular endothelial cells and astrocytes associated with cerebral vasculature. T1-weighted anatomical and pseudo-continuous arterial spin labeling cerebral blood flow images were obtained from 26 patients and 19 age-matched controls (ages 8-18 years) on a 3 tesla MRI scanner. Group comparisons of cerebral blood flow were made with and without correcting for grey matter volume using partial volume correction. Results showed that patients had a lower cerebral blood flow than controls (40.0 ± 6.4 and 47.8 ± 6.3 mL/100 g/min respectively, p = 0.0002). This reduction was independent of grey matter volume, suggesting that they are two different aspects of the pathophysiology. Cerebral blood flow was lowest in patients lacking Dp140. There was no difference in CBF between ambulant and non-ambulant patients. Only three patients showed a reduced left ventricular ejection fraction. No correlation between cerebral blood flow and age was found. Our results indicate that cerebral perfusion is reduced in Duchenne muscular dystrophy patients independent of the reduced grey matter volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    PubMed

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  11. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    PubMed Central

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  12. PubMed Central

    Bello, Luca

    2016-01-01

    Accurate definition of genetic mutations causing Duchenne muscular dystrophy (DMD) has always been relevant in order to provide genetic counseling to patients and families, and helps to establish the prognosis in the case where the distinction between Duchenne, Becker, or intermediate muscular dystrophy is not obvious. As molecular treatments aimed at dystrophin restoration in DMD are increasingly available as commercialized drugs or within clinical trials, genetic diagnosis has become an indispensable tool in order to determine eligibility for these treatments. DMD patients in which multiplex ligation-dependent probe amplification (MLPA) or similar techniques show a deletion suitable to exon skipping of exons 44, 45, 51, or 53, may be currently treated with AONs targeting these exons, in the context of clinical trials, or, as is the case for exon 51 skipping in the United States, with the first commercialized drug (eteplirsen). Patients who test negative at MLPA, but in whom DMD gene sequencing shows a nonsense mutation, may be amenable for treatment with stop codon readthrough compounds such as ataluren. Novel molecular approaches such as CRISPR-Cas9 targeting of specific DMD mutations are still in the preclinical stages, but appear promising. In conclusion, an accurate genetic diagnosis represents the entrance into a new scenario of personalized medicine in DMD. PMID:28484312

  13. The Status of Exon Skipping as a Therapeutic Approach to Duchenne Muscular Dystrophy

    PubMed Central

    Lu, Qi-Long; Yokota, Toshifumi; Takeda, Shin'ichi; Garcia, Luis; Muntoni, Francesco; Partridge, Terence

    2011-01-01

    Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level. PMID:20978473

  14. Severe congenital muscular dystrophy in a Mexican family with a new nonsense mutation (R2578X) in the laminin alpha-2 gene.

    PubMed

    Coral-Vazquez, Ramon M; Rosas-Vargas, Haydee; Meza-Espinosa, Pedro; Mendoza, Irma; Huicochea, Juan C; Ramon, Guillermo; Salamanca, Fabio

    2003-01-01

    The congenital muscular dystrophies (CMDs) are a heterogeneous group of autosomal recessive disorders. Approximately one half of cases diagnosed with classic CMD show primary deficiency of the laminin alpha2 chain of merosin. Complete absence of this protein is usually associated with a severe phenotype characterized by drastic muscle weakness and characteristic changes in white matter in cerebral magnetic resonance imaging (MRI). Here we report an 8-month-old Mexican female infant, from a consanguineous family, with classical CMD. Serum creatine kinase was elevated, muscle biopsy showed dystrophic changes, and there were abnormalities in brain MRI. Immunofluorescence analysis demonstrated the complete absence of laminin alpha2. In contrast, expression of alpha-, beta-, gamma-, and delta-sarcoglycans and dystrophin, all components of the dystrophin-glycoprotein complex, appeared normal. A homozygous C long right arrow T substitution at position 7781 that generated a stop codon in the G domain of the protein was identified by mutation analysis of the laminin alpha2 gene ( LAMA2). Sequence analysis on available DNA samples of the family showed that parents and other relatives were carriers of the mutation.

  15. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy

    PubMed Central

    Xu, Huaigeng

    2017-01-01

    In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs) and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD) has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic. PMID:28607562

  16. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies

    PubMed Central

    Belaya, Katsiaryna; Rodríguez Cruz, Pedro M.; Liu, Wei Wei; Maxwell, Susan; McGowan, Simon; Farrugia, Maria E.; Petty, Richard; Walls, Timothy J.; Sedghi, Maryam; Basiri, Keivan; Yue, Wyatt W.; Sarkozy, Anna; Bertoli, Marta; Pitt, Matthew; Kennett, Robin; Schaefer, Andrew; Bushby, Kate; Parton, Matt; Lochmüller, Hanns; Palace, Jacqueline; Muntoni, Francesco

    2015-01-01

    Congenital myasthenic syndromes are inherited disorders that arise from impaired signal transmission at the neuromuscular junction. Mutations in at least 20 genes are known to lead to the onset of these conditions. Four of these, ALG2, ALG14, DPAGT1 and GFPT1, are involved in glycosylation. Here we identify a fifth glycosylation gene, GMPPB, where mutations cause congenital myasthenic syndrome. First, we identified recessive mutations in seven cases from five kinships defined as congenital myasthenic syndrome using decrement of compound muscle action potentials on repetitive nerve stimulation on electromyography. The mutations were present through the length of the GMPPB, and segregation, in silico analysis, exon trapping, cell transfection followed by western blots and immunostaining were used to determine pathogenicity. GMPPB congenital myasthenic syndrome cases show clinical features characteristic of congenital myasthenic syndrome subtypes that are due to defective glycosylation, with variable weakness of proximal limb muscle groups while facial and eye muscles are largely spared. However, patients with GMPPB congenital myasthenic syndrome had more prominent myopathic features that were detectable on muscle biopsies, electromyography, muscle magnetic resonance imaging, and through elevated serum creatine kinase levels. Mutations in GMPPB have recently been reported to lead to the onset of muscular dystrophy dystroglycanopathy. Analysis of four additional GMPPB-associated muscular dystrophy dystroglycanopathy cases by electromyography found that a defective neuromuscular junction component is not always present. Thus, we find mutations in GMPPB can lead to a wide spectrum of clinical features where deficit in neuromuscular transmission is the major component in a subset of cases. Clinical recognition of GMPPB-associated congenital myasthenic syndrome may be complicated by the presence of myopathic features, but correct diagnosis is important because affected individuals can respond to appropriate treatments. PMID:26133662

  17. Duchenne/Becker muscular dystrophy: correlation of phenotype by electroretinography with sites of dystrophin mutations.

    PubMed

    Pillers, D A; Fitzgerald, K M; Duncan, N M; Rash, S M; White, R A; Dwinnell, S J; Powell, B R; Schnur, R E; Ray, P N; Cibis, G W; Weleber, R G

    1999-01-01

    The dark-adapted electroretinogram (ERG) of patients with Duchenne and Becker muscular dystrophy (DMD/BMD) shows a marked reduction in b-wave amplitude. Genotype-phenotype studies of mouse models for DMD show position-specific effects of the mutations upon the phenotype: mice with 5' defects of dystrophin have normal ERGs, those with defects in the central region have a normal b-wave amplitude associated with prolonged implicit times for both the b-wave and oscillatory potentials, and mice with 3' defects have a phenotype similar to that seen in DMD/BMD patients. The mouse studies suggest a key role for the carboxyl terminal dystrophin isoform, Dp260, in retinal electrophysiology. We have undertaken a systematic evaluation of DMD/BMD patients through clinical examination and review of the literature in order to determine whether the position-specific effects of mutations noted in the mouse are present in man. We have found that, in man, a wider variation of DMD defects correlate with reductions in the b-wave amplitude. Individuals with normal ERGs have mutations predominantly located 5' of the transcript initiation site of Dp260. Our results suggest that the most important determinant in the ERG b-wave phenotype is the mutation position, rather than muscle disease severity. Forty-six per cent of patients with mutations 5' of the Dp260 transcript start site have abnormal ERGs, as opposed to 94% with more distal mutations. The human genotype-phenotype correlations are consistent with a role for Dp260 in normal retinal electrophysiology and may also reflect the expression of other C-terminal dystrophin isoforms and their contributions to retinal signal transmission.

  18. Reviewing Large LAMA2 Deletions and Duplications in Congenital Muscular Dystrophy Patients.

    PubMed

    Oliveira, Jorge; Gonçalves, Ana; Oliveira, Márcia E; Fineza, Isabel; Pavanello, Rita C M; Vainzof, Mariz; Bronze-da-Rocha, Elsa; Santos, Rosário; Sousa, Mário

    2014-01-01

    Congenital muscular dystrophy (CMD) type 1A (MDC1A) is caused by recessive mutations in laminin-α2 (LAMA2) gene. Laminin-211, a heterotrimeric glycoprotein that contains the α2 chain, is crucial for muscle stability establishing a bond between the sarcolemma and the extracellular matrix. More than 215 mutations are listed in the locus specific database (LSDB) for LAMA2 gene (May 2014). A limited number of large deletions/duplications have been reported in LAMA2. Our main objective was the identification of additional large rearrangements in LAMA2 found in CMD patients and a systematic review of cases in the literature and LSDB. In four of the fifty-two patients studied over the last 10 years, only one heterozygous mutation was identified, after sequencing and screening for a frequent LAMA2 deletion. Initial screening of large mutations was performed by multiplex ligation-dependent probe application (MLPA). Further characterization implied several techniques: long-range PCR, cDNA and Southern-blot analysis. Three novel large deletions in LAMA2 and the first pathogenic large duplication were successfully identified, allowing a definitive molecular diagnosis, carrier screening and prenatal diagnosis. A total of fifteen deletions and two duplications previously reported were also reviewed. Two possible mutational "hotspots" for deletions may exist, the first encompassing exons 3 and 4 and second in the 3' region (exons 56 to 65) of LAMA2. Our findings show that this type of mutation is fairly frequent (18.4% of mutated alleles) and is underestimated in the literature. It is important to include the screening of large deletions/duplications as part of the genetic diagnosis strategy.

  19. Macular corneal dystrophy in a Chinese family related with novel mutations of CHST6

    PubMed Central

    Dang, Xiuhong; Zhu, Qingguo; Wang, Li; Su, Hong; Lin, Hui; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shangzhi; Ren, Qiushi

    2009-01-01

    Purpose To identify mutations in the carbohydrate sulfotransferase gene (CHST6) for a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes in the affected cornea. Methods A corneal button of the proband was obtained by penetrating keratoplasty. The half button and ultrathin sections from the other half button were examined with special stains under a light microscope (LM) and an electron microscope (EM) separately. Genomic DNA was extracted from peripheral blood of 11 family members, and the coding region of CHST6 was amplified by the polymerase chain reaction (PCR) method. The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Results The positive reaction to colloidal iron stain (extracellular blue accumulations in the stroma) was detected under light microscopy. Transmission electron microscopy revealed the enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. The compound heterozygous mutations, c.892C>T and c.1072T>C, were identified in exon 3 of CHST6 in three patients. The two transversions resulted in the substitution of a stop codon for glutamine at codon 298 (p.Q298X) and a missense mutation at codon 358, tyrosine to histidine (p.Y358H). The six unaffected family individuals carried alternative heterozygous mutations. These two mutations were not detected in any of the 100 control subjects. Conclusions Those novel compound heterozygous mutations were thought to contribute to the loss of CHST6 function, which induced the abnormal metabolism of keratan sulfate (KS) that deposited in the corneal stroma. It could be proved by the observation of a positive stain reaction and the enlarged collagen fibers as well as hyperplastic fibroblasts under microscopes. PMID:19365571

  20. MLPA based detection of mutations in the dystrophin gene of 180 Polish families with Duchenne/Becker muscular dystrophy.

    PubMed

    Zimowski, Janusz G; Massalska, Diana; Holding, Mariola; Jadczak, Sylwia; Fidziańska, Elżbieta; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Kamińska, Anna; Zaremba, Jacek

    2014-01-01

    Duchenne/Becker muscular dystrophy (DMD/BMD) is a recessive, X-linked disorder caused by a mutation in the dystrophin gene. Deletions account for approximately 60-65% of mutations, duplications for 5-10%. The remaining cases are mainly point mutations. According to Monaco theory clinical form of the disease depends on maintaining or disrupting the reading frame. The purpose of the study was to determine frequency and location of deletions and duplications in the dystrophin gene, to determine the compliance between maintaining/disrupting the reading frame and clinical form of the disease and to check the effectiveness of MLPA (multiplex ligation-dependent probe amplification) in the detection of these mutations in hemizygous patients and heterozygous female carriers. The material is composed of combined results of molecular diagnosis carried out in years 2009-2012 in 180 unrelated patients referred with the diagnosis of DMD/BMD tested by use of MLPA. We identified 110 deletions, 22 duplication (in one patient two different duplications were detected) and 2 point mutations. Deletions involved mainly exons 45-54 and 3-21, whereas most duplications involved exons 3-18. The compliance with Monaco theory was 95% for deletions and 76% for duplications. Most of mutations in the dystrophin gene were localized in the hot spots - different for deletions and duplications. MLPA enabled their quick identification, exact localization and determination whether or not they maintained or disrupted the reading frame. MLPA was also effective in detection of deletions and duplications in female carriers. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Good Epidemiologic Practice in Retinitis Pigmentosa: From Phenotyping to Biobanking

    PubMed Central

    Chizzolini, Marzio; Galan, Alessandro; Milan, Elisabeth; Sebastiani, Adolfo; Costagliola, Ciro; Parmeggiani, Francesco

    2011-01-01

    Inherited retinal dystrophies, such as retinitis pigmentosa (RP), include a group of relatively rare hereditary diseases caused by mutations in genes that code for proteins involved in the maintenance and function of the photoreceptor cells (cones and rods). The different forms of RP consist of progressive neurodegenerative disorders which are generally related to various and severe limitations of visual performances. In the course of typical RP (rod-cone dystrophy), the affected individuals first experience night-blindness and/or visual field constriction (secondary to rod dysfunctions), followed by variable alterations of the central vision (due to cone damages). On the other hand, during the atypical form of RP (cone-rod dystrophy), the cone’s functionalities are prevalently disrupted in comparison with the rod’s ones. The basic diagnosis of RP relies upon the documentation of unremitting loss in photoreceptor activity by electroretinogram and/or visual field testing. The prevalence of all RP typologies is variably reported in about one case for each 3000-5000 individuals, with a total of about two millions of affected persons worldwide. The inherited retinal dystrophies are sometimes the epiphenomenon of a complex framework (syndromic RP), but more often they represent an isolated disorder (about 85-90 % of cases). Although 200 causative RP mutations have been hitherto detected in more than 100 different genes, the molecular defect is identifiable in just about the 50% of the analyzed patients with RP. Not only the RP genotypes are very heterogeneous, but also the patients with the same mutation can be affected by different phenotypic manifestations. RP can be inherited as autosomal dominant, autosomal recessive or X-linked trait, and many sporadic forms are diagnosed in patients with no affected relatives. Dissecting the clinico-genetic complexity of RP has become an attainable objective by means of large-scale research projects, in which the collaboration between ophthalmologists, geneticists, and epidemiologists becomes a crucial aspect. In the present review, the main issues regarding clinical phenotyping and epidemiologic criticisms of RP are focused, especially highlighting the importance of both standardization of the diagnostic protocols and appropriateness of the disease’s registration systems. PMID:22131871

  2. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein.

    PubMed

    Ameziane-Le Hir, Sarah; Paboeuf, Gilles; Tascon, Christophe; Hubert, Jean-François; Le Rumeur, Elisabeth; Vié, Véronique; Raguénès-Nicol, Céline

    2016-07-26

    Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe.

  3. Interpretation of acid α-glucosidase activity in creatine kinase elevation: A case of Becker muscular dystrophy.

    PubMed

    Oitani, Yoshiki; Ishiyama, Akihiko; Kosuga, Motomichi; Iwasawa, Kentaro; Ogata, Ayako; Tanaka, Fumiko; Takeshita, Eri; Shimizu-Motohashi, Yuko; Komaki, Hirofumi; Nishino, Ichizo; Okuyama, Torayuki; Sasaki, Masayuki

    2018-05-16

    Diagnosis of Pompe disease is sometimes challenging because it exhibits clinical similarities to muscular dystrophy. We describe a case of Becker muscular dystrophy (BMD) with a remarkable reduction in activity of the acid α-glucosidase (GAA) enzyme, caused by a combination of pathogenic mutation and polymorphism variants resulting in pseudodeficiency in GAA. The three-year-old boy demonstrated asymptomatic creatine kinase elevation. Neither exon deletion nor duplication was detected on multiplex ligation-dependent probe amplification (MLPA) of DMD. GAA enzyme activity in both dried blood spots and lymphocytes was low, at 11.7% and 7.7% of normal, respectively. However, genetic analysis of GAA detected only heterozygosity for a nonsense mutation (c.118C > T, p.Arg40 ∗ ). Muscle pathology showed no glycogen deposits and no high acid phosphatase activity. Hematoxylin-eosin staining detected scattered regenerating fibers; the fibers were faint and patchy on immunochemistry staining of dystrophin. The amount of dystrophin protein was reduced to 11.8% of normal, on Western blotting analysis. Direct sequencing analysis of DMD revealed hemizygosity for a nonsense mutation (c.72G > A, p.Trp24 ∗ ). The boy was diagnosed with BMD, despite remarkable reduction in GAA activity; further, he demonstrated heterozygosity for [p.Gly576Ser; p.Glu689Lys] polymorphism variants that indicated pseudodeficiency on another allele in GAA. Pseudodeficiency alleles are detected in approximately 4% of the Asian population; these demonstrate low activity of acid α-glucosidase (GAA), similar to levels found in Pompe disease. Clinicians should be careful in their interpretations of pseudodeficiency alleles that complicate diagnosis in cases of elevated creatine kinase. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review.

    PubMed

    Taniguchi-Ikeda, Mariko; Morioka, Ichiro; Iijima, Kazumoto; Toda, Tatsushi

    2016-10-01

    α-Dystroglycanopathy, an autosomal recessive disease, is associated with the development of a variety of diseases, including muscular dystrophy. In humans, α-dystroglycanopathy includes various types of congenital muscular dystrophy such as Fukuyama type congenital muscular dystrophy (FCMD), muscle eye brain disease (MEB), and the Walker Warburg syndrome (WWS), and types of limb girdle muscular dystrophy 2I (LGMD2I). α-Dystroglycanopathy share a common etiology, since it is invariably caused by gene mutations that are associated with the O-mannose glycosylation pathway of α-dystroglycan (α-DG). α-DG is a central member of the dystrophin glycoprotein complex (DGC) family in peripheral membranes, and the proper glycosylation of α-DG is essential for it to bind to extracellular matrix proteins, such as laminin, to cell components. The disruption of this ligand-binding is thought to result in damage to cell membrane integration, leading to the development of muscular dystrophy. Clinical manifestations of α-dystroglycanopathy frequently include mild to severe alterations in the central nervous system and optical manifestations in addition to muscular dystrophy. Eighteen causative genes for α-dystroglycanopathy have been identified to date, and it is likely that more will be reported in the near future. These findings have stimulated extensive and energetic investigations in this research field, and novel glycosylation pathways have been implicated in the process. At the same time, the use of gene therapy, antisense therapy, and enzymatic supplementation have been evaluated as therapeutic possibilities for some types of α-dystroglycanopathy. Here we review the molecular and clinical findings associated with α-dystroglycanopathy and the development of therapeutic approaches, by comparing the approaches with the development of Duchenne muscular dystrophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Application of various FLD modelling approaches

    NASA Astrophysics Data System (ADS)

    Banabic, D.; Aretz, H.; Paraianu, L.; Jurco, P.

    2005-07-01

    This paper focuses on a comparison between different modelling approaches to predict the forming limit diagram (FLD) for sheet metal forming under a linear strain path using the recently introduced orthotropic yield criterion BBC2003 (Banabic D et al 2005 Int. J. Plasticity 21 493-512). The FLD models considered here are a finite element based approach, the well known Marciniak-Kuczynski model, the modified maximum force criterion according to Hora et al (1996 Proc. Numisheet'96 Conf. (Dearborn/Michigan) pp 252-6), Swift's diffuse (Swift H W 1952 J. Mech. Phys. Solids 1 1-18) and Hill's classical localized necking approach (Hill R 1952 J. Mech. Phys. Solids 1 19-30). The FLD of an AA5182-O aluminium sheet alloy has been determined experimentally in order to quantify the predictive capabilities of the models mentioned above.

  6. Analysis of ABCA4 in mixed Spanish families segregating different retinal dystrophies.

    PubMed

    Paloma, Eva; Coco, Rosa; Martínez-Mir, Amalia; Vilageliu, Lluïsa; Balcells, Susana; Gonzàlez-Duarte, Roser

    2002-12-01

    Genotype-phenotype correlations highlighted the function of ABCA4 in retinitis pigmentosa (RP),cone-rod dystrophy (CRD) and Stargardt/Fundus Flavimaculatus disease (STGD/FFM). Initial screening of ABCA4 variants showed a correlation between the type of mutation and the severity of the disease. In the present study we have undertaken mutational and haplotype analysis of ABCA4 in three mixed pedigrees segregating different retinal dystrophies. In family I, we have shown cosegregation of different ABCA4 alleles with CRD (homozygosity for L1940P) and three subtypes of STGD/FFM. The first, a mild form, consisting on fundus flavimaculatus-like distribution of flecks, but good visual acuity and absence of dark choroid, was found to cosegregate with alleles R1097C and F553L; the second, a conventional Stargardt phenotype was associated to alleles L1940P/R1097C and the third, displaying severely reduced visual acuity and dark choroid (named FFM), was associated to L1940P/F553L. In family II, segregating STGD and RP phenotypes, while the involvement of ABCA4 in STGD seems clear this is not the case for RP. Finally, in family III, also segregating STGD and RP, ABCA4 fails to explain either phenotype. Our data highlight the wide allelic heterogeneity involving this gene and support the genetic variability (beyond ABCA4) of mixed STGD/RP pedigrees. Copyright 2002 Wiley-Liss, Inc.

  7. Molecular genetic analysis of macular corneal dystrophy patients from North India.

    PubMed

    Paliwal, Preeti; Sharma, Arundhati; Tandon, Radhika; Sharma, Namrata; Titiyal, Jeevan S; Sen, Seema; Vajpayee, Rasik B

    2012-01-01

    To identify underlying genetic defects in the carbohydrate sulfotransferase-6 (CHST6) gene in North Indian patients with macular corneal dystrophy (MCD). 30 clinically diagnosed MCD patients from 21 families and 50 healthy normal controls were recruited in the study. Detailed clinical evaluation in the patients was undertaken followed by histopathology and ultrastructural studies in corneal tissues. DNA from blood samples was amplified for the CHST6 coding and upstream region followed by direct sequencing and in silico analysis. We identified pathogenic mutations in 17 patients from 11 families. Of these 4 were novel (p.Ser54Tyr, p.Gln58Arg, p.Leu59His and p.Leu293Phe), 2 were previously reported (Arg93His and Glu274Lys) homozygous, 1 heterozygous stop codon (p.Trp123X) and 2 compound heterozygous (p.Arg93His + p.Arg97Pro; p.Leu22Arg + p.Gln58X) mutations. A missense single-nucleotide polymorphism was also identified in 11 patients. The novel mutations were conserved as shown by in silico analysis. Thirteen patients did not show any pathogenic CHST6 changes. This is the first report on molecular analysis of MCD in North Indian patients. All cases could not be explained by mutations in CHST6, suggesting that MCD may result from other changes in the regulatory elements of CHST6 or from genetic heterogeneity. Copyright © 2012 S. Karger AG, Basel.

  8. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy

    PubMed Central

    Nash, Benjamin M.; Wright, Dale C.; Grigg, John R.; Bennetts, Bruce

    2015-01-01

    Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs. PMID:26835369

  9. Detection of linkage disequilibrium between the myotonic dystrophy locus and a new polymorphic DNA marker.

    PubMed Central

    Harley, H G; Brook, J D; Floyd, J; Rundle, S A; Crow, S; Walsh, K V; Thibault, M C; Harper, P S; Shaw, D J

    1991-01-01

    We have examined the linkage of two new polymorphic DNA markers (D19S62 and D19S63) and a previously unreported polymorphism with an existing DNA marker (ERCC1) to the myotonic dystrophy (DM) locus. In addition, we have used pulsed-field gel electrophoresis to obtain a fine-structure map of this region. The detection of linkage disequilibrium between DM and one of these markers (D19S63) is the first demonstration of this phenomenon in a heterogeneous DM population. The results suggest that at least 58% of DM patients in the British population, as well as those in a French-Canadian subpopulation, are descended from the same ancestral DM mutation. We discuss the implications of this finding in terms of strategies for cloning the DM gene, for a possible role in modification of risk for prenatal and presymptomatic testing, and we speculate on the origin and number of existing mutations which may result in a DM phenotype. PMID:2063878

  10. Myotonic Dystrophy Type 2 Found in Two of Sixty-Three Persons Diagnosed as Having Fibromyalgia

    PubMed Central

    Auvinen, Satu; Suominen, Tiina; Hannonen, Pekka; Bachinski, Linda L.; Krahe, Ralf; Udd, Bjarne

    2008-01-01

    Because of its high prevalence, fibromyalgia (FM) is a major general health issue. Myotonic dystrophy type 2 (DM2) is a recently described autosomal-dominant multisystem disorder. Besides variable proximal muscle weakness, myotonia, and precocious cataracts, muscle pain and stiffness are prominent presenting features of DM2. After noting that several of our mutation-positive DM2 patients had a previous diagnosis of FM, suggesting that DM2 may be misdiagnosed as FM, we invited 90 randomly selected patients diagnosed as having FM to undergo genetic testing for DM2. Of the 63 patients who agreed to participate, 2 (3.2%) tested positive for the DM2 mutation. Their cases are described herein. DM2 was not found in any of 200 asymptomatic controls. We therefore suggest that the presence of DM2 should be investigated in a large sample of subjects diagnosed as having FM, and clinicians should be aware of overlap in the clinical presentation of these 2 distinct disorders. PMID:18975316

  11. Hypotrichosis and juvenile macular dystrophy caused by CDH3 mutation: A candidate disease for retinal gene therapy.

    PubMed

    Singh, Mandeep S; Broadgate, Suzanne; Mathur, Ranjana; Holt, Richard; Halford, Stephanie; MacLaren, Robert E

    2016-05-09

    Hypotrichosis with juvenile macular dystrophy (HJMD) is an autosomal recessive disorder that causes childhood visual impairment. HJMD is caused by mutations in CDH3 which encodes cadherin-3, a protein expressed in retinal pigment epithelium (RPE) cells that may have a key role in intercellular adhesion. We present a case of HJMD and analyse its phenotypic and molecular characteristics to assess the potential for retinal gene therapy as a means of preventing severe visual loss in this condition. Longitudinal in vivo imaging of the retina showed the relative anatomical preservation of the macula, which suggested the presence of a therapeutic window for gene augmentation therapy to preserve visual acuity. The coding sequence of CDH3 fits within the packaging limit of recombinant adeno-associated virus vectors that have been shown to be safe in clinical trials and can efficiently target RPE cells. This report expands the number of reported cases of HJMD and highlights the phenotypic characteristics to consider when selecting candidates for retinal gene therapy.

  12. Keratin 17 Mutations in Four Families from India with Pachyonychia Congenita

    PubMed Central

    Agarwala, Manoj; Salphale, Pankaj; Peter, Dincy; Wilson, Neil J; Pulimood, Susanne; Schwartz, Mary E; Smith, Frances J D

    2017-01-01

    Pachyonychia congenita (PC) is a rare autosomal dominant genetic skin disorder due to a mutation in any one of the five keratin genes, KRT6A, KRT6B, KRT6C, KRT16, or KRT17. The main features are palmoplantar keratoderma, plantar pain, and nail dystrophy. Cysts of various types, follicular hyperkeratosis, oral leukokeratosis, hyperhidrosis, and natal teeth may also be present. Four unrelated Indian families presented with a clinical diagnosis of PC. This was confirmed by genetic testing; mutations in KRT17 were identified in all affected individuals. PMID:28794556

  13. Ultrasound assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography designated for bioavailability studies of felodipine combinations in rat plasma.

    PubMed

    Ahmed, Sameh; Atia, Noha N; Bakr Ali, Marwa Fathy

    2017-03-01

    Felodipine (FLD), a calcium channel antagonist, is commonly prescribed for the treatment of hypertension either with Metoprolol (MET) or Ramipril (RAM) in two different drug combinations. FLD has high plasma protein binding ability affecting its extraction recoveries from plasma samples. Hence, a specific ultrasound assisted dispersive liquid-liquid microextraction (UA-DLLME) method coupled with HPLC using photodiode array detector was developed and validated for the simultaneous determination of FLD, MET and RAM in rat plasma after oral administration of these combinations. The factors affecting UA-DLLME were carefully optimized. In this study, UA-DLLME method could provide simple and efficient plasma extraction procedures with superior recovery results. Under optimum condition, all target drugs were separated within 13min. The validation procedures was carried out in agreement with US-FDA guidelines and shown to be suitable for anticipated purposes. Linear calibration ranges were obtained in the range 0.05-2.0μgmL -1 for FLD and MET and 0.1-2.0μgmL -1 for RAM with detection limits of 0.013-0.031μgmL -1 for all the studied drug combinations. The%RSD for inter-day and intra-day precisions was in range of 0.63-3.85% and the accuracy results were in the range of 92.13-100.5%. The validated UA-DLLME-HPLC method was successfully applied for the bioavailability studies of FLD, MET and RAM. The pharmacokinetic parameters were calculated for all the investigated drugs in rats after single-dose administrations of two different drug combinations. Although FLD was bioequivalent in the two formulations, a small increase in plasma levels of MET and RAM was found in the presence of FLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish.

    PubMed

    Bambino, Kathryn; Zhang, Chi; Austin, Christine; Amarasiriwardena, Chitra; Arora, Manish; Chu, Jaime; Sadler, Kirsten C

    2018-02-26

    The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt , which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  15. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish

    PubMed Central

    Zhang, Chi; Austin, Christine; Amarasiriwardena, Chitra; Arora, Manish

    2018-01-01

    ABSTRACT The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. PMID:29361514

  16. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy.

    PubMed

    Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali

    2015-12-01

    Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.

  17. Brain natriuretic peptide is not predictive of dilated cardiomyopathy in Becker and Duchenne muscular dystrophy patients and carriers.

    PubMed

    Schade van Westrum, Steven; Dekker, Lukas; de Haan, Rob; Endert, Erik; Ginjaar, Ieke; de Visser, Marianne; van der Kooi, Anneke

    2013-07-16

    Cardiomyopathy is reported in Duchenne and Becker muscle dystrophy patients and female carriers. Brain Natriuretic peptide (BNP) is a hormone produced mainly by ventricular cardiomyocytes and its production is up regulated in reaction to increased wall stretching. N-terminal-proBNP (NT-proBNP) has been shown to be a robust laboratory parameter to diagnose and monitor cardiac failure, and it may be helpful to screen for asymptomatic left ventricular dysfunction. Therefore we tested whether NT-proBNP can distinguish patients with Duchenne or Becker muscular dystrophy patients and carriers of a dystrophin mutation with a dilated cardiomyopathy from those without. In a cohort of Duchenne and Becker muscle dystrophy patients (n = 143) and carriers (n = 219) NT-proBNP was measured, and echocardiography was performed to diagnose dilated cardiomyopathy (DCM). In total sixty-one patients (17%) fulfilled the criteria for DCM, whereas 283 patients (78%) had an elevated NT-pro BNP. The sensitivity of NT-proBNP for DCM in patients or carriers was 85%, the specificity 23%, area under the ROC-curve = 0.56. In the specified subgroups there was also no association. Measurement of NT-pro BNP in patients suffering from Duchenne or Becker muscular dystrophy and carriers does not distinguish between those with and without dilated cardiomyopathy.

  18. The prevalence of Usher syndrome and other retinal dystrophy-hearing impairment associations.

    PubMed

    Rosenberg, T; Haim, M; Hauch, A M; Parving, A

    1997-05-01

    The study was undertaken to procure population-based prevalence data on the various types of Usher syndrome and other retinal dystrophy-hearing impairment associations. The medical files on 646 patients with a panretinal pigmentary dystrophy aged 20-49 years derived from the Danish Retinitis Pigmentosa (RP) register were scrutinised. The data were supplemented by a prior investigation on hearing ability in a part of the study population. After exclusion of patients with possibly extrinsic causes of hearing impairments, 118 patients, including 89 cases of Usher syndrome were allocated to one of five clinically defined groups. We calculated the following prevalence rates: Usher syndrome type I: 1.5/100,000, Usher syndrome type II: 2.2/100,000, and Usher syndrome type III: 0.1/100,000 corresponding to a 2:3 ratio between Usher syndrome type I and II. The overall prevalence rate of Usher syndrome was estimated to 5/100,000 in the Danish population, devoid of genetic isolates. The material comprised 11 cases with retinal dystrophy, hearing impairment, and additional syndromic features. Finally, 18 subjects with various retinal dystrophy-hearing impairment associations without syndromic features were identified, corresponding to a prevalence rate of 0.8/100,000. This group had a significant overrepresentation of X-linked RP, including two persons harboring a mutation in the retinitis pigmentosa GTP-ase regulator (RPGR) gene.

  19. Genetic enhancement of cognition in a kindred with cone–rod dystrophy due to RIMS1 mutation

    PubMed Central

    Sisodiya, Sanjay M; Thompson, Pamela J; Need, Anna; Harris, Sarah E; Weale, Michael E; Wilkie, Susan E; Michaelides, Michel; Free, Samantha L; Walley, Nicole; Gumbs, Curtis; Gerrelli, Dianne; Ruddle, Piers; Whalley, Lawrence J; Starr, John M; Hunt, David M; Goldstein, David B; Deary, Ian J; Moore, Anthony T

    2007-01-01

    Background The genetic basis of variation in human cognitive abilities is poorly understood. RIMS1 encodes a synapse active‐zone protein with important roles in the maintenance of normal synaptic function: mice lacking this protein have greatly reduced learning ability and memory function. Objective An established paradigm examining the structural and functional effects of mutations in genes expressed in the eye and the brain was used to study a kindred with an inherited retinal dystrophy due to RIMS1 mutation. Materials and methods Neuropsychological tests and high‐resolution MRI brain scanning were undertaken in the kindred. In a population cohort, neuropsychological scores were associated with common variation in RIMS1. Additionally, RIMS1 was sequenced in top‐scoring individuals. Evolution of RIMS1 was assessed, and its expression in developing human brain was studied. Results Affected individuals showed significantly enhanced cognitive abilities across a range of domains. Analysis suggests that factors other than RIMS1 mutation were unlikely to explain enhanced cognition. No association with common variation and verbal IQ was found in the population cohort, and no other mutations in RIMS1 were detected in the highest scoring individuals from this cohort. RIMS1 protein is expressed in developing human brain, but RIMS1 does not seem to have been subjected to accelerated evolution in man. Conclusions A possible role for RIMS1 in the enhancement of cognitive function at least in this kindred is suggested. Although further work is clearly required to explore these findings before a role for RIMS1 in human cognition can be formally accepted, the findings suggest that genetic mutation may enhance human cognition in some cases. PMID:17237123

  20. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1.

    PubMed

    Li, Sisi; Xi, Quansheng; Zhang, Xiaoyu; Yu, Dong; Li, Lin; Jiang, Zhenyang; Chen, Qiuyun; Wang, Qing K; Traboulsi, Elias I

    2018-06-01

    We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.

  1. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    PubMed Central

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  2. Immunophenotypes of macular corneal dystrophy in India and correlation with mutations in CHST6.

    PubMed

    Sultana, Afia; Klintworth, Gordon K; Thonar, Eugene J-M A; Vemuganti, Geeta K; Kannabiran, Chitra

    2009-01-01

    To determine the immunophenotypes of macular corneal dystrophy (MCD) in Indian patients and to correlate them with mutations in the carbohydrate 6-sulfotransferase (CHST6) gene. Sixty-four patients from 53 families with MCD that were previously screened for mutations in CHST6 were included in an immunophenotype analysis. Antigenic keratan sulfate (AgKS) in serum as well as corneal tissue was evaluated in 31 families. Only cornea was evaluated in 11 families, and only serum was evaluated in 11 families. AgKS was detected in formalin-fixed, paraffin-embedded corneal sections by immunohistochemistry and in serum by ELISA using a monoclonal antibody against sulfated forms of KS in patients with MCD as well as normal controls. Analysis of corneal and/or serum AgKS disclosed MCD type I (27 families), MCD type IA (5 families), and MCD type II (3 families) in the cases studied. An additional 10 families were either MCD type I or MCD type IA since only serum AgKS data were available. Seven families manifested atypical immunophenotypes since the corneal AgKS expression was either of MCD type I or MCD type IA, but serum AgKS levels ranged from 19 ng/ml to 388 ng/ml. More than one immunophenotype was detected amongst siblings in two families. Each immunophenotype was associated with mutational heterogeneity in CHST6. MCD type I was the predominant immunophenotype in the Indian population studied followed by MCD type IA and then MCD type II. We detected further immunophenotypic heterogeneity by finding atypical patterns of AgKS reactivity in a subset of families. There were no simple correlations between immunophenotypes and specific mutations in CHST6, suggesting that factors other than CHST6 mutations may be contributing to the immunophenotypes in MCD.

  3. Association of a homozygous nonsense mutation in the ABCA4 (ABCR) gene with cone-rod dystrophy phenotype in an Italian family.

    PubMed

    Simonelli, Francesca; Testa, Francesco; Zernant, Jana; Nesti, Anna; Rossi, Settimio; Rinaldi, Ernesto; Allikmets, Rando

    2004-01-01

    Genetic variation in the ABCA4 (ABCR) gene has been associated with several distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), retinitis pigmentosa (RP) and age-related macular degeneration. The current model of genotype/phenotype association suggests that patients harboring deleterious mutations in both ABCR alleles would develop RP-like retinal pathology. Here we describe ABCA4-associated phenotypes, including a proband with a homozygous nonsense mutation in a family from Southern Italy. The proband had been originally diagnosed with STGD. Ophthalmologic examination included kinetic perimetry, electrophysiological studies and fluorescein angiography. DNA of the affected individual and family members was analyzed for variants in all 50 exons of the ABCA4 gene by screening on the ABCR400 microarray. A homozygous nonsense mutation 2971G>T (G991X) was detected in a patient initially diagnosed with STGD based on funduscopic evidence, including bull's eye depigmentation of the fovea and flecks at the posterior pole extending to the mid-peripheral retina. Since this novel nucleotide substitution results in a truncated, nonfunctional, ABCA4 protein, the patient was examined in-depth for the severity of the disease phenotype. Indeed, subsequent electrophysiological studies determined severely reduced cone amplitude as compared to the rod amplitude, suggesting the diagnosis of CRD. ABCR400 microarray is an efficient tool for determining causal genetic variation, including new mutations. A homozygous protein-truncating mutation in ABCA4 can cause a phenotype ranging from STGD to CRD as diagnosed at an early stage of the disease. Only a combination of comprehensive genotype/phenotype correlation studies will determine the proper diagnosis and prognosis of ABCA4-associated pathology. Copyright 2004 S. Karger AG, Basel

  4. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison.

    PubMed

    Nedelcu, Robert; Olsson, Pontus; Nyström, Ingela; Thor, Andreas

    2018-02-23

    Several studies have evaluated accuracy of intraoral scanners (IOS), but data is lacking regarding variations between IOS systems in the depiction of the critical finish line and the finish line accuracy. The aim of this study was to analyze the level of finish line distinctness (FLD), and finish line accuracy (FLA), in 7 intraoral scanners (IOS) and one conventional impression (IMPR). Furthermore, to assess parameters of resolution, tessellation, topography, and color. A dental model with a crown preparation including supra and subgingival finish line was reference-scanned with an industrial scanner (ATOS), and scanned with seven IOS: 3M, CS3500 and CS3600, DWIO, Omnicam, Planscan and Trios. An IMPR was taken and poured, and the model was scanned with a laboratory scanner. The ATOS scan was cropped at finish line and best-fit aligned for 3D Compare Analysis (Geomagic). Accuracy was visualized, and descriptive analysis was performed. All IOS, except Planscan, had comparable overall accuracy, however, FLD and FLA varied substantially. Trios presented the highest FLD, and with CS3600, the highest FLA. 3M, and DWIO had low overall FLD and low FLA in subgingival areas, whilst Planscan had overall low FLD and FLA, as well as lower general accuracy. IMPR presented high FLD, except in subgingival areas, and high FLA. Trios had the highest resolution by factor 1.6 to 3.1 among IOS, followed by IMPR, DWIO, Omnicam, CS3500, 3M, CS3600 and Planscan. Tessellation was found to be non-uniform except in 3M and DWIO. Topographic variation was found for 3M and Trios, with deviations below +/- 25 μm for Trios. Inclusion of color enhanced the identification of the finish line in Trios, Omnicam and CS3600, but not in Planscan. There were sizeable variations between IOS with both higher and lower FLD and FLA than IMPR. High FLD was more related to high localized finish line resolution and non-uniform tessellation, than to high overall resolution. Topography variations were low. Color improved finish line identification in some IOS. It is imperative that clinicians critically evaluate the digital impression, being aware of varying technical limitations among IOS, in particular when challenging subgingival conditions apply.

  5. Putative Digenic Inheritance of Heterozygous RP1L1 and C2orf71 Null Mutations in Syndromic Retinal Dystrophy

    PubMed Central

    Liu, Yangfan P.; Bosch, Daniëlle G.M.; Siemiatkowska, Anna M.; Rendtorff, Nanna Dahl; Boonstra, F. Nienke; Möller, Claes; Tranebjærg, Lisbeth; Katsanis, Nicholas; Cremers, Frans P.M.

    2018-01-01

    Background Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration and can occur in non-syndromic and syndromic forms. Syndromic RP is accompanied by other symptoms such as intellectual disability, hearing loss, or congenital abnormalities. Both forms are known to exhibit complex genetic interactions that can modulate the penetrance and expressivity of the phenotype. Materials and methods In an individual with atypical RP, hearing loss, ataxia and cerebellar atrophy whole exome sequencing was performed. The candidate pathogenic variants were tested by developing an in vivo zebrafish model and assaying for retinal and cerebellar integrity. Results Exome sequencing revealed a complex heterozygous protein-truncating mutation in RP1L1, p.[(Lys111Glnfs*27; Q2373*)], and a heterozygous nonsense mutation in C2orf71, p.(Ser512*). Mutations in both genes have previously been implicated in autosomal recessive non-syndromic RP, raising the possibility of a digenic model in this family. Functional testing in a zebrafish model for two key phenotypes of the affected person showed that the combinatorial suppression of rp1l1 and c2orf71l induced discrete pathology in terms of reduction of eye size with concomitant loss of rhodopsin in the photoreceptors, and disorganization of the cerebellum. Conclusions We propose that the combination of heterozygous loss-of-function mutations in these genes drives syndromic retinal dystrophy, likely through the genetic interaction of at least two loci. Haploinsufficiency at each of these loci is insufficient to induce overt pathology. PMID:27029556

  6. Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability

    PubMed Central

    Bögershausen, Nina; Shahrzad, Nassim; Chong, Jessica X.; von Kleist-Retzow, Jürgen-Christoph; Stanga, Daniela; Li, Yun; Bernier, Francois P.; Loucks, Catrina M.; Wirth, Radu; Puffenberger, Eric G.; Hegele, Robert A.; Schreml, Julia; Lapointe, Gabriel; Keupp, Katharina; Brett, Christopher L.; Anderson, Rebecca; Hahn, Andreas; Innes, A. Micheil; Suchowersky, Oksana; Mets, Marilyn B.; Nürnberg, Gudrun; McLeod, D. Ross; Thiele, Holger; Waggoner, Darrel; Altmüller, Janine; Boycott, Kym M.; Schoser, Benedikt; Nürnberg, Peter; Ober, Carole; Heller, Raoul; Parboosingh, Jillian S.; Wollnik, Bernd; Sacher, Michael; Lamont, Ryan E.

    2013-01-01

    Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism. PMID:23830518

  7. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands.

    PubMed

    Huang, Li; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Wang, Panfeng; Sun, Wenmin; Xu, Yan; Xin, Wei; Guo, Xiangming; Zhang, Qingjiong

    2016-05-01

    Cone-rod dystrophy (CORD) is a common form of inherited retinal degeneration. Previously, we have conducted serial mutational analysis in probands with CORD either by Sanger sequencing or whole exome sequencing (WES). In the current study, variants in all genes from RetNet were selected from the whole exome sequencing data of 108 CORD probands (including 61 probands reported here for the first time) and were analyzed by multistep bioinformatics analysis, followed by Sanger sequencing and segregation validation. Data from the previous studies and new data from this study (163 probands in total) were summarized to provide an overview of the molecular genetics of CORD. The following potentially pathogenic mutations were identified in 93 of the 163 (57.1%) probands: CNGA3 (32.5%), ABCA4 (3.8%), ALMS1 (3.1%), GUCY2D (3.1%), CACNA1F (2.5%), CRX (1.8%), PDE6C (1.8%), CNGB3 (1.8%), GUCA1A (1.2%), UNC119 (0.6%), RPGRIP1 (1.2%), RDH12 (0.6%), KCNV2 (0.6%), C21orf2 (0.6%), CEP290 (0.6%), USH2A (0.6%) and SNRNP200 (0.6%). The 17 genes with mutations included 12 known CORD genes and five genes (ALMS1, RDH12, CEP290, USH2A, and SNRNP200) associated with other forms of retinal degeneration. Mutations in CNGA3 is most common in this cohort. This is a systematic molecular genetic analysis of Chinese patients with CORD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Stargardt macular dystrophy: common ABCA4 mutations in South Africa—establishment of a rapid genetic test and relating risk to patients

    PubMed Central

    Nossek, Christel A.; Greenberg, L. Jacquie; Ramesar, Rajkumar S.

    2012-01-01

    Purpose Based on the previous indications of founder ATP-binding cassette sub-family A member 4 gene (ABCA4) mutations in a South African subpopulation, the purpose was to devise a mechanism for identifying common disease-causing mutations in subjects with ABCA4-associated retinopathies (AARs). Facilitating patient access to this data and determining the frequencies of the mutations in the South African population would enhance the current molecular diagnostic service offered. Methods The majority of subjects in this study were of Caucasian ancestry and affected with Stargardt macular dystrophy. The initial cohort consisted of DNA samples from 181 patients, and was screened using the ABCR400 chip. An assay was then designed to screen a secondary cohort of 72 patients for seven of the most commonly occurring ABCA4 mutations in this population. A total of 269 control individuals were also screened for the seven ABCA4 mutations. Results Microarray screening results from a cohort of 181 patients affected with AARs revealed that seven ABCA4 mutations (p.Arg152*, c.768G>T, p.Arg602Trp, p.Gly863Ala, p.Cys1490Tyr, c.5461–10T>C, and p.Leu2027Phe) occurred at a relatively high frequency. The newly designed genetic assay identified two of the seven disease-associated mutations in 28/72 patients in a secondary patient cohort. In the control cohort, 12/269 individuals were found to be heterozygotes, resulting in an estimated background frequency of these mutations in this particular population of 4.46 per 100 individuals. Conclusions The relatively high detection rate of seven ABCA4 mutations in the primary patient cohort led to the design and subsequent utility of a multiplex assay. This assay can be used as a viable screening tool and to reduce costs and laboratory time. The estimated background frequency of the seven ABCA4 mutations, together with the improved diagnostic service, could be used by counselors to facilitate clinical and genetic management of South African families with AARs. PMID:22328824

  9. Genetics Home Reference: infantile neuroaxonal dystrophy

    MedlinePlus

    ... with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord. 2012 Jan;27(1):42-53. doi: 10.1002/mds.23971. Epub 2011 Oct 26. Review. ... Zhang Y, Xiao J, Wu X. Clinical study and PLA2G6 mutation screening analysis in Chinese ...

  10. 75 FR 916 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... Granite Falls, MN, Granite Falls Muni/Lenzen-Roe Memorial Fld, GPS RWY 33, Orig-B, CANCELLED Granite Falls, MN, Granite Falls Muni/Lenzen-Roe Memorial Fld, RNAV (GPS) RWY 33, Orig Charlotte, NC, Charlotte...

  11. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  12. A new case of limb girdle muscular dystrophy 2G in a Greek patient, founder effect and review of the literature.

    PubMed

    Brusa, Roberta; Magri, Francesca; Papadimitriou, Dimitra; Govoni, Alessandra; Del Bo, Roberto; Ciscato, Patrizia; Savarese, Marco; Cinnante, Claudia; Walter, Maggie C; Abicht, Angela; Bulst, Stefanie; Corti, Stefania; Moggio, Maurizio; Bresolin, Nereo; Nigro, Vincenzo; Comi, Giacomo Pietro

    2018-04-13

    Limb girdle muscular dystrophy (LGMD) type 2G is a rare form of muscle disease, described only in a few patients worldwide, caused by mutations in TCAP gene, encoding the protein telethonin. It is characterised by proximal limb muscle weakness associated with distal involvement of lower limbs, starting in the first or second decade of life. We describe the case of a 37-year-old woman of Greek origin, affected by disto-proximal lower limb weakness. No cardiac or respiratory involvement was detected. Muscle biopsy showed myopathic changes with type I fibre hypotrophy, cytoplasmic vacuoles, lipid overload, multiple central nuclei and fibre splittings; ultrastructural examination showed metabolic abnormalities. Next generation sequencing analysis detected a homozygous frameshift mutation in the TCAP gene (c.90_91del), previously described in one Turkish family. Immunostaining and Western blot analysis showed complete absence of telethonin. Interestingly, Single Nucleotide Polymorphism analysis of the 10 Mb genomic region containing the TCAP gene showed a shared homozygous haplotype of both the Greek and the Turkish patients, thus suggesting a possible founder effect of TCAP gene c.90_91del mutation in this part of the Mediterranean area. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Studies on congenital hereditary cataract and microphthalmia of the miniature schnauzer dog.

    PubMed

    Shastry, B S; Reddy, V N

    1994-09-30

    Hereditary cataract in dogs occurs as an autosomal recessive trait. The opacity is primarily in the lens nucleus and posterior cortex. The affected animals also have other ocular abnormalities such as microphthalmia. To understand the genetic basis of this disorder, we have analyzed leukocyte DNA from affected and normal dogs for possible mutations in the homeobox containing gene and myotonic dystrophy locus. The results show that there are no signs of microdeletion, insertion, point mutation and rearrangements in these loci. Although these observations cannot completely rule out the possibility of point mutations, they suggest that the above loci are unlikely to be associated with the disease.

  14. The ultrasound-guided nerve blocks of abdominal wall contributed to anesthetic management of cholecystectomy in a patient with Becker muscular dystrophy without using muscle relaxants.

    PubMed

    Iwata, Masato; Kuzumoto, Naoya; Akasaki, Yuka; Morioka, Masayo; Nakayama, Kana; Matsuzawa, Nobuyoshi; Kimoto, Katsuhiro; Shimomura, Toshiyuki

    2017-01-01

    Becker muscular dystrophy (BMD) is a progressive neuromuscular disorder caused by mutations in the dystrophin gene. The sensitivity to non-depolarizing muscle relaxant in a patient with muscle dystrophy is reportedly higher than that in normal individuals, and the duration of the effect is known to be prolonged. In this report, we present the case of a 58-year-old man with BMD who underwent laparoscopic cholecystectomy for symptomatic cholelithiasis under total intravenous anesthesia without the use of muscle-relaxant drugs and supplemented with regional anesthesia. Anesthesia was induced and maintained with propofol, remifentanil, and fentanyl; ultrasound-guided bilateral rectus sheath block (RSB) and right-sided subcostal transversus abdominis plane block (TAP) were performed. The procedure required conversion to open surgery because of hard conglutination; intraoperative and postoperative periods were uneventful. Adequate analgesia was maintained after extubation because of the effect of RSB and TAP.

  15. Consumption of a whey protein-enriched diet may prevent hepatic steatosis associated with weight gain in elderly women.

    PubMed

    Ooi, E M; Adams, L A; Zhu, K; Lewis, J R; Kerr, D A; Meng, X; Solah, V; Devine, A; Binns, C W; Prince, R L

    2015-04-01

    Protein consumption has been associated with cardio-metabolic benefits, including weight loss and improved insulin sensitivity, and may have potential benefits for individuals with fatty liver disease (FLD). We investigated the effect of increasing dietary protein intake from whey relative to carbohydrate on hepatic steatosis. A two-year randomized, double-blind, placebo-controlled trial of 30 g/day whey protein-supplemented beverage (protein) or an energy-matched low-protein high-carbohydrate beverage (control) for cardio-metabolic and bone health in 219 healthy elderly women, recruited from the Western Australian general population. Hepatic steatosis was quantified using computed tomographic liver-to-spleen (L/S) ratio. FLD was defined as liver-to-spleen difference <10 Hounsfield units. At baseline, FLD prevalence was 11.4%. Control and protein groups were similar in body mass index (BMI), insulin resistance, L/S ratio and FLD prevalence at baseline. At two-years, dietary protein increased by 20 g in the protein, but not the control, group. Total energy intake and physical activity remained similar between groups. At two-years, BMI and FLD prevalence increased in both groups, with no between group differences. L/S ratio increased in control, but not protein, group at two-years, with no between group differences. In a within group comparison, change in BMI correlated with changes in L/S ratio in control (r = 0.37, P = 0.0007), but not with protein group (r = 0.04, P = 0.73). Increasing dietary protein intake from whey relative to carbohydrate does not reduce weight, hepatic steatosis or the prevalence of FLD in elderly women. However, it may prevent worsening of hepatic steatosis associated with weight gain. Australian New Zealand Clinical Trials Registry (Registration no. ACTRN012607000163404). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Case presentation and short perspective on management of foraminal/far lateral discs and stenosis.

    PubMed

    Epstein, Nancy E

    2018-01-01

    The management of lumbar foraminal/far lateral discs (FOR/FLD) with stenosis remains controversial. Operative choices should be based on each patient's preoperative dynamic X-ray findings, magnetic resonance (MR), and computed tomography (CT) studies. Here we reviewed several options for decompression alone vs. decompression with fusion. Safe excision of FOR/FLD with stenosis should begin at the level above the disc herniation, as identification of the superior, foraminally, and far laterally exiting nerve root is critical. Performing an undercutting laminectomy and utilizing an operating microscope usually preserves the facet joints, and in many cases, avoids the need for fusion. Other decompressive techniques include; the intertransverse (ITT), and Wiltse approaches. Fusions following complete unilateral full facetectomy may be; noninstrumented (e.g., older, osteoporotic patients) vs. instrumented (e.g., posterolateral fusion or occasionally transforaminal lumbar interbody fusion). Here we present a patient with L2-L5 stenosis, and a left L3-L4 FOR/FLD, and multiple synovial cysts who was successfully managed with an l2-L5 laminecotmy, left L34 FOR/FLD diksectomy without fusion. Postoperatively, the patient was neurologically intact, and stability was maintained. Adjunctive measures for FOR/FLD diksectomy should include; intraoperative monitoring, use of the operating microscope, and an intraoperative film with a radiopaque marker in the correct disc space to confirm the correct level of diskectomy. There are multiple approaches to the excision of FOR/FLD with stenosis. These include; decompression alone vs. decompression with non-instrumented vs. instrumented fusion. Surgical choices must be based on individual patient's X-ray, MR, and CT findings. The aim should be to maximize the safety of disc excision with decompression of stenosis, and to preserve stability, reducing the need for fusion, while minimizing morbidity.

  17. Qualitative and quantitative analysis of the diuretic component ergone in Polyporus umbellatus by HPLC with fluorescence detection and HPLC-APCI-MS/MS.

    PubMed

    Zhao, Ying-Yong; Zhao, Ye; Zhang, Yong-Min; Lin, Rui-Chao; Sun, Wen-Ji

    2009-06-01

    Polyporus umbellatus is a widely used anti-aldosteronic diuretic in Traditional Chinese medicine (TCM). A new, sensitive and selective high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS/MS) method for quantitative and qualitative determination of ergosta-4,6,8(14),22-tetraen-3-one(ergone), which is the main diuretic component, was provided for quality control of P. umbellatus crude drug. The ergone in the ethanolic extract of P. umbellatus was unambiguously characterized by HPLC-APCI, and further confirmed by comparing with a standard compound. The trace ergone was detected by the sensitive and selective HPLC-FLD. Linearity (r2 > 0.9998) and recoveries of low, medium and high concentration (100.5%, 100.2% and 100.4%) were consistent with the experimental criteria. The limit of detection (LOD) of ergone was around 0.2 microg/mL. Our results indicated that the content of ergone in P. umbellatus varied significantly from habitat to habitat with contents ranging from 2.13 +/- 0.02 to 59.17 +/- 0.05 microg/g. Comparison among HPLC-FLD and HPLC-UV or HPLC-APCI-MS/MS demonstrated that the HPLC-FLD and HPLC-APCI-MS/MS methods gave similar quantitative results for the selected herb samples, the HPLC-UV methods gave lower quantitative results than HPLC-FLD and HPLC-APCI-MS/MS methods. The established new HPLC-FLD method has the advantages of being rapid, simple, selective and sensitive, and could be used for the routine analysis of P. umbellatus crude drug.

  18. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy

    PubMed Central

    Caillet-Boudin, Marie-Laure; Fernandez-Gomez, Francisco-Jose; Tran, Hélène; Dhaenens, Claire-Marie; Buee, Luc; Sergeant, Nicolas

    2013-01-01

    Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration. PMID:24409116

  19. Dystrophin-deficient large animal models: translational research and exon skipping

    PubMed Central

    Yu, Xinran; Bao, Bo; Echigoya, Yusuke; Yokota, Toshifumi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models. PMID:26396664

  20. Phenotypic variability in gap junction syndromic skin disorders: experience from KID and Clouston syndromes' clinical diagnostics.

    PubMed

    Kutkowska-Kaźmierczak, Anna; Niepokój, Katarzyna; Wertheim-Tysarowska, Katarzyna; Giza, Aleksandra; Mordasewicz-Goliszewska, Maria; Bal, Jerzy; Obersztyn, Ewa

    2015-08-01

    Connexins belong to the family of gap junction proteins which enable direct cell-to-cell communication by forming channels in adjacent cells. Mutations in connexin genes cause a variety of human diseases and, in a few cases, result in skin disorders. There are significant differences in the clinical picture of two rare autosomal dominant syndromes: keratitis-ichthyosis-deafness (KID) syndrome and hidrotic ectodermal dysplasia (Clouston syndrome), which are caused by GJB2 and GJB6 mutations, respectively. This is despite the fact that, in both cases, malfunctioning of the same family proteins and some overlapping clinical features (nail dystrophy, hair loss, and palmoplantar keratoderma) is observed. KID syndrome is characterized by progressive vascularizing keratitis, ichthyosiform erythrokeratoderma, and neurosensory hearing loss, whereas Clouston syndrome is characterized by nail dystrophy, hypotrichosis, and palmoplantar keratoderma. The present paper presents a Polish patient with sporadic KID syndrome caused by the mutation of p.Asp50Asn in GJB2. The patient encountered difficulties in obtaining a correct diagnosis. The other case presented is that of a family with Clouston syndrome (caused by p.Gly11Arg mutation in GJB6), who are the first reported patients of Polish origin suffering from this disorder. Phenotype diversity among patients with the same genotypes reported to date is also summarized. The conclusion is that proper diagnosis of these syndromes is still challenging and should always be followed by molecular verification.

  1. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy.

    PubMed

    Turan, Soeren; Farruggio, Alfonso P; Srifa, Waracharee; Day, John W; Calos, Michele P

    2016-04-01

    Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.

  2. Case report of a novel homozygous splice site mutation in PLA2G6 gene causing infantile neuroaxonal dystrophy in a Sudanese family.

    PubMed

    Elsayed, Liena E O; Mohammed, Inaam N; Hamed, Ahlam A A; Elseed, Maha A; Salih, Mustafa A M; Yahia, Ashraf; Siddig, Rayan A; Amin, Mutaz; Koko, Mahmoud; Elbashir, Mustafa I; Ibrahim, Muntaser E; Brice, Alexis; Ahmed, Ammar E; Stevanin, Giovanni

    2018-05-08

    Infantile neuroaxonal dystrophy (INAD) is a rare hereditary neurological disorder caused by mutations in PLA2G6. The disease commonly affects children below 3 years of age and presents with delay in motor skills, optic atrophy and progressive spastic tetraparesis. Studies of INAD in Africa are extremely rare, and genetic studies from Sub Saharan Africa are almost non-existent. Two Sudanese siblings presented, at ages 18 and 24 months, with regression in both motor milestones and speech development and hyper-reflexia. Brain MRI showed bilateral and symmetrical T2/FLAIR hyperintense signal changes in periventricular areas and basal ganglia and mild cerebellar atrophy. Whole exome sequencing with confirmatory Sanger sequencing were performed for the two patients and healthy family members. A novel variant (NM_003560.2 c.1427 + 2 T > C) acting on a splice donor site and predicted to lead to skipping of exon 10 was found in PLA2G6. It was found in a homozygous state in the two patients and homozygous reference or heterozygous in five healthy family members. This variant has one very strong (loss of function mutation) and three supporting evidences for its pathogenicity (segregation with the disease, multiple computational evidence and specific patients' phenotype). Therefore this variant can be currently annotated as "pathogenic". This is the first study to report mutations in PLA2G6 gene in patients from Sudan.

  3. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    PubMed

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  4. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy.

    PubMed

    Guiraud, Simon; Chen, Huijia; Burns, David T; Davies, Kay E

    2015-12-01

    What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X-linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene-replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re-establish muscle function. © 2015 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  5. Clinical trial network for the promotion of clinical research for rare diseases in Japan: muscular dystrophy clinical trial network.

    PubMed

    Shimizu, Reiko; Ogata, Katsuhisa; Tamaura, Akemi; Kimura, En; Ohata, Maki; Takeshita, Eri; Nakamura, Harumasa; Takeda, Shin'ichi; Komaki, Hirofumi

    2016-07-11

    Duchenne muscular dystrophy (DMD) is the most commonly inherited neuromuscular disease. Therapeutic agents for the treatment of rare disease, namely "orphan drugs", have recently drawn the attention of researchers and pharmaceutical companies. To ensure the successful conduction of clinical trials to evaluate novel treatments for patients with rare diseases, an appropriate infrastructure is needed. One of the effective solutions for the lack of infrastructure is to establish a network of rare diseases. To accomplish the conduction of clinical trials in Japan, the Muscular dystrophy clinical trial network (MDCTN) was established by the clinical research group for muscular dystrophy, including the National Center of Neurology and Psychiatry, as well as national and university hospitals, all which have a long-standing history of research cooperation. Thirty-one medical institutions (17 national hospital organizations, 10 university hospitals, 1 national center, 2 public hospitals, and 1 private hospital) belong to this network and collaborate to facilitate clinical trials. The Care and Treatment Site Registry (CTSR) calculates and reports the proportion of patients with neuromuscular diseases in the cooperating sites. In total, there are 5,589 patients with neuromuscular diseases in Japan and the proportion of patients with each disease is as follows: DMD, 29 %; myotonic dystrophy type 1, 23 %; limb girdle muscular dystrophy, 11 %; Becker muscular dystrophy, 10 %. We work jointly to share updated health care information and standardized evaluations of clinical outcomes as well. The collaboration with the patient registry (CTSR), allows the MDCTN to recruit DMD participants with specific mutations and conditions, in a remarkably short period of time. Counting with a network that operates at a national level is important to address the corresponding national issues. Thus, our network will be able to contribute with international research activity, which can lead to an improvement of neuromuscular disease treatment in Japan.

  6. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    PubMed

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify sarcolemmal utrophin and muscle regeneration in muscle biopsies will be invaluable for assessing utrophin modulator activity in future clinical trials.

  7. Rare Compound Heterozygous Frameshift Mutations in ALMS1 Gene Identified Through Exome Sequencing in a Taiwanese Patient With Alström Syndrome.

    PubMed

    Tsai, Meng-Che; Yu, Hui-Wen; Liu, Tsunglin; Chou, Yen-Yin; Chiou, Yuan-Yow; Chen, Peng-Chieh

    2018-01-01

    Alström syndrome (AS) is a rare autosomal recessive disorder that shares clinical features with other ciliopathy-related diseases. Genetic mutation analysis is often required in making differential diagnosis but usually costly in time and effort using conventional Sanger sequencing. Herein we describe a Taiwanese patient presenting cone-rod dystrophy and early-onset obesity that progressed to diabetes mellitus with marked insulin resistance during adolescence. Whole exome sequencing of the patient's genomic DNA identified a novel frameshift mutation in exons 15 (c.10290_10291delTA, p.Lys3431Serfs * 10) and a rare mutation in 16 (c.10823_10824delAG, p.Arg3609Alafs * 6) of ALMS1 gene. The compound heterozygous mutations were predicted to render truncated proteins. This report highlighted the clinical utility of exome sequencing and extended the knowledge of mutation spectrum in AS patients.

  8. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies.

    PubMed

    Belaya, Katsiaryna; Rodríguez Cruz, Pedro M; Liu, Wei Wei; Maxwell, Susan; McGowan, Simon; Farrugia, Maria E; Petty, Richard; Walls, Timothy J; Sedghi, Maryam; Basiri, Keivan; Yue, Wyatt W; Sarkozy, Anna; Bertoli, Marta; Pitt, Matthew; Kennett, Robin; Schaefer, Andrew; Bushby, Kate; Parton, Matt; Lochmüller, Hanns; Palace, Jacqueline; Muntoni, Francesco; Beeson, David

    2015-09-01

    Congenital myasthenic syndromes are inherited disorders that arise from impaired signal transmission at the neuromuscular junction. Mutations in at least 20 genes are known to lead to the onset of these conditions. Four of these, ALG2, ALG14, DPAGT1 and GFPT1, are involved in glycosylation. Here we identify a fifth glycosylation gene, GMPPB, where mutations cause congenital myasthenic syndrome. First, we identified recessive mutations in seven cases from five kinships defined as congenital myasthenic syndrome using decrement of compound muscle action potentials on repetitive nerve stimulation on electromyography. The mutations were present through the length of the GMPPB, and segregation, in silico analysis, exon trapping, cell transfection followed by western blots and immunostaining were used to determine pathogenicity. GMPPB congenital myasthenic syndrome cases show clinical features characteristic of congenital myasthenic syndrome subtypes that are due to defective glycosylation, with variable weakness of proximal limb muscle groups while facial and eye muscles are largely spared. However, patients with GMPPB congenital myasthenic syndrome had more prominent myopathic features that were detectable on muscle biopsies, electromyography, muscle magnetic resonance imaging, and through elevated serum creatine kinase levels. Mutations in GMPPB have recently been reported to lead to the onset of muscular dystrophy dystroglycanopathy. Analysis of four additional GMPPB-associated muscular dystrophy dystroglycanopathy cases by electromyography found that a defective neuromuscular junction component is not always present. Thus, we find mutations in GMPPB can lead to a wide spectrum of clinical features where deficit in neuromuscular transmission is the major component in a subset of cases. Clinical recognition of GMPPB-associated congenital myasthenic syndrome may be complicated by the presence of myopathic features, but correct diagnosis is important because affected individuals can respond to appropriate treatments. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. Assessment of the feasibility of exon 45–55 multiexon skipping for duchenne muscular dystrophy

    PubMed Central

    van Vliet, Laura; de Winter, Christa L; van Deutekom, Judith CT; van Ommen, Gert-Jan B; Aartsma-Rus, Annemieke

    2008-01-01

    Background The specific skipping of an exon, induced by antisense oligonucleotides (AON) during splicing, has shown to be a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients. As different mutations require skipping of different exons, this approach is mutation dependent. The skipping of an entire stretch of exons (e.g. exons 45 to 55) has recently been suggested as an approach applicable to larger groups of patients. However, this multiexon skipping approach is technically challenging. The levels of intended multiexon skips are typically low and highly variable, and may be dependent on the order of intron removal. We hypothesized that the splicing order might favor the induction of multiexon 45–55 skipping. Methods We here tested the feasibility of inducing multiexon 45–55 in control and patient muscle cell cultures using various AON cocktails. Results In all experiments, the exon 45–55 skip frequencies were minimal and comparable to those observed in untreated cells. Conclusion We conclude that current state of the art does not sufficiently support clinical development of multiexon skipping for DMD. PMID:19046429

  10. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.

    PubMed

    Li, Hongmei Lisa; Fujimoto, Naoko; Sasakawa, Noriko; Shirai, Saya; Ohkame, Tokiko; Sakuma, Tetsushi; Tanaka, Michihiro; Amano, Naoki; Watanabe, Akira; Sakurai, Hidetoshi; Yamamoto, Takashi; Yamanaka, Shinya; Hotta, Akitsu

    2015-01-13

    Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. [Specific features of Becker Muscular Dystrophy patients and female carriers of Duchenne Muscular Dystrophy].

    PubMed

    Magot, A; Mercier, S; Péréon, Y

    2015-12-01

    Becker muscular dystrophy (BMD) was first described in 1955 and linked to the DMD gene in 1987. Compared to Duchenne muscular dystrophy (DMD), clinical onset of BMD usually occurs after the age of 12 and wheelchair is required after the age of 16. BMD is characterized by generalized weakness first affecting limb girdle muscles, hypertrophy of the calves and cardiomyopathy in males. Some patients have only mild symptoms such as cramps or elevated serum creatine kinases (SCK) throughout all their lives. SCK levels are usually elevated. Muscle biopsy (immunohistochemistry or immunoblotting) shows a dystrophic pattern with abnormal dystrophin staining. Diagnosis is confirmed by DMD gene sequencing. Deletions or duplications of one or several exons are identified in the majority of cases. A multidisciplinary approach is recommended for the care management of these patients with a particular attention to the cardiomyopathy, which is typically responsible for death but can be prevented by specific treatment. X-linked dilated cardiomyopathies linked to DMD gene are a phenotypic continuum of BMD. Some female carriers of DMD mutations exhibit clinical symptoms of variable severity, often milder and beginning later than in males. The cardiomyopathy is the most frequent feature that should be especially monitored in these patients. Genetic counselling should be systematically proposed. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    NASA Astrophysics Data System (ADS)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water input) were calculated for each treatment. The outcomes show that the water application efficiencies of all treatments were higher in 2013 than in 2012 (by 23%, 25% and 4% for FLD, 3L-FLD, and IRR respectively). These results could be ascribed to the higher groundwater level observed in 2013 (about 10-15 cm closer to the soil surface), likely due to the conversion of the field beyond the monitored plots from soybean to flooded rice. Moreover, a small increase of the water application efficiency of 3L-FLD was found if compared to FLD (3% on average), while the water application efficiency of IRR was, on average, higher by 67% compared to FLD. The good performance of IRR is related to lower percolation rates and a relevant contribution of capillary rise due to the shallow groundwater table maintained by the continuous submergence of the surrounding paddy fields. The performed experiment highlighted that significant improvement in the water use efficiency at the field scale can be achieved. However, a widespread adoption of water regimes different from continuous flooding should be carefully evaluated by a larger-scale approach since a consequent drop in the groundwater table depth could have repercussions on the potential gains themselves.

  13. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects.

    PubMed

    Nikopoulos, Konstantinos; Farinelli, Pietro; Giangreco, Basilio; Tsika, Chrysanthi; Royer-Bertrand, Beryl; Mbefo, Martial K; Bedoni, Nicola; Kjellström, Ulrika; El Zaoui, Ikram; Di Gioia, Silvio Alessandro; Balzano, Sara; Cisarova, Katarina; Messina, Andrea; Decembrini, Sarah; Plainis, Sotiris; Blazaki, Styliani V; Khan, Muhammad Imran; Micheal, Shazia; Boldt, Karsten; Ueffing, Marius; Moulin, Alexandre P; Cremers, Frans P M; Roepman, Ronald; Arsenijevic, Yvan; Tsilimbaris, Miltiadis K; Andréasson, Sten; Rivolta, Carlo

    2016-09-01

    Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability.

    PubMed

    Bögershausen, Nina; Shahrzad, Nassim; Chong, Jessica X; von Kleist-Retzow, Jürgen-Christoph; Stanga, Daniela; Li, Yun; Bernier, Francois P; Loucks, Catrina M; Wirth, Radu; Puffenberger, Eric G; Hegele, Robert A; Schreml, Julia; Lapointe, Gabriel; Keupp, Katharina; Brett, Christopher L; Anderson, Rebecca; Hahn, Andreas; Innes, A Micheil; Suchowersky, Oksana; Mets, Marilyn B; Nürnberg, Gudrun; McLeod, D Ross; Thiele, Holger; Waggoner, Darrel; Altmüller, Janine; Boycott, Kym M; Schoser, Benedikt; Nürnberg, Peter; Ober, Carole; Heller, Raoul; Parboosingh, Jillian S; Wollnik, Bernd; Sacher, Michael; Lamont, Ryan E

    2013-07-11

    Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Phenotypic and immunohistochemical characterization of sarcoglycanopathies

    PubMed Central

    Ferreira, Ana F. B.; Carvalho, Mary S.; Resende, Maria Bernadete D.; Wakamatsu, Alda; Reed, Umbertina Conti; Marie, Suely Kazue Nagahashi

    2011-01-01

    INTRODUCTION: Limb-girdle muscular dystrophy presents with heterogeneous clinical and molecular features. The primary characteristic of this disorder is proximal muscular weakness with variable age of onset, speed of progression, and intensity of symptoms. Sarcoglycanopathies, which are a subgroup of the limb-girdle muscular dystrophies, are caused by mutations in sarcoglycan genes. Mutations in these genes cause secondary deficiencies in other proteins, due to the instability of the dystrophin-glycoprotein complex. Therefore, determining the etiology of a given sarcoglycanopathy requires costly and occasionally inaccessible molecular methods. OBJECTIVE: The aim of this study was to identify phenotypic differences among limb-girdle muscular dystrophy patients who were grouped according to the immunohistochemical phenotypes for the four sarcoglycans. METHODS: To identify phenotypic differences among patients with different types of sarcoglycanopathies, a questionnaire was used and the muscle strength and range of motion of nine joints in 45 patients recruited from the Department of Neurology – HC-FMUSP (Clinics Hospital of the Faculty of Medicine of the University of São Paulo) were evaluated. The findings obtained from these analyses were compared with the results of the immunohistochemical findings. RESULTS: The patients were divided into the following groups based on the immunohistochemical findings: α-sarcoglycanopathies (16 patients), β-sarcoglycanopathies (1 patient), γ-sarcoglycanopathies (5 patients), and non-sarcoglycanopathies (23 patients). The muscle strength analysis revealed significant differences for both upper and lower limb muscles, particularly the shoulder and hip muscles, as expected. No pattern of joint contractures was found among the four groups analyzed, even within the same family. However, a high frequency of tiptoe gait was observed in patients with α-sarcoglycanopathies, while calf pseudo-hypertrophy was most common in patients with non-sarcoglycanopathies. The α-sarcoglycanopathy patients presented with more severe muscle weakness than did γ-sarcoglycanopathy patients. CONCLUSION: The clinical differences observed in this study, which were associated with the immunohistochemical findings, may help to prioritize the mutational investigation of sarcoglycan genes. PMID:22012042

  16. Current and emerging treatment strategies for Duchenne muscular dystrophy

    PubMed Central

    Mah, Jean K

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying mutations using new gene-editing technologies and corticosteroid analogs with better safety profiles offers renewed hope for many individuals with DMD and their families. PMID:27524897

  17. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex.

    PubMed

    Sciandra, Francesca; Bozzi, Manuela; Bianchi, Marzia; Pavoni, Ernesto; Giardina, Bruno; Brancaccio, Andrea

    2003-01-01

    Dystroglycan (DG) is an adhesion molecule composed of two subunits, alpha and beta, that are produced by the post-translational cleavage of a single precursor molecule. DG is a pivotal component of the dystrophin-glycoprotein complex (DGC), which connects the extracellular matrix to the cytoskeleton in skeletal muscle and many other tissues. Some muscular dystrophies are caused by mutations of DGC components, such as dystrophin, sarcoglycan or laminin-2, or also of DGC-associated molecules, such as caveolin-3. DG-null mice died during early embriogenesis and no neuromuscular diseases directly associated to genetic abnormalities of DG were identified so far. However, DG plays a crucial role for muscle integrity since its targeting at the sarcolemma is often perturbed in DGC-related neuromuscular disorders.

  18. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD).

    PubMed

    Scherf, Katharina Anne; Wieser, Herbert; Koehler, Peter

    2016-10-12

    Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.

  19. Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability.

    PubMed

    Donkervoort, Sandra; Hu, Ying; Stojkovic, Tanya; Voermans, Nicol C; Foley, A Reghan; Leach, Meganne E; Dastgir, Jahannaz; Bolduc, Véronique; Cullup, Thomas; de Becdelièvre, Alix; Yang, Lin; Su, Hai; Meilleur, Katherine; Schindler, Alice B; Kamsteeg, Erik-Jan; Richard, Pascale; Butterfield, Russell J; Winder, Thomas L; Crawford, Thomas O; Weiss, Robert B; Muntoni, Francesco; Allamand, Valérie; Bönnemann, Carsten G

    2015-01-01

    Collagen 6-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy, intermediate phenotypes, to the milder Bethlem myopathy. Both inter- and intrafamilial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked intergenerational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional fifth simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2, and COL6A3) in genomic DNA from various tissues, including blood, dermal fibroblasts, and saliva. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared with the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intrafamilial/intergenerational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected. © 2014 WILEY PERIODICALS, INC.

  20. Probable high prevalence of limb-girdle muscular dystrophy type 2D in Taiwan.

    PubMed

    Liang, Wen-Chen; Chou, Po-Ching; Hung, Chia-Cheng; Su, Yi-Ning; Kan, Tsu-Min; Chen, Wan-Zi; Hayashi, Yukiko K; Nishino, Ichizo; Jong, Yuh-Jyh

    2016-03-15

    Limb-girdle muscular dystrophy type 2D (LGMD2D), an autosomal-recessive inherited LGMD, is caused by the mutations in SGCA. SGCA encodes alpha-sarcoglycan (SG) that forms a heterotetramer with other SGs in the sarcolemma, and comprises part of the dystrophin-glycoprotein complex. The frequency of LGMD2D is variable among different ethnic backgrounds, and so far only a few patients have been reported in Asia. We identified five patients with a novel homozygous mutation of c.101G>T (p.Arg34Leu) in SGCA from a big aboriginal family ethnically consisting of two tribes in Taiwan. Patient 3 is the maternal uncle of patients 1 and 2. All their parents, heterozygous for c.101G>T, denied consanguineous marriages although they were from the same tribe. The heterozygous parents of patients 4 and 5 were from two different tribes, originally residing in different geographic regions in Taiwan. Haplotype analysis showed that all five patients shared the same mutation-associated haplotype, indicating the probability of a founder effect and consanguinity. The results suggest that the carrier rate of c.101G>T in SGCA may be high in Taiwan, especially in the aboriginal population regardless of the tribes. It is important to investigate the prevalence of LGMD2D in Taiwan for early diagnosis and treatment. Copyright © 2016. Published by Elsevier B.V.

  1. A novel canine model for Duchenne muscular dystrophy (DMD): single nucleotide deletion in DMD gene exon 20.

    PubMed

    Mata López, Sara; Hammond, James J; Rigsby, Madison B; Balog-Alvarez, Cynthia J; Kornegay, Joe N; Nghiem, Peter P

    2018-05-29

    Boys with Duchenne muscular dystrophy (DMD) have DMD gene mutations, with associated loss of the dystrophin protein and progressive muscle degeneration and weakness. Corticosteroids and palliative support are currently the best treatment options. The long-term benefits of recently approved compounds such as eteplirsen and ataluren remain to be seen. Dogs with naturally occurring dystrophinopathies show progressive disease akin to that of DMD. Accordingly, canine DMD models are useful for studies of pathogenesis and preclinical therapy development. A dystrophin-deficient, male border collie dog was evaluated at the age of 5 months for progressive muscle weakness and dysphagia. Dramatically increased serum creatine kinase levels (41,520 U/L; normal range 59-895 U/L) were seen on a biochemistry panel. Histopathologic changes characteristic of dystrophinopathy were seen. Dystrophin was absent in the skeletal muscle on immunofluorescence microscopy and western blot. Whole genome sequencing, polymerase chain reaction, and Sanger sequencing revealed a frameshift, single nucleotide deletion in canine DMD exon 20, position 27,626,466 (c.2841delT mRNA), resulting in a stop codon six nucleotides downstream. Semen was archived for future line perpetuation. This spontaneous canine dystrophinopathy occurred due to a novel mutation in the minor DMD mutation hotspot (between exons 2 through 20). Perpetuating this line could allow for preclinical testing of genetic therapies targeted to this area of the DMD gene.

  2. POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability.

    PubMed

    von Renesse, Anja; Petkova, Mina V; Lützkendorf, Susanne; Heinemeyer, Jan; Gill, Esther; Hübner, Christoph; von Moers, Arpad; Stenzel, Werner; Schuelke, Markus

    2014-04-01

    Congenital muscular dystrophies (CMD) with hypoglycosylation of α-dystroglycan are clinically and genetically heterogeneous disorders that are often associated with brain malformations and eye defects. Presently, 16 proteins are known whose dysfunction impedes glycosylation of α-dystroglycan and leads to secondary dystroglycanopathy. To identify the cause of CMD with secondary merosin deficiency, hypomyelination and intellectual disability in two siblings from a consanguineous family. Autozygosity mapping followed by whole exome sequencing and immunochemistry were used to discover and verify a new genetic defect in two siblings with CMD. We identified a homozygous missense mutation (c.325C>T, p.Q109*) in protein O-mannosyl kinase (POMK) that encodes a glycosylation-specific kinase (SGK196) required for function of the dystroglycan complex. The protein was absent from skeletal muscle and skin fibroblasts of the patients. In patient muscle, β-dystroglycan was normally expressed at the sarcolemma, while α-dystroglycan failed to do so. Further, we detected co-localisation of POMK with desmin at the costameres in healthy muscle, and a substantial loss of desmin from the patient muscle. Homozygous truncating mutations in POMK lead to CMD with secondary merosin deficiency, hypomyelination and intellectual disability. Loss of desmin suggests that failure of proper α-dystroglycan glycosylation impedes the binding to extracellular matrix proteins and also affects the cytoskeleton.

  3. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing.

    PubMed

    Oliveira, Jorge; Negrão, Luís; Fineza, Isabel; Taipa, Ricardo; Melo-Pires, Manuel; Fortuna, Ana Maria; Gonçalves, Ana Rita; Froufe, Hugo; Egas, Conceição; Santos, Rosário; Sousa, Mário

    2015-06-01

    Muscular dystrophies (MDs) are a group of hereditary muscle disorders that include two particularly heterogeneous subgroups: limb-girdle MD and congenital MD, linked to 52 different genes (seven common to both subgroups). Massive parallel sequencing technology may avoid the usual stepwise gene-by-gene analysis. We report the whole-exome sequencing (WES) analysis of a patient with childhood-onset progressive MD, also presenting mental retardation and dilated cardiomyopathy. Conventional sequencing had excluded eight candidate genes. WES of the trio (patient and parents) was performed using the ion proton sequencing system. Data analysis resorted to filtering steps using the GEMINI software revealed a novel silent variant in the choline kinase beta (CHKB) gene. Inspection of sequence alignments ultimately identified the causal variant (CHKB:c.1031+3G>C). This splice site mutation was confirmed using Sanger sequencing and its effect was further evaluated with gene expression analysis. On reassessment of the muscle biopsy, typical abnormal mitochondrial oxidative changes were observed. Mutations in CHKB have been shown to cause phosphatidylcholine deficiency in myofibers, causing a rare form of CMD (only 21 patients reported). Notwithstanding interpretative difficulties that need to be overcome before the integration of WES in the diagnostic workflow, this work corroborates its utility in solving cases from highly heterogeneous groups of diseases, in which conventional diagnostic approaches fail to provide a definitive diagnosis.

  4. Is it all the X: familial learning dysfunction and the impact of behavioral aspects of the phenotypic presentation of XXY?

    PubMed

    Samango-Sprouse, Carole A; Stapleton, Emily; Sadeghin, Teresa; Gropman, Andrea L

    2013-02-15

    The behavioral phenotype of children with XXY has not been extensively studied until recently and this research has been confounded by insufficient study populations and ascertainment biases. The aim of the study was to expand the behavioral aspect of the XXY phenotype as well as investigate the role of existing familial learning disabilities (FLD) on behavioral problems. Behavioral phenotype of XXY includes social anxiety, ADHD, social communication, and atypical peer interactions. The Child Behavior Checklist (CBCL), Social Responsiveness Scale (SRS), and Gilliam Autism Rating Scale (GARS) were completed by the parents of 54 boys with XXY who had not received hormonal replacement prior to participation. Our findings suggest fewer behavioral deficits and lower severity in the general 47,XXY population than previously published and found significant differences between the groups with a positive FLD on the behavioral assessments. Findings demonstrate that boys with FLD exhibit an increased incidence and severity of behavioral problems. Our study expands on the findings of Samango-Sprouse et al. [Samango-Sprouse et al. (2012b) J Intellect Disabil Res] and the significant influence that FLD has on not only neurodevelopment, but also behavioral deficits. Our study suggests that part of the XXY phenotypic profile may be modulated by FLD. Further study is underway to examine the interaction between the many salient factors effecting behavioral and neurodevelopmental progression in XXY and variant forms. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  5. Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs.

    PubMed

    Sánchez, Lluís; Beltrán, Elsa; de Stefani, Alberta; Guo, Ling T; Shea, Anita; Shelton, G Diane; De Risio, Luisa; Burmeister, Louise M

    2018-01-01

    Four full-sibling intact male Miniature Poodles were evaluated at 4-19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog.

  6. Use of the six-minute walk test to characterize golden retriever muscular dystrophy.

    PubMed

    Acosta, Austin R; Van Wie, Emiko; Stoughton, William B; Bettis, Amanda K; Barnett, Heather H; LaBrie, Nicholas R; Balog-Alvarez, Cynthia J; Nghiem, Peter P; Cummings, Kevin J; Kornegay, Joe N

    2016-12-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder in which loss of the dystrophin protein causes progressive skeletal/cardiac muscle degeneration and death within the third decade. For clinical trials and supportive animal studies, DMD disease progression and response to treatment must be established using outcome parameters (biomarkers). The 6-minute walk test (6MWT), defined as the distance an individual can walk in 6 minutes, is commonly used in DMD clinical trials and has been employed in dogs to characterize cardiac and respiratory disease severity. Building on methods established in DMD and canine clinical studies, we assessed the 6MWT in dogs with the DMD genetic homolog, golden retriever muscular dystrophy (GRMD). Twenty-one cross-bred golden retrievers were categorized as affected (DMD mutation and GRMD phenotype), carrier (female heterozygous for DMD mutation and no phenotype), and normal (wild type DMD gene and normal phenotype). When compared to grouped normal/carrier dogs, GRMD dogs walked shorter height-adjusted distances at 6 and 12 months of age and their distances walked declined with age. Percent change in creatine kinase after 6MWT was greater in GRMD versus normal/carrier dogs at 6 months, providing another potential biomarker. While these data generally support use of the 6MWT as a biomarker for preclinical GRMD treatment trials, there were certain limitations. Results of the 6MWT did not correlate with other outcome parameters for GRMD dogs when considered alone and an 80% increase in mean distance walked would be necessary to achieve satisfactory power. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    PubMed Central

    Beltrán, Elsa; de Stefani, Alberta; Guo, Ling T.; Shea, Anita; Shelton, G. Diane

    2018-01-01

    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog. PMID:29474464

  8. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk.

    PubMed

    Vollrath, D; Feng, W; Duncan, J L; Yasumura, D; D'Cruz, P M; Chappelow, A; Matthes, M T; Kay, M A; LaVail, M M

    2001-10-23

    The Royal College of Surgeons (RCS) rat is a widely studied animal model of retinal degeneration in which the inability of the retinal pigment epithelium (RPE) to phagocytize shed photoreceptor outer segments leads to a progressive loss of rod and cone photoreceptors. We recently used positional cloning to demonstrate that the gene Mertk likely corresponds to the retinal dystrophy (rdy) locus of the RCS rat. In the present study, we sought to determine whether gene transfer of Mertk to a RCS rat retina would result in correction of the RPE phagocytosis defect and preservation of photoreceptors. We used subretinal injection of a recombinant replication-deficient adenovirus encoding rat Mertk to deliver the gene to the eyes of young RCS rats. Electrophysiological assessment of animals 30 days after injection revealed an increased sensitivity of treated eyes to low-intensity light. Histologic and ultrastructural assessment demonstrated substantial sparing of photoreceptors, preservation of outer segment structure, and correction of the RPE phagocytosis defect in areas surrounding the injection site. Our results provide definitive evidence that mutation of Mertk underlies the RCS retinal dystrophy phenotype, and that the phenotype can be corrected by treatment of juvenile animals. To our knowledge, this is the first demonstration of complementation of both a functional cellular defect (phagocytosis) and a photoreceptor degeneration by gene transfer to the RPE. These results, together with the recent discovery of MERTK mutations in individuals with retinitis pigmentosa, emphasize the importance of the RCS rat as a model for gene therapy of diseases that arise from RPE dysfunction.

  9. Boucher Neuhäuser Syndrome - A rare cause of inherited hypogonadotropic hypogonadism. A case of two adult siblings with two novel mutations in PNPLA6.

    PubMed

    Langdahl, Jakob H; Frederiksen, Anja L; Nguyen, Nina; Brusgaard, Klaus; Juhl, Claus B

    2017-02-01

    Boucher Neuhäuser Syndrome (BNS) is a rare clinical syndrome with autosomal recessive inheritance defined by early-onset ataxia, hypogonadism and chorioretinal dystrophy. We present two siblings diagnosed with BNS in late adult life identified with compound heterozygous state of two novel PNPLA6 mutations. Five healthy siblings were non- or heterozygous carriers of the mutations. The cases, which presented with ataxia in childhood and hypogonadotropic hypogonadism (HH), were diagnosed at age 17 and 25, respectively, when examined for delayed puberty. The youngest case, a 55-year old male, was referred to our department in 2006 for evaluation of secondary causes of osteoporosis, which he developed despite adequate testosterone replacement therapy. The unusual medical history with childhood ataxia and hypogonadotropic hypogonadism lead to further examinations and eventually the diagnosis of BNS. The older sister of the proband also displayed the triad of ataxia, HH and chorioretinal dystrophy accompanied by cerebellar atrophy and in 2014, we found the mutations in PNPLA6. BNS is a rare cause of HH and secondary osteoporosis, but should be considered in patients presenting with one or more of the key features. Genetic screening is becoming increasingly available and inexpensive and accordingly this may be considered earlier and by broader indication in unusual phenotypic presentations. The increasing knowledge of causes for inherited diseases should extend the use of genetic screening, as the correct diagnosis will benefit the patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Further Insights into the Ciliary Gene and Protein KIZ and Its Murine Ortholog PLK1S1 Mutated in Rod-Cone Dystrophy

    PubMed Central

    Méjécase, Cécile; Bertelli, Matteo; Terray, Angélique; Michiels, Christelle; Condroyer, Christel; Fouquet, Stéphane; Sadoun, Maxime; Clérin, Emmanuelle; Liu, Binqian; Léveillard, Thierry; Goureau, Olivier; Sahel, José-Alain; Audo, Isabelle

    2017-01-01

    We identified herein additional patients with rod-cone dystrophy (RCD) displaying mutations in KIZ, encoding the ciliary centrosomal protein kizuna and performed functional characterization of the respective protein in human fibroblasts and of its mouse ortholog PLK1S1 in the retina. Mutation screening was done by targeted next generation sequencing and subsequent Sanger sequencing validation. KIZ mRNA levels were assessed on blood and serum-deprived human fibroblasts from a control individual and a patient, compound heterozygous for the c.52G>T (p.Glu18*) and c.119_122del (p.Lys40Ilefs*14) mutations in KIZ. KIZ localization, documentation of cilium length and immunoblotting were performed in these two fibroblast cell lines. In addition, PLK1S1 immunolocalization was conducted in mouse retinal cryosections and isolated rod photoreceptors. Analyses of additional RCD patients enabled the identification of two homozygous mutations in KIZ, the known c.226C>T (p.Arg76*) mutation and a novel variant, the c.3G>A (p.Met1?) mutation. Albeit the expression levels of KIZ were three-times lower in the patient than controls in whole blood cells, further analyses in control- and mutant KIZ patient-derived fibroblasts unexpectedly revealed no significant difference between the two genotypes. Furthermore, the averaged monocilia length in the two fibroblast cell lines was similar, consistent with the preserved immunolocalization of KIZ at the basal body of the primary cilia. Analyses in mouse retina and isolated rod photoreceptors showed PLK1S1 localization at the base of the photoreceptor connecting cilium. In conclusion, two additional patients with mutations in KIZ were identified, further supporting that defects in KIZ/PLK1S1, detected at the basal body of the primary cilia in fibroblasts, and the photoreceptor connecting cilium in mouse, respectively, are involved in RCD. However, albeit the mutations were predicted to lead to nonsense mediated mRNA decay, we could not detect changes upon expression levels, protein localization or cilia length in KIZ-mutated fibroblast cells. Together, our findings unveil the limitations of fibroblasts as a cellular model for RCD and call for other models such as induced pluripotent stem cells to shed light on retinal pathogenic mechanisms of KIZ mutations. PMID:29057815

  11. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin

    PubMed Central

    Marshall, Jamie L.; Oh, Jennifer; Chou, Eric; Lee, Joy A.; Holmberg, Johan; Burkin, Dean J.; Crosbie-Watson, Rachelle H.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin–glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan ‘rescue’ of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. PMID:25504048

  12. Muscular dystrophy in a family of Labrador Retrievers with no muscle dystrophin and a mild phenotype.

    PubMed

    Vieira, Natassia M; Guo, Ling T; Estrela, Elicia; Kunkel, Louis M; Zatz, Mayana; Shelton, G Diane

    2015-05-01

    Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cathepsin S Contributes to the Pathogenesis of Muscular Dystrophy in Mice.

    PubMed

    Tjondrokoesoemo, Andoria; Schips, Tobias G; Sargent, Michelle A; Vanhoutte, Davy; Kanisicak, Onur; Prasad, Vikram; Lin, Suh-Chin J; Maillet, Marjorie; Molkentin, Jeffery D

    2016-05-06

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and β-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Changes in types and area of postharvest flooded fields available to waterbirds in Tulare Basin, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Skalos, Daniel A.; Farinha, Melissa A.

    2013-01-01

    Conservation efforts to restore historic waterbird distribution and abundance in the Central Valley of California require information on current and historic areas of waterbird habitat. To provide this information, we mapped the area of agricultural fields in the vicinity of the historic Tulare Lake Bed in the Tulare Basin, California, that were treated postharvest with two different flooding regimes that varied in depth and duration of water applied (, 1 cm to 1.5 m water for longer than 1 wk [FLD]; , 1 to 15 cm water for 1 wk or less [IRG]) during August–March 1991–1994 and 2005–2006. We compared our results with published estimates for 1976–1980 and 1981–1987. Area and crops treated postharvest with FLD or IRG flooding differed among years and months. Overall for August through March, weekly area of FLD fields averaged 1,671 ha in 1976–1980 but declined to about half that in later years; the decline was most severe during January–March. Cotton was primarily treated with IRG flooding and comprised 47–95% of the total IRG field area. Other crops were primarily treated with FLD flooding; tomato replaced safflower in 2005–2006. These documented declines since the 1970s in area of FLD fields and changes in crops being flooded postharvest reduce the carrying capacity of the Tulare Basin for waterbirds, a situation that will need to be reversed for restoration of historic waterbird distribution in the Central Valley to be viable. If maintaining agricultural production is a priority and agricultural drainage waters can be disposed of safely, then increasing the extent of FLD grain fields would provide the most benefit for wintering waterbirds; otherwise, restoring and providing adequate water supplies to managed wetlands would most benefit waterbirds

  15. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; van Haag, J.; Schöngart, M.

    2015-05-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material's properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  16. The spatial pattern of leaf phenology and its response to climate change in China.

    PubMed

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2014-05-01

    Leaf phenology has been shown to be one of the most important indicators of the effects of climate change on biological systems. Few such studies have, however, been published detailing the relationship between phenology and climate change in Asian contexts. With the aim of quantifying species' phenological responsiveness to temperature and deepening understandings of spatial patterns of phenological and climate change in China, this study analyzes the first leaf date (FLD) and the leaf coloring date (LCD) from datasets of four woody plant species, Robinia pseudoacacia, Ulmus pumila, Salix babylonica, and Melia azedarach, collected from 1963 to 2009 at 47 Chinese Phenological Observation Network (CPON) stations spread across China (from 21° to 50° N). The results of this study show that changes in temperatures in the range of 39-43 days preceding the date of FLD of these plants affected annual variations in FLD, while annual variations in temperature in the range of 71-85 days preceding LCD of these plants affected the date of LCD. Average temperature sensitivity of FLD and LCD for these plants was -3.93 to 3.30 days °C(-1) and 2.11 to 4.43 days °C⁻¹, respectively. Temperature sensitivity of FLD was found to be stronger at lower latitudes or altitude as well as in more continental climates, while the response of LCD showed no consistent pattern. Within the context of significant warming across China during the study period, FLD was found to have advanced by 5.44 days from 1960 to 2009; over the same period, LCD was found to have been delayed by 4.56 days. These findings indicate that the length of the growing season of the four plant species studied was extended by a total of 10.00 days from 1960 to 2009. They also indicate that phenological response to climate is highly heterogeneous spatially.

  17. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopmann, Ch.; Weber, M.; Haag, J. van

    2015-05-22

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on themore » material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.« less

  18. LGMD2D syndrome: the importance of clinical and molecular genetics in patient and family management. Case Report.

    PubMed

    Al-Harbi, Khalid M; Abdallah, Atiyeh M

    2016-09-01

    We report the case of a seven-year-old female from a consanguineous Saudi family with autosomal recessive limb girdle muscular dystrophy type 2D (LGMD2D) most likely caused by a rare SGCA mutation. Histopathological and molecular investigations resulted in the discovery of a homozygous mutation (c.226 C>T (p.L76 F)) in exon 3 of SGCA in the patient. The parents and one sibling were heterozygous carriers, but the mutation was not otherwise detected in 80 ethnic controls from the same geographic area. In silico analysis revealed that the mutation resulted in a functional leucine to phenylalanine alteration that was deleterious to the protein structure. This is only the second reported case of the p.L76F mutation in LGMD, and highlights that molecular genetics analysis is essential to deliver the most appropriate management to the patient and offer the family genetic counseling.

  19. Immunophenotypes of macular corneal dystrophy in India and correlation with mutations in CHST6

    PubMed Central

    Klintworth, Gordon K.; Thonar, Eugene J-M.A.; Vemuganti, Geeta K.; Kannabiran, Chitra

    2009-01-01

    Purpose To determine the immunophenotypes of macular corneal dystrophy (MCD) in Indian patients and to correlate them with mutations in the carbohydrate 6-sulfotransferase (CHST6) gene. Methods Sixty-four patients from 53 families with MCD that were previously screened for mutations in CHST6 were included in an immunophenotype analysis. Antigenic keratan sulfate (AgKS) in serum as well as corneal tissue was evaluated in 31 families. Only cornea was evaluated in 11 families, and only serum was evaluated in 11 families. AgKS was detected in formalin-fixed, paraffin-embedded corneal sections by immunohistochemistry and in serum by ELISA using a monoclonal antibody against sulfated forms of KS in patients with MCD as well as normal controls. Results Analysis of corneal and/or serum AgKS disclosed MCD type I (27 families), MCD type IA (5 families), and MCD type II (3 families) in the cases studied. An additional 10 families were either MCD type I or MCD type IA since only serum AgKS data were available. Seven families manifested atypical immunophenotypes since the corneal AgKS expression was either of MCD type I or MCD type IA, but serum AgKS levels ranged from 19 ng/ml to 388 ng/ml. More than one immunophenotype was detected amongst siblings in two families. Each immunophenotype was associated with mutational heterogeneity in CHST6. Conclusions MCD type I was the predominant immunophenotype in the Indian population studied followed by MCD type IA and then MCD type II. We detected further immunophenotypic heterogeneity by finding atypical patterns of AgKS reactivity in a subset of families. There were no simple correlations between immunophenotypes and specific mutations in CHST6, suggesting that factors other than CHST6 mutations may be contributing to the immunophenotypes in MCD. PMID:19204788

  20. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement

    PubMed Central

    Schmidts, Miriam; Arts, Heleen H; Bongers, Ernie M H F; Yap, Zhimin; Oud, Machteld M; Antony, Dinu; Duijkers, Lonneke; Emes, Richard D; Stalker, Jim; Yntema, Jan-Bart L; Plagnol, Vincent; Hoischen, Alexander; Gilissen, Christian; Forsythe, Elisabeth; Lausch, Ekkehart; Veltman, Joris A; Roeleveld, Nel; Superti-Furga, Andrea; Kutkowska-Kazmierczak, Anna; Kamsteeg, Erik-Jan; Elçioğlu, Nursel; van Maarle, Merel C; Graul-Neumann, Luitgard M; Devriendt, Koenraad; Smithson, Sarah F; Wellesley, Diana; Verbeek, Nienke E; Hennekam, Raoul C M; Kayserili, Hulya; Scambler, Peter J; Beales, Philip L; Knoers, Nine VAM; Roepman, Ronald; Mitchison, Hannah M

    2013-01-01

    Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes. PMID:23456818

  1. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families

    PubMed Central

    Srilekha, Sundaramurthy; Arokiasamy, Tharigopala; Srikrupa, Natarajan N.; Umashankar, Vetrivel; Meenakshi, Swaminathan; Sen, Parveen; Kapur, Suman; Soumittra, Nagasamy

    2015-01-01

    Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP) south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s) in the homozygous block identified mutations in ten families; AIPL1 – 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60%) mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier. PMID:26147992

  2. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families.

    PubMed

    Srilekha, Sundaramurthy; Arokiasamy, Tharigopala; Srikrupa, Natarajan N; Umashankar, Vetrivel; Meenakshi, Swaminathan; Sen, Parveen; Kapur, Suman; Soumittra, Nagasamy

    2015-01-01

    Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP) south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s) in the homozygous block identified mutations in ten families; AIPL1 - 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60%) mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier.

  3. UBIAD1 Mutation Alters a Mitochondrial Prenyltransferase to Cause Schnyder Corneal Dystrophy

    PubMed Central

    Nickerson, Michael L.; Kostiha, Brittany N.; Brandt, Wolfgang; Fredericks, William; Xu, Ke-Ping; Yu, Fu-Shin; Gold, Bert; Chodosh, James; Goldberg, Marc; Lu, Da Wen; Yamada, Masakazu; Tervo, Timo M.; Grutzmacher, Richard; Croasdale, Chris; Hoeltzenbein, Maria; Sutphin, John; Malkowicz, S. Bruce; Wessjohann, Ludger; Kruth, Howard S.; Dean, Michael; Weiss, Jayne S.

    2010-01-01

    Background Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD). SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure. Methodology/Principal Findings We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules. Conclusions/Significance Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly conserved function that, at least in humans, is involved in cholesterol metabolism in a novel manner. PMID:20505825

  4. [Diagnosis and treatment with steroids for patients with Duchenne muscular dystrophy: experience and recommendations for Mexico. Administración del Patrimonio de la Beneficencia Pública. Asociación de Distrofia Muscular de Occidente].

    PubMed

    Vázquez-Cárdenas, Norma A; Ibarra-Hernández, Francisco; López-Hernández, Luz B; Escobar-Cedillo, Rosa E; Ruano-Calderón, Luis A; Gómez-Díaz, Benjamín; García-Calderón, Noemí; Carriedo-Dávila, M Fernanda; Rojas-Hurtado, Liliana G; Luna-Padrón, Emilia; Coral-Vázquez, Ramón M

    2013-11-16

    Duchenne muscular dystrophy is a severe, debilitating and progressive disease that affects 1 in 3,500 live male births in the world. The diagnosis should be confirmed by genetic testing to identify the mutation in the DMD gene or muscle biopsy and immunostaining to demonstrate the absence of dystrophin. Although up to now continues to be an incurable disease, this does not mean it has no treatment. Treatment should be multidisciplinary, looking for the functionality of the patient and avoiding or correcting complications, mainly cardio-respiratory and skeletal. Many proposals have been evaluated and implemented with the aim of improving the quality of life for these patients. The long-term steroids have shown significant benefits, such as prolonging ambulation, reduce the need for spinal surgery, improve cardiorespiratory function and increase survival and the quality of life. This document presents the recommendations based on the experience of the working group and experts worldwide on the diagnosis and treatment with steroids for patients with Duchenne muscular dystrophy.

  5. THE 6-MINUTE WALK TEST AND OTHER CLINICAL ENDPOINTS IN DUCHENNE MUSCULAR DYSTROPHY: RELIABILITY, CONCURRENT VALIDITY, AND MINIMAL CLINICALLY IMPORTANT DIFFERENCES FROM A MULTICENTER STUDY

    PubMed Central

    McDonald, Craig M; Henricson, Erik K; Abresch, R Ted; Florence, Julaine; Eagle, Michelle; Gappmaier, Eduard; Glanzman, Allan M; Spiegel, Robert; Barth, Jay; Elfring, Gary; Reha, Allen; Peltz, Stuart W

    2013-01-01

    Introduction: An international clinical trial enrolled 174 ambulatory males ≥5 years old with nonsense mutation Duchenne muscular dystrophy (nmDMD). Pretreatment data provide insight into reliability, concurrent validity, and minimal clinically important differences (MCIDs) of the 6-minute walk test (6MWT) and other endpoints. Methods: Screening and baseline evaluations included the 6-minute walk distance (6MWD), timed function tests (TFTs), quantitative strength by myometry, the PedsQL, heart rate–determined energy expenditure index, and other exploratory endpoints. Results: The 6MWT proved feasible and reliable in a multicenter context. Concurrent validity with other endpoints was excellent. The MCID for 6MWD was 28.5 and 31.7 meters based on 2 statistical distribution methods. Conclusions: The ratio of MCID to baseline mean is lower for 6MWD than for other endpoints. The 6MWD is an optimal primary endpoint for Duchenne muscular dystrophy (DMD) clinical trials that are focused therapeutically on preservation of ambulation and slowing of disease progression. Muscle Nerve 48: 357–368, 2013 PMID:23674289

  6. Muscle Weakness and Fibrosis Due to Cell Autonomous and Non-cell Autonomous Events in Collagen VI Deficient Congenital Muscular Dystrophy.

    PubMed

    Noguchi, Satoru; Ogawa, Megumu; Malicdan, May Christine; Nonaka, Ikuya; Nishino, Ichizo

    2017-02-01

    Congenital muscular dystrophies with collagen VI deficiency are inherited muscle disorders with a broad spectrum of clinical presentation and are caused by mutations in one of COL6A1-3 genes. Muscle pathology is characterized by fiber size variation and increased interstitial fibrosis and adipogenesis. In this study, we define critical events that contribute to muscle weakness and fibrosis in a mouse model with collagen VI deficiency. The Col6a1 GT/GT mice develop non-progressive weakness from younger age, accompanied by stunted muscle growth due to reduced IGF-1 signaling activity. In addition, the Col6a1 GT/GT mice have high numbers of interstitial skeletal muscle mesenchymal progenitor cells, which dramatically increase with repeated myofiber necrosis/regeneration. Our results suggest that impaired neonatal muscle growth and the activation of the mesenchymal cells in skeletal muscles contribute to the pathology of collagen VI deficient muscular dystrophy, and more importantly, provide the insights on the therapeutic strategies for collagen VI deficiency. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Synthetic 9-cis-beta-carotene inhibits photoreceptor degeneration in cultures of eye cups from rpe65rd12 mouse model of retinoid cycle defect.

    PubMed

    Sher, Ifat; Tzameret, Adi; Peri-Chen, Sara; Edelshtain, Victoria; Ioffe, Michael; Sayer, Alon; Buzhansky, Ludmila; Gazit, Ehud; Rotenstreich, Ygal

    2018-04-17

    The retinoid cycle enzymes regenerate the visual chromophore 11-cis retinal to enable vision. Mutations in the genes encoding the proteins of the retinoid cycle are the leading cause for recessively inherited retinal dystrophies such as retinitis pigmentosa, Leber congenital amaurosis, congenital cone-rod dystrophy and fundus albipunctatus. Currently there is no treatment for these blinding diseases. In previous studies we demonstrated that oral treatment with the 9-cis-β-carotene rich Dunaliella Bardawil algae powder significantly improved visual and retinal functions in patients with retinitis pigmentosa and fundus albipunctatus. Here we developed a convenient and economical synthetic route for biologically active 9-cis-β-carotene from inexpensive building materials and demonstrated that the molecule is stable for at least one month. Synthetic 9-cis-β-carotene rescued cone photoreceptors from degeneration in eye cup cultures of mice with a retinoid cycle genetic defect. This study suggests that synthetic 9-cis-β-carotene may serve as an effective treatment for retinal dystrophies involving the retinoid cycle.

  8. New histopathologic and ultrastructural findings in Reis-Bücklers corneal dystrophy caused by the Arg124Leu mutation of TGFBI gene.

    PubMed

    Qiu, Wen-Ya; Zheng, Li-Bin; Pan, Fei; Wang, Bei-Bei; Yao, Yu-Feng

    2016-09-02

    Reis-Bücklers corneal dystrophy (RBCD) was consistently reported as a corneal dystrophy only affected Bowman's layer and superficial corneal stroma, and superficial keratectomy was a recommendation surgery for treatment in literatures. The study reported new histopathological and ultrastructural findings in RBCD caused by the Arg124Leu mutation of transforming growth factor induced (TGFBI) gene in a four-generation Chinese pedigree. Subjects including eight patients and seven unaffected family members received slit-lamp biomicroscopy and photography. DNA was obtained from all subjects, and exons 4 and 11 to 14 of TGFBI gene were analyzed by polymerase chain reaction and the products were sequenced. Anterior segment optical coherence tomography (AS OCT) and in vivo confocal microscopy were conducted for ten eyes of five patients. Based on the results of AS OCT and in vivo confocal microscopy, deep anterior lamellar keratoplasty (DLKP) using cryopreserved donor cornea was applied for four eyes of four patients. Four lamellar dystrophic corneal buttons were studied by light and transmission electron microscopy, and TGFBI immunohistochemistry. Eight patients had typical clinical manifestations of RBCD presenting recurrent painful corneal erosion starting in their early first decades, along with age-dependent progressive geographic corneal opacities. TGFBI sequencing revealed a heterozygous mutation, Arg124Leu in all eight patients. Anterior segment optical coherence tomography and in vivo confocal microscopy showed the dystrophic deposits involved not only in subepithelial and superficial stroma, but also in mid- or posterior stroma in four examined advanced eyes. Light microscopy showed Bowman's layer was absent, replaced by abnormal deposits stain bright red with Masson's trichrome. In superficial cornea, the deposits stacked and produced three to five continuous bands parallel to the corneal collagen lamellae. In mid- to posterior stroma, numerous granular or dot- like aggregates were heavily scattered, and most of them presented around the nuclei of stromal keratocytes. Transmission electron microscopy revealed the multiple electron-dense rod-shaped deposits aggregated and formed a characteristic pattern of three to five continuous bands in superficial cornea, which were similar to those seen under light microscopy. In mid- to posterior stroma, clusters of rod-shaped bodies were scattered extracellular or intracellular of the stromal keratocytes between the stromal lamellae suggesting the close relationship between mutated proteins and keratocyte. The study offer evidences indicating DLKP is a viable treatment option for advanced RBCD to avoid recurrence, and the mutated TGFBIp in dystrophic corneas are of keratocytes origin.

  9. Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia

    PubMed Central

    Fyfe, John C.; Al-Tamimi, Raba' A.; Castellani, Rudy J.; Rosenstein, Diana; Goldowitz, Daniel; Henthorn, Paula S.

    2010-01-01

    Neuroaxonal dystrophy in brainstem, spinal cord tracts, and spinal nerves accompanied by cerebellar hypoplasia was observed in a colony of laboratory dogs. Fetal akinesia was documented by ultrasonographic examination. At birth, affected puppies exhibited stereotypical positioning of limbs, scoliosis, arthrogryposis, pulmonary hypoplasia, and respiratory failure. Regional hypoplasia in the central nervous system was apparent grossly, most strikingly as underdeveloped cerebellum and spinal cord. Histopathologic abnormalities included swollen axons and spheroids in brainstem and spinal cord tracts; reduced cerebellar foliation, patchy loss of Purkinje cells, multifocal thinning of the external granular cell layer, and loss of neurons in the deep cerebellar nuclei; spheroids and loss of myelinated axons in spinal roots and peripheral nerves; increased myocyte apoptosis in skeletal muscle; and fibrofatty connective tissue proliferation around joints. Breeding studies demonstrated that the canine disorder is a fully penetrant, simple autosomal recessive trait. The disorder demonstrated a type and distribution of lesions homologous to that of human infantile neuroaxonal dystrophy (INAD), most commonly caused by mutations of PLA2G6, but alleles of informative markers flanking the canine PLA2G6 locus did not associate with the canine disorder. Thus, fetal-onset neuroaxonal dystrophy in dogs, a species with well-developed genome mapping resources, provides a unique opportunity for additional disease gene discovery and understanding of this pathology. PMID:20653033

  10. What Can DuchenneConnect Teach Us About Treating Duchenne Muscular Dystrophy?

    PubMed Central

    Wang, Richard T; Nelson, Stanley F

    2015-01-01

    Purpose of Review This review aims to describe the benefits and limitations of using the DuchenneConnect patient registry to provide information particularly in regard to active treatment choices in Duchenne muscular dystrophy and their impact on disease progression. Recent findings Clinical trials and natural history studies are difficult for rare diseases like Duchenne muscular dystrophy. Using an online patient self-report survey model, DuchenneConnect provides relevant data that are difficult to gather in other ways. Validation of the overall dataset is supported by comparable mutational spectrum relative to other cohorts and demonstrated beneficial effect of corticosteroid use in prolonging ambulation. These types of analyses are provocative and allow multivariate analyses across the breadth of patient and physician medication and supplement practices. Because the data is self-reported and online, the barrier to participation is low and great potential exists for novel directions of further research in a highly participatory forum. Summary Patient registries for Duchenne and Becker muscular dystrophy are powerful tools for monitoring patient outcomes, comparing treatments options, and relating information between patients, researchers and clinicians. DuchenneConnect is an online patient self-report registry for individuals with DBMD that facilitates aggregation of treatment modalities, outcomes and genotype data and has played a vital role in furthering DBMD research, particularly in the US, in a highly participatory and low cost manner. PMID:26356412

  11. [Pathomechanism and therapeutic strategy of Fukuyama congenital muscular dystrophy and related disorders].

    PubMed

    Toda, Tatsushi

    2009-11-01

    Hypoglycosylation and reduced laminin-binding activity of alpha-dystroglycan are common characteristics of dystroglycanopathy, which is a group of congenital and limb-girdle muscular dystrophies. We previously identified the genes for Fukuyama congenital muscular dystrophy (FCMD) and muscle-eye-brain disease (MEB). FCMD, caused by a mutation in the fukutin gene, is a severe form of dystroglycanopathy. Knock-in mice carrying the founder retrotransposal insertion exhibited hypoglycosylated alpha-dystroglycan; however, no signs of muscular dystrophy were observed. More sensitive methods detected minor levels of intact alpha-dystroglycan, and solid-phase assays determined laminin binding levels to be approximately 50% of normal. In contrast, intact alpha-dystroglycan is undetectable in the dystrophic Large mouse, and laminin-binding activity is markedly reduced. These data indicate that a small amount of intact alpha-dystroglycan is sufficient to maintain muscle cell integrity in knock-in mice, suggesting that the treatment of dystroglycanopathies might not require the full recovery of glycosylation. Transfer of fukutin into knock-in mice restored glycosylation of alpha-dystroglycan. Transfer of LARGE produced laminin-binding forms of alpha-dystroglycan in both knock-in mice and the POMGnT1 mutant mouse. These data suggest that even partial restoration of alpha-dystroglycan glycosylation and laminin-binding activity by replacing or augmenting glycosylation-related genes might effectively deter dystroglycanopathy progression and thus provide therapeutic benefits.

  12. A Novel Homozygous Missense Mutation in HOXC13 Leads to Autosomal Recessive Pure Hair and Nail Ectodermal Dysplasia.

    PubMed

    Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander

    2017-03-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.

  13. A homozygous mutation in the stem II domain of RNU4ATAC causes typical Roifman syndrome.

    PubMed

    Dinur Schejter, Yael; Ovadia, Adi; Alexandrova, Roumiana; Thiruvahindrapuram, Bhooma; Pereira, Sergio L; Manson, David E; Vincent, Ajoy; Merico, Daniele; Roifman, Chaim M

    2017-01-01

    Roifman syndrome (OMIM# 616651) is a complex syndrome encompassing skeletal dysplasia, immunodeficiency, retinal dystrophy and developmental delay, and is caused by compound heterozygous mutations involving the Stem II region and one of the other domains of the RNU4ATAC gene. This small nuclear RNA gene is essential for minor intron splicing. The Canadian Centre for Primary Immunodeficiency Registry and Repository were used to derive patient information as well as tissues. Utilising RNA sequencing methodologies, we analysed samples from patients with Roifman syndrome and assessed intron retention. We demonstrate that a homozygous mutation in Stem II is sufficient to cause the full spectrum of features associated with typical Roifman syndrome. Further, we demonstrate the same pattern of aberration in minor intron retention as found in cases with compound heterozygous mutations.

  14. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy.

    PubMed

    Harish, Pradeep; Malerba, Alberto; Dickson, George; Bachtarzi, Houria

    2015-05-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.

  15. A novel POMT2 mutation causes mild congenital muscular dystrophy with normal brain MRI

    PubMed Central

    MURAKAMI, Terumi; HAYASHI, Yukiko K.; OGAWA, Megumu; NOGUCHI, Satoru; CAMPBELL, Kevin P.; TOGAWA, Masami; INOUE, Takehiko; OKA, Akira; OHNO, Kousaku; NONAKA, Ikuya; NISHINO, Ichizo

    2009-01-01

    We report a patient harboring a novel homozygous mutation of c.604T>G (p.F202V) in POMT2. He showed delayed psychomotor development but acquired the ability to walk at the age of 3 years and 10 months. His brain MRI was normal. No ocular abnormalities were seen. Biopsied skeletal muscle revealed markedly decreased but still detectable glycosylated forms of alpha-dystroglycan (α-DG). Our results indicate that mutations in POMT2 can cause a wide spectrum of clinical phenotypes as observed in other genes associated with alpha-dystroglycanopathy. Presence of small amounts of partly glycosylated α-DG may have a role in reducing the clinical symptoms of alpha-dystroglycanopathy. PMID:18804929

  16. Gene Editing and Gene-Based Therapeutics for Cardiomyopathies.

    PubMed

    Ohiri, Joyce C; McNally, Elizabeth M

    2018-04-01

    With an increasing understanding of genetic defects leading to cardiomyopathy, focus is shifting to correcting these underlying genetic defects. One approach involves treating mutant RNA through antisense oligonucleotides; the first drug has received regulatory approval to treat specific mutations associated with Duchenne muscular dystrophy. Gene editing is being evaluated in the preclinical setting. For inherited cardiomyopathies, genetic correction strategies require tight specificity for the mutant allele. Gene-editing methods are being tested to create deletions that may be useful to restore protein expression by through the bypass of mutations that restore protein production. Site-specific gene editing, which is required to correct many point mutations, is a less efficient process than inducing deletions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Perez-Carro, Raquel; Corton, Marta; Sánchez-Navarro, Iker; Zurita, Olga; Sanchez-Bolivar, Noelia; Sánchez-Alcudia, Rocío; Lelieveld, Stefan H.; Aller, Elena; Lopez-Martinez, Miguel Angel; López-Molina, Mª Isabel; Fernandez-San Jose, Patricia; Blanco-Kelly, Fiona; Riveiro-Alvarez, Rosa; Gilissen, Christian; Millan, Jose M; Avila-Fernandez, Almudena; Ayuso, Carmen

    2016-01-01

    Retinitis pigmentosa (RP) is a group of inherited progressive retinal dystrophies (RD) characterized by photoreceptor degeneration. RP is highly heterogeneous both clinically and genetically, which complicates the identification of causative genes and mutations. Targeted next-generation sequencing (NGS) has been demonstrated to be an effective strategy for the detection of mutations in RP. In our study, an in-house gene panel comprising 75 known RP genes was used to analyze a cohort of 47 unrelated Spanish families pre-classified as autosomal recessive or isolated RP. Disease-causing mutations were found in 27 out of 47 cases achieving a mutation detection rate of 57.4%. In total, 33 pathogenic mutations were identified, 20 of which were novel mutations (60.6%). Furthermore, not only single nucleotide variations but also copy-number variations, including three large deletions in the USH2A and EYS genes, were identified. Finally seven out of 27 families, displaying mutations in the ABCA4, RP1, RP2 and USH2A genes, could be genetically or clinically reclassified. These results demonstrate the potential of our panel-based NGS strategy in RP diagnosis. PMID:26806561

  18. Introduction to genetics in ophthalmology, value of family studies

    PubMed

    Ohba

    2000-05-01

    This paper reviews the author's personal experience with genetic eye diseases and discusses the significance of family studies in providing key information for the advancement of molecular research. Choroideremia: This disease has long been known as an X-linked progressive tapetoretinal degeneration, but it was first described in Japan in 1974 after finding asymptomatic fundus changes in heterozygous female carriers that are compatible with X chromosomal inactivation. Mutations in the disease-causing gene (REP-1) provide a clue to the diagnosis and pathophysiology of the disease.Leber's Hereditary Optic Neuropathy: The clinical expression is so variable among affected individuals and families that mild optic nerve disease of insidious onset should be differentiated from autosomal dominant optic atrophy. Molecular assessment of mitochondrial DNA leads to a definite diagnosis of the disease, but mitochondrial DNA mutations do not fully account for the clinical manifestation and phenotypic variability of the disease.Norrie Disease: This rare X-linked vitreoretinal dysplasia, characterized by congenital bilateral blindness, was documented in Japan some twenty years ago and the disease has been identified in four unrelated Japanese families. The disease, once diagnosed on the basis of elaborate clinical and familial studies, can now be defined by molecular assessment of the Norrie disease gene.Congenital Nystagmus: A four-generation family was described which presented with autosomal dominantly inherited congenital nystagmus, peripheral corneal opacity, and foveal hypoplasia without any iris tissue malformation. The diagnosis of this family was established by detection of a missense mutation in the paired domain of the PAX 6 gene, hence conforming to a forme fruste of congenital aniridia.Sorsby's Fundus Dystrophy: Two Japanese families with Sorsby's fundus dystrophy showed late-onset retinal dystrophy characterized by submacular hemorrhage and atrophy. Our patients presented with visual loss as late as 50 years of age or older due to macula-confined degenerative changes that were similar in all respects to exudative age-related macular degeneration and showed a novel mutation in the tissue inhibitor of the metalloproteinases-3 gene.Age-Related Macular Degeneration (ARMD): We have studied whether there is any association of candidate polymorphic genes involving xenobiotic or antioxidant metabolism with susceptibility to ARMD. Preliminary results suggest that the genetic polymorphism of microsomal epoxide hydrolase is related to potential risk of ARMD.

  19. [Introduction to genetics in ophthalmology. Value of family studies].

    PubMed

    Ohba, N

    1999-12-01

    This paper reviews the author's personal experience with genetic eye diseases and discusses the significance of family studies in providing key information for the advancement of molecular research. CHOROIDEREMIA: This disease has long been known as an X-linked progressive tapetoretinal degeneration, but it was first described in Japan in 1974 after finding asymptomatic fundus changes in heterozygous female carriers that are compatible with X chromosomal inactivation. Mutations in the disease-causing gene (REP-1) provide a clue to the diagnosis and pathophysiology of the disease. LEBER'S HEREDITARY OPTIC NEUROPATHY: The clinical expression is so variable among affected individuals and families that mild optic nerve disease of insidious onset should be differentiated from autosomal dominant optic atrophy. Molecular assessment of mitochondrial DNA leads to a definite diagnosis of the disease, but mitochondrial DNA mutations do not fully account for the clinical manifestation and phenotypic variability of the disease. NORRIE DISEASE: This rare X-linked vitreoretinal dysplasia, characterized by congenital bilateral blindness, was documented in Japan some twenty years ago and the disease has been identified in four unrelated Japanese families. The disease, once diagnosed on the basis of elaborate clinical and familial studies, can now be defined by molecular assessment of the Norrie disease gene. CONGENITAL NYSTAGMUS: A four-generation family was described which presented with autosomal dominantly inherited congenital nystagmus, peripheral corneal opacity, and foveal hypoplasia without any iris tissue malformation. The diagnosis of this family was established by detection of a missense mutation in the paired domain of the PAX 6 gene, hence conforming to a forme fruste of congenital aniridia. SORSBY'S FUNDUS DYSTROPHY: Two Japanese families with Sorsby's fundus dystrophy showed late-onset retinal dystrophy characterized by submacular hemorrhage and atrophy. Our patients presented with visual loss as late as 50 years of age or older due to macula-confined degenerative changes that were similar in all respects to exudative age-related macular degeneration and showed a novel mutation in the tissue inhibitor of the metalloproteinases-3 gene. AGE-RELATED MACULAR DEGENERATION (ARMD): We have studied whether there is any association of candidate polymorphic genes involving xenobiotic or antioxidant metabolism with susceptibility to ARMD. Preliminary results suggest that the genetic polymorphism of microsomal epoxide hydrolase is related to potential risk of ARMD.

  20. ERG and OCT findings of a patient with a clinical diagnosis of occult macular dystrophy in a patient of Ashkenazi Jewish descent associated with a novel mutation in the gene encoding RP1L1.

    PubMed

    Saffra, Norman; Seidman, Carly Jane; Rakhamimov, Aleksandr; Tsang, Stephen H

    2017-05-04

    A 57-year-old man with a past medical history of diabetes presented for consultation with a several year history of slowly progressive vision loss in both eyes, which continued to deteriorate over 7 years of follow-up. Multimodal imaging was performed and was significant for the following: on spectral domain optical coherence tomography, a gap lesion was present in the ellipsoid layer, beneath the umbo, as well as subtle macular changes on auto fluorescence imaging. Multifocal electroretinography was performed and was abnormal, and a clinical diagnosis of occult macular dystrophy was made. The patient was subsequently evaluated with genetic testing that revealed a novel p.P73S:c 217C>T nonsense mutation within the retinitis pigmentosa 1-like-1 (RP1L1) gene. The clinical significance of the identified variation will require further investigation. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. FAT1 Gene Alteration in Facioscapulohumeral Muscular Dystrophy Type 1.

    PubMed

    Park, Hyung Jun; Lee, Wookjae; Kim, Se Hoon; Lee, Jung Hwan; Shin, Ha Young; Kim, Seung Min; Park, Kee Duk; Lee, Ji Hyun; Choi, Young Chul

    2018-03-01

    Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array. Recent studies revealed that the FAT1 expression is associated with disease activity of FSHD, and the FAT1 alterations result in myopathy with a FSHD-like phenotype. We describe a 59-year-old woman with both contracted D4Z4 repeat units and a FAT1 mutation. Shoulder girdle muscle weakness developed at the age of 56 years, and was followed by proximal leg weakness. When we examined her at 59 years of age, she displayed asymmetric and predominant weakness of facial and proximal muscles. Muscle biopsy showed increased variation in fiber size and multifocal degenerating fibers with lymphocytic infiltration. Southern blot analysis revealed 8 D4Z4 repeat units, and targeted sequencing of modifier genes demonstrated the c.10331 A>G variant in the FAT1 gene. This FAT1 variant has previously been reported as pathogenic variant in a patient with FSHD-like phenotype. Our study is the first report of a FAT1 mutation in a FSHD1 patient, and suggests that FAT1 alterations might work as a genetic modifier. © Copyright: Yonsei University College of Medicine 2018.

  2. Duane retraction syndrome in a patient with Duchenne muscular dystrophy.

    PubMed

    Bosley, Thomas M; Salih, Mustafa A; Alkhalidi, Hisham; Oystreck, Darren T; El Khashab, Heba Y; Kondkar, Altaf A; Abu-Amero, Khaled K

    2016-09-01

    We describe the clinical features of a boy with bilateral Duane retraction syndrome (DRS), Duchenne muscular dystrophy (DMD), and other medical problems. The child was followed-up for five years; his chart was reviewed, including the results of a muscle biopsy and genetic testing. Multiplex ligation-dependent probe amplification (MLPA) was used to interrogate deletions/duplications in the dystrophin gene. The proband had bilateral DRS with otherwise normal ocular motility; he also had developmental delay, mild mental retardation, and seizures. Clinical diagnosis of DMD included progressive proximal weakness, highly elevated creatine kinase levels, and a muscle biopsy showing significant dystrophic changes including contracted, degenerative, and regenerative fibers, and negative dystrophin immunostaining. MLPA documented duplication of exons 3 and 4 of the dystrophin gene. This boy is the third patient to be reported with DRS and DMD, the second with bilateral DRS and the only one with other neurologic features. Mutated dystrophin is present in extraocular muscles and in the central nervous system (CNS) in DMD, leaving open the question of whether this co-occurrence is the result of the genetic muscle abnormality, CNS effects caused by dystrophin mutations, or chance.

  3. Genetic therapeutic approaches for Duchenne muscular dystrophy.

    PubMed

    Foster, Helen; Popplewell, Linda; Dickson, George

    2012-07-01

    Despite an expansive wealth of research following the discovery of the DMD gene 25 years ago, there is still no curative treatment for Duchenne muscular dystrophy. However, there are currently many promising lines of research, including cell-based therapies and pharmacological reagents to upregulate dystrophin via readthrough of nonsense mutations or by upregulation of the dystrophin homolog utrophin. Here we review genetic-based therapeutic strategies aimed at the amelioration of the DMD phenotype. These include the reintroduction of a copy of the DMD gene into an affected tissue by means of a viral vector; correction of the mutated DMD transcript by antisense oligonucleotide-induced exon skipping to restore the open reading frame; and direct modification of the DMD gene at a chromosomal level through genome editing. All these approaches are discussed in terms of the more recent advances, and the hurdles to be overcome if a comprehensive and effective treatment for DMD is to be found. These hurdles include the need to target all musculature of the body. Therefore any potential treatment would need to be administered systemically. In addition, any treatment needs to have a long-term effect, with the possibility of readministration, while avoiding any potentially detrimental immune response to the vector or transgene.

  4. Papillorenal syndrome after Beta-interferon treatment in pregnancy.

    PubMed

    Gucev, Zoran S; Kirovski, Ilija; Jancevska, Aleksandra; Popjordanova, Nada; Tasic, Velibor

    2009-01-01

    Papillo-Renal Syndrome (PRS, or Renal-Coloboma Syndrome) is an autosomal dominant disorder, characterized by colobomatous eye defects, abnormal vascular pattern of the optic disk, renal hypoplasia, vesicoureteral reflux, high-frequency hearing loss, and sometimes central nervous system (CNS) abnormalities. The syndrome is associated with mutations in the PAX2 gene. This 11-year-old girl's mother was treated with beta-interferon (IFNbeta-1a) for multiple sclerosis (MS) during the pregnancy. The child failed to thrive in infancy and early childhood. The multicystic renal dystrophy, hypoplastic right kidney, and vesico-ureteral reflux (II-III grade) were diagnosed by ultrasound and radionucleotide renal scan. Subsequently, a morning glory anomaly and coloboma of the optic disc was discovered. Renal failure progressively followed. MRI of the head revealed a cyst of the right optic nerve. Genetic analysis revealed a mutation of the PAX2 gene (619 insG). The multicystic renal dystrophy and a cyst of the optic nerve in association with PRS syndrome have only rarely been described. The fact that this PRS patient stemmed from a pregnancy under beta-interferon treatment raises the question whether IFNbeta-1a treatment during pregnancy has influenced the manifestation or the severity of the PAX2 mutant phenotype in this child.

  5. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype

    PubMed Central

    Tsuda, Takeshi; Fitzgerald, Kristi K.

    2017-01-01

    Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts. PMID:29367543

  6. Development of Refractive Errors-What Can We Learn From Inherited Retinal Dystrophies?

    PubMed

    Hendriks, Michelle; Verhoeven, Virginie J M; Buitendijk, Gabriëlle H S; Polling, Jan Roelof; Meester-Smoor, Magda A; Hofman, Albert; Kamermans, Maarten; Ingeborgh van den Born, L; Klaver, Caroline C W

    2017-10-01

    It is unknown which retinal cells are involved in the retina-to-sclera signaling cascade causing myopia. As inherited retinal dystrophies (IRD) are characterized by dysfunction of a single retinal cell type and have a high risk of refractive errors, a study investigating the affected cell type, causal gene, and refractive error in IRDs may provide insight herein. Case-control study. Study Population: Total of 302 patients with IRD from 2 ophthalmogenetic centers in the Netherlands. Reference Population: Population-based Rotterdam Study-III and Erasmus Rucphen Family Study (N = 5550). Distributions and mean spherical equivalent (SE) were calculated for main affected cell type and causal gene; and risks of myopia and hyperopia were evaluated using logistic regression. Bipolar cell-related dystrophies were associated with the highest risk of SE high myopia 239.7; odds ratio (OR) mild hyperopia 263.2, both P < .0001; SE -6.86 diopters (D) (standard deviation [SD] 6.38), followed by cone-dominated dystrophies (OR high myopia 19.5, P < .0001; OR high hyperopia 10.7, P = .033; SE -3.10 D [SD 4.49]); rod dominated dystrophies (OR high myopia 10.1, P < .0001; OR high hyperopia 9.7, P = .001; SE -2.27 D [SD 4.65]), and retinal pigment epithelium (RPE)-related dystrophies (OR low myopia 2.7; P = .001; OR high hyperopia 5.8; P = .025; SE -0.10 D [SD 3.09]). Mutations in RPGR (SE -7.63 D [SD 3.31]) and CACNA1F (SE -5.33 D [SD 3.10]) coincided with the highest degree of myopia and in CABP4 (SE 4.81 D [SD 0.35]) with the highest degree of hyperopia. Refractive errors, in particular myopia, are common in IRD. The bipolar synapse and the inner and outer segments of the photoreceptor may serve as critical sites for myopia development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Single Lab Validation of a LC/UV/FLD/MS Method for Simultaneous Determination of Water-soluble Vitamins in Multi-Vitamin Dietary Supplements

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to develop a Single-Lab Validated Method using high-performance liquid chromatography (HPLC) with different detectors (diode array detector - DAD, fluorescence detector - FLD, and mass spectrometer - MS) for determination of seven B-complex vitamins (B1 - thiamin, B2 – ...

  8. Sleep Duration and the Risk of Fatty Liver Disease: A Systematic Review and Meta-analysis

    NASA Astrophysics Data System (ADS)

    Shen, Na; Wang, Peng; Yan, Weiming

    2016-08-01

    Recent studies have reported inconsistent results on the association between sleep duration and the risk of fatty liver disease (FLD). Thus, we quantitatively evaluated this association by performing a systematic review and meta-analysis, based on a comprehensive electronic search in databases of PubMed, Web of Science, EMBASE, ClinicalTrials.gov, Wanfangdata and Chinese National Knowledge Infrastructure (CNKI) (updated to April 2016). Multivariate adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) were extracted and pooled by using a random-effects model. Eight eligible studies involving 97,371 participants were included. We found that neither short nor long sleep duration was significantly related with FLD risk. For short sleep duration, the pooled OR was 1.17 (95% CI = 0.98-1.38), and for long sleep duration, the pooled OR was 1.01 (95% CI = 0.72-1.41). Subgroup analyses by sex, outcome, and exposure reference also did not identify any effect of sleep duration on FLD onset. In summary, our findings suggested that short or long sleep duration was not significantly associated with FLD risk. Further cohort studies with refined designs are still warranted to validate our results.

  9. On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues.

    PubMed

    Gutiérrez-Valencia, Tania M; García de Llasera, Martha P

    2017-05-15

    A fast method was optimized and validated for simultaneous trace determination of four polycyclic aromatic hydrocarbons: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in bovine tissues. The determination was performed by matrix solid-phase dispersion (MSPD) coupled on-line to solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection (FLD). The sample was dispersed on C 18 silica sorbent and then the on-line MSPD-SPE-HPLC/FLD method was applied. Several parameters were optimized: cleaning and elution sequences applied to the MSPD cartridge, the flow rate and dilution of extract used for SPE loading. The on-line method was validated over a concentration range of 0.1-0.6ngg -1 obtaining good linearity (r⩾0.998) and precision (RSD)⩽10%. Recovery ranged from 96 to 99% and the limits of detection were 0.012ngg -1 . This methodology was applied to liver samples from unhealthy animals. The results demonstrate that MSDP-SPE-HPLC/FLD method provides reliable, sensitive, accurate and fast data to the food control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Distinct mutations with different inheritance mode caused similar retinal dystrophies in one family: a demonstration of the importance of genetic annotations in complicated pedigrees.

    PubMed

    Chen, Xue; Sheng, Xunlun; Liu, Yani; Li, Zili; Sun, Xiantao; Jiang, Chao; Qi, Rui; Yuan, Shiqin; Wang, Xuhui; Zhou, Ge; Zhen, Yanyan; Xie, Ping; Liu, Qinghuai; Yan, Biao; Zhao, Chen

    2018-05-29

    Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy presenting remarkable genetic heterogeneity. Genetic annotations would help with better clinical assessments and benefit gene therapy, and therefore should be recommended for RP patients. This report reveals the disease causing mutations in two RP pedigrees with confusing inheritance patterns using whole exome sequencing (WES). Twenty-five participants including eight patients from two families were recruited and received comprehensive ophthalmic evaluations. WES was applied for mutation identification. Bioinformatics annotations, intrafamilial co-segregation tests, and in silico analyses were subsequently conducted for mutation verification. All patients were clinically diagnosed with RP. The first family included two siblings born to parents with consanguineous marriage; however, no potential pathogenic variant was found shared by both patients. Further analysis revealed that the female patient carried a recurrent homozygous C8ORF37 p.W185*, while the male patient had hemizygous OFD1 p.T120A. The second family was found to segregate mutations in two genes, TULP1 and RP1. Two patients born to consanguineous marriage carried homozygous TULP1 p.R419W, while a recurrent heterozygous RP1 p.L762Yfs*17 was found in another four patients presenting an autosomal dominant inheritance pattern. Crystal structural analysis further indicated that the substitution from arginine to tryptophan at the highly conserved residue 419 of TULP1 could lead to the elimination of two hydrogen bonds between residue 419 and residues V488 and S534. All four genes, including C8ORF37, OFD1, TULP1 and RP1, have been previously implicated in RP etiology. Our study demonstrates the coexistence of diverse inheritance modes and mutations affecting distinct disease causing genes in two RP families with consanguineous marriage. Our data provide novel insights into assessments of complicated pedigrees, reinforce the genetic complexity of RP, and highlight the need for extensive molecular evaluations in such challenging families with diverse inheritance modes and mutations.

  11. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, R.; Keers, S.; Strachan, T.

    1996-04-01

    The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in whichmore » there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.« less

  12. N-Glycolylneuraminic acid deficiency worsens cardiac and skeletal muscle pathophysiology in α-sarcoglycan-deficient mice

    PubMed Central

    Martin, Paul T; Camboni, Marybeth; Xu, Rui; Golden, Bethannie; Chandrasekharan, Kumaran; Wang, Chiou-Miin; Varki, Ajit; Janssen, Paul M L

    2013-01-01

    Roughly 3 million years ago, an inactivating deletion occurred in CMAH, the human gene encoding CMP-Neu5Ac (cytidine-5′-monophospho-N-acetylneuraminic acid) hydroxylase (Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA. 95:11751–11756). This inactivating deletion is now homozygous in all humans, causing the loss of N-glycolylneuraminic acid (Neu5Gc) biosynthesis in all human cells and tissues. The CMAH enzyme is active in other mammals, including mice, where Neu5Gc is an abundant form of sialic acid on cellular membranes, including those in cardiac and skeletal muscle. We recently demonstrated that the deletion of mouse Cmah worsened the severity of pathophysiology measures related to muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy (Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PM, Varki A, Martin PT. 2010. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med. 2:42–54). Here, we demonstrate similar changes in cardiac and skeletal muscle pathology and physiology resulting from Cmah deletion in α-sarcoglycan-deficient (Sgca−/−) mice, a model for limb girdle muscular dystrophy 2D. These experiments demonstrate that loss of mouse Cmah can worsen disease severity in more than one form of muscular dystrophy and suggest that Cmah may be a general genetic modifier of muscle disease. PMID:23514716

  13. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene.

    PubMed

    Fishman, G A; Stone, E M; Grover, S; Derlacki, D J; Haines, H L; Hockey, R R

    1999-04-01

    To report the spectrum of ophthalmic findings in patients with Stargardt dystrophy or fundus flavimaculatus who have a specific sequence variation in the ABCR gene. Twenty-nine patients with Stargardt dystrophy or fundus flavimaculatus from different pedigrees were identified with possible disease-causing sequence variations in the ABCR gene from a group of 66 patients who were screened for sequence variations in this gene. Patients underwent a routine ocular examination, including slitlamp biomicroscopy and a dilated fundus examination. Fluorescein angiography was performed on 22 patients, and electroretinographic measurements were obtained on 24 of 29 patients. Kinetic visual fields were measured with a Goldmann perimeter in 26 patients. Single-strand conformation polymorphism analysis and DNA sequencing were used to identify variations in coding sequences of the ABCR gene. Three clinical phenotypes were observed among these 29 patients. In phenotype I, 9 of 12 patients had a sequence change in exon 42 of the ABCR gene in which the amino acid glutamic acid was substituted for glycine (Gly1961Glu). In only 4 of these 9 patients was a second possible disease-causing mutation found on the other ABCR allele. In addition to an atrophic-appearing macular lesion, phenotype I was characterized by localized perifoveal yellowish white flecks, the absence of a dark choroid, and normal electroretinographic amplitudes. Phenotype II consisted of 10 patients who showed a dark choroid and more diffuse yellowish white flecks in the fundus. None exhibited the Gly1961Glu change. Phenotype III consisted of 7 patients who showed extensive atrophic-appearing changes of the retinal pigment epithelium. Electroretinographic cone and rod amplitudes were reduced. One patient showed the Gly1961Glu change. A wide variation in clinical phenotype can occur in patients with sequence changes in the ABCR gene. In individual patients, a certain phenotype seems to be associated with the presence of a Gly1961Glu change in exon 42 of the ABCR gene. The identification of correlations between specific mutations in the ABCR gene and clinical phenotypes will better facilitate the counseling of patients on their visual prognosis. This information will also likely be important for future therapeutic trials in patients with Stargardt dystrophy.

  14. Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo.

    PubMed

    Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M

    2018-02-14

    Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent mechanism that maintains symmetry of a developing system affected by chiral forces. Furthermore, POMTs were found to be required for proper axon connectivity of sensory neurons, suggesting that O-mannosylation regulates the sensory feedback controlling muscle contractions. This novel POMT function in the peripheral nervous system may shed light on analogous functions in mammals and help to elucidate pathomechanisms of neurological abnormalities in muscular dystrophies. Copyright © 2018 the authors 0270-6474/18/381850-16$15.00/0.

  15. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging

    PubMed Central

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Purpose Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Methods Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Results Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. Conclusions AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A. This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. PMID:29074494

  16. CEP250 mutations associated with mild cone-rod dystrophy and sensorineural hearing loss in a Japanese family.

    PubMed

    Kubota, Daiki; Gocho, Kiyoko; Kikuchi, Sachiko; Akeo, Keiichiro; Miura, Masahiro; Yamaki, Kunihiko; Takahashi, Hiroshi; Kameya, Shuhei

    2018-05-02

    CEP250 encodes the C-Nap1 protein which belongs to the CEP family of proteins. C-Nap1 has been reported to be expressed in the photoreceptor cilia and is known to interact with other ciliary proteins. Mutations of CEP250 cause atypical Usher syndrome which is characterized by early-onset sensorineural hearing loss (SNHL) and a relatively mild retinitis pigmentosa. This study tested the hypothesis that the mild cone-rod dystrophy (CRD) and SNHL in a non-consanguineous Japanese family was caused by CEP250 mutations. Detailed ophthalmic and auditory examinations were performed on the proband and her family members. Whole exome sequencing (WES) was used on the DNA obtained from the proband. Electrophysiological analysis revealed a mild CRD in two family members. Adaptive optics (AO) imaging showed reduced cone density around the fovea. Auditory examinations showed a slight SNHL in both patients. WES of the proband identified compound heterozygous variants c.361C>T, p.R121*, and c.562C>T, p.R188* in CEP250. The variants were found to co-segregate with the disease in five members of the family. The variants of CEP250 are both null variants and according to American College of Medical Genetics and Genomics (ACMG) standards and guideline, these variants are classified into the very strong category (PVS1). The criteria for both alleles will be pathogenic. Our data indicate that mutations of CEP250 can cause mild CRD and SNHL in Japanese patients. Because the ophthalmological phenotypes were very mild, high-resolution retinal imaging analysis, such as AO, will be helpful in diagnosing CEP250-associated disease.

  17. Genetic and Early Clinical Manifestations of Females Heterozygous for Duchenne/Becker Muscular Dystrophy.

    PubMed

    Papa, Riccardo; Madia, Francesca; Bartolomeo, Domenico; Trucco, Federica; Pedemonte, Marina; Traverso, Monica; Broda, Paolo; Bruno, Claudio; Zara, Federico; Minetti, Carlo; Fiorillo, Chiara

    2016-02-01

    Female carriers of Duchenne muscular dystrophy (DMD), although usually asymptomatic, develop muscle weakness up to 17% of the time, and a third present cardiac abnormalities or cognitive impairment. Clinical features of DMD carriers during childhood are poorly known. We describe a cohort of pediatric DMD carriers, providing clinical, genetic, and histopathologic features, with a mean follow-up of 7 years. Fifteen females with a DMD mutation (age range 5 to 18 years) were included. Seven patients (46%) presented with clinically evident symptoms and signs such as limb girdle weakness, abnormal gait, and exercise intolerance. The other eight patients (53%) were evaluated because of an incidental finding of elevated level of creatine kinase. Creatine kinase level was elevated in all, ranging from 392 to 13,000 U/L. Calf hypertrophy was observed in eight patients (53%). No patient developed respiratory or cardiac involvement. The most frequent complication was scoliosis (46%). Four patients (29%) also presented minor learning disabilities or behavioral problems. We performed electromyography in half of patients, showing myopathic pattern in four (53%). Muscle biopsy revealed a mosaic reduction of dystrophin in nine available cases. DMD gene mutations were mostly deletions (71%), resulting in loss of reading frame in five patients (36%). The three patients who experienced the most severe disease course were affected either by a nonsense or frameshift mutation. Our analysis suggests that DMD gene mutations may be suspected in a female child with persistently elevated levels of creatine kinase. Evidence of scoliosis, calf hypertrophy, or myopathic pattern at electromyography may also be helpful, and muscle biopsy is always indicative. DMD carriers should be followed for subtle orthopedic and psychiatric complications during childhood. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging.

    PubMed

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. The Crystal Structure of GCAP3 Suggests Molecular Mechanism of GCAP–linked Cone Dystrophies

    PubMed Central

    Stephen, Ricardo; Palczewski, Krzysztof; Sousa, Marcelo C.

    2014-01-01

    Summary Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic–GMP (cGMP). This hydrolysis promotes the closing of cGMP–gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate Cyclase Activating Proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+–dependent manner. At high [Ca2+], typical of the dark–adapted state (~500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (~50 nM) that occur after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark–state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF–hand Ca2+–binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF–hand 1 is disabled. GCAP3 contains two domains with the EF–hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+–binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N–terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations. PMID:16626734

  20. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy.

    PubMed

    Martin, Elizabeth A; Barresi, Rita; Byrne, Barry J; Tsimerinov, Evgeny I; Scott, Bryan L; Walker, Ashley E; Gurudevan, Swaminatha V; Anene, Francine; Elashoff, Robert M; Thomas, Gail D; Victor, Ronald G

    2012-11-28

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin's rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived NO attenuates local α-adrenergic vasoconstriction, thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective-causing functional muscle ischemia-in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. We report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled crossover trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation is fully restored in the muscles of men with BMD by boosting NO-cGMP (guanosine 3',5'-monophosphate) signaling with a single dose of the drug tadalafil, a phosphodiesterase 5A inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD.

  1. The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies.

    PubMed

    Stephen, Ricardo; Palczewski, Krzysztof; Sousa, Marcelo C

    2006-06-02

    Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic-GMP (cGMP). This hydrolysis promotes the closing of cGMP-gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate cyclase-activating proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+-dependent manner. At high [Ca2+], typical of the dark-adapted state (approximately 500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (approximately 50 nM) that occurs after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark-state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF-hand Ca2+-binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF-hand 1 is disabled. GCAP3 contains two domains with the EF-hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+-binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N-terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations.

  2. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy

    PubMed Central

    Martin, Elizabeth A.; Barresi, Rita; Byrne, Barry J.; Tsimerinov, Evgeny I.; Scott, Bryan L.; Walker, Ashley E.; Gurudevan, Swaminatha V.; Anene, Francine; Elashoff, Robert M.; Thomas, Gail D.; Victor, Ronald G.

    2013-01-01

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin’s rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived nitric oxide (NO) attenuates local α-adrenergic vasoconstriction thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective—causing functional muscle ischemia—in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. Here, we report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled cross-over trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation fully restored in the muscles of men with BMD by boosting NO-cGMP signaling with a single dose of the drug tadalafil, a phosphodiesterase (PDE5A) inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD. PMID:23197572

  3. Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy.

    PubMed

    Ponnusamy, Suriyan; Sullivan, Ryan D; You, Dahui; Zafar, Nadeem; He Yang, Chuan; Thiyagarajan, Thirumagal; Johnson, Daniel L; Barrett, Maron L; Koehler, Nikki J; Star, Mayra; Stephenson, Erin J; Bridges, Dave; Cormier, Stephania A; Pfeffer, Lawrence M; Narayanan, Ramesh

    2017-07-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that predominantly affects boys as a result of mutation(s) in the dystrophin gene. DMD is characterized by musculoskeletal and cardiopulmonary complications, resulting in shorter life-span. Boys afflicted by DMD typically exhibit symptoms within 3-5 years of age and declining physical functions before attaining puberty. We hypothesized that rapidly deteriorating health of pre-pubertal boys with DMD could be due to diminished anabolic actions of androgens in muscle, and that intervention with an androgen receptor (AR) agonist will reverse musculoskeletal complications and extend survival. While castration of dystrophin and utrophin double mutant (mdx-dm) mice to mimic pre-pubertal nadir androgen condition resulted in premature death, maintenance of androgen levels extended the survival. Non-steroidal selective-AR modulator, GTx-026, which selectively builds muscle and bone was tested in X-linked muscular dystrophy mice (mdx). GTx-026 significantly increased body weight, lean mass and grip strength by 60-80% over vehicle-treated mdx mice. While vehicle-treated castrated mdx mice exhibited cardiopulmonary impairment and fibrosis of heart and lungs, GTx-026 returned cardiopulmonary function and intensity of fibrosis to healthy control levels. GTx-026 elicits its musculoskeletal effects through pathways that are distinct from dystrophin-regulated pathways, making AR agonists ideal candidates for combination approaches. While castration of mdx-dm mice resulted in weaker muscle and shorter survival, GTx-026 treatment increased the muscle mass, function and survival, indicating that androgens are important for extended survival. These preclinical results support the importance of androgens and the need for intervention with AR agonists to treat DMD-affected boys. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites.

    PubMed

    Philippi, Susanne; Lorain, Stéphanie; Beley, Cyriaque; Peccate, Cécile; Précigout, Guillaume; Spuler, Simone; Garcia, Luis

    2015-07-15

    The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Vortex pattern of corneal deposits in granular corneal dystrophy associated with the p. (ArgR555WTrp) mutation in TGFBI

    PubMed Central

    Kattan, Jaffer M.; Serna-Ojeda, Juan Carlos; Sharma, Anushree; Kim, Eung K.; Ramirez-Miranda, Arturo; Cruz-Aguilar, Marisa; Cervantes, Aleck E.; Frausto, Ricardo F.; Zenteno, Juan Carlos; Graue-Hernandez, Enrique O.; Aldave, Anthony J.

    2016-01-01

    Purpose To describe two unrelated families with multiple members demonstrating a less commonly recognized vortex pattern of corneal deposits confirmed to be granular corneal dystrophy type 1(GCD1) following identification of the p.(Arg555Trp) mutation in the transforming growth factor β-induced gene (TGFBI). Methods A slit lamp examination was performed on individuals from two families, one of Mexican descent and a second of Italian descent. Following DNA extraction from affected individuals and their unaffected relatives, TGFBI screening was performed. Results Eight of 20 individuals in the Mexican family and 20 of 55 in the Italian family demonstrated corneal stromal opacities. Seven of the eight affected individuals in the Mexican family and four of the 20 affected individuals in the Italian family demonstrated a phenotype characterized by a “sea fan” or vortex pattern of superficial stromal corneal deposits originating from the inferior aspect of the cornea. Screening of TGFBI in both families revealed a heterozygous missense mutation (p.(Arg555Trp)) in exon 12, confirming the diagnosis of GCD1. Conclusion Our findings demonstrate that GCD1 may present with a vortex pattern of anterior stromal deposits. Although this pattern of dystrophic deposits is not recognized by clinicians as a typical phenotype of GCD1, it is consistent with the production of the majority of the TGFBI protein by the corneal epithelium. PMID:28060069

  6. FHL1B Interacts with Lamin A/C and Emerin at the Nuclear Lamina and is Misregulated in Emery-Dreifuss Muscular Dystrophy.

    PubMed

    Ziat, Esma; Mamchaoui, Kamel; Beuvin, Maud; Nelson, Isabelle; Azibani, Feriel; Spuler, Simone; Bonne, Gisèle; Bertrand, Anne T

    2016-11-29

    Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C. So far, none have been described at the nuclear envelope. To gain insight into the pathophysiology of EDMD, we focused our attention on the poorly characterized FHL1B isoform. The amount and the localisation of FHL1B were evaluated in control and diseased human primary myoblasts using immunofluorescence and western blotting. We found that in addition to a cytoplasmic localization, this isoform strongly accumulated at the nuclear envelope of primary human myoblasts, like but independently of lamin A/C and emerin. During myoblast differentiation, we observed a major reduction of FHL1B protein expression, especially in the nucleus. Interestingly, we found elevated FHL1B expression level in myoblasts from an FHL1-related EDMD patient where the FHL1 mutation only affects FHL1A, as well as in myoblasts from an LMNA-related EDMD patient. Altogether, the specific localization of FHL1B and its modulation in disease-patient's myoblasts confirmed FHL1-related EDMD as a nuclear envelope disease.

  7. Mutations in the Gene Encoding IFT Dynein Complex Component WDR34 Cause Jeune Asphyxiating Thoracic Dystrophy

    PubMed Central

    Schmidts, Miriam; Vodopiutz, Julia; Christou-Savina, Sonia; Cortés, Claudio R.; McInerney-Leo, Aideen M.; Emes, Richard D.; Arts, Heleen H.; Tüysüz, Beyhan; D’Silva, Jason; Leo, Paul J.; Giles, Tom C.; Oud, Machteld M.; Harris, Jessica A.; Koopmans, Marije; Marshall, Mhairi; Elçioglu, Nursel; Kuechler, Alma; Bockenhauer, Detlef; Moore, Anthony T.; Wilson, Louise C.; Janecke, Andreas R.; Hurles, Matthew E.; Emmet, Warren; Gardiner, Brooke; Streubel, Berthold; Dopita, Belinda; Zankl, Andreas; Kayserili, Hülya; Scambler, Peter J.; Brown, Matthew A.; Beales, Philip L.; Wicking, Carol; Duncan, Emma L.; Mitchison, Hannah M.

    2013-01-01

    Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery. PMID:24183451

  8. The molecular genetic analysis of the expanding pachyonychia congenita case collection

    PubMed Central

    Wilson, NJ; O'Toole, EA; Milstone, LM; Hansen, CD; Shepherd, AA; Al-Asadi, E; Schwartz, ME; McLean, WHI; Sprecher, E; Smith, FJD

    2014-01-01

    Background Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. Objectives To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. Methods Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. Results Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. Conclusions By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families. PMID:24611874

  9. Prevalence of fatty liver disease and the economy in China: A systematic review

    PubMed Central

    Zhu, Jin-Zhou; Zhou, Qin-Yi; Wang, Yu-Ming; Dai, Yi-Ning; Zhu, Jiang; Yu, Chao-Hui; Li, You-Ming

    2015-01-01

    AIM: To investigate the relationship between the economy and the adult prevalence of fatty liver disease (FLD) in mainland China. METHODS: Literature searches on the PubMed and Chinese National Knowledge Infrastructure databases were performed to identify eligible studies published before July 2014. Records were limited to cross-sectional surveys or baseline surveys of longitudinal studies that reported the adult prevalence of FLD and recruited subjects from the general population or community. The gross domestic product (GDP) per capita was chosen to assess the economic status. Multiple linear regression and Loess regression were chosen to fit the data and calculate the 95%CIs. Fitting and overfitting of the models were considered in choosing the appropriate models. RESULTS: There were 27 population-based surveys from 26 articles included in this study. The pooled mean prevalence of FLD in China was 16.73% (95%CI: 13.92%-19.53%). The prevalence of FLD was correlated with the GDP per capita and survey years in the country (adjusted R2 = 0.8736, PGDP per capita = 0.00426, Pyears = 0.0000394), as well as in coastal areas (R2 = 0.9196, PGDP per capita = 0.00241, Pyears = 0.00281). Furthermore, males [19.28% (95%CI: 15.68%-22.88%)] presented a higher prevalence than females [14.1% (95%CI: 11.42%-16.61%), P = 0.0071], especially in coastal areas [21.82 (95%CI: 17.94%-25.71%) vs 17.01% (95%CI: 14.30%-19.89%), P = 0.0157]. Finally, the prevalence was predicted to reach 20.21% in 2020, increasing at a rate of 0.594% per year. CONCLUSION: This study reveals a correlation between the economy and the prevalence of FLD in mainland China. PMID:25987797

  10. Prevalence of fatty liver disease and the economy in China: A systematic review.

    PubMed

    Zhu, Jin-Zhou; Zhou, Qin-Yi; Wang, Yu-Ming; Dai, Yi-Ning; Zhu, Jiang; Yu, Chao-Hui; Li, You-Ming

    2015-05-14

    To investigate the relationship between the economy and the adult prevalence of fatty liver disease (FLD) in mainland China. Literature searches on the PubMed and Chinese National Knowledge Infrastructure databases were performed to identify eligible studies published before July 2014. Records were limited to cross-sectional surveys or baseline surveys of longitudinal studies that reported the adult prevalence of FLD and recruited subjects from the general population or community. The gross domestic product (GDP) per capita was chosen to assess the economic status. Multiple linear regression and Loess regression were chosen to fit the data and calculate the 95%CIs. Fitting and overfitting of the models were considered in choosing the appropriate models. There were 27 population-based surveys from 26 articles included in this study. The pooled mean prevalence of FLD in China was 16.73% (95%CI: 13.92%-19.53%). The prevalence of FLD was correlated with the GDP per capita and survey years in the country (adjusted R (2) = 0.8736, P GDP per capita = 0.00426, P years = 0.0000394), as well as in coastal areas (R (2) = 0.9196, P GDP per capita = 0.00241, P years = 0.00281). Furthermore, males [19.28% (95%CI: 15.68%-22.88%)] presented a higher prevalence than females [14.1% (95%CI: 11.42%-16.61%), P = 0.0071], especially in coastal areas [21.82 (95%CI: 17.94%-25.71%) vs 17.01% (95%CI: 14.30%-19.89%), P = 0.0157]. Finally, the prevalence was predicted to reach 20.21% in 2020, increasing at a rate of 0.594% per year. This study reveals a correlation between the economy and the prevalence of FLD in mainland China.

  11. Orbital surveys of solar stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Hemphill, W. R.; Theisen, A. F.; Tyson, R. M.; Granata, J. S.

    The Fraunhofer line discriminator (FLD) is an electro-optical device for imaging natural and manmade materials which have been stimulated to luminesce by the sun. An airborne FLD has been used to detect geochemically stressed vegetation, drought-stressed agricultural crops, industrial and residential pollution effluents, marine oil seeps, phosphate rock, uranium-bearing sandstone, and bioluminescent ocean plankton. Three-dimensional perspective plots of excitation and emission spectra, measured with a laboratory spectrometer, graphically depict similarities and differences in luminescence properties between sample materials. The laboratory data also include luminescence intensities at six Fraunhofer lines in the visible and near-infrared regions of the electromagnetic spectrum. Both the airborne and laboratory data suggest the feasibility of delineating and monitoring at least some of these luminescing materials from orbital altitude, such as a test flight aboard the Space Shuttle using an improved third-generation FLD.

  12. The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice.

    PubMed

    Whitmore, Charlotte; Fernandez-Fuente, Marta; Booler, Helen; Parr, Callum; Kavishwar, Manoli; Ashraf, Attia; Lacey, Erica; Kim, Jihee; Terry, Rebecca; Ackroyd, Mark R; Wells, Kim E; Muntoni, Francesco; Wells, Dominic J; Brown, Susan C

    2014-04-01

    Mutations in fukutin-related protein (FKRP) underlie a group of muscular dystrophies associated with the hypoglycosylation of α-dystroglycan (α-DG), a proportion of which show central nervous system involvement. Our original FKRP knock-down mouse (FKRP(KD)) replicated many of the characteristics seen in patients at the severe end of the dystroglycanopathy spectrum but died perinatally precluding its full phenotyping and use in testing potential therapies. We have now overcome this by crossing FKRP(KD) mice with those expressing Cre recombinase under the Sox1 promoter. Owing to our original targeting strategy, this has resulted in the restoration of Fkrp levels in the central nervous system but not the muscle, thereby generating a new model (FKRP(MD)) which develops a progressive muscular dystrophy resembling what is observed in limb girdle muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) is a bifunctional glycosyltransferase previously shown to hyperglycosylate α-DG. To investigate the therapeutic potential of LARGE up-regulation, we have now crossed the FKRP(MD) line with one overexpressing LARGE and show that, contrary to expectation, this results in a worsening of the muscle pathology implying that any future strategies based upon LARGE up-regulation require careful management.

  13. Brillouin spectroscopy reveals changes in muscular viscoelasticity in Drosophila POMT mutants

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Baker, Ryan; Panin, Vladislav M.; Yakovlev, Vladislav V.

    2015-03-01

    Muscular dystrophy (MD) is a group of muscle diseases that induce weakness in skeletal muscle and cause progressive muscle degeneration. The muscular mechanical properties (i.e., viscoelasticity), however, have not been thoroughly examined before and after MD. On the other hand, Brillouin spectroscopy (BS) provides a non-invasive approach to probing the local sound speed within a small volume. Moreover, recent advances in background-free Brillouin spectroscopy enable investigators to imaging not only transparent samples, but also turbid ones. In this study, we investigated the mechanical properties of muscles while employing Drosophila model of dystroglycanopathies, human congenital muscular dystrophies resulting from abnormal glycosylation of alphadystroglycan. Specifically, we analyzed larval abdominal muscles of Drosophila with mutations in protein Omannosyltransferase (POMT) genes. As a comparison, we have also examined muscular tissues dissected from wildtype Drosophila. The Brillouin spectra were obtained by a background free VIPA (virtually imaged phased array) spectrometer described in the previous report. As a reference, the Raman spectra were also acquired for each test. Our current results indicated that POMT defects cause changes in muscle elasticity, which suggests that muscular dystrophy conditions may be also associated with abnormalities in muscle elastic properties.

  14. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E.

    PubMed

    Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio

    2018-02-24

    Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.

  15. [Central Nervous Involvement in Patients with Fukuyama Congenital Muscular Dystrophy].

    PubMed

    Ishigaki, Keiko

    2016-02-01

    Fukuyama congenital muscular dystrophy (FCMD), the second most common muscular dystrophy in the Japanese population, is an autosomal recessive disorder caused by mutations in the fukutin (FKTN) gene. The main features of FCMD are a combination of infantile-onset hypotonia, generalized muscle weakness, eye abnormalities and central nervous system involvement with mental retardation and seizures associated with cortical migration defects. The FKTN gene product is thought to be necessary for maintaining migrating neurons in an immature state during migration, and for supporting migration via α-dystroglycan in the central nervous system. Typical magnetic resonance imaging findings in FCMD patients are cobblestone lissencephaly and cerebellar cystic lesions. White matter abnormalities with hyperintensity on T(2)-weighted images are seen especially in younger patients and those with severe phenotypes. Most FCMD patients are mentally retarded and the level is moderate to severe, with IQs ranging from 30 to 50. In our recent study, 62% of patients developed seizures. Among them, 71% had only febrile seizures, 6% had afebrile seizures from the onset, and 22% developed afebrile seizures following febrile seizures. Most patients had seizures that were controllable with just 1 type of antiepileptic drug, but 18% had intractable seizures that must be treated with 3 medications.

  16. A rare subclinical or mild type of Becker muscular dystrophy caused by a single exon 48 deletion of the dystrophin gene.

    PubMed

    Zimowski, Janusz G; Pilch, Jacek; Pawelec, Magdalena; Purzycka, Joanna K; Kubalska, Jolanta; Ziora-Jakutowicz, Karolina; Dudzińska, Magdalena; Zaremba, Jacek

    2017-08-01

    In the material of 227 families with Becker muscular dystrophy (BMD), we found nine non-consanguineous families with 17 male individuals carrying a rare mutation-a single exon 48 deletion of the dystrophin gene-who were affected with a very mild or subclinical form of BMD. They were usually detected thanks to accidental findings of elevated serum creatine phosphokinase (sCPK). A thorough clinical analysis of the carriers, both children (12) and adults (5), revealed in some of them muscle hypotonia (10/17) and/or very mild muscle weakness (9/17), as well as decreased tendon reflexes (6/17). Adults, apart from very mild muscle weakness and calf hypertrophy in some, had no significant abnormalities on neurological assessments and had good exercise tolerance. Parents of the children carriers of the exon 48 deletion are usually unaware of their children being affected, and possibly at risk of developing life-threatening cardiomyopathy. The same concerns the adult male carriers. Therefore, the authors postulate undertaking preventive measures such as cascade screening of the relatives of the probands. Newborn screening programmes of Duchenne muscular dystrophy (DMD)/BMD based on sCPK marked increase may be considered.

  17. Characterization of the Inflammatory Response in Dystrophic Muscle Using Flow Cytometry.

    PubMed

    Kastenschmidt, Jenna M; Avetyan, Ileen; Villalta, S A

    2018-01-01

    Although mutations of the dystrophin gene are the causative defect in Duchenne muscular dystrophy (DMD) patients, secondary disease processes such as inflammation contribute greatly to the pathogenesis of DMD. Genetic and histological studies have shown that distinct facets of the immune system promote muscle degeneration or regeneration during muscular dystrophy through mechanisms that are only beginning to be defined. Although histological methods have allowed the enumeration and localization of immune cells within dystrophic muscle, they are limited in their ability to assess the full spectrum of phenotypic states of an immune cell population and its functional characteristics. This chapter highlights flow cytometry methods for the isolation and functional study of immune cell populations from muscle of the mdx mouse model of DMD. We include a detailed description of preparing single-cell suspensions of dystrophic muscle that maintain the integrity of cell-surface markers used to identify macrophages, eosinophils, group 2 innate lymphoid cells, and regulatory T cells. This method complements the battery of histological assays that are currently used to study the role of inflammation in muscular dystrophy, and provides a platform capable of being integrated with multiple downstream methodologies for the mechanistic study of immunity in muscle degenerative diseases.

  18. Microprogrammable Integrated Data Acquisition System-Fatigue Life Data Application

    DTIC Science & Technology

    1976-03-01

    Lt. James W. Sturges, successfully applied the Midas general system [Sturges, 1975] to the fatigue life data monitoring problem and proved its...life data problem . The Midas FLD system computer program generates the required signals in the proper sequence for effectively sampling the 8-channel...Integrated Data Acquisition System- Fatigue Life Data Application" ( Midas FLD) is a microprocessor based data acquisition system. It incorporates a Pro-Log

  19. Elevated serum aminotransferase levels in children at risk for obstructive sleep apnea.

    PubMed

    Kheirandish-Gozal, Leila; Sans Capdevila, Oscar; Kheirandish, Ebrahim; Gozal, David

    2008-01-01

    Fatty liver disease (FLD) is a highly prevalent condition in obese (Ob) children, who are at increased risk for obstructive sleep apnea (OSA). However, the contribution of OSA to FLD remains unknown. Prospective study. Polysomnographic evaluation and assessment of plasma levels of insulin, glucose, and lipids, and liver function tests. A total of 518 consecutive snoring children 4 to 17 years of age who were being evaluated for habitual snoring and suspected OSA. A total of 376 children had body mass index z score of < 1.20 (non-Ob children), 3 children (<1%) had elevated serum aminotransferase (LFT) levels, and 248 had OSA (65.9%). Among the 142 overweight/Ob children, 46 had elevated LFT levels (32.4%); of these children, 42 had OSA (91.3%). In contrast, OSA was present in only 71.8% of Ob children without elevated LFT level (p < 0.01). Insulin resistance and hyperlipidemia were more likely to occur in children with FLD. Furthermore, FLD was improved after treatment of OSA in 32 of 42 Ob children (p < 0.0001). Increased liver enzyme levels are frequently found in Ob snoring children, particularly among those with OSA and/or metabolic dysfunction. Effective treatment of OSA results in improved liver function test results in the vast majority of these patients.

  20. Airborne Fraunhofer line discriminator (FLD) luminescence imaging systems and its application to exploration problems

    USGS Publications Warehouse

    Watson, Robert D.; Theisen, Arnold F.; Hemphill, William R.; Barringer, Anthony R.

    1980-01-01

    Experiments with an imaging airborne Fraunhofer line discriminator (FLD) are being conducted to establish the feasibility of delineating the areal extent of luminescent materials on the earth's surface from aircraft and spacecraft. All luminescence measurements are related to a standard set of conditions with rhodamine wt dye used as a reference standard. The FLD has a minimum detectable rhodamine wt concentration of 0.1 parts per billion (ppb) at a signal-to-noise ratio of 5.0. Luminescence, when expressed in a signal-to-noise ratio (R) is related to equivalent ppb rhodamine wt through the relationship ppb=(0.1R-0.4). Luminescent materials imaged from an aircraft altitude of approximately 2400 m above terrain include fluorite in association with molybdenum, Pinenut Mountains, Nevada (R=62.0); mineralized playas, Claunch, New Mexico (R=960.0); uranium and vanadium-bearing outcrops, Big Indian Valley, Utah (R=105.0); uranophane sandstones, Sandia Mountains, New Mexico (R=60.0); phosphate outcrops, Pine Mountain, California (R=76.0); and marine oil slicks, Santa Barbara Channel, California (R=24.0). Correlation between the amount of fluorite in the rocks and soils of the Pinenut Mountains and luminescence, measured by the FLD, is as high as 0.88 at the 95 percent confidence level.

  1. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of LV dysfunction and higher mortality in Sgcd-/- mice. Treatment of Sgcd-/- mice with the angiotensin type 1 receptor blocker losartan for 8-9 weeks, beginning at 3 weeks of age, decreased fibrosis and oxidative stress in skeletal muscle, increased locomotor activity and prevented autonomic dysfunction. Chronic infusion of the counter-regulatory peptide angiotensin-(1-7) resulted in similar protection. We conclude that activation of the renin-angiotensin system, at a young age, contributes to skeletal muscle and autonomic dysfunction in muscular dystrophy. We speculate that the latter is mediated via abnormal sensory nerve and/or cytokine signalling from dystrophic skeletal muscle to the brain and contributes to age-related LV dysfunction, dilated cardiomyopathy, arrhythmias and premature death. Therefore, correcting the early autonomic dysregulation and renin-angiotensin system activation may provide a novel therapeutic approach in muscular dystrophy.

  2. Dysferlinopathy in Switzerland: clinical phenotypes and potential founder effects.

    PubMed

    Petersen, Jens A; Kuntzer, Thierry; Fischer, Dirk; von der Hagen, Maja; Huebner, Angela; Kana, Veronika; Lobrinus, Johannes A; Kress, Wolfram; Rushing, Elisabeth J; Sinnreich, Michael; Jung, Hans H

    2015-10-06

    Dysferlin is reduced in patients with limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment myopathy, and in certain Ethnic clusters. We evaluated clinical and genetic patient data from three different Swiss Neuromuscular Centers. Thirteen patients from 6 non-related families were included. Age of onset was 18.8 ± 4.3 years. In all patients, diallelic disease-causing mutations were identified in the DYSF gene. Nine patients from 3 non-related families from Central Switzerland carried the identical homozygous mutation, c.3031 + 2 T>C. A possible founder effect was confirmed by haplotype analysis. Three patients from two different families carried the heterozygous mutation, c.1064_1065delAA. Two novel mutations were identified (c.2869 C>T (p.Gln957Stop), c.5928 G>A (p.Trp1976Stop)). Our study confirms the phenotypic heterogeneity associated with DYSF mutations. Two mutations (c.3031 + 2 T>C, c.1064_1065delAA) appear common in Switzerland. Haplotype analysis performed on one case (c. 3031 + 2 T>C) suggested a possible founder effect.

  3. Feasibility of surveying pesticide coverage with airborne fluorometer

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.; Hemphill, W. R.

    1970-01-01

    Response of a Fraunhofer line discriminator (FLD) to varying distributions of granulated corncobs stained with varying concentrations of Rhodamine WT dye was tested on the ground and from an H-19 helicopter. The granules are used as a vehicle for airborne emplacement of poison to control fire ants in the eastern and southeastern United States. Test results showed that the granules are detectable by FLD but that the concentration must be too great to be practical with the present apparatus. Possible methods for enhancement of response may include: (1) increasing dye concentration; (2) incorporating with the poisoned granules a second material to carry the dye alone; (3) use of a more strongly fluorescent substance (at 5890 A); (4) modifying the time interval after dyeing, or modifying the method of dyeing; (5) modifying the FLD for greater efficiency, increased field of view or larger optics; or (6) experimenting with laser-stimulated fluorescence.

  4. Calculation of the equilibrium distribution for a deleterious gene by the finite Fourier transform.

    PubMed

    Lange, K

    1982-03-01

    In a population of constant size every deleterious gene eventually attains a stochastic equilibrium between mutation and selection. The individual probabilities of this equilibrium distribution can be computed by an application of the finite Fourier transform to an appropriate branching process formula. Specific numerical examples are discussed for the autosomal dominants, Huntington's chorea and chondrodystrophy, and for the X-linked recessive, Becker's muscular dystrophy.

  5. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications.

    PubMed Central

    Den Dunnen, J T; Grootscholten, P M; Bakker, E; Blonden, L A; Ginjaar, H B; Wapenaar, M C; van Paassen, H M; van Broeckhoven, C; Pearson, P L; van Ommen, G J

    1989-01-01

    We have studied 34 Becker and 160 Duchenne muscular dystrophy (DMD) patients with the dystrophin cDNA, using conventional blots and FIGE analysis. One hundred twenty-eight mutations (65%) were found, 115 deletions and 13 duplications, of which 106 deletions and 11 duplications could be precisely mapped in relation to both the mRNA and the major and minor mutation hot spots. Junction fragments, ideal markers for carrier detection, were found in 23 (17%) of the 128 cases. We identified eight new cDNA RFLPs within the DMD gene. With the use of cDNA probes we have completed the long-range map of the DMD gene, by the identification of a 680-kb SfiI fragment containing the gene's 3' end. The size of the DMD gene is now determined to be about 2.3 million basepairs. The combination of cDNA hybridizations with long-range analysis of deletion and duplication patients yields a global picture of the exon spacing within the dystrophin gene. The gene shows a large variability of intron size, ranging from only a few kilobases to 160-180 kb for the P20 intron. Images Figure 1 Figure 4 PMID:2573997

  6. Clinical characteristics and SAP scintigraphic findings in 10 patients with AGel amyloidosis.

    PubMed

    Rowczenio, Dorota; Tennent, Glenys A; Gilbertson, Janet; Lachmann, Helen J; Hutt, David F; Bybee, Alison; Hawkins, Philip N; Gillmore, Julian D

    2014-12-01

    The clinical features of hereditary gelsolin (AGel) amyloidosis include corneal lattice dystrophy, distal sensorimotor, cranial neuropathy and cutis laxa. To date, four mutations of the gelsolin (GSN) gene encoding the following variants have been identified as the cause of this malady; p.D214N, p.D214Y, p.G194R and p.N211K (this nomenclature includes the 27-residue signal peptide). Interestingly, the latter two variants are associated exclusively with a renal amyloidosis phenotype. Here we report the clinical features in 10 patients with AGel amyloidosis associated with the p.D214N mutation, all of whom underwent whole body (123)I-SAP scintigraphy and were followed up in a single UK Centre for a prolonged period. Two patients, from the same kindred presented with proteinuria; eight subjects had a characteristic AGel amyloidosis phenotype including cranial neuropathy and/or corneal lattice dystrophy. (123)I-SAP scintigraphy revealed substantial renal amyloid deposits in all 10 patients, including those with preserved renal function, and usually without tracer uptake into other visceral organs. (123)I-SAP scintigraphy is a non-invasive technique that aids early diagnosis of patients with this rare disease, especially those who lack a family history and/or present with an unusual clinical phenotype.

  7. β-dystroglycan is regulated by a balance between WWP1-mediated degradation and protection from WWP1 by dystrophin and utrophin.

    PubMed

    Cho, Eun-Bee; Yoo, Wonjin; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2018-06-01

    Dystroglycan is a ubiquitous membrane protein that functions as a mechanical connection between the extracellular matrix and cytoskeleton. In skeletal muscle, dystroglycan plays an indispensable role in regulating muscle regeneration; a malfunction in dystroglycan is associated with muscular dystrophy. The regulation of dystroglycan stability is poorly understood. Here, we report that WWP1, a member of NEDD4 E3 ubiquitin ligase family, promotes ubiquitination and subsequent degradation of β-dystroglycan. Our results indicate that dystrophin and utrophin protect β-dystroglycan from WWP1-mediated degradation by competing with WWP1 for the shared binding site at the cytosolic tail of β-dystroglycan. In addition, we show that a missense mutation (arginine 440 to glutamine) in WWP1-which is known to cause muscular dystrophy in chickens-increases the ubiquitin ligase-mediated ubiquitination of both β-dystroglycan and WWP1. The R440Q missense mutation in WWP1 decreases HECT domain-mediated intramolecular interactions to relieve autoinhibition of the enzyme. Our results provide new insight into the regulation of β-dystroglycan degradation by WWP1 and other Nedd4 family members and improves our understanding of dystroglycan-related disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Schindler disease: the molecular lesion in the alpha-N-acetylgalactosaminidase gene that causes an infantile neuroaxonal dystrophy.

    PubMed Central

    Wang, A M; Schindler, D; Desnick, R

    1990-01-01

    Schindler disease is a recently recognized infantile neuroaxonal dystrophy resulting from the deficient activity of the lysosomal hydrolase, alpha-N-acetylgalctosaminidase (alpha-GalNAc). The recent isolation and expression of the full-length cDNA encoding alpha-GalNAc facilitated the identification of the molecular lesions in the affected brothers from family D, the first cases described with this autosomal recessive disease. Southern and Northern hybridization analyses of DNA and RNA from the affected homozygotes revealed a grossly normal alpha-GalNAc gene structure and normal transcript sizes and amounts. Therefore, the alpha-GalNAc transcript from an affected homozygote was reverse-transcribed, amplified by the polymerase chain reaction (PCR), and sequenced. A single G to A transition at nucleotide 973 was detected in multiple subclones containing the PCR products. This point mutation resulted in a glutamic acid to lysine substitution in residue 325 (E325K) of the alpha-GalNAc polypeptide. The base substitution was confirmed by dot blot hybridization analyses of PCR-amplified genomic DNA from family members with allele-specific oligonucleotides. Furthermore, transient expression of an alpha-GalNAc construct containing the E325K mutation resulted in the expression of an immunoreactive polypeptide which had no detectable alpha-GalNAc activity. Images PMID:2243144

  9. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells

    PubMed Central

    Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine

    2017-01-01

    Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954

  10. Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases

    PubMed Central

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons. PMID:25492562

  11. Olfactory Dysfunction in Patients With CNGB1-Associated Retinitis Pigmentosa.

    PubMed

    Charbel Issa, Peter; Reuter, Peggy; Kühlewein, Laura; Birtel, Johannes; Gliem, Martin; Tropitzsch, Anke; Whitcroft, Katherine L; Bolz, Hanno J; Ishihara, Kenji; MacLaren, Robert E; Downes, Susan M; Oishi, Akio; Zrenner, Eberhart; Kohl, Susanne; Hummel, Thomas

    2018-05-24

    Co-occurrence of retinitis pigmentosa (RP) and olfactory dysfunction may have a common genetic cause. To report olfactory function and the retinal phenotype in patients with biallelic mutations in CNGB1, a gene coding for a signal transduction channel subunit expressed in rod photoreceptors and olfactory sensory neurons. This case series was conducted from August 2015 through July 2017. The setting was a multicenter study involving 4 tertiary referral centers for inherited retinal dystrophies. Participants were 9 patients with CNGB1-associated RP. Results of olfactory testing, ocular phenotyping, and molecular genetic testing using targeted next-generation sequencing. Nine patients were included in the study, 3 of whom were female. Their ages ranged between 34 and 79 years. All patients had an early onset of night blindness but were usually not diagnosed as having RP before the fourth decade because of slow retinal degeneration. Retinal features were characteristic of a rod-cone dystrophy. Olfactory testing revealed reduced or absent olfactory function, with all except one patient scoring in the lowest quartile in relation to age-related norms. Brain magnetic resonance imaging and electroencephalography measurements in response to olfactory stimulation were available for 1 patient and revealed no visible olfactory bulbs and reduced responses to odor, respectively. Molecular genetic testing identified 5 novel (c.1312C>T, c.2210G>A, c.2492+1G>A, c.2763C>G, and c.3044_3050delGGAAATC) and 5 previously reported mutations in CNGB1. Mutations in CNGB1 may cause an autosomal recessive RP-olfactory dysfunction syndrome characterized by a slow progression of retinal degeneration and variable anosmia or hyposmia.

  12. POPDC1S201F causes muscular dystrophy and arrhythmia by affecting protein trafficking

    PubMed Central

    Schindler, Roland F.R.; Scotton, Chiara; Zhang, Jianguo; Passarelli, Chiara; Ortiz-Bonnin, Beatriz; Simrick, Subreena; Schwerte, Thorsten; Poon, Kar-Lai; Fang, Mingyan; Rinné, Susanne; Froese, Alexander; Nikolaev, Viacheslav O.; Grunert, Christiane; Müller, Thomas; Tasca, Giorgio; Sarathchandra, Padmini; Drago, Fabrizio; Dallapiccola, Bruno; Rapezzi, Claudio; Arbustini, Eloisa; Di Raimo, Francesca Romana; Neri, Marcella; Selvatici, Rita; Gualandi, Francesca; Fattori, Fabiana; Pietrangelo, Antonello; Li, Wenyan; Jiang, Hui; Xu, Xun; Bertini, Enrico; Decher, Niels; Wang, Jun; Brand, Thomas; Ferlini, Alessandra

    2015-01-01

    The Popeye domain–containing 1 (POPDC1) gene encodes a plasma membrane–localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1S201F displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1S201F and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1S201F in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1S191F) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases. PMID:26642364

  13. Novel retinopathy in related Gordon setters: a clinical, behavioral, electrophysiological, and genetic investigation.

    PubMed

    Good, Kathryn L; Komáromy, András M; Kass, Philip H; Ofri, Ron

    2016-09-01

    To conduct ophthalmic, behavioral, electrophysiological, and genetic testing on two related Gordon setters presented for day blindness and compare findings with those of nine related and unrelated Gordon setters. All dogs underwent comprehensive ophthalmic examination. Maze testing was conducted under different light intensities. Rod and cone function was assessed electroretinographically. DNA samples were screened for five canine retinal disease gene mutations. Ophthalmic examination was unremarkable in all dogs. There was no notable difference between day blind dogs and the reference population in scotopic and mesopic maze tests. Day blind dogs performed worse in the photopic maze with slower course completion time and more obstacle collisions. Electroretinography revealed extinguished cone function in day blind dogs and depressed rod responses in all but two reference dogs. One reference population dog presented with day blindness 1 year after initial examination. Mutations that cause achromatopsia (in CNGB3) and cone-rod dystrophies (in ADAM9 and IQCB1) were not detected in any dog tested, although five reference dogs were carriers of the mutation in C2orf71 that causes rod-cone degeneration 4 (rcd4) in Gordon setters and in polski owczarek nizinny dogs. This report describes a novel retinopathy in related Gordon setters that has clinical signs and vision testing results consistent with achromatopsia but electroretinographic results suggestive of cone-rod dystrophy. The majority of Gordon setters in this study had low rod responses on electroretinography but it is unclear whether this was indicative of rod dysfunction or normal for the breed. Longer-term observation of affected individuals is warranted. © 2015 American College of Veterinary Ophthalmologists.

  14. Cone-rod dystrophy and amelogenesis imperfecta (Jalili syndrome): phenotypes and environs.

    PubMed

    Jalili, I K

    2010-11-01

    To report a new phenotype with additional data on the oculo-dental syndrome of cone-rod dystrophy (CRD) and amelogenesis imperfecta (AI) caused by mutations on CNNM4, a metal transporter, with linkage at achromatopsia locus 2q11 (Jalili syndrome). Three siblings aged 5, 6, and 10 years from a six-generation Arab family in Gaza City underwent full systemic, ophthalmic, and dental examinations, investigations and detailed genealogy. Subjects presented at early childhood with visual impairment and abnormal dentition together with photophobia and fine nystagmus increasing under photopic conditions, in the presence of normal fundi. Electrophysiologically, photopic flicker responses were impaired; scotopic responses were extinguished at the age of 10 years. Anterior open bite accompanied AI in all siblings. The syndrome formed 83% of CRD cases in the Gaza Strip, which has a prevalence of 1 : 10,000. On the basis of clinical features and electrophysiology, two phenotypes exist: an infancy onset form with progressive macular lesion and an early childhood onset form with normal fundi. More prevalent than previously thought, Jalili syndrome presents a model of the effect of different mutations of the same genetic defect, observations of the same phenotype at different stages of the natural history of the disease, and the influence of epigenetic and tissue-specific factors as causes of phenotypic variability. The paper calls for action to tackle consanguinity in endogamous communities, addresses the possible role of high fluoride levels in groundwater as a trigger for genetic mutations, and the use of red-tinted filter in cone disorders.

  15. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  16. Altered Splicing of the BIN1 Muscle-Specific Exon in Humans and Dogs with Highly Progressive Centronuclear Myopathy

    PubMed Central

    Böhm, Johann; Vasli, Nasim; Maurer, Marie; Cowling, Belinda; Shelton, G. Diane; Kress, Wolfram; Toussaint, Anne; Prokic, Ivana; Schara, Ulrike; Anderson, Thomas James; Weis, Joachim; Tiret, Laurent; Laporte, Jocelyn

    2013-01-01

    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies. PMID:23754947

  17. Carrier detection in Duchenne muscular dystrophy. Evidence from a study of obligatory carriers and mothers of isolated cases.

    PubMed Central

    Sibert, J R; Harper, P S; Thompson, R J; Newcombe, R G

    1979-01-01

    The mean levels of serum creatinine phosphokinase (CPK) were studied in three groups of women: normal controls (57), obligate carriers for Duchenne muscular dystrophy (30), and mothers of isolated cases of this disease (35). The distribution of the levels in these groups was significantly different and was in keeping with the hypothesis that one-third of isolated cases result from new mutations. The control and carrier ranges overlapped considerably, with the level of CPK of 33% of obligate carriers coming within the 97 1/2 centile of the normal range. Odds against an individual being a carrier were derived for specific mean values of CPK. They should be considered with genetic information using Bayes's theorem. The mean CPK levels in obligate carriers showed significant familial clustering. This may have implications in carrier detection. PMID:485196

  18. Clinical Manifestations and Overall Management Strategies for Duchenne Muscular Dystrophy.

    PubMed

    Tsuda, Takeshi

    2018-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder that causes progressive weakness and wasting of skeletal muscular and myocardium in boys due to mutation of dystrophin. The structural integrity of each individual skeletal and cardiac myocyte is significantly compromised upon physical stress due to the absence of dystrophin. The progressive destruction of systemic musculature and myocardium causes affected patients to develop multiple organ disabilities, including loss of ambulation, physical immobility, neuromuscular scoliosis, joint contracture, restrictive lung disease, obstructive sleep apnea, and cardiomyopathy. There are some central nervous system-related medical problems, as dystrophin is also expressed in the neuronal tissues. Although principal management is to mainly delay the pathological process, an enhanced understanding of underlying pathological processes has significantly improved quality of life and longevity for DMD patients. Future research in novel molecular approach is warranted to answer unanswered questions.

  19. Selective deficits in verbal working memory associated with a known genetic etiology: The neuropsychological profile of Duchenne muscular dystrophy

    PubMed Central

    HINTON, VERONICA J.; DE VIVO, DARRYL C.; NEREO, NANCY E.; GOLDSTEIN, EDWARD; STERN, YAAKOV

    2007-01-01

    Forty-one boys diagnosed with Duchenne muscular dystrophy (DMD) were each compared to an unaffected sibling on a battery of neuropsychological tests. Verbal, visuospatial, attention/memory, abstract thinking, and academic achievement skills were tested. Results indicated the boys with DMD performed similarly to their siblings on the majority of measures, indicating intact verbal, visuospatial, long-term memory, and abstract skills. However, the DMD group did significantly more poorly than their siblings on specific measures of story recall, digit span, and auditory comprehension, as well as in all areas of academic achievement (reading, writing, and math). This profile indicates that verbal working memory skills are selectively impaired in DMD, and that that likely contributes to limited academic achievement. The association between the known impact of the genetic mutation on the development of the central nervous system and boys’ cognitive profile is discussed. PMID:11253841

  20. A comparative study on the forming limit diagram prediction between Marciniak-Kuczynski model and modified maximum force criterion by using the evolving non-associated Hill48 plasticity model

    NASA Astrophysics Data System (ADS)

    Shen, Fuhui; Lian, Junhe; Münstermann, Sebastian

    2018-05-01

    Experimental and numerical investigations on the forming limit diagram (FLD) of a ferritic stainless steel were performed in this study. The FLD of this material was obtained by Nakajima tests. Both the Marciniak-Kuczynski (MK) model and the modified maximum force criterion (MMFC) were used for the theoretical prediction of the FLD. From the results of uniaxial tensile tests along different loading directions with respect to the rolling direction, strong anisotropic plastic behaviour was observed in the investigated steel. A recently proposed anisotropic evolving non-associated Hill48 (enHill48) plasticity model, which was developed from the conventional Hill48 model based on the non-associated flow rule with evolving anisotropic parameters, was adopted to describe the anisotropic hardening behaviour of the investigated material. In the previous study, the model was coupled with the MMFC for FLD prediction. In the current study, the enHill48 was further coupled with the MK model. By comparing the predicted forming limit curves with the experimental results, the influences of anisotropy in terms of flow rule and evolving features on the forming limit prediction were revealed and analysed. In addition, the forming limit predictive performances of the MK and the MMFC models in conjunction with the enHill48 plasticity model were compared and evaluated.

  1. Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families

    PubMed Central

    Lin, Bing; Cai, Xue-Bi; Zheng, Zhi-Li; Huang, Xiu-Feng; Liu, Xiao-Ling; Qu, Jia; Jin, Zi-Bing

    2016-01-01

    Stargardt disease (STGD1) is a juvenile macular degeneration predominantly inherited in an autosomal recessive pattern, characterized by decreased central vision in the first 2 decades of life. The condition has a genetic basis due to mutation in the ABCA4 gene, and arises from the deposition of lipofuscin-like substance in the retinal pigmented epithelium (RPE) with secondary photoreceptor cell death. In this study, we describe the clinical and genetic features of Stargardt patients from four unrelated Chinese cohorts. The targeted exome sequencing (TES) was carried out in four clinically confirmed patients and their family members using a gene panel comprising 164 known causative inherited retinal dystrophy (IRD) genes. Genetic analysis revealed eight ABCA4 mutations in all of the four pedigrees, including six mutations in coding exons and two mutations in adjacent intronic areas. All the affected individuals showed typical manifestations consistent with the disease phenotype. We disclose two novel ABCA4 mutations in Chinese patients with STGD disease, which will expand the existing spectrum of disease-causing variants and will further aid in the future mutation screening and genetic counseling, as well as in the understanding of phenotypic and genotypic correlations. PMID:27739528

  2. Molecular genetics in neurology.

    PubMed

    Martin, J B

    1993-12-01

    There has been remarkable progress in the identification of mutations in genes that cause inherited neurological disorders. Abnormalities in the genes for Huntington disease, neurofibromatosis types 1 and 2, one form of familial amyotrophic lateral sclerosis, fragile X syndrome, myotonic dystrophy, Kennedy syndrome, Menkes disease, and several forms of retinitis pigmentosa have been elucidated. Rare disorders of neuronal migration such as Kallmann syndrome, Miller-Dieker syndrome, and Norrie disease have been shown to be due to specific gene defects. Several muscle disorders characterized by abnormal membrane excitability have been defined as mutations of the muscle sodium or chloride channels. These advances provide opportunity for accurate molecular diagnosis of at-risk individuals and are the harbinger of new approaches to therapy of these diseases.

  3. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    PubMed

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  4. Functions of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in neuromuscular system and other somatic organs.

    PubMed

    Yamamoto, Tomoko; Shibata, Noriyuki; Saito, Yoshiaki; Osawa, Makiko; Kobayashi, Makio

    2010-06-01

    Fukuyama type congenital muscular dystrophy (FCMD) is an autosomal recessive disease, exhibiting muscular dystrophy, and central nervous system (CNS) and ocular malformations. It is included in alpha-dystroglycanopathy, a group of muscular dystrophy showing reduced glycosylation of alpha-dystroglycan. alpha-Dystroglycan is one of the components of dystrophin-glycoprotein complex linking extracellular and intracellular proteins. The sugar chains of alpha-dystroglycan are receptors for extracellular matrix proteins such as laminin. Fukutin, a gene responsible for FCMD, is presumably related to the glycosylation of alpha-dystroglycan like other causative genes of alpha-dystroglycanopathy. The CNS lesion of FCMD is characterized by cobblestone lissencephaly, associated with decreased glycosylation of alpha-dystroglycan in the glia limitans where the basement membrane is formed. Astrocytes whose endfeet form the glia limitans seem to be greatly involved in the genesis of the CNS lesion. Fukutin is probably necessary for astrocytic function. Other components of the CNS may also need fukutin, such as migration and synaptic function in neurons. However, roles of fukutin in oligodendroglia, microglia, leptomeninges and capillaries are unknown at present. Fukutin is expressed in various somatic organs as well, and appears to work differently between epithelial cells and astrocytes. In the molecular level, since the dystrophin-glycoprotein complex is linked to cell signaling pathways involving c-src and c-jun, fukutin may be able to affect cell proliferation/survival. Fukutin was localized in the nucleus on cancer cell lines. With the consideration that mutations of fukutin give rise to wide spectrum of the clinical phenotype, more unknown functions of fukutin besides the glycosylation of alpha-dystroglycan can be suggested. Trials for novel treatments including gene therapy are in progress in muscular dystrophies. Toward effective therapies with minimal side effects, precise evaluation of the pathomechanism of FCMD and the function of fukutin would be required.

  5. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    PubMed

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  6. Deficiency of merosin in dystrophic dy mouse homologue of congenital muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunada, Y.; Campbell, K.P.; Bernier, S.M.

    1994-09-01

    Merosin (laminin M chain) is the predominant laminin isoform in the basal lamina of striated muscle and peripheral nerve and is a native ligand for {alpha}-dystroglycan, a novel laminin receptor. Merosin is linked to the subsarcolemmal actin cytoskeleton via the dystrophin-glycoprotein complex (DGC), which plays an important role for maintenance of normal muscle function. We have mapped the mouse merosin gene, Lamm, to the region containing the dystrophia muscularis (dy) locus on chromosome 10. This suggested the possibility that a mutation in the merosin gene could be responsible for the dy mouse, an animal model for autosomal recessive muscular dystrophy,more » and prompted us to test this hypothesis. We analyzed the status of merosin expression in dy mouse by immunofluorescence and immunoblotting. In dy mouse skeletal and cardiac muscle and peripheral nerve, merosin was reduced greater than 90% as compared to control mice. However, the expression of laminin B1/B2 chains and collagen type IV was smaller to that in control mice. These findings strongly suggest that merosin deficiency may be the primary defect in the dy mouse. Furthermore, we have identified two patients afflicted with congenital muscular dystrophy with merosin deficiency, providing the basis for future studies of molecular pathogenesis and gene therapy.« less

  7. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life.

  8. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern.

    PubMed

    Cotta, Ana; Paim, Julia Filardi; da-Cunha-Junior, Antonio Lopes; Neto, Rafael Xavier; Nunes, Simone Vilela; Navarro, Monica Magalhaes; Valicek, Jaquelin; Carvalho, Elmano; Yamamoto, Lydia U; Almeida, Camila F; Braz, Shelida Vasconcelos; Takata, Reinaldo Issao; Vainzof, Mariz

    2014-01-01

    Limb girdle muscular dystrophy type 2G (LGMD2G) is a subtype of autosomal recessive muscular dystrophy caused by mutations in the telethonin gene. There are few LGMD2G patients worldwide reported, and this is the first description associated with early tibialis anterior sparing on muscle image and myopathic-neurogenic motor unit potentials. Here we report a 31 years old caucasian male patient with progressive gait disturbance, and severe lower limb proximal weakness since the age of 20 years, associated with subtle facial muscle weakness. Computed tomography demonstrated soleus, medial gastrocnemius, and diffuse thigh muscles involvement with tibialis anterior sparing. Electromyography disclosed both neurogenic and myopathic motor unit potentials. Muscle biopsy demonstrated large groups of atrophic and hypertrophic fibers, frequent fibers with intracytoplasmic rimmed vacuoles full of autophagic membrane and sarcoplasmic debris, and a total deficiency of telethonin. Molecular investigation identified the common homozygous c.157C > T in the TCAP gene. This report expands the phenotypic variability of telethoninopathy/ LGMD2G, including: 1) mixed neurogenic and myopathic motor unit potentials, 2) facial weakness, and 3) tibialis anterior sparing. Appropriate diagnosis in these cases is important for genetic counseling and prognosis.

  9. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy

    PubMed Central

    Mead, A. F.; Petrov, M.; Malik, A. S.; Mitchell, M. A.; Childers, M. K.; Bogan, J. R.; Seidner, G.; Kornegay, J. N.

    2014-01-01

    Ventilatory insufficiency remains the leading cause of death and late stage morbidity in Duchenne muscular dystrophy (DMD). To address critical gaps in our knowledge of the pathobiology of respiratory functional decline, we used an integrative approach to study respiratory mechanics in a translational model of DMD. In studies of individual dogs with the Golden Retriever muscular dystrophy (GRMD) mutation, we found evidence of rapidly progressive loss of ventilatory capacity in association with dramatic morphometric remodeling of the diaphragm. Within the first year of life, the mechanics of breathing at rest, and especially during pharmacological stimulation of respiratory control pathways in the carotid bodies, shift such that the primary role of the diaphragm becomes the passive elastic storage of energy transferred from abdominal wall muscles, thereby permitting the expiratory musculature to share in the generation of inspiratory pressure and flow. In the diaphragm, this physiological shift is associated with the loss of sarcomeres in series (∼60%) and an increase in muscle stiffness (∼900%) compared with those of the nondystrophic diaphragm, as studied during perfusion ex vivo. In addition to providing much needed endpoint measures for assessing the efficacy of therapeutics, we expect these findings to be a starting point for a more precise understanding of respiratory failure in DMD. PMID:24408990

  10. Prevalence and Genetic Profile of Duchene and Becker Muscular Dystrophy in Puerto Rico.

    PubMed

    Ramos, Edwardo; Conde, José G; Berrios, Rafael Arias; Pardo, Sherly; Gómez, Omar; Mas Rodríguez, Manuel F

    2016-05-27

    Duchenne and Becker Muscular Dystrophy (DMD and BMD, respectively), are common forms of inherited muscle disease. Information regarding the epidemiology of these conditions, including genotype, is still sparse. To establish the prevalence and genetic profile of DMD and BMD in Puerto Rico. We collected data from medical records in all Muscular Dystrophy Association (MDA) clinics in Puerto Rico in order to estimate the prevalence of DMD and BMD and to describe the genotypic profile of these patients. Patients selected for data analysis matched "definite", "probable" and "possible" case definitions as established by MD STARnet. A total of 141 patients matched the inclusion criteria, with 64.5% and 35.5% being categorized into DMD and BMD, respectively. DMD and BMD prevalence in Puerto Rico was estimated at 5.18 and 2.84 per 100,000 males, respectively. Deletion was the most common form of mutation (66.7%) in the dystrophin gene, with exons in segment 45 to 47 being the most frequently affected. This is the first report of the prevalence and genetic profile characteristics of DMD and BMD in Puerto Rico. Prevalence of DMD was similar to that reported worldwide, while prevalence of BMD was higher. Genetic profile was consistent with that reported in the literature.

  11. Lipodystrophic syndromes due to LMNA mutations: recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives

    PubMed Central

    Vigouroux, Corinne; Guénantin, Anne-Claire; Vatier, Camille; Le Dour, Caroline; Afonso, Pauline; Bidault, Guillaume; Béréziat, Véronique; Lascols, Olivier; Capeau, Jacqueline; Briand, Nolwenn; Jéru, Isabelle

    2018-01-01

    Abstract Mutations in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and premature ageing syndromes. LMNA mutations have been shown to alter nuclear structure and stiffness, binding to partners at the nuclear envelope or within the nucleoplasm, gene expression and/or prelamin A maturation. LMNA-associated lipodystrophic features, combining generalized or partial fat atrophy and metabolic alterations associated with insulin resistance, could result from altered adipocyte differentiation or from altered fat structure. Recent studies shed some light on how pathogenic A-type lamin variants could trigger lipodystrophy, metabolic complications, and precocious cardiovascular events. Alterations in adipose tissue extracellular matrix and TGF-beta signaling could initiate metabolic inflexibility. Premature senescence of vascular cells could contribute to cardiovascular complications. In affected families, metabolic alterations occur at an earlier age across generations, which could result from epigenetic deregulation induced by LMNA mutations. Novel cellular models recapitulating adipogenic developmental pathways provide scalable tools for disease modeling and therapeutic screening. PMID:29578370

  12. A case of neuromyotonia and axonal motor neuropathy: A report of a HINT1 mutation in the United States.

    PubMed

    Jerath, Nivedita U; Shy, Michael E; Grider, Tiffany; Gutmann, Ludwig

    2015-12-01

    HINT1 mutations cause an autosomal recessive distal hereditary motor axonal neuropathy with neuromyotonia. This is a case report of a HINT1 mutation in the United States. A 30-year-old man of Slovenian heritage and no significant family history presented with scoliosis as a child and later developed neuromyotonia and distal weakness. Electrodiagnostic testing revealed an axonal motor neuropathy and neuromyotonic discharges. Previous diagnostic work-up, including testing for Cx32, MPZ, PMP-22, NF-L, EGR2, CLCN1, DM1, DM2, SMN exon 7/8, emerin, LMNA, MPK, SCNA4, acid maltase gene, paraneoplastic disorder, and a sural nerve biopsy, was negative. Genetic testing for a HINT1 mutation was performed and revealed a homozygous mutation at p.Arg37Pro. This entity should be distinguished clinically and genetically from myotonic dystrophy and channelopathies with the clinical features of neuromyotonia and an axonal neuropathy. This case illustrates the importance of identifying the correct phenotype to avoid unnecessary and costly evaluations. © 2015 Wiley Periodicals, Inc.

  13. Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis.

    PubMed

    Joseph, Nimesh; Al-Jassar, Caezar; Johnson, Christopher M; Andreeva, Antonina; Barnabas, Deepak D; Freund, Stefan M V; Gergely, Fanni; van Breugel, Mark

    2018-05-29

    Ciliopathies are a group of genetic disorders caused by a failure to form functional cilia. Due to a lack of structural information, it is currently poorly understood how ciliopathic mutations affect protein functionality to give rise to the underlying disease. Using X-ray crystallography, we show that the ciliopathy-associated centriolar protein CEP120 contains three C2 domains. The point mutations V194A and A199P, which cause Joubert syndrome (JS) and Jeune asphyxiating thoracic dystrophy (JATD), respectively, both reduce the thermostability of the second C2 domain by targeting residues that point toward its hydrophobic core. Genome-engineered cells homozygous for these mutations have largely normal centriole numbers but show reduced CEP120 levels, compromised recruitment of distal centriole markers, and deficient cilia formation. Our results provide insight into the disease mechanism of two ciliopathic mutations in CEP120, identify putative binding partners of CEP120 C2B, and suggest a complex genotype-phenotype relation of the CEP120 ciliopathy alleles. Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  14. Frequency-Locked Detector Threshold Setting Criteria Based on Mean-Time-To-Lose-Lock (MTLL) for GPS Receivers

    PubMed Central

    Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa

    2017-01-01

    Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio (C/N0) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C/N0 can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis. PMID:29207546

  15. Variability common to first leaf dates and snowpack in the western conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Betancourt, Julio L.; Pederson, Gregory T.; Schwartz, Mark D.

    2013-01-01

    Singular value decomposition is used to identify the common variability in first leaf dates (FLDs) and 1 April snow water equivalent (SWE) for the western United States during the period 1900–2012. Results indicate two modes of joint variability that explain 57% of the variability in FLD and 69% of the variability in SWE. The first mode of joint variability is related to widespread late winter–spring warming or cooling across the entire west. The second mode can be described as a north–south dipole in temperature for FLD, as well as in cool season temperature and precipitation for SWE, that is closely correlated to the El Niño–Southern Oscillation. Additionally, both modes of variability indicate a relation with the Pacific–North American atmospheric pattern. These results indicate that there is a substantial amount of common variance in FLD and SWE that is related to large-scale modes of climate variability.

  16. Frequency-Locked Detector Threshold Setting Criteria Based on Mean-Time-To-Lose-Lock (MTLL) for GPS Receivers.

    PubMed

    Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa

    2017-12-04

    Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.

  17. Biallelic Variants in TTLL5, Encoding a Tubulin Glutamylase, Cause Retinal Dystrophy

    PubMed Central

    Sergouniotis, Panagiotis I.; Chakarova, Christina; Murphy, Cian; Becker, Mirjana; Lenassi, Eva; Arno, Gavin; Lek, Monkol; MacArthur, Daniel G.; Bhattacharya, Shomi S.; Moore, Anthony T.; Holder, Graham E.; Robson, Anthony G.; Wolfrum, Uwe; Webster, Andrew R.; Plagnol, Vincent

    2014-01-01

    In a subset of inherited retinal degenerations (including cone, cone-rod, and macular dystrophies), cone photoreceptors are more severely affected than rods; ABCA4 mutations are the most common cause of this heterogeneous class of disorders. To identify retinal-disease-associated genes, we performed exome sequencing in 28 individuals with “cone-first” retinal disease and clinical features atypical for ABCA4 retinopathy. We then conducted a gene-based case-control association study with an internal exome data set as the control group. TTLL5, encoding a tubulin glutamylase, was highlighted as the most likely disease-associated gene; 2 of 28 affected subjects harbored presumed loss-of-function variants: c.[1586_1589delAGAG];[1586_1589delAGAG], p.[Glu529Valfs∗2];[Glu529Valfs∗2], and c.[401delT(;)3354G>A], p.[Leu134Argfs∗45(;)Trp1118∗]. We then inspected previously collected exome sequence data from individuals with related phenotypes and found two siblings with homozygous nonsense variant c.1627G>T (p.Glu543∗) in TTLL5. Subsequently, we tested a panel of 55 probands with retinal dystrophy for TTLL5 mutations; one proband had a homozygous missense change (c.1627G>A [p.Glu543Lys]). The retinal phenotype was highly similar in three of four families; the sibling pair had a more severe, early-onset disease. In human and murine retinae, TTLL5 localized to the centrioles at the base of the connecting cilium. TTLL5 has been previously reported to be essential for the correct function of sperm flagella in mice and play a role in polyglutamylation of primary cilia in vitro. Notably, genes involved in the polyglutamylation and deglutamylation of tubulin have been associated with photoreceptor degeneration in mice. The electrophysiological and fundus autofluorescence imaging presented here should facilitate the molecular diagnosis in further families. PMID:24791901

  18. Novel ancestral Dysferlin splicing mutation which migrated from the Iberian peninsula to South America.

    PubMed

    Vernengo, Luis; Oliveira, Jorge; Krahn, Martin; Vieira, Emilia; Santos, Rosário; Carrasco, Luisa; Negrão, Luís; Panuncio, Ana; Leturcq, France; Labelle, Veronique; Bronze-da-Rocha, Elsa; Mesa, Rosario; Pizzarossa, Carlos; Lévy, Nicolas; Rodriguez, Maria-Mirta

    2011-05-01

    Primary dysferlinopathies are a group of recessive heterogeneous muscular dystrophies. The most common clinical presentations are Miyoshi myopathy and LGMD2B. Additional presentations range from isolated hyperCKemia to severe functional disability. Symptomatology begins in the posterior muscle compartment of the calf and its clinical course progresses slowly in Miyoshi myopathy whereas LGMD2B involves predominantly the proximal muscles of the lower limbs. The age of onset ranges from 13 to 60years in Caucasians. We present five patients that carry a novel mutation in the exon12/intron12 boundary: c.1180_1180+7delAGTGCGTG (r.1054_1284del). We provide evidence of a founder effect due to a common ancestral origin of this mutation, detected in heterozygosity in four patients and in homozygosity in one patient. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration.

    PubMed

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Wensel, T G; Lupski, J R

    2001-11-01

    Mutations in ABCR (ABCA4) have been reported to cause a spectrum of autosomal recessively inherited retinopathies, including Stargardt disease (STGD), cone-rod dystrophy and retinitis pigmentosa. Individuals heterozygous for ABCR mutations may be predisposed to develop the multifactorial disorder age-related macular degeneration (AMD). We hypothesized that some carriers of STGD alleles have an increased risk to develop AMD. We tested this hypothesis in a cohort of families that manifest both STGD and AMD. With a direct-sequencing mutation detection strategy, we found that AMD-affected relatives of STGD patients are more likely to be carriers of pathogenic STGD alleles than predicted based on chance alone. We further investigated the role of AMD-associated ABCR mutations by testing for expression and ATP-binding defects in an in vitro biochemical assay. We found that mutations associated with AMD have a range of assayable defects ranging from no detectable defect to apparent null alleles. Of the 21 missense ABCR mutations reported in patients with AMD, 16 (76%) show abnormalities in protein expression, ATP-binding or ATPase activity. We infer that carrier relatives of STGD patients are predisposed to develop AMD.

  20. A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree

    PubMed Central

    Marconi, Caterina; Brunamonti Binello, Paolo; Badiali, Giovanni; Caci, Emanuela; Cusano, Roberto; Garibaldi, Joseph; Pippucci, Tommaso; Merlini, Alberto; Marchetti, Claudio; Rhoden, Kerry J; Galietta, Luis J V; Lalatta, Faustina; Balbi, Paolo; Seri, Marco

    2013-01-01

    Gnathodiaphyseal dysplasia (GDD) is an autosomal dominant syndrome characterized by frequent bone fractures at a young age, bowing of tubular bones and cemento-osseus lesions of the jawbones. Anoctamin 5 (ANO5) belongs to the anoctamin protein family that includes calcium-activated chloride channels. However, recent data together with our own experiments reported here add weight to the hypothesis that ANO5 may not function as calcium-activated chloride channel. By sequencing the entire ANO5 gene coding region and untranslated regions in a large Italian GDD family, we found a novel missense mutation causing the p.Thr513Ile substitution. The mutation segregates with the disease in the family and has never been described in any database as a polymorphism. To date, only two mutations on the same cysteine residue at position 356 of ANO5 amino-acid sequence have been described in GDD families. As ANO5 has also been found to be mutated in two different forms of muscular dystrophy, the finding of this third mutation in GDD adds clues to the role of ANO5 in these disorders. PMID:23047743

  1. Mutation spectrum of Joubert syndrome and related disorders among Arabs

    PubMed Central

    Ben-Salem, Salma; Al-Shamsi, Aisha M; Gleeson, Joseph G; Ali, Bassam R; Al-Gazali, Lihadh

    2014-01-01

    Joubert syndrome (JS) is a rare autosomal recessive (AR), neurological condition characterized by dysgenesis of the cerebellar vermis with the radiological hallmark of molar tooth sign, oculomotor apraxia, recurrent hyperventilation and intellectual disability. Most cases display a broad spectrum of additional features, including polydactyly, retinal dystrophy and renal abnormalities, which define different subtypes of JS-related disorders (JSRDs). To date, 23 genes have been shown to cause JSRDs, and although most of the identified genes encode proteins involved in cilia function or assembly, the molecular mechanisms associated with ciliary signaling remain enigmatic. Arab populations are ethnically diverse with high levels of consanguinity (20–60%) and a high prevalence of AR disorders. In addition, isolated communities with very-high levels of inbreeding and founder mutations are common. In this article, we review the 70 families reported thus far with JS and JSRDs that have been studied at the molecular level from all the Arabic countries and compile the mutations found. We show that JS and the related JSRDs are genetically heterogeneous in Arabs, with 53 mutations in 15 genes. Thirteen of these mutations are potentially founder mutations for the region. PMID:27081510

  2. Immunoassay screening of lysergic acid diethylamide (LSD) and its confirmation by HPLC and fluorescence detection following LSD ImmunElute extraction.

    PubMed

    Grobosch, T; Lemm-Ahlers, U

    2002-04-01

    In all, 3872 urine specimens were screened for lysergic acid diethylamide (LSD) using the CEDIA DAU LSD assay. Forty-eight samples, mainly from psychiatric patients or drug abusers, were found to be LSD positive, but only 13 (27%) of these could be confirmed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) following immunoaffinity extraction (IAE). Additional analysis for LSD using the DPC Coat-a-Count RIA was performed to compare the two immunoassay screening methods. Complete agreement between the DPC RIA assay and HPLC-FLD results was observed at concentrations below a cutoff concentration of 500 pg/mL. Samples that were LSD positive in the CEDIA DAU assay but not confirmed by HPLC-FLD were also investigated for interfering compounds using REMEDI HS drug-profiling system. REMEDI HS analysis identified 15 compounds (parent drugs and metabolites) that are believed to cross-react in the CEDIA DAU LSD assay: ambroxol, prilocaine, pipamperone, diphenhydramine, metoclopramide, amitriptyline, doxepine, atracurium, bupivacaine, doxylamine, lidocaine, mepivacaine, promethazine, ranitidine, and tramadole. The IAE/HPLC-FLD combination is rapid, easy to perform and reliable. It can reduce costs when standard, rather than more advanced, HPLC equipment is used, especially for labs that perform analyses for LSD infrequently. The chromatographic analysis of LSD, nor-LSD, and iso-LSD is not influenced by any of the tested cross-reacting compounds even at a concentration of 100 ng/mL.

  3. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    ClinicalTrials.gov

    2017-08-11

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  4. High Prevalence of Posterior Polymorphous Corneal Dystrophy in the Czech Republic; Linkage Disequilibrium Mapping and Dating an Ancestral Mutation

    PubMed Central

    Filipec, Martin; Jirsova, Katerina; Reinstein Merjava, Stanislava; Deloukas, Panos; Webb, Tom R.; Bhattacharya, Shomi S.; Ebenezer, Neil D.; Morris, Alex G.; Hardcastle, Alison J.

    2012-01-01

    Posterior polymorphous corneal dystrophy (PPCD) is a rare autosomal dominant genetically heterogeneous disorder. Nineteen Czech PPCD pedigrees with 113 affected family members were identified, and 17 of these kindreds were genotyped for markers on chromosome 20p12.1- 20q12. Comparison of haplotypes in 81 affected members, 20 unaffected first degree relatives and 13 spouses, as well as 55 unrelated controls, supported the hypothesis of a shared ancestor in 12 families originating from one geographic location. In 38 affected individuals from nine of these pedigrees, a common haplotype was observed between D20S48 and D20S107 spanning approximately 23 Mb, demonstrating segregation of disease with the PPCD1 locus. This haplotype was not detected in 110 ethnically matched control chromosomes. Within the common founder haplotype, a core mini-haplotype was detected for D20S605, D20S182 and M189K2 in all 67 affected members from families 1–12, however alleles representing the core mini-haplotype were also detected in population matched controls. The most likely location of the responsible gene within the disease interval, and estimated mutational age, were inferred by linkage disequilibrium mapping (DMLE+2.3). The appearance of a disease-causing mutation was dated between 64–133 generations. The inferred ancestral locus carrying a PPCD1 disease-causing variant within the disease interval spans 60 Kb on 20p11.23, which contains a single known protein coding gene, ZNF133. However, direct sequence analysis of coding and untranslated exons did not reveal a potential pathogenic mutation. Microdeletion or duplication was also excluded by comparative genomic hybridization using a dense chromosome 20 specific array. Geographical origin, haplotype and statistical analysis suggest that in 14 unrelated families an as yet undiscovered mutation on 20p11.23 was inherited from a common ancestor. Prevalence of PPCD in the Czech Republic appears to be the highest worldwide and our data suggests that at least one other novel locus for PPCD also exists. PMID:23049806

  5. Prenatal growth restriction, retinal dystrophy, diabetes insipidus and white matter disease: expanding the spectrum of PRPS1-related disorders.

    PubMed

    Al-Maawali, Almundher; Dupuis, Lucie; Blaser, Susan; Heon, Elise; Tarnopolsky, Mark; Al-Murshedi, Fathiya; Marshall, Christian R; Paton, Tara; Scherer, Stephen W; Roelofsen, Jeroen; van Kuilenburg, André B P; Mendoza-Londono, Roberto

    2015-03-01

    PRPS1 codes for the enzyme phosphoribosyl pyrophosphate synthetase-1 (PRS-1). The spectrum of PRPS1-related disorders associated with reduced activity includes Arts syndrome, Charcot-Marie-Tooth disease-5 (CMTX5) and X-linked non-syndromic sensorineural deafness (DFN2). We describe a novel phenotype associated with decreased PRS-1 function in two affected male siblings. Using whole exome and Sanger sequencing techniques, we identified a novel missense mutation in PRPS1. The clinical phenotype in our patients is characterized by high prenatal maternal α-fetoprotein, intrauterine growth restriction, dysmorphic facial features, severe intellectual disability and spastic quadraparesis. Additional phenotypic features include macular coloboma-like lesions with retinal dystrophy, severe short stature and diabetes insipidus. Exome sequencing of the two affected male siblings identified a shared putative pathogenic mutation c.586C>T p.(Arg196Trp) in the PRPS1 gene that was maternally inherited. Follow-up testing showed normal levels of hypoxanthine in urine samples and uric acid levels in blood serum. The PRS activity was significantly reduced in erythrocytes of the two patients. Nucleotide analysis in erythrocytes revealed abnormally low guanosine triphosphate and guanosine diphosphate. This presentation is the most severe form of PRPS1-deficiency syndrome described to date and expands the spectrum of PRPS1-related disorders.

  6. Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: Results of a double-blind randomized clinical trial

    PubMed Central

    Flanigan, Kevin M.; Voit, Thomas; Rosales, Xiomara Q.; Servais, Laurent; Kraus, John E.; Wardell, Claire; Morgan, Allison; Dorricott, Susie; Nakielny, Joanna; Quarcoo, Naashika; Liefaard, Lia; Drury, Tom; Campion, Giles; Wright, Padraig

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal neuromuscular disorder caused by the absence of dystrophin protein due to mutations of the dystrophin gene. Drisapersen is a 2′-O-methyl-phosphorothioate oligonucleotide designed to skip exon 51 in dystrophin pre-mRNA to restore the reading frame of the mRNA. This study assessed safety, tolerability, and pharmacokinetics of drisapersen after a single subcutaneous administration in non-ambulatory subjects. Eligible subjects were non-ambulant boys aged ≥9 years, in wheelchairs for ≥1 to ≤4 years, with a diagnosis of DMD resulting from a mutation correctable by drisapersen treatment. Four dose cohorts were planned (3, 6, 9 and 12 mg/kg), but study objectives were met with the 9 mg/kg dose. Less than proportional increase in exposure was demonstrated over the 3–9 mg/kg dose range, though post hoc analysis showed dose proportionality was more feasible over the 3–6 mg/kg range. Single doses of drisapersen at 3 and 6 mg/kg did not result in significant safety or tolerability concerns; however, at the 9 mg/kg dose, pyrexia and transient elevations in inflammatory parameters were seen. The maximum tolerated dose of 6 mg/kg drisapersen was identified for further characterization in multiple dose studies in the non-ambulant DMD population. PMID:24321374

  7. Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1.

    PubMed

    Oatts, Julius T; Duncan, Jacque L; Hoyt, Creig S; Slavotinek, Anne M; Moore, Anthony T

    2017-12-01

    Mutations in the BRCA1-associated protein required for the ataxia telangiectasia mutated (ATM) activation-1 (BRAT1) gene cause lethal neonatal rigidity and multifocal seizure syndrome characterized by rigidity and intractable seizures and a milder phenotype with intellectual disability, seizures, nonprogressive cerebellar ataxia or dyspraxia, and cerebellar atrophy. To date, nystagmus, cortical visual impairment, impairment of central vision, optic nerve hypoplasia, and optic atrophy have been described in this condition. This article describes the retinal findings in a patient with biallelic deleterious sequence variants in BRAT1. Case report of a child with biallelic sequence variants in the BRAT1 gene. This patient had developmental delay, microcephaly, nystagmus, and esotropia, and full-field electroretinography (ERG) revealed an inner retinal dystrophy. She was found on exome sequencing to have compound heterozygous sequence variants in the BRAT1 gene: one maternally inherited frameshift variant (c.294dupA, predicting p.Leu99Thrfs*92), which has previously been reported, and one paternally inherited novel missense variant (c.803G>A, p.Arg268His), which is likely to affect protein function. Biallelic sequence variants in BRAT1 have been reported to cause a variety of ocular and systemic manifestations, but to our knowledge, this is the first report of inner retinal dysfunction manifest as selective loss of full-field ERG scotopic and photopic b-wave amplitudes.

  8. Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa.

    PubMed

    Arno, Gavin; Agrawal, Smriti A; Eblimit, Aiden; Bellingham, James; Xu, Mingchu; Wang, Feng; Chakarova, Christina; Parfitt, David A; Lane, Amelia; Burgoyne, Thomas; Hull, Sarah; Carss, Keren J; Fiorentino, Alessia; Hayes, Matthew J; Munro, Peter M; Nicols, Ralph; Pontikos, Nikolas; Holder, Graham E; Asomugha, Chinwe; Raymond, F Lucy; Moore, Anthony T; Plagnol, Vincent; Michaelides, Michel; Hardcastle, Alison J; Li, Yumei; Cukras, Catherine; Webster, Andrew R; Cheetham, Michael E; Chen, Rui

    2016-12-01

    Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy

    PubMed Central

    Ferre, Elise M.N.; Rose, Stacey R.; Rosenzweig, Sergio D.; Burbelo, Peter D.; Romito, Kimberly R.; Niemela, Julie E.; Rosen, Lindsey B.; Break, Timothy J.; Gu, Wenjuan; Hunsberger, Sally; Browne, Sarah K.; Hsu, Amy P.; Rampertaap, Shakuntala; Swamydas, Muthulekha; Collar, Amanda L.; Kong, Heidi H.; Chascsa, David; Simcox, Thomas; Pham, Angela; Bondici, Anamaria; Natarajan, Mukil; Monsale, Joseph; Kleiner, David E.; Quezado, Martha; Alevizos, Ilias; Moutsopoulos, Niki M.; Yockey, Lynne; Frein, Cathleen; Soldatos, Ariane; Calvo, Katherine R.; Adjemian, Jennifer; Similuk, Morgan N.; Lang, David M.; Stone, Kelly D.; Uzel, Gulbu; Bishop, Rachel J.; Holland, Steven M.; Olivier, Kenneth N.; Fleisher, Thomas A.; Heller, Theo; Winer, Karen K.

    2016-01-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare primary immunodeficiency disorder typically caused by homozygous AIRE mutations. It classically presents with chronic mucocutaneous candidiasis and autoimmunity that primarily targets endocrine tissues; hypoparathyroidism and adrenal insufficiency are most common. Developing any two of these classic triad manifestations establishes the diagnosis. Although widely recognized in Europe, where nonendocrine autoimmune manifestations are uncommon, APECED is less defined in patients from the Western Hemisphere. We enrolled 35 consecutive American APECED patients (33 from the US) in a prospective observational natural history study and systematically examined their genetic, clinical, autoantibody, and immunological characteristics. Most patients were compound heterozygous; the most common AIRE mutation was c.967_979del13. All but one patient had anti–IFN-ω autoantibodies, including 4 of 5 patients without biallelic AIRE mutations. Urticarial eruption, hepatitis, gastritis, intestinal dysfunction, pneumonitis, and Sjögren’s-like syndrome, uncommon entities in European APECED cohorts, affected 40%–80% of American cases. Development of a classic diagnostic dyad was delayed at mean 7.38 years. Eighty percent of patients developed a median of 3 non-triad manifestations before a diagnostic dyad. Only 20% of patients had their first two manifestations among the classic triad. Urticarial eruption, intestinal dysfunction, and enamel hypoplasia were prominent among early manifestations. Patients exhibited expanded peripheral CD4+ T cells and CD21loCD38lo B lymphocytes. In summary, American APECED patients develop a diverse syndrome, with dramatic enrichment in organ-specific nonendocrine manifestations starting early in life, compared with European patients. Incorporation of these new manifestations into American diagnostic criteria would accelerate diagnosis by approximately 4 years and potentially prevent life-threatening endocrine complications. PMID:27588307

  10. Growth and psychomotor development of patients with Duchenne muscular dystrophy.

    PubMed

    Sarrazin, Elisabeth; von der Hagen, Maja; Schara, Ulrike; von Au, Katja; Kaindl, Angela M

    2014-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common hereditary degenerative neuromuscular diseases and caused by mutations in the dystrophin gene. The objective of the retrospective study was to describe growth and psychomotor development of patients with DMD and to detect a possible genotype-phenotype correlation. Data from 263 patients with DMD (mean age 7.1 years) treated at the Departments of Pediatric Neurology in three German University Hospitals was assessed with respect to body measurements (length, weight, body mass index BMI, head circumference OFC), motor and cognitive development as well as genotype (site of mutation). Anthropometric measures and developmental data were compared to those of a reference population and deviations were analyzed for their frequency in the cohort as well as in relation to the genotypes. Corticosteroid therapy was implemented in 29 from 263 patients. Overall 30% of the patients exhibit a short statue (length < 3rd centile) with onset early in development at 2-5 years of age, and this is even more prevalent when steroid therapy is applied (45% of patients with steroid therapy). The BMI shows a rightwards shift (68% > 50th centile) and the OFC a leftwards shift (65% < 50th centile, 5% microcephaly). Gross motor development is delayed in a third of the patients (mean age at walking 18.3 months, 30% > 18 months, 8% > 24 months). Almost half of the patients show cognitive impairment (26% learning disability, 17% intellectual disability). Although there is no strict genotype-phenotype correlation, particularly mutations in the distal part of the dystrophin gene are frequently associated with short stature and a high rate of microcephaly as well as cognitive impairment. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  11. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity.

    PubMed

    Mattout, Anna; Pike, Brietta L; Towbin, Benjamin D; Bank, Erin M; Gonzalez-Sandoval, Adriana; Stadler, Michael B; Meister, Peter; Gruenbaum, Yosef; Gasser, Susan M

    2011-10-11

    In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.

    PubMed

    Wang, Jing-Zhang; Wu, Peng; Shi, Zhi-Min; Xu, Yan-Li; Liu, Zhi-Jun

    2017-08-01

    Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. The role of AIRE in human autoimmune disease.

    PubMed

    Akirav, Eitan M; Ruddle, Nancy H; Herold, Kevan C

    2011-01-01

    The autoimmune regulator (AIRE) gene encodes a transcription factor involved in the presentation of tissue-restricted antigens during T-cell development in the thymus. Mutations of this gene lead to type 1 autoimmune polyglandular syndrome (APS-1), also termed autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is characterized by the clinical presentation of at least two of a triad of underlying disorders: Addison disease, hypoparathyroidism and chronic mucocutaneous candidiasis. This Review describes the process of positive and negative selection of developing T cells in the thymus and the role of AIRE as a regulator of peripheral antigen presentation. Furthermore, it addresses how mutations of this gene lead to the failure to eliminate autoreactive T cells, which can lead to clinical autoimmune syndromes.

  14. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiler, T.; Nylen, E.; Wrogemann, K.

    1996-10-01

    We report the results of our investigations of a large, inbred, aboriginal Canadian kindred with nine muscular dystrophy patients. The ancestry of all but two of the carrier parents could be traced to a founder couple, seven generations back. Seven patients presented with proximal myopathy consistent with limb girdle-type muscular dystrophy (LGMD), whereas two patients manifested predominantly distal wasting and weakness consistent with Miyoshi myopathy (distal autosomal recessive muscular dystrophy) (MM). Age at onset of symptoms, degree of creatine kinase elevation, and muscle histology were similar in both phenotypes. Segregation of LGMD/MM is consistent with autosomal recessive inheritance, and themore » putative locus is significantly linked (LOD scores >3.0) to six marker loci that span the region of the LGMD2B locus on chromosome 2p. Our initial hypothesis that the affected patients would all be homozygous by descent for microsatellite markers surrounding the disease locus was rejected. Rather, two different core haplotypes, encompassing a 4-cM region spanned by D2S291-D2S145-D2S286, segregated with the disease, indicating that there are two mutant alleles of independent origin in this kindred. There was no association, however, between the two different haplotypes and clinical variability; they do not distinguish between the LGMD and MM phenotypes. Thus, we conclude that LGMD and MM in our population are caused by the same mutation in LGMD2B and that additional factors, both genetic and nongenetic, must contribute to the clinical phenotype. 37 refs., 2 figs., 2 tabs.« less

  15. PubMed Central

    MEOLA, GIOVANNI

    2013-01-01

    Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) was described more than 100 years ago and is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) was identified only 18 years ago and is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. DM1 may present in four different forms: congenital, early childhood, adult onset and late-onset oligosymptomatic DM1. Congenital DM1 is the most severe form of DM characterized by extreme muscle weakness and mental retardation. In DM2 the clinical phenotype is extremely variable and there are no distinct clinical subgroups. Congenital and childhood-onset forms are not present in DM2 and, in contrast to DM1, myotonia may be absent even on EMG. Due to the lack of awareness of the disease among clinicians, DM2 remains largely underdiagnosed. The delay in receiving the correct diagnosis after onset of first symptoms is very long in DM: on average more than 5 years for DM1 and more than 14 years for DM2 patients. The long delay in the diagnosis of DM causes unnecessary problems for the patients to manage their lives and anguish with uncertainty of prognosis and treatment. PMID:24803843

  16. Mouse Regenerating Myofibers Detected as False-Positive Donor Myofibers with Anti-Human Spectrin

    PubMed Central

    Rozkalne, Anete; Adkin, Carl; Meng, Jinhong; Lapan, Ariya; Morgan, Jennifer E.

    2014-01-01

    Abstract Stem cell transplantation is being tested as a potential therapy for a number of diseases. Stem cells isolated directly from tissue specimens or generated via reprogramming of differentiated cells require rigorous testing for both safety and efficacy in preclinical models. The availability of mice with immune-deficient background that carry additional mutations in specific genes facilitates testing the efficacy of cell transplantation in disease models. The muscular dystrophies are a heterogeneous group of disorders, of which Duchenne muscular dystrophy is the most severe and common type. Cell-based therapy for muscular dystrophy has been under investigation for several decades, with a wide selection of cell types being studied, including tissue-specific stem cells and reprogrammed stem cells. Several immune-deficient mouse models of muscular dystrophy have been generated, in which human cells obtained from various sources are injected to assess their preclinical potential. After transplantation, the presence of engrafted human cells is detected via immunofluorescence staining, using antibodies that recognize human, but not mouse, proteins. Here we show that one antibody specific to human spectrin, which is commonly used to evaluate the efficacy of transplanted human cells in mouse muscle, detects myofibers in muscles of NOD/Rag1nullmdx5cv, NOD/LtSz-scid IL2Rγnull mice, or mdx nude mice, irrespective of whether they were injected with human cells. These “reactive” clusters are regenerating myofibers, which are normally present in dystrophic tissue and the spectrin antibody is likely recognizing utrophin, which contains spectrin-like repeats. Therefore, caution should be used in interpreting data based on detection of single human-specific proteins, and evaluation of human stem cell engraftment should be performed using multiple human-specific labeling strategies. PMID:24152287

  17. Duchenne Muscular Dystrophy and Becker Muscular Dystrophy Confirmed by Multiplex Ligation-Dependent Probe Amplification: Genotype-Phenotype Correlation in a Large Cohort.

    PubMed

    Vengalil, Seena; Preethish-Kumar, Veeramani; Polavarapu, Kiran; Mahadevappa, Manjunath; Sekar, Deepha; Purushottam, Meera; Thomas, Priya Treesa; Nashi, Saraswathi; Nalini, Atchayaram

    2017-01-01

    Studies of cases of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) confirmed by multiplex ligation-dependent probe amplification (MLPA) have determined the clinical characteristics, genotype, and relations between the reading frame and phenotype for different countries. This is the first such study from India. A retrospective genotype-phenotype analysis of 317 MLPA-confirmed patients with DMD or BMD who visited the neuromuscular clinic of a quaternary referral center in southern India. The 317 patients comprised 279 cases of DMD (88%), 32 of BMD (10.1%), and 6 of intermediate phenotype (1.9%). Deletions accounted for 91.8% of cases, with duplications causing the remaining 8.2%. There were 254 cases of DMD (91%) with deletions and 25 (9%) due to duplications, and 31 cases (96.8%) of BMD with deletions and 1 (3.2%) due to duplication. All six cases of intermediate type were due to deletions. The most-common mutation was a single-exon deletion. Deletions of six or fewer exons constituted 68.8% of cases. The deletion of exon 50 was the most common. The reading-frame rule held in 90% of DMD and 94% of BMD cases. A tendency toward a lower IQ and earlier wheelchair dependence was observed with distal exon deletions, though a significant correlation was not found. The reading-frame rule held in 90% to 94% of children, which is consistent with reports from other parts of the world. However, testing by MLPA is a limitation, and advanced sequencing methods including analysis of the structure of mutant dystrophin is needed for more-accurate assessments of the genotype-phenotype correlation.

  18. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa

    PubMed Central

    Ezquerra-Inchausti, Maitane; Barandika, Olatz; Anasagasti, Ander; Irigoyen, Cristina; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2017-01-01

    Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes. PMID:28045043

  19. Compound heterozygous PNPLA6 mutations cause Boucher-Neuhäuser syndrome with late-onset ataxia.

    PubMed

    Deik, A; Johannes, B; Rucker, J C; Sánchez, E; Brodie, S E; Deegan, E; Landy, K; Kajiwara, Y; Scelsa, S; Saunders-Pullman, R; Paisán-Ruiz, C

    2014-12-01

    PNPLA6 mutations, known to be associated with the development of motor neuron phenotypes, have recently been identified in families with Boucher-Neuhäuser syndrome. Boucher-Neuhäuser is a rare autosomal recessive syndrome characterized by the co-occurrence of cerebellar ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. Gait ataxia in Boucher-Neuhäuser usually manifests before early adulthood, although onset in the third or fourth decade has also been reported. However, given the recent identification of PNPLA6 mutations as the cause of this condition, the determining factors of age of symptom onset still need to be established. Here, we have identified a sporadic Boucher-Neuhäuser case with late-onset gait ataxia and relatively milder retinal changes due to compound heterozygous PNPLA6 mutations. Compound heterozygosity was confirmed by cloning and sequencing the patient's genomic DNA from coding exons 26-29. Furthermore, both mutations (one novel and one known) fell in the phospholipase esterase domain, where most pathogenic mutations seem to cluster. Taken together, we herein confirm PNPLA6 mutations as the leading cause of Boucher-Neuhäuser syndrome and suggest inquiring about a history of hypogonadism or visual changes in patients presenting with late-onset gait ataxia. We also advocate for neuroophthalmologic evaluation in suspected cases.

  20. Magnetic resonance spectroscopy and molecular studies in ornithine transcarbamylase deficiency novel mutation c.802A>G in exon 8 (p.Met268Val).

    PubMed

    Jamroz, E; Paprocka, J; Sokół, M; Popowska, E; Ciara, E

    2013-01-01

    Ornithine transcarbamylase (OTC) deficiency, an X-linked, semidominant disorder, is the most common inherited de-fect in ureagenesis, resulting in hyperammonaemia type II. The OTC gene, localised on chromosome X, has been mapp-ed to band Xp21.1, proximate to the Duchenne muscular dystrophy (DMD) gene. More than 350 different mutations, including missense, nonsense, splice-site changes, small de-letions or insertions and gross deletions, have been describ-ed so far. Almost all mutations in consensus splicing sites confer a neonatal phenotype. Most mutations in the OTC gene are 'private' and are distributed throughout the gene with a paucity of mutation in the sequence encoding the leader peptide (exon 1 and beginning of exon 2) and in exon 7. They have familial origin or occur de novo. Even with sequencing of the entire reading frame and exon/intron boundaries, only about 80% of the mutations are detected in patients with proven OTC deficiency. The remainder probably occur within the introns or in regulatory domains. The authors present a 4-year-old boy with the unreported missense mutation c.802A>G. The nucleotide transition leads to amino acid substitution Met to Val at codon 268 of the OTC protein.

  1. Autonomous Adaptation and Collaboration of Unmanned Vehicles for Tracking Submerged Contacts

    DTIC Science & Technology

    2012-06-01

    filter: CRS RANGE REPORT =”name=archie,range=23.4,target= jackal ,time=2342551.213” • Line 8: ping wait is the time delay between range pulses. • Line 13: rn...uFldContactRangeSensor Settings 1: ProcessConfig = uFldContactRangeSensor 2: { 3: AppTick = 4 4: CommsTick = 4 5: 6: reply distance = jackal = 50 7: reach distance...REPORT = CRS RANGE REPORT 8: MY SHIP = archie 9: MY FRIEND = betty 10: MY CONTACT = jackal 11: MY BEST GUESS = besttarget 12: MY AVG GUESS = avgtarget 13

  2. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.

    PubMed

    Sato, Shinya; Peshenko, Igor V; Olshevskaya, Elena V; Kefalov, Vladimir J; Dizhoor, Alexander M

    2018-03-21

    The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S + rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca 2+ phototransduction feedback and abnormally high free-Ca 2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2 +/+ or GCAP1,2 +/- backgrounds, was prevented in GCAP1,2 -/- mice lacking Ca 2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca 2+ levels in photoreceptors. SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D ), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to the cyclase mediated by guanylyl cyclase activating proteins (GCAPs), which are calcium-sensor proteins. The abnormal calcium sensitivity of the cyclase increases cGMP-gated dark current in the rod outer segments, reshapes rod photoresponses, and triggers photoreceptor death. This work is the first to demonstrate a direct physiological effect of GUCY2D CORD6-linked mutation on photoreceptor physiology in vivo It also identifies the abnormal regulation of the cyclase by calcium-sensor proteins as the main trigger for the photoreceptor death. Copyright © 2018 the authors 0270-6474/18/382990-11$15.00/0.

  3. On the stability of radiation-pressure-dominated cavities

    NASA Astrophysics Data System (ADS)

    Kuiper, R.; Klahr, H.; Beuther, H.; Henning, Th.

    2012-01-01

    Context. When massive stars exert a radiation pressure onto their environment that is higher than their gravitational attraction (super-Eddington condition), they launch a radiation-pressure-driven outflow, which creates cleared cavities. These cavities should prevent any further accretion onto the star from the direction of the bubble, although it has been claimed that a radiative Rayleigh-Taylor instability should lead to the collapse of the outflow cavity and foster the growth of massive stars. Aims: We investigate the stability of idealized radiation-pressure-dominated cavities, focusing on its dependence on the radiation transport approach used in numerical simulations for the stellar radiation feedback. Methods: We compare two different methods for stellar radiation feedback: gray flux-limited diffusion (FLD) and ray-tracing (RT). Both methods are implemented in our self-gravity radiation hydrodynamics simulations for various initial density structures of the collapsing clouds, eventually forming massive stars. We also derive simple analytical models to support our findings. Results: Both methods lead to the launch of a radiation-pressure-dominated outflow cavity. However, only the FLD cases lead to prominent instability in the cavity shell. The RT cases do not show such instability; once the outflow has started, it precedes continuously. The FLD cases display extended epochs of marginal Eddington equilibrium in the cavity shell, making them prone to the radiative Rayleigh-Taylor instability. In the RT cases, the radiation pressure exceeds gravity by 1-2 orders of magnitude. The radiative Rayleigh-Taylor instability is then consequently suppressed. It is a fundamental property of the gray FLD method to neglect the stellar radiation temperature at the location of absorption and thus to underestimate the opacity at the location of the cavity shell. Conclusions: Treating the stellar irradiation in the gray FLD approximation underestimates the radiative forces acting on the cavity shell. This can lead artificially to situations that are affected by the radiative Rayleigh-Taylor instability. The proper treatment of direct stellar irradiation by massive stars is crucial for the stability of radiation-pressure-dominated cavities. Movies are available in electronic form at http://www.aanda.org

  4. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostlund, Cecilia; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Guan, Tinglu

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients withmore » FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.« less

  5. PMO Delivery System Using Bubble Liposomes and Ultrasound Exposure for Duchenne Muscular Dystrophy Treatment.

    PubMed

    Negishi, Yoichi; Ishii, Yuko; Nirasawa, Kei; Sasaki, Eri; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo

    2018-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration, caused by nonsense or frameshift mutations in the dystrophin (DMD) gene. Antisense oligonucleotides can be used to induce specific exon skipping; recently, a phosphorodiamidate morpholino oligomer (PMO) has been approved for clinical use in DMD. However, an efficient PMO delivery strategy is required to improve the therapeutic efficacy in DMD patients. We previously developed polyethylene glycol (PEG)-modified liposomes containing ultrasound contrast gas, "Bubble liposomes" (BLs), and found that the combination of BLs with ultrasound exposure is a useful gene delivery tool. Here, we describe an efficient PMO delivery strategy using the combination of BLs and ultrasound exposure to treat muscles in a DMD mouse model (mdx). This ultrasound-mediated BL technique can increase the PMO-mediated exon-skipping efficiency, leading to significantly increased dystrophin expression. Thus, the combination of BLs and ultrasound exposure may be a feasible PMO delivery method to improve therapeutic efficacy and reduce the PMO dosage for DMD treatment.

  6. Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues

    PubMed Central

    Aartsma-Rus, Annemieke; Straub, Volker; Hemmings, Robert; Haas, Manuel; Schlosser-Weber, Gabriele; Stoyanova-Beninska, Violeta; Mercuri, Eugenio; Muntoni, Francesco; Sepodes, Bruno; Vroom, Elizabeth

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a rare, severe, progressive muscle-wasting disease leading to disability and premature death. Patients lack the muscle membrane-stabilizing protein dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach that aims to induce production of partially functional dystrophins. Recently, an AON targeting exon 51 became the first of its class to be approved by the United States regulators [Food and Drug Administration (FDA)] for the treatment of DMD. A unique aspect of the exon-skipping approach for DMD is that, depending on the size and location of the mutation, different exons need to be skipped. This challenge raises a number of questions regarding the development and regulatory approval of those individual compounds. In this study, we present a perspective on those questions, following a European stakeholder meeting involving academics, regulators, and representatives from industry and patient organizations, and in the light of the most recent scientific and regulatory experience. PMID:28796573

  7. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    PubMed

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  8. The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment

    PubMed Central

    Jacoby, Arie S.; Busch-Nentwich, Elisabeth; Bryson-Richardson, Robert J.; Hall, Thomas E.; Berger, Joachim; Berger, Silke; Sonntag, Carmen; Sachs, Caroline; Geisler, Robert; Stemple, Derek L.; Currie, Peter D.

    2009-01-01

    Summary The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin β2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss. PMID:19736328

  9. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management

    PubMed Central

    Birnkrant, David J; Bushby, Katharine; Bann, Carla M; Alman, Benjamin A; Apkon, Susan D; Blackwell, Angela; Case, Laura E; Cripe, Linda; Hadjiyannakis, Stasia; Olson, Aaron K; Sheehan, Daniel W; Bolen, Julie; Weber, David R; Ward, Leanne M

    2018-01-01

    A coordinated, multidisciplinary approach to care is essential for optimum management of the primary manifestations and secondary complications of Duchenne muscular dystrophy (DMD). Contemporary care has been shaped by the availability of more sensitive diagnostic techniques and the earlier use of therapeutic interventions, which have the potential to improve patients’ duration and quality of life. In part 2 of this update of the DMD care considerations, we present the latest recommendations for respiratory, cardiac, bone health and osteoporosis, and orthopaedic and surgical management for boys and men with DMD. Additionally, we provide guidance on cardiac management for female carriers of a disease-causing mutation. The new care considerations acknowledge the effects of long-term glucocorticoid use on the natural history of DMD, and the need for care guidance across the lifespan as patients live longer. The management of DMD looks set to change substantially as new genetic and molecular therapies become available. PMID:29395990

  10. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy

    PubMed Central

    Robinson-Hamm, Jacqueline N.; Gersbach, Charles A.

    2016-01-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949

  11. Uncovering the Role of Hypermethylation by CTG Expansion in Myotonic Dystrophy Type 1 Using Mutant Human Embryonic Stem Cells

    PubMed Central

    Yanovsky-Dagan, Shira; Avitzour, Michal; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Mitrani-Rosenbaum, Stella; Levy-Lahad, Ephrat; Birnbaum, Ramon Y.; Gepstein, Lior; Epsztejn-Litman, Silvina; Eiges, Rachel

    2015-01-01

    Summary CTG repeat expansion in DMPK, the cause of myotonic dystrophy type 1 (DM1), frequently results in hypermethylation and reduced SIX5 expression. The contribution of hypermethylation to disease pathogenesis and the precise mechanism by which SIX5 expression is reduced are unknown. Using 14 different DM1-affected human embryonic stem cell (hESC) lines, we characterized a differentially methylated region (DMR) near the CTGs. This DMR undergoes hypermethylation as a function of expansion size in a way that is specific to undifferentiated cells and is associated with reduced SIX5 expression. Using functional assays, we provide evidence for regulatory activity of the DMR, which is lost by hypermethylation and may contribute to DM1 pathogenesis by causing SIX5 haplo-insufficiency. This study highlights the power of hESCs in disease modeling and describes a DMR that functions both as an exon coding sequence and as a regulatory element whose activity is epigenetically hampered by a heritable mutation. PMID:26190529

  12. Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plegaria, Jefferson S.; Sutter, Markus; Ferlez, Bryan

    Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes). or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e,g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B-12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, wemore » report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 angstrom X-ray structure of Fld1C displays the alpha/beta flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 +/- 3 mV oxidized/semiquinone and -344 +/- 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B-12 cofactor utilized by the signature enzyme.« less

  13. Association analysis for feet and legs disorders with whole-genome sequence variants in 3 dairy cattle breeds.

    PubMed

    Wu, Xiaoping; Guldbrandtsen, Bernt; Lund, Mogens Sandø; Sahana, Goutam

    2016-09-01

    Identification of genetic variants associated with feet and legs disorders (FLD) will aid in the genetic improvement of these traits by providing knowledge on genes that influence trait variations. In Denmark, FLD in cattle has been recorded since the 1990s. In this report, we used deregressed breeding values as response variables for a genome-wide association study. Bulls (5,334 Danish Holstein, 4,237 Nordic Red Dairy Cattle, and 1,180 Danish Jersey) with deregressed estimated breeding values were genotyped with the Illumina Bovine 54k single nucleotide polymorphism (SNP) genotyping array. Genotypes were imputed to whole-genome sequence variants, and then 22,751,039 SNP on 29 autosomes were used for an association analysis. A modified linear mixed-model approach (efficient mixed-model association eXpedited, EMMAX) and a linear mixed model were used for association analysis. We identified 5 (3,854 SNP), 3 (13,642 SNP), and 0 quantitative trait locus (QTL) regions associated with the FLD index in Danish Holstein, Nordic Red Dairy Cattle, and Danish Jersey populations, respectively. We did not identify any QTL that were common among the 3 breeds. In a meta-analysis of the 3 breeds, 4 QTL regions were significant, but no additional QTL region was identified compared with within-breed analyses. Comparison between top SNP locations within these QTL regions and known genes suggested that RASGRP1, LCORL, MOS, and MITF may be candidate genes for FLD in dairy cattle. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    PubMed

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016. © 2016 Wiley Periodicals, Inc.

  15. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    PubMed

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  16. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    PubMed

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  17. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy.

    PubMed

    Lin, Bo; Li, Yang; Han, Lu; Kaplan, Aaron D; Ao, Ying; Kalra, Spandan; Bett, Glenna C L; Rasmusson, Randall L; Denning, Chris; Yang, Lei

    2015-05-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca(2+), mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca(2+) level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients. © 2015. Published by The Company of Biologists Ltd.

  18. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies

    PubMed Central

    Murphy, Alexander Peter; Straub, Volker

    2015-01-01

    Abstract Over sixty years ago John Walton and Frederick Nattrass defined limb girdle muscular dystrophy (LGMD) as a separate entity from the X-linked dystrophinopathies such as Duchenne and Becker muscular dystrophies. LGMD is a highly heterogeneous group of very rare neuromuscular disorders whose common factor is their autosomal inheritance. Sixty years later, with the development of increasingly advanced molecular genetic investigations, a more precise classification and understanding of the pathogenesis is possible. To date, over 30 distinct subtypes of LGMD have been identified, most of them inherited in an autosomal recessive fashion. There are significant differences in the frequency of subtypes of LGMD between different ethnic populations, providing evidence of founder mutations. Clinically there is phenotypic heterogeneity between subtypes of LGMD with varying severity and age of onset of symptoms. The first natural history studies into subtypes of LGMD are in process, but large scale longitudinal data have been lacking due to the rare nature of these diseases. Following natural history data collection, the next challenge is to develop more effective, disease specific treatments. Current management is focussed on symptomatic and supportive treatments. Advances in the application of new omics technologies and the generation of large-scale biomedical data will help to better understand disease mechanisms in LGMD and should ultimately help to accelerate the development of novel and more effective therapeutic approaches. PMID:27858764

  19. Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity.

    PubMed

    van den Bergen, J C; Wokke, B H A; Hulsker, M A; Verschuuren, J J G M; Aartsma-Rus, A M

    2015-03-01

    Becker muscular dystrophy is characterized by a variable disease course. Many factors have been implicated to contribute to this diversity, among which the expression of several components of the dystrophin associated glycoprotein complex. Together with dystrophin, most of these proteins anchor the muscle fiber cytoskeleton to the extracellular matrix, thus protecting the muscle from contraction induced injury, while nNOS is primarily involved in inducing vasodilation during muscle contraction, enabling adequate muscle oxygenation. In the current study, we investigated the role of three components of the dystrophin associated glycoprotein complex (beta-dystroglycan, gamma-sarcoglycan and nNOS) and the dystrophin homologue utrophin on disease severity in Becker patients. Strength measurements, data about disease course and fresh muscle biopsies of the anterior tibial muscle were obtained from 24 Becker patients aged 19 to 66. The designation of Becker muscular dystrophy in this study was based on the mutation and not on the clinical severity. Contrary to previous studies, we were unable to find a relationship between expression of nNOS, beta-dystroglycan and gamma-sarcoglycan at the sarcolemma and disease severity, as measured by muscle strength in five muscle groups and age at reaching several disease milestones. Unexpectedly, we found an inverse correlation between utrophin expression at the sarcolemma and age at reaching disease milestones. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy?

    PubMed

    Bakker, H D; de Sonnaville, M L; Vreken, P; Abeling, N G; Groener, J E; Keulemans, J L; van Diggelen, O P

    2001-02-01

    Two new individuals with alpha-NAGA deficiency are presented. The index patient, 3 years old, has congenital cataract, slight motor retardation and secondary demyelinisation. Screening of his sibs revealed an alpha-NAGA deficiency in his 7-year-old healthy brother who had no clinical or neurological symptoms. Both sibs are homozygous for the E325K mutation, the same genotype that was found in the most severe form of alpha-NAGA deficiency presenting as infantile neuroaxonal dystrophy. Thus, at the age of 7 years the same genotype of alpha-NAGA may present as a 'non-disease' (present healthy case) and can be associated with the vegetative state (the first two patients described with alpha-NAGA deficiency). The clinical heterogeneity among the 11 known individuals with alpha-NAGA deficiency is extreme, with a 'non-disease' (two cases) and infantile neuroaxonal dystrophy (two cases) at the opposite sides of the clinical spectrum. The broad spectrum is completed by a very heterogeneous group of patients with various degrees of epilepsy/behavioural difficulties/psychomotor retardation (four patients) and a mild phenotype in adults without overt neurological manifestations who have angiokeratoma and clear vacuolisation in various cell types (three cases). These observations are difficult to reconcile with a straightforward genotype-phenotype correlation and suggest that factors or genes other than alpha-NAGA contribute to the clinical heterogeneity of the 11 patients with alpha-NAGA deficiency.

  1. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies.

    PubMed

    Murphy, Alexander Peter; Straub, Volker

    2015-07-22

    Over sixty years ago John Walton and Frederick Nattrass defined limb girdle muscular dystrophy (LGMD) as a separate entity from the X-linked dystrophinopathies such as Duchenne and Becker muscular dystrophies. LGMD is a highly heterogeneous group of very rare neuromuscular disorders whose common factor is their autosomal inheritance. Sixty years later, with the development of increasingly advanced molecular genetic investigations, a more precise classification and understanding of the pathogenesis is possible.To date, over 30 distinct subtypes of LGMD have been identified, most of them inherited in an autosomal recessive fashion. There are significant differences in the frequency of subtypes of LGMD between different ethnic populations, providing evidence of founder mutations. Clinically there is phenotypic heterogeneity between subtypes of LGMD with varying severity and age of onset of symptoms. The first natural history studies into subtypes of LGMD are in process, but large scale longitudinal data have been lacking due to the rare nature of these diseases. Following natural history data collection, the next challenge is to develop more effective, disease specific treatments. Current management is focussed on symptomatic and supportive treatments. Advances in the application of new omics technologies and the generation of large-scale biomedical data will help to better understand disease mechanisms in LGMD and should ultimately help to accelerate the development of novel and more effective therapeutic approaches.

  2. Compound Heterozygous Desmoplakin Mutations Result in a Phenotype with a Combination of Myocardial, Skin, Hair, and Enamel Abnormalities

    PubMed Central

    Mahoney, Mỹ G.; Sadowski, Sara; Brennan, Donna; Pikander, Pekka; Saukko, Pekka; Wahl, James; Aho, Heikki; Heikinheimo, Kristiina; Bruckner-Tuderman, Leena; Fertala, Andrzej; Peltonen, Juha; Uitto, Jouni; Peltonen, Sirkku

    2014-01-01

    Desmoplakin (DP) anchors the intermediate filament cytoskeleton to the desmosomal cadherins and thereby confers structural stability to tissues. In this study, we present a patient with extensive mucocutaneous blisters, epidermolytic palmoplantar keratoderma, nail dystrophy, enamel dysplasia, and sparse woolly hair. The patient died at the age of 14 years from undiagnosed cardiomyopathy. The skin showed hyperplasia and acantholysis in the mid- and lower epidermal layers, whereas the heart showed extensive fibrosis and fibrofatty replacement in both ventricles. Immunofluorescence microscopy showed a reduction in the C-terminal domain of DP in the skin and oral mucosa. Sequencing of the DP gene showed undescribed mutations in the maternal and paternal alleles. Both mutations affected exon 24 encoding the C-terminal domain. The paternal mutation, c.6310delA, leads to a premature stop codon. The maternal mutation, c.7964 C to A, results in a substitution of an aspartic acid for a conserved alanine residue at amino acid 2655 (A2655D). Structural modeling indicated that this mutation changes the electrostatic potential of the mutated region of DP, possibly altering functions that depend on intermolecular interactions. To conclude, we describe a combination of DP mutation phenotypes affecting the skin, heart, hair, and teeth. This patient case emphasizes the importance of heart examination of patients with desmosomal genodermatoses. PMID:19924139

  3. A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula.

    PubMed

    Khan, Arif O; Becirovic, Elvir; Betz, Christian; Neuhaus, Christine; Altmüller, Janine; Maria Riedmayr, Lisa; Motameny, Susanne; Nürnberg, Gudrun; Nürnberg, Peter; Bolz, Hanno J

    2017-05-03

    Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes - to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigene-based analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G CLRN1 represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes.

  4. WNT10A missense mutation associated with a complete Odonto-Onycho-Dermal Dysplasia syndrome

    PubMed Central

    Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas

    2009-01-01

    Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved α-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features. PMID:19471313

  5. WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome.

    PubMed

    Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas

    2009-12-01

    Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved alpha-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features.

  6. Mutations in the inositol polyphosphate-5-phosphatase E gene link phosphatidyl inositol signaling to the ciliopathies

    PubMed Central

    Bielas, Stephanie L.; Silhavy, Jennifer L.; Brancati, Francesco; Kisseleva, Marina V.; Al-Gazali, Lihadh; Sztriha, Laszlo; Bayoumi, Riad A.; Zaki, Maha S.; Abdel-Aleem, Alice; Rosti, Ozgur; Kayserili, Hulya; Swistun, Dominika; Scott, Lesley C.; Bertini, Enrico; Boltshauser, Eugen; Fazzi, Elisa; Travaglini, Lorena; Field, Seth J.; Gayral, Stephanie; Jacoby, Monique; Schurmans, Stephane; Dallapiccola, Bruno; Majerus, Philip W.; Valente, Enza Maria; Gleeson, Joseph G.

    2009-01-01

    Phosphotidylinositol (PtdIns) signaling is tightly regulated, both spatially and temporally, by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events 1. Joubert Syndrome (JS) characterized by a specific midbrain-hindbrain malformation (“molar tooth sign”) and variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly 2, and is included in the newly emerging group of “ciliopathies”. In patients linking to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected in JS, and mutations promoted premature destabilization of cilia in response to stimulation. Thus, these data links PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly appreciated for its role in mediating cell signals and neuronal function. PMID:19668216

  7. Cone rod dystrophies

    PubMed Central

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, and the visual prognosis is poor. Management aims at slowing down the degenerative process, treating the complications and helping patients to cope with the social and psychological impact of blindness. PMID:17270046

  8. Novel C8orf37 mutations cause retinitis pigmentosa in consanguineous families of Pakistani origin

    PubMed Central

    Ravesh, Zeinab; El Asrag, Mohammed E.; Weisschuh, Nicole; McKibbin, Martin; Reuter, Peggy; Watson, Christopher M.; Baumann, Britta; Poulter, James A.; Sajid, Sundus; Panagiotou, Evangelia S.; O’Sullivan, James; Abdelhamed, Zakia; Bonin, Michael; Soltanifar, Mehdi; Black, Graeme C.M.; Din, Muhammad Amin-ud; Toomes, Carmel; Ansar, Muhammad; Inglehearn, Chris F.; Wissinger, Bernd

    2015-01-01

    Purpose To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members. Methods Homozygosity mapping and Sanger sequencing of candidate genes were performed in one family while the other was analyzed with whole exome next-generation sequencing. A minigene splicing assay was used to confirm the splicing defects. Results In family MA48, a novel homozygous nucleotide substitution in C8orf37, c.244–2A>C, that disrupted the consensus splice acceptor site of exon 3 was found. The minigene splicing assay revealed that this mutation activated a cryptic splice site within exon 3, causing a 22 bp deletion in the transcript that is predicted to lead to a frameshift followed by premature protein truncation. In family MA13, a novel homozygous null mutation in C8orf37, c.555G>A, p.W185*, was identified. Both mutations segregated with the disease phenotype as expected in a recessive manner and were absent in 8,244 unrelated individuals of South Asian origin. Conclusions In this report, we describe C8orf37 mutations that cause retinal dystrophy in two families of Pakistani origin, contributing further data on the phenotype and the spectrum of mutations in this form of retinitis pigmentosa. PMID:25802487

  9. Functional correction of dystrophin actin binding domain mutations by genome editing

    PubMed Central

    Kyrychenko, Viktoriia; Kyrychenko, Sergii; Tiburcy, Malte; Shelton, John M.; Long, Chengzu; Schneider, Jay W.; Zimmermann, Wolfram-Hubertus; Bassel-Duby, Rhonda

    2017-01-01

    Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2–8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3–9, 6–9, or 7–11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3–9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1. PMID:28931764

  10. New mutations in BBS genes in small consanguineous families with Bardet-Biedl syndrome: Detection of candidate regions by homozygosity mapping

    PubMed Central

    Pereiro, Ines; Piñeiro-Gallego, Teresa; Baiget, Montserrat; Borrego, Salud; Ayuso, Carmen; Searby, Charles; Nishimura, Darryl

    2010-01-01

    Purpose Bardet-Biedl syndrome (BBS, OMIM 209900) is a rare multi-organ disorder in which BBS patients manifest a variable phenotype that includes retinal dystrophy, polydactyly, mental delay, obesity, and also reproductive tract and renal abnormalities. Mutations in 14 genes (BBS1–BBS14) are found in 70% of the patients, indicating that additional mutations in known and new BBS genes remain to be identified. Therefore, the molecular diagnosis of this complex disorder is a challenging task. Methods In this study we show the use of the genome-wide homozygosity mapping strategy in the mutation detection of nine Caucasian BBS families, eight of them consanguineous and one from the same geographic area with no proven consanguinity. Results We identified the disease-causing mutation in six of the families studied, five of which had novel sequence variants in BBS3, BBS6, and BBS12. This is the first null mutation reported in BBS3. Furthermore, this approach defined homozygous candidate regions that could harbor potential candidate genes for BBS in three of the families. Conclusions These findings further underline the importance of homozygosity mapping as a useful technology for diagnosis in small consanguineous families with a complex disease like BBS. PMID:20142850

  11. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation.

    PubMed

    Almeida, Maria R; Macário, Maria C; Ramos, Lina; Baldeiras, Inês; Ribeiro, Maria H; Santana, Isabel

    2016-05-01

    We and others have reported heterozygous progranulin mutations as an important cause of frontotemporal lobar degeneration (FTLD). It has been identified a complete progranulin deficiency because of a homozygous mutation in a sibling pair with neuronal ceroid lipofuscinosis (NCL). Here, we describe the first case of NCL caused by a homozygous progranulin mutation segregating in a family with neuropathological confirmed FTLD. In this FTLD-NCL family, we detail the clinical phenotype, neuropsychological evaluation and imaging data of our proband harboring a homozygous mutation, c.900_901dupGT, with serum progranulin level (<6 ng/mL). Symptoms included rapidly progressive visual deficit, slightly dysarthria, and cerebellar ataxia. The electroretinogram confirmed a severe attenuation of rod and cone responses compatible with retinal dystrophy diagnosis and magnetic resonance imaging showed severe global cerebellar atrophy. In contrast, heterozygous relatives presented behavioral variant of frontotemporal dementia (FTD) and some also developed extrapyramidal features compatible with corticobasal syndrome. Our findings suggest the importance of assessing serum progranulin levels in suspected recessive adult-onset NCL cases. Overall, a more holistic neurologic intervention is needed to guarantee a proper genetic counseling in cases like the present family where two distinct phenotypes are generated according to the individuals' mutation state. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A new titinopathy

    PubMed Central

    De Cid, Rafael; Ben Yaou, Rabah; Roudaut, Carinne; Charton, Karine; Baulande, Sylvain; Leturcq, France; Romero, Norma Beatriz; Malfatti, Edoardo; Beuvin, Maud; Vihola, Anna; Criqui, Audrey; Nelson, Isabelle; Nectoux, Juliette; Ben Aim, Laurène; Caloustian, Christophe; Olaso, Robert; Udd, Bjarne; Bonne, Gisèle; Eymard, Bruno

    2015-01-01

    Objective: To identify the genetic defects present in 3 families with muscular dystrophy, contractures, and calpain 3 deficiency. Methods: We performed targeted exome sequencing on one patient presenting a deficiency in calpain 3 on Western blot but for which mutations in the gene had been excluded. The identification of a homozygous truncating mutation in the M-line part of titin prompted us to sequence this region in 2 additional patients presenting similar clinical and biochemical characteristics. Results: The 3 patients shared similar features: coexistence of limb-girdle weakness and early-onset diffuse joint contractures without cardiomyopathy. The biopsies showed rimmed vacuoles, a dystrophic pattern, and secondary reduction in calpain 3. We identified a novel homozygous mutation in the exon Mex3 of the TTN gene in the first patient. At protein level, this mutation introduces a stop codon at the level of Mex3. Interestingly, we identified truncating mutations in both alleles in the same region of the TTN gene in patients from 2 additional families. Molecular protein analyses confirm loss of the C-ter part of titin. Conclusions: Our study broadens the phenotype of titinopathies with the report of a new clinical entity with prominent contractures and no cardiac abnormality and where the recessive mutations lead to truncation of the M-line titin and secondary calpain 3 deficiency. PMID:26581302

  13. Myotonic Dystrophy Family Registry

    ClinicalTrials.gov

    2016-03-28

    Myotonic Dystrophy; Congenital Myotonic Dystrophy; Myotonic Dystrophy 1; Myotonic Dystrophy 2; Dystrophia Myotonica; Dystrophia Myotonica 1; Dystrophia Myotonica 2; Myotonia Dystrophica; Myotonic Dystrophy, Congenital; Myotonic Myopathy, Proximal; PROMM (Proximal Myotonic Myopathy); Proximal Myotonic Myopathy; Steinert Disease; Steinert Myotonic Dystrophy; Steinert's Disease; Myotonia Atrophica

  14. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion.

    PubMed Central

    Shashi, V.; Golden, W. L.; Allinson, P. S.; Blanton, S. H.; von Kap-Herr, C.; Kelly, T. E.

    1996-01-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8651300

  15. Global muscular dystrophy research: A 25-year bibliometric perspective.

    PubMed

    Ram, Shri

    2017-01-01

    Muscular dystrophy is a genetic disorder leading to progressive weakness of muscles caused due to dysfunction in or lack of protein in muscle cells. The prevalence of muscular dystrophy has been observed globally and is becoming a critical area of study for better health services. The purpose of the study is to analyze the research strength of muscular dystrophy using bibliographic literature. A quantitative literature analysis was carried out on muscular dystrophy from 1991 to 2015 for assessing the global research trends. This literature-based study was conducted using the documents retrieved from the Science Citation Index using the keywords: Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), Congenital Muscular Dystrophy (CMD), Myotonic Dystrophy, Emery-Dreifuss Muscular Dystrophy, Facioscapulohumeral Muscular Dystrophy, Oculopharyngeal Muscular Dystrophy, and Limb-Girdle Muscular Dystrophy. Analysis was done for annual productivity of publication, authorship, collaboration, country performance, citation frequency, characteristics of most cited document, journal productivity, etc.

  16. The Near Naked Hairless (HrN) Mutation Disrupts Hair Formation but is not Due to a Mutation in the Hairless Coding Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yutao; Das, Suchita; Olszewski, Robert Edward

    Near naked hairless (HrN) is a semi-dominant mutation that arose spontaneously and was suggested by allelism testing to be an allele of mouse Hairless (Hr). HrN mice differ from other Hr mutants in that hair loss appears as the postnatal coat begins to emerge, as opposed to failure to initiate the first postnatal hair cycle, and that the mutation displays semi-dominant inheritance. We sequenced the Hr cDNA in HrN/HrN mice and characterized the pathological and molecular phenotypes to identify the basis for hair loss in this model. HrN/HrN mice exhibit dystrophic hairs that are unable to consistently emerge from themore » hair follicle, while HrN/+ mice display a sparse coat of hair and a milder degree of follicular dystrophy than their homozygous littermates. DNA microarray analysis of cutaneous gene expression demonstrates that numerous genes are downregulated in HrN/HrN mice, primarily genes important for hair structure. By contrast, Hr expression is significantly increased. Sequencing the Hr coding region, intron-exon boundaries, 5'- and 3'- UTR and immediate upstream region did not reveal the underlying mutation. Therefore HrN does not appear to be an allele of Hr but may result from a mutation in a closely linked gene or from a regulatory mutation in Hr.« less

  17. Development of a chromatographic method with multi-criteria decision making design for simultaneous determination of nifedipine and atenolol in content uniformity testing.

    PubMed

    Ahmed, Sameh; Alqurshi, Abdulmalik; Mohamed, Abdel-Maaboud Ismail

    2018-07-01

    A new robust and reliable high-performance liquid chromatography (HPLC) method with multi-criteria decision making (MCDM) approach was developed to allow simultaneous quantification of atenolol (ATN) and nifedipine (NFD) in content uniformity testing. Felodipine (FLD) was used as an internal standard (I.S.) in this study. A novel marriage between a new interactive response optimizer and a HPLC method was suggested for multiple response optimizations of target responses. An interactive response optimizer was used as a decision and prediction tool for the optimal settings of target responses, according to specified criteria, based on Derringer's desirability. Four independent variables were considered in this study: Acetonitrile%, buffer pH and concentration along with column temperature. Eight responses were optimized: retention times of ATN, NFD, and FLD, resolutions between ATN/NFD and NFD/FLD, and plate numbers for ATN, NFD, and FLD. Multiple regression analysis was applied in order to scan the influences of the most significant variables for the regression models. The experimental design was set to give minimum retention times, maximum resolution and plate numbers. The interactive response optimizer allowed prediction of optimum conditions according to these criteria with a good composite desirability value of 0.98156. The developed method was validated according to the International Conference on Harmonization (ICH) guidelines with the aid of the experimental design. The developed MCDM-HPLC method showed superior robustness and resolution in short analysis time allowing successful simultaneous content uniformity testing of ATN and NFD in marketed capsules. The current work presents an interactive response optimizer as an efficient platform to optimize, predict responses, and validate HPLC methodology with tolerable design space for assay in quality control laboratories. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Patatin-like phospholipase domain–containing protein 3 promotes transfers of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets

    PubMed Central

    Mitsche, Matthew A.; Hobbs, Helen H.; Cohen, Jonathan C.

    2018-01-01

    Fatty liver disease (FLD) is a burgeoning health problem. A missense variant (I148M) in patatin-like phospholipase domain–containing protein 3 (PNPLA3) confers susceptibility to FLD, although the mechanism is not known. To glean first insights into the physiological function of PNPLA3, we performed detailed lipidomic profiling of liver lysates and lipid droplets (LDs) from WT and Pnpla3−/− (KO) mice and from knock-in (ki) mice expressing either the 148M variant (IM-ki mice) or a variant (S47A) that renders the protein catalytically inactive (SA-ki mice). The four strains differed in composition of very-long-chain polyunsaturated fatty acids (vLCPUFA) in hepatic LDs. In the LDs of IM-ki mice, vLCPUFAs were depleted from triglycerides and enriched in phospholipids. Conversely, vLCPUFAs were enriched in triglycerides and depleted from phospholipids in SA-ki and Pnpla3−/− mice. Release of vLCPUFAs from hepatic LDs incubated ex vivo was increased in droplets from IM-ki mice and decreased from droplets isolated from Pnpla3−/− and SA-ki mice relative to those of WT mice. Thus, the physiological role of PNPLA3 appears to be to remodel triglycerides and phospholipids in LDs, perhaps to accommodate changes in LD size in response to feeding. Because SA-ki and IM-ki both cause FLD and yet have opposite effects on the lipidomic profile of LDs, we conclude that the FLD associated with genetic variation in PNPLA3 is not related to the enzyme's role in remodeling LD lipids. PMID:29555681

  19. Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos

    NASA Astrophysics Data System (ADS)

    Ardaneh, Kazem; Luo, Yang; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-06-01

    We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ˜10 M⊙ and a highly variable luminosity of 1038 - 1039 erg s-1, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ˜10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10-3 pc, which is ˜100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.

  20. Nuclear lamina remodelling and its implications for human disease.

    PubMed

    Chojnowski, Alexandre; Ong, Peh Fern; Dreesen, Oliver

    2015-06-01

    The intermediate filament A- and B-type lamins are key architectural components of the nuclear lamina, a proteinaceous meshwork that lies underneath the inner nuclear membrane. In the past decade, many different monogenic human diseases have been linked to mutations in various components of the nuclear lamina. Mutations in LMNA (encoding lamin A and C) cause a variety of human diseases, collectively called laminopathies. These include cardiomyopathies, muscular dystrophies, lipodystrophies and progeroid syndromes. In addition, elevated levels of lamin B1, attributable to genomic duplications of the LMNB1 locus, cause adult-onset autosomal dominant leukodystrophy. The molecular mechanism(s) enabling the mutations and perturbations of the nuclear lamina to give rise to such a wide variety of diseases that affect various tissues remains unclear. The composition of the nuclear lamina changes dynamically during development, between cell types and even within the same cell during differentiation and ageing. Here, we discuss the functional and cellular aspects of lamina remodelling and their implications for the tissue-specific nature of laminopathies.

Top