Science.gov

Sample records for dystrophy grmd model

  1. Histological comparison of the smooth uterine muscle of healthy golden retriever bitches, carriers of the progressive muscular dystrophy (GRMD) gene, and GRMD-affected bitches.

    PubMed

    Brolio, M P; Cima, D S; Miglino, M A; Ambrósio, C E

    2014-11-10

    There is evidence to suggest that weakness of the pelvic and/or uterine musculature may negatively affect the obstetric performance of women who carry the gene for Duchenne muscular dystrophy (DMD). The golden retriever dog is the ideal animal model for preclinical studies of progressive muscular dystrophy, and this model is referred to as "golden retriever muscular dystrophy (GRMD)". This study evaluated and compared the histopathological aspects of the uterine muscle of eleven dogs: health, n=4; carriers of GRMD gene, n=5; and affected females, n=2. The obtained results showed that the uterine muscle of healthy dogs was exclusively composed of type III collagen, while a predominance of type I collagen and small amounts of type III were observed in the uterine muscle of the carriers. The myometrium of the affected bitches showed small quantities of both collagen types. The differences noted in the three evaluated groups suggest that female carrier and those individuals affected by muscular dystrophy had collagen alteration and muscle fiber commitment in the uterine muscle, a deficiency which could directly influence the composition and function of this tissue. In addition, this information is highly relevant to the reproductive management of these animals. This data open important venues for translate reproductive protocols for women, who carry the dystrophin gene.

  2. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic?

    PubMed Central

    Kerkis, Irina; Ambrosio, Carlos E; Kerkis, Alexandre; Martins, Daniele S; Zucconi, Eder; Fonseca, Simone AS; Cabral, Rosa M; Maranduba, Carlos MC; Gaiad, Thais P; Morini, Adriana C; Vieira, Natassia M; Brolio, Marina P; Sant'Anna, Osvaldo A; Miglino, Maria A; Zatz, Mayana

    2008-01-01

    Background The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further

  3. Alteration of cardiac progenitor cell potency in GRMD dogs.

    PubMed

    Cassano, M; Berardi, E; Crippa, S; Toelen, J; Barthelemy, I; Micheletti, R; Chuah, M; Vandendriessche, T; Debyser, Z; Blot, S; Sampaolesi, M

    2012-01-01

    Among the animal models of Duchenne muscular dystrophy (DMD), the Golden Retriever muscular dystrophy (GRMD) dog is considered the best model in terms of size and pathological onset of the disease. As in human patients presenting with DMD or Becker muscular dystrophies (BMD), the GRMD is related to a spontaneous X-linked mutation of dystrophin and is characterized by myocardial lesions. In this respect, GRMD is a useful model to explore cardiac pathogenesis and for the development of therapeutic protocols. To investigate whether cardiac progenitor cells (CPCs) isolated from healthy and GRMD dogs may differentiate into myocardial cell types and to test the feasibility of cell therapy for cardiomyopathies in a preclinical model of DMD, CPCs were isolated from cardiac biopsies of healthy and GRMD dogs. Gene profile analysis revealed an active cardiac transcription network in both healthy and GRMD CPCs. However, GRMD CPCs showed impaired self-renewal and cardiac differentiation. Population doubling and telomerase analyses highlighted earlier senescence and proliferation impairment in progenitors isolated from GRMD cardiac biopsies. Immunofluorescence analysis revealed that only wt CPCs showed efficient although not terminal cardiac differentiation, consistent with the upregulation of cardiac-specific proteins and microRNAs. Thus, the pathological condition adversely influences the cardiomyogenic differentiation potential of cardiac progenitors. Using PiggyBac transposon technology we marked CPCs for nuclear dsRed expression, providing a stable nonviral gene marking method for in vivo tracing of CPCs. Xenotransplantation experiments in neonatal immunodeficient mice revealed a valuable contribution of CPCs to cardiomyogenesis with homing differences between wt and dystrophic progenitors. These results suggest that cardiac degeneration in dystrophinopathies may account for the progressive exhaustion of local cardiac progenitors and shed light on cardiac stemness in

  4. Canine Models of Duchenne Muscular Dystrophy and Their Use in Therapeutic Strategies

    PubMed Central

    Kornegay, Joe N.; Bogan, Janet R.; Bogan, Daniel J.; Childers, Martin K.; Li, Juan; Nghiem, Peter; Detwiler, David A.; Larsen, C. Aaron; Grange, Robert W.; Bhavaraju-Sanka, Ratna K.; Tou, Sandra; Keene, Bruce P.; Howard, James F.; Wang, Jiahui; Fan, Zheng; Schatzberg, Scott J.; Styner, Martin A.; Flanigan, Kevin M.; Xiao, Xiao; Hoffman, Eric P.

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder in which the loss of dystrophin causes progressive degeneration of skeletal and cardiac muscle. Potential therapies that carry substantial risk, such as gene and cell-based approaches, must first be tested in animal models, notably the mdx mouse and several dystrophin-deficient breeds of dogs, including golden retriever muscular dystrophy (GRMD). Affected dogs have a more severe phenotype, in keeping with that of DMD, so may better predict disease pathogenesis and treatment efficacy. We and others have developed various phenotypic tests to characterize disease progression in the GRMD model. These biomarkers range from measures of strength and joint contractures to magnetic resonance imaging. Some of these tests are routinely used in clinical veterinary practice, while others require specialized equipment and expertise. By comparing serial measurements from treated and untreated groups, one can document improvement or delayed progression of disease. Potential treatments for DMD may be broadly categorized as molecular, cellular, or pharmacologic. The GRMD model has increasingly been used to assess efficacy of a range of these therapies. While some of these studies have largely provided general proof-of-concept for the treatment under study, others have demonstrated efficacy using the biomarkers discussed. Importantly, just as symptoms in DMD vary among patients, GRMD dogs display remarkable phenotypic variation. While confounding statistical analysis in preclinical trials, this variation offers insight regarding the role that modifier genes play in disease pathogenesis. By correlating functional and mRNA profiling results, gene targets for therapy development can be identified. PMID:22218699

  5. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne Muscular Dystrophy

    PubMed Central

    Galindo, Cristi L.; Soslow, Jonathan H.; Brinkmeyer-Langford, Candice L.; Gupte, Manisha; Smith, Holly M.; Sengsayadeth, Seng; Sawyer, Douglas B.; Benson, D. Woodrow; Kornegay, Joe N.; Markham, Larry W.

    2016-01-01

    Background In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. Methods We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ months) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. Results We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. Conclusion These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively. PMID:26672735

  6. Porcine models of muscular dystrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein, dystrophin. This disease is modeled by a variety of animal models including several fish models, mice, rats, and dogs. While these models have contributed substantially t...

  7. Sparing of the Dystrophin-Deficient Cranial Sartorius Muscle Is Associated with Classical and Novel Hypertrophy Pathways in GRMD Dogs

    PubMed Central

    Nghiem, Peter P.; Hoffman, Eric P.; Mittal, Priya; Brown, Kristy J.; Schatzberg, Scott J.; Ghimbovschi, Svetlana; Wang, Zuyi; Kornegay, Joe N.

    2014-01-01

    Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be detrimental. Serial biopsies from the hypertrophied CS and other atrophied muscles were studied in a subset of these dogs. Myostatin showed an age-dependent decrease and an inverse correlation with the degree of GRMD CS hypertrophy. Regulators of myostatin at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) levels were altered in GRMD CS, consistent with down-regulation of myostatin signaling, CS hypertrophy, and functional rescue of this muscle. mRNA and proteomic profiling was used to identify additional candidate genes associated with CS hypertrophy. The top-ranked network included α-dystroglycan and like-acetylglucosaminyltransferase. Proteomics demonstrated increases in myotrophin and spectrin that could promote hypertrophy and cytoskeletal stability, respectively. Our results suggest that multiple pathways, including decreased myostatin and up-regulated miRNAs, α-dystroglycan/like-acetylglucosaminyltransferase, spectrin, and myotrophin, contribute to hypertrophy and functional sparing of the CS. These data also underscore the muscle-specific responses to dystrophin deficiency and the potential deleterious effects of differential muscle involvement. PMID:24160322

  8. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  9. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy.

    PubMed

    Mead, A F; Petrov, M; Malik, A S; Mitchell, M A; Childers, M K; Bogan, J R; Seidner, G; Kornegay, J N; Stedman, H H

    2014-04-01

    Ventilatory insufficiency remains the leading cause of death and late stage morbidity in Duchenne muscular dystrophy (DMD). To address critical gaps in our knowledge of the pathobiology of respiratory functional decline, we used an integrative approach to study respiratory mechanics in a translational model of DMD. In studies of individual dogs with the Golden Retriever muscular dystrophy (GRMD) mutation, we found evidence of rapidly progressive loss of ventilatory capacity in association with dramatic morphometric remodeling of the diaphragm. Within the first year of life, the mechanics of breathing at rest, and especially during pharmacological stimulation of respiratory control pathways in the carotid bodies, shift such that the primary role of the diaphragm becomes the passive elastic storage of energy transferred from abdominal wall muscles, thereby permitting the expiratory musculature to share in the generation of inspiratory pressure and flow. In the diaphragm, this physiological shift is associated with the loss of sarcomeres in series (∼ 60%) and an increase in muscle stiffness (∼ 900%) compared with those of the nondystrophic diaphragm, as studied during perfusion ex vivo. In addition to providing much needed endpoint measures for assessing the efficacy of therapeutics, we expect these findings to be a starting point for a more precise understanding of respiratory failure in DMD.

  10. Porcine models of muscular dystrophy.

    PubMed

    Selsby, Joshua T; Ross, Jason W; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.

  11. Profiles of Steroid Hormones in Canine X-Linked Muscular Dystrophy via Stable Isotope Dilution LC-MS/MS.

    PubMed

    Martins-Júnior, Helio A; Simas, Rosineide C; Brolio, Marina P; Ferreira, Christina R; Perecin, Felipe; Nogueira, Guilherme de P; Miglino, Maria A; Martins, Daniele S; Eberlin, Marcos N; Ambrósio, Carlos E

    2015-01-01

    Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients.

  12. Bortezomib (PS-341) Treatment Decreases Inflammation and Partially Rescues the Expression of the Dystrophin-Glycoprotein Complex in GRMD Dogs

    PubMed Central

    Araujo, Karla P. C.; Bonuccelli, Gloria; Duarte, Caio N.; Gaiad, Thais P.; Moreira, Dayson F.; Feder, David; Belizario, José E.; Miglino, Maria A.; Lisanti, Michael P.; Ambrosio, Carlos E.

    2013-01-01

    Golden retriever muscular dystrophy (GRMD) is a genetic myopathy corresponding to Duchenne muscular dystrophy (DMD) in humans. Muscle atrophy is known to be associated with degradation of the dystrophin-glycoprotein complex (DGC) via the ubiquitin-proteasome pathway. In the present study, we investigated the effect of bortezomib treatment on the muscle fibers of GRMD dogs. Five GRMD dogs were examined; two were treated (TD- Treated dogs) with the proteasome inhibitor bortezomib, and three were control dogs (CD). Dogs were treated with bortezomib using the same treatment regimen used for multiple myeloma. Pharmacodynamics were evaluated by measuring the inhibition of 20S proteasome activity in whole blood after treatment and comparing it to that in CD. We performed immunohistochemical studies on muscle biopsy specimens to evaluate the rescue of dystrophin and dystrophin-associated proteins in the muscles of GRMD dogs treated with bortezomib. Skeletal tissue from TD had lower levels of connective tissue deposition and inflammatory cell infiltration than CD as determined by histology, collagen morphometry and ultrastructural analysis. The CD showed higher expression of phospho-NFκB and TGF-β1, suggesting a more pronounced activation of anti-apoptotic factors and inflammatory molecules and greater connective tissue deposition, respectively. Immunohistochemical analysis demonstrated that dystrophin was not present in the sarcoplasmic membrane of either group. However, bortezomib-TD showed higher expression of α- and β-dystroglycan, indicating an improved disease histopathology phenotype. Significant inhibition of 20S proteasome activity was observed 1 hour after bortezomib administration in the last cycle when the dose was higher. Proteasome inhibitors may thus improve the appearance of GRMD muscle fibers, lessen connective tissue deposition and reduce the infiltration of inflammatory cells. In addition, proteasome inhibitors may rescue some dystrophin

  13. Dog Models for Blinding Inherited Retinal Dystrophies

    PubMed Central

    Komáromy, András M.

    2015-01-01

    Abstract Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials. PMID:25671556

  14. Dog models for blinding inherited retinal dystrophies.

    PubMed

    Petersen-Jones, Simon M; Komáromy, András M

    2015-03-01

    Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials.

  15. Dog models for blinding inherited retinal dystrophies.

    PubMed

    Petersen-Jones, Simon M; Komáromy, András M

    2015-03-01

    Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials. PMID:25671556

  16. Porcine Models of Muscular Dystrophy1

    PubMed Central

    Selsby, Joshua T.; Ross, Jason W.; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease. PMID:25991703

  17. Pharmacologic Management of Duchenne Muscular Dystrophy: Target Identification and Preclinical Trials

    PubMed Central

    Kornegay, Joe N.; Spurney, Christopher F.; Nghiem, Peter P.; Brinkmeyer-Langford, Candice L.; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets. PMID:24936034

  18. Muscular dystrophy of mink: a new animal model.

    PubMed

    Hegreberg, G A; Hamilton, M J; Padgett, G A

    1976-04-01

    Muscular dystrophies comprise an important group of inherited disorders of man. Although the disease has been studied extensively, little is known about the underlying primary pathomechanisms. Consequently, treatment of patients is difficult and prognosis is poor. An animal model of muscular dystrophy is a useful research tool for approaching the basic problems of pathogenesis in muscle diseases. An inherited progressive muscular dystrophy of mink which resembles the amyotonic forms of human muscular dystrophy is currently under study. Clinically, the earliest sign is progressive muscular weakness and atrophy. Muscle enzyme activities in serum are usually elevated to pathologic levels. Urinary creatine/creatinine ratio is elevated. Pathologic changes are limited to skeletal muscle and are typical of those seen in amyotonic forms of human muscular dystrophy. These changes include variation in diameter size of muscle fibers, centralized nuclei, floccular and hyaline degeneration of scattered muscle fibers, increase in connective tissue in endomysial and perimysial areas, and regenerative attempts. Both type I and type II muscle fibers are involved in the disease process. Genetic studies indicate an autosomal recessive mode of inheritance. Although the primary defect in muscular dystrophy is traditionally thought to reside in skeletal muscle, recent studies have produced theories of primary involvement of other tissues and organ systems. These theories are presented and relationships to the traditional theory are discussed.

  19. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    ClinicalTrials.gov

    2016-08-26

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  20. Drug screening in a zebrafish model of Duchenne muscular dystrophy.

    PubMed

    Kawahara, Genri; Karpf, Jeremy A; Myers, Jennifer A; Alexander, Matthew S; Guyon, Jeffrey R; Kunkel, Louis M

    2011-03-29

    Two known zebrafish dystrophin mutants, sapje and sapje-like (sap(c/100)), represent excellent small-animal models of human muscular dystrophy. Using these dystrophin-null zebrafish, we have screened the Prestwick chemical library for small molecules that modulate the muscle phenotype in these fish. With a quick and easy birefringence assay, we have identified seven small molecules that influence muscle pathology in dystrophin-null zebrafish without restoration of dystrophin expression. Three of seven candidate chemicals restored normal birefringence and increased survival of dystrophin-null fish. One chemical, aminophylline, which is known to be a nonselective phosphodiesterase (PDE) inhibitor, had the greatest ability to restore normal muscle structure and up-regulate the cAMP-dependent PKA pathway in treated dystrophin-deficient fish. Moreover, other PDE inhibitors also reduced the percentage of affected sapje fish. The identification of compounds, especially PDE inhibitors, that moderate the muscle phenotype in these dystrophin-null zebrafish validates the screening protocol described here and may lead to candidate molecules to be used as therapeutic interventions in human muscular dystrophy. PMID:21402949

  1. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    PubMed Central

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  2. Duchenne muscular dystrophy

    MedlinePlus

    Pseudohypertrophic muscular dystrophy; Muscular dystrophy - Duchenne type ... Duchenne muscular dystrophy is a form of muscular dystrophy . It worsens quickly. Other muscular dystrophies (including Becker's muscular dystrophy ) get ...

  3. Immunoproteasome in animal models of Duchenne muscular dystrophy.

    PubMed

    Chen, Chiao-Nan Joyce; Graber, Ted G; Bratten, Wendy M; Ferrington, Deborah A; Thompson, LaDora V

    2014-04-01

    Increased proteasome activity has been implicated in the atrophy and deterioration associated with dystrophic muscles of Duchenne muscular dystrophy (DMD). While proteasome inhibitors show promise in the attenuation of muscle degeneration, proteasome inhibition-induced toxicity was a major drawback of this therapeutic strategy. Inhibitors that selectively target the proteasome subtype that is responsible for the loss in muscle mass and quality would reduce side effects and be less toxic. This study examined proteasome activity and subtype populations, along with muscle function, morphology and damage in wild-type (WT) mice and two murine models of DMD, dystrophin-deficient (MDX) and dystrophin- and utrophin-double-knockout (DKO) mice. We found that immunoproteasome content was increased in dystrophic muscles while the total proteasome content was unchanged among the three genotypes of mice. Proteasome proteolytic activity was elevated in dystrophic muscles, especially in DKO mice. These mice also exhibited more severe muscle atrophy than either WT or MDX mice. Muscle damage and regeneration, characterized by the activity of muscle creatine kinase in the blood and the percentage of central nuclei were equally increased in dystrophic mice. Accordingly, the overall muscle function was similarly reduced in both dystrophic mice compared with WT. These data demonstrated that there was transformation of standard proteasomes to immunoproteasomes in dystrophic muscles. In addition, DKO that showed greatest increase in proteasome activities also demonstrated more severe atrophy compared with MDX and WT. These results suggest a putative role for the immunoproteasome in muscle deterioration associated with DMD and provide a potential target for therapeutic intervention.

  4. Modeling Myotonic Dystrophy 1 in C2C12 Myoblast Cells.

    PubMed

    Liang, Rui; Dong, Wei; Shen, Xiaopeng; Peng, Xiaoping; Aceves, Angie G; Liu, Yu

    2016-01-01

    Myotonic dystrophy 1 (DM1) is a common form of muscular dystrophy. Although several animal models have been established for DM1, myoblast cell models are still important because they offer an efficient cellular alternative for studying cellular and molecular events. Though C2C12 myoblast cells have been widely used to study myogenesis, resistance to gene transfection, or viral transduction, hinders research in C2C12 cells. Here, we describe an optimized protocol that includes daily maintenance, transfection and transduction procedures to introduce genes into C2C12 myoblasts and the induction of myocyte differentiation. Collectively, these procedures enable best transfection/transduction efficiencies, as well as consistent differentiation outcomes. The protocol described in establishing DM1 myoblast cell models would benefit the study of myotonic dystrophy, as well as other muscular diseases. PMID:27501221

  5. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish.

    PubMed

    Plantié, Emilie; Migocka-Patrzałek, Marta; Daczewska, Małgorzata; Jagla, Krzysztof

    2015-01-01

    Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs. PMID:25859781

  6. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish.

    PubMed

    Plantié, Emilie; Migocka-Patrzałek, Marta; Daczewska, Małgorzata; Jagla, Krzysztof

    2015-04-09

    Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs.

  7. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    PubMed

    Goody, Michelle F; Kelly, Meghan W; Reynolds, Christine J; Khalil, Andre; Crawford, Bryan D; Henry, Clarissa A

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha

  8. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  9. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    PubMed

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  10. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy.

    PubMed

    Mizuno, Hideya; Nakamura, Akinori; Aoki, Yoshitsugu; Ito, Naoki; Kishi, Soichiro; Yamamoto, Kazuhiro; Sekiguchi, Masayuki; Takeda, Shin'ichi; Hashido, Kazuo

    2011-03-30

    Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in the dystrophin gene, which encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK) is generally used as a blood-based biomarker for muscular disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise. Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs) are small, ∼22 nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and the canine X-linked muscular dystrophy in Japan dog model (CXMD(J)), by real-time PCR. We found that the serum levels of several muscle-specific miRNAs (miR-1, miR-133a and miR-206) are increased in both mdx and CXMD(J). Interestingly, unlike CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy.

  11. Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy.

    PubMed

    Hori, Yusuke S; Kuno, Atsushi; Hosoda, Ryusuke; Tanno, Masaya; Miura, Tetsuji; Shimamoto, Kazuaki; Horio, Yoshiyuki

    2011-09-01

    Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. We previously showed that resveratrol (3,5,4'-trihydroxy-trans-stilbene), an antioxidant and activator of the NAD(+)-dependent protein deacetylase SIRT1, delays the progression of heart failure and prolongs the lifespan of δ-sarcoglycan-deficient hamsters. Because a defect of dystroglycan complex causes muscular dystrophies, and δ-sarcoglycan is a component of this complex, we hypothesized that resveratrol might be a new therapeutic tool for muscular dystrophies. Here, we examined resveratrol's effect in mdx mice, an animal model of Duchenne muscular dystrophy. mdx mice that received resveratrol in the diet for 32 weeks (4 g/kg diet) showed significantly less muscle mass loss and nonmuscle interstitial tissue in the biceps femoris compared with mdx mice fed a control diet. In the muscles of these mice, resveratrol significantly decreased oxidative damage shown by the immunostaining of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine and suppressed the up-regulation of NADPH oxidase subunits Nox4, Duox1, and p47(phox). Resveratrol also reduced the number of α-smooth muscle actin (α-SMA)(+) myofibroblast cells and endomysial fibrosis in the biceps femoris, although the infiltration of CD45(+) inflammatory cells and increase in transforming growth factor-β1 (TGF-β1) were still observed. In C2C12 myoblast cells, resveratrol pretreatment suppressed the TGF-β1-induced increase in reactive oxygen species, fibronectin production, and expression of α-SMA, and SIRT1 knockdown blocked these inhibitory effects. SIRT1 small interfering RNA also increased the expression of Nox4, p47(phox), and α-SMA in C2C12 cells. Taken together, these findings indicate that SIRT1 activation may be a useful strategy for treating muscular dystrophies. PMID:21652783

  12. Successful Gene Therapy in the RPGRIP1-deficient Dog: a Large Model of Cone–Rod Dystrophy

    PubMed Central

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-01-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod–cone dystrophies but not in large models of progressive cone–rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone–rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18–72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22–29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone–rod dystrophy provides great promise for human treatment. PMID:24091916

  13. Successful gene therapy in the RPGRIP1-deficient dog: a large model of cone-rod dystrophy.

    PubMed

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-02-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment.

  14. What do mouse models of muscular dystrophy tell us about the DAPC and its components?

    PubMed Central

    Whitmore, Charlotte; Morgan, Jennifer

    2014-01-01

    There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. PMID:25270874

  15. Muscular dystrophy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001190.htm Muscular dystrophy To use the sharing features on this page, please enable JavaScript. Muscular dystrophy is a group of inherited disorders that cause ...

  16. Muscular Dystrophy

    MedlinePlus

    ... in Duchenne muscular dystrophy. Dev. Med. Child Neurol. Mar 1995;37(3):260-269. 4. Centers for ... DM1) . The International Myotonic Dystrophy Consortium (IDMC). Neurology. Mar 28 2000;54(6):1218-1221. 5. Harper ...

  17. Muscular Dystrophy

    MedlinePlus

    Muscular dystrophy (MD) is a group of more than 30 inherited diseases. They all cause muscle weakness and ... ability to walk. There is no cure for muscular dystrophy. Treatments can help with the symptoms and prevent ...

  18. Muscle wasting in myotonic dystrophies: a model of premature aging

    PubMed Central

    Mateos-Aierdi, Alba Judith; Goicoechea, Maria; Aiastui, Ana; Fernández-Torrón, Roberto; Garcia-Puga, Mikel; Matheu, Ander; López de Munain, Adolfo

    2015-01-01

    Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the

  19. A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping

    PubMed Central

    Walmsley, Gemma L.; Arechavala-Gomeza, Virginia; Fernandez-Fuente, Marta; Burke, Margaret M.; Nagel, Nicole; Holder, Angela; Stanley, Rachael; Chandler, Kate; Marks, Stanley L.; Muntoni, Francesco; Shelton, G. Diane; Piercy, Richard J.

    2010-01-01

    Background Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. Methodology/Principal Findings Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD. PMID:20072625

  20. Characterization of Dystrophin Deficient Rats: A New Model for Duchenne Muscular Dystrophy

    PubMed Central

    Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD. PMID:25310701

  1. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    PubMed

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  2. Progressive muscle proteome changes in a clinically relevant pig model of Duchenne muscular dystrophy.

    PubMed

    Fröhlich, Thomas; Kemter, Elisabeth; Flenkenthaler, Florian; Klymiuk, Nikolai; Otte, Kathrin A; Blutke, Andreas; Krause, Sabine; Walter, Maggie C; Wanke, Rüdiger; Wolf, Eckhard; Arnold, Georg J

    2016-01-01

    Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials. PMID:27634466

  3. Progressive muscle proteome changes in a clinically relevant pig model of Duchenne muscular dystrophy

    PubMed Central

    Fröhlich, Thomas; Kemter, Elisabeth; Flenkenthaler, Florian; Klymiuk, Nikolai; Otte, Kathrin A.; Blutke, Andreas; Krause, Sabine; Walter, Maggie C.; Wanke, Rüdiger; Wolf, Eckhard; Arnold, Georg J.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials. PMID:27634466

  4. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy.

    PubMed

    Bobadilla, Míriam; Sáinz, Neira; Rodriguez, José Antonio; Abizanda, Gloria; Orbe, Josune; de Martino, Alba; García Verdugo, José Manuel; Páramo, José A; Prósper, Felipe; Pérez-Ruiz, Ana

    2014-02-01

    Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease. PMID:24123596

  5. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery.

    PubMed

    Smith, Alec S T; Davis, Jennifer; Lee, Gabsang; Mack, David L; Kim, Deok-Ho

    2016-09-01

    Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle. PMID:27109386

  6. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    DOE PAGESBeta

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; Taber, Alex; Reister, Emily E.; Sharma, Kush; Todd, Peter K.; Guenza, Marina G.; Berglund, J. Andrew

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamicsmore » and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less

  7. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    SciTech Connect

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; Taber, Alex; Reister, Emily E.; Sharma, Kush; Todd, Peter K.; Guenza, Marina G.; Berglund, J. Andrew

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.

  8. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model.

    PubMed

    deLorimier, Elaine; Coonrod, Leslie A; Copperman, Jeremy; Taber, Alex; Reister, Emily E; Sharma, Kush; Todd, Peter K; Guenza, Marina G; Berglund, J Andrew

    2014-11-10

    CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein-RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases. PMID:25303993

  9. Meaning of Muscular Dystrophy

    MedlinePlus

    ... Help White House Lunch Recipes The Meaning of Muscular Dystrophy KidsHealth > For Kids > The Meaning of Muscular Dystrophy ... you know someone who has MD. What Is Muscular Dystrophy? Muscular dystrophy (say: MUS-kyoo-lur DIS-troh- ...

  10. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy.

    PubMed

    Chal, Jérome; Oginuma, Masayuki; Al Tanoury, Ziad; Gobert, Bénédicte; Sumara, Olga; Hick, Aurore; Bousson, Fanny; Zidouni, Yasmine; Mursch, Caroline; Moncuquet, Philippe; Tassy, Olivier; Vincent, Stéphane; Miyanari, Ayako; Bera, Agata; Garnier, Jean-Marie; Guevara, Getzabel; Hestin, Marie; Kennedy, Leif; Hayashi, Shinichiro; Drayton, Bernadette; Cherrier, Thomas; Gayraud-Morel, Barbara; Gussoni, Emanuela; Relaix, Frédéric; Tajbakhsh, Shahragim; Pourquié, Olivier

    2015-09-01

    During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD. PMID:26237517

  11. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses

  12. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy

    PubMed Central

    Long, Chengzu; Amoasii, Leonela; Mireault, Alex A.; McAnally, John R.; Li, Hui; Sanchez-Ortiz, Efrain; Bhattacharyya, Samadrita; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus–9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18. Each of these methods restored dystrophin protein expression in cardiac and skeletal muscle to varying degrees, and expression increased from 3 to 12 weeks after injection. Postnatal gene editing also enhanced skeletal muscle function, as measured by grip strength tests 4 weeks after injection. This method provides a potential means of correcting mutations responsible for DMD and other monogenic disorders after birth. PMID:26721683

  13. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.

  14. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy

    SciTech Connect

    Mathews, K.D.; Rapisarda, D.; Bailey, H.L.

    1995-07-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease of unknown pathogenesis which is characterized by weakness of the face and shoulder girdle. It is associated with a sensorineural hearing loss which may be subclinical. FSHD has been mapped to the distalmost portion of 4q35, although the gene has not yet been identified. Distal 4q has homology with a region of mouse chromosome 8 to which a mouse mutant, myodystrophy (myd), has been mapped. Muscle from homozygotes for the myd mutation appears dystrophic, showing degenerating and regenerating fibers, inflammatory infiltrates, central nuclei, and variation in fiber size. Brainstem auditory evoked potentials reveal a sensorineural hearing loss in myd homozygotes. Based on the homologous genetic map locations, and the phenotypic syndrome of dystrophic muscle with sensorineural hearing loss, we suggest that myd represents an animal model for the human disease FSHD. 28 refs., 4 figs.

  15. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Fuenzalida, Marco; Espinoza, Claudia; Pérez, Miguel Ángel; Tapia-Rojas, Cheril; Cuitino, Loreto; Brandan, Enrique; Inestrosa, Nibaldo C

    2016-02-01

    The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy. PMID:26626079

  16. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD. PMID:26721684

  17. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy.

    PubMed

    Hayashiji, Nozomi; Yuasa, Shinsuke; Miyagoe-Suzuki, Yuko; Hara, Mie; Ito, Naoki; Hashimoto, Hisayuki; Kusumoto, Dai; Seki, Tomohisa; Tohyama, Shugo; Kodaira, Masaki; Kunitomi, Akira; Kashimura, Shin; Takei, Makoto; Saito, Yuki; Okata, Shinichiro; Egashira, Toru; Endo, Jin; Sasaoka, Toshikuni; Takeda, Shin'ichi; Fukuda, Keiichi

    2015-04-13

    Duchenne muscular dystrophy (DMD) is a chronic and life-threatening disease that is initially supported by muscle regeneration but eventually shows satellite cell exhaustion and muscular dysfunction. The life-long maintenance of skeletal muscle homoeostasis requires the satellite stem cell pool to be preserved. Asymmetric cell division plays a pivotal role in the maintenance of the satellite cell pool. Here we show that granulocyte colony-stimulating factor receptor (G-CSFR) is asymmetrically expressed in activated satellite cells. G-CSF positively affects the satellite cell population during multiple stages of differentiation in ex vivo cultured fibres. G-CSF could be important in developing an effective therapy for DMD based on its potential to modulate the supply of multiple stages of regenerated myocytes. This study shows that the G-CSF-G-CSFR axis is fundamentally important for long-term muscle regeneration, functional maintenance and lifespan extension in mouse models of DMD with varying severities.

  18. Muscular Dystrophy

    MedlinePlus

    ... be affected. Limb-girdle muscular dystrophy (LGMD) affects boys and girls equally, weakening muscles in the shoulders and upper ... weakness and poor muscle tone. Occurring in both girls and boys, it can have different symptoms. It varies in ...

  19. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  20. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy

    PubMed Central

    Bisset, Darren R.; Stepniak-Konieczna, Ewa A.; Zavaljevski, Maja; Wei, Jessica; Carter, Gregory T.; Weiss, Michael D.; Chamberlain, Joel R.

    2015-01-01

    RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3′ UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUGexp) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUGexp mRNA in the human α-skeletal muscle actin long-repeat (HSALR) mouse model of DM1. RNAi expression cassettes were delivered to HSALR mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSALR mice, including a reduction in the CUGexp mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUGexp mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSALR mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies. PMID:26082468

  1. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy

    PubMed Central

    McGreevy, Joe W.; Hakim, Chady H.; McIntosh, Mark A.; Duan, Dongsheng

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. PMID:25740330

  2. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. PMID:14578206

  3. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man.

  4. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.

    2011-07-01

    Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  5. Facioscapulohumeral Dystrophy.

    PubMed

    Wang, Leo H; Tawil, Rabi

    2016-07-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a clinically recognizable and relatively common muscular dystrophy. It is inherited mostly as an autosomal dominant disease or in a minority of cases, in a digenic pattern. The disease manifestation is variable and most likely dependent on genetic and epigenetic factors. We review the history, epidemiology, clinical presentation, and genetics of the disease, present the recently elucidated molecular pathogenesis, discuss the pathology and the possible consequence of the inflammation seen in the muscle biopsies, and consider future treatments. PMID:27215221

  6. The first exon duplication mouse model of Duchenne muscular dystrophy: A tool for therapeutic development.

    PubMed

    Vulin, Adeline; Wein, Nicolas; Simmons, Tabatha R; Rutherford, Andrea M; Findlay, Andrew R; Yurkoski, Jacqueline A; Kaminoh, Yuuki; Flanigan, Kevin M

    2015-11-01

    Exon duplication mutations account for up to 11% of all cases of Duchenne muscular dystrophy (DMD), and a duplication of exon 2 is the most common duplication in patients. For use as a platform for testing of duplication-specific therapies, we developed a mouse model that carries a Dmd exon 2 duplication. By using homologous recombination we duplicated exon 2 within intron 2 at a location consistent with a human duplication hotspot. mRNA analysis confirms the inclusion of a duplicated exon 2 in mouse muscle. Dystrophin expression is essentially absent by immunofluorescent and immunoblot analysis, although some muscle specimens show very low-level trace dystrophin expression. Phenotypically, the mouse shows similarities to mdx, the standard laboratory model of DMD. In skeletal muscle, areas of necrosis and phagocytosis are seen at 3 weeks, with central nucleation prominent by four weeks, recapitulating the "crisis" period in mdx. Marked diaphragm fibrosis is noted by 6 months, and remains unchanged at 12 months. Our results show that the Dup2 mouse is both pathologically (in degree and distribution) and physiologically similar to mdx. As it recapitulates the most common single exon duplication found in DMD patients, this new model will be a useful tool to assess the potential of duplicated exon skipping.

  7. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model

    PubMed Central

    Bargiela, Ariadna; Cerro-Herreros, Estefanía; Fernandez-Costa, Juan M.; Vilchez, Juan J.; Llamusi, Beatriz; Artero, Ruben

    2015-01-01

    ABSTRACT Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor) or muscleblind, or by RNA interference (RNAi)-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis. PMID:26092529

  8. The mdx mouse model as a surrogate for Duchenne muscular dystrophy

    PubMed Central

    Partridge, Terence A.

    2014-01-01

    Research into fundamental principles and the testing of therapeutic hypotheses for treatment of human disease is commonly conducted on mouse models of human diseases. Although this is often the only practicable approach, it carries a number of caveats arising from differences between the two species. This article is centred on the example of skeletal muscle disease, in particular muscular dystrophy, to identify some of the principal classes of obstacle to the translation of data from mouse to man. Of these, the difference in scale is one of the most commonly ignored and is of particular interest because it has quite major repercussions for evaluation of some classes of intervention and of assessment criteria while having comparatively little bearing on others. Likewise, interspecies differences and similarities in cell and molecular biological mechanisms underlying development, growth and response to pathological processes should be considered on an individual basis. An awareness of such distinctions is crucial if we are to avoid misjudgement of the likely efficacy in man of results obtained on mouse models. PMID:23551987

  9. Behavioral Responses in Animal Model of Congenital Muscular Dystrophy 1D.

    PubMed

    Comim, Clarissa M; Schactae, Aryadnne L; Soares, Jaime A; Ventura, Letícia; Freiberger, Viviane; Mina, Francielle; Dominguini, Diogo; Vainzof, Mariz; Quevedo, João

    2016-01-01

    Congenital muscular dystrophies 1D (CMD1D) present a mutation on the LARGE gene and are characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, in the animal model of CMD1D, the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the cognitive involvement in the Large(myd) mice. To this aim, we used adult homozygous, heterozygous, and wild-type mice. The mice underwent six behavioral tasks: habituation to an open field, step-down inhibitory avoidance, continuous multiple trials step-down inhibitory avoidance task, object recognition, elevated plus-maze, and forced swimming test. It was observed that Large(myd) individuals presented deficits on the habituation to the open field, step down inhibitory avoidance, continuous multiple-trials step-down inhibitory avoidance, object recognition, and forced swimming. This study shows the first evidence that abnormal glycosylation of α-DG may be affecting memory storage and restoring process in an animal model of CMD1D.

  10. Bortezomib Does Not Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy.

    PubMed

    Körner, Zandra; Durbeej, Madeleine

    2016-01-01

    Congenital muscular dystrophy with laminin α2 chain-deficiency, also known as MDC1A, is a severe neuromuscular disorder for which there is no cure. Patients with complete laminin α2 chain-deficiency typically have an early onset disease with a more severe muscle phenotype while patients with residual laminin α2 chain expression usually have a milder disease course. Similar genotype-phenotype correlations can be seen in the dy3K/dy3K and dy2J/dy2J mouse models of MDC1A, respectively, with dy3K/dy3K mice presenting the more severe phenotype. Recently, we demonstrated that the proteasome inhibitor bortezomib partially improves muscle morphology and increases lifespan in dy3K/dy3K mice. Here, we explore the use of bortezomib in dy2J/dy2J animals. However, bortezomib neither improved histological hallmarks of disease nor increased muscle strength and locomotive activity in dy2J/dy2J mice. Altogether our data suggest that proteasome inhibition does not mitigate muscle dysfunction caused by partial laminin α2 chain-deficiency. Still, it is possible that proteasome inhibition could be useful as a supportive therapy in patients with complete absence of laminin α2 chain.

  11. Dysferlin Deficiency and the Development of Cardiomyopathy in a Mouse Model of Limb-Girdle Muscular Dystrophy 2B

    PubMed Central

    Chase, Thomas H.; Cox, Gregory A.; Burzenski, Lisa; Foreman, Oded; Shultz, Leonard D.

    2009-01-01

    Limb-girdle muscular dystrophy 2B, Miyoshi myopathy, and distal myopathy of anterior tibialis are severely debilitating muscular dystrophies caused by genetically determined dysferlin deficiency. In these muscular dystrophies, it is the repair, not the structure, of the plasma membrane that is impaired. Though much is known about the effects of dysferlin deficiency in skeletal muscle, little is known about the role of dysferlin in maintenance of cardiomyocytes. Recent evidence suggests that dysferlin deficiency affects cardiac muscle, leading to cardiomyopathy when stressed. However, neither the morphological location of dysferlin in the cardiomyocyte nor the progression of the disease with age are known. In this study, we examined a mouse model of dysferlinopathy using light and electron microscopy as well as echocardiography and conscious electrocardiography. We determined that dysferlin is normally localized to the intercalated disk and sarcoplasm of the cardiomyocytes. In the absence of dysferlin, cardiomyocyte membrane damage occurs and is localized to the intercalated disk and sarcoplasm. This damage results in transient functional deficits at 10 months of age, but, unlike in skeletal muscle, the cell injury is sublethal and causes only mild cardiomyopathy even at advanced ages. PMID:19875504

  12. Myotonic Muscular Dystrophy

    MedlinePlus

    ... a Difference How to Get Involved Donate Myotonic Muscular Dystrophy (MMD) Share print email share facebook twitter google plus linkedin Myotonic Muscular Dystrophy (MMD) What is myotonic muscular dystrophy (MMD)? Myotonic ...

  13. Muscular dystrophy - resources

    MedlinePlus

    Resources - muscular dystrophy ... The following organizations are good resources for information on muscular dystrophy : Muscular Dystrophy Association -- www.mdausa.org National Institute of Neurological Disorders and Stroke -- www.ninds.nih. ...

  14. Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Marques, Maria Julia; Ferretti, Renato; Vomero, Viviane Urbini; Minatel, Elaine; Neto, Humberto Santo

    2007-03-01

    Intrinsic laryngeal muscles share many anatomical and physiological properties with extraocular muscles, which are unaffected in both Duchenne muscular dystrophy and mdx mice. We hypothesized that intrinsic laryngeal muscles are spared from myonecrosis in mdx mice and may serve as an additional tool to understand the mechanisms of muscle sparing in dystrophinopathy. Intrinsic laryngeal muscles and tibialis anterior (TA) muscle of adult and aged mdx and control C57Bl/10 mice were investigated. The percentage of central nucleated fibers, as a sign of muscle fibers that had undergone injury and regeneration, and myofiber labeling with Evans blue dye, as a marker of myofiber damage, were studied. Except for the cricothyroid muscle, none of the intrinsic laryngeal muscles from adult and old mdx mice showed signs of myofiber damage or Evans blue dye labeling, and all appeared to be normal. Central nucleation was readily visible in the TA of the same mdx mice. A significant increase in the percentage of central nucleated fibers was observed in adult cricothyroid muscle compared to the other intrinsic laryngeal muscles, which worsened with age. Thus, we have shown that the intrinsic laryngeal muscles are spared from the lack of dystrophin and may serve as a useful model to study the mechanisms of muscle sparing in dystrophinopathy.

  15. Isometric and eccentric force generation assessment of skeletal muscles isolated from murine models of muscular dystrophies.

    PubMed

    Moorwood, Catherine; Liu, Min; Tian, Zuozhen; Barton, Elisabeth R

    2013-01-31

    Critical to the evaluation of potential therapeutics for muscular disease are sensitive and reproducible physiological assessments of muscle function. Because many pre-clinical trials rely on mouse models for these diseases, isolated muscle function has become one of the standards for Go/NoGo decisions in moving drug candidates forward into patients. We will demonstrate the preparation of the extensor digitorum longus (EDL) and diaphragm muscles for functional testing, which are the predominant muscles utilized for these studies. The EDL muscle geometry is ideal for isolated muscle preparations, with two easily accessible tendons, and a small size that can be supported by superfusion in a bath. The diaphragm exhibits profound progressive pathology in dystrophic animals, and can serve as a platform for evaluating many potential therapies countering fibrosis, and promoting myofiber stability. Protocols for routine testing, including isometric and eccentric contractions, will be shown. Isometric force provides assessment of strength, and eccentric contractions help to evaluate sarcolemma stability, which is disrupted in many types of muscular dystrophies. Comparisons of the expected results between muscles from wildtype and dystrophic muscles will also be provided. These measures can complement morphological and biochemical measurements of tissue homeostasis, as well as whole animal assessments of muscle function.

  16. Facioscapulohumeral Muscular Dystrophy As a Model for Epigenetic Regulation and Disease

    PubMed Central

    Himeda, Charis L.; Jones, Takako I.

    2015-01-01

    Abstract Significance: Aberrant epigenetic regulation is an integral aspect of many diseases and complex disorders. Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, is caused by disrupted genetic and epigenetic regulation of a macrosatellite repeat. FSHD provides a powerful model to investigate disease-relevant epigenetic modifiers and general mechanisms of epigenetic regulation that govern gene expression. Recent Advances: In the context of a genetically permissive allele, the one aspect of FSHD that is consistent across all known cases is the aberrant epigenetic state of the disease locus. In addition, certain mutations in the chromatin regulator SMCHD1 (structural maintenance of chromosomes hinge-domain protein 1) are sufficient to cause FSHD2 and enhance disease severity in FSHD1. Thus, there are multiple pathways to generate the epigenetic dysregulation required for FSHD. Critical Issues: Why do some individuals with the genetic requirements for FSHD develop disease pathology, while others remain asymptomatic? Similarly, disease progression is highly variable among individuals. What are the relative contributions of genetic background and environmental factors in determining disease manifestation, progression, and severity in FSHD? What is the interplay between epigenetic factors regulating the disease locus and which, if any, are viable therapeutic targets? Future Directions: Epigenetic regulation represents a potentially powerful therapeutic target for FSHD. Determining the epigenetic signatures that are predictive of disease severity and identifying the spectrum of disease modifiers in FSHD are vital to the development of effective therapies. Antioxid. Redox Signal. 22, 1463–1482. PMID:25336259

  17. Generation and Characterization of a Murine Model of Bietti Crystalline Dystrophy

    PubMed Central

    Lockhart, Catherine M.; Nakano, Mariko; Rettie, Allan E.; Kelly, Edward J.

    2014-01-01

    Purpose. Bietti crystalline dystrophy (BCD) is a rare, autosomal recessive, progressive, degenerative eye disease caused by mutations in the CYP4V2 gene, for which no treatments are currently available. Cyp4v3 is the murine ortholog to CYP4V2, and to better understand the molecular pathogenesis of this disease we have established a Cyp4v3-null mouse line. Methods. Cyp4v3−/− mice were generated by homologous recombination in embryonic stem cells. Ocular morphologic characteristics were evaluated via fundus imaging, plasma lipid profiling, and histologic analysis via Oil Red O reactivity, hematoxylin and eosin staining, and transmission electron microscopy. Results. The Cyp4v3−/− mouse recapitulates the characteristic features of corneoretinal crystal accumulation and systemic dyslipidemia seen in BCD. The Cyp4v3−/− mice behave normally and are viable and fertile when maintained under specific pathogen-free (SPF) housing conditions. Conclusions. Cyp4v3−/− mice represent a promising preclinical model that may be used to better understand the disease etiology and to evaluate pharmacotherapies for this devastating condition. PMID:25118264

  18. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy.

    PubMed

    Dorchies, Olivier M; Reutenauer-Patte, Julie; Dahmane, Elyes; Ismail, Heham M; Petermann, Olivier; Patthey- Vuadens, Ophélie; Comyn, Sophie A; Gayi, Elinam; Piacenza, Tony; Handa, Robert J; Décosterd, Laurent A; Ruegg, Urs T

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.

  19. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction.

    PubMed

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-12-01

    Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.

  20. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    PubMed Central

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-01-01

    ABSTRACT Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats. PMID:26515653

  1. Disease course in mdx:utrophin+/- mice: comparison of three mouse models of Duchenne muscular dystrophy.

    PubMed

    McDonald, Abby A; Hebert, Sadie L; Kunz, Matthew D; Ralles, Steven J; McLoon, Linda K

    2015-04-01

    The mdx mouse model of Duchenne muscular dystrophy (DMD) is used to study disease mechanisms and potential treatments, but its pathology is less severe than DMD patients. Other mouse models were developed to more closely mimic the human disease based on knowledge that upregulation of utrophin has a protective effect in mdx muscle. An mdx:utrophin(-/-) (dko) mouse was created, which had a severe disease phenotype and a shortened life span. An mdx:utrophin(+/-) mouse was also created, which had an intermediate disease phenotype compared to the mdx and dko mice. To determine the usefulness of mdx:utrophin(+/-) mice for long-term DMD studies, limb muscle pathology and function were assessed across the life span of wild-type, mdx, mdx:utrophin(+/-), and dko mice. Muscle function assessment, specifically grip duration and rotarod performance, demonstrated that mdx:utrophin(+/-) mice were weaker for a longer time than mdx mice. Mean myofiber area was smaller in mdx:utrophin(+/-) mice compared to mdx mice at 12 months. Mdx:utrophin(+/-) mice had a higher percentage of centrally nucleated myofibers compared to mdx mice at 6 and 12 months. Collagen I and IV density was significantly higher in mdx:utrophin(+/-) muscle compared to mdx at most ages examined. Generally, mdx:utrophin(+/-) mice showed an intermediate disease phenotype over a longer time course compared to the mdx and dko mice. While they do not genetically mirror human DMD, mdx:utrophin(+/-) mice may be a more useful animal model than mdx or dko mice for investigating long-term efficacy of potential treatments when fibrosis or muscle function is the focus.

  2. Myotonic Dystrophy

    PubMed Central

    Thornton, Charles A.

    2014-01-01

    Myotonic dystrophy (dystrophia myotonica, DM) is one of the most common lethal monogenic disorders in populations of European descent. Myotonic dystrophy type 1 (DM1) was first described over a century ago. DM1 is caused by expansion of a CTG triplet repeat in the 3' non-coding region of DMPK, the gene encoding the DM protein kinase. More recently a second form of the disease, myotonic dystrophy type 2 (DM2) was recognized, which results from repeat expansion in a different gene. The DM2 expansion involves a CCTG repeat in the first intron of Zinc Finger 9 (ZNF9). Both disorders have autosomal dominant inheritance and multisystem features, including myotonic myopathy, cataract, and cardiac conduction disease. Studies suggest that the shared clinical features of DM1 and DM2 involve a novel genetic mechanism in which repetitive RNA exerts a toxic effect. The RNA toxicity stems from the expanded repeat in the transcripts from the mutant DM alleles. This chapter will review the clinical presentation and pathophysiology of DM, and discuss current management and future potential for developing targeted therapies. PMID:25037086

  3. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies.

    PubMed

    Slijkerman, Ralph W N; Song, Fei; Astuti, Galuh D N; Huynen, Martijn A; van Wijk, Erwin; Stieger, Knut; Collin, Rob W J

    2015-09-01

    Over the last decade, huge progress has been made in the understanding of the molecular mechanisms underlying inherited retinal dystrophy (IRD), as well as in the development and implementation of novel therapies, especially in the field of gene therapy. The use of mutant animal models, either naturally occurring or generated by genetic modification, have contributed greatly to our knowledge on IRD. Yet, these mutant animal models do not always mimic the retinal phenotype that is observed in humans with mutations in the orthologous gene, often due to species-specific characteristics of the retina, and/or diverse functions of the gene products in different species. In this manuscript, we compare general and ocular characteristics of a series of widely used vertebrate animal models, i.e. zebrafish, chicken, rodents, cats, dogs, sheep, pigs and monkeys, in terms of genetic architecture and sequence homology, methods to modify genomes, anatomy of the eye, and structural details of the retina. Furthermore, we present an overview of mutant vertebrate animal models that have been used to study or develop treatments for the various genetic subtypes of IRD, and correlate the suitability of these models to the specific characteristics of each animal. Herewith, we provide tools that will help to select the most suitable animal model for specific research questions on IRDs in the future, and thereby assist in an optimal use of animals and resources to further increase our understanding of inherited retinal dystrophies, and develop novel treatments for these disorders.

  4. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model.

    PubMed

    Llamusi, Beatriz; Bargiela, Ariadna; Fernandez-Costa, Juan M; Garcia-Lopez, Amparo; Klima, Raffaella; Feiguin, Fabian; Artero, Ruben

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of 1215 transgenic RNA interference (RNAi) fly lines. Of the 34 modifiers identified, two RNA-binding proteins, TBPH (homolog of human TAR DNA-binding protein 43 or TDP-43) and BSF (Bicoid stability factor; homolog of human LRPPRC), were of particular interest. These factors modified i(CTG)480 phenotypes in the fly eye and wing, and TBPH silencing also suppressed CTG-induced defects in the flight muscles. In Drosophila flight muscle, TBPH, BSF and the fly ortholog of MBNL1, Muscleblind (Mbl), were detected in sarcomeric bands. Expression of i(CTG)480 resulted in changes in the sarcomeric patterns of these proteins, which could be restored by coexpression with human MBNL1. Epistasis studies showed that Mbl silencing was sufficient to induce a subcellular redistribution of TBPH and BSF proteins in the muscle, which mimicked the effect of i(CTG)480 expression. These results provide the first description of TBPH and BSF as targets of Mbl-mediated CTG toxicity, and they suggest an important role of these proteins in DM1 muscle pathology.

  5. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.

    PubMed

    Terrill, Jessica R; Grounds, Miranda D; Arthur, Peter G

    2015-09-01

    The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.

  6. Trendelenburg-Like Gait, Instability and Altered Step Patterns in a Mouse Model for Limb Girdle Muscular Dystrophy 2i.

    PubMed

    Maricelli, Joseph W; Lu, Qi L; Lin, David C; Rodgers, Buel D

    2016-01-01

    Limb-girdle muscular dystrophy type 2i (LGMD2i) affects thousands of lives with shortened life expectancy mainly due to cardiac and respiratory problems and difficulty with ambulation significantly compromising quality of life. Limited studies have noted impaired gait in patients and animal models of different muscular dystrophies, but not in animal models of LGMD2i. Our goal, therefore, was to quantify gait metrics in the fukutin-related protein P448L mutant (P448L) mouse, a recently developed model for LGMD2i. The Noldus CatWalk XT motion capture system was used to identify multiple gait impairments. An average galloping body speed of 35 cm/s for both P448L and C57BL/6 wild-type mice was maintained to ensure differences in gait were due only to strain physiology. Compared to wild-type mice, P448L mice reach maximum contact 10% faster and have 40% more paw surface area during stance. Additionally, force intensity at the time of maximum paw contact is roughly 2-fold higher in P448L mice. Paw swing time is reduced in P448L mice without changes in stride length as a faster swing speed compensates. Gait instability in P448L mice is indicated by 50% higher instances of 3 and 4 paw stance support and conversely, 2-fold fewer instances of single paw stance support and no instance of zero paw support. This leads to lower variation of normal step patterns used and a higher use of uncommon step patterns. Similar anomalies have also been noted in muscular dystrophy patients due to weakness in the hip abductor muscles, producing a Trendelenburg gait characterized by "waddling" and more pronounced shifts to the stance leg. Thus, gait of P448L mice replicates anomalies commonly seen in LGMD2i patients, which is not only potentially valuable for assessing drug efficacy in restoring movement biomechanics, but also for better understanding them. PMID:27627455

  7. ACTIVIN IIB RECEPTOR BLOCKADE ATTENUATES DYSTROPHIC PATHOLOGY IN A MOUSE MODEL OF DUCHENNE MUSCULAR DYSTROPHY

    PubMed Central

    Morine, Kevin J.; Bish, Lawrence T.; Selsby, Joshua T.; Gazzara, Jeffery A.; Pendrak, Klara; Sleeper, Meg M.; Barton, Elisabeth R.; Lee, Se-Jin; Sweeney, H. Lee

    2015-01-01

    Modulation of transforming growth factor-β (TGF-β) signaling to promote muscle growth holds tremendous promise for the muscular dystrophies and other disorders involving the loss of functional muscle mass. Previous studies have focused on the TGF-β family member myostatin and demonstrated that inhibition of myostatin leads to muscle growth in normal and dystrophic mice. We describe a unique method of systemic inhibition of activin IIB receptor signaling via adeno-associated virus (AAV)-mediated gene transfer of a soluble form of the extracellular domain of the activin IIB receptor to the liver. Treatment of mdx mice with activin IIB receptor blockade led to increased skeletal muscle mass, increased force production in the extensor digitorum longus (EDL), and reduced serum creatine kinase. No effect on heart mass or function was observed. Our results indicate that activin IIB receptor blockade represents a novel and effective therapeutic strategy for the muscular dystrophies. PMID:20730876

  8. Preclinical studies in the mdx mouse model of duchenne muscular dystrophy with the histone deacetylase inhibitor givinostat.

    PubMed

    Consalvi, Silvia; Mozzetta, Chiara; Bettica, Paolo; Germani, Massimiliano; Fiorentini, Francesco; Del Bene, Francesca; Rocchetti, Maurizio; Leoni, Flavio; Monzani, Valmen; Mascagni, Paolo; Puri, Pier Lorenzo; Saccone, Valentina

    2013-01-01

    Previous work has established the existence of dystrophin-nitric oxide (NO) signaling to histone deacetylases (HDACs) that is deregulated in dystrophic muscles. As such, pharmacological interventions that target HDACs (that is, HDAC inhibitors) are of potential therapeutic interest for the treatment of muscular dystrophies. In this study, we explored the effectiveness of long-term treatment with different doses of the HDAC inhibitor givinostat in mdx mice--the mouse model of Duchenne muscular dystrophy (DMD). This study identified an efficacy for recovering functional and histological parameters within a window between 5 and 10 mg/kg/d of givinostat, with evident reduction of the beneficial effects with 1 mg/kg/d dosage. The long-term (3.5 months) exposure of 1.5-month-old mdx mice to optimal concentrations of givinostat promoted the formation of muscles with increased cross-sectional area and reduced fibrotic scars and fatty infiltration, leading to an overall improvement of endurance performance in treadmill tests and increased membrane stability. Interestingly, a reduced inflammatory infiltrate was observed in muscles of mdx mice exposed to 5 and 10 mg/kg/d of givinostat. A parallel pharmacokinetic/pharmacodynamic analysis confirmed the relationship between the effective doses of givinostat and the drug distribution in muscles and blood of treated mice. These findings provide the preclinical basis for an immediate translation of givinostat into clinical studies with DMD patients. PMID:23552722

  9. Preclinical Studies in the mdx Mouse Model of Duchenne Muscular Dystrophy with the Histone Deacetylase Inhibitor Givinostat

    PubMed Central

    Consalvi, Silvia; Mozzetta, Chiara; Bettica, Paolo; Germani, Massimiliano; Fiorentini, Francesco; Del Bene, Francesca; Rocchetti, Maurizio; Leoni, Flavio; Monzani, Valmen; Mascagni, Paolo; Puri, Pier Lorenzo; Saccone, Valentina

    2013-01-01

    Previous work has established the existence of dystrophin–nitric oxide (NO) signaling to histone deacetylases (HDACs) that is deregulated in dystrophic muscles. As such, pharmacological interventions that target HDACs (that is, HDAC inhibitors) are of potential therapeutic interest for the treatment of muscular dystrophies. In this study, we explored the effectiveness of long-term treatment with different doses of the HDAC inhibitor givinostat in mdx mice—the mouse model of Duchenne muscular dystrophy (DMD). This study identified an efficacy for recovering functional and histological parameters within a window between 5 and 10 mg/kg/d of givinostat, with evident reduction of the beneficial effects with 1 mg/kg/d dosage. The long-term (3.5 months) exposure of 1.5-month-old mdx mice to optimal concentrations of givinostat promoted the formation of muscles with increased cross-sectional area and reduced fibrotic scars and fatty infiltration, leading to an overall improvement of endurance performance in treadmill tests and increased membrane stability. Interestingly, a reduced inflammatory infiltrate was observed in muscles of mdx mice exposed to 5 and 10 mg/kg/d of givinostat. A parallel pharmacokinetic/pharmacodynamic analysis confirmed the relationship between the effective doses of givinostat and the drug distribution in muscles and blood of treated mice. These findings provide the preclinical basis for an immediate translation of givinostat into clinical studies with DMD patients. PMID:23552722

  10. Uncoordinated transcription and compromised muscle function in the lmna-null mouse model of Emery- Emery-Dreyfuss muscular dystrophy.

    PubMed

    Gnocchi, Viola F; Scharner, Juergen; Huang, Zhe; Brady, Ken; Lee, Jaclyn S; White, Robert B; Morgan, Jennifer E; Sun, Yin-Biao; Ellis, Juliet A; Zammit, Peter S

    2011-02-22

    LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting.

  11. A dual acting compound releasing nitric oxide (NO) and ibuprofen, NCX 320, shows significant therapeutic effects in a mouse model of muscular dystrophy

    PubMed Central

    Sciorati, Clara; Miglietta, Daniela; Buono, Roberta; Pisa, Viviana; Cattaneo, Dario; Azzoni, Emanuele; Brunelli, Silvia; Clementi, Emilio

    2011-01-01

    A resolutive therapy for muscular dystrophies, a heterogeneous group of genetic diseases leading to muscular degeneration and in the severe forms to death, is still lacking. Since inflammation and defects in nitric oxide generation are recognized key pathogenic events in muscular dystrophy, we have analysed the effects of a derivative of ibuprofen, NCX 320, belonging to the class of cyclooxygenase inhibiting nitric oxide donator (CINOD), in the α-sarcoglycan null mice, a severe mouse model of dystrophy. NCX 320 was administered daily in the diet for 8 months starting 1 month from weaning. Muscle functional recovery was evaluated by free wheel and treadmill tests at 8 months. Serum creatine kinase activity, as well as the number of diaphragm inflammatory infiltrates and necrotic fibres, was measured as indexes of skeletal muscle damage. Muscle regeneration was evaluated in diaphragm and tibialis anterior muscles, measuring the numbers of centronucleated fibres and of myogenic precursor cells. NCX 320 mitigated muscle damage, reducing significantly serum creatine kinase activity, the number of necrotic fibres and inflammatory infiltrates. Moreover, NCX 320 stimulated muscle regeneration increasing significantly the number of myogenic precursor cells and regenerating fibres. All these effects concurred in inducing a significant improvement of muscle function, as assessed by both free wheel and treadmill tests. These results describe the properties of a new compound incorporating nitric oxide donation together with anti-inflammatory properties, showing that it is effective in slowing muscle dystrophy progression long term. Of importance, this new compound deserves specific attention for its potential in the therapy of muscular dystrophy given that ibuprofen is well tolerated in paediatric patients and with a profile of safety that makes it suitable for chronic treatment such as the one required in muscular dystrophies. PMID:21609764

  12. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I.

    PubMed

    Thomas, Paul J; Xu, Rui; Martin, Paul T

    2016-09-01

    Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression. PMID:27561302

  13. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I.

    PubMed

    Thomas, Paul J; Xu, Rui; Martin, Paul T

    2016-09-01

    Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression.

  14. Trendelenburg-Like Gait, Instability and Altered Step Patterns in a Mouse Model for Limb Girdle Muscular Dystrophy 2i

    PubMed Central

    Maricelli, Joseph W.; Lu, Qi L.; Lin, David C.; Rodgers, Buel D.

    2016-01-01

    Limb-girdle muscular dystrophy type 2i (LGMD2i) affects thousands of lives with shortened life expectancy mainly due to cardiac and respiratory problems and difficulty with ambulation significantly compromising quality of life. Limited studies have noted impaired gait in patients and animal models of different muscular dystrophies, but not in animal models of LGMD2i. Our goal, therefore, was to quantify gait metrics in the fukutin-related protein P448L mutant (P448L) mouse, a recently developed model for LGMD2i. The Noldus CatWalk XT motion capture system was used to identify multiple gait impairments. An average galloping body speed of 35 cm/s for both P448L and C57BL/6 wild-type mice was maintained to ensure differences in gait were due only to strain physiology. Compared to wild-type mice, P448L mice reach maximum contact 10% faster and have 40% more paw surface area during stance. Additionally, force intensity at the time of maximum paw contact is roughly 2-fold higher in P448L mice. Paw swing time is reduced in P448L mice without changes in stride length as a faster swing speed compensates. Gait instability in P448L mice is indicated by 50% higher instances of 3 and 4 paw stance support and conversely, 2-fold fewer instances of single paw stance support and no instance of zero paw support. This leads to lower variation of normal step patterns used and a higher use of uncommon step patterns. Similar anomalies have also been noted in muscular dystrophy patients due to weakness in the hip abductor muscles, producing a Trendelenburg gait characterized by “waddling” and more pronounced shifts to the stance leg. Thus, gait of P448L mice replicates anomalies commonly seen in LGMD2i patients, which is not only potentially valuable for assessing drug efficacy in restoring movement biomechanics, but also for better understanding them. PMID:27627455

  15. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    ERIC Educational Resources Information Center

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  16. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy

    PubMed Central

    Grounds, Miranda D.; Radley, Hannah G.; Lynch, Gordon S.; Nagaraju, Kanneboyina; De Luca, Annamaria

    2008-01-01

    This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD. PMID:18499465

  17. Long-term treatment with naproxcinod significantly improves skeletal and cardiac disease phenotype in the mdx mouse model of dystrophy

    PubMed Central

    Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S; Van Der Meulen, Jack H; Yu, Qing; Phadke, Aditi; Miller, Brittany K; Gordish-Dressman, Heather; Ongini, Ennio; Miglietta, Daniela; Nagaraju, Kanneboyina

    2014-01-01

    In Duchenne muscular dystrophy (DMD) patients and the mouse model of DMD, mdx, dystrophin deficiency causes a decrease and mislocalization of muscle-specific neuronal nitric oxide synthase (nNOSμ), leading to functional impairments. Previous studies have shown that nitric oxide (NO) donation associated with anti-inflammatory action has beneficial effects in dystrophic mouse models. In this study, we have systematically investigated the effects of naproxcinod, an NO-donating naproxen derivative, on the skeletal and cardiac disease phenotype in mdx mice. Four-week-old mdx and C57BL/10 mice were treated with four different concentrations (0, 10, 21 and 41 mg/kg) of naproxcinod and 0.9 mg/kg of prednisolone in their food for 9 months. All mice were subjected to twice-weekly treadmill sessions, and functional and behavioral parameters were measured at 3, 6 and 9 months of treatment. In addition, we evaluated in vitro force contraction, optical imaging of inflammation, echocardiography and blood pressure (BP) at the 9-month endpoint prior to sacrifice. We found that naproxcinod treatment at 21 mg/kg resulted in significant improvement in hindlimb grip strength and a 30% decrease in inflammation in the fore- and hindlimbs of mdx mice. Furthermore, we found significant improvement in heart function, as evidenced by improved fraction shortening, ejection fraction and systolic BP. In addition, the long-term detrimental effects of prednisolone typically seen in mdx skeletal and heart function were not observed at the effective dose of naproxcinod. In conclusion, our results indicate that naproxcinod has significant potential as a safe therapeutic option for the treatment of muscular dystrophies. PMID:24463621

  18. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2016-01-01

    Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.

  19. Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis.

    PubMed

    Cea, Luis A; Puebla, Carlos; Cisterna, Bruno A; Escamilla, Rosalba; Vargas, Aníbal A; Frank, Marina; Martínez-Montero, Paloma; Prior, Carmen; Molano, Jesús; Esteban-Rodríguez, Isabel; Pascual, Ignacio; Gallano, Pía; Lorenzo, Gustavo; Pian, Héctor; Barrio, Luis C; Willecke, Klaus; Sáez, Juan C

    2016-07-01

    Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD. PMID:26803842

  20. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein.

    PubMed

    Ameziane-Le Hir, Sarah; Paboeuf, Gilles; Tascon, Christophe; Hubert, Jean-François; Le Rumeur, Elisabeth; Vié, Véronique; Raguénès-Nicol, Céline

    2016-07-26

    Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe. PMID:27367833

  1. Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis.

    PubMed

    Cea, Luis A; Puebla, Carlos; Cisterna, Bruno A; Escamilla, Rosalba; Vargas, Aníbal A; Frank, Marina; Martínez-Montero, Paloma; Prior, Carmen; Molano, Jesús; Esteban-Rodríguez, Isabel; Pascual, Ignacio; Gallano, Pía; Lorenzo, Gustavo; Pian, Héctor; Barrio, Luis C; Willecke, Klaus; Sáez, Juan C

    2016-07-01

    Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD.

  2. Treatment with human immunoglobulin G improves the early disease course in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Zschüntzsch, Jana; Zhang, Yaxin; Klinker, Florian; Makosch, Gregor; Klinge, Lars; Malzahn, Dörthe; Brinkmeier, Heinrich; Liebetanz, David; Schmidt, Jens

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a severe hereditary myopathy. Standard treatment by glucocorticosteroids is limited because of numerous side effects. The aim of this study was to test immunomodulation by human immunoglobulin G (IgG) as treatment in the experimental mouse model (mdx) of DMD. 2 g/kg human IgG compared to human albumin was injected intraperitoneally in mdx mice at the age of 3 and 7 weeks. Advanced voluntary wheel running parameters were recorded continuously. At the age of 11 weeks, animals were killed so that blood, diaphragm, and lower limb muscles could be removed for quantitative PCR, histological analysis and ex vivo muscle contraction tests. IgG compared to albumin significantly improved the voluntary running performance and reduced muscle fatigability in an ex vivo muscle contraction test. Upon IgG treatment, serum creatine kinase values were diminished and mRNA expression levels of relevant inflammatory markers were reduced in the diaphragm and limb muscles. Macrophage infiltration and myopathic damage were significantly ameliorated in the quadriceps muscle. Collectively, this study demonstrates that, in the early disease course of mdx mice, human IgG improves the running performance and diminishes myopathic damage and inflammation in the muscle. Therefore, IgG may be a promising approach for treatment of DMD. Two monthly intraperitoneal injections of human immunoglobulin G (IgG) improved the early 11-week disease phase of mdx mice. Voluntary running was improved and serum levels of creatine kinase were diminished. In the skeletal muscle, myopathic damage was ameliorated and key inflammatory markers such as mRNA expression of SPP1 and infiltration by macrophages were reduced. The study suggests that IgG could be explored as a potential treatment option for Duchenne muscular dystrophy and that pre-clinical long-term studies should be helpful.

  3. The cone dystrophies.

    PubMed

    Simunovic, M P; Moore, A T

    1998-01-01

    The cone dystrophies are a heterogeneous group of inherited disorders that result in dysfunction of the cone photoreceptors and sometimes their post-receptoral pathways. The major clinical features of cone dystrophy are photophobia, reduced visual acuity and abnormal colour vision. Ganzfeld electroretinography shows reduced or absent cone responses. On the basis of their natural history, the cone dystrophies may be broadly divided into two groups: stationary and progressive cone dystrophies. The stationary cone dystrophies have received more attention, and subsequently our knowledge of their molecular genetic, psychophysical and clinical characteristics is better developed. Various methods of classification have been proposed for the progressive cone dystrophies, but none is entirely satisfactory, largely because the underlying disease mechanisms are poorly understood. Multidisciplinary studies involving clinical assessment, molecular genetics, electrophysiology and psychophysics should lead to an improved understanding of the pathogenesis of these disorders.

  4. Wasting mechanisms in muscular dystrophy.

    PubMed

    Shin, Jonghyun; Tajrishi, Marjan M; Ogura, Yuji; Kumar, Ashok

    2013-10-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  5. A nitrate ester of sedative alkyl alcohol improves muscle function and structure in a murine model of Duchenne muscular dystrophy.

    PubMed

    Wang, Guqi; Lu, Qilong

    2013-10-01

    Nitric oxide (NO) has major physiological and cellular effects on muscle growth, repair, and function. In most muscle biopsies from humans with myopathies, sarcolemma-localized neuronal nitric oxide synthase (nNOS) is either reduced or not detected, particularly in dystrophin-deficient Duchenne muscular dystrophy (DMD). Abnormal NO signaling at the sarcolemmal level is integrally involved in the pathogenesis and accounts, at least in part, for the muscle weakness of DMD. Dystrophic muscle fibers exhibit an increased susceptibility to contraction-induced membrane damage. Muscle relaxants function to prevent muscle wasting by decreasing nerve impulses and reducing calcium influx that regulates tensing or tightening of muscle fibers. We have recently developed a new class of nitric esters that combines the pharmacological functions of NO and muscle relaxation. Here, we report the synthesis and properties of the nitric ester (MMPN) of 2-methyl-2-n-propyl-1,3-propanediol (MPP) and its effect in mdx dystrophic mice, a murine model of DMD. MMPN produced significant improvements in biochemical, pathological, and functional phenotypes in the mouse model. The endurance of exercise was extended by 47% in time to exhaustion and 84% in running distance. Serum CK level was decreased by 30%. Additionally, MMPN decreased intracellular free calcium concentration without causing skeletal muscle weakness. No hepatic or renal toxicities were observed during the study. Our investigations unveil a potential new treatment for muscular diseases.

  6. Targeting latent TGFβ release in muscular dystrophy.

    PubMed

    Ceco, Ermelinda; Bogdanovich, Sasha; Gardner, Brandon; Miller, Tamari; DeJesus, Adam; Earley, Judy U; Hadhazy, Michele; Smith, Lucas R; Barton, Elisabeth R; Molkentin, Jeffery D; McNally, Elizabeth M

    2014-10-22

    Latent transforming growth factor-β (TGFβ) binding proteins (LTBPs) bind to inactive TGFβ in the extracellular matrix. In mice, muscular dystrophy symptoms are intensified by a genetic polymorphism that changes the hinge region of LTBP, leading to increased proteolytic susceptibility and TGFβ release. We have found that the hinge region of human LTBP4 was also readily proteolysed and that proteolysis could be blocked by an antibody to the hinge region. Transgenic mice were generated to carry a bacterial artificial chromosome encoding the human LTBP4 gene. These transgenic mice displayed larger myofibers, increased damage after muscle injury, and enhanced TGFβ signaling. In the mdx mouse model of Duchenne muscular dystrophy, the human LTBP4 transgene exacerbated muscular dystrophy symptoms and resulted in weaker muscles with an increased inflammatory infiltrate and greater LTBP4 cleavage in vivo. Blocking LTBP4 cleavage may be a therapeutic strategy to reduce TGFβ release and activity and decrease inflammation and muscle damage in muscular dystrophy.

  7. Disease course in mdx:utrophin+/− mice: comparison of three mouse models of Duchenne muscular dystrophy

    PubMed Central

    McDonald, Abby A; Hebert, Sadie L; Kunz, Matthew D; Ralles, Steven J; McLoon, Linda K

    2015-01-01

    The mdx mouse model of Duchenne muscular dystrophy (DMD) is used to study disease mechanisms and potential treatments, but its pathology is less severe than DMD patients. Other mouse models were developed to more closely mimic the human disease based on knowledge that upregulation of utrophin has a protective effect in mdx muscle. An mdx:utrophin−/− (dko) mouse was created, which had a severe disease phenotype and a shortened life span. An mdx:utrophin+/− mouse was also created, which had an intermediate disease phenotype compared to the mdx and dko mice. To determine the usefulness of mdx:utrophin+/− mice for long-term DMD studies, limb muscle pathology and function were assessed across the life span of wild-type, mdx, mdx:utrophin+/−, and dko mice. Muscle function assessment, specifically grip duration and rotarod performance, demonstrated that mdx:utrophin+/− mice were weaker for a longer time than mdx mice. Mean myofiber area was smaller in mdx:utrophin+/− mice compared to mdx mice at 12 months. Mdx:utrophin+/− mice had a higher percentage of centrally nucleated myofibers compared to mdx mice at 6 and 12 months. Collagen I and IV density was significantly higher in mdx:utrophin+/− muscle compared to mdx at most ages examined. Generally, mdx:utrophin+/− mice showed an intermediate disease phenotype over a longer time course compared to the mdx and dko mice. While they do not genetically mirror human DMD, mdx:utrophin+/− mice may be a more useful animal model than mdx or dko mice for investigating long-term efficacy of potential treatments when fibrosis or muscle function is the focus. PMID:25921779

  8. Restoration of Vision in the pde6β-deficient Dog, a Large Animal Model of Rod-cone Dystrophy

    PubMed Central

    Petit, Lolita; Lhériteau, Elsa; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Guihal, Caroline; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2012-01-01

    Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment. PMID:22828504

  9. Restoration of vision in the pde6β-deficient dog, a large animal model of rod-cone dystrophy.

    PubMed

    Petit, Lolita; Lhériteau, Elsa; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Guihal, Caroline; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2012-11-01

    Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.

  10. Revertant Fibers in the mdx Murine Model of Duchenne Muscular Dystrophy: An Age- and Muscle-Related Reappraisal

    PubMed Central

    Pigozzo, Sarah R.; Da Re, Lorena; Romualdi, Chiara; Mazzara, Pietro G.; Galletta, Eva; Fletcher, Sue; Wilton, Stephen D.; Vitiello, Libero

    2013-01-01

    Muscles in Duchenne dystrophy patients are characterized by the absence of dystrophin, yet transverse sections show a small percentage of fibers (termed “revertant fibers”) positive for dystrophin expression. This phenomenon, whose biological bases have not been fully elucidated, is present also in the murine and canine models of DMD and can confound the evaluation of therapeutic approaches. We analyzed 11 different muscles in a cohort of 40 mdx mice, the most commonly model used in pre-clinical studies, belonging to four age groups; such number of animals allowed us to perform solid ANOVA statistical analysis. We assessed the average number of dystrophin-positive fibers, both absolute and normalized for muscle size, and the correlation between their formation and the ageing process. Our results indicate that various muscles develop different numbers of revertant fibers, with different time trends; besides, they suggest that the biological mechanism(s) behind dystrophin re-expression might not be limited to the early development phases but could actually continue during adulthood. Importantly, such finding was seen also in cardiac muscle, a fact that does not fit into the current hypothesis of the clonal origin of “revertant” myonuclei from satellite cells. This work represents the largest, statistically significant analysis of revertant fibers in mdx mice so far, which can now be used as a reference point for improving the evaluation of therapeutic approaches for DMD. At the same time, it provides new clues about the formation of revertant fibers/cardiomyocytes in dystrophic skeletal and cardiac muscle. PMID:24015212

  11. Treatment with a Nitric Oxide-Donating NSAID Alleviates Functional Muscle Ischemia in the Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Thomas, Gail D.; Ye, Jianfeng; De Nardi, Claudio; Monopoli, Angela; Ongini, Ennio; Victor, Ronald G.

    2012-01-01

    In patients with Duchenne muscular dystrophy (DMD) and the standard mdx mouse model of DMD, dystrophin deficiency causes loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma, producing functional ischemia when the muscles are exercised. We asked if functional muscle ischemia would be eliminated and normal blood flow regulation restored by treatment with an exogenous nitric oxide (NO)-donating drug. Beginning at 8 weeks of age, mdx mice were fed a standard diet supplemented with 1% soybean oil alone or in combination with a low (15 mg/kg) or high (45 mg/kg) dose of HCT 1026, a NO-donating nonsteroidal anti-inflammatory agent which has previously been shown to slow disease progression in the mdx model. After 1 month of treatment, vasoconstrictor responses to intra-arterial norepinephrine (NE) were compared in resting and contracting hindlimbs. In untreated mdx mice, the usual effect of muscle contraction to attenuate NE-mediated vasoconstriction was impaired, resulting in functional ischemia: NE evoked similar decreases in femoral blood flow velocity and femoral vascular conductance (FVC) in the contracting compared to resting hindlimbs (ΔFVC contraction/ΔFVC rest = 0.88±0.03). NE-induced functional ischemia was unaffected by low dose HCT 1026 (ΔFVC ratio = 0.92±0.04; P>0.05 vs untreated), but was alleviated by the high dose of the drug (ΔFVC ratio = 0.22±0.03; P<0.05 vs untreated or low dose). The beneficial effect of high dose HCT 1026 was maintained with treatment up to 3 months. The effect of the NO-donating drug HCT 1026 to normalize blood flow regulation in contracting mdx mouse hindlimb muscles suggests a putative novel treatment for DMD. Further translational research is warranted. PMID:23139842

  12. Treatment with a nitric oxide-donating NSAID alleviates functional muscle ischemia in the mouse model of Duchenne muscular dystrophy.

    PubMed

    Thomas, Gail D; Ye, Jianfeng; De Nardi, Claudio; Monopoli, Angela; Ongini, Ennio; Victor, Ronald G

    2012-01-01

    In patients with Duchenne muscular dystrophy (DMD) and the standard mdx mouse model of DMD, dystrophin deficiency causes loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma, producing functional ischemia when the muscles are exercised. We asked if functional muscle ischemia would be eliminated and normal blood flow regulation restored by treatment with an exogenous nitric oxide (NO)-donating drug. Beginning at 8 weeks of age, mdx mice were fed a standard diet supplemented with 1% soybean oil alone or in combination with a low (15 mg/kg) or high (45 mg/kg) dose of HCT 1026, a NO-donating nonsteroidal anti-inflammatory agent which has previously been shown to slow disease progression in the mdx model. After 1 month of treatment, vasoconstrictor responses to intra-arterial norepinephrine (NE) were compared in resting and contracting hindlimbs. In untreated mdx mice, the usual effect of muscle contraction to attenuate NE-mediated vasoconstriction was impaired, resulting in functional ischemia: NE evoked similar decreases in femoral blood flow velocity and femoral vascular conductance (FVC) in the contracting compared to resting hindlimbs (ΔFVC contraction/ΔFVC rest=0.88 ± 0.03). NE-induced functional ischemia was unaffected by low dose HCT 1026 (ΔFVC ratio=0.92 ± 0.04; P>0.05 vs untreated), but was alleviated by the high dose of the drug (ΔFVC ratio=0.22 ± 0.03; P<0.05 vs untreated or low dose). The beneficial effect of high dose HCT 1026 was maintained with treatment up to 3 months. The effect of the NO-donating drug HCT 1026 to normalize blood flow regulation in contracting mdx mouse hindlimb muscles suggests a putative novel treatment for DMD. Further translational research is warranted.

  13. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  14. Embryological pigment epithelial dystrophies.

    PubMed

    François, J

    1976-01-01

    The embryological pigment epithelial dystrophies may be due, although rather rarely, to chemical factors, such as antibiotics and thalidomide, to ionizing radiation and to infectious factors, syphilis or viral infections, such as mumps, measles, varicella, or cytomegalovirus. The most frequent and the most typical dystrophy is, nevertheless, the rubella epitheliopathy with its widespread scattered black pigment deposits, found predominantly in the posterior pole, and its unaffected visual functions. The macular dystrophy associated with deaf-mutism is also often due to a maternal rubella infection.

  15. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    PubMed

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  16. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy

    PubMed Central

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H.; Zhang, Keqing; Thomas, Gail D.; Duan, Dongsheng

    2013-01-01

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 1012 viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30–50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients. PMID:23681067

  17. Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients.

    PubMed

    Hathout, Yetrib; Marathi, Ramya L; Rayavarapu, Sree; Zhang, Aiping; Brown, Kristy J; Seol, Haeri; Gordish-Dressman, Heather; Cirak, Sebahattin; Bello, Luca; Nagaraju, Kanneboyina; Partridge, Terry; Hoffman, Eric P; Takeda, Shin'ichi; Mah, Jean K; Henricson, Erik; McDonald, Craig

    2014-12-15

    It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials. PMID:25027324

  18. Intrinsic laryngeal muscles are spared from degeneration in the dy3K/dy3K mouse model of congenital muscular dystrophy type 1A.

    PubMed

    Häger, Mattias; Durbeej, Madeleine

    2009-01-01

    Deficiency of laminin alpha2 chain leads to a severe form of congenital muscular dystrophy (MDC1A). Here, we analyzed whether the intrinsic laryngeal muscles (ILM) are spared in the dy(3K)/dy(3K) mouse model of complete laminin alpha2 chain absence. No muscle degeneration was evident; expression of various laminin chains was similar to that of limb muscles, and sustained integrin alpha7B expression was noted in laminin alpha2 chain-deficient ILM. We conclude that ILM are spared in MDC1A.

  19. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  20. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    PubMed Central

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  1. How Is Muscular Dystrophy Diagnosed?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How is muscular dystrophy diagnosed? Skip sharing on social media links Share this: Page Content The first step in diagnosing muscular dystrophy (MD) is a visit with a health care ...

  2. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy

    PubMed Central

    Lin, Bo; Li, Yang; Han, Lu; Kaplan, Aaron D.; Ao, Ying; Kalra, Spandan; Bett, Glenna C. L.; Rasmusson, Randall L.; Denning, Chris; Yang, Lei

    2015-01-01

    ABSTRACT Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca2+, mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca2+ level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients. PMID:25791035

  3. Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy.

    PubMed

    Carberry, Steven; Zweyer, Margit; Swandulla, Dieter; Ohlendieck, Kay

    2012-08-01

    Duchenne muscular dystrophy is a lethal genetic disease of childhood caused by primary abnormalities in the gene coding for the membrane cytoskeletal protein dystrophin. The mdx mouse is an established animal model of various aspects of X-linked muscular dystrophy and is widely used for studying fundamental mechanisms of dystrophinopathy and testing novel therapeutic approaches to treat one of the most frequent gender-specific diseases in humans. In order to determine global changes in the muscle proteome with the progressive deterioration of mdx tissue with age, we have characterized diaphragm muscle from mdx mice at three ages (8-weeks, 12-months and 22-months) using mass spectrometry-based proteomics. Altered expression levels in diaphragm of 8-week vs. 22-month mice were shown to occur in 11 muscle-associated proteins. Aging in the mdx diaphragm seems to be associated with a drastic increase in the extracellular matrix proteins, collagen and dermatopontin, the molecular chaperone αB-crystallin, and the intermediate filament protein vimentin, suggesting increased accumulation of connective tissue, an enhanced cellular stress response and compensatory stabilization of the weakened membrane cytoskeleton. These proteomic findings establish the aged mdx diaphragm as an excellent model system for studying secondary effects of dystrophin deficiency in skeletal muscle tissue.

  4. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy.

    PubMed

    Lin, Bo; Li, Yang; Han, Lu; Kaplan, Aaron D; Ao, Ying; Kalra, Spandan; Bett, Glenna C L; Rasmusson, Randall L; Denning, Chris; Yang, Lei

    2015-05-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca(2+), mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca(2+) level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients.

  5. Differential roles of MMP-9 in early and late stages of dystrophic muscles in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Shiba, Naoko; Miyazaki, Daigo; Yoshizawa, Takahiro; Fukushima, Kazuhiro; Shiba, Yuji; Inaba, Yuji; Imamura, Michihiro; Takeda, Shin'ichi; Koike, Kenichi; Nakamura, Akinori

    2015-10-01

    Matrix metalloprotease (MMP)-9 is an endopeptidase associated with the pathogenesis of Duchenne muscular dystrophy (DMD). The precise function of MMP-9 in DMD has not been elucidated to date. We investigated the effect of genetic ablation of MMP-9 in the mdx mouse model (mdx/Mmp9(-/-)). At the early disease stage, the muscles of mdx/Mmp9(-/-) mice showed reduced necrosis and neutrophil invasion, accompanied by down-regulation of chemokine MIP-2. In addition, muscle regeneration was enhanced, which coincided with increased macrophage infiltration and upregulation of MCP-1, and resulted in increased muscle strength. The mdx/Mmp9(-/-) mice also displayed accelerated upregulation of osteopontin expression in skeletal muscle at the acute onset phase of dystrophy. However, at a later disease stage, the mice exhibited muscle growth impairment through altered expression of myogenic factors, and increased fibroadipose tissue. These results showed that MMP-9 might have multiple functions during disease progression. Therapy targeting MMP-9 may improve muscle pathology and function at the early disease stage, but continuous inhibition of this protein may result in the accumulation of fibroadipose tissues and reduced muscle strength at the late disease stage.

  6. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy.

    PubMed

    Chalkiadaki, Angeliki; Igarashi, Masaki; Nasamu, Armiyaw Sebastian; Knezevic, Jovana; Guarente, Leonard

    2014-07-01

    SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases.

  7. Computerised dystrophic muscle simulator: prospecting potential therapeutic strategies for muscle dystrophies using a virtual experimental model.

    PubMed

    Garcia, L; Peltékian, E; Pastoret, C; Israeli, D; Armande, N; Parrish, E

    1999-01-01

    Inherited muscle diseases are often characterised by widespread muscle damage in the body, limiting the clinical relevance of cell or gene therapy based upon direct injections into muscles. Recent studies have shown, however, that cells originating from the bone marrow are able to target necrosis-regeneration sites as they occur and, in addition, may also participate in the muscle regeneration after undergoing myogenic differentiation. Here, we present a computerised dystrophic muscle simulator that allows the prospecting of different scenarios of both disease evolution and appropriate employment of blood-borne cells as therapeutic shuttles. It provides the option of examining their use either to transfer a healthy gene into the tissue or to impart substances designed to boost its regeneration. One of the major advantages of this tool is that it offers the opportunity of visualising and composing therapeutic strategies in virtual paradigms in which severe clinical situations, not necessarily available in animal models, can be created. The dystrophic muscle simulator is freely accessible via the Genethon web site (www.genethon.fr), and in the online version via http:@www.wiley.co.uk/genmed.

  8. Occult Macular Dystrophy

    PubMed Central

    Sayman Muslubaş, Işıl; Arf, Serra; Hocaoğlu, Mümin; Özdemir, Hakan; Karaçorlu, Murat

    2016-01-01

    Occult macular dystrophy is an inherited macular dystrophy characterized by a progressive decline of bilateral visual acuity with normal fundus appearance, fluorescein angiogram and full-field electroretinogram. This case report presents a 20-year-old female patient with bilateral progressive decline of visual acuity for six years. Her visual acuity was 3-4/10 in both eyes. Anterior segment and fundus examination, fluorescein angiogram and full-field electroretinogram were normal. She could read all Ishihara pseudoisochromatic plates. Fundus autofluorescence imaging was normal. There was a mild central hyporeflectance on fundus infrared reflectance imaging in both eyes. Reduced foveal thickness and alterations of the photoreceptor inner and outer segment junction were observed by optical coherence tomography in both eyes. Central scotoma was also found by microperimetry and reduced central response was revealed by multifocal electroretinogram in both eyes. These findings are consistent with the clinical characteristics of occult macular dystrophy. PMID:27800268

  9. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model.

    PubMed

    Torrente, Yvan; Camirand, Geoffrey; Pisati, Federica; Belicchi, Marzia; Rossi, Barbara; Colombo, Fabio; El Fahime, Mosthapha; Caron, Nicolas J; Issekutz, Andrew C; Constantin, Gabriela; Tremblay, Jacques P; Bresolin, Nereo

    2003-08-01

    Attempts to repair muscle damage in Duchenne muscular dystrophy (DMD) by transplanting skeletal myoblasts directly into muscles are faced with the problem of the limited migration of these cells in the muscles. The delivery of myogenic stem cells to the sites of muscle lesions via the systemic circulation is a potential alternative approach to treat this disease. Muscle-derived stem cells (MDSCs) were obtained by a MACS(R) multisort method. Clones of MDSCs, which were Sca-1+/CD34-/L-selectin+, were found to adhere firmly to the endothelium of mdx dystrophic muscles after i.v. or i.m. injections. The subpopulation of Sca-1+/CD34- MDSCs expressing L-selectin was called homing MDSCs (HMDSCs). Treatment of HMDSCs with antibodies against L-selectin prevented adhesion to the muscle endothelium. Importantly, we found that vascular endothelium from striate muscle of young mdx mice expresses mucosal addressin cell adhesion molecule-1 (MAdCAM-1), a ligand for L-selectin. Our results showed for the first time that the expression of the adhesion molecule L-selectin is important for muscle homing of MDSCs. This discovery will aid in the improvement of a potential therapy for muscular dystrophy based on the systemic delivery of MDSCs.

  10. Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-α2-deficient congenital muscular dystrophy (MDC1A)

    PubMed Central

    2012-01-01

    Background Laminin-α2-deficient congenital muscular dystrophy (MDC1A) is a severe muscle-wasting disease for which no curative treatment is available. Antagonists of the angiotensin II receptor type 1 (AT1), including the anti-hypertensive drug losartan, have been shown to block also the profibrotic action of transforming growth factor (TGF)-β and thereby ameliorate disease progression in mouse models of Marfan syndrome. Because fibrosis and failure of muscle regeneration are the main reasons for the severe disease course of MDC1A, we tested whether L-158809, an analog derivative of losartan, could ameliorate the dystrophy in dyW/dyW mice, the best-characterized model of MDC1A. Methods L-158809 was given in food to dyW/dyW mice at the age of 3 weeks, and the mice were analyzed at the age of 6 to 7 weeks. We examined the effect of L-158809 on muscle histology and on muscle regeneration after injury as well as the locomotor activity and muscle strength of the mice. Results We found that TGF-β signaling in the muscles of the dyW/dyW mice was strongly increased, and that L-158809 treatment suppressed this signaling. Consequently, L-158809 reduced fibrosis and inflammation in skeletal muscle of dyW/dyW mice, and largely restored muscle regeneration after toxin-induced injury. Mice showed improvement in their locomotor activity and grip strength, and their body weight was significantly increased. Conclusion These data provide evidence that AT1 antagonists ameliorate several hallmarks of MDC1A in dyW/dyW mice, the best-characterized mouse model for this disease. Because AT1 antagonists are well tolerated in humans and widely used in clinical practice, these results suggest that losartan may offer a potential future treatment of patients with MDC1A. PMID:22943509

  11. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism.

    PubMed

    Blanchet, Emilie; Annicotte, Jean-Sébastien; Pradelli, Ludivine A; Hugon, Gérald; Matecki, Stéfan; Mornet, Dominique; Rivier, François; Fajas, Lluis

    2012-09-01

    E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.

  12. Genetics Home Reference: tibial muscular dystrophy

    MedlinePlus

    ... Names for This Condition tardive tibial muscular dystrophy TMD Udd distal myopathy Udd-Markesbery muscular dystrophy Udd ... titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord. 2008 Dec;18(12):922-8. ...

  13. Therapeutic advances in muscular dystrophy

    PubMed Central

    Leung, Doris G; Wagner, Kathryn R

    2013-01-01

    The muscular dystrophies comprise a heterogeneous group of genetic disorders that produce progressive skeletal muscle weakness and wasting. There has been rapid growth and change in our understanding of these disorders in recent years, and advances in basic science are being translated into increasing numbers of clinical trials. This review will discuss therapeutic developments in 3 of the most common forms of muscular dystrophy: Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, and myotonic dystrophy. Each of these disorders represents a different class of genetic disease (monogenic, epigenetic, and repeat expansion disorders), and the approach to therapy addresses the diverse and complex molecular mechanisms involved in these diseases. The large number of novel pharmacologic agents in development with good biologic rationale and strong proof of concept suggests there will be an improved quality of life for individuals with muscular dystrophy. PMID:23939629

  14. Progressive cone dystrophy.

    PubMed Central

    Ripps, H; Noble, K G; Greenstein, V C; Siegel, I M; Carr, R E

    1987-01-01

    Psychophysical, reflectometric, and electrophysiological studies were performed on four members of a dominant pedigree with progressive cone dystrophy. The two youngest individuals were asymptomatic at the initial examination, and none of the subjects complained of problems associated with night vision. Absent or grossly reduced cone-mediated ERG responses revealed the widespread loss of cone function. Moderate elevations (1 log unit) in absolute threshold together with reductions in rhodopsin levels in the midperipheral retina provided evidence of a mild impairment of the rod system also, although not to the degree seen in a cone-rod dystrophy. The progressive nature of the disease was apparent from the case histories and the changes in visual performance that occurred on re-test after a 5-year interval. Likewise, the results of incremental threshold measurements at several retinal loci suggested that peripheral cones may be affected earlier and more severely than those in the central retina. PMID:3502298

  15. Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Statland, Jeffrey M.; Tawil, Rabi

    2014-01-01

    Facioscapulohumeral muscular dystrophy (FSHSD) is one of the most common adult muscular dystrophies and is divided into types 1 and 2 based on genetic mutation. Clinically both FSHD types 1 and 2 demonstrate often asymmetric and progressive muscle weakness affecting initially the face, shoulder, and arms, followed by the distal and then proximal lower extremities later in the disease course. Approximately 95% of patients, termed FSHD1, have a deletion of a key number of repetitive elements on chromosome 4q35. The remaining 5%, termed FSHD2, have no deletion on chromosome 4q35. Nevertheless, both FSHD types 1 and 2 share a common downstream mechanism making it possible that future disease-directed therapies will be effective for both FSHD types 1 and 2. PMID:25037087

  16. Sarcoglycans in muscular dystrophy.

    PubMed

    Hack, A A; Groh, M E; McNally, E M

    Muscular dystrophy is a heterogeneous genetic disease that affects skeletal and cardiac muscle. The genetic defects associated with muscular dystrophy include mutations in dystrophin and its associated glycoproteins, the sarcoglycans. Furthermore, defects in dystrophin have been shown to cause a disruption of the normal expression and localization of the sarcoglycan complex. Thus, abnormalities of sarcoglycan are a common molecular feature in a number of dystrophies. By combining biochemistry, molecular cell biology, and human and mouse genetics, a growing understanding of the sarcoglycan complex is emerging. Sarcoglycan appears to be an important, independent mediator of dystrophic pathology in both skeletal muscle and heart. The absence of sarcoglycan leads to alterations of membrane permeability and apoptosis, two shared features of a number of dystrophies. beta-sarcoglycan and delta-sarcoglycan may form the core of the sarcoglycan subcomplex with alpha- and gamma-sarcoglycan less tightly associated to this core. The relationship of epsilon-sarcoglycan to the dystrophin-glycoprotein complex remains unclear. Animals lacking alpha-, gamma- and delta-sarcoglycan have been described and provide excellent opportunities for further investigation of the function of sarcoglycan. Dystrophin with dystroglycan and laminin may be a mechanical link between the actin cytoskeleton and the extracellular matrix. By positioning itself in close proximity to dystrophin and dystroglycan, sarcoglycan may function to couple mechanical and chemical signals in striated muscle. Sarcoglycan may be an independent signaling or regulatory module whose position in the membrane is determined by dystrophin but whose function is carried out independent of the dystrophin-dystroglycan-laminin axis.

  17. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes.

    PubMed

    Chaussenot, Rémi; Edeline, Jean-Marc; Le Bec, Benoit; El Massioui, Nicole; Laroche, Serge; Vaillend, Cyrille

    2015-10-01

    Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks. PMID:26190833

  18. Muscle diseases: the muscular dystrophies.

    PubMed

    McNally, Elizabeth M; Pytel, Peter

    2007-01-01

    Dystrophic muscle disease can occur at any age. Early- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle. This chapter reviews the basic structural properties of muscle and genetic mechanisms that lead to myopathy and muscular dystrophies that affect all age groups.

  19. Emerging strategies for cell and gene therapy of the muscular dystrophies

    PubMed Central

    Muir, Lindsey A.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications. PMID:19555515

  20. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy

    PubMed Central

    Chen, Guiying; Masuda, Akio; Konishi, Hiroyuki; Ohkawara, Bisei; Ito, Mikako; Kinoshita, Masanobu; Kiyama, Hiroshi; Matsuura, Tohru; Ohno, Kinji

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is caused by abnormal expansion of CTG repeats in the 3′ untranslated region of the DMPK gene. Expanded CTG repeats are transcribed into RNA and make an aggregate with a splicing regulator, MBNL1, in the nucleus, which is called the nuclear foci. The nuclear foci sequestrates and downregulates availability of MBNL1. Symptomatic treatments are available for DM1, but no rational therapy is available. In this study, we found that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone (PBZ), upregulated the expression of MBNL1 in C2C12 myoblasts as well as in the HSALR mouse model for DM1. In the DM1 mice model, PBZ ameliorated aberrant splicing of Clcn1, Nfix, and Rpn2. PBZ increased expression of skeletal muscle chloride channel, decreased abnormal central nuclei of muscle fibers, and improved wheel-running activity in HSALR mice. We found that the effect of PBZ was conferred by two distinct mechanisms. First, PBZ suppressed methylation of an enhancer region in Mbnl1 intron 1, and enhanced transcription of Mbnl1 mRNA. Second, PBZ attenuated binding of MBNL1 to abnormally expanded CUG repeats in cellulo and in vitro. Our studies suggest that PBZ is a potent therapeutic agent for DM1 that upregulates availability of MBNL1. PMID:27126921

  1. Cone rod dystrophies.

    PubMed

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  2. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy

    PubMed Central

    Kayali, Refik; Ku, Jin-Mo; Khitrov, Gregory; Jung, Michael E.; Prikhodko, Olga; Bertoni, Carmen

    2012-01-01

    Molecules that induce ribosomal read-through of nonsense mutations in mRNA and allow production of a full-length functional protein hold great therapeutic potential for the treatment of many genetic disorders. Two such read-through compounds, RTC13 and RTC14, were recently identified by a luciferase-independent high-throughput screening assay and were shown to have potential therapeutic functions in the treatment of nonsense mutations in the ATM and the dystrophin genes. We have now tested the ability of RTC13 and RTC14 to restore dystrophin expression into skeletal muscles of the mdx mouse model for Duchenne muscular dystrophy (DMD). Direct intramuscular injection of compound RTC14 did not result in significant read-through activity in vivo and demonstrated the levels of dystrophin protein similar to those detected using gentamicin. In contrast, significant higher amounts of dystrophin were detected after intramuscular injection of RTC13. When administered systemically, RTC13 was shown to partially restore dystrophin protein in different muscle groups, including diaphragm and heart, and improved muscle function. An increase in muscle strength was detected in all treated animals and was accompanied by a significant decrease in creatine kinase levels. These studies establish the therapeutic potential of RTC13 in vivo and advance this newly identified compound into preclinical application for DMD. PMID:22692682

  3. Muscleblind1, but not Dmpk or Six5, contributes to a complex phenotype of muscular and motivational deficits in mouse models of myotonic dystrophy.

    PubMed

    Matynia, Anna; Ng, Carina Hoi; Dansithong, Warunee; Chiang, Andy; Silva, Alcino J; Reddy, Sita

    2010-03-25

    Assessment of molecular defects that underlie cognitive deficits observed in mendelian disorders provides a unique opportunity to identify key regulators of human cognition. Congenital Myotonic Dystrophy 1 (cDM1), a multi-system disorder is characterized by both cognitive deficits and a spectrum of behavioral abnormalities, which include visuo-spatial memory deficits, anxiety and apathy. Decreased levels of DMPK (Dystrophia Myotonica-protein kinase), SIX5, a transcription factor or MBNL1 (Muscleblind-like 1), an RNA splice regulator have been demonstrated to contribute to distinct features of cDM1. Mouse strains in which either Dmpk, Six5 or Mbnl1 are inactivated were therefore studied to determine the relative contribution of each gene to these cognitive functions. The open field and elevated plus maze tasks were used to examine anxiety, sucrose consumption was used to assess motivation, whereas the water maze and context fear conditioning were used to examine spatial learning and memory. Cognitive and behavioral abnormalities were observed only in Mbnl1 deficient mice, which demonstrate behavior consistent with motivational deficits in the Morris water maze, a complex visuo-spatial task and in the sucrose consumption test for anhedonia. All three models of cDM1 exhibit normal spatial learning and memory. These data identify MBNL1 as a potential regulator of emotional state with decreased MBNL1 levels underlying the motivational deficits observed in cDM1.

  4. Magnetic Resonance Imaging Is Sensitive to Pathological Amelioration in a Model for Laminin-Deficient Congenital Muscular Dystrophy (MDC1A)

    PubMed Central

    Vohra, Ravneet; Accorsi, Anthony; Kumar, Ajay; Walter, Glenn; Girgenrath, Mahasweta

    2015-01-01

    Purpose To elucidate the reliability of MRI as a non-invasive tool for assessing in vivo muscle health and pathological amelioration in response to Losartan (Angiotensin II Type 1 receptor blocker) in DyW mice (mouse model for Laminin-deficient Congenital Muscular Dystrophy Type 1A). Methods Multiparametric MR quantifications along with histological/biochemical analyses were utilized to measure muscle volume and composition in untreated and Losartan-treated 7-week old DyW mice. Results MRI shows that DyW mice have significantly less hind limb muscle volume and areas of hyperintensity that are absent in WT muscle. DyW mice also have significantly elevated muscle levels (suggestive of inflammation and edema). Muscle T2 returned to WT levels in response to Losartan treatment. When considering only muscle pixels without T2 elevation, DyW T2 levels are significantly lower than WT (suggestive of fibrosis) whereas Losartan-treated animals do not demonstrate this decrease in muscle T2. MRI measurements suggestive of elevated inflammation and fibrosis corroborate with increased Mac-1 positive cells as well as increased Picrosirius red staining/COL1a gene expression that is returned to WT levels in response to Losartan. Conclusions MRI is sensitive to and tightly corresponds with pathological changes in DyW mice and thus is a viable and effective non-invasive tool for assessing pathological changes. PMID:26379183

  5. Increased sarcolipin expression and decreased sarco(endo)plasmic reticulum Ca2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy.

    PubMed

    Schneider, Joel S; Shanmugam, Mayilvahanan; Gonzalez, James Patrick; Lopez, Henderson; Gordan, Richard; Fraidenraich, Diego; Babu, Gopal J

    2013-12-01

    Abnormal intracellular Ca(2+) handling is an important factor in the progressive functional decline of dystrophic muscle. In the present study, we investigated the function of sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase (SERCA) in various dystrophic muscles of mouse models of Duchenne muscular dystrophy. Our studies show that the protein expression of sarcolipin, a key regulator of the SERCA pump is abnormally high and correlates with decreased maximum velocity of SR Ca(2+) uptake in the soleus, diaphragm and quadriceps of mild (mdx) and severe (mdx:utr-/-) dystrophic mice. These changes are more pronounced in the muscles of mdx:utr-/- mice. We also found increased expression of SERCA2a and calsequestrin specifically in the dystrophic quadriceps. Immunostaining analysis further showed that SERCA2a expression is associated both with fibers expressing slow-type myosin and regenerating fibers expressing embryonic myosin. Together, our data suggest that sarcolipin upregulation is a common secondary alteration in all dystrophic muscles and contributes to the abnormal elevation of intracellular Ca(2+) concentration via SERCA inhibition.

  6. Congenital myopathies and muscular dystrophies.

    PubMed

    Gilbreath, Heather R; Castro, Diana; Iannaccone, Susan T

    2014-08-01

    The congenital muscular dystrophies (CMD) and myopathies (CM) are a diverse group of diseases that share features such as early onset of symptoms (in the first year of life), genetic causes, and high risks for restrictive lung disease and orthopedic deformities. Understanding for disease mechanism is available and a fairly well-structured genotype-phenotype correlation for all the CMDs and CMs is now available. To best illustrate the clinical spectrum and diagnostic algorithm for these diseases, this article presents 5 cases, including Ullrich congenital muscular dystrophy, nemaline myopathy, centronuclear myopathy, merosin deficiency congenital muscular dystrophy, and core myopathy.

  7. Congenital myopathies and muscular dystrophies.

    PubMed

    Gilbreath, Heather R; Castro, Diana; Iannaccone, Susan T

    2014-08-01

    The congenital muscular dystrophies (CMD) and myopathies (CM) are a diverse group of diseases that share features such as early onset of symptoms (in the first year of life), genetic causes, and high risks for restrictive lung disease and orthopedic deformities. Understanding for disease mechanism is available and a fairly well-structured genotype-phenotype correlation for all the CMDs and CMs is now available. To best illustrate the clinical spectrum and diagnostic algorithm for these diseases, this article presents 5 cases, including Ullrich congenital muscular dystrophy, nemaline myopathy, centronuclear myopathy, merosin deficiency congenital muscular dystrophy, and core myopathy. PMID:25037085

  8. Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres.

    PubMed

    Trollet, Capucine; Anvar, Seyed Yahya; Venema, Andrea; Hargreaves, Iain P; Foster, Keith; Vignaud, Alban; Ferry, Arnaud; Negroni, Elisa; Hourde, Christophe; Baraibar, Martin A; 't Hoen, Peter A C; Davies, Janet E; Rubinsztein, David C; Heales, Simon J; Mouly, Vincent; van der Maarel, Silvère M; Butler-Browne, Gillian; Raz, Vered; Dickson, George

    2010-06-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)(8-13) expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.

  9. Alternative splicing and muscular dystrophy

    PubMed Central

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2013-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle. PMID:20603608

  10. Clinical Trials in Retinal Dystrophies.

    PubMed

    Grob, Seanna R; Finn, Avni; Papakostas, Thanos D; Eliott, Dean

    2016-01-01

    Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field - the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges. PMID:26957839

  11. Fuchs’ corneal dystrophy

    PubMed Central

    Eghrari, Allen O; Gottsch, John D

    2010-01-01

    Fuchs’ corneal dystrophy (FCD) is a progressive, hereditary disease of the cornea first described a century ago by the Austrian ophthalmologist Ernst Fuchs. Patients often present in the fifth to sixth decade of life with blurry morning vision that increases in duration as the disease progresses. Primarily a condition of the posterior cornea, characteristic features include the formation of focal excrescences of Descemet membrane termed ‘guttae’, loss of endothelial cell density and end-stage disease manifested by corneal edema and the formation of epithelial bullae. Recent advances in our understanding of the genetic and pathophysiological mechanisms of the disease, as well as the application of new imaging modalities and less invasive surgical procedures, present new opportunities for improved outcomes among patients with FCD. PMID:20625449

  12. What Are the Treatments for Muscular Dystrophy?

    MedlinePlus

    ... Resources and Publications What are the treatments for muscular dystrophy? Skip sharing on social media links Share this: ... available to stop or reverse any form of muscular dystrophy (MD). Instead, certain therapies and medications aim to ...

  13. Modifier Genes and their effect on Duchenne Muscular Dystrophy

    PubMed Central

    Vo, Andy H.; McNally, Elizabeth M.

    2015-01-01

    Purpose of Review Recently, genetic pathways that modify the clinical severity of Duchenne Muscular Dystrophy have been identified. The pathways uncovered as modifiers are useful to predict prognosis and also elucidate molecular signatures that can be manipulated therapeutically. Recent Findings Modifiers have been identified using combinations of transcriptome and genome profiling. Osteopontin, encoded by the SPP1 gene, was found using gene expression profiling. LTBP4, encoding latent transforming growth factor β binding protein 4 was initially discovered using a genomewide screen in mice and then validated in cohorts of Duchenne Muscular Dystrophy patients. These two pathways converge in that they both regulate TGFβ. A third modifier, Anxa6 that specifies annexin A6, is a calcium binding protein has been identified using mouse models, and regulates the injury pathway and sarcolemmal resealing. Summary Genetic modifiers can serve as biomarkers for outcomes in Duchenne Muscular Dystrophy. Modifiers can alter strength and ambulation in muscular dystrophy, and these same features can be used as endpoints used in clinical trials. Moreover, because genetic modifiers can influence outcomes, these genetic markers should be considered when stratifying results in muscular dystrophy. PMID:26263473

  14. Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy*

    PubMed Central

    Mohamed, Junaith S.; Hajira, Ameena; Lopez, Michael A.; Boriek, Aladin M.

    2015-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of genetic and neuromuscular disorders, which result in severe loss of motor ability and skeletal muscle mass and function. Aberrant mechanotransduction and dysregulated-microRNA pathways are often associated with the progression of MD. Here, we hypothesized that dysregulation of mechanosensitive microRNAs (mechanomiRs) in dystrophic skeletal muscle plays a major role in the progression of MD. To test our hypothesis, we performed a genome-wide expression profile of anisotropically regulated mechanomiRs and bioinformatically analyzed their target gene networks. We assessed their functional roles in the advancement of MD using diaphragm muscles from mdm (MD with myositis) mice, an animal model of human tibial MD (titinopathy), and their wild-type littermates. We were able to show that ex vivo anisotropic mechanical stretch significantly alters the miRNA expression profile in diaphragm muscles from WT and mdm mice; as a result, some of the genes associated with MDs are dysregulated in mdm mice due to differential regulation of a distinct set of mechanomiRs. Interestingly, we found a contrasting expression pattern of the highly expressed let-7 family mechanomiRs, let-7e-5p and miR-98–5p, and their target genes associated with the extracellular matrix and TGF-β pathways, respectively, between WT and mdm mice. Gain- and loss-of-function analysis of let-7e-5p in myocytes isolated from the diaphragms of WT and mdm mice confirmed Col1a1, Col1a2, Col3a1, Col24a1, Col27a1, Itga1, Itga4, Scd1, and Thbs1 as target genes of let-7e-5p. Furthermore, we found that miR-98 negatively regulates myoblast differentiation. Our study therefore introduces additional biological players in the regulation of skeletal muscle structure and myogenesis that may contribute to unexplained disorders of MD. PMID:26272747

  15. Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy.

    PubMed

    Mohamed, Junaith S; Hajira, Ameena; Lopez, Michael A; Boriek, Aladin M

    2015-10-01

    Muscular dystrophies (MDs) are a heterogeneous group of genetic and neuromuscular disorders, which result in severe loss of motor ability and skeletal muscle mass and function. Aberrant mechanotransduction and dysregulated-microRNA pathways are often associated with the progression of MD. Here, we hypothesized that dysregulation of mechanosensitive microRNAs (mechanomiRs) in dystrophic skeletal muscle plays a major role in the progression of MD. To test our hypothesis, we performed a genome-wide expression profile of anisotropically regulated mechanomiRs and bioinformatically analyzed their target gene networks. We assessed their functional roles in the advancement of MD using diaphragm muscles from mdm (MD with myositis) mice, an animal model of human tibial MD (titinopathy), and their wild-type littermates. We were able to show that ex vivo anisotropic mechanical stretch significantly alters the miRNA expression profile in diaphragm muscles from WT and mdm mice; as a result, some of the genes associated with MDs are dysregulated in mdm mice due to differential regulation of a distinct set of mechanomiRs. Interestingly, we found a contrasting expression pattern of the highly expressed let-7 family mechanomiRs, let-7e-5p and miR-98-5p, and their target genes associated with the extracellular matrix and TGF-β pathways, respectively, between WT and mdm mice. Gain- and loss-of-function analysis of let-7e-5p in myocytes isolated from the diaphragms of WT and mdm mice confirmed Col1a1, Col1a2, Col3a1, Col24a1, Col27a1, Itga1, Itga4, Scd1, and Thbs1 as target genes of let-7e-5p. Furthermore, we found that miR-98 negatively regulates myoblast differentiation. Our study therefore introduces additional biological players in the regulation of skeletal muscle structure and myogenesis that may contribute to unexplained disorders of MD. PMID:26272747

  16. The Angiotensin Converting Enzyme Inhibitor Lisinopril Improves Muscle Histopathology but not Contractile Function in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Lowe, Jeovanna; Wodarcyk, Andrew J.; Floyd, Kyle T.; Rastogi, Neha; Schultz, Eric J.; Swager, Sarah A.; Chadwick, Jessica A.; Tran, Tam; Raman, Subha V.

    2016-01-01

    Background Angiotensin converting enzyme inhibitors (ACEi) are the current standard of care treatment for cardiac dysfunction in Duchenne muscular dystrophy patients. We previously showed treatment with an ACEi plus mineralocorticoid receptor (MR) antagonist improves limb and respiratory skeletal muscles, in addition to cardiac muscles, in a dystrophic mouse model at 20 weeks-of-age. Objective To determine whether previously observed preclinical benefits of an ACEi plus MR antagonist on dystrophic skeletal muscles can be reproduced by increasing ACEi dosage alone. We also compared functional and histological outcome measures at 10 and 20 weeks-of-age. Methods Dystrophin deficient utrophin haplo-insufficient (utrn+/−; mdx) “het” mice were treated with 10, 20, or 50 mg/kg × day of the ACEi lisinopril from 4 to 10 weeks-of-age via water bottles and compared with C57BL/10 wild-type control mice and untreated hets. Data from 10 week-old het mice were also compared to data collected from an untreated het group at 20 weeks-old. In vivo cardiac and grip strength measurements, in vitro diaphragm and extensor digitorum longus muscle force measurements, and histopathological analyses were performed. One-way ANOVA followed by Dunnett post hoc comparison was used to determine significance. Results ACEi treatment reduced skeletal muscle damage but had no significant effect on muscle force. Body weight, heart rate, grip strength and blood pressure were unaffected by treatment. Limb muscle histopathology was more informative at 10 than 20 weeks-of-age. Conclusions These results suggest increased ACEi dosage alone cannot improve all dystrophic parameters. Further optimization of MR antagonists in 20 week-old mice is warranted. PMID:27110493

  17. Muscular dystrophy in a dog resembling human becker muscular dystrophy.

    PubMed

    Baroncelli, A B; Abellonio, F; Pagano, T B; Esposito, I; Peirone, B; Papparella, S; Paciello, O

    2014-05-01

    A 3-year-old, male Labrador retriever dog was presented with clinical signs of progressive exercise intolerance, bilateral elbow extension, rigidity of the forelimbs, hindlimb flexion and kyphosis. Microscopical examination of muscle tissue showed marked variability in myofibre size, replacement of muscle with mature adipose tissue and degeneration/regeneration of muscle fibres, consistent with muscular dystrophy. Immunohistochemical examination for dystrophin showed markedly reduced labelling with monoclonal antibodies specific for the rod domain and the carboxy-terminal of dystrophin, while expression of β-sarcoglycan, γ-sarcoglycan and β-dystroglycan was normal. Immunoblotting revealed a truncated dystrophin protein of approximately 135 kDa. These findings supported a diagnosis of congenital canine muscular dystrophy resembling Becker muscular dystrophy in man.

  18. Determinants of the incidence of Duchenne muscular dystrophy

    PubMed Central

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked disorder, is the most common muscular dystrophy with an incidence in boys of about 200 per million births. It presents in early childhood leading to death in early teens. Its relatively high incidence and severity have stimulated many studies from epidemiological to curative. Recent advances in molecular biology have opened up the possibility of carrier identification and potential reduction of the incidence of cases. This paper gives a population genetics model which can be used to predict the reduction in incidence. PMID:26697447

  19. Hypothalamic hypogonadism in myotonic dystrophy.

    PubMed

    Ulloa-Aguirre, A; Larrea, F; Shkurovich, M

    1981-06-01

    Hypothalamic-pituitary-ovarian axis function was assessed in a postpubertal female patient with myotonic dystrophy and secondary amenorrhea. The results suggested a hypothalamic basis for the amenorrhea, confirming previous reports regarding the nature of gonadal failure in women with this multisystemic disorder.

  20. Dasatinib as a treatment for Duchenne muscular dystrophy.

    PubMed

    Lipscomb, Leanne; Piggott, Robert W; Emmerson, Tracy; Winder, Steve J

    2016-01-15

    Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.

  1. Genetics Home Reference: Emery-Dreifuss muscular dystrophy

    MedlinePlus

    ... Health Conditions Emery-Dreifuss muscular dystrophy Emery-Dreifuss muscular dystrophy Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Emery-Dreifuss muscular dystrophy is a condition that chiefly affects muscles used ...

  2. Genetics Home Reference: Duchenne and Becker muscular dystrophy

    MedlinePlus

    ... Duchenne and Becker muscular dystrophy Duchenne and Becker muscular dystrophy Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Muscular dystrophies are a group of genetic conditions characterized by ...

  3. A model to estimate the expression of the dystrophin gene in muscle from female Becker muscular dystrophy carriers.

    PubMed Central

    Vainzof, M; Passos-Bueno, M R; Pavanello, R C; Schreiber, R; Zatz, M

    1992-01-01

    The purpose of the present investigation was to assess the possibility of building a model to estimate, through dystrophin western blotting analysis, the expression of the DMD/BMD gene in muscle from heterozygotes. Dystrophin was analysed by mixing in increasing proportions (from 0% to 100%) aliquots of solubilised muscle from BMD patients with a qualitatively abnormal dystrophin and a normal male control. The intensity of the abnormal bands, which could be detected starting with 20% of muscle from the BMD patient, increased progressively according to the affected muscle concentration. In five obligate BMD carriers, two dystrophin bands were observed (corresponding to the products from the X bearing the normal and the BMD alleles), even among those with normal serum enzyme activities. Surprisingly, in the four obligate BMD carriers related to patients in whom an additional dystrophin fragment of 250 kd was present (two of them with raised serum enzymes), this band could not be seen, suggesting that the stability or the mechanism responsible for the synthesis of abnormal dystrophin products differs in heterozygotes compared to affected patients. Images PMID:1640426

  4. EPA protects against muscle damage in the mdx mouse model of Duchenne muscular dystrophy by promoting a shift from the M1 to M2 macrophage phenotype.

    PubMed

    Carvalho, Samara Camaçari de; Apolinário, Leticia Montanholi; Matheus, Selma Maria Michelin; Santo Neto, Humberto; Marques, Maria Julia

    2013-11-15

    In dystrophic mdx mice and in Duchenne muscular dystrophy, inflammation contributes to myonecrosis. Previously, we demonstrated that eicosapentaenoic acid (EPA) decreased inflammation and necrosis in dystrophic muscle. In the present study, we examined the effects of EPA and the corticoid deflazacort (DFZ) as modulators of M1 (iNOS-expressing cells) and M2 (CD206-expressing cells) macrophages. Mdx mice (14 days old) received EPA or DFZ for 16 days. The diaphragm, biceps brachii and quadriceps muscles were studied. Immunofluorescence, immunoblotting and ELISA assays showed that EPA increased interleucin-10, reduced interferon-γ and was more effective than DFZ in promoting a shift from M1 to M2.

  5. siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy

    PubMed Central

    Bolduc, Véronique; Zou, Yaqun; Ko, Dayoung; Bönnemann, Carsten G

    2014-01-01

    Congenital muscular dystrophy type Ullrich (UCMD) is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi) as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA) oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT) construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies. PMID:24518369

  6. Mutations in IMPG1 Cause Vitelliform Macular Dystrophies

    PubMed Central

    Manes, Gaël; Meunier, Isabelle; Avila-Fernández, Almudena; Banfi, Sandro; Le Meur, Guylène; Zanlonghi, Xavier; Corton, Marta; Simonelli, Francesca; Brabet, Philippe; Labesse, Gilles; Audo, Isabelle; Mohand-Said, Saddek; Zeitz, Christina; Sahel, José-Alain; Weber, Michel; Dollfus, Hélène; Dhaenens, Claire-Marie; Allorge, Delphine; De Baere, Elfride; Koenekoop, Robert K.; Kohl, Susanne; Cremers, Frans P.M.; Hollyfield, Joe G.; Sénéchal, Audrey; Hebrard, Maxime; Bocquet, Béatrice; Ayuso García, Carmen; Hamel, Christian P.

    2013-01-01

    Vitelliform macular dystrophies (VMD) are inherited retinal dystrophies characterized by yellow, round deposits visible upon fundus examination and encountered in individuals with juvenile Best macular dystrophy (BMD) or adult-onset vitelliform macular dystrophy (AVMD). Although many BMD and some AVMD cases harbor mutations in BEST1 or PRPH2, the underlying genetic cause remains unknown for many affected individuals. In a large family with autosomal-dominant VMD, gene mapping and whole-exome sequencing led to the identification of a c.713T>G (p.Leu238Arg) IMPG1 mutation, which was subsequently found in two other families with autosomal-dominant VMD and the same phenotype. IMPG1 encodes the SPACR protein, a component of the rod and cone photoreceptor extracellular matrix domains. Structural modeling indicates that the p.Leu238Arg substitution destabilizes the conserved SEA1 domain of SPACR. Screening of 144 probands who had various forms of macular dystrophy revealed three other IMPG1 mutations. Two individuals from one family affected by autosomal-recessive VMD were homozygous for the splice-site mutation c.807+1G>T, and two from another family were compound heterozygous for the mutations c.461T>C (p.Leu154Pro) and c.1519C>T (p.Arg507∗). Most cases had a normal or moderately decreased electrooculogram Arden ratio. We conclude that IMPG1 mutations cause both autosomal-dominant and -recessive forms of VMD, thus indicating that impairment of the interphotoreceptor matrix might be a general cause of VMD. PMID:23993198

  7. Hypothesis: neoplasms in myotonic dystrophy

    PubMed Central

    Hilbert, James E.; Martens, William; Thornton, Charles A.; Moxley, Richard T.; Greene, Mark H.

    2011-01-01

    Tumorigenesis is a multi-step process due to an accumulation of genetic mutations in multiple genes in diverse pathways which ultimately lead to loss of control over cell growth. It is well known that inheritance of rare germline mutations in genes involved in tumorigenesis pathways confer high lifetime risk of neoplasia in affected individuals. Furthermore, a substantial number of multiple malformation syndromes include cancer susceptibility in their phenotype. Studies of the mechanisms underlying these inherited syndromes have added to the understanding of both normal development and the pathophysiology of carcinogenesis. Myotonic dystrophy (DM) represents a group of autosomal dominant, multisystemic diseases that share the clinical features of myotonia, muscle weakness, and early-onset cataracts. Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) result from unstable nucleotide repeat expansions in their respective genes. There have been multiple reports of tumors in individuals with DM, most commonly benign calcifying cutaneous tumors known as pilomatricomas. We provide a summary of the tumors reported in DM and a hypothesis for a possible mechanism of tumorigenesis. We hope to stimulate further study into the potential role of DM genes in tumorigenesis, and help define DM pathogenesis, and facilitate developing novel treatment modalities. PMID:19642006

  8. Cardiac transplantation in Becker muscular dystrophy.

    PubMed

    Quinlivan, R M; Dubowitz, V

    1992-01-01

    Becker muscular dystrophy is associated with abnormal cardiac features in about 75% of cases; up to one-third will develop ventricular dilatation leading to congestive cardiac failure. As this form of muscular dystrophy is relatively benign, failure to respond to medical treatment warrants assessment for cardiac transplantation.

  9. Corneal dystrophy in the dog and cat.

    PubMed

    Cooley, P L; Dice, P F

    1990-05-01

    Two types of epithelial dystrophy have been described in dogs, one each in the Boxer and Shetland Sheepdog breeds, both of which can be associated with corneal erosions. Medical therapy is recommended when erosions or tear film abnormalities are present. Stromal dystrophies documented in dogs appear to be a primary lipid deposition in various layers of the stroma, depending on the breed. Stromal dystrophies seldom lead to loss of vision, but vision loss has been observed in middle aged Airedale Terriers and aged Siberian Huskies. Treatment is usually unnecessary. The dog demonstrates two types of endothelial dystrophy, one of which (posterior polymorphous dystrophy in the American Cocker Spaniel) does not lead to corneal edema. Endothelial dystrophy observed in the Boston Terrier, Chihuahua, and other breeds is associated with progressive corneal edema, which can lead to bullous keratopathy and corneal erosions. Stromal and endothelial dystrophies, both of which are associated with rapid progression of corneal edema, occur rarely in the cat. Treatment of dystrophies with progressive corneal edema is symptomatic and palliative.

  10. Accelerated Accumulation of Lipofuscin Pigments in the RPE of a Mouse Model for ABCA4-Mediated Retinal Dystrophies following Vitamin A Supplementation

    PubMed Central

    Radu, Roxana A.; Yuan, Quan; Hu, Jane; Peng, Jennifer H.; Lloyd, Marcia; Nusinowitz, Steven; Bok, Dean; Travis, Gabriel H.

    2010-01-01

    Purpose Dietary supplementation with vitamin A is sometimes prescribed as a treatment for retinitis pigmentosa, a group of inherited retinal degenerations that cause progressive blindness. Loss-of-function mutations in the ABCA4 gene are responsible for a subset of recessive retinitis pigmentosa. Other mutant alleles of ABCA4 cause the related diseases, recessive cone-rod dystrophy, and recessive Stargardt macular degeneration. Mice with a knockout mutation in the abca4 gene massively accumulate toxic lipofuscin pigments in the retinal pigment epithelium. Treatment of these mice with fenretinide, an inhibitor of vitamin A delivery to the eye, blocks formation of these toxic pigments. Here the authors tested the hypothesis that dietary supplementation with vitamin A may accelerate lipofuscin pigment formation in abca4−/− mice. Methods Wild-type and abca4−/− mice were fed normal or vitamin A–supplemented diets. Tissues from these mice were analyzed biochemically for retinoids and lipofuscin pigments. Eyes from these mice were analyzed morphologically for lipofuscin in the retinal pigment epithelium and for degeneration of photoreceptors. Visual function in these mice was analyzed by electroretinography. Results Mice that received vitamin A supplementation had dramatically higher levels of retinyl esters in the liver and retinal pigment epithelium. Lipofuscin pigments were significantly increased by biochemical and morphologic analysis in wild-type and abca4−/− mice fed the vitamin A–supplemented diet. Photoreceptor degeneration was observed in 11-month-old albino, but not pigmented, abca4−/− mice on both diets. Conclusions Vitamin A supplementation should be avoided in patients with ABCA4 mutations or other retinal or macular dystrophies associated with lipofuscin accumulation in the retinal pigment epithelium. PMID:18515570

  11. Oculopharyngeal muscular dystrophy: a polyalanine myopathy.

    PubMed

    Brais, Bernard

    2009-01-01

    It has been 10 years since the identification of the first PABPN1 gene (GCN)(n)/polyalanine mutations responsible for oculopharyngeal muscular dystrophy (OPMD). These mutations have been found in most cases of OPMD diagnosed in more than 35 countries. Sequence analyses have shown that such mutations have occurred numerous times in human history. Although PABPN1 was found early on to be a component of the classic filamentous intranuclear inclusions (INIs), mRNA and other proteins also have been found to coaggregate in the INIs. It is still unclear if the INIs play a pathologic or a protective role. The generation of numerous cell and animal models of OPMD has led to greater insight into its complex molecular pathophysiology and identified the first candidate therapeutic molecules. This paper reviews basic and clinical research on OPMD, with special emphasis on recent developments in the understanding of its pathophysiology.

  12. Gene Therapy for Muscular Dystrophies: Progress and Challenges

    PubMed Central

    Oh, Donghoon

    2010-01-01

    Muscular dystrophies are groups of inherited progressive diseases of the muscle caused by mutations of diverse genes related to normal muscle function. Although there is no current effective treatment for these devastating diseases, various molecular strategies have been developed to restore the expressions of the associated defective proteins. In preclinical animal models, both viral and nonviral vectors have been shown to deliver recombinant versions of defective genes. Antisense oligonucleotides have been shown to modify the splicing mechanism of mesenger ribonucleic acid to produce an internally deleted but partially functional dystrophin in an experimental model of Duchenne muscular dystrophy. In addition, chemicals can induce readthrough of the premature stop codon in nonsense mutations of the dystrophin gene. On the basis of these preclinical data, several experimental clinical trials are underway that aim to demonstrate efficacy in treating these devastating diseases. PMID:20944811

  13. Satellite Cells in Muscular Dystrophy - Lost in Polarity.

    PubMed

    Chang, Natasha C; Chevalier, Fabien P; Rudnicki, Michael A

    2016-06-01

    Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.

  14. Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in Golden Retriever muscular dystrophy dogs and Duchenne muscular dystrophy patients.

    PubMed

    Jeanson-Leh, Laurence; Lameth, Julie; Krimi, Soraya; Buisset, Julien; Amor, Fatima; Le Guiner, Caroline; Barthélémy, Inès; Servais, Laurent; Blot, Stéphane; Voit, Thomas; Israeli, David

    2014-11-01

    Duchenne muscular dystrophy (DMD) is a fatal, X-linked neuromuscular disease that affects 1 boy in 3500 to 5000 boys. The golden retriever muscular dystrophy dog is the best clinically relevant DMD animal model. Here, we used a high-thoughput miRNA sequencing screening for identification of candidate serum miRNA biomarkers in golden retriever muscular dystrophy dogs. We confirmed the dysregulation of the previously described muscle miRNAs, miR-1, miR-133, miR-206, and miR-378, and identified a new candidate muscle miRNA, miR-95. We identified two other classes of dysregulated serum miRNAs in muscular dystrophy: miRNAs belonging to the largest known miRNA cluster that resides in the imprinting DLK1-DIO3 genomic region and miRNAs associated with cardiac disease, including miR-208a, miR-208b, and miR-499. No simple correlation was identified between serum levels of cardiac miRNAs and cardiac functional parameters in golden retriever muscular dystrophy dogs. Finally, we confirmed a dysregulation of miR-95, miR-208a, miR-208b, miR-499, and miR-539 in a small cohort of DMD patients. Given the interspecies conservation of miRNAs and preliminary data in DMD patients, these newly identified dysregulated miRNAs are strong candidate biomarkers for DMD patients.

  15. Duchenne muscular dystrophy: current cell therapies

    PubMed Central

    Sienkiewicz, Dorota; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Kawnik, Katarzyna

    2015-01-01

    Duchenne muscular dystrophy is a genetically determined X-linked disease and the most common, progressive pediatric muscle disorder. For decades, research has been conducted to find an effective therapy. This review presents current therapeutic methods for Duchenne muscular dystrophy, based on scientific articles in English published mainly in the period 2000 to 2014. We used the PubMed database to identify and review the most important studies. An analysis of contemporary studies of stem cell therapy and the use of granulocyte colony-stimulating factor (G-CSF) in muscular dystrophy was performed. PMID:26136844

  16. Glucocorticoid Steroid and Alendronate Treatment Alleviates Dystrophic Phenotype with Enhanced Functional Glycosylation of α-Dystroglycan in Mouse Model of Limb-Girdle Muscular Dystrophy with FKRPP448L Mutation.

    PubMed

    Wu, Bo; Shah, Sapana N; Lu, Peijuan; Richardson, Stephanie M; Bollinger, Lauren E; Blaeser, Anthony; Madden, Kyle L; Sun, Yubo; Luckie, Taylor M; Cox, Michael D; Sparks, Susan; Harper, Amy D; Lu, Qi Long

    2016-06-01

    Fukutin-related protein-muscular dystrophy is characterized by defects in glycosylation of α-dystroglycan with variable clinical phenotypes, most commonly as limb-girdle muscular dystrophy 2I. There is no effective therapy available. Glucocorticoid steroids have become the standard treatment for Duchenne and other muscular dystrophies with serious adverse effects, including excessive weight gain, immune suppression, and bone loss. Bisphosphonates have been used to treat Duchenne muscular dystrophy for prevention of osteoporosis. Herein, we evaluated prednisolone and alendronate for their therapeutic potential in the FKRPP448L-mutant mouse representing moderate limb-girdle muscular dystrophy 2I. Mice were treated with prednisolone, alendronate, and both in combination for up to 6 months. Prednisolone improved muscle pathology with significant reduction in muscle degeneration, but had no effect on serum creatine kinase levels and muscle strength. Alendronate treatment did not ameliorate muscle degeneration, but demonstrated a limited enhancement on muscle function test. Combined treatment of prednisolone and alendronate provided best improvement in muscle pathology with normalized fiber size distribution and significantly reduced serum creatine kinase levels, but had limited effect on muscle force generation. The use of alendronate significantly mitigated the bone loss. Prednisolone alone and in combination with alendronate enhance functionally glycosylated α-dystroglycan. These results, for the first time, demonstrate the efficacy and feasibility of this alliance treatment of the two drugs for fukutin-related protein-muscular dystrophy.

  17. Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne muscular dystrophy by aptamer-based serum proteomics

    PubMed Central

    Coenen-Stass, Anna M. L.; McClorey, Graham; Manzano, Raquel; Betts, Corinne A.; Blain, Alison; Saleh, Amer F.; Gait, Michael J.; Lochmüller, Hanns; Wood, Matthew J. A.; Roberts, Thomas C.

    2015-01-01

    There is currently an urgent need for biomarkers that can be used to monitor the efficacy of experimental therapies for Duchenne Muscular Dystrophy (DMD) in clinical trials. Identification of novel protein biomarkers has been limited due to the massive complexity of the serum proteome and the presence of a small number of very highly abundant proteins. Here we have utilised an aptamer-based proteomics approach to profile 1,129 proteins in the serum of wild-type and mdx (dystrophin deficient) mice. The serum levels of 96 proteins were found to be significantly altered (P < 0.001, q < 0.01) in mdx mice. Additionally, systemic treatment with a peptide-antisense oligonucleotide conjugate designed to induce Dmd exon skipping and recover dystrophin protein expression caused many of the differentially abundant serum proteins to be restored towards wild-type levels. Results for five leading candidate protein biomarkers (Pgam1, Tnni3, Camk2b, Cycs and Adamts5) were validated by ELISA in the mouse samples. Furthermore, ADAMTS5 was found to be significantly elevated in human DMD patient serum. This study has identified multiple novel, therapy-responsive protein biomarkers in the serum of the mdx mouse with potential utility in DMD patients. PMID:26594036

  18. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies

    PubMed Central

    Salani, Sabrina; Donadoni, Chiara; Rizzo, Federica; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2012-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs. PMID:22129481

  19. Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd and mdx/Largemyd.

    PubMed

    Martins-Bach, Aurea B; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C M; Almeida, Camila F; Caldeira, Waldir; Ribeiro, Alberto F; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G; Vainzof, Mariz

    2015-01-01

    Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant-T2-measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.

  20. Quantitative T2 Combined with Texture Analysis of Nuclear Magnetic Resonance Images Identify Different Degrees of Muscle Involvement in Three Mouse Models of Muscle Dystrophy: mdx, Largemyd and mdx/Largemyd

    PubMed Central

    Martins-Bach, Aurea B.; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C. M.; Almeida, Camila F.; Caldeira, Waldir; Ribeiro, Alberto F.; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G.; Vainzof, Mariz

    2015-01-01

    Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research

  1. The molecular genetics of the corneal dystrophies--current status.

    PubMed

    Klintworth, Gordon K

    2003-05-01

    The pertinent literature on inherited corneal diseases is reviewed in terms of the chromosomal localization and identification of the responsible genes. Disorders affecting the cornea have been mapped to human chromosome 1 (central crystalline corneal dystrophy, familial subepithelial corneal amyloidosis, early onset Fuchs dystrophy, posterior polymorphous corneal dystrophy), chromosome 4 (Bietti marginal crystalline dystrophy), chromosome 5 (lattice dystrophy types 1 and IIIA, granular corneal dystrophy types 1, 2 and 3, Thiel-Behnke corneal dystrophy), chromosome 9 (lattice dystrophy type II), chromosome 10 (Thiel-Behnke corneal dystrophy), chromosome 12 (Meesmann dystrophy), chromosome 16 (macular corneal dystrophy, fish eye disease, LCAT disease, tyrosinemia type II), chromosome 17 (Meesmann dystrophy, Stocker-Holt dystrophy), chromosome 20 (congenital hereditary endothelial corneal dystrophy types I and II, posterior polymorphous corneal dystrophy), chromosome 21 (autosomal dominant keratoconus) and the X chromosome (cornea verticillata, cornea farinata, deep filiform corneal dystrophy, keratosis follicularis spinulosa decalvans, Lisch corneal dystrophy). Mutations in nine genes (ARSC1, CHST6, COL8A2, GLA, GSN, KRT3, KRT12, M1S1and TGFBI [BIGH3]) account for some of the corneal diseases and three of them are associated with amyloid deposition in the cornea (GSN, M1S1, TGFBI) including most of the lattice corneal dystrophies (LCDs) [LCD types I, IA, II, IIIA, IIIB, IV, V, VI and VII] recognized by their lattice pattern of linear opacities. Genetic studies on inherited diseases affecting the cornea have provided insight into some of these disorders at a basic molecular level and it has become recognized that distinct clinicopathologic phenotypes can result from specific mutations in a particular gene, as well as some different mutations in the same gene. A molecular genetic understanding of inherited corneal diseases is leading to a better appreciation of the

  2. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy.

    PubMed

    Paran, Christopher W; Zou, Kai; Ferrara, Patrick J; Song, Haowei; Turk, John; Funai, Katsuhiko

    2015-12-01

    Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition.

  3. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  4. Chronic Pain in Persons With Myotonic Dystrophy and Facioscapulohumeral Dystrophy

    PubMed Central

    Jensen, Mark P.; Hoffman, Amy J.; Stoelb, Brenda L.; Abresch, Richard T.; Carter, Gregory T.; McDonald, Craig M.

    2009-01-01

    Objective To determine the nature and scope of pain in working-aged adults with myotonic muscular dystrophy (MMD) and facioscapulohumeral muscular dystrophy (FSHD). Design Retrospective, cross-sectional survey. Setting Community-based survey. Participants Convenience sample of subjects with MMD and FSHD. Interventions Not applicable. Main Outcome Measures Overall intensity and duration of pain, pain inference, pain sites, pain treatments, and relief provided by pain treatments. Results More subjects with FSHD (82%) than with MMD (64%) reported pain. The most frequently reported pain sites for both diagnostic groups were lower back (66% MMD, 74% FSHD) and legs (60% MMD, 72% FSHD). Significant differences in pain intensity were found between the diagnostic groups in the hands, legs, knees, ankles, and feet, with patients with MMD reporting greater pain intensity at these sites than patients with FSHD. Age was related to the onset of pain (participants reporting pain were younger than those not reporting pain in the FSHD sample), but pain severity was not significantly associated with age in those reporting pain. Respondents with both diagnoses that reported mobility limitations and used assistive devices (eg, wheelchair, cane) reported more pain severity than those with mobility limitations who did not use assistive devices, who, in turn, reported more pain severity than respondents who reported no mobility limitations at all. The treatments that were reported to provide the greatest pain relief were not necessarily those that were the most frequently tried or still used. Conclusions The findings indicate that pain is a more common problem in persons with FSHD than in persons with MMD, although it is common in both populations. In addition, these pain problems are chronic, underscoring the need to identify and provide effective pain treatments for patients with these neuromuscular diseases. PMID:18226657

  5. [Muscular Dystrophies Involving the Retinal Function].

    PubMed

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis.

  6. Physical Therapy and Facioscapulohumeral Muscular Dystrophy (FSHD)

    MedlinePlus

    Physical Therapy & FSHD Facioscapulohumeral Muscular Dystrophy A Guide for Patients & Physical Therapists Authors: Wendy M. King, P.T., ... expertise and patient preferences. The goals of any physical therapy plan of care are to assist patients to:  ...

  7. Genetics Home Reference: Fukuyama congenital muscular dystrophy

    MedlinePlus

    ... and walking. Fukuyama congenital muscular dystrophy also impairs brain development. People with this condition have a brain abnormality ... cobblestones). These changes in the structure of the brain lead to significantly delayed development of speech and motor skills and moderate to ...

  8. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  9. Genetics Home Reference: Bietti crystalline dystrophy

    MedlinePlus

    ... on PubMed Central Mansour AM, Uwaydat SH, Chan CC. Long-term follow-up in Bietti crystalline dystrophy. ... VD, Zhang J, Gesualdo C, Corte MD, Chan CC, Fielding Hejtmancik J, Simonelli F. An atypical form ...

  10. Genetics Home Reference: vitelliform macular dystrophy

    MedlinePlus

    ... faces. Vitelliform macular dystrophy causes a fatty yellow pigment (lipofuscin) to build up in cells underlying the ... structures in these cells that contain light-sensing pigments. It is unclear why PRPH2 mutations affect only ...

  11. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy

    PubMed Central

    Goldstein, Richard; Bennett, Donald; Guglieri, Michela; Straub, Volker; Bushby, Kate; Lochmüller, Hanns; Morris, Carl

    2016-01-01

    Background Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies. PMID:26870665

  12. Muscular Dystrophy, incurability, eugenics

    PubMed Central

    Rideau, Y; Rideau, F

    2007-01-01

    Summary The medical entity “muscular dystrophy” has been the object of a recent opinion campaign aimed at promoting a law in favour of euthanasia. This disease has become, in the eyes of the public, a media model of a particularly severe and incurable disease. This very widespread statement does not correspond to reality as far as concerns the life of these patients, to the condition that they have benefited from a very useful and fully provided empirical treatment. As already seen, the hope for life has already doubled, without clear limits. The idea of inducing an interruption when at death’s door, as long as a systematic prevention prior to birth, does not conform with the motivated opinion of the majority of patients consulted. On the contrary, the dogma of incurability may lead to dramatic individual consequences which should be stressed, from a medical viewpoint, on account of the unacceptable risks of social injustice or eugenics that this would imply. PMID:17915566

  13. Reflex sympathetic dystrophy following traumatic myelopathy.

    PubMed

    Wainapel, S F

    1984-04-01

    Two cases of reflex sympathetic dystrophy in the upper extremity of patients with traumatic cervical spinal cord injuries are reported. Both patients had very incomplete lesions with early neurological recovery, suggesting an underlying central cord syndrome. Although reflex sympathetic dystrophy is often seen following stroke, it has only rarely been documented in traumatic myelopathy, and it should be considered in the differential diagnosis of unexplained pain syndromes in the extremities of paraplegic or quadriplegic patients. PMID:6728500

  14. Duchenne muscular dystrophy: the management of scoliosis

    PubMed Central

    Gardner, Adrian C.; Roper, Helen P.; Chikermane, Ashish A.; Tatman, Andrew J.

    2016-01-01

    This study summaries the current management of scoliosis in patients with Duchenne Muscular Dystrophy. A literature review of Medline was performed and the collected articles critically appraised. This literature is discussed to give an overview of the current management of scoliosis within Duchenne Muscular Dystrophy. Importantly, improvements in respiratory care, the use of steroids and improving surgical techniques have allowed patients to maintain quality of life and improved life expectancy in this patient group. PMID:27757431

  15. Measuring quality of life in muscular dystrophy

    PubMed Central

    Abresch, Richard T.; Biesecker, Barbara; Conway, Kristin Caspers; Heatwole, Chad; Peay, Holly; Scal, Peter; Strober, Jonathan; Uzark, Karen; Wolff, Jodi; Margolis, Marjorie; Blackwell, Angela; Street, Natalie; Montesanti, Angela; Bolen, Julie

    2015-01-01

    Objectives: The objectives of this study were to develop a conceptual model of quality of life (QOL) in muscular dystrophies (MDs) and review existing QOL measures for use in the MD population. Methods: Our model for QOL among individuals with MD was developed based on a modified Delphi process, literature review, and input from patients and patient advocacy organizations. Scales that have been used to measure QOL among patients with MD were identified through a literature review and evaluated using the COSMIN (Consensus-Based Standards for the Selection of Health Measurement Instruments) checklist. Results: The Comprehensive Model of QOL in MD (CMQM) captures 3 broad domains of QOL (physical, psychological, and social), includes factors influencing self-reported QOL (disease-related factors, support/resources, and expectations/aspirations), and places these concepts within the context of the life course. The literature review identified 15 QOL scales (9 adult and 6 pediatric) that have been applied to patients with MD. Very few studies reported reliability data, and none included data on responsiveness of the measures to change in disease progression, a necessary psychometric property for measures included in treatment and intervention studies. No scales captured all QOL domains identified in the CMQM model. Conclusions: Additional scale development research is needed to enhance assessment of QOL for individuals with MD. Item banking and computerized adaptive assessment would be particularly beneficial by allowing the scale to be tailored to each individual, thereby minimizing respondent burden. PMID:25663223

  16. [Genetic diagnostic testing in inherited retinal dystrophies].

    PubMed

    Kohl, S; Biskup, S

    2013-03-01

    Inherited retinal dystrophies are clinically and genetically highly heterogeneous. They can be divided according to the clinical phenotype and course of the disease, as well as the underlying mode of inheritance. Isolated retinal dystrophies (i.e., retinitis pigmentosa, Leber's congenital amaurosis, cone and cone-rod dystrophy, macular dystrophy, achromatopsia, congenital stationary nightblindness) and syndromal forms (i.e., Usher syndrome, Bardet-Biedl syndrome) can be differentiated. To date almost 180 genes and thousands of distinct mutations have been identified that are responsible for the different forms of these blinding illnesses. Until recently, there was no adequate diagnostic genetic testing available. With the development of the next generation sequencing technologies, a comprehensive genetic screening analysis for all known genes for inherited retinal dystrophies has been established at reasonable costs and in appropriate turn-around times. Depending on the primary clinical diagnosis and the presumed mode of inheritance, different diagnostic panels can be chosen for genetic testing. Statistics show that in 55-80 % of the cases the genetic defect of the inherited retinal dystrophy can be identified with this approach, depending on the initial clinical diagnosis. The aim of any genetic diagnostics is to define the genetic cause of a given illness within the affected patient and family and thereby i) confirm the clinical diagnosis, ii) provide targeted genetic testing in family members, iii) enable therapeutic intervention, iv) give a prognosis on disease course and progression and v) in the long run provide the basis for novel therapeutic approaches and personalised medicine.

  17. FDA OKs 1st Drug to Treat Duchenne Muscular Dystrophy

    MedlinePlus

    ... html FDA OKs 1st Drug to Treat Duchenne Muscular Dystrophy Exondys 51 seems to fill unmet need for ... the first drug for a rare form of muscular dystrophy. Exondys 51 (eteplirsen) was granted accelerated approval to ...

  18. Differential diagnosis of Schnyder corneal dystrophy.

    PubMed

    Weiss, Jayne S; Khemichian, Arbi J

    2011-01-01

    Schnyder corneal dystrophy (SCD) is a rare corneal dystrophy characterized by abnormally increased deposition of cholesterol and phospholipids in the cornea leading to progressive vision loss. SCD is inherited as an autosomal dominant trait with high penetrance and has been mapped to the UBIAD1 gene on chromosome 1p36.3. Although 2/3 of SCD patients also have systemic hypercholesterolemia, the incidence of hypercholesterolemia is also increased in unaffected members of SCD pedigrees. Consequently, SCD is thought to result from a local metabolic defect in the cornea. The corneal findings in SCD are very predictable depending on the age of the individual, with initial central corneal haze and/or crystals, subsequent appearance of arcus lipoides in the third decade and formation of midperipheral haze in the late fourth decade. Because only 50% of affected patients have corneal crystals, the International Committee for Classification of Corneal Dystrophies recently changed the original name of this dystrophy from Schnyder crystalline corneal dystrophy to Schnyder corneal dystrophy. Diagnosis of affected individuals without crystalline deposits is often delayed and these individuals are frequently misdiagnosed. The differential diagnosis of the SCD patient includes other diseases with crystalline deposits such as cystinosis, tyrosinemia, Bietti crystalline dystrophy, hyperuricemia/gout, multiple myeloma, monoclonal gammopathy, infectious crystalline keratopathy, and Dieffenbachia keratitis. Depositions from drugs such as gold in chrysiasis, chlorpromazine, chloroquine, and clofazamine can also result in corneal deposits and are different from SCD. Diseases of systemic lipid metabolism that cause corneal opacification, such as lecithin-cholesterol acyltransferase deficiency, fish eye disease and Tangier disease, should also be considered although these are autosomal recessive disorders. PMID:21540632

  19. Dystrophin insufficiency causes a Becker muscular dystrophy-like phenotype in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker MD is caused by a dystrophin insufficiency or expression of a partially functional dystrophin protein. Deficiencies in existing mouse and dog models necessitate the development of a novel large animal model. Our pu...

  20. Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy

    PubMed Central

    Whitehead, Nicholas P.

    2016-01-01

    ABSTRACT Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy. PMID:26890413

  1. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    PubMed Central

    De Bleecker, Jan L.

    2013-01-01

    Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed. PMID:24302815

  2. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ

    PubMed Central

    Gardner, Brandon B.; Gao, Quan Q.; Hadhazy, Michele; Vo, Andy H.; Wren, Lisa; Molkentin, Jeffery D.; McNally, Elizabeth M.

    2016-01-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  3. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ.

    PubMed

    Lamar, Kay-Marie; Bogdanovich, Sasha; Gardner, Brandon B; Gao, Quan Q; Miller, Tamari; Earley, Judy U; Hadhazy, Michele; Vo, Andy H; Wren, Lisa; Molkentin, Jeffery D; McNally, Elizabeth M

    2016-05-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.

  4. [Congenital muscular dystrophies in children].

    PubMed

    Scavone-Mauro, Cristina; Barros, Graciela

    2013-09-01

    From the clinical and genetic point of view, congenital muscular dystrophies (CMD) are a heterogenic group of diseases within neuromuscular pathologies. The best known forms are: merosin deficiency CMD, collagen VI deficiency CMD, LMNA-related CMD, selenoprotein-related CMD (SEPN1) and alpha-dystroglycan-related CMD. They present with a broad spectrum of clinical phenotypes. Most of them are transmitted by recessive autosomal inheritance. The initial manifestations very often begin in infancy or in the neonatal period. There are clinical suspicions of the existence of hypotonia and paresis, and they are characterised by a dystrophic pattern in the muscular biopsy (muscle replaced by fibroadipose tissue, with necrosis and cell regeneration). Advances in the understanding of the molecular pathogenesis of CMD have made it possible to make further progress in the classification of the different subtypes. The aim of this review is to comment on the advances made in recent years as regards the classification of CMD in terms of genetics, the proteins involved and their clinical presentation.

  5. Genetics of Bietti Crystalline Dystrophy.

    PubMed

    Ng, Danny S C; Lai, Timothy Y Y; Ng, Tsz Kin; Pang, Chi Pui

    2016-01-01

    Bietti crystalline dystrophy (BCD) is an inherited retinal degenerative disease characterized by crystalline deposits in the retina, followed by progressive atrophy of the retinal pigment epithelium (RPE), choriocapillaris, and photoreceptors. CYP4V2 has been identified as the causative gene for BCD. The CYP4V2 gene belongs to the cytochrome P450 superfamily and encodes for fatty acid ω-hydroxylase of both saturated and unsaturated fatty acids. The CYP4V2 protein is localized most abundantly within the endoplasmic reticulum in the RPE and is postulated to play a role in the physiological lipid recycling system between the RPE and photoreceptors to maintain visual function. Electroretinographic assessments have revealed progressive dysfunction of rod and cone photoreceptors in patients with BCD. Several genotypes have been associated with more severe phenotypes based on clinical and electrophysiological findings. With the advent of multimodal imaging with spectral domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy, more precise delineation of BCD severity and progression is now possible, allowing for the potential future development of targets for gene therapy. PMID:27228076

  6. Ultra-structural time-course study in the C. elegans model for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process.

    PubMed

    Brouilly, Nicolas; Lecroisey, Claire; Martin, Edwige; Pierson, Laura; Mariol, Marie-Christine; Qadota, Hiroshi; Labouesse, Michel; Streichenberger, Nathalie; Mounier, Nicole; Gieseler, Kathrin

    2015-11-15

    Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization.

  7. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  8. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  9. Dystroglycan induced muscular dystrophies - a review.

    PubMed

    Zhang, Q-Z

    2016-09-01

    Dystroglycanopathies are muscular dystrophies caused by mutations in genes involved the in O-linked glycosylation of α-dystroglycan. Severe forms of these conditions result in abnormalities in exhibit brain and ocular developmental too, in addition to muscular dystrophy. The full spectrum of developmental pathology is caused mainly by loss of dystroglycan from Bergmann glia. Moreover, cognitive deficits are constant features of severe forms of dystroglycanopathies. However, the precise molecular mechanism leading to neuronal dysfunction in these diseases is not fully known yet. The present review article will discuss the importance of dystroglycan in cerebellar development and associated pathological states. PMID:27649671

  10. Advances in gene therapy for muscular dystrophies.

    PubMed

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  11. Hypotrichosis with juvenile macular dystrophy: Portuguese case.

    PubMed

    Elfatoiki, Fatima Zahra; Cordoliani, Florance; Pascal Regane, Pascal; Afforitit-Demoge, Aude

    2016-01-01

    Hypotrichosis with juvenile macular dystrophy is a rare congenital disease mainly found in the Druze population of Northern Israel. This disorder is caused by the CDH3 mutation encoding P-cadherin, which is expressed in retinal pigment epithelium and hair follicles. An 11-year-old girl who was born to related Portuguese parents, had hypotrichosis since birth and macular dystrophy diagnosed at age 5. Fundus examination and fluorescein angiography revealed located macular pigmentary abnormalities. No molecular analysis was done. A fundus examination should be considered mandatory in the assessment of congenital hypotrichosis. PMID:27617529

  12. The IC3D Classification of the Corneal Dystrophies

    PubMed Central

    Weiss, Jayne S.; Møller, H. U.; Lisch, Walter; Kinoshita, Shigeru; Aldave, Anthony J.; Belin, Michael W.; Kivelä, Tero; Busin, Massimo; Munier, Francis L.; Seitz, Berthold; Sutphin, John; Bredrup, Cecilie; Mannis, Mark J.; Rapuano, Christopher J.; Van Rij, Gabriel; Kim, Eung Kweon; Klintworth, Gordon K.

    2010-01-01

    Background The recent availability of genetic analyses has demonstrated the shortcomings of the current phenotypic method of corneal dystrophy classification. Abnormalities in different genes can cause a single phenotype, whereas different defects in a single gene can cause different phenotypes. Some disorders termed corneal dystrophies do not appear to have a genetic basis. Purpose The purpose of this study was to develop a new classification system for corneal dystrophies, integrating up-to-date information on phenotypic description, pathologic examination, and genetic analysis. Methods The International Committee for Classification of Corneal Dystrophies (IC3D) was created to devise a current and accurate nomenclature. Results This anatomic classification continues to organize dystrophies according to the level chiefly affected. Each dystrophy has a template summarizing genetic, clinical, and pathologic information. A category number from 1 through 4 is assigned, reflecting the level of evidence supporting the existence of a given dystrophy. The most defined dystrophies belong to category 1 (a well-defined corneal dystrophy in which a gene has been mapped and identified and specific mutations are known) and the least defined belong to category 4 (a suspected dystrophy where the clinical and genetic evidence is not yet convincing). The nomenclature may be updated over time as new information regarding the dystrophies becomes available. Conclusions The IC3D Classification of Corneal Dystrophies is a new classification system that incorporates many aspects of the traditional definitions of corneal dystrophies with new genetic, clinical, and pathologic information. Standardized templates provide key information that includes a level of evidence for there being a corneal dystrophy. The system is user-friendly and upgradeable and can be retrieved on the website www.corneasociety.org/ic3d. PMID:19337156

  13. Mitochondria from a mouse model of the human infantile neuroaxonal dystrophy (INAD) with genetic defects in VIA iPLA2 have disturbed Ca(2+) regulation with reduction in Ca(2+) capacity.

    PubMed

    Strokin, Mikhail; Reiser, Georg

    2016-10-01

    Mutations in the PLA2G6 gene which encodes Ca(2+)-independent phospholipase A2 (VIA iPLA2) were detected in 85% of cases of the inherited degenerative nervous system disorder INAD (infantile neuroaxonal dystrophy, OMIM #256600). However, molecular mechanisms linking these mutations to the disease progression are unclear. VIA iPLA2 is expressed also in mitochondria. Here, we investigate Ca(2+) handling by brain mitochondria derived from mice with hypomorph Pla2g6 allele. These animals with reduced transcript levels (5% of wild type) represent a suitable model for INAD. We demonstrated significant reduction of Ca(2+) uptake rate and Ca(2+) retention capacity in brain mitochondria isolated from this mutant. This phenotype could be mimicked when in wild-type controls VIA iPLA2 was inhibited by S-BEL. Importantly, the reduction could be ameliorated partly by addition of the VIA iPLA2 product, sn-2 lysophosphatidyl-choline. Furthermore, we demonstrated in situ a reduced mitochondrial potential in neurons from mice deficient in VIA iPLA2, which could cause the reduced Ca(2+) uptake rate via the potential-dependent mitochondrial Ca(2+) uniporter. Thus, the disturbances in mitochondrial potential and the changes in Ca(2+) handling were dependent on VIA iPLA2 activity. Reduced mitochondrial Ca(2+) uptake rate and Ca(2+) retention capacity might result in increased vulnerability of mitochondria to the Ca(2+) overload and in disturbed cellular Ca(2+) signaling during INAD. For VIA iPLA2, non-canonical functions beyond sole phospholipid turnover seem to be important, such as regulation of store-operated Ca(2+) entry in cells. Thus, our findings bring new insight into molecular mechanism affected in INAD and highlight the non-canonical function of VIA iPLA2 in regulation of mitochondrial Ca(2+) handling.

  14. Cardiomyopathy in becker muscular dystrophy: Overview

    PubMed Central

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-01-01

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  15. Genetics Home Reference: facioscapulohumeral muscular dystrophy

    MedlinePlus

    ... Padberg GW, Lunt PW, van der Maarel SM. Best practice guidelines on genetic diagnostics of Facioscapulohumeral muscular dystrophy: ... Reviewed : August 2014 Published : August 30, 2016 The resources on this site should not be used as a ... of Health & Human Services National Institutes of Health National Library of ...

  16. Visuospatial Attention Disturbance in Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    De Moura, Maria Clara Drummond Soares; do Valle, Luiz Eduardo Ribeiro; Resende, Maria Bernadete Dutra; Pinto, Katia Osternack

    2010-01-01

    Aim: The cognitive deficits present in the Duchenne muscular dystrophy (DMD) are not yet well characterized. Attention, considered to be the brain mechanism responsible for the selection of sensory stimuli, could be disturbed in DMD, contributing, at least partially, to the observed global cognitive deficit. The aim of this study was to…

  17. Na+ Dysregulation Coupled with Ca2+ Entry through NCX1 Promotes Muscular Dystrophy in Mice

    PubMed Central

    Burr, Adam R.; Millay, Douglas P.; Goonasekera, Sanjeewa A.; Park, Ki Ho; Sargent, Michelle A.; Collins, James; Altamirano, Francisco; Philipson, Kenneth D.; Allen, Paul D.; Ma, Jianjie; López, José Rafael

    2014-01-01

    Unregulated Ca2+ entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na+-Ca2+ exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd−/−), Dysf−/−, and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd−/− mice. Measured increases in baseline Na+ and Ca2+ in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca2+ influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca2+ levels. Indeed, Atp1a2+/− (encoding Na+-K+ ATPase α2) mice, which have reduced Na+ clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na+-K+ ATPase inhibitor digoxin. Treatment of Sgcd−/− mice with ranolazine, a broadly acting Na+ channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology. PMID:24662047

  18. Na+ dysregulation coupled with Ca2+ entry through NCX1 promotes muscular dystrophy in mice.

    PubMed

    Burr, Adam R; Millay, Douglas P; Goonasekera, Sanjeewa A; Park, Ki Ho; Sargent, Michelle A; Collins, James; Altamirano, Francisco; Philipson, Kenneth D; Allen, Paul D; Ma, Jianjie; López, José Rafael; Molkentin, Jeffery D

    2014-06-01

    Unregulated Ca(2+) entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na(+)-Ca(2+) exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd(-/-)), Dysf(-/-), and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd(-/-) mice. Measured increases in baseline Na(+) and Ca(2+) in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca(2+) influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca(2+) levels. Indeed, Atp1a2(+/-) (encoding Na(+)-K(+) ATPase α2) mice, which have reduced Na(+) clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na(+)-K(+) ATPase inhibitor digoxin. Treatment of Sgcd(-/-) mice with ranolazine, a broadly acting Na(+) channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology. PMID:24662047

  19. Muscular dystrophy in a family of Labrador Retrievers with no muscle dystrophin and a mild phenotype.

    PubMed

    Vieira, Natassia M; Guo, Ling T; Estrela, Elicia; Kunkel, Louis M; Zatz, Mayana; Shelton, G Diane

    2015-05-01

    Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies.

  20. Splicing biomarkers of disease severity in myotonic dystrophy

    PubMed Central

    Nakamori, Masayuki; Sobczak, Krzysztof; Puwanant, Araya; Welle, Steve; Eichinger, Katy; Pandya, Shree; Dekdebrun, Jeannne; Heatwole, Chad R.; McDermott, Michael P.; Chen, Tian; Cline, Melissa; Tawil, Rabi; Osborne, Robert J.; Wheeler, Thurman M.; Swanson, Maurice; Moxley, Richard T.; Thornton, Charles A.

    2014-01-01

    Objective To develop RNA splicing biomarkers of disease severity and therapeutic response in myotonic dystrophy type 1 (DM1) and type 2 (DM2). Methods In a discovery cohort we used microarrays to perform global analysis of alternative splicing in DM1 and DM2. The newly identified splicing changes were combined with previous data to create a panel of 50 putative splicing defects. In a validation cohort of 50 DM1 subjects we measured the strength of ankle dorsiflexion (ADF) and then obtained a needle biopsy of tibialis anterior (TA) to analyze splice events in muscle RNA. The specificity of DM-associated splicing defects was assessed in disease controls. The CTG expansion size in muscle tissue was determined by Southern blot. The reversibility of splicing defects was assessed in transgenic mice by using antisense oligonucleotides (ASOs) to reduce levels of toxic RNA. Results Forty-two splicing defects were confirmed in TA muscle in the validation cohort. Among these, 20 events showed graded changes that correlated with ADF weakness. Five other splice events were strongly affected in DM1 subjects with normal ADF strength. Comparison to disease controls and mouse models indicated that splicing changes were DM-specific, mainly attributable to MBNL1 sequestration, and reversible in mice by targeted knockdown of toxic RNA. Splicing defects and weakness were not correlated with CTG expansion size in muscle tissue. Interpretation Alternative splicing changes in skeletal muscle may serve as biomarkers of disease severity and therapeutic response in myotonic dystrophy. PMID:23929620

  1. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2016-08-02

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  2. Pathogenesis of axonal dystrophy and demyelination in αA-crystallin-expressing transgenic mice

    PubMed Central

    Van Rijk, AF; Sweers, MAM; Merkx, GFM; Lammens, M; Bloemendal, H

    2003-01-01

    We recently described a transgenic mouse strain overexpressing hamster αA-crystallin, a small heat shock protein, under direction of the hamster vimentin promoter. As a result myelin was degraded and axonal dystrophy in both central nervous system (especially spinal cord) and peripheral nervous system occurred. Homozygous transgenic mice developed hind limb paralysis after 8 weeks of age and displayed progressive loss of myelin and axonal dystrophy in both the central and peripheral nervous system with ongoing age. Pathologically the phenotype resembled, to a certain extent, neuroaxonal dystrophy. The biochemical findings presented in this paper (activity of the enzymes superoxide dismutase, catalase and transglutamase, myelin protein zero expression levels and blood sugar levels) confirm this pathology and exclude other putative pathologies like Amyothrophic Lateral Sclerosis and Hereditary Motor and Sensory Neuropathy. Consequently, an excessive cytoplasmic accumulation of the transgenic protein or a disturbance of the normal metabolism are considered to cause the observed neuropathology. Therefore, extra-ocular αA-crystallin-expressing transgenic mice may serve as a useful animal model to study neuroaxonal dystrophy. PMID:12801283

  3. Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism

    PubMed Central

    Millay, Douglas P.; Goonasekera, Sanjeewa A.; Sargent, Michelle A.; Maillet, Marjorie; Aronow, Bruce J.; Molkentin, Jeffery D.

    2009-01-01

    Muscular dystrophy is a general term encompassing muscle disorders that cause weakness and wasting, typically leading to premature death. Membrane instability, as a result of a genetic disruption within the dystrophin-glycoprotein complex (DGC), is thought to induce myofiber degeneration, although the downstream mechanism whereby membrane fragility leads to disease remains controversial. One potential mechanism that has yet to be definitively proven in vivo is that unregulated calcium influx initiates disease in dystrophic myofibers. Here we demonstrate that calcium itself is sufficient to cause a dystrophic phenotype in skeletal muscle independent of membrane fragility. For example, overexpression of transient receptor potential canonical 3 (TRPC3) and the associated increase in calcium influx resulted in a phenotype of muscular dystrophy nearly identical to that observed in DGC-lacking dystrophic disease models, including a highly similar molecular signature of gene expression changes. Furthermore, transgene-mediated inhibition of TRPC channels in mice dramatically reduced calcium influx and dystrophic disease manifestations associated with the mdx mutation (dystrophin gene) and deletion of the δ-sarcoglycan (Scgd) gene. These results demonstrate that calcium itself is sufficient to induce muscular dystrophy in vivo, and that TRPC channels are key disease initiators downstream of the unstable membrane that characterizes many types of muscular dystrophy. PMID:19864620

  4. SIRT1: A Novel Target for the Treatment of Muscular Dystrophies

    PubMed Central

    Kuno, Atsushi; Horio, Yoshiyuki

    2016-01-01

    Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy and is caused by mutations in the gene that encodes the cytoskeletal protein dystrophin. The treatment for DMD is limited to glucocorticoids, which are associated with multiple side effects. Thus, the identification of novel therapeutic targets is urgently needed. SIRT1 is an NAD+-dependent histone/protein deacetylase that plays roles in diverse cellular processes, including stress resistance and cell survival. Studies have shown that SIRT1 activation provides beneficial effects in the dystrophin-deficient mdx mouse, a model of DMD. SIRT1 activation leads to the attenuation of oxidative stress and inflammation, a shift from the fast to slow myofiber phenotype, and the suppression of tissue fibrosis. Although further research is needed to clarify the molecular mechanisms underlying the protective role of SIRT1 in mdx mice, we propose SIRT1 as a novel therapeutic target for patients with muscular dystrophies. PMID:27073590

  5. Cathepsin S Contributes to the Pathogenesis of Muscular Dystrophy in Mice.

    PubMed

    Tjondrokoesoemo, Andoria; Schips, Tobias G; Sargent, Michelle A; Vanhoutte, Davy; Kanisicak, Onur; Prasad, Vikram; Lin, Suh-Chin J; Maillet, Marjorie; Molkentin, Jeffery D

    2016-05-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and β-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.

  6. An unusual central retinal dystrophy associated with ichthyosis vulgaris.

    PubMed

    Saatci, O A; Ozbek, Z; Köse, S; Durak, I; Kavukçu, S

    2000-06-01

    A number of ichthyosis syndromes may have retinal abnormalities such as the retinitis pigmentosa-like diffuse rod-cone dystrophy in Refsum's syndrome and the maculopathy in Sjögren-Larsson syndrome. We present two sisters who have an unusual, almost identical, bilaterally symmetric central retinal dystrophy associated with ichthyosis vulgaris in the absence of other systemic disorders. We believe that this dystrophy has not been previously described in patients with any of the known varieties of ichthyosis.

  7. Cogan's microcystic dystrophy of the cornea: ultrastructure and photomicroscopy.

    PubMed Central

    Dark, A J

    1978-01-01

    Corneal biopsy specimens from 3 patients with Cogan's microcystic corneal dystrophy were examined by light and electron microscopy. Specimens were taken from corneas showing microcysts, geographic or map-like areas, and refractile striae. In all samples there is a bilaminate subepithelial layer of fibrogranular material, the friability of which is probably the basis for recurrent erosions in this disorder. Histochemical and ultrastructural findings provide further evidence that Cogan's dystrophy, the finger print/bleb dystrophy, and Meesmann's dystrophy should be regarded as separate entities. Images PMID:310689

  8. Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: A comparison with the gold standard, α-methyl prednisolone.

    PubMed

    Capogrosso, Roberta Francesca; Cozzoli, Anna; Mantuano, Paola; Camerino, Giulia Maria; Massari, Ada Maria; Sblendorio, Valeriana Teresa; De Bellis, Michela; Tamma, Roberto; Giustino, Arcangela; Nico, Beatrice; Montagnani, Monica; De Luca, Annamaria

    2016-04-01

    Antioxidants have a great potential as adjuvant therapeutics in patients with Duchenne muscular dystrophy, although systematic comparisons at pre-clinical level are limited. The present study is a head-to-head assessment, in the exercised mdx mouse model of DMD, of natural compounds, resveratrol and apocynin, and of the amino acid taurine, in comparison with the gold standard α-methyl prednisolone (PDN). The rationale was to target the overproduction of reactive oxygen species (ROS) via disease-related pathways that are worsened by mechanical-metabolic impairment such as inflammation and over-activity of NADPH oxidase (NOX) (taurine and apocynin, respectively) or the failing ROS detoxification mechanisms via sirtuin-1 (SIRT1)-peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (resveratrol). Resveratrol (100mg/kg i.p. 5days/week), apocynin (38mg/kg/day per os), taurine (1g/kg/day per os), and PDN (1mg/kg i.p., 5days/week) were administered for 4-5 weeks to mdx mice in parallel with a standard protocol of treadmill exercise and the outcome was evaluated with a multidisciplinary approach in vivo and ex vivo on pathology-related end-points and biomarkers of oxidative stress. Resveratrol≥taurine>apocynin enhanced in vivo mouse force similarly to PDN. All the compounds reduced the production of superoxide anion, assessed by dihydroethidium staining, with apocynin being as effective as PDN, and ameliorated electrophysiological biomarkers of oxidative stress. Resveratrol also significantly reduced plasma levels of creatine kinase and lactate dehydrogenase. Force of isolated muscles was little ameliorated. However, the three compounds improved histopathology of gastrocnemius muscle more than PDN. Taurine>apocynin>PDN significantly decreased activated NF-kB positive myofibers. Thus, compounds targeting NOX-ROS or SIRT1/PGC-1α pathways differently modulate clinically relevant DMD-related endpoints according to their mechanism of action. With the

  9. Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: A comparison with the gold standard, α-methyl prednisolone.

    PubMed

    Capogrosso, Roberta Francesca; Cozzoli, Anna; Mantuano, Paola; Camerino, Giulia Maria; Massari, Ada Maria; Sblendorio, Valeriana Teresa; De Bellis, Michela; Tamma, Roberto; Giustino, Arcangela; Nico, Beatrice; Montagnani, Monica; De Luca, Annamaria

    2016-04-01

    Antioxidants have a great potential as adjuvant therapeutics in patients with Duchenne muscular dystrophy, although systematic comparisons at pre-clinical level are limited. The present study is a head-to-head assessment, in the exercised mdx mouse model of DMD, of natural compounds, resveratrol and apocynin, and of the amino acid taurine, in comparison with the gold standard α-methyl prednisolone (PDN). The rationale was to target the overproduction of reactive oxygen species (ROS) via disease-related pathways that are worsened by mechanical-metabolic impairment such as inflammation and over-activity of NADPH oxidase (NOX) (taurine and apocynin, respectively) or the failing ROS detoxification mechanisms via sirtuin-1 (SIRT1)-peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (resveratrol). Resveratrol (100mg/kg i.p. 5days/week), apocynin (38mg/kg/day per os), taurine (1g/kg/day per os), and PDN (1mg/kg i.p., 5days/week) were administered for 4-5 weeks to mdx mice in parallel with a standard protocol of treadmill exercise and the outcome was evaluated with a multidisciplinary approach in vivo and ex vivo on pathology-related end-points and biomarkers of oxidative stress. Resveratrol≥taurine>apocynin enhanced in vivo mouse force similarly to PDN. All the compounds reduced the production of superoxide anion, assessed by dihydroethidium staining, with apocynin being as effective as PDN, and ameliorated electrophysiological biomarkers of oxidative stress. Resveratrol also significantly reduced plasma levels of creatine kinase and lactate dehydrogenase. Force of isolated muscles was little ameliorated. However, the three compounds improved histopathology of gastrocnemius muscle more than PDN. Taurine>apocynin>PDN significantly decreased activated NF-kB positive myofibers. Thus, compounds targeting NOX-ROS or SIRT1/PGC-1α pathways differently modulate clinically relevant DMD-related endpoints according to their mechanism of action. With the

  10. Risk estimates for neonatal myotonic dystrophy.

    PubMed Central

    Glånz, A; Fråser, F C

    1984-01-01

    Children who inherit the autosomal dominant gene for myotonic dystrophy from their mother rather than their father may develop the severe neonatal type rather than the late onset type. The families of 22 neonatal type probands and 59 late onset type probands were studied to determine the risk of occurrence and recurrence of the neonatal type. The frequency of the neonatal type in sibs of neonatal type probands was 29%, or 37% if cases of neonatal deaths are counted as affected. This is significantly higher than the 6% of the neonatal type found in the offspring of affected women not ascertained through a child with the neonatal type. These data suggest that certain women carrying the gene for myotonic dystrophy are predisposed to have children affected with the neonatal type rather than the late onset type. The female near relatives of these women do not seem to share this predisposition. The data should be useful for genetic counseling. PMID:6748014

  11. Reflex sympathetic dystrophy associated with antiepileptic drugs.

    PubMed

    Falasca, G F; Toly, T M; Reginato, A J; Schraeder, P L; O'Connor, C R

    1994-01-01

    Reflex sympathetic dystrophy syndrome (RSDS) complicating antiepileptic drug (AED) therapy is not well acknowledged in the neurologic literature. We report 4 patients with reflex sympathetic dystrophy that occurred while they were receiving AEDs. All patients had shoulder and hand involvement, which in 2 was bilateral, and 1 had ipsilateral foot involvement. Two patients did not respond to a change in AEDs, but all improved with a course of prednisone. One patient with phenobarbital (PB)-associated RSDS relapsed on inadvertent rechallenge with secobarbital. A review of the literature showed that several other fibrosing disorders are associated with AED administration, including Dupuytren's contractures, frozen shoulder, plantar and hand nodules, and Peyronie's disease. RSD associated with AEDs is important to recognize because it may result in permanent disability if treatment is delayed.

  12. Facioscapulohumeral dystrophy: case report and discussion.

    PubMed

    Castellano, Vincenzo; Feinberg, Joseph; Michaels, Jennifer

    2008-09-01

    Facioscapulohumeral dystrophy (FSHD) is often cited as the third most common form of muscular dystrophy. Therefore, it should be considered in patients with complaints of progressive weakness. We present the case of a man with facial, truncal, and leg weakness that initially sought medical attention for lower back pain. Electrodiagnostic testing revealed findings in the trapezius, serratus anterior, biceps, triceps, pectoralis major, tibialis anterior, and gastrocnemius muscles consistent with a myopathic disorder. Subsequent genetic testing identified a FSHD allele size consistent with a FSHD deletion mutation. Therefore, confirming the diagnosis of FSHD. Unfortunately, no effective treatments currently exist for FSHD. However, supportive measures involving physical therapy and the use of orthotics may aid in improving function and mobility. PMID:18815862

  13. Facioscapulohumeral Dystrophy: Case Report and Discussion

    PubMed Central

    Feinberg, Joseph; Michaels, Jennifer

    2008-01-01

    Facioscapulohumeral dystrophy (FSHD) is often cited as the third most common form of muscular dystrophy. Therefore, it should be considered in patients with complaints of progressive weakness. We present the case of a man with facial, truncal, and leg weakness that initially sought medical attention for lower back pain. Electrodiagnostic testing revealed findings in the trapezius, serratus anterior, biceps, triceps, pectoralis major, tibialis anterior, and gastrocnemius muscles consistent with a myopathic disorder. Subsequent genetic testing identified a FSHD allele size consistent with a FSHD deletion mutation. Therefore, confirming the diagnosis of FSHD. Unfortunately, no effective treatments currently exist for FSHD. However, supportive measures involving physical therapy and the use of orthotics may aid in improving function and mobility. PMID:18815862

  14. Therapeutics Development in Myotonic Dystrophy Type I

    PubMed Central

    Foff, Erin Pennock; Mahadevan, Mani S.

    2011-01-01

    Myotonic dystrophy (DM1), the most common adult muscular dystrophy, is a multi-system, autosomal dominant genetic disorder caused by an expanded CTG repeat that leads to nuclear retention of a mutant RNA and subsequent RNA toxicity. Significant insights into the molecular mechanisms of RNA toxicity have led to the surprising possibility that treating DM1 is a viable prospect. In this review, we briefly present the clinical picture in DM1, and describe how the research in understanding the pathogenesis of RNA toxicity in DM1 has led to targeted approaches to therapeutic development at various steps in the pathogenesis of the disease. We discuss the promise and current limitations of each with an emphasis on RNA-based therapeutics and small molecules. We conclude with a discussion of the unmet need for clinical tools and outcome measures that are essential prerequisites to proceed in evaluating these potential therapies in clinical trials. PMID:21607985

  15. Limb Girdle Muscular Dystrophy (LGMD): Case Report

    PubMed Central

    Kalyan, Meenakshi; Gaikwad, Anu N.; Makadia, Ankit; Shah, Harshad

    2015-01-01

    We report a young male of autosomal recessive limb girdle muscular dystrophy (LGMD) with positive family history presented with gradual onset proximal muscle weakness in all four limbs since eight years and thinning of shoulders, arms and thighs. Neurological examination revealed atrophy of both shoulders with wasting of both deltoids thinning of thighs and pseudo hypertrophy of both calves, hypotonia in all four limbs. Gower’s sign was positive. Winging of scapula was present. Power was 3/5 at both shoulders, 4/5 at both elbows, 5/5 at both wrists, 3/5 at both hip joints, 3/5 at both knees, 5/5 at both ankles. All deep tendon reflexes and superficial reflexes were present with plantars bilateral flexors. Electromyography (EMG) showed myopathic pattern. He had elevated creatinine phosphokinase levels and muscle biopsy findings consistent with muscular dystrophy. PMID:25738022

  16. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy

    PubMed Central

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-01-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  17. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy.

    PubMed

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-12-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  18. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy.

    PubMed

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-10-04

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy.

  19. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.

    PubMed

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei

    2016-03-01

    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function.

  20. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    PubMed Central

    Cruz Guzmán, Oriana del Rocío; Chávez García, Ana Laura; Rodríguez-Cruz, Maricela

    2012-01-01

    Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset. PMID:22701119

  1. Changes in pain-related beliefs, coping, and catastrophizing predict changes in pain intensity, pain interference, and psychological functioning in individuals with Myotonic Muscular Dystrophy and Facioscapulohumeral Dystrophy

    PubMed Central

    Nieto, Rubén; Raichle, Katherine A.; Jensen, Mark P.; Miró, Jordi

    2011-01-01

    Objectives The primary aim of this study was to test hypothesized associations between changes in psychological variables (i.e., pain beliefs, catastrophizing and coping strategies) and changes in pain intensity and related adjustment (i.e., pain interference and psychological functioning) in individuals with Myotonic Muscular Dystrophy (MMD) and Facioscapulohumeral Muscular Dystrophy (FSHD). Methods A sample of 107 adults with a diagnosis of MMD or FSHD, reporting pain in the past three months, completed assessments at two time-points, separated by about 24 months. Results Results showed that changes in pain-related psychological variables were significantly associated with changes in psychological functioning, pain intensity and pain interference. Specifically, increases in the belief that emotion influences pain, and catastrophizing were associated with decreases in psychological functioning. Increases in the coping strategies of asking for assistance and resting, and the increases of catastrophizing were associated with increases in pain intensity. Finally, increases in pain intensity and asking for assistance were associated with increases in pain interference. Discussion The results support the utility of the biopsychosocial model of pain for understanding pain and its impact in individuals with MMD or FSHD. These findings may inform the design and implementation of psychosocial pain treatments for people with muscular dystrophy and chronic pain. PMID:21642844

  2. Overexpression of LARGE suppresses muscle regeneration via down-regulation of insulin-like growth factor 1 and aggravates muscular dystrophy in mice.

    PubMed

    Saito, Fumiaki; Kanagawa, Motoi; Ikeda, Miki; Hagiwara, Hiroki; Masaki, Toshihiro; Ohkuma, Hidehiko; Katanosaka, Yuki; Shimizu, Teruo; Sonoo, Masahiro; Toda, Tatsushi; Matsumura, Kiichiro

    2014-09-01

    Several types of muscular dystrophy are caused by defective linkage between α-dystroglycan (α-DG) and laminin. Among these, dystroglycanopathy, including Fukuyama-type congenital muscular dystrophy (FCMD), results from abnormal glycosylation of α-DG. Recent studies have shown that like-acetylglucosaminyltransferase (LARGE) strongly enhances the laminin-binding activity of α-DG. Therefore, restoration of the α-DG-laminin linkage by LARGE is considered one of the most promising possible therapies for muscular dystrophy. In this study, we generated transgenic mice that overexpress LARGE (LARGE Tg) and crossed them with dy(2J) mice and fukutin conditional knockout mice, a model for laminin α2-deficient congenital muscular dystrophy (MDC1A) and FCMD, respectively. Remarkably, in both the strains, the transgenic overexpression of LARGE resulted in an aggravation of muscular dystrophy. Using morphometric analyses, we found that the deterioration of muscle pathology was caused by suppression of muscle regeneration. Overexpression of LARGE in C2C12 cells further demonstrated defects in myotube formation. Interestingly, a decreased expression of insulin-like growth factor 1 (IGF-1) was identified in both LARGE Tg mice and LARGE-overexpressing C2C12 myotubes. Supplementing the C2C12 cells with IGF-1 restored the defective myotube formation. Taken together, our findings indicate that the overexpression of LARGE aggravates muscular dystrophy by suppressing the muscle regeneration and this adverse effect is mediated via reduced expression of IGF-1.

  3. Hypothalamic-pituitary function in myotonic dystrophy.

    PubMed

    Mahler, C; Parizel, G

    1982-01-01

    Function of the hypothalamic-pituitary axis was investigated in seven patients with myotonic dystrophy (MD). HGH and ACTH secretion were normal. TSH response to TRH was impaired in about half the cases, without concomitant thyroid dysfunction. LH and FSH levels were often elevated, with inconsistent response to LH-RH stimulation, Gonadotrophin disturbances in MD have previously been attributed to a primary gonadal lesion, characteristically seen in this disease. High prolactin levels in six of our seven patients however suggest that gonadal failure may be also be due to hyperprolactinemia through the direct anti-gonadal effect of prolactin and its interference with hypothalamic-pituitary regulation of gonadotrophin secretion.

  4. Noncoding RNAs: Emerging Players in Muscular Dystrophies

    PubMed Central

    2014-01-01

    The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets. PMID:24729974

  5. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    PubMed

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively. PMID:26536238

  6. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    PubMed Central

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively. PMID:26536238

  7. Emerging Drugs for Duchenne Muscular Dystrophy

    PubMed Central

    Malik, Vinod; Rodino-Klapac, Louise; Mendell, Jerry R.

    2012-01-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common, severe childhood form of muscular dystrophy. Treatment is limited to glucocorticoids that have the benefit of prolonging ambulation by approximately 2 years and preventing scoliosis. Finding a more satisfactory treatment should focus on maintaining long-term efficacy with a minimal side effect profile. Areas covered Authors discuss different therapeutic strategies that have been used in pre-clinical and clinical settings. Expert opinion Multiple treatment approaches have emerged. Most attractive are molecular-based therapies that can express the missing dystrophin protein (exon skipping or mutation suppression) or a surrogate gene product (utrophin). Other approaches include increasing the strength of muscles (myostatin inhibitors), reducing muscle fibrosis, and decreasing oxidative stress. Additional targets include inhibiting NF-κB to reduce inflammation, or promoting skeletal muscle blood flow and muscle contractility using phosphodiesterase inhibitors or nitric oxide (NO) donors. The potential for each of these treatment strategies to enter clinical trials is a central theme of discussion. The review emphasizes that the goal of treatment should be to find a product at least as good as glucocorticoids with a lower side effect profile or with a significant glucocorticoid sparing effect. PMID:22632414

  8. Congenital muscular dystrophy with inflammation: Diagnostic considerations

    PubMed Central

    Konkay, Kaumudi; Kannan, Meena Angamuthu; Lingappa, Lokesh; Uppin, Megha S.; Challa, Sundaram

    2016-01-01

    Background and Purpose: Muscle biopsy features of congenital muscular dystrophies (CMD) vary from usual dystrophic picture to normal or nonspecific myopathic picture or prominent fibrosis or striking inflammatory infiltrate, which may lead to diagnostic errors. A series of patients of CMD with significant inflammatory infiltrates on muscle biopsy were correlated with laminin α2 deficiency on immunohistochemistry (IHC). Material and Methods: Cryostat sections of muscle biopsies from the patients diagnosed as CMD on clinical and muscle biopsy features from 1996 to 2014 were reviewed with hematoxylin and eosin(H&E), enzyme and immunohistochemistry (IHC) with laminin α2. Muscle biopsies with inflammatory infiltrate were correlated with laminin α2 deficiency. Results: There were 65 patients of CMD, with inflammation on muscle biopsy in 16. IHC with laminin α2 was available in nine patients, of which six showed complete absence along sarcolemma (five presented with floppy infant syndrome and one with delayed motor milestones) and three showed discontinuous, and less intense staining. Conclusions: CMD show variable degrees of inflammation on muscle biopsy. A diagnosis of laminin α2 deficient CMD should be considered in patients of muscular dystrophy with inflammation, in children with hypotonia/delayed motor milestones. PMID:27570388

  9. Diagnostic Odyssey of Patients with Myotonic Dystrophy

    PubMed Central

    Hilbert, James E.; Ashizawa, Tetsuo; Day, John W.; Luebbe, Elizabeth A.; Martens, William B.; McDermott, Michael P.; Tawil, Rabi; Thornton, Charles A.; Moxley, Richard T.

    2013-01-01

    The onset and symptoms of the myotonic dystrophies are diverse, complicating their diagnoses and limiting a comprehensive approach to their clinical care. This report analyzes the diagnostic delay (time from onset of first symptom to diagnosis) in a large sample of myotonic dystrophy (DM) patients enrolled in the US National Registry [679 DM type 1 (DM1) and 135 DM type 2 (DM2) patients]. Age of onset averaged 34.0 ± 14.1 years in DM2 patients compared to 26.1 ± 13.2 years in DM1 (p<0.0001). The most common initial symptom in DM2 patients was leg weakness (32.6%) compared to grip myotonia in DM1 (38.3%). Pain was reported as the first symptom in 11.1% of DM2 and 3.0% of DM1 patients (p<0.0001). Reaching the correct diagnosis in DM2 took 14 years on average (double the time compared to DM1) and a significantly higher percentage of patients underwent extended workup including electromyography, muscle biopsies, and finally genetic testing. DM patients who were index cases experienced similar diagnostic delays to non-index cases of DM. Further evaluation of how to shorten these diagnostic delays and limit their impact on burdens of disease, family planning, and symptom management is needed. PMID:23807151

  10. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.

  11. Oxidative stress and the pathogenesis of muscular dystrophies.

    PubMed

    Rando, Thomas A

    2002-11-01

    The muscular dystrophies represent a diverse group of diseases differing in underlying genetic basis, age of onset, mode of inheritance, and severity of progression, but they share certain common pathologic features. Most prominent among these features is the necrotic degeneration of muscle fibers. Although the genetic basis of many of the dystrophies has been known for over a decade and new disease genes continue to be discovered, the pathogenetic mechanisms leading to muscle cell death in the dystrophies remain a mystery. This review focuses on the oxidative stress theory, which states that the final common pathway of muscle cell death in these diseases involves oxidative damage.

  12. Birdshot chorioretinopathy in a male patient with facioscapulohumeral muscular dystrophy.

    PubMed

    Papavasileiou, Evangelia; Lobo, Ann-Marie

    2015-01-01

    We report a case of birdshot chorioretinopathy (BSCR) in a patient with facioscapulohumeral muscular dystrophy (FSHD). A 40-year-old male with history of facioscapulohumeral muscular dystrophy with significant facial diplegia and lagophthalmos presents for an evaluation of bilateral choroiditis with vasculitis and optic disc edema. Clinical examination included fundus and autofluorescence photographs, fluorescein angiography, and optical coherence tomography. To our knowledge, this patient represents the first reported case of birdshot chorioretinopathy with facioscapulohumeral muscular dystrophy. Patients with FSHD can present with ocular findings and should be screened with dilated fundus examinations for retinal vascular changes and posterior uveitis. PMID:25861398

  13. Benign muscular dystrophy: risk calculation in families with consanguinity.

    PubMed Central

    Wolff, G; Müller, C R; Grimm, T

    1989-01-01

    This report concerns two families in which the index patients are sporadic cases of a benign form of muscular dystrophy. In both families the sisters of the patients have married a close relative. The respective risks for a child of these consanguineous marriages being affected with either X linked Becker muscular dystrophy or autosomal recessive limb girdle muscular dystrophy is calculated using pedigree information, results of serum creatine kinase determinations, and also, in one family, results of DNA typing using RFLPs from the short arm of the X chromosome. PMID:2732990

  14. Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy

    PubMed Central

    Yu, Hong-Hao; Zhao, Heng; Qing, Yu-Bo; Pan, Wei-Rong; Jia, Bao-Yu; Zhao, Hong-Ye; Huang, Xing-Xu; Wei, Hong-Jiang

    2016-01-01

    Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD. Two piglets were obtained after embryo transfer, one of piglets was identified as DMD-modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD-modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD-modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig. PMID:27735844

  15. Biallelic Mutations in the Autophagy Regulator DRAM2 Cause Retinal Dystrophy with Early Macular Involvement

    PubMed Central

    El-Asrag, Mohammed E.; Sergouniotis, Panagiotis I.; McKibbin, Martin; Plagnol, Vincent; Sheridan, Eamonn; Waseem, Naushin; Abdelhamed, Zakia; McKeefry, Declan; Van Schil, Kristof; Poulter, James A.; Black, Graeme; Hall, Georgina; Ingram, Stuart; Gillespie, Rachel; Ramsden, Simon; Manson, Forbes; Hardcastle, Alison; Michaelides, Michel; Cheetham, Michael; Arno, Gavin; Thomas, Niclas; Bhattacharya, Shomi; Moore, Tony; Nemeth, Andrea; Downes, Susan; Lise, Stefano; Lord, Emma; Johnson, Colin A.; Carr, Ian M.; Leroy, Bart P.; De Baere, Elfride; Inglehearn, Chris F.; Webster, Andrew R.; Toomes, Carmel; Ali, Manir

    2015-01-01

    Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs∗3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165∗] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function. PMID:25983245

  16. The 'PDA nail': traumatic nail dystrophy in habitual users of personal digital assistants.

    PubMed

    Olszewska, Malgorzata; Wu, John Z; Slowinska, Monika; Rudnicka, Lidia

    2009-01-01

    All-in-one devices with mobile phone, web browser, and organizer are now owned by over 6 million people and their popularity is increasing. These devices are often called personal digital assistants (PDAs) or 'BlackBerry(R)' devices, after a popular brand name of these appliances. The use of PDAs is associated with exposure of distal thumbs and nails to repeated pressure with a frequency of up to a few thousand times per hour and several tens of thousands of times per day. We describe two cases of traumatic thumb nail dystrophy associated with using a PDA keyboard for several hours per day. Both patients developed median nail plate dystrophy after 4-8 months of habitual PDA use. One patient also developed thumb nail psoriasis and paronychia. All symptoms resolved a few months after discontinuing PDA use. Analysis of nail biomechanics, performed by using a finite element fingertip model, showed that maximal stress reaches approximately 3 MPa and appears near the root on the internal surface of the nail, while it reaches approximately 2 MPa and appears around one-third from the root on the outside surface. In conclusion, biomechanical stress resulting from overuse of PDAs may result in various types of nail dystrophy. We suggest the general term 'PDA nails' for these nail abnormalities.

  17. Muscular Dystrophy associated with alpha-dystroglycan deficiency in Sphynx and Devon Rex cats

    PubMed Central

    Martin, Paul T; Diane Shelton, G.; Dickinson, Peter J; Sturges, Beverly K; Xu, Rui; LeCouteur, Richard A; Guo, Ling T; Grahn, Robert A; Lo, Harriet P; North, Kathryn N; Malik, Richard; Engvall, Eva; Lyons, Leslie A

    2008-01-01

    Recent studies have identified a number of forms of muscular dystrophy, termed dystroglycanopathies, which are associated with loss of natively glycosylated α–dystroglycan. Here we identify a new animal model for this class of disorders in Sphynx and Devon Rex cats. Affected cats displayed a slowly progressive myopathy with clinical and histologic hallmarks of muscular dystrophy including skeletal muscle weakness with no involvement of peripheral nerves or CNS. Skeletal muscles had myopathic features and reduced expression of α–dystroglycan, while β–dystroglycan, sarcoglycans, and dystrophin were expressed at normal levels. In the Sphynx cat, analysis of laminin and lectin binding capacity demonstrated no loss in overall glycosylation or ligand binding for the α-dystroglycan protein, only a loss of protein expression. A reduction in laminin-α2 expression in the basal lamina surrounding skeletal myofibers was also observed. Sequence analysis of translated regions of the feline dystroglycan gene (DAG1) in affected cats did not identify a causative mutation, and levels of DAG1 mRNA determined by real-time QRT-PCR did not differ significantly from normal controls. Reduction in the levels of glycosylated α–dystroglycan by immunoblot was also identified in an affected Devon Rex cat. These data suggest that muscular dystrophy in Sphynx and Devon Rex cats results from a deficiency in α-dystroglycan protein expression, and as such may represent a new type of dystroglycanopathy where expression, but not glycosylation, is affected. PMID:18990577

  18. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy

    PubMed Central

    Villalta, S. Armando; Rosenthal, Wendy; Martinez, Leonel; Kaur, Amanjot; Sparwasser, Tim; Tidball, James G.; Margeta, Marta; Spencer, Melissa J.; Bluestone, Jeffrey A.

    2016-01-01

    We examined the hypothesis that regulatory T cells (Tregs) modulate muscle injury and inflammation in the mdx mouse model of Duchenne muscular dystrophy (DMD). Although Tregs were largely absent in the muscle of wildtype mice and normal human muscle, they were present in necrotic lesions, displayed an activated phenotype and showed increased expression of interleukin (IL)-10 in dystrophic muscle from mdx mice. Depletion of Tregs exacerbated muscle injury and the severity of muscle inflammation, which was characterized by an enhanced interferon-gamma (IFNγ) response and activation of M1 macrophages. To test the therapeutic value of targeting Tregs in muscular dystrophy, we treated mdx mice with IL-2/anti-IL-2 complexes (IL-2c), and found that Tregs and IL-10 concentrations were increased in muscle, resulting in reduced expression of cyclooygenase-2 and decreased myofiber injury. These findings suggest that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation in muscle associated with muscle fiber injury, and highlight the potential of Treg-modulating agents as therapeutics for DMD. PMID:25320234

  19. Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function

    PubMed Central

    Bibee, Kristin P.; Cheng, Ya-Jian; Ching, James K.; Marsh, Jon N.; Li, Allison J.; Keeling, Richard M.; Connolly, Anne M.; Golumbek, Paul T.; Myerson, Jacob W.; Hu, Grace; Chen, Junjie; Shannon, William D.; Lanza, Gregory M.; Weihl, Conrad C.; Wickline, Samuel A.

    2014-01-01

    Duchenne muscular dystrophy in boys progresses rapidly to severe impairment of muscle function and death in the second or third decade of life. Current supportive therapy with corticosteroids results in a modest increase in strength as a consequence of a general reduction in inflammation, albeit with potential untoward long-term side effects and ultimate failure of the agent to maintain strength. Here, we demonstrate that alternative approaches that rescue defective autophagy in mdx mice, a model of Duchenne muscular dystrophy, with the use of rapamycin-loaded nanoparticles induce a reproducible increase in both skeletal muscle strength and cardiac contractile performance that is not achievable with conventional oral rapamycin, even in pharmacological doses. This increase in physical performance occurs in both young and adult mice, and, surprisingly, even in aged wild-type mice, which sets the stage for consideration of systemic therapies to facilitate improved cell function by autophagic disposal of toxic byproducts of cell death and regeneration.—Bibee, K. P., Cheng, Y.-J., Ching, J. K., Marsh, J. N., Li, A. J., Keeling, R. M., Connolly, A. M., Golumbek, P. T., Myerson, J. W., Hu, G., Chen, J., Shannon, W. D., Lanza, G. M., Weihl, C. C., Wickline, S. A. Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. PMID:24500923

  20. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy.

    PubMed

    Villalta, S Armando; Rosenthal, Wendy; Martinez, Leonel; Kaur, Amanjot; Sparwasser, Tim; Tidball, James G; Margeta, Marta; Spencer, Melissa J; Bluestone, Jeffrey A

    2014-10-15

    We examined the hypothesis that regulatory T cells (Tregs) modulate muscle injury and inflammation in the mdx mouse model of Duchenne muscular dystrophy (DMD). Although Tregs were largely absent in the muscle of wild-type mice and normal human muscle, they were present in necrotic lesions, displayed an activated phenotype, and showed increased expression of interleukin-10 (IL-10) in dystrophic muscle from mdx mice. Depletion of Tregs exacerbated muscle injury and the severity of muscle inflammation, which was characterized by an enhanced interferon-γ (IFN-γ) response and activation of M1 macrophages. To test the therapeutic value of targeting Tregs in muscular dystrophy, we treated mdx mice with IL-2/anti-IL-2 complexes and found that Tregs and IL-10 concentrations were increased in muscle, resulting in reduced expression of cyclooxygenase-2 and decreased myofiber injury. These findings suggest that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation in muscle associated with muscle fiber injury, and highlight the potential of Treg-modulating agents as therapeutics for DMD.

  1. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    PubMed

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-01

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  2. Acetazolamide for cystoid macular oedema in Bietti crystalline retinal dystrophy.

    PubMed

    Broadhead, Geoffrey K; Chang, Andrew A

    2014-04-01

    Bietti crystalline retinal dystrophy is a rare, inherited disorder whose hallmark is the presence of retinal crystal deposits associated with later chorioretinal degeneration. This condition may rarely be complicated by the development of cystoid macular oedema leading to rapid visual decline. Currently, treatment options for this complication of Bietti dystrophy are limited and the visual prognosis is poor. Here, we present a case of cystoid macular oedema associated with Bietti dystrophy that was successfully diagnosed using multimodal imaging techniques including optical coherence tomography and fluorescein angiography. These modalities confirmed the diagnosis of macular oedema and excluded other possible causes of oedema such as choroidal neovascularisation. In this patient, cystoid macular oedema was resolved with oral acetazolamide therapy, a treatment that has not been previously reported in this context. Acetazolamide treatment resulted in oedema resolution and improvement in visual function, and can be considered a therapeutic option for other patients with Bietti dystrophy who develop cystoid macular oedema.

  3. Macular pattern dystrophy and homonymous hemianopia in MELAS syndrome.

    PubMed

    Kamal-Salah, Radua; Baquero-Aranda, Isabel; Grana-Pérez, María Del Mar; García-Campos, Jose Manuel

    2015-03-12

    We report an unusual association of a pattern dystrophy of the retinal pigment epithelium and homonymous hemianopia in a woman diagnosed with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes syndrome.

  4. Genetics Home Reference: limb-girdle muscular dystrophy

    MedlinePlus

    ... most common form of limb-girdle muscular dystrophy , accounting for about 30 percent of cases. Dysferlinopathy, also ... be inherited? More about Inheriting Genetic Conditions Diagnosis & Management These resources address the diagnosis or management of ...

  5. Macular pattern dystrophy and homonymous hemianopia in MELAS syndrome.

    PubMed

    Kamal-Salah, Radua; Baquero-Aranda, Isabel; Grana-Pérez, María Del Mar; García-Campos, Jose Manuel

    2015-01-01

    We report an unusual association of a pattern dystrophy of the retinal pigment epithelium and homonymous hemianopia in a woman diagnosed with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes syndrome. PMID:25766436

  6. Congenital, hypotonic-sclerotic muscular dystrophy.

    PubMed Central

    Furukawa, T; Toyokura, Y

    1977-01-01

    Four cases of congenital, hypotonic-sclerotic muscular dystrophy are presented. The patients showed clinically prominent features described by Ullrich, i.e. congenital muscle weakness, hypotonia, and hyperextensibility of distal joints, contractures of proximal joints, high-arched palate, hyperhidrosis, posterior protrusion of calcaneus, and no progression. Muscle biopsies revealed dystrophic changes. Ullrich suggested that this condition was a new entity, but the disease has received little attention. In the present cases superior intelligence and tendency to recurrent upper respiratory tract infections were stressed as characteristics of this disorder. Insufficient cellular immunity was suspected and this may contribute to the recurrent upper respiratory tract infections and pneumonia often observed. This disease is considered a distinct entity of multisystemic involvement inherited as an autosomal recessive trait. Images PMID:604494

  7. Neuromuscular function in limb girdle dystrophy.

    PubMed Central

    Belanger, A Y; McComas, A J

    1985-01-01

    The contractile properties of ankle dorsiflexor and plantarflexor muscles in 20 patients with limb girdle muscular dystrophy have been compared with those in matched controls. Twitch and voluntary torques were significantly smaller in the patient population and in nine patients it was impossible to record a twitch from tibialis anterior, a dorsiflexor muscle studied in detail. The disease process evidently ran a more rapid course in tibialis anterior than in plantarflexor muscles and this susceptibility was related to some aspect of the muscle other than its fibre type composition. Surviving fibres in dorsiflexor and plantarflexor muscles did not reveal evidence of excitation-contraction uncoupling; they exhibited normal post-activation potentiation and fatigue properties. Some patients were initially incapable of exciting their motor units maximally during voluntary contractions. A finding of possible pathogenetic significance was that one patient, with prominent calves, developed exceptionally large voluntary torque in his plantarflexor muscles. PMID:4087001

  8. Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication

    MedlinePlus

    ... 2013 March 2013 (historical) Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication A readily available ... effects of a promising experimental treatment for Duchenne muscular dystrophy (DMD), according to research partially funded by the ...

  9. NIH study shows increased risk for two types of myotonic muscular dystrophy

    Cancer.gov

    Adults with a form of muscular dystrophy called myotonic muscular dystrophy (MMD) may be at increased risk of developing cancer, according to a study by investigators at the National Cancer Institute (NCI), part of the National Institutes of Health.

  10. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients.

  11. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1).

    PubMed

    Feeney, Sandra J; McGrath, Meagan J; Sriratana, Absorn; Gehrig, Stefan M; Lynch, Gordon S; D'Arcy, Colleen E; Price, John T; McLean, Catriona A; Tupler, Rossella; Mitchell, Christina A

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1. PMID:25695429

  12. FHL1 Reduces Dystrophy in Transgenic Mice Overexpressing FSHD Muscular Dystrophy Region Gene 1 (FRG1)

    PubMed Central

    Feeney, Sandra J.; McGrath, Meagan J.; Sriratana, Absorn; Gehrig, Stefan M.; Lynch, Gordon S.; D’Arcy, Colleen E.; Price, John T.; McLean, Catriona A.; Tupler, Rossella; Mitchell, Christina A.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1. PMID:25695429

  13. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    PubMed Central

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  14. Synaptic protein dysregulation in myotonic dystrophy type 1

    PubMed Central

    Hernández-Hernández, Oscar; Sicot, Géraldine; Dinca, Diana M.; Huguet, Aline; Nicole, Annie; Buée, Luc; Munnich, Arnold; Sergeant, Nicolas; Gourdon, Geneviève; Gomes-Pereira, Mário

    2013-01-01

    The toxicity of expanded transcripts in myotonic dystrophy type 1 (DM1) is mainly mediated by the disruption of alternative splicing. However, the detailed disease mechanisms in the central nervous system (CNS) have not been fully elucidated. In our recent study, we demonstrated that the accumulation of mutant transcripts in the CNS of a mouse model of DM1 disturbs splicing in a region-specific manner. We now discuss that the spatial- and temporal-regulated expression of splicing factors may contribute to the region-specific spliceopathy in DM1 brains. In the search for disease mechanisms operating in the CNS, we found that the expression of expanded CUG-containing RNA affects the expression and phosphorylation of synaptic vesicle proteins, possibly contributing to DM1 neurological phenotypes. Although mediated by splicing regulators with a described role in DM1, the misregulation of synaptic proteins was not associated with missplicing of their coding transcripts, supporting the view that DM1 mechanisms in the CNS have also far-reaching implications beyond the disruption of a splicing program. PMID:25003003

  15. Compound loss of muscleblind-like function in myotonic dystrophy

    PubMed Central

    Lee, Kuang-Yung; Li, Moyi; Manchanda, Mini; Batra, Ranjan; Charizanis, Konstantinos; Mohan, Apoorva; Warren, Sonisha A; Chamberlain, Christopher M; Finn, Dustin; Hong, Hannah; Ashraf, Hassan; Kasahara, Hideko; Ranum, Laura P W; Swanson, Maurice S

    2013-01-01

    Myotonic dystrophy (DM) is a multi-systemic disease that impacts cardiac and skeletal muscle as well as the central nervous system (CNS). DM is unusual because it is an RNA-mediated disorder due to the expression of toxic microsatellite expansion RNAs that alter the activities of RNA processing factors, including the muscleblind-like (MBNL) proteins. While these mutant RNAs inhibit MBNL1 splicing activity in heart and skeletal muscles, Mbnl1 knockout mice fail to recapitulate the full-range of DM symptoms in these tissues. Here, we generate mouse Mbnl compound knockouts to test the hypothesis that Mbnl2 functionally compensates for Mbnl1 loss. Although Mbnl1−/−; Mbnl2−/− double knockouts (DKOs) are embryonic lethal, Mbnl1−/−; Mbnl2+/− mice are viable but develop cardinal features of DM muscle disease including reduced lifespan, heart conduction block, severe myotonia and progressive skeletal muscle weakness. Mbnl2 protein levels are elevated in Mbnl1−/− knockouts where Mbnl2 targets Mbnl1-regulated exons. These findings support the hypothesis that compound loss of MBNL function is a critical event in DM pathogenesis and provide novel mouse models to investigate additional pathways disrupted in this RNA-mediated disease. PMID:24293317

  16. [Specific features of Becker Muscular Dystrophy patients and female carriers of Duchenne Muscular Dystrophy].

    PubMed

    Magot, A; Mercier, S; Péréon, Y

    2015-12-01

    Becker muscular dystrophy (BMD) was first described in 1955 and linked to the DMD gene in 1987. Compared to Duchenne muscular dystrophy (DMD), clinical onset of BMD usually occurs after the age of 12 and wheelchair is required after the age of 16. BMD is characterized by generalized weakness first affecting limb girdle muscles, hypertrophy of the calves and cardiomyopathy in males. Some patients have only mild symptoms such as cramps or elevated serum creatine kinases (SCK) throughout all their lives. SCK levels are usually elevated. Muscle biopsy (immunohistochemistry or immunoblotting) shows a dystrophic pattern with abnormal dystrophin staining. Diagnosis is confirmed by DMD gene sequencing. Deletions or duplications of one or several exons are identified in the majority of cases. A multidisciplinary approach is recommended for the care management of these patients with a particular attention to the cardiomyopathy, which is typically responsible for death but can be prevented by specific treatment. X-linked dilated cardiomyopathies linked to DMD gene are a phenotypic continuum of BMD. Some female carriers of DMD mutations exhibit clinical symptoms of variable severity, often milder and beginning later than in males. The cardiomyopathy is the most frequent feature that should be especially monitored in these patients. Genetic counselling should be systematically proposed. PMID:26773584

  17. Experienced fatigue in facioscapulohumeral dystrophy, myotonic dystrophy, and HMSN-I

    PubMed Central

    Kalkman, J; Schillings, M; van der Werf, S P; Padberg, G; Zwarts, M; van Engelen, B G M; Bleijenberg, G

    2005-01-01

    Objective: To assess the prevalence of severe fatigue and its relation to functional impairment in daily life in patients with relatively common types of neuromuscular disorders. Methods: 598 patients with a neuromuscular disease were studied (139 with facioscapulohumeral dystrophy, 322 with adult onset myotonic dystrophy, and 137 with hereditary motor and sensory neuropathy type I). Fatigue severity was assessed with Checklist Individual Strength (CIS-fatigue). Functional impairments in daily life were measured with the short form 36 item health questionnaire (SF-36). Results: The three different neuromuscular patient groups were of similar age and sex. Severe experienced fatigue was reported by 61–74% of the patients. Severely fatigued patients had more problems with physical functioning, social functioning, mental health, bodily pain, and general health perception. There were some differences between the three disorders in the effects of fatigue. Conclusions: Severe fatigue is reported by the majority of patients with relatively common types of neuromuscular disorders. Because experienced fatigue severity is associated with the severity of various functional impairments in daily life, it is a clinically and socially relevant problem in this group of patients. PMID:16170086

  18. The effects of myotonic dystrophy and Duchenne muscular dystrophy on the orofacial muscles and dentofacial morphology.

    PubMed

    Kiliaridis, S; Katsaros, C

    1998-12-01

    This article takes a closer view of two of the less rare myopathies, myotonic dystrophy (MyD) and Duchenne muscular dystrophy (DMD). A high prevalence of malocclusions was found among the patients affected by these diseases. The development of the malocclusions in MyD patients seems to be strongly related to the vertical aberration of their craniofacial growth due to the involvement of the masticator, muscles in association with the possibly less affected suprahyoid musculature. Thus, a new situation is established around the teeth transversely. The lowered tongue is not in a position to counterbalance the forces developed during the lowering of the mandible by the stretched facial musculature. This may affect the teeth transversely, decreasing the width of the palate and causing posterior crossbite. The lowered position of the mandible, in combination with the decreased biting forces, may permit an overeruption of the posterior teeth, with increased palatal vault height and development of anterior open bite. The development of the malocclusions in DMD patients also seems to be strongly related to the involvement of the orofacial muscles by the disease. However, the posterior crossbite is not developed owing to the narrow maxillary arch, as is the case in MyD patients. On the contrary, the posterior crossbite in DMD is due to the transversal expansion of the mandibular arch, possibly because of the decreased tonus of the masseter muscle near the molars, in combination with the enlarged hypotonic tongue and the predominance of the less affected orbicularis oris muscle.

  19. Targeting Fibrosis in Duchenne Muscular Dystrophy

    PubMed Central

    Zhou, Lan; Lu, Haiyan

    2010-01-01

    Duchenne muscular dystrophy (DMD) is the most common genetic muscle disease affecting 1 in 3,500 live male births. It is an X-linked recessive disease caused by a defective dystrophin gene. The disease is characterized by progressive limb weakness, respiratory and cardiac failure and premature death. Fibrosis is a prominent pathological feature of muscle biopsies from patients with DMD. It directly causes muscle dysfunction and contributes to the lethal DMD phenotype. Although gene therapy and cell therapy may ultimately provide a cure for DMD, currently the disease is devastating, with no effective therapies. Recent studies have demonstrated that ameliorating muscle fibrosis may represent a viable therapeutic approach for DMD. By reducing scar formation, antifibrotic therapies may not only improve muscle function but also enhance muscle regeneration and promote gene and stem cell engraftment. Antifibrotic therapy may serve as a necessary addition to gene and cell therapies to treat DMD in the future. Therefore, understanding cellular and molecular mechanisms underlying muscle fibrogenesis associated with dystrophin deficiency is key to the development of effective antifibrotic therapies for DMD. PMID:20613637

  20. Facioscapulohumeral muscular dystrophy: consequences of chromatin relaxation

    PubMed Central

    van der Maarel, Silvère M.; Miller, Daniel G.; Tawil, Rabi; Filippova, Galina N.; Tapscott, Stephen J.

    2013-01-01

    Purpose of review In recent years we have seen remarkable progress in our understanding of the disease mechanism underlying facioscapulohumeral muscular dystrophy (FSHD). The purpose of this review is to provide a comprehensive overview of our current understanding of the disease mechanism and to discuss the observations supporting the possibility of a developmental defect in this disorder. Recent findings In the majority of cases FSHD is caused by contraction of the D4Z4 repeat array (FSHD1). This results in local chromatin relaxation and stable expression of the DUX4 retrogene in skeletal muscle, but only when a polymorphic DUX4 polyadenylation signal is present. In some cases (FSHD2), D4Z4 chromatin relaxation and stable DUX4 expression occurs in the absence of D4Z4 array contraction. DUX4 is a germline transcription factor and its expression in skeletal muscle leads to activation of early stem cell and germline programs and transcriptional activation of retroelements. Summary Recent studies have provided a plausible disease mechanism for FSHD where FSHD results from inappropriate expression of the germline transcription factor DUX4. The genes regulated by DUX4 suggest several mechanisms of muscle damage, and provide potential biomarkers and therapeutic targets that should be investigated in future studies. PMID:22892954

  1. Congenital muscular dystrophy: from muscle to brain.

    PubMed

    Falsaperla, Raffaele; Praticò, Andrea D; Ruggieri, Martino; Parano, Enrico; Rizzo, Renata; Corsello, Giovanni; Vitaliti, Giovanna; Pavone, Piero

    2016-01-01

    Congenital muscular dystrophies (CMDs) are a wide group of muscular disorders that manifest with very early onset of muscular weakness, sometime associated to severe brain involvement.The histologic pattern of muscle anomalies is typical of dystrophic lesions but quite variable depending on the different stages and on the severity of the disorder.Recent classification of CMDs have been reported most of which based on the combination of clinical, biochemical, molecular and genetic findings, but genotype/phenotype correlation are in constant progression due to more diffuse utilization of the molecular analysis.In this article, the Authors report on CMDs belonging to the group of dystroglycanopathies and in particular on the most severe forms represented by the Fukuyama CMD, Muscle-Eye-Brain disease and Walker Walburg syndrome.Clinical diagnosis of infantile hypotonia is particularly difficult considering the different etiologic factors causing the lesions, the difficulty in localizing the involved CNS area (central vs. peripheral) and the limited role of the diagnostic procedures at this early age.The diagnostic evaluation is not easy mainly in differentiating the various types of CMDs, and represents a challenge for the neonatologists and pediatricians. Suggestions are reported on the way to reach a correct diagnosis with the appropriate use of the diagnostic means. PMID:27576556

  2. Optimizing Bone Health in Duchenne Muscular Dystrophy

    PubMed Central

    Buckner, Jason L.; Bowden, Sasigarn A.; Mahan, John D.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA. PMID:26124831

  3. Autophagy in granular corneal dystrophy type 2.

    PubMed

    Choi, Seung-Il; Kim, Eung Kweon

    2016-03-01

    Autophagy is a lysosomal degradative process that is essential for cellular homeostasis and metabolic stress adaptation. Defective autophagy is involved in the pathogenesis of many diseases including granular corneal dystrophy type 2 (GCD2). GCD2 is an autosomal dominant disorder caused by substitution of histidine for arginine at codon 124 (R124H) in the transforming growth factor β-induced gene (TGFBI) on chromosome 5q31. Transforming growth factor β-induced protein (TGFBIp) is degraded by autophagy, but mutant-TGFBIp accumulates in autophagosomes and/or lysosomes, despite significant activation of basal autophagy, in GCD2 corneal fibroblasts. Furthermore, inhibition of autophagy induces cell death of GCD2 corneal fibroblasts through active caspase-3. As there is currently no pharmacological treatment for GCD2, development of novel therapies is required. A potential strategy for preventing cytoplasmic accumulation of mutant-TGFBIp in GCD2 corneal fibroblasts is to enhance mutant-TGFBIp degradation. This could be achieved by activation of the autophagic pathway. Here, we will consider the role and the potential therapeutic benefits of autophagy in GCD2, with focus on TGFBIp degradation, in light of the recently established role of autophagy in protein degradation.

  4. Molecular analysis of facioscapulohumeral muscular dystrophy (FSHD)

    SciTech Connect

    Upadhyaya, M.; Maynard, J.; Osborn, M.

    1994-09-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive muscle weakness. The disease locus maps to 4q35 and is associated with a de novo DNA rearrangement, detected by a probe p13E-11 (D4F104S1) which maps proximal to the disease locus. An informative distal flanking marker for this condition is still required. Using p13E-11, we have analyzed 35 FSHD families in which the disease is apparently associated with a new mutation. Twenty three of these cases were found to have a smaller rearranged DNA fragment which was not present in either of the parents. Pulsed-field gel analysis of 5 of these families also revealed evidence of DNA deletion. During the course of this study, we identified one case with a DNA rearrangement which was also present in the unaffected mother, but at very low intensity. This finding has been confirmed by pulsed-field gel analysis, and indicates that the mother is probably a gonosomal mosaic. In order to saturate the FSHD region with new DNA markers, a laser microdissection and microcloning technique was used to construct a genomic library from the distal end of chromosome 4. Of the 72 microclones analyzed, 42 mapped into the relevant 4q35 region. 4 sequences were conserved and may be considered potential candidate genes for FSHD. The microclones mapping to 4q35 are under study to identify additional polymorphic markers for the FSHD region.

  5. Hyperkalaemia and selective hypoaldosteronism in myotonic dystrophy.

    PubMed

    Misra, Dolly; DeSilva, Shari; Fellerman, Herbert; Dufour, D Robert; Streeten, David H P; Nylen, Eric S

    2002-02-01

    Myotonic dystrophy (MyD) is a common genetic neuromuscular disorder in which chromosome 19 gives rise to an abnormal expansion of CTG-trinucleotide repeats. MyD is a highly variable multisystem disorder with muscular and nonmuscular abnormalities. Increasingly, endocrine abnormalities, such as gonadal, pancreatic, and adrenal dysfunction are being uncovered. Herein we present three unrelated cases with MyD with abnormally elevated serum potassium; 2 of the 3 cases presented clinically with cardiac dysrhythmias. Hyperkalaemic conditions such as renal failure, cortisol deficiency, pseudohyperkalaemia, and hyperkalaemic periodic paralysis were excluded. Further endocrine evaluation revealed baseline hypoaldosteronism associated with elevated renin activity. Perturbation of the renin-angiotensin-aldosterone system resulted in appropriately enhanced renin activity but with a subnormal aldosterone response, which appeared to be due to adrenal hyporesponsiveness. The treatment of all cases with fludrocortisone was without effect. Whether the apparent mineralocorticoid abnormality in MyD is due to associated hormonal perturbations (i.e. excessive ACTH responsiveness. elevated cytokines, elevated atrial natriuretic hormone, etc.), adrenal atrophy, and/or a manifestation of the underlying kinase dysfunction is uncertain, but merits further evaluation in view of the clinical consequence of hyperkalaemia.

  6. The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation

    NASA Astrophysics Data System (ADS)

    Sicinski, Piotr; Geng, Yan; Ryder-Cook, Allan S.; Barnard, Eric A.; Darlison, Mark G.; Barnard, Pene J.

    1989-06-01

    The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned, and the sequence has been used in the polymerase chain reaction to amplify normal and mdx dystrophin transcripts in the area of the mdx mutation. Sequence analysis of the amplification products showed that the mdx mouse has a single base substitution within an exon, which causes premature termination of the polypeptide chain.

  7. Cognitive and Neurobehavioral Profile in Boys With Duchenne Muscular Dystrophy.

    PubMed

    Banihani, Rudaina; Smile, Sharon; Yoon, Grace; Dupuis, Annie; Mosleh, Maureen; Snider, Andrea; McAdam, Laura

    2015-10-01

    Duchenne muscular dystrophy is a progressive neuromuscular condition that has a high rate of cognitive and learning disabilities as well as neurobehavioral disorders, some of which have been associated with disruption of dystrophin isoforms. Retrospective cohort of 59 boys investigated the cognitive and neurobehavioral profile of boys with Duchenne muscular dystrophy. Full-scale IQ of < 70 was seen in 27%; learning disability in 44%, intellectual disability in 19%; attention-deficit/hyperactivity disorder in 32%; autism spectrum disorders in 15%; and anxiety in 27%. Mutations affecting Dp260 isoform and 5'untranslated region of Dp140 were observed in 60% with learning disability, 50% intellectual disability, 77% with autism spectrum disorders, and 94% with anxiety. No statistically significant correlation was noted between comorbidities and dystrophin isoforms; however, there is a trend of cumulative loss of dystrophin isoforms with declining full-scale IQ. Enhanced psychology testing to include both cognitive and neurobehavioral disorders is recommended for all individuals with Duchenne muscular dystrophy.

  8. [DIAGNOSTIC VARIATIONS OF X-LINKED MUSCULAR DYSTROPHY WITH CONTRACTURES].

    PubMed

    Kvirkvelia, N; Shakarishvili, R; Gugutsidze, D; Khizanishvili, N

    2015-01-01

    Case report with review describes X-linked muscular dystrophy with contractures in 28 years old man and his cousin. The disease revealed itself in an early stage (age 5-10), the process was progressing with apparent tendons retraction and contraction, limited movement in the areas of the neck and back of spine, atrophy of shoulder and pelvic yard and back muscles. Intellect was intact. Cardyomyopathy was exhibited. CK was normal. EMG showed classic myopathic features. Muscle biopsy showed different caliber groups of muscle fibers, growth of endo-perimesial connective tissue. Clinical manifestations together with electrophysiological and histological data suggest consistency with Rotthauwe-Mortier-Bayer X-linked muscular dystrophy.

  9. Congenital myotonic dystrophy in Britain. I. Clinical aspects.

    PubMed Central

    Harper, P S

    1975-01-01

    A clinical and genetic study of congenital myotonic dystrophy in Britain has been carried out in 70 patients from 54 sibships. The clinical aspects are analysed here, and the existence of a syndrome clinically distinct from myotonic dystrophy of later onset is confirmed. Characteristic features included neonatal hypotonia, motor and mental retardation, and facial diplegia. A high incidence of talipes occurs at birth together with hydramnios and reduced fetal movements during pregnancy, factors suggesting prenatal onset of the disorder in many cases. Prolonged survival is the rule after infancy, but the occurrence of numerous neonatal deaths in the sibships suggests the existence of unrecognized cases dying in the neonatal period. PMID:1101835

  10. Dystrophin and muscular dystrophy: past, present, and future.

    PubMed

    O'Brien, K F; Kunkel, L M

    2001-01-01

    Duchenne muscular dystrophy was described in the medical literature in the early 1850s but the molecular basis of the disease was not determined until the late 1980s. The cloning of dystrophin led to the identification of a large complex of proteins that plays an important, although not yet well understood, role in muscle biology. Concomitant with the elucidation of the function of dystrophin and its associated proteins has been the pursuit of therapeutic options for muscular dystrophy. Although there is still no cure for this disorder, great advances are being made in the areas of gene introduction and cell transplant therapy. PMID:11592805

  11. Immobility reduces muscle fiber necrosis in dystrophin deficient muscular dystrophy.

    PubMed

    Kimura, S; Ikezawa, M; Nomura, K; Ito, K; Ozasa, S; Ueno, H; Yoshioka, K; Yano, S; Yamashita, T; Matuskura, M; Miike, T

    2006-08-01

    Duchenne/Becker muscular dystrophy is a progressive muscle disease, which is caused by the abnormality of dystrophin. Spina bifida is characterized by paralysis of the feet, with most of the upper extremities not being affected. We report here on the first case of Becker muscular dystrophy coinciding with spina bifida. The muscle biopsy specimens of the patient showed dystrophic changes in upper extremities, but clearly less in lower extremities. The results show that the restriction of excessive exercise is important for dystrophin deficiency disease. PMID:16516424

  12. Dupuytren's Contracture Cosegregation with Limb-Girdle Muscle Dystrophy

    PubMed Central

    Lace, Baiba; Inashkina, Inna; Micule, Ieva; Vasiljeva, Inta; Naudina, Maruta Solvita; Jankevics, Eriks

    2013-01-01

    Limb-girdle muscular dystrophies (LGMDs) is a heterogeneous group of muscular dystrophies that mostly affect the pelvic and shoulder girdle muscle groups. We report here a case of neuromuscular disease associated with Dupuytren's contracture, which has never been described before as cosegregating with an autosomal dominant type of inheritance. Dupuytren's contracture is a common disease, especially in Northern Europe. Comorbid conditions associated with Dupuytren's contracture are repetitive trauma to the hands, diabetes, and seizures, but it has never before been associated with neuromuscular disease. We hypothesize that patients may harbor mutations in genes with functions related to neuromuscular disease and Dupuytren's contracture development. PMID:24024053

  13. Torn apart: membrane rupture in muscular dystrophies and associated cardiomyopathies

    PubMed Central

    Lammerding, Jan; Lee, Richard T.

    2007-01-01

    Muscular dystrophies are often caused by mutations in cytoskeletal proteins that render cells more susceptible to strain-induced injury in mechanically active tissues such as skeletal or cardiac muscle. In this issue of the JCI, Han et al. report that dysferlin participates in membrane resealing in cardiomyocytes and that exercise results in increased membrane damage and disturbed cardiac function in dysferlin-deficient mice (see the related article beginning on page 1805). Thus, in addition to repetitive membrane damage, inadequate membrane repair may participate in the pathogenesis of muscular dystrophies and cardiomyopathies. PMID:17607350

  14. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies

    PubMed Central

    Janghra, Narinder; Morgan, Jennifer E.; Sewry, Caroline A.; Wilson, Francis X.; Davies, Kay E.; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ –sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  15. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    PubMed

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  16. Analysis of meiotic segregation, using single-sperm typing: Meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Leeflang, E.P.; Arnheim, N.; McPeek, M.S.

    1996-10-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. 26 refs., 1 fig., 8 tabs.

  17. Gastrointestinal manifestations in myotonic muscular dystrophy

    PubMed Central

    Bellini, Massimo; Biagi, Sonia; Stasi, Cristina; Costa, Francesco; Mumolo, Maria Gloria; Ricchiuti, Angelo; Marchi, Santino

    2006-01-01

    Myotonic dystrophy (MD) is characterized by myotonic phenomena and progressive muscular weakness. Involvement of the gastrointestinal tract is frequent and may occur at any level. The clinical manifestations have previously been attributed to motility disorders caused by smooth muscle damage, but histologic evidence of alterations has been scarce and conflicting. A neural factor has also been hypothesized. In the upper digestive tract, dysphagia, heartburn, regurgitation and dyspepsia are the most common complaints, while in the lower tract, abdominal pain, bloating and changes in bowel habits are often reported. Digestive symptoms may be the first sign of dystrophic disease and may precede the musculo-skeletal features. The impairment of gastrointestinal function may be sometimes so gradual that the patients adapt to it with little awareness of symptoms. In such cases routine endoscopic and ultrasonographic evaluations are not sufficient and targeted techniques (electrogastrography, manometry, electromyography, functional ultrasonography, scintigraphy, etc.) are needed. There is a low correlation between the degree of skeletal muscle involvement and the presence and severity of gastrointestinal disturbances whereas a positive correlation with the duration of the skeletal muscle disease has been reported. The drugs recommended for treating the gastrointestinal complaints such as prokinetic, anti-dyspeptic drugs and laxatives, are mainly aimed at correcting the motility disorders. Gastrointestinal involvement in MD remains a complex and intriguing condition since many important problems are still unsolved. Further studies concentrating on genetic aspects, early diagnostic techniques and the development of new therapeutic strategies are needed to improve our management of the gastrointestinal manifestations of MD. PMID:16609987

  18. Sudomotor function in sympathetic reflex dystrophy.

    PubMed

    Birklein, F; Sittl, R; Spitzer, A; Claus, D; Neundörfer, B; Handwerker, H O

    1997-01-01

    Sudomotor functions were studied in 27 patients suffering from reflex sympathetic dystrophy (RSD) according to the criteria established by Bonica (18 women, 9 men; mean age 50 +/- 12.3 years; median duration of disease 8 weeks, range 2-468 weeks). To measure local sweating rates, two small chambers (5 cm2) were affixed to corresponding areas of hairy skin on the affected and unaffected limbs. Dry nitrogen gas was passed through the chambers (270 ml/min) and evaporation was recorded at both devices with hygrometers. Thermoregulatory sweating (TST) was induced by raising body temperature (intake of 0.5 1 hot tea and infra-red irradiation). Local sweating was also induced through an axon reflex (QSART) by transcutaneous iontophoretic application of carbachol (5 min, 1 mA). In addition, skin temperature was measured on the affected and unaffected side by infra-red thermography. Mean skin temperature was significantly higher on the affected side (P < 0.003). In spite of the temperature differences, there was no difference in basal sweating on the affected and unaffected side. However, both methods of sudomotor stimulation lead to significantly greater sweating responses on the affected compared to the unaffected side (TST: P < 0.05, QSART: P < 0.004). Latency to onset of sweating was significantly shorter on the affected side under both test conditions (P < 0.04 and P < 0.003, respectively). Sweat responses were not correlated to absolute skin temperature but were probably related to the increased blood flow on the affected side. Our findings imply a differential disturbance of vasomotor and sudomotor mechanisms in affected skin. Whereas vasoconstrictor activity is apparently lowered, sudomotor output is either unaltered or may even be enhanced.

  19. Sudomotor function in sympathetic reflex dystrophy.

    PubMed

    Birklein, F; Sittl, R; Spitzer, A; Claus, D; Neundörfer, B; Handwerker, H O

    1997-01-01

    Sudomotor functions were studied in 27 patients suffering from reflex sympathetic dystrophy (RSD) according to the criteria established by Bonica (18 women, 9 men; mean age 50 +/- 12.3 years; median duration of disease 8 weeks, range 2-468 weeks). To measure local sweating rates, two small chambers (5 cm2) were affixed to corresponding areas of hairy skin on the affected and unaffected limbs. Dry nitrogen gas was passed through the chambers (270 ml/min) and evaporation was recorded at both devices with hygrometers. Thermoregulatory sweating (TST) was induced by raising body temperature (intake of 0.5 1 hot tea and infra-red irradiation). Local sweating was also induced through an axon reflex (QSART) by transcutaneous iontophoretic application of carbachol (5 min, 1 mA). In addition, skin temperature was measured on the affected and unaffected side by infra-red thermography. Mean skin temperature was significantly higher on the affected side (P < 0.003). In spite of the temperature differences, there was no difference in basal sweating on the affected and unaffected side. However, both methods of sudomotor stimulation lead to significantly greater sweating responses on the affected compared to the unaffected side (TST: P < 0.05, QSART: P < 0.004). Latency to onset of sweating was significantly shorter on the affected side under both test conditions (P < 0.04 and P < 0.003, respectively). Sweat responses were not correlated to absolute skin temperature but were probably related to the increased blood flow on the affected side. Our findings imply a differential disturbance of vasomotor and sudomotor mechanisms in affected skin. Whereas vasoconstrictor activity is apparently lowered, sudomotor output is either unaltered or may even be enhanced. PMID:9060012

  20. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    PubMed Central

    Palazzolo, Giacomo; Quattrocelli, Mattia; Toelen, Jaan; Dominici, Roberto; Tettamenti, Guido; Barthelemy, Inès; Blot, Stephane; Gijsbers, Rik; Cassano, Marco

    2016-01-01

    The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis. PMID:26681949

  1. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    PubMed Central

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  2. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy.

    PubMed

    Reyes, Nicholas L; Banks, Glen B; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H Denny; Hirenallur-S, Dinesh K; Hockenbery, David M; Raftery, Daniel; Iritani, Brian M

    2015-01-13

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.

  3. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene

    PubMed Central

    Flanigan, Kevin M.; Dunn, Diane M.; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T.; Sampson, Jacinda B.; Swoboda, Kathryn J.; Bromberg, Mark B.; Mendell, Jerry R.; Taylor, Laura; Anderson, Christine B.; Pestronk, Alan; Florence, Julaine; Connolly, Anne M.; Mathews, Katherine D.; Wong, Brenda; Finkel, Richard S.; Bonnemann, Carsten G.; Day, John W.; McDonald, Craig; Weiss, Robert B.

    2013-01-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping. PMID:21972111

  4. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene.

    PubMed

    Flanigan, Kevin M; Dunn, Diane M; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T; Sampson, Jacinda B; Swoboda, Kathryn J; Bromberg, Mark B; Mendell, Jerry R; Taylor, Laura E; Anderson, Christine B; Pestronk, Alan; Florence, Julaine M; Connolly, Anne M; Mathews, Katherine D; Wong, Brenda; Finkel, Richard S; Bonnemann, Carsten G; Day, John W; McDonald, Craig; Weiss, Robert B

    2011-03-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping.

  5. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    PubMed Central

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  6. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy.

    PubMed

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  7. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    ERIC Educational Resources Information Center

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  8. Molecular genetics of infantile-onset retinal dystrophies.

    PubMed

    Moradi, P; Moore, A T

    2007-10-01

    Over the last decade there have been major advances in our understanding of the molecular pathology of inherited retinal dystrophies. This paper reviews recent advances in the identification of genetic mutations underlying infantile-onset inherited retinal disorders and considers how this knowledge may lead to novel therapeutic approaches.

  9. Objective Assessment of the Corneal Endothelium in Fuchs' Endothelial Dystrophy

    PubMed Central

    McLaren, Jay W.; Bachman, Lori A.; Kane, Katrina M.; Patel, Sanjay V.

    2014-01-01

    Purpose. To develop a standardized method of endothelial cell density (ECD) assessment in Fuchs' endothelial dystrophy that maximizes the sample area and uses the clearest endothelial cells in confocal images. Methods. The corneal endothelium of 51 eyes from 30 patients, with varying degrees of Fuchs' endothelial dystrophy, was examined using confocal microscopy. In two or three distinct images of the central endothelium, local contiguous cell density was determined using a variable frame method. The effective ECD was the product of the local cell density and the fraction of the image that was free of guttae. Two examiners assessed the severity of disease in each eye during slit-lamp examination and assigned a severity grade of 1 to 6. In a second group of 55 eyes with Fuchs' dystrophy from 30 patients, the clinical grade was predicted from the effective ECD and the regression coefficients of the first group and compared to the subjective clinical grade assigned by one examiner. Results. The effective ECD decreased linearly with subjective grade (r = −0.93, P < 0.001). The grade predicted from the effective ECD differed from the subjective clinical grade by −0.1 ± 0.8 (mean difference ± standard deviation). Conclusions. The effective ECD in confocal images provides an objective means of assessing the corneal endothelium in Fuchs' dystrophy and might be a useful tool in clinical studies. PMID:24508788

  10. Molecular genetics of infantile-onset retinal dystrophies.

    PubMed

    Moradi, P; Moore, A T

    2007-10-01

    Over the last decade there have been major advances in our understanding of the molecular pathology of inherited retinal dystrophies. This paper reviews recent advances in the identification of genetic mutations underlying infantile-onset inherited retinal disorders and considers how this knowledge may lead to novel therapeutic approaches. PMID:17914438

  11. Psychiatric and Cognitive Phenotype of Childhood Myotonic Dystrophy Type 1

    ERIC Educational Resources Information Center

    Douniol, Marie; Jacquette, Aurelia; Cohen, David; Bodeau, Nicolas; Rachidi, Linda; Angeard, Nathalie; Cuisset, Jean-Marie; Vallee, Louis; Eymard, Bruno; Plaza, Monique; Heron, Delphine; Guile, Jean-Marc

    2012-01-01

    Aim: To investigate the psychiatric and cognitive phenotype in young individuals with the childhood form of myotonic dystrophy type 1 (DM1). Method: Twenty-eight individuals (15 females, 13 males) with childhood DM1 (mean age 17y, SD 4.6, range 7-24y) were assessed using standardized instruments and cognitive testing of general intelligence,…

  12. Occupational Potential in a Population with Duchenne Muscular Dystrophy.

    ERIC Educational Resources Information Center

    Schkade, Janette K.; And Others

    1987-01-01

    Twenty-five males with Duchenne muscular dystrophy were tested to assess their potential for occupational activity. Tests measured possible sensory deficits, strength, endurance, and fatigue in response to sustained fine motor activity. Results indicate that, within limitations, persons with this diagnosis can engage in activity leading to skill…

  13. Poor Facial Affect Recognition among Boys with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Hinton, V. J.; Fee, R. J.; De Vivo, D. C.; Goldstein, E.

    2007-01-01

    Children with Duchenne or Becker muscular dystrophy (MD) have delayed language and poor social skills and some meet criteria for Pervasive Developmental Disorder, yet they are identified by molecular, rather than behavioral, characteristics. To determine whether comprehension of facial affect is compromised in boys with MD, children were given a…

  14. Phosphorylation of intact erythrocytes in human muscular dystrophy

    SciTech Connect

    Johnson, R.M.; Nigro, M.

    1986-04-01

    The uptake of exogenous /sup 32/Pi into the membrane proteins of intact erythrocytes was measured in 8 patients with Duchenne muscular dystrophy. No abnormalities were noted after autoradiographic analysis. This contrasts with earlier results obtained when isolated membranes were phosphorylated with gamma-(/sup 32/P)ATP, and suggests a possible reinterpretation of those experiments.

  15. The Child with Muscular Dystrophy in School. Revised.

    ERIC Educational Resources Information Center

    Schock, Nancy C.

    Practical information on children with muscular dystrophy is intended to help parents and teachers facilitate their inclusion in mainstreamed classrooms. Major topics addressed include the following: transportation arrangements; providing full information to the teacher regarding the child's specific abilities and physical limitations;…

  16. Muscle Weakness and Speech in Oculopharyngeal Muscular Dystrophy

    ERIC Educational Resources Information Center

    Neel, Amy T.; Palmer, Phyllis M.; Sprouls, Gwyneth; Morrison, Leslie

    2015-01-01

    Purpose: We documented speech and voice characteristics associated with oculopharyngeal muscular dystrophy (OPMD). Although it is a rare disease, OPMD offers the opportunity to study the impact of myopathic weakness on speech production in the absence of neurologic deficits in a relatively homogeneous group of speakers. Methods: Twelve individuals…

  17. The Assessment of Intelligence in Boys with Duchenne Muscular Dystrophy.

    ERIC Educational Resources Information Center

    Mearig, Judith S.

    1979-01-01

    Challenges assumptions and research procedures leading to the position that below-average intellectual potential is an integral part of Duchenne muscular dystrophy. A study of 58 boys (ages 5 to 18) from urban, suburban, and rural settings indicated IQ range of 59 to 131 and no evidence of significant verbal deficit (reported in earlier studies).…

  18. Phonological Awareness Skills in Young Boys with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Waring, Phoebe; Woodyatt, Gail

    2011-01-01

    Substantial research has detailed the reading deficits experienced by children with Duchenne muscular dystrophy (DMD). Although phonological awareness (PA) is vital in reading development, little is known about PA in the DMD population. This pilot study describes the PA abilities of a group of five young children with DMD, comparing the results…

  19. Dysphagia in Duchenne Muscular Dystrophy Assessed by Validated Questionnaire

    ERIC Educational Resources Information Center

    Archer, Sally K.; Garrod, Rachel; Hart, Nicholas; Miller, Simon

    2013-01-01

    Background: Duchenne muscular dystrophy (DMD) leads to progressive muscular weakness and death, most typically from respiratory complications. Dysphagia is common in DMD; however, the most appropriate swallowing assessments have not been universally agreed and the symptoms of dysphagia remain under-reported. Aims: To investigate symptoms of…

  20. Swallow Characteristics in Patients with Oculopharyngeal Muscular Dystrophy

    ERIC Educational Resources Information Center

    Palmer, Phyllis M.; Neel, Amy T.; Sprouls, Gwyneth; Morrison, Leslie

    2010-01-01

    Purpose: This prospective investigation evaluates oral weakness and its impact on swallow function, weight, and quality of life in patients with oculopharyngeal muscular dystrophy (OPMD). Method: Intraoral pressure, swallow pressure, and endurance were measured using an Iowa Oral Performance Instrument in participants with OPMD and matched…

  1. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy

    PubMed Central

    Dadgar, Sherry; Wang, Zuyi; Johnston, Helen; Kesari, Akanchha; Nagaraju, Kanneboyina; Chen, Yi-Wen; Hill, D. Ashley; Partridge, Terence A.; Giri, Mamta; Freishtat, Robert J.; Nazarian, Javad; Xuan, Jianhua; Wang, Yue

    2014-01-01

    We sought to determine the mechanisms underlying failure of muscle regeneration that is observed in dystrophic muscle through hypothesis generation using muscle profiling data (human dystrophy and murine regeneration). We found that transforming growth factor β–centered networks strongly associated with pathological fibrosis and failed regeneration were also induced during normal regeneration but at distinct time points. We hypothesized that asynchronously regenerating microenvironments are an underlying driver of fibrosis and failed regeneration. We validated this hypothesis using an experimental model of focal asynchronous bouts of muscle regeneration in wild-type (WT) mice. A chronic inflammatory state and reduced mitochondrial oxidative capacity are observed in bouts separated by 4 d, whereas a chronic profibrotic state was seen in bouts separated by 10 d. Treatment of asynchronously remodeling WT muscle with either prednisone or VBP15 mitigated the molecular phenotype. Our asynchronous regeneration model for pathological fibrosis and muscle wasting in the muscular dystrophies is likely generalizable to tissue failure in chronic inflammatory states in other regenerative tissues. PMID:25313409

  2. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.

    PubMed

    Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M

    2015-11-01

    Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.

  3. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.

    PubMed

    Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M

    2015-11-01

    Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations. PMID:26457733

  4. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    PubMed

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  5. Corneal Hydration Control in Fuchs' Endothelial Corneal Dystrophy

    PubMed Central

    Wacker, Katrin; McLaren, Jay W.; Kane, Katrina M.; Baratz, Keith H.; Patel, Sanjay V.

    2016-01-01

    Purpose To assess corneal hydration control across a range of severity of Fuchs' endothelial corneal dystrophy (FECD) by measuring the percent recovery per hour (PRPH) of central corneal thickness after swelling the cornea and to determine its association with corneal morphologic parameters. Methods Twenty-three corneas of 23 phakic FECD patients and 8 corneas of 8 healthy control participants devoid of guttae were graded (modified Krachmer scale). Effective endothelial cell density (ECDe) was determined from the area of guttae and local cell density in confocal microscopy images. Steady-state corneal thickness (CTss) and standardized central corneal backscatter were derived from Scheimpflug images. Corneal swelling was induced by wearing a low-oxygen transmissible contact lens for 2 hours in the morning. De-swelling was measured over 5 hours after lens removal or until corneal thickness returned to CTss. Percent recovery per hour was 100 × (1 – e−k), where k was determined from CT(t) = (de−kt) + CTss, and where d was the initial change from CTss. Results After contact lens wear, corneas swelled by 9% (95% CI 9–10). Percent recovery per hour was 49%/h (95% CI 41–57) in controls and 37%/h in advanced FECD (95% CI 29–43, P = 0.028). Low PRPH was associated with disease severity, low ECDe, and increased anterior and posterior corneal backscatter. Anterior backscatter was associated with PRPH in a multivariable model (R2 = 0.44). Conclusions Corneal hydration control is impaired in advanced FECD and is inversely related to anterior corneal backscatter. Anterior corneal backscatter might serve as an indicator of impaired endothelium in FECD. PMID:27661858

  6. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy

    PubMed Central

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    Backgrond Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion – like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation. PMID:23966782

  7. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin

    PubMed Central

    Marshall, Jamie L.; Oh, Jennifer; Chou, Eric; Lee, Joy A.; Holmberg, Johan; Burkin, Dean J.; Crosbie-Watson, Rachelle H.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin–glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan ‘rescue’ of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. PMID:25504048

  8. The involvement of collagen triple helix repeat containing 1 in muscular dystrophies.

    PubMed

    Spector, Itai; Zilberstein, Yael; Lavy, Adi; Genin, Olga; Barzilai-Tutsch, Hila; Bodanovsky, Ana; Halevy, Orna; Pines, Mark

    2013-03-01

    Fibrosis is the main complication of muscular dystrophies. We identified collagen triple helix repeat containing 1 (Cthrc1) in skeletal and cardiac muscles of mice, representing Duchenne and congenital muscle dystrophies (DMD and CMD, respectively), and dysferlinopathy. In all of the mice, Cthrc1 was associated with high collagen type I levels; no Cthrc1 or collagen was observed in muscles of control mice. High levels of Cthrc1 were also observed in biopsy specimens from patients with DMD, in whom they were reversibly correlated with that of β-dystroglycan, whereas collagen type I levels were elevated in all patients with DMD. At the muscle sites where collagen and Cthrc1 were adjacent, collagen fibers appeared smaller, suggesting involvement of Cthrc1 in collagen turnover. Halofuginone, an inhibitor of Smad3 phosphorylation downstream of the transforming growth factor-β signaling, reduced Cthrc1 levels in skeletal and cardiac muscles of mice, representing DMD, CMD, and dysferlinopathy. The myofibroblasts infiltrating the dystrophic muscles of the murine models of DMD, CMD, and dysferlinopathy were the source of Cthrc1. Transforming growth factor-β did not affect Cthrc1 levels in the mdx fibroblasts but decreased them in the control fibroblasts, in association with increased migration of mdx fibroblasts and dystrophic muscle invasion by myofibroblasts. To our knowledge, this is the first demonstration of Cthrc1 as a marker of the severity of the disease progression in the dystrophic muscles, and as a possible target for therapy.

  9. Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy

    PubMed Central

    Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew

    2016-01-01

    Alternative splicing is a regulated process that results in expression of specific mRNA and protein isoforms. Alternative splicing factors determine the relative abundance of each isoform. Here we focus on MBNL1, a splicing factor misregulated in the disease myotonic dystrophy. By altering the concentration of MBNL1 in cells across a broad dynamic range, we show that different splicing events require different amounts of MBNL1 for half-maximal response, and respond more or less steeply to MBNL1. Motifs around MBNL1 exon 5 were studied to assess how cis-elements mediate the MBNL1 dose-dependent splicing response. A framework was developed to estimate MBNL concentration using splicing responses alone, validated in the cell-based model, and applied to myotonic dystrophy patient muscle. Using this framework, we evaluated the ability of individual and combinations of splicing events to predict functional MBNL concentration in human biopsies, as well as their performance as biomarkers to assay mild, moderate, and severe cases of DM. PMID:27681373

  10. Deficiency of merosin in dystrophic dy mouse homologue of congenital muscular dystrophy

    SciTech Connect

    Sunada, Y.; Campbell, K.P.; Bernier, S.M.

    1994-09-01

    Merosin (laminin M chain) is the predominant laminin isoform in the basal lamina of striated muscle and peripheral nerve and is a native ligand for {alpha}-dystroglycan, a novel laminin receptor. Merosin is linked to the subsarcolemmal actin cytoskeleton via the dystrophin-glycoprotein complex (DGC), which plays an important role for maintenance of normal muscle function. We have mapped the mouse merosin gene, Lamm, to the region containing the dystrophia muscularis (dy) locus on chromosome 10. This suggested the possibility that a mutation in the merosin gene could be responsible for the dy mouse, an animal model for autosomal recessive muscular dystrophy, and prompted us to test this hypothesis. We analyzed the status of merosin expression in dy mouse by immunofluorescence and immunoblotting. In dy mouse skeletal and cardiac muscle and peripheral nerve, merosin was reduced greater than 90% as compared to control mice. However, the expression of laminin B1/B2 chains and collagen type IV was smaller to that in control mice. These findings strongly suggest that merosin deficiency may be the primary defect in the dy mouse. Furthermore, we have identified two patients afflicted with congenital muscular dystrophy with merosin deficiency, providing the basis for future studies of molecular pathogenesis and gene therapy.

  11. Sleep-Wake Cycle and Daytime Sleepiness in the Myotonic Dystrophies.

    PubMed

    Romigi, A; Albanese, M; Liguori, C; Placidi, F; Marciani, M G; Massa, R

    2013-01-01

    Myotonic dystrophy is the most common type of muscular dystrophy in adults and is characterized by progressive myopathy, myotonia, and multiorgan involvement. Two genetically distinct entities have been identified, myotonic dystrophy type 1 (DM1 or Steinert's Disease) and myotonic dystrophy type 2 (DM2). Myotonic dystrophies are strongly associated with sleep dysfunction. Sleep disturbances in DM1 are common and include sleep-disordered breathing (SDB), periodic limb movements (PLMS), central hypersomnia, and REM sleep dysregulation (high REM density and narcoleptic-like phenotype). Interestingly, drowsiness in DM1 seems to be due to a central dysfunction of sleep-wake regulation more than SDB. To date, little is known regarding the occurrence of sleep disorders in DM2. SDB (obstructive and central apnoea), REM sleep without atonia, and restless legs syndrome have been described. Further polysomnographic, controlled studies are strongly needed, particularly in DM2, in order to clarify the role of sleep disorders in the myotonic dystrophies.

  12. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies.

    PubMed

    Cordier, L; Gao, G P; Hack, A A; McNally, E M; Wilson, J M; Chirmule, N; Sweeney, H L

    2001-01-20

    Recombinant adeno-associated virus (rAAV) vectors allow efficient gene transfer and expression in the muscle; therefore, rAAVs represent a potential gene therapy vector for muscular dystrophies. For further investigations, we used a mouse muscular dystrophy model (gsg(-/-) mice) gamma-sarcoglycan, a subunit of the dystrophin-glycoprotein complex, is missing. gsg(-/-) mice develop progressive dystrophy representative of a severe human phenotype disease. We previously showed high levels and stable expression of gamma-sarcoglycan in myofibers after direct muscle injection into gsg(-/-) mice of a recombinant AAV vector (AAV.dMCK.gSG) carrying the gamma-sarcoglycan cDNA driven by a muscle-specific promoter (truncated version of muscle creatine kinase). Here, we show that when gamma-sarcoglycan expression is driven by the ubiquitous cytomegalovirus (CMV) promoter (AAV.CMV.gSG), lower levels of transgene expression are observed and are associated with a humoral response to gamma-sarcoglycan. When using an rAAV vector, expressing the highly immunogenic product gamma-galactosidase under the CMV promoter (AAV.CMV.LacZ), we measured a strong cellular and humoral immune response to the transgene after intramuscular injection into gsg(-/-) mice. This study suggests that restriction of transgene expression to the muscle is an important criterion for the treatment of muscular dystrophies and will aid in the design of protocols for gene therapy.

  13. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    SciTech Connect

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. ); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya )

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  14. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease.

    PubMed

    Minnerop, Martina; Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-12-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T(1)/T(2)/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (P(corrected) < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were

  15. Bimaxillary Osteotomy for Jaw Deformity With Facioscapulohumeral Muscular Dystrophy.

    PubMed

    Kawasaki, Takako; Ohba, Seigo; Fujimura, Yuji; Asahina, Izumi

    2016-05-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a subtype of muscular dystrophies which reduces the muscle strength, especially the regions of scapular, shoulder, and upper arms, progressively. According to progressive muscle weakness in FSHD, postoperative stability of patient with FSHD after orthognathic surgery is not reliably acquired same as healthy subjects. A 32-year-old woman with FSHD underwent orthodontic and orthognathic surgical treatment due to jaw deformity. She has been followed up more than 3 years after surgery and acquired skeletal stability. This patient is the first report that showed long-term skeletal stability after orthognathic surgery in patient with FSHD. This patient report suggests that it is possible to apply orthognathic surgical treatment to patients with FSHD. PMID:27054436

  16. [Myotonic dystrophy and bundle-branch re-entrant tachycardia].

    PubMed

    Ramírez, Carlos J; Rodríguez, Diego A; Velasco, Víctor M; Rosas, Fernando

    2002-10-01

    We report the case of a 37-year-old man diagnosed with myotonic dystrophy who presented atrial fibrillation with high ventricular rate. While being treated with amiodarone, he suffered cardiac arrest. The electrophysiological study disclosed bundle-branch reentrant ventricular tachycardia and ventricular fibrillation. Catheter ablation of the right bundle branch was performed and a bicameral defibrillator was implanted. The mechanisms and treatment of arrhythmias in these patients are discussed. PMID:12383397

  17. Reflex sympathetic dystrophy in the hands: clinical and scintigraphic criteria

    SciTech Connect

    Holder, L.E.; Mackinnon, S.E.

    1984-08-01

    In an attempt to establish specific scintigraphic criteria for the reflex sympathetic dystrophy syndrome (RSD) as defined by a group of specialized hand surgeons, 145 consecutive patients, 23 of whom had clinical RSD, underwent three phase radionuclide bone scanning (TPBS). Specific patterns for positive radionuclide angiogram, blood pool, and delayed images were established. The delayed images were sensitive (96%), specific (97%), and had a valuable negative predictive value (99%). It was concluded that TPBS could provide an objective marker for RSD.

  18. Prenatal diagnosis of congenital myopathies and muscular dystrophies.

    PubMed

    Massalska, D; Zimowski, J G; Bijok, J; Kucińska-Chahwan, A; Łusakowska, A; Jakiel, G; Roszkowski, T

    2016-09-01

    Congenital myopathies and muscular dystrophies constitute a genetically and phenotypically heterogeneous group of rare inherited diseases characterized by muscle weakness and atrophy, motor delay and respiratory insufficiency. To date, curative care is not available for these diseases, which may severely affect both life-span and quality of life. We discuss prenatal diagnosis and genetic counseling for families at risk, as well as diagnostic possibilities in sporadic cases. PMID:27197572

  19. Creatine monohydrate as a therapeutic aid in muscular dystrophy.

    PubMed

    Pearlman, Jared P; Fielding, Roger A

    2006-02-01

    In recent years, dietary supplementation with creatine has been shown to enhance neuromuscular function in several diseases. Recent studies have suggested that creatine can be beneficial in patients with muscular dystrophy and other mitochondrial cytopathies, and may attenuate sarcopenia and facilitate rehabilitation of disuse atrophy. Though the mechanisms are still unknown, creatine has been shown to decrease cytoplasmic Ca2+ levels and increase intramuscular and cerebral phosphocreatine stores, providing potential musculoskeletal and neuroprotective effects. PMID:16536185

  20. [Effectiveness of sodium selenite in experimental liver dystrophy].

    PubMed

    Danik, L M

    1976-01-01

    The effect of sodium selenite on the cholepoietic function of the liver in rats with acute dystrophy induced by carbon tetrachloride was studied. When used in doses of 1 and 10 gamma/100 g the drug was found to normalize the intensity of bile secretion, synthesis and secretion of bile acids and that of bilirubin, as well as excretion of cholesterol. This was attended by a rise of the cholate-cholesterol ratio. PMID:1278354

  1. Reflex sympathetic dystrophies and algodystrophies: historical and pathogenic considerations.

    PubMed

    Procacci, P; Maresca, M

    1987-11-01

    This paper reviews the historical development of the concepts of 'sympathy' of organs and of the sympathetic nervous system. In particular, the afferent function of the sympathetic system is discussed. The attention is focussed on sympathetic reflex dystrophies, known in some European schools as 'algodystrophies'. The pathogenic mechanisms of these affections, especially of causalgia, are discussed, considering the importance of peripheral damage to nerves, lateralisation of pain, 'mirror phenomena', and the relationship between peripheral and central mechanisms of pain.

  2. Differential isoform expression and selective muscle involvement in muscular dystrophies.

    PubMed

    Huovinen, Sanna; Penttilä, Sini; Somervuo, Panu; Keto, Joni; Auvinen, Petri; Vihola, Anna; Huovinen, Sami; Pelin, Katarina; Raheem, Olayinka; Salenius, Juha; Suominen, Tiina; Hackman, Peter; Udd, Bjarne

    2015-10-01

    Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known. To test the hypothesis that different muscles may express variable amounts of different isoforms of muscle genes, we applied a custom-designed exon microarray containing probes for 57 muscle-specific genes to assay the transcriptional profiles in sets of human adult lower limb skeletal muscles. Quantitative real-time PCR and whole transcriptome sequencing were used to further analyze the results. Our results demonstrate significant variations in isoform and gene expression levels in anatomically different muscles. Comparison of the known patterns of selective involvement of certain muscles in two autosomal dominant titinopathies and one autosomal dominant myosinopathy, with the isoform and gene expression results, shows a correlation between the specific muscles involved and significant differences in the level of expression of the affected gene and exons in these same muscles compared with some other selected muscles. Our results suggest that differential expression levels of muscle genes and isoforms are one determinant in the selectivity of muscle involvement in muscular dystrophies.

  3. Mutation hot spots in 5q31-linked corneal dystrophies.

    PubMed Central

    Korvatska, E; Munier, F L; Djemaï, A; Wang, M X; Frueh, B; Chiou, A G; Uffer, S; Ballestrazzi, E; Braunstein, R E; Forster, R K; Culbertson, W W; Boman, H; Zografos, L; Schorderet, D F

    1998-01-01

    Mutations in the BIGH3 gene on chromosome 5q31 cause four distinct autosomal dominant diseases of the human cornea: granular (Groenouw type I), Reis-Bücklers, lattice type I, and Avellino corneal dystrophies. All four diseases are characterized by both progressive accumulation of corneal deposits and eventual loss of vision. We have identified a specific recurrent missense mutation for each type of dystrophy, in 10 independently ascertained families. Genotype analysis with microsatellite markers surrounding the BIGH3 locus was performed in these 10 families and in 5 families reported previously. The affected haplotype could be determined in 10 of the 15 families and was different in each family. These data indicate that R555W, R124C, and R124H mutations occurred independently in several ethnic groups and that these mutations do not reflect a putative founder effect. Furthermore, this study confirms the specific importance of the R124 and R555 amino acids in the pathogenesis of autosomal dominant corneal dystrophies linked to 5q. PMID:9463327

  4. Cognitive and Neurobehavioral Profile in Boys With Duchenne Muscular Dystrophy.

    PubMed

    Banihani, Rudaina; Smile, Sharon; Yoon, Grace; Dupuis, Annie; Mosleh, Maureen; Snider, Andrea; McAdam, Laura

    2015-10-01

    Duchenne muscular dystrophy is a progressive neuromuscular condition that has a high rate of cognitive and learning disabilities as well as neurobehavioral disorders, some of which have been associated with disruption of dystrophin isoforms. Retrospective cohort of 59 boys investigated the cognitive and neurobehavioral profile of boys with Duchenne muscular dystrophy. Full-scale IQ of < 70 was seen in 27%; learning disability in 44%, intellectual disability in 19%; attention-deficit/hyperactivity disorder in 32%; autism spectrum disorders in 15%; and anxiety in 27%. Mutations affecting Dp260 isoform and 5'untranslated region of Dp140 were observed in 60% with learning disability, 50% intellectual disability, 77% with autism spectrum disorders, and 94% with anxiety. No statistically significant correlation was noted between comorbidities and dystrophin isoforms; however, there is a trend of cumulative loss of dystrophin isoforms with declining full-scale IQ. Enhanced psychology testing to include both cognitive and neurobehavioral disorders is recommended for all individuals with Duchenne muscular dystrophy. PMID:25660133

  5. [Structural changes in sarcolemma with E-avitaminosis dystrophy].

    PubMed

    Tugai, V A; Litvinenko, O O

    1977-01-01

    Sorption properties of sarcolemma preparations isolated from skeletal muscles of normal and E-avitaminous rabbits were studied relative to organic ions. Analysis of isotherms of sarcolemma equilibrium binding of neutral red cations and turquoise direct lightfast "K" anions made it possible to determine the number of positively and negetively charged sorption centres, which fix the mentioned dyes. With E-avitaminous muscular dystrophy the number of the centres increases considerably. A larger number of the positively charged centres fixing the surquoise dye are found both in the control and in case of dystrophy. The calcium ions prevent the neutral red sorption and intensify the turquoise direct sorption. In the sarcolemma preparations isolated from the muscles of the E-avitaminous rabbits the content of calcium ions is almost twice as high and the number of sulphydryl groups is 30-40% less as compare to the normal level. The data presented evidence for structural changes in sarcolemma with E-avitaminous muscular dystrophy.

  6. Immunohistochemical Characterization of Facioscapulohumeral Muscular Dystrophy Muscle Biopsies

    PubMed Central

    Statland, Jeffrey M; Odrzywolski, Karen J; Shah, Bharati; Henderson, Don; Fricke, Alex F.; van der Maarel, Silvère M; Tapscott, Stephen J; Tawil, Rabi

    2015-01-01

    Background Posited pathological mechanisms in Facioscapulohumeral Muscular Dystrophy (FSHD) include activation in somatic tissue of normally silenced genes, increased susceptibility to oxidative stress, and induction of apoptosis. Objective To determine the histopathological changes in FSHD muscle biopsies and compare to possible pathological mechanisms of disease. Methods We performed a cross-sectional study on quadriceps muscle biopsies from 32 genetically confirmed FSHD participants, compared to healthy volunteers and myotonic dystrophy type 1 as disease controls. Biopsies were divided into groups to evaluate apoptosis rates, capillary density, myonuclear and satellite cell counts. Results Apoptosis rates were increased in FSHD (n=10, 0.74%) compared to myotonic dystrophy type 1 (n=10, 0.14%, P=0.003) and healthy volunteers (n=14, 0.13%, P=0.002). Apoptosis was higher in FSHD patients with the smallest residual D4Z4 fragments. Capillary density was decreased in FSHD1 (n=10, 316 capillaries/mm2) compared to healthy volunteers (n=15, 448 capillaries/mm2, P=0.001). No differences were seen in myonuclear or satellite cell counts. Conclusions Preliminary evidence for increased apoptosis rates and reduced capillary density may reflect histopathological correlates of disease activity in FSHD. The molecular-pathological correlates to these changes warrants further investigation. PMID:26345300

  7. Degeneration of Neuromuscular Junction in Age and Dystrophy

    PubMed Central

    Rudolf, Rüdiger; Khan, Muzamil Majid; Labeit, Siegfried; Deschenes, Michael R.

    2014-01-01

    Functional denervation is a hallmark of aging sarcopenia as well as of muscular dystrophy. It is thought to be a major factor reducing skeletal muscle mass, particularly in the case of sarcopenia. Neuromuscular junctions (NMJs) serve as the interface between the nervous and skeletal muscular systems, and thus they may receive pathophysiological input of both pre- and post-synaptic origin. Consequently, NMJs are good indicators of motor health on a systemic level. Indeed, upon sarcopenia and dystrophy, NMJs morphologically deteriorate and exhibit altered characteristics of primary signaling molecules, such as nicotinic acetylcholine receptor and agrin. Since a remarkable reversibility of these changes can be observed by exercise, there is significant interest in understanding the molecular mechanisms underlying synaptic deterioration upon aging and dystrophy and how synapses are reset by the aforementioned treatments. Here, we review the literature that describes the phenomena observed at the NMJ in sarcopenic and dystrophic muscle as well as to how these alterations can be reversed and to what extent. In a second part, the current information about molecular machineries underlying these processes is reported. PMID:24904412

  8. The effect of myotonic dystrophy transcript levels and location on muscle differentiation

    SciTech Connect

    Mastroyiannopoulos, Nikolaos P.; Chrysanthou, Elina; Kyriakides, Tassos C.; Uney, James B.; Mahadevan, Mani S.; Phylactou, Leonidas A.

    2008-12-12

    In myotonic dystrophy type I (DM1), nuclear retention of mutant DMPK transcripts compromises muscle cell differentiation. Although several reports have identified molecular defects in myogenesis, it remains still unclear how exactly the retention of the mutant transcripts induces this defect. We have recently created a novel cellular model in which the mutant DMPK 3' UTR transcripts were released to the cytoplasm of myoblasts by using the WPRE genetic element. As a result, muscle cell differentiation was repaired. In this paper, this cellular model was further exploited to investigate the effect of the levels and location of the mutant transcripts on muscle differentiation. Results show that the levels of these transcripts were proportional to the inhibition of both the initial fusion of myoblasts and the maturity of myotubes. Moreover, the cytoplasmic export of the mutant RNAs to the cytoplasm caused less inhibition only in the initial fusion of myoblasts.

  9. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy

    PubMed Central

    Kuraoka, Mutsuki; Lee, Joshua J.A.; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  10. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy.

    PubMed

    Miskew Nichols, Bailey; Aoki, Yoshitsugu; Kuraoka, Mutsuki; Lee, Joshua J A; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  11. Keratin 12 missense mutation induces the unfolded protein response and apoptosis in Meesmann epithelial corneal dystrophy

    PubMed Central

    Allen, Edwin H.A.; Courtney, David G.; Atkinson, Sarah D.; Moore, Johnny E.; Mairs, Laura; Poulsen, Ebbe Toftgaard; Schiroli, Davide; Maurizi, Eleonora; Cole, Christian; Hickerson, Robyn P.; James, John; Murgatroyd, Helen; Smith, Frances J.D.; MacEwen, Carrie; Enghild, Jan J.; Nesbit, M. Andrew; Leslie Pedrioli, Deena M.; McLean, W.H. Irwin; Moore, C.B. Tara

    2016-01-01

    Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations. PMID:26758872

  12. Scalpel or Straitjacket: CRISPR/Cas9 Approaches for Muscular Dystrophies.

    PubMed

    Himeda, Charis L; Jones, Takako I; Jones, Peter L

    2016-04-01

    Versatility of CRISPR/Cas9-based platforms makes them promising tools for the correction of diverse genetic/epigenetic disorders. Here we contrast the use of these genome editing tools in two myopathies with very different molecular origins: Duchenne muscular dystrophy, a monogenetic disease, and facioscapulohumeral muscular dystrophy, an epigenetic disorder with unique therapeutic challenges. PMID:26917062

  13. Warming up Improves Speech Production in Patients with Adult Onset Myotonic Dystrophy

    ERIC Educational Resources Information Center

    de Swart, B.J.M.; van Engelen, B.G.M.; Maassen, B.A.M.

    2007-01-01

    This investigation was conducted to study whether warming up decreases myotonia (muscle stiffness) during speech production or causes adverse effects due to fatigue or exhaustion caused by intensive speech activity in patients with adult onset myotonic dystrophy. Thirty patients with adult onset myotonic dystrophy (MD) and ten healthy controls…

  14. Meeting the Assistive Technology Needs of Students with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Heller, Kathryn Wolff; Mezei, Peter J.; Avant, Mary Jane Thompson

    2009-01-01

    Students with Duchenne muscular dystrophy (DMD) have a degenerative disease that requires ongoing changes in assistive technology (AT). The AT team needs to be knowledgeable about the disease and its progression in order to meet these students' changing needs in a timely manner. The unique needs of students with Duchenne muscular dystrophy in…

  15. Segmental myofiber necrosis in myotonic dystrophy - An immunoperoxidase study of immunoglobulins in skeletal muscle.

    PubMed Central

    Silver, M. M.; Banerjee, D.; Hudson, A. J.

    1983-01-01

    Because serum immunoglobulin G levels are low in patients with myotonic dystrophy, it was hypothesized that it might be catabolized within abnormal muscle fibers. Accordingly, immunohistochemical stains for immunoglobulins were performed on muscle sections derived at biopsy or autopsy from patients with myotonic dystrophy, other forms of muscular dystrophy, nondystrophic muscle disease, or normal muscle. Positive staining for immunoglobulins was found only in necrotic segments of myofibers (in 7 of 19 dystrophic and 6 of 27 nondystrophic subjects), and it is believed that the staining was due to nonspecific diffusion. However, staining reactions distinguished between incipient necrosis and artifactual contraction bands and allowed us to study segmental myofiber necrosis, comparing its frequency in the various muscle diseases. Segmental myofiber necrosis was present in 4 of 16 cases of myotonic dystrophy. The relevance of this finding to the clinical and morphologic features of myotonic dystrophy is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:6351629

  16. Trends with corticosteroid use in males with Duchenne muscular dystrophy born 1982-2001.

    PubMed

    Fox, Deborah J; Kumar, Anil; West, Nancy A; DiRienzo, A Gregory; James, Katherine A; Oleszek, Joyce

    2015-01-01

    This study examines trends in corticosteroid use for males with Duchenne muscular dystrophy by birth year, race/ethnicity, and knowledge of Duchenne muscular dystrophy family history. Firstborn males (n = 521) selected from a population-based surveillance system of Duchenne muscular dystrophy were analyzed using Kaplan Meier and regression methods. Comparing males born 1982 to 1986 with males born 1997 to 2001, steroid use increased from 54% to 72% and mean age at steroid initiation decreased from 8.2 to 7.1 years. Hispanics and non-Hispanic Black males used steroids less frequently and delayed initiation compared to white males. Compared to males without a Duchenne muscular dystrophy family history, males with known family history were half as likely to use steroids. Duration of steroid use increased over time and age at initiation decreased. Racial/ethnic disparities exist for steroid use and should be addressed to improve outcome and quality of life for boys with Duchenne muscular dystrophy.

  17. Regenerative pharmacology in the treatment of genetic diseases: The paradigm of muscular dystrophy

    PubMed Central

    Mozzetta, Chiara; Minetti, Giulia; Puri, Pier Lorenzo

    2009-01-01

    Current evidence supports the therapeutic potential of pharmacological interventions that counter the progression of genetic disorders by promoting regeneration of the affected organs or tissues. The rationale behind this concept lies on the evidence that targeting key events downstream of the genetic defect can compensate, at least partially, the pathological consequence of the related disease. In this regard, the beneficial effect exerted on animal models of muscular dystrophy by pharmacological strategies that enhance muscle regeneration provides an interesting paradigm. In this review, we describe and discuss the potential targets of pharmacological strategies that promote regeneration of dystrophic muscles and alleviate the consequence of the primary genetic defect. Regenerative pharmacology provides an immediate and suitable therapeutic opportunity to slow down the decline of muscles in the present generation of dystrophic patients, with the perspective to hold them in conditions such that they could benefit of future, more definitive, therapies. PMID:18804548

  18. Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy.

    PubMed

    Hu, Xiao; Blemker, Silvia S

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a genetic disease that occurs due to the deficiency of the dystrophin protein. Although dystrophin is deficient in all muscles, it is unclear why degeneration progresses differently across muscles in DMD. We hypothesized that each muscle undergoes a different degree of eccentric contraction during gait, which could contribute to the selective degeneration in lower limb muscle, as indicated by various amounts of fatty infiltration. By comparing eccentric contractions quantified from a previous multibody dynamic musculoskeletal gait simulation and fat fractions quantified in a recent imaging study, our preliminary analyses show a strong correlation between eccentric contractions during gait and lower limb muscle fat fractions, supporting our hypothesis. This knowledge is critical for developing safe exercise regimens for the DMD population. This study also provides supportive evidence for using multiscale modeling and simulation of the musculoskeletal system in future DMD research.

  19. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    SciTech Connect

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  20. Continuous infusion propofol general anesthesia for dental treatment in patients with progressive muscular dystrophy.

    PubMed

    Kawaai, Hiroyoshi; Tanaka, Kazuho; Yamazaki, Shinya

    2005-01-01

    Progressive muscular dystrophy may produce abnormal reactions to several drugs. There is no consensus of opinion regarding the continuous infusion of propofol in patients with progressive muscular dystrophy. We successfully treated 2 patients with progressive muscular dystrophy who were anesthetized with a continuous infusion of propofol. In case 1, a 19-year-old, 59-kg man with Becker muscular dystrophy and mental retardation was scheduled for dental treatment under general anesthesia. General anesthesia was maintained by a continuous infusion of 6-10 mg/kg propofol per hour and an inhalational mixture of 67% nitrous oxide and 33% oxygen. No complications were observed during or after the operation. In case 2, a 5-year-old, 11-kg boy with Fukuyama type congenital muscular dystrophy and slight mental retardation was scheduled for dental treatment under general anesthesia. General anesthesia was maintained with a continuous infusion of 6-12 mg/kg propofol per hour and an inhalational mixture of 0.5-1.5% sevoflurane in 67% nitrous oxide and 33% oxygen. No complications were observed during or after the operation. It is speculated that a continuous infusion of propofol in progressive muscular dystrophy does not cause malignant hyperthermia because serum levels of creatine phosphokinase and myoglobin decreased after our anesthetic management. Furthermore, our observations suggest that sevoflurane may have some advantages in patients with progressive type muscular dystrophies other than Duchenne muscular dystrophy and Becker muscular dystrophy. In conclusion, our cases suggest that a continuous infusion of propofol for the patients with progressive muscular dystrophy is a safe component of our anesthetic strategy. PMID:15859443

  1. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy

    PubMed Central

    Abou-Khalil, Rana; Yang, Frank; Mortreux, Marie; Lieu, Shirley; Yu, Yan-Yiu; Wurmser, Maud; Pereira, Catia; Relaix, Frédéric; Miclau, Theodore; Marcucio, Ralph S.; Colnot, Céline

    2013-01-01

    Duchenne muscular dystrophy (DMD) patients exhibit skeletal muscle weakness with continuous cycles of muscle fiber degeneration/regeneration, chronic inflammation, low bone mineral density and increased risks of fracture. Fragility fractures and associated complications are considered as a consequence of the osteoporotic condition in these patients. Here, we aimed to establish the relationship between muscular dystrophy and fracture healing by assessing bone regeneration in mdx mice, a model of DMD with absence of osteoporosis. Our results illustrate that muscle defects in mdx mice impact the process of bone regeneration at various levels. In mdx fracture calluses, both cartilage and bone deposition were delayed followed by a delay in cartilage and bone remodeling. Vascularization of mdx fracture calluses was also decreased during the early stages of repair. Dystrophic muscles are known to contain elevated numbers of macrophages contributing to muscle degeneration. Accordingly, we observed increased macrophage recruitment in the mdx fracture calluses and abnormal macrophage accumulation throughout the process of bone regeneration. These changes in the inflammatory environment subsequently had an impact on the recruitment of osteoclasts and the remodeling phase of repair. Further damage to the mdx muscles, using a novel model of muscle trauma, amplified both the chronic inflammatory response and the delay in bone regeneration. In addition, PLX3397 treatment of mdx mice, a cFMS inhibitor in monocytes, partially rescued the bone repair defect through increasing cartilage deposition and decreasing macrophage number. In conclusion, chronic inflammation in mdx mice contributes to the fracture healing delay and is associated with a decrease in angiogenesis and a transient delay in osteoclast recruitment. By revealing the role of dystrophic muscle in regulating the inflammatory response during bone repair, our results emphasize the implication of muscle in the normal bone

  2. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy.

    PubMed

    Abou-Khalil, Rana; Yang, Frank; Mortreux, Marie; Lieu, Shirley; Yu, Yan-Yiu; Wurmser, Maud; Pereira, Catia; Relaix, Frédéric; Miclau, Theodore; Marcucio, Ralph S; Colnot, Céline

    2014-02-01

    Duchenne muscular dystrophy (DMD) patients exhibit skeletal muscle weakness with continuous cycles of muscle fiber degeneration/regeneration, chronic inflammation, low bone mineral density, and increased risks of fracture. Fragility fractures and associated complications are considered as a consequence of the osteoporotic condition in these patients. Here, we aimed to establish the relationship between muscular dystrophy and fracture healing by assessing bone regeneration in mdx mice, a model of DMD with absence of osteoporosis. Our results illustrate that muscle defects in mdx mice impact the process of bone regeneration at various levels. In mdx fracture calluses, both cartilage and bone deposition were delayed followed by a delay in cartilage and bone remodeling. Vascularization of mdx fracture calluses was also decreased during the early stages of repair. Dystrophic muscles are known to contain elevated numbers of macrophages contributing to muscle degeneration. Accordingly, we observed increased macrophage recruitment in the mdx fracture calluses and abnormal macrophage accumulation throughout the process of bone regeneration. These changes in the inflammatory environment subsequently had an impact on the recruitment of osteoclasts and the remodeling phase of repair. Further damage to the mdx muscles, using a novel model of muscle trauma, amplified both the chronic inflammatory response and the delay in bone regeneration. In addition, PLX3397 treatment of mdx mice, a cFMS (colony stimulating factor receptor 1) inhibitor in monocytes, partially rescued the bone repair defect through increasing cartilage deposition and decreasing the number of macrophages. In conclusion, chronic inflammation in mdx mice contributes to the fracture healing delay and is associated with a decrease in angiogenesis and a transient delay in osteoclast recruitment. By revealing the role of dystrophic muscle in regulating the inflammatory response during bone repair, our results

  3. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

    PubMed

    Church, Jarrod E; Trieu, Jennifer; Chee, Annabel; Naim, Timur; Gehrig, Stefan M; Lamon, Séverine; Angelini, Corrado; Russell, Aaron P; Lynch, Gordon S

    2014-04-01

    New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the

  4. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    PubMed

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration.

  5. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    PubMed

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration. PMID:26188938

  6. New aspects on patients affected by dysferlin deficient muscular dystrophy

    PubMed Central

    Klinge, Lars; Aboumousa, Ahmed; Eagle, Michelle; Hudson, Judith; Sarkozy, Anna; Vita, Gianluca; Charlton, Richard; Roberts, Mark; Straub, Volker; Barresi, Rita; Lochmüller, Hanns

    2009-01-01

    Mutations in the dysferlin gene lead to limb girdle muscular dystrophy 2B, Miyoshi myopathy and distal anterior compartment myopathy. A cohort of 36 patients affected by dysferlinopathy is described, in the first UK study of clinical, genetic, pathological and biochemical data. The diagnosis was established by reduction of dysferlin in the muscle biopsy and subsequent mutational analysis of the dysferlin gene. Seventeen mutations were novel; the majority of mutations were small deletions/insertions, and no mutational hotspots were identified. Sixty-one per cent of patients (22 patients) initially presented with limb girdle muscular dystrophy 2B, 31% (11 patients) with a Miyoshi phenotype, one patient with proximodistal mode of onset, one patient with muscle stiffness after exercise and one patient as a symptomatic carrier. A wider range of age of onset was noted than previously reported, with 25% of patients having first symptoms before the age of 13 years. Independent of the initial mode of presentation, in our cohort of patients the gastrocnemius muscle was the most severely affected muscle leading to an inability to stand on tiptoes, and lower limbs were affected more severely than upper limbs. As previous anecdotal evidence on patients affected by dysferlinopathy suggests good muscle prowess before onset of symptoms, we also investigated pre-symptomatic fitness levels of the patients. Fifty-three per cent of the patients were very active and sporty before the onset of symptoms which makes the clinical course of dysferlinopathy unusual within the different forms of muscular dystrophy and provides a challenge to understanding the underlying pathomechanisms in this disease. PMID:19528035

  7. Decreased Nocturnal Movements in Patients with Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Marca, Giacomo Della; Frusciante, Roberto; Dittoni, Serena; Vollono, Catello; Losurdo, Anna; Testani, Elisa; Scarano, Emanuele; Colicchio, Salvatore; Iannaccone, Elisabetta; Tonali, Pietro A.; Ricci, Enzo

    2010-01-01

    Study Objectives: Reduced mobility during sleep characterizes a variety of movement disorders and neuromuscular diseases. Facioscapulohumeral muscular dystrophy (FSHD) is the third most common form of muscular dystrophy in the general population, and people with FSHD have poor sleep quality. The aims of the present study were to evaluate nocturnal motor activity in patients with FSHD by means of videopolysomnography and to verify whether activity was associated with modifications in sleep structure. Methods: We enrolled 32 adult patients affected by genetically confirmed FSHD (18 women and 14 men, mean age 45.1 ± 13.4 years) and 32 matched control subjects, (18 women and 14 men, mean age 45.5 ± 11.4 years). Major body movements (MBM) were scored in videopolygraphic recordings in accordance with established criteria. An MBM index was calculated (number of MBM per hour of sleep). Results: The FSHD group showed a decrease in the MBM index (FSHD: 1.2 ± 1.1; control subjects: 2.3 ± 1.2, analysis of variance F = 13.672; p = 0.008). The sleep pattern of patients with FSHD, as compared with that of controls, was characterized by longer sleep latencies, shorter sleep durations, an increased percentage of wake during sleep, and a decreased percentage of rapid eye movement sleep. In the patient group, the MBM index was inversely correlated with severity of disease (Spearman test: r30 = −0.387; p < 0.05). Conclusions: The present findings suggest that patients with FSHD have a reduced number of nocturnal movements, which is related to disease severity. Reduced movement in bed may contribute to the sleep modifications observed in these patients. Citation: Marca GD; Frusciante R; Dittoni S; Vollono C; Losurdo A; Testani E; Scarano E; Colicchio S; Iannaccone E; Tonali PA; Ricci E. Decreased nocturnal movements in patients with facioscapulohumeral muscular dystrophy. J Clin Sleep Med 2010;6(3):276-280. PMID:20572422

  8. [The reflex sympathetic dystrophy syndrome associated with breast cancer].

    PubMed

    Cobeta García, J C; López-Longo, F J; Monteagudo Sáez, I; Núñez Olarte, J M; Fernández García, J E; Rivera Redondo, J

    1990-05-01

    Reflex sympathetic dystrophy syndrome (RSDS) is a rare entity of unknown etiopathogenesis, associated to different precipitating factors such as malignant tumors of several localizations. A new clinical variety has been recently described which has been denominated palmar fasciitis and polyarthritis syndrome. We present here two patients with RSDS associated to breast cancer: one case presenting fasciitis and polyarthritis and another case also associated to polymyalgia rheumatica. We emphasize the importance of reducing the tumor mass in the treatment of this syndrome, as well as including it in the gammagraphic differential diagnosis of bone metastasis.

  9. Reflex sympathetic dystrophy: an enigmatic improvement with spinal manipulation

    PubMed Central

    Bortolotto, James

    2000-01-01

    Reflex Sympathetic Dystrophy (RSD) or complex regional pain syndrome, is an extremely painful and disabling condition commonly seen following trauma. Its early recognition and treatment is most critical for a favorable prognosis. Although its diagnosis and treatments vary, neuroblockade is the treatment of choice. Very little has been reported in the literature in regards to manipulation as an early treatment modality to improve joint mobility and reduce pain and future disability. This case report reviews one case presentation of RSD where dramatic results followed cervical spine manipulation.

  10. Clinical utility of serum biomarkers in Duchenne muscular dystrophy.

    PubMed

    Hathout, Yetrib; Seol, Haeri; Han, Meng Hsuan J; Zhang, Aiping; Brown, Kristy J; Hoffman, Eric P

    2016-01-01

    Assessments of disease progression and response to therapies in Duchenne muscular dystrophy (DMD) patients remain challenging. Current DMD patient assessments include complex physical tests and invasive procedures such as muscle biopsies, which are not suitable for young children. Defining alternative, less invasive and objective outcome measures to assess disease progression and response to therapy will aid drug development and clinical trials in DMD. In this review we highlight advances in development of non-invasive blood circulating biomarkers as a means to assess disease progression and response to therapies in DMD.

  11. Bone scintigraphy in the reflex sympathetic dystrophy syndrome

    SciTech Connect

    Kozin, F.; Soin, J.S.; Ryan, L.M.; Carrera, G.F.; Wortmann, R.L.

    1981-02-01

    Sixty-four consecutive patients were studied for possible reflex sympathetic dystrophy syndrome (RSDS). They were divided into five groups, based upon specific clinical criteria, and the radiographic and scintigraphic findings in each group were examined. Osteoporosis was the most common radiographic abnormality. Scintigraphic abnormalities were noted in 60% of RSDS patients but in only 7% of the others. These findings included increased blood flow and enhanced periarticular radionuclide activity in the affected extremity. The scan may reflect an active, potentially reversible disorder of local blood flow in RSDS. Furthermore, the scintigraphic patterns may be useful in the diagnosis and in predicting which patients are likely to respond to systemic steroid therapy.

  12. Complications of sodium hydroxide chemical matrixectomy: nail dystrophy, allodynia, hyperalgesia.

    PubMed

    Bostancı, Seher; Koçyiğit, Pelin; Güngör, Hilayda Karakök; Parlak, Nehir

    2014-11-01

    Ingrown toenails are seen most commonly in young adults, and they can seriously affect daily life. Partial nail avulsion with chemical matrixectomy, generally by using either sodium hydroxide or phenol, is one of the most effective treatment methods. Known complications of phenol matrixectomy are unpredictable tissue damage, prolonged postoperative drainage, increased secondary infection rates, periostitis, and poor cosmetic results. To our knowledge, there have been no reports about the complications related to sodium hydroxide matrixectomy. Herein, we describe three patients who developed nail dystrophy, allodynia, and hyperalgesia after sodium hydroxide matrixectomy.

  13. Evolution of Cellular Inclusions in Bietti’s Crystalline Dystrophy

    PubMed Central

    Furusato, Emiko; Cameron, J. Douglas; Chan, Chi-Chao

    2010-01-01

    Bietti’s crystalline dystrophy (BCD) consists of small, yellow-white, glistening intraretinal crystals in the posterior pole, tapetoretinal degeneration with atrophy of the retinal pigment epithelium (RPE) and “sclerosis” of the choroid; in addition, sparking yellow crystals in the superficial marginal cornea are also found in many patients. BCD is inherited as an autosomal-recessive trait (4q35-tel) and usually has its onset in the third decade of life. This review focuses on the ultrastructure of cellular crystals and lipid inclusions of BCD. PMID:21359135

  14. Dystrophie maculaire de Stargardt - à propos d'un cas

    PubMed Central

    El Ouafi, Aziz; Elmellaoui, Med; Lakataoui, Abdelkader

    2014-01-01

    La maladie de Stardardt est une dystrophie maculaire héréditaire rare d'apparition précoce caractérisée par une perte progressive de la vision centrale, mais avec une vision périphérique intacte, une légère perte de la vision des couleurs, une adaptation à l'obscurité retardée, et une atrophie maculaire avec ou sans taches paramaculaires et une dégénérescence de l’épithélium pigmentaire de la rétine. PMID:25422697

  15. Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies

    PubMed Central

    Rouillon, Jérémy; Poupiot, Jérôme; Zocevic, Aleksandar; Amor, Fatima; Léger, Thibaut; Garcia, Camille; Camadro, Jean-Michel; Wong, Brenda; Pinilla, Robin; Cosette, Jérémie; Coenen-Stass, Anna M.L.; Mcclorey, Graham; Roberts, Thomas C.; Wood, Matthew J.A.; Servais, Laurent; Udd, Bjarne; Voit, Thomas; Richard, Isabelle; Svinartchouk, Fedor

    2015-01-01

    Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders. PMID:26060189

  16. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells

    PubMed Central

    Bertoni, Carmen

    2014-01-01

    The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology. PMID:24795643

  17. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    PubMed

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  18. The role of proteases in excitation-contraction coupling failure in muscular dystrophy.

    PubMed

    Mázala, Davi A G; Grange, Robert W; Chin, Eva R

    2015-01-01

    Duchenne muscular dystrophy (DMD) is one of the most frequent types of muscular dystrophy. Alterations in intracellular calcium (Ca(2+)) handling are thought to contribute to the disease severity in DMD, possibly due to the activation of Ca(2+)-activated proteases. The purpose of this study was twofold: 1) to determine whether prolonged excitation-contraction (E-C) coupling disruption following repeated contractions is greater in animals lacking both dystrophin and utrophin (mdx/Utr(-/-)) compared with mice lacking only dystrophin (mdx); and 2) to assess whether protease inhibition can prevent E-C coupling failure following repeated tetani in these dystrophic mouse models. Excitation-contraction coupling was assessed using Fura-2 ratio, as an index of intracellular free Ca(2+) concentration, in response to electrical stimulation of single muscle fibers from the flexor digitorum brevis muscle. Resting Fura-2 ratio was higher in dystrophic compared with control (Con) fibers, but peak Fura-2 ratios during stimulation were similar in dystrophic and Con fibers. One hour after a series of repeated tetani, peak Fura-2 ratios were reduced by 30 ± 5.6%, 23 ± 2%, and 36 ± 3.1% in mdx, mdx/Utr(+/-), and mdx/Utr(-/-), respectively, with the greatest reduction in mdx/Utr(-/-) fibers (P < 0.05). Protease inhibition attenuated this decrease in peak Fura-2 ratio. These data indicate that E-C coupling impairment after repeated contractions is greatest in fibers lacking both dystrophin and utrophin and that prevention of protease activation can mitigate the prolonged E-C coupling impairment. These data further suggest that acute protease inhibition may be useful in reducing muscle weakness in DMD.

  19. Cardiac involvement in myotonic muscular dystrophy (Steinert's disease): a prospective study of 25 patients

    SciTech Connect

    Perloff, J.K.; Stevenson, W.G.; Roberts, N.K.; Cabeen, W.; Weiss, J.

    1984-11-01

    The presence, degree and frequency of disorders of cardiac conduction and rhythm and of regional or global myocardial dystrophy or myotonia have not previously been studied prospectively and systematically in the same population of patients with myotonic dystrophy. Accordingly, 25 adults with classic Steinert's disease underwent electrocardiography, 24-hour ambulatory electrocardiography, vectorcardiography, chest x-rays, echocardiography, electrophysiologic studies, and technetium-99m angiography. Clinically important cardiac manifestations of myotonic dystrophy reside in specialized tissues rather than in myocardium. Involvement is relatively specific, primarily assigned to the His-Purkinje system. The cardiac muscle disorder takes the form of dystrophy rather than myotonia, and is not selective, appearing with approximately equal distribution in all 4 chambers. Myocardial dystrophy seldom results in clinically overt ventricular failure, but may be responsible for atrial and ventricular arrhythmias. Since myotonic dystrophy is genetically transmitted, a primary biochemical defect has been proposed with complete expression of the gene toward striated muscle tissue, whether skeletal or cardiac. Specialized cardiac tissue and myocardium have close, if not identical, embryologic origins, so it is not surprising that the genetic marker affects both. Cardiac involvement is therefore an integral part of myotonic dystrophy, targeting particularly the infranodal conduction system, to a lesser extent the sinus node, and still less specifically, the myocardium.

  20. A Common Disease-Associated Missense Mutation in Alpha-Sarcoglycan Fails to Cause Muscular Dystrophy in Mice

    PubMed Central

    Kobuke, Kazuhiro; Piccolo, Federica; Garringer, Keith W.; Moore, Steven A.; Sweezer, Eileen; Yang, Baoli; Campbell, Kevin P.

    2009-01-01

    Limb-girdle muscular dystrophy type 2D (LGMD2D) is caused by autosomal recessive mutations in the α-sarcoglycan gene. An R77C substitution is the most prevalent cause of the disease, leading to disruption of the sarcoglycan-sarcospan complex. To model this common mutation, we generated knock-in mice with an H77C substitution in α-sarcoglycan. The floxed neomycin (Neo)-cassette retained at the targeted H77C α-sarcoglycan locus caused a loss of α-sarcoglycan expression, resulting in muscular dystrophy in homozygotes, whereas Cre-mediated deletion of the floxed Neo-cassette led to recovered H77C α-sarcoglycan expression. Contrary to expectations, mice homozygous for the H77C-encoding allele expressed both this mutant α-sarcoglycan and the other components of the sarcoglycan-sarcospan complex in striated muscle, and did not develop muscular dystrophy. Accordingly, conditional rescued expression of the H77C protein in striated muscle of the α-sarcoglycan-deficient mice prevented the disease. Adding to the case that the behavior of mutant α-sarcoglycan is different between humans and mice, mutant human R77C α-sarcoglycan restored the expression of the sarcoglycan-sarcospan complex when introduced by adenoviral vector into the skeletal muscle of previously created α-sarcoglycan null mice. These findings indicate that the α-sarcoglycan with the most frequent missense mutation in LGMD2D is correctly processed, is transported to the sarcolemma, and is fully functional in mouse muscle. Our study presents an unexpected difference in the behavior of a missense-mutated protein in mice versus human patients, and emphasizes the need to understand species-specific protein quality control systems. PMID:18252746

  1. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  2. A personal overview of causalgia and other reflex dystrophies.

    PubMed Central

    Shumacker, H B

    1985-01-01

    This is a personal assessment of true major causalgia and the other reflex dystrophies, related but distinctly separate entities. The clinical picture of causalgia differs only in minor respects from that described by Mitchell over 120 years ago. Its management has, however, been clarified, largely through the extensive experiences of World War II. It is readily recognized and can be treated effectively by sympathetic blocks or sympathectomy together with active exercise. The other reflex dystrophies are far less understood. They appear to have a similar pattern in their early phase and to respond well to a program of exercise and control of edema--a regimen which, because of pain and paresis, cannot be carried out without sympathetic blocks or occasionally sympathectomy. When not recognized early and treated properly, the sympatomatology usually changes dramatically and treatment differs. Often control of edema and active use of the affected part are all that is necessary. Sometimes, in addition to these measures, sympathetic blocks or sympathectomy is required. Guidelines found useful in management are outlined. Puzzling features are discussed. PMID:3977427

  3. Vascular adrenergic receptor responses in skeletal muscle in myotonic dystrophy

    SciTech Connect

    Mechler, F.; Mastaglia, F.L.

    1981-02-01

    The pharmacological responses of vascular adrenergic receptors to intravenously administered epinephrine, phentolamine, and propranolol were assessed by measuring muscle blood flow (MBF) changes in the tibialis anterior muscle using the xenon 133 clearance technique and were compared in 8 normal subjects and 11 patients with myotonic dystrophy. In cases with advanced involvement of the muscle, the resting MBF was reduced and was not significantly altered by epinephrine before or after alpha- or beta-receptor blockade. In patients in whom the tibialis anterior muscle was normal or only minimally affected clinically, a paradoxical reduction in the epinephrine-induced increase in MBF was found after alpha blockade by phentolamine, and the epinephrine-induced MBF increase was not completely blocked by propranolol as in the normal subjects. These findings point to functional alteration in the properties of vascular adrenergic receptors in muscle in myotonic dystrophy. While this may be another manifestation of a widespread cell membrane defect in the disease, the possibility that the changes are secondary to the myotonic state cannot be excluded.

  4. Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy

    PubMed Central

    Tidball, James G; Wehling-Henricks, Michelle

    2014-01-01

    The secondary loss of neuronal nitric oxide synthase (nNOS) that occurs in dystrophic muscle is the basis of numerous, complex and interacting features of the dystrophic pathology that affect not only muscle itself, but also influence the interaction of muscle with other tissues. Many mechanisms through which nNOS deficiency contributes to misregulation of muscle development, blood flow, fatigue, inflammation and fibrosis in dystrophic muscle have been identified, suggesting that normalization in NO production could greatly attenuate diverse aspects of the pathology of muscular dystrophy through multiple regulatory pathways. However, the relative importance of the loss of nNOS from the sarcolemma versus the importance of loss of total nNOS from dystrophic muscle remains unknown. Although most current evidence indicates that nNOS localization at the sarcolemma is not required to achieve NO-mediated reductions of pathology in muscular dystrophy, the question remains open concerning whether membrane localization would provide a more efficient rescue from features of the dystrophic phenotype. PMID:25194047

  5. Symptom Burden in Persons with Myotonic and Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Smith, Amanda E.; McMullen, Kara; Jensen, Mark P.; Carter, Gregory T.; Molton, Ivan R.

    2013-01-01

    Objective This study examines the prevalence of pain, fatigue, imbalance, memory impairment and vision loss in persons with myotonic and facioscapulohumeral dystrophy, and their association with functioning. Design A survey (n=170) included measures of severity (0–10 scales) and course of these symptoms, as well as measures of social integration, home competency, mental health and productive activity. Descriptive and regression analyses examined the associations between symptoms and functioning. Results Fatigue (91%), imbalance (82%) and pain (77%) were most commonly reported. The most severe symptom was fatigue (mean severity 5.14 ± 2.81), followed by imbalance (4.95 ± 3.25). Symptoms were most likely to stay the same or worsen since onset. Controlling for potential medical and demographic confounds, symptoms were associated with 17% of the mental health variance, 10% of home competency, 10% of social integration, 16% of productive activity for DM1 and 12% of productive activity for FSHD. Conclusions Pain, fatigue and imbalance are common in persons with muscular dystrophy. Interventions may be useful to mitigate their impact on functioning. Further research should examine these relationships to guide clinical practices. PMID:24247759

  6. Altered cross-bridge properties in skeletal muscle dystrophies

    PubMed Central

    Guellich, Aziz; Negroni, Elisa; Decostre, Valérie; Demoule, Alexandre; Coirault, Catherine

    2014-01-01

    Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies (MDs) have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal MDs and discuss their ultimate impacts on striated muscle function. PMID:25352808

  7. Multifocal electroretinography in patients with Stargardt's macular dystrophy

    PubMed Central

    Kretschmann, U; Seeliger, M; Ruether, K; Usui, T; Apfelstedt-Sylla, E; Zrenner, E

    1998-01-01

    AIMS—To describe the topography of multifocal electroretinograms (ERGs) and to explore its diagnostic value in patients with Stargardt's macular dystrophy (SMD).
METHODS—51 patients with SMD were examined by means of the m-sequence technique to characterise the topography of electroretinographic responses in the central visual field. The results were compared with data from 30 normal volunteers.
RESULTS—In 49 of 51 patients with SMD, macular electroretinographic activity was markedly diminished or non-detectable. Towards more peripheral areas, ERG responses of the SMD patients approached those of normals. Implicit times were not markedly delayed at any eccentricity.
CONCLUSION—In contrast with Ganzfeld electroretinography, multifocal electroretinography is useful to detect foveal dysfunction in SMD. Areas of dysfunction were found to be usually larger than expected from psychophysical measurements and morphological alteration. In early stages of the disease it was possible to detect foveal dysfunction, even in patients lacking morphological fundus changes and with good visual acuity.

 Keywords: Stargardt's macular dystrophy; fundus flavimaculatus; electroretinography PMID:9602623

  8. Dystrophin-deficient muscular dystrophy in a Norfolk terrier.

    PubMed

    Beltran, E; Shelton, G D; Guo, L T; Dennis, R; Sanchez-Masian, D; Robinson, D; De Risio, L

    2015-05-01

    A six-month-old male entire Norfolk terrier was presented with a 3-month history of poor development, reluctance to exercise and progressive and diffuse muscle atrophy. Serum creatine kinase concentration was markedly elevated. Magnetic resonance imaging of the epaxial muscles revealed asymmetrical streaky signal changes aligned within the muscle fibres (hyperintense on T2-weighted images and short-tau inversion recovery with moderate contrast enhancement on T1-weighted images). Electromyography revealed pseudomyotonic discharges and fibrillation potentials localised at the level of the supraspinatus, epaxial muscles and tibial cranialis muscles. Muscle biopsy results were consistent with dystrophin-deficient muscular dystrophy. The dog remained stable 7 months after diagnosis with coenzyme Q10 and l-carnitine; however after that time, there was a marked deterioration and the owners elected euthanasia. This case report describes the clinical presentation, magnetic resonance imaging, electrodiagnostic and histopathological findings with immunohistochemical analysis in a Norfolk terrier with confirmed dystrophin-deficient muscular dystrophy, which has not been previously described in this breed.

  9. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    SciTech Connect

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. ); Shokeir, M. )

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  10. Pathways Implicated in Tadalafil Amelioration of Duchenne Muscular Dystrophy.

    PubMed

    De Arcangelis, Valeria; Strimpakos, Georgios; Gabanella, Francesca; Corbi, Nicoletta; Luvisetto, Siro; Magrelli, Armando; Onori, Annalisa; Passananti, Claudio; Pisani, Cinzia; Rome, Sophie; Severini, Cinzia; Naro, Fabio; Mattei, Elisabetta; Di Certo, Maria Grazia; Monaco, Lucia

    2016-01-01

    Numerous therapeutic approaches for Duchenne and Becker Muscular Dystrophy (DMD and BMD), the most common X-linked muscle degenerative disease, have been proposed. So far, the only one showing a clear beneficial effect is the use of corticosteroids. Recent evidence indicates an improvement of dystrophic cardiac and skeletal muscles in the presence of sustained cGMP levels secondary to a blocking of their degradation by phosphodiesterase five (PDE5). Due to these data, we performed a study to investigate the effect of the specific PDE5 inhibitor, tadalafil, on dystrophic skeletal muscle function. Chronic pharmacological treatment with tadalafil has been carried out in mdx mice. Behavioral and physiological tests, as well as histological and biochemical analyses, confirmed the efficacy of the therapy. We then performed a microarray-based genomic analysis to assess the pattern of gene expression in muscle samples obtained from the different cohorts of animals treated with tadalafil. This scrutiny allowed us to identify several classes of modulated genes. Our results show that PDE5 inhibition can ameliorate dystrophy by acting at different levels. Tadalafil can lead to (1) increased lipid metabolism; (2) a switch towards slow oxidative fibers driven by the up-regulation of PGC-1α; (3) an increased protein synthesis efficiency; (4) a better actin network organization at Z-disk.

  11. The Intriguing Regulators of Muscle Mass in Sarcopenia and Muscular Dystrophy

    PubMed Central

    Sakuma, Kunihiro; Aoi, Wataru; Yamaguchi, Akihiko

    2014-01-01

    Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy. PMID:25221510

  12. Dexmedetomidine and fentanyl combination for procedural sedation in a case of Duchenne muscular dystrophy

    PubMed Central

    Kulshrestha, Ashish; Bajwa, Sukhminder Jit Singh; Singh, Amarjit; Kapoor, Vinod

    2011-01-01

    Duchenne muscular dystrophy, an X-linked disorder characterized by progressive muscle weakness, is the most common muscular dystrophy among children leading to death before the end of third decade. Anesthesia in such patients pose a great challenge due to various complications associated with it. The dreaded metabolic and clinical complications occur due to various inhalational anesthetics and succinylcholine in this subset of patients. We are reporting a child with diagnosed Duchenne muscular dystrophy who underwent excision of dentigerous cyst in oral cavity under procedural sedation with combination of dexmedetomidine and fentanyl and thus administration of general anesthesia was avoided. PMID:25885395

  13. Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy

    PubMed Central

    Burr, A R; Molkentin, J D

    2015-01-01

    Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches. PMID:26088163

  14. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    PubMed

    Cotta, Ana; Carvalho, Elmano; da-Cunha-Júnior, Antonio Lopes; Paim, Júlia Filardi; Navarro, Monica M; Valicek, Jaquelin; Menezes, Miriam Melo; Nunes, Simone Vilela; Xavier Neto, Rafael; Takata, Reinaldo Issao; Vargas, Antonio Pedro

    2014-09-01

    Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  15. [Reflex dystrophy following so-called whiplash injury of the cervical spine].

    PubMed

    Bühring, M

    1984-01-01

    In bad cases of whiplash injury of the cervical spine the post-accidental course is complicated by pain, vegetative dysfunctional syndromes and by psychic and psychiatric disorders over many years. There is no satisfactory concept to understand the pathophysiology of these processes. The paper deals with the possibility of a reflex dystrophy. Sympathetic reflex dystrophy syndromes are seen principally in patients with joint, tendon or vascular lesions. In case of whiplash injury, it would concern the cervical spine itself as well as visceral organs including the central nervous system. For the CNS the lymphostatic encephalopathy is a well defined entity. Above all, a reflex dystrophy develops on the basis of a special personality structure. In case of psychic and psychiatric complaints after whiplash injury patients with a so called Sudeck-personality should not be suspected to aggravate; in contrast, especially in these patients complications by reflex dystrophy are credible. Consequences for the assessment and for rehabilitation are discussed. PMID:6475217

  16. Stakeholder cooperation to overcome challenges in orphan medicine development: the example of Duchenne muscular dystrophy.

    PubMed

    Straub, Volker; Balabanov, Pavel; Bushby, Kate; Ensini, Monica; Goemans, Nathalie; De Luca, Annamaria; Pereda, Alejandra; Hemmings, Robert; Campion, Giles; Kaye, Edward; Arechavala-Gomeza, Virginia; Goyenvalle, Aurelie; Niks, Erik; Veldhuizen, Olav; Furlong, Pat; Stoyanova-Beninska, Violeta; Wood, Matthew J; Johnson, Alex; Mercuri, Eugenio; Muntoni, Francesco; Sepodes, Bruno; Haas, Manuel; Vroom, Elizabeth; Aartsma-Rus, Annemieke

    2016-07-01

    Duchenne muscular dystrophy is a rare, progressive, muscle-wasting disease leading to severe disability and premature death. Treatment is currently symptomatic, but several experimental therapies are in development. Implemented care standards, validated outcome measures correlating with clinical benefit, and comprehensive information about the natural history of the disease are essential for regulatory approval of any treatment. However, for Duchenne muscular dystrophy and other rare diseases, these requirements are not always in place when potential therapies enter the clinical trial phase. A cooperative effort of stakeholders in Duchenne muscular dystrophy-including representatives from patients' groups, academia, industry, and regulatory agencies-is aimed at addressing this shortfall by identifying strategies to overcome challenges, developing the tools needed, and collecting relevant data. An open and constructive dialogue among European stakeholders has positively affected development of treatments for Duchenne muscular dystrophy; this approach could serve as a paradigm for development of treatments for rare diseases in general. PMID:27302365

  17. Defective (U-14 C) palmitic acid oxidation in Duchenne muscular dystrophy

    SciTech Connect

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased (U-14 C) palmitic acid oxidation. (1-14 C) palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation.

  18. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    PubMed

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  19. Complementary and Alternative Medicine for Duchenne and Becker Muscular Dystrophies: Characteristics of Users and Caregivers

    PubMed Central

    Zhu, Yong; Romitti, Paul A.; Conway, Kristin M.; Andrews, Jennifer; Liu, Ke; Meaney, F. John; Street, Natalie; Puzhankara, Soman; Druschel, Charlotte M.; Matthews, Dennis J.

    2015-01-01

    BACKGROUND Complementary and alternative medicine is frequently used in the management of chronic pediatric diseases, but little is known about its use by those with Duchenne or Becker muscular dystrophy. METHODS Complementary and alternative medicine use by male patients with Duchenne or Becker muscular dystrophy and associations with characteristics of male patients and their caregivers were examined through interviews with 362 primary caregivers identified from the Muscular Dystrophy Surveillance, Tracking, and Research Network. RESULTS Overall, 272 of the 362 (75.1%) primary caregivers reported that they had used any complementary and alternative medicine for the oldest Muscular Dystrophy Surveillance, Tracking, and Research Network male in their family. The most commonly reported therapies were from the mind-body medicine domain (61.0%) followed by those from the biologically based practice (39.2%), manipulative and body-based practice (29.3%), and whole medical system (6.9%) domains. Aquatherapy, prayer and/or blessing, special diet, and massage were the most frequently used therapies. Compared with nonusers, male patients who used any therapy were more likely to have an early onset of symptoms and use a wheel chair; their caregivers were more likely to be non-Hispanic white. Among domains, associations were observed with caregiver education and family income (mind-body medicines [excluding prayer and/or blessing only] and whole medical systems) and Muscular Dystrophy Surveillance, Tracking, and Research Network site (biologically based practices and mind-body medicines [excluding prayer and/or blessing only]). CONCLUSIONS Complementary and alternative medicine use was common in the management of Duchenne and Becker muscular dystrophies among Muscular Dystrophy Surveillance, Tracking, and Research Network males. This widespread use suggests further study to evaluate the efficacy of integrating complementary and alternative medicine into treatment regimens for

  20. Bethlem myopathy is not allelic to limb-girdle muscular dystrophy type 1A

    SciTech Connect

    Speer, M.C.; Yamaoka, L.H.; Stajich, J.; Lewis, K.

    1995-08-28

    The Bethlem myopathy, an autosomal-dominant myopathy, shows a distribution of proximal muscle weakness similar to that observed in dominant limb-girdle muscular dystrophy (LGMD). Yet the Bethlem myopathy differs from most limb-girdle dystrophies in two important regards. First, the Bethlem myopathy presents with joint contractures most commonly observed at the elbows, ankles, and neck. Secondly, disease onset in the Bethlem myopathy is in early childhood, while most dominant LGMDs present with adult onset. 6 refs., 1 fig.

  1. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  2. Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy: Similarities to Age-Related Macular Degeneration and Potential Therapies.

    PubMed

    Hulleman, John D

    2016-01-01

    Fibulin-3 (F3) is a secreted, disulfide-rich glycoprotein which is expressed in a variety of tissues within the body, including the retina. An Arg345Trp (R345W) mutation in F3 was identified as the cause of a rare retinal dystrophy, Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD). ML/DHRD shares many phenotypic similarities with age-related macular degeneration (AMD). The most prominent feature of ML/DHRD is the development of radial or honeycomb patterns of drusen which can develop as early as adolescence. Two independent mouse models of ML/DHRD show evidence of complement activation as well as retinal pigment epithelium (RPE) atrophy, strengthening the phenotypic connection with AMD. Because of its similarities with AMD, ML/DHRD is receiving increasing interest as a potential surrogate disease to study the underpinnings of AMD. This mini-review summarizes the current knowledge of F3 and points toward potential therapeutic strategies which directly or indirectly target cellular dysfunction associated with R345W F3.

  3. Linker molecules between laminins and dystroglycan ameliorate laminin-α2–deficient muscular dystrophy at all disease stages

    PubMed Central

    Meinen, Sarina; Barzaghi, Patrizia; Lin, Shuo; Lochmüller, Hanns; Ruegg, Markus A.

    2007-01-01

    Mutations in laminin-α2 cause a severe congenital muscular dystrophy, called MDC1A. The two main receptors that interact with laminin-α2 are dystroglycan and α7β1 integrin. We have previously shown in mouse models for MDC1A that muscle-specific overexpression of a miniaturized form of agrin (mini-agrin), which binds to dystroglycan but not to α7β1 integrin, substantially ameliorates the disease (Moll, J., P. Barzaghi, S. Lin, G. Bezakova, H. Lochmuller, E. Engvall, U. Muller, and M.A. Ruegg. 2001. Nature. 413:302–307; Bentzinger, C.F., P. Barzaghi, S. Lin, and M.A. Ruegg. 2005. Matrix Biol. 24:326–332.). Now we show that late-onset expression of mini-agrin still prolongs life span and improves overall health, although not to the same extent as early expression. Furthermore, a chimeric protein containing the dystroglycan-binding domain of perlecan has the same activities as mini-agrin in ameliorating the disease. Finally, expression of full-length agrin also slows down the disease. These experiments are conceptual proof that linking the basement membrane to dystroglycan by specifically designed molecules or by endogenous ligands, could be a means to counteract MDC1A at a progressed stage of the disease, and thus opens new possibilities for the development of treatment options for this muscular dystrophy. PMID:17389231

  4. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects

    PubMed Central

    Heier, Christopher R; Damsker, Jesse M; Yu, Qing; Dillingham, Blythe C; Huynh, Tony; Van der Meulen, Jack H; Sali, Arpana; Miller, Brittany K; Phadke, Aditi; Scheffer, Luana; Quinn, James; Tatem, Kathleen; Jordan, Sarah; Dadgar, Sherry; Rodriguez, Olga C; Albanese, Chris; Calhoun, Michael; Gordish-Dressman, Heather; Jaiswal, Jyoti K; Connor, Edward M; McCall, John M; Hoffman, Eric P; Reeves, Erica K M; Nagaraju, Kanneboyina

    2013-01-01

    Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases. PMID:24014378

  5. A novel recessive GUCY2D mutation causing cone-rod dystrophy and not Leber's congenital amaurosis.

    PubMed

    Ugur Iseri, Sibel A; Durlu, Yusuf K; Tolun, Aslihan

    2010-10-01

    Cone-rod dystrophies are inherited retinal dystrophies that are characterized by progressive degeneration of cones and rods, causing an early decrease in central visual acuity and colour vision defects, followed by loss of peripheral vision in adolescence or early adult life. Both genetic and clinical heterogeneity are well known. In a family with autosomal recessive cone-rod dystrophy, genetic analyses comprising genome scan with microsatellite markers, fine mapping and candidate gene approach resulted in the identification of a homozygous missense GUCY2D mutation. This is the first GUCY2D mutation associated with autosomal recessive cone-rod dystrophy rather than Leber's congenital amaurosis (LCA), a severe disease leading to childhood blindness. This study hence establishes GUCY2D, which is a common cause for both recessive LCA and dominant cone-rod dystrophy, as a good candidate for autosomal recessive cone-rod dystrophy. PMID:20517349

  6. Pathophysiology of Corneal Dystrophies: From Cellular Genetic Alteration to Clinical Findings.

    PubMed

    Sacchetti, Marta; Macchi, Ilaria; Tiezzi, Alessandro; La Cava, Maurizio; Massaro-Giordano, Giacomina; Lambiase, Alessandro

    2016-02-01

    Corneal dystrophies are a heterogeneous group of bilateral, inherited, rare diseases characterized by slowly progressive corneal opacities, that lead to visual impairment. Most of them have an autosomal dominant pattern of inheritance with variable expressivity, but new mutations have been described. Many corneal dystrophies have been genetically characterized and the specific gene mutations identified, such as for the epithelial-stromal TGFBI dystrophies. Current classification systems identified four main groups of corneal dystrophies based on clinical, histologic, and genetic information. Diagnosis is performed during a routine ophthalmic examination that shows typical cellular abnormalities of the corneal epithelium, stroma, or endothelium. Disease progression should be carefully monitored to decide the proper clinical management. The treatment of corneal dystrophies is variable, depending on symptoms, clinical course, severity, and type of dystrophy. Management aimed to reduce symptoms and to improve vision, includes different surgical approaches. Novel cellular and genetic therapeutic approaches are under evaluation. J. Cell. Physiol. 231: 261-269, 2016. © 2015 Wiley Periodicals, Inc. PMID:26104822

  7. Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.

    PubMed

    Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M

    2015-04-01

    An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed.

  8. [Respiratory and intensive care aspects of muscular dystrophies].

    PubMed

    Ambrosi, X; Lamothe, L; Heming, N; Orlikowski, D

    2015-12-01

    Among the various myopathies, Duchenne muscular dystrophy represents the myopathy with the most stereotypical respiratory evolution. This progressive respiratory failure is going to develop in a parallel way of motor deficit, conducting patients to mechanical ventilation at the end of their second decade. In the absence of curative therapeutics, respiratory cares like home ventilation and prevention of respiratory complications, in a systematic and organized way, allowed to decrease the morbidity and the mortality of these patients. It is not exceptional to meet patients with life expectancy of which overtakes about forty. Besides axial stabilization, cough assistance techniques and swallowing disorders management need to be associated to mechanical ventilation. Invasive techniques of ventilation as tracheostomy keep their place in this pathology even if alternative techniques allowing full day non-invasive ventilation were generalized these last years. PMID:26773587

  9. FSHD: copy number variations on the theme of muscular dystrophy

    PubMed Central

    Cabianca, Daphne Selvaggia

    2010-01-01

    In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD. PMID:21149563

  10. Negative expansion of the myotonic dystrophy unstable sequence

    SciTech Connect

    Abeliovich, D.; Lerer, I.; Pashut-Lavon, I.; Shmueli, E. ); Raas-Rothschild, A.; Frydman, M. )

    1993-06-01

    The authors have analyzed the unstable fragment of the myotonic dystrophy (DM) gene in a pregnancy at 50% risk for DM. The affected father in this family had a 3.0-kb expansion of the DM unstable region. The fetus inherited the mutated gene, but with an expansion of 0.5 kb. This case represented a counseling problem in light of the absence of data concerning [open quotes]negative expansion[close quotes]. Analysis of the DM gene in 17 families with 72 affected individuals revealed four more cases of negative expansions, all of them in paternal transmissions. The possible significance of this finding is discussed. 21 refs., 3 figs., 3 tabs.

  11. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy.

    PubMed

    Pessina, Patrizia; Kharraz, Yacine; Jardí, Mercè; Fukada, So-ichiro; Serrano, Antonio L; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2015-06-01

    Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component. PMID:25981413

  12. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy.

    PubMed

    Pessina, Patrizia; Kharraz, Yacine; Jardí, Mercè; Fukada, So-ichiro; Serrano, Antonio L; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2015-06-01

    Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  13. Anesthetic management of a myotonic dystrophy patient with paraganglionoma.

    PubMed

    Subramaniam, Ashwin; Grauer, Robert; Beilby, David; Tiruvoipati, Ravindranath

    2016-11-01

    Myotonic dystrophy (DM), though rare, can significantly complicate anesthesia due to muscular and extra-muscular involvement. When this condition is compounded by a pheochromocytoma, anesthetizing such patients becomes extra challenging. We present a case report of a 61-year-old lady with congenital DM, with the whole gamut of associated features, was diagnosed with a noradrenaline secreting paraganglionoma following investigation of refractory hypertension. We anesthetized her for an open resection of the lesion. The conduct of anesthesia and recovery of this patient is described. Our experience suggests that anesthetizing these patients though challenging can be safely managed with relaxant general anesthesia and epidural analgesia with meticulous care pre, intra and post-surgical intervention. PMID:27687340

  14. [Keratoconus, the most common corneal dystrophy. Can keratoplasty be avoided?].

    PubMed

    Arne, Jean Louis; Fournié, Pierre

    2011-01-01

    Keratoconus is the most common form of corneal dystrophy. It consists of a non inflammatory progressive thinning process that leads to conical ectasia of the cornea, causing high myopia and astigmatism. In more advanced cases, opacities can be seen at the apex of the cone. Traditional conservative management of keratoconus begins with spectacle correction and contact lenses. Surgery is recommended when a stable contact lens fit fails to provide adequate vision. Keratoplasty was long the only surgical treatment, but recent years have seen the introduction of new surgical options:--Collagen cross-linking stiffens the cornea and can halt disease progression;--Intrastromal corneal rings can reduce astigmatism and improve visual acuity;--Intraocular lenses are valuable additional options for the correction of refractive errors. Currently, keratoplasty is mainly restricted to patients with opacities of the central cornea. PMID:22039707

  15. Emery-Dreifuss muscular dystrophy: the most recognizable laminopathy.

    PubMed

    Madej-Pilarczyk, A; Kochański, A

    2016-01-01

    Emery-Dreifuss muscular dystrophy (EDMD), a rare inherited disease, is characterized clinically by humero-peroneal muscle atrophy and weakness, multijoint contractures, spine rigidity and cardiac insufficiency with conduction defects. There are at least six types of EDMD known so far, of which five have been associated with mutations in genes encoding nuclear proteins. The majority of the EDMD cases described so far are of the emerinopathy (EDMD1) kind, with a recessive X-linked mode of inheritance, or else laminopathy (EDMD2), with an autosomal dominant mode of inheritance. In the work described here, the authors have sought to describe the history by which EDMD came to be distinguished as a separate entity, as well as the clinical and genetic characteristics of the disease, the pathophysiology of lamin-related muscular diseases and, finally, therapeutic issues, prevention and ethical aspects. PMID:27179216

  16. Duchenne muscular dystrophy drugs face tough path to approval.

    PubMed

    Hodgkinson, L; Sorbera, L; Graul, A I

    2016-03-01

    Highly anticipated as new disease-modifying treatments for Duchenne muscular dystrophy (DMD), therapeutics by BioMarin Pharmaceutical (Kyndrisa™; drisapersen) and Sarepta Therapeutics (eteplirsen; AVI-4658) both recently received negative FDA reviews and are now facing battles for approval in the U.S. At present, BioMarin is committed to working with the FDA to forge a pathway to approval following the failure of its NDA, while Sarepta awaits the formal decision on its NDA, which is expected by late May 2016. Despite the critical nature of both reviews, analysts consider that there is still a narrow possibility of approval of both drugs. According to Consensus forecasts from Thomson Reuters Cortellis for Competitive Intelligence, Kyndrisa is forecast to achieve sales of USD 533.71 million in 2021. PMID:27186594

  17. Gene discovery for facioscapulohumeral muscular dystrophy by machine learning techniques.

    PubMed

    González-Navarro, Félix F; Belanche-Muñoz, Lluís A; Gámez-Moreno, María G; Flores-Ríos, Brenda L; Ibarra-Esquer, Jorge E; López-Morteo, Gabriel A

    2016-04-28

    Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results. PMID:26960968

  18. Computer-based assessment for facioscapulohumeral dystrophy diagnosis.

    PubMed

    Chambers, O; Milenković, J; Pražnikar, A; Tasič, J F

    2015-06-01

    The paper presents a computer-based assessment for facioscapulohumeral dystrophy (FSHD) diagnosis through characterisation of the fat and oedema percentages in the muscle region. A novel multi-slice method for the muscle-region segmentation in the T1-weighted magnetic resonance images is proposed using principles of the live-wire technique to find the path representing the muscle-region border. For this purpose, an exponential cost function is used that incorporates the edge information obtained after applying the edge-enhancement algorithm formerly designed for the fingerprint enhancement. The difference between the automatic segmentation and manual segmentation performed by a medical specialists is characterised using the Zijdenbos similarity index, indicating a high accuracy of the proposed method. Finally, the fat and oedema are quantified from the muscle region in the T1-weighted and T2-STIR magnetic resonance images, respectively, using the fuzzy c-mean clustering approach for 10 FSHD patients. PMID:25910520

  19. Oropharyngeal dysphagia in myotonic dystrophy type 1: a systematic review.

    PubMed

    Pilz, Walmari; Baijens, Laura W J; Kremer, Bernd

    2014-06-01

    A systematic review was conducted to investigate the pathophysiology of and diagnostic procedures for oropharyngeal dysphagia in myotonic dystrophy (MD). The electronic databases Embase, PubMed, and The Cochrane Library were used. The search was limited to English, Dutch, French, German, Spanish, and Portuguese publications. Sixteen studies met the inclusion criteria. Two independent reviewers assessed the methodological quality of the included articles. Swallowing assessment tools, the corresponding protocols, the studies' outcome measurements, and main findings are summarized and presented. The body of literature on pathophysiology of swallowing in dysphagic patients with MD type 1 remains scant. The included studies are heterogeneous with respect to design and outcome measures and hence are not directly comparable. More importantly, most studies had methodological problems. These are discussed in detail and recommendations for further research on diagnostic examinations for swallowing disorders in patients with MD type 1 are provided.

  20. Whole-body MRI evaluation of facioscapulohumeral muscular dystrophy

    PubMed Central

    Leung, Doris G.; Carrino, John A.; Wagner, Kathryn R.; Jacobs, Michael A.

    2015-01-01

    Introduction Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary disorder that causes progressive muscle wasting. Increasing knowledge of the pathophysiology of FSHD has stimulated interest in developing biomarkers of disease severity. Methods Two groups of MRI scans were analyzed: whole-body scans from 13 subjects with FSHD, and upper and lower extremity scans from 34 subjects with FSHD who participated in the MYO-029 clinical trial. Muscles were scored for fat infiltration and edema-like changes. Fat infiltration scores were compared to muscle strength and function. Results Our analysis reveals a distinctive pattern of both frequent muscle involvement and frequent sparing in FSHD. Averaged fat infiltration scores for muscle groups in the legs correlated with quantitative muscle strength and 10-meter walk times. Discussion Advances in MRI technology allow for the acquisition of rapid, high-quality whole-body imaging in diffuse muscle disease. This technique offers a promising disease biomarker in FSHD and other muscle diseases. PMID:25641525

  1. Facioscapulohumeral muscular dystrophy and respiratory failure; what about the diaphragm?

    PubMed Central

    Hazenberg, A.; van Alfen, N.; Voet, N.B.M.; Kerstjens, H.A.M.; Wijkstra, P.J.

    2014-01-01

    Introduction We present a case of facioscapulohumeral muscular dystrophy (FSHD) with a diaphragm paralysis as the primary cause of ventilatory failure. FSHD is an autosomal dominant inherited disorder with a restricted pattern of weakness. Although respiratory weakness is a relatively unknown in FSHD, it is not uncommon. Methods We report on the clinical findings of a 68-year old male who presented with severe dyspnea while supine. Results Supplementing our clinical findings with laboratory, electrophysiological and radiological performances led to the diagnosis of diaphragm paralysis. Arterial blood gas in sitting position without supplemental oxygen showed a mild hypercapnia. His sleep improved after starting non-invasive ventilation and his daytime sleepiness disappeared. Discussion We conclude that in patients with FSHD who have symptoms of nocturnal hypoventilation, an adequate assessment of the diaphragm is recommended. This is of great importance as we know that nocturnal hypoventilation can be treated effectively by non-invasive ventilation. PMID:26029575

  2. Patient Identified Disease Burden in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Johnson, Nicholas E; Quinn, Christine; Eastwood, Eileen; Tawil, Rabi; Heatwole, Chad R

    2013-01-01

    Introduction The multitude of symptoms associated with facioscapulohumeral muscular dystrophy (FSHD) disease burden are of varying importance. The extent of these symptoms and their cumulative effect on the FSHD population is unknown. Methods We conducted interviews with adult FSHD patients to identify which symptoms have the greatest effect on their lives. Each interview was recorded, transcribed, coded, and analyzed using a qualitative framework technique, triangulation, and 3-investigator consensus approach. Results 1375 quotes were obtained through 20 patient interviews. 251 symptoms of importance were identified representing 14 themes of FSHD disease burden. Symptoms associated with mobility impairment, activity limitation, and social role limitation were most frequently mentioned by participants. Conclusions There are multiple themes and symptoms, some previously under-recognized, that play a key role in FSHD disease burden. PMID:23225386

  3. A case of myotonic dystrophy with electrolyte imbalance.

    PubMed

    Ko, Weon-Jin; Kim, Kwang-Yeol; Kim, So-Mi; Hong, Seung-Jae; Lee, Sang-Hoon; Song, Ran; Yang, Hyung-In; Lee, Yeon-Ah

    2013-07-01

    Type 1 myotonic dystrophy (DM1) is an autosomal-dominant inherited disorder with a multisystem involvement, caused by an abnormal expansion of the CTG sequence of the dystrophic myotonia protein kinase (DMPK) gene. DM1 is a variable multisystem disorder with muscular and nonmuscular abnormalities. Increasingly, endocrine abnormalities, such as gonadal, pancreatic, and adrenal dysfunction are being reported. But, Electrolytes imbalance is a very rare condition in patients with DM1 yet. Herein we present a 42-yr-old Korean male of DM1 with abnormally elevated serum sodium and potassium. The patient had minimum volume of maximally concentrated urine without water loss. It was only cured by normal saline hydration. The cause of hypernatremia was considered by primary hypodipsia. Hyperkalemic conditions such as renal failure, pseudohyperkalemia, cortisol deficiency and hyperkalemic periodic paralysis were excluded. Further endocrine evaluation suggested selective hyperreninemic hypoaldosteronism as a cause of hyperkalemia.

  4. [Muscular spasms associated with a reflex sympathetic dystrophy].

    PubMed

    Tola, M A; Gutiérrez, J M; Llamazares, O; Yugueros, I

    1996-10-01

    The appearance of involuntary movements in the clinical course of reflex sympathetic dystrophy (DSR) constitutes a rare clinical entity. In this context, the most frequent changes in movements are muscle spasms and focal dystonia, although postural tremor, muscle weakness and rhythmic myoclonus have also been described. The disorder is more frequent in young women and in the lower limbs. It may have a focal, segmental, multifocal, hemicorporal or symmetrical distribution. It is almost always secondary to local trauma. The pathogenesis and most effective treatment are unknown. We present the case of a 62 year old woman with muscle spasms of both legs and feet as a complication of spontaneously appearing DSR. The electromyogram showed continuous non-rhythmic discharges with morphologically normal motor unit potentials in both anterior tibial muscles. The clinical course and symptomatic improvement following treatment with benzodiazepine seems to suggest that the disorder is of central origin. PMID:8983730

  5. Evidence for a chronic axonal atrophy in oculopharyngeal "muscular dystrophy".

    PubMed

    Probst, A; Tackmann, W; Stoeckli, H R; Jerusalem, F; Ulrich, J

    1982-01-01

    We report on morphometric investigations of peripheral nerves in a woman, who died at the age of 69, presenting the classical symptoms of oculopharyngeal muscular dystrophy (OPMD) and a typical family history with several members (males and females) affected over three generations. Evidence for chronic axonal atrophy was found in peripheral nerves and especially in oculomotor nerves with severe axon loss in endomysial nerve twigs of extraocular, laryngeal, and tongue muscles. Whereas limb muscles presented features of neurogenic atrophy, severe changes of "myopathic" type were evident in extrinsic eye muscles, laryngeal constrictor, tongue, and diaphragma. However, we interpreted these changes as neurogenic in origin in view of the severe denervation found in those muscles. Our findings suggest that OPMD is a disease of primary neurogenic origin rather than a primary myopathic disorder. PMID:7124348

  6. Dropped-head in recessive oculopharyngeal muscular dystrophy.

    PubMed

    Garibaldi, Matteo; Pennisi, Elena Maria; Bruttini, Mirella; Bizzarri, Veronica; Bucci, Elisabetta; Morino, Stefania; Talerico, Caterina; Stoppacciaro, Antonella; Renieri, Alessandra; Antonini, Giovanni

    2015-11-01

    A 69-year-old woman presented a dropped head, caused by severe neck extensor weakness that had started two years before. She had also developed a mild degree of dysphagia, rhinolalia, eyelid ptosis and proximal limb weakness during the last months. EMG revealed myopathic changes. Muscle MRI detected fatty infiltration in the posterior neck muscles and tongue. Muscle biopsy revealed fiber size variations, sporadic rimmed vacuoles, small scattered angulated fibers and a patchy myofibrillar network. Genetic analysis revealed homozygous (GCN)11 expansions in the PABPN1 gene that were consistent with recessive oculopharyngeal muscular dystrophy (OPMD). There are a few reports of the recessive form, which has a later disease onset with milder symptoms and higher clinical variability than the typical dominantly inherited form. This patient, who is the first Italian and the eighth worldwide reported case of recessive OPMD, is also the first case of OPMD with dropped-head syndrome, which thus expands the clinical phenotype of recessive OPMD.

  7. Muscle exercise in limb girdle muscular dystrophies: pitfall and advantages.

    PubMed

    Siciliano, Gabriele; Simoncini, Costanza; Giannotti, Stefano; Zampa, Virna; Angelini, Corrado; Ricci, Giulia

    2015-05-01

    Different genetic mutations underlying distinct pathogenic mechanisms have been identified as cause of muscle fibers degeneration and strength loss in limb girdle muscular dystrophies (LGMD). As a consequence, exercise tolerance is affected in patients with LGMD, either as a direct consequence of the loss of muscle fibers or secondary to the sedentary lifestyle due to the motor impairment. It has been debated for many years whether or not muscle exercise is beneficial or harmful for patients with myopathic disorders. In fact, muscular exercise would be considered in helping to hinder the loss of muscle tissue and strength. On the other hand, muscle structural defects in LGMD can result in instability of the sarcolemma, making it more likely to induce muscle damage as a consequence of intense muscle contraction, such as that performed during eccentric training. Several reports have suggested that supervised aerobic exercise training is safe and may be considered effective in improving oxidative capacity and muscle function in patients with LGMD, such as LGMD2I, LGMD2L, LGMD2A. More or less comfortable investigation methods applied to assess muscle function and structure can be useful to detect the beneficial effects of supervised training in LGMD. However, it is important to note that the available trials assessing muscle exercise in patients with LGMD have often involved a small number of patients, with a wide clinical heterogeneity and a different experimental design. Based on these considerations, resistance training can be considered part of the rehabilitation program for patients with a limb-girdle type of muscular dystrophy, but it should be strictly supervised to assess its effects and prevent possible development of muscle damage. PMID:26155063

  8. Current and emerging treatment strategies for Duchenne muscular dystrophy.

    PubMed

    Mah, Jean K

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying

  9. Dysphagia in Duchenne muscular dystrophy: practical recommendations to guide management

    PubMed Central

    Toussaint, Michel; Davidson, Zoe; Bouvoie, Veronique; Evenepoel, Nathalie; Haan, Jurn; Soudon, Philippe

    2016-01-01

    Abstract Purpose: Duchenne muscular dystrophy (DMD) is a rapidly progressive neuromuscular disorder causing weakness of the skeletal, respiratory, cardiac and oropharyngeal muscles with up to one third of young men reporting difficulty swallowing (dysphagia). Recent studies on dysphagia in DMD clarify the pathophysiology of swallowing disorders and offer new tools for its assessment but little guidance is available for its management. This paper aims to provide a step-by-step algorithm to facilitate clinical decisions regarding dysphagia management in this patient population. Methods: This algorithm is based on 30 years of clinical experience with DMD in a specialised Centre for Neuromuscular Disorders (Inkendaal Rehabilitation Hospital, Belgium) and is supported by literature where available. Results: Dysphagia can worsen the condition of ageing patients with DMD. Apart from the difficulties of chewing and oral fragmentation of the food bolus, dysphagia is rather a consequence of an impairment in the pharyngeal phase of swallowing. By contrast with central neurologic disorders, dysphagia in DMD accompanies solid rather than liquid intake. Symptoms of dysphagia may not be clinically evident; however laryngeal food penetration, accumulation of food residue in the pharynx and/or true laryngeal food aspiration may occur. The prevalence of these issues in DMD is likely underestimated. Conclusions: There is little guidance available for clinicians to manage dysphagia and improve feeding for young men with DMD. This report aims to provide a clinical algorithm to facilitate the diagnosis of dysphagia, to identify the symptoms and to propose practical recommendations to treat dysphagia in the adult DMD population.Implications for RehabilitationLittle guidance is available for the management of dysphagia in Duchenne dystrophy.Food can penetrate the vestibule, accumulate as residue or cause aspiration.We propose recommendations and an algorithm to guide management of

  10. [Genetic Diagnosis and Molecular Therapies for Duchenne Muscular Dystrophy].

    PubMed

    Takeshima, Yasuhiro

    2015-10-01

    Duchenne muscular dystrophy (DMD) is the most common form of inherited muscle disease and is characterized by progressive muscle wasting, ultimately resulting in the death of patients in their twenties or thirties. DMD is characterized by a deficiency of the muscle dystrophin as a result of mutations in the dystrophin gene. Currently, no effective treatment for DMD is available. Promising molecular therapies which are mutation-specific have been developed. Transformation of an out-of-frame mRNA into an in-frame dystrophin message by inducing exon skipping is considered one of the approaches most likely to lead to success. We demonstrated that the intravenous administration of the antisense oligonucleotide against the splicing enhancer sequence results in exon skipping and production of the dystrophin protein in DMD case for the first time. After extensive studies, anti-sense oligonucleotides comprising different monomers have undergone clinical trials and provided favorable results, enabling improvements in ambulation of DMD patients. Induction of the read-through of nonsense mutations is expected to produce dystrophin in DMD patients with nonsense mutations, which are detected in 19% of DMD cases. The clinical effectiveness of gentamicin and PTC124 has been reported. We have demonstrated that arbekacin-mediated read-through can markedly ameliorate muscular dystrophy in vitro. We have already begun a clinical trial of nonsense mutation read-through therapy using arbekacin. Some of these drug candidates are planned to undergo submission for approval to regulatory agencies in the US and EU. We hope that these molecular therapies will contribute towards DMD treatment. PMID:26897856

  11. Current and emerging treatment strategies for Duchenne muscular dystrophy

    PubMed Central

    Mah, Jean K

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying

  12. Mutation in BAG3 Causes Severe Dominant Childhood Muscular Dystrophy

    PubMed Central

    Selcen, Duygu; Muntoni, Francesco; Burton, Barbara K.; MD, Elena Pegoraro; Sewry, Caroline; Bite, Anna V.; Engel, Andrew G.

    2008-01-01

    Objective Myofibrillar myopathies (MFM) are morphologically distinct but genetically heterogeneous muscular dystrophies in which disintegration of Z disks and then of myofibrils is followed by ectopic accumulation of multiple proteins. Cardiomyopathy, neuropathy, and dominant inheritance are frequent associated features. Mutations in αB-crystallin, desmin, myotilin, Zasp, or filamin-C can cause MFM, and were detected in 32/85 patients of the Mayo MFM cohort. Bag3, another Z-disk associated protein, has antiapoptotic properties and its targeted deletion in mice causes fulminant myopathy with early lethality. We therefore searched for mutations in BAG3 in 53 unrelated MFM patients. Methods We searched for mutations in BAG3 by direct sequencing and excluded polymorphism using allele-specific PCR in relatives and 200 control subjects. We analyzed structural changes in muscle by histochemistry, immunocytochemistry and electron microscopy, examined mobility of the mutant Bag3 by nondenaturing electrophoresis, and searched for abnormal aggregation of the mutant protein in COS-7 cells. Results We identified a heterozygous p.Pro209Leu mutation in three patients. All presented in childhood, had progressive limb and axial muscle weakness, and developed cardiomyopathy and severe respiratory insufficiency in their teens; two had rigid spines and one a peripheral neuropathy. Electron microscopy showed disintegration of Z disks, extensive accumulation of granular debris and larger inclusions, and apoptosis of 8% of the nuclei. On nondenaturing electrophoresis of muscle extracts, the Bag3 complex migrated faster in patient than control extracts, and expression of FLAG-labeled mutant and wild-type Bag3 in COS cells revealed abnormal aggregation of the mutant protein. Interpretation We conclude mutation in Bag3 defines a novel severe autosomal dominant childhood muscular dystrophy. PMID:19085932

  13. Evidence for meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Shaw, A.M.; Barnetson, R.A.; Phillips, M.F.

    1994-09-01

    Myotonic dystrophy (DM), an autosomal dominant disorder, is the most common form of adult muscular dystrophy, affecting at least 1 in 8000 of the population. It is a multisystemic disorder, primarily characterized by myotonia, muscle wasting and cataract. The molecular basis of DM is an expanded CTG repeat located within the 3{prime} untranslated region of a putative serine-threonine protein kinase on chromosome 19q13.3. DM exhibits anticipation, that is, with successive generations there is increasing disease severity and earlier age of onset. This mechanism and the fact that the origin of the disease has been attributed to one or a small number of founder chromosomes suggests that, in time, DM should die out. Meiotic drive has been described as a way in which certain alleles are transmitted to succeeding generations in preference to others: preferential transmission of large CTG alleles may account for their continued existence in the gene pool. There is evidence that a CTG allele with > 19 repeats may gradually increase in repeat number over many generations until it is sufficiently large to give a DM phenotype. We report a study of 495 transmissions from individuals heterozygous for the CTG repeat and with repeat numbers within the normal range (5-30). Alleles were simply classified as large or small relative to the other allele in an individual. Of 242 male meioses, 126 transmissions from parent to child were of the larger allele to their offspring (57.7%, p=0.014). This shows that there is strong evidence for meiotic drive favoring the transmission of the larger DM allele in unaffected individuals. Contrary to a previous report of meiotic drive in the male, we have shown that females preferentially transmit the larger DM allele. Taken together, the data suggest the occurrence of meiotic drive in both males and females in this locus.

  14. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy

    PubMed Central

    Hildyard, John CW; Wells, Dominic J

    2016-01-01

    Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3’UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations. PMID:27525173

  15. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    PubMed

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.

  16. Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-alpha2 deficiency.

    PubMed

    Erb, Michael; Meinen, Sarina; Barzaghi, Patrizia; Sumanovski, Lazar T; Courdier-Früh, Isabelle; Rüegg, Markus A; Meier, Thomas

    2009-12-01

    Laminin alpha2-deficient congenital muscular dystrophy, called MDC1A, is a rare, devastating genetic disease characterized by severe neonatal hypotonia ("floppy infant syndrome"), peripheral neuropathy, inability to stand or walk, respiratory distress, and premature death in early life. Transgenic overexpression of the apoptosis inhibitor protein BCL-2, or deletion of the proapoptotic Bax gene in a mouse model for MDC1A prolongs survival and mitigates pathology, indicating that apoptotic events are involved in the pathology. Here we demonstrate that the proapoptotic glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-Siah1-CBP/p300-p53 pathway is activated in a mouse model for MDC1A. Moreover, we show that omigapil, which inhibits GAPDH-Siah1-mediated apoptosis, ameliorates several pathological hallmarks in the MDC1A mouse model. Specifically, we demonstrate that treatment with omigapil inhibits apoptosis in muscle, reduces body weight loss and skeletal deformation, increases locomotive activity, and protects from early mortality. These data qualify omigapil, which is in late phase of clinical development for human use, as a drug candidate for the treatment of MDC1A.

  17. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    PubMed

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949

  18. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy.

    PubMed

    Hildyard, John Cw; Wells, Dominic J

    2016-01-01

    Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3'UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations. PMID:27525173

  19. Nuclear entrapment and extracellular depletion of PCOLCE is associated with muscle degeneration in oculopharyngeal muscular dystrophy

    PubMed Central

    2013-01-01

    Background Muscle fibrosis characterizes degenerated muscles in muscular dystrophies and in late onset myopathies. Fibrotic muscles often exhibit thickening of the extracellular matrix (ECM). The molecular regulation of this process is not fully understood. In oculopharyngeal muscular dystrophy (OPMD), an expansion of an alanine tract at the N-terminus of poly(A)-binding protein nuclear 1 (PABPN1) causes muscle symptoms. OPMD patient muscle degeneration initiates after midlife, while at an earlier age carriers of alanine expansion mutant PABPN1 (expPABPN1) are clinically pre-symptomatic. OPMD is characterized by fibrosis in skeletal muscles but the causative molecular mechanisms are not fully understood. Methods We studied the molecular processes that are involved in OPMD pathology using cross-species mRNA expression profiles in muscles from patients and model systems. We identified significant dysregulation of the ECM functional group, among which the procollagen C-endopeptidase enhancer 1 gene (PCOLCE) was consistently down-regulated across species. We investigated PCOLCE subcellular localization in OPMD muscle samples and OPMD model systems to investigate any functional relevance of PCOLCE down-regulation in this disease. Results We found that muscle degeneration in OPMD is associated with PCOLCE down-regulation. In addition to its known presence at the ECM, we also found PCOLCE within the nucleus of muscle cells. PCOLCE sub-cellular localization changes during myoblast cell fusion and is disrupted in cells expressing mutant expPABPN1. Our results show that PCOLCE binds to soluble PABPN1 and co-localizes with aggregated PABPN1 with a preference for the mutant protein. In muscle biopsies from OPMD patients we find that extracellular PCOLCE is depleted with its concomitant enrichment within the nuclear compartment. Conclusions PCOLCE regulates collagen processing at the ECM. Depletion of extracellular PCOLCE is associated with the expression of expPABPN1 in OPMD

  20. An ADAM9 mutation in canine cone-rod dystrophy 3 establishes homology with human cone-rod dystrophy 9

    PubMed Central

    Goldstein, Orly; Mezey, Jason G.; Boyko, Adam R.; Gao, Chuan; Wang, Wei; Bustamante, Carlos D.; Anguish, Lynne J.; Jordan, Julie Ann; Pearce-Kelling, Susan E.; Aguirre, Gustavo D.

    2010-01-01

    Purpose To identify the causative mutation in a canine cone-rod dystrophy (crd3) that segregates as an adult onset disorder in the Glen of Imaal Terrier breed of dog. Methods Glen of Imaal Terriers were ascertained for crd3 phenotype by clinical ophthalmoscopic examination, and in selected cases by electroretinography. Blood samples from affected cases and non-affected controls were collected and used, after DNA extraction, to undertake a genome-wide association study using Affymetrix Version 2 Canine single nucleotide polymorphism chips and 250K Sty Assay protocol. Positional candidate gene analysis was undertaken for genes identified within the peak-association signal region. Retinal morphology of selected crd3-affected dogs was evaluated by light and electron microscopy. Results A peak association signal exceeding genome-wide significance was identified on canine chromosome 16. Evaluation of genes in this region suggested A Disintegrin And Metalloprotease domain, family member 9 (ADAM9), identified concurrently elsewhere as the cause of human cone-rod dystrophy 9 (CORD9), as a strong positional candidate for canine crd3. Sequence analysis identified a large genomic deletion (over 20 kb) that removed exons 15 and 16 from the ADAM9 transcript, introduced a premature stop, and would remove critical domains from the encoded protein. Light and electron microscopy established that, as in ADAM9 knockout mice, the primary lesion in crd3 appears to be a failure of the apical microvilli of the retinal pigment epithelium to appropriately invest photoreceptor outer segments. By electroretinography, retinal function appears normal in very young crd3-affected dogs, but by 15 months of age, cone dysfunction is present. Subsequently, both rod and cone function degenerate. Conclusions Identification of this ADAM9 deletion in crd3-affected dogs establishes this canine disease as orthologous to CORD9 in humans, and offers opportunities for further characterization of the disease

  1. Changes in calsequestrin, TNF-α, TGF-β and MyoD levels during the progression of skeletal muscle dystrophy in mdx mice: a comparative analysis of the quadriceps, diaphragm and intrinsic laryngeal muscles.

    PubMed

    Barros Maranhão, Juliana; de Oliveira Moreira, Drielen; Maurício, Adriana Fogagnolo; de Carvalho, Samara Camaçari; Ferretti, Renato; Pereira, Juliano Alves; Santo Neto, Humberto; Marques, Maria Julia

    2015-10-01

    In Duchenne muscular dystrophy (DMD), the search for new biomarkers to follow the evolution of the disease is of fundamental importance in the light of the evolving gene and pharmacological therapies. In addition to the lack of dystrophin, secondary events including changes in calcium levels, inflammation and fibrosis greatly contribute to DMD progression and the molecules involved in these events may represent potential biomarkers. In this study, we performed a comparative evaluation of the progression of dystrophy within muscles that are differently affected by dystrophy (diaphragm; DIA and quadriceps; QDR) or spared (intrinsic laryngeal muscles) using the mdx mice model of DMD. We assessed muscle levels of calsequestrin (calcium-related protein), tumour necrosis factor (TNF-α; pro-inflammatory cytokine), tumour growth factor (TGF-β; pro-fibrotic factor) and MyoD (muscle proliferation) vs. histopathology at early (1 and 4 months of age) and late (9 months of age) stages of dystrophy. Fibrosis was the primary feature in the DIA of mdx mice (9 months: 32% fibrosis), which was greater than in the QDR (9 months: 0.6% fibrosis). Muscle regeneration was the primary feature in the QDR (9 months: 90% of centrally nucleated fibres areas vs. 33% in the DIA). The QDR expressed higher levels of calsequestrin than the DIA. Laryngeal muscles showed normal levels of TNF-α, TGF-β and MyoD. A positive correlation between histopathology and cytokine levels was observed only in the diaphragm, suggesting that TNF-α and TGF-β serve as markers of dystrophy primarily for the diaphragm.

  2. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD)

    PubMed Central

    Kamma-Lorger, Christina S.; Pinali, Christian; Martínez, Juan Carlos; Harris, Jon; Young, Robert D.; Bredrup, Cecilie; Crosas, Eva; Malfois, Marc; Rødahl, Eyvind

    2016-01-01

    The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal. PMID:26828927

  3. Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice

    PubMed Central

    Meinen, Sarina; Lin, Shuo; Thurnherr, Raphael; Erb, Michael; Meier, Thomas; Rüegg, Markus A

    2011-01-01

    Mutations in LAMA2 cause a severe form of congenital muscular dystrophy, called MDC1A. Studies in mouse models have shown that transgenic expression of a designed, miniaturized form of the extracellular matrix molecule agrin (‘mini-agrin’) or apoptosis inhibition by either overexpression of Bcl2 or application of the pharmacological substance omigapil can ameliorate the disease. Here, we tested whether mini-agrin and anti-apoptotic agents act on different pathways and thus exert additive benefits in MDC1A mouse models. By combining mini-agrin with either transgenic Bcl2 expression or oral omigapil application, we show that the ameliorating effect of mini-agrin, which acts by restoring the mechanical stability of muscle fibres and, thereby, reduces muscle fibre breakdown and concomitant fibrosis, is complemented by apoptosis inhibitors, which prevent the loss of muscle fibres. Treatment of mice with both agents results in improved muscle regeneration and increased force. Our results show that the combination of mini-agrin and anti-apoptosis treatment has beneficial effects that are significantly bigger than the individual treatments and suggest that such a strategy might also be applicable to MDC1A patients. PMID:21674808

  4. A Pilot Study of Fourier Domain Optical Coherence Tomography of Retinal Dystrophy Patients

    PubMed Central

    Lim, Jennifer I.; Tan, Ou; Fawzi, Amani A.; Hopkins, J. Jill; Gil-Flamer, John H.; Huang, David

    2009-01-01

    Purpose To characterize the macular anatomy of retinal dystrophy eyes using high-speed, high-resolution, Fourier-domain optical coherence tomography (FD-OCT). Design Case control study. Methods Patients with retinal dystrophy and normal age and gender matched controls underwent FD-OCT imaging using the RTVue™ (Optovue, Inc.), which has an axial resolution of 5 microns. Vertical and horizontal eight mm scans of 1,024 lines/cross-section were obtained. Based on boundaries manually drawn on computer displays of OCT cross-sections, the thicknesses of the retina, inner retinal layer (IRL) and outer retinal layer (ORL) were averaged over both 5 and 1.5 millimeters regions centered at the fovea. The inner retina layer (IRL) was the sum of nerve fiber layer (NFL), ganglion cell layer (GCL) and inner plexiform layer (IPL) thicknesses. Total retinal thickness (RT) was measured between the inner edges of the NFL and the retinal pigment epithelium. Outer retinal layer (ORL) thickness was calculated by subtracting IRL thickness from RT. Results 14 patients (7 retinal dystrophy patients and seven normal controls) underwent high resolution OCT imaging. Patients ranged in age from 33 to 84 years old. Retinal dystrophy diagnoses included retinitis pigmentosa (3), cone-rod degeneration (2), and Stargardt disease (2). The following thickness values reported are mean ± standard deviation. Mean foveal RT (foveal RT) averaged over a 1.5 mm area was 271.3+/-23.3μ for normal patients and 159.2+/-48.0 μ for dystrophy (p<0.001) patients. Mean macular RT (macular RT), averaged over the central 5-mm area, was 292.8+/-8.1 μ for normal patients and 199.1+/-32.7μ for dystrophy patients (p<0.001). Mean macular IRL was 109.9 ± 6.4 for normals and 98.0 +/-20.6μ for dystrophy patients (p=0.02); mean macular ORL was 182.9+/-4.7 μ for normals and 101.1+/-18.8μ for dystrophy patients (p<0.001). Conclusion Eyes with retinal dystrophy had a small (11%) decrease in macular IRL and severe (45

  5. Peripheral nerve blocks as the sole anesthetic technique in a patient with severe Duchenne muscular dystrophy.

    PubMed

    Bang, Seung Uk; Kim, Yee Suk; Kwon, Woo Jin; Lee, Sang Mook; Kim, Soo Hyang

    2016-04-01

    General anesthesia and central neuraxial blockades in patients with severe Duchenne muscular dystrophy are associated with high risks of complications, including rhabdomyolysis, malignant hyperthermia, hemodynamic instability, and postoperative mechanical ventilation. Here, we describe peripheral nerve blocks as a safe approach to anesthesia in a patient with severe Duchenne muscular dystrophy who was scheduled to undergo surgery. A 22-year-old male patient was scheduled to undergo reduction and internal fixation of a left distal femur fracture. He had been diagnosed with Duchenne muscular dystrophy at 5 years of age, and had no locomotive capability except for that of the finger flexors and toe extensors. He had developed symptoms associated with dyspnea 5 years before and required intermittent ventilation. We blocked the femoral nerve, lateral femoral cutaneous nerve, and parasacral plexus under ultrasound on the left leg. The patient underwent a successful operation using peripheral nerve blocks with no complications. In conclusion general anesthesia and central neuraxial blockades in patients with severe Duchenne muscular dystrophy are unsafe approaches to anesthesia because of hemodynamic instability and respiratory depression. Peripheral nerve blocks are the best way to reduce the risks of critical complications, and are a safe and feasible approach to anesthesia in patients with severe Duchenne muscular dystrophy.

  6. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Wu, Yanling; Chiba, Yoko; Nakanishi, Tohru; Onuma, Akira; Sato, Yuko; Takigawa, Masaharu; Iinuma, Kazuie; Tsuchiya, Shigeru

    2008-04-15

    The detailed process of how dystrophic muscles are replaced by fibrotic tissues is unknown. In the present study, the immunolocalization and mRNA expression of connective tissue growth factor (CTGF) in muscles from normal and dystrophic human muscles were examined with the goal of elucidating the pathophysiological function of CTGF in muscular dystrophy. Biopsies of frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, congenital muscular dystrophy, spinal muscular atrophy, congenital myopathy were analyzed using anti-CTGF polyclonal antibody. Reverse transcription-polymerase chain reaction (RT-PCR) was also performed to evaluate the expression of CTGF mRNA in dystrophic muscles. In normal muscle, neuromuscular junctions and vessels were CTGF-immunopositive, which suggests a physiological role for CTGF in these sites. In dystrophic muscle, CTGF immunoreactivity was localized to muscle fiber basal lamina, regenerating fibers, and the interstitium. Triple immunolabeling revealed that activated fibroblasts were immunopositive for CTGF and transforming growth factor-beta1 (TGF-beta1). RT-PCR analysis revealed increased levels of CTGF mRNA in the muscles of DMD patients. Co-localization of TGF-beta1 and CTGF in activated fibroblasts suggests that CTGF expression is regulated by TGF-beta1 through a paracrine/autocrine mechanism. In conclusion, TGF-beta1-CTGF pathway may play a role in the fibrosis that is commonly observed in muscular dystrophy.

  7. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    PubMed

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted.

  8. SLC4A11 and the Pathophysiology of Congenital Hereditary Endothelial Dystrophy.

    PubMed

    Patel, Sangita P; Parker, Mark D

    2015-01-01

    Congenital hereditary endothelial dystrophy (CHED) is a rare autosomal recessive disorder of the corneal endothelium characterized by nonprogressive bilateral corneal edema and opacification present at birth. Here we review the current knowledge on the role of the SLC4A11 gene, protein, and its mutations in the pathophysiology and clinical presentation of CHED. Individuals with CHED have mutations in SLC4A11 which encodes a transmembrane protein in the SLC4 family of bicarbonate transporters. The expression of SLC4A11 in the corneal endothelium and inner ear patterns the deficits seen in CHED with corneal edema and hearing loss (Harboyan syndrome). slc4a11-null-mouse models recapitulate the CHED disease phenotype, thus establishing a functional role for SLC4A11 in CHED. However, the transport function of SLC4A11 remains unsettled. Some of the roles that have been attributed to SLC4A11 include H(+) and NH4 (+) permeation, electrogenic Na(+)-H(+) exchange, and water transport. Future studies of the consequences of SLC4A11 dysfunction as well as further understanding of corneal endothelial ion transport will help clarify the involvement of SLC4A11 in the pathophysiology of CHED. PMID:26451371

  9. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy

    PubMed Central

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J.; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A.; Sobczak, Krzysztof

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3′-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUGexp) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUGexp/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUGexp foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUGexp-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1. PMID:25753670

  10. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program

    PubMed Central

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A.; Nordsborg, Nikolai; Russell, Aaron P.; MacRae, Calum A.; Gerber, Anthony N.; Jain, Mukesh K.; Haldar, Saptarsi M.

    2015-01-01

    Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC–KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming. PMID:26598680

  11. Targeting mRNA for the treatment of facioscapulohumeral muscular dystrophy.

    PubMed

    Bao, Bo; Maruyama, Rika; Yokota, Toshifumi

    2016-08-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an inherited autosomal dominant disorder characterized clinically by progressive muscle degeneration. Currently, no curative treatment for this disorder exists. FSHD patients are managed through physiotherapy to improve function and quality of life. Over the last two decades, FSHD has been better understood as a disease genetically characterized by a pathogenic contraction of a subset of macrosatellite repeats on chromosome 4. Specifically, several studies support an FSHD pathogenesis model involving the aberrant expression of the double homeobox protein 4 (DUX4) gene. Hence, potential therapies revolving around inhibition of DUX4 have been explored. One of the potential treatment options is the use of effective antisense oligonucleotides (AOs) to knockdown expression of the myopathic DUX4 gene and its downstream molecules including paired-like homeodomain transcription factor 1 (PITX1). Success in the suppression of PITX1 expression has already been demonstrated systemically in vivo in recent studies. In this article, we will review the pathogenesis of FSHD and the latest research involving the use of antisense knockdown therapy. PMID:27672539

  12. Targeting mRNA for the treatment of facioscapulohumeral muscular dystrophy

    PubMed Central

    Bao, Bo; Maruyama, Rika; Yokota, Toshifumi

    2016-01-01

    Summary Facioscapulohumeral muscular dystrophy (FSHD) is an inherited autosomal dominant disorder characterized clinically by progressive muscle degeneration. Currently, no curative treatment for this disorder exists. FSHD patients are managed through physiotherapy to improve function and quality of life. Over the last two decades, FSHD has been better understood as a disease genetically characterized by a pathogenic contraction of a subset of macrosatellite repeats on chromosome 4. Specifically, several studies support an FSHD pathogenesis model involving the aberrant expression of the double homeobox protein 4 (DUX4) gene. Hence, potential therapies revolving around inhibition of DUX4 have been explored. One of the potential treatment options is the use of effective antisense oligonucleotides (AOs) to knockdown expression of the myopathic DUX4 gene and its downstream molecules including paired-like homeodomain transcription factor 1 (PITX1). Success in the suppression of PITX1 expression has already been demonstrated systemically in vivo in recent studies. In this article, we will review the pathogenesis of FSHD and the latest research involving the use of antisense knockdown therapy. PMID:27672539

  13. Targeting mRNA for the treatment of facioscapulohumeral muscular dystrophy

    PubMed Central

    Bao, Bo; Maruyama, Rika; Yokota, Toshifumi

    2016-01-01

    Summary Facioscapulohumeral muscular dystrophy (FSHD) is an inherited autosomal dominant disorder characterized clinically by progressive muscle degeneration. Currently, no curative treatment for this disorder exists. FSHD patients are managed through physiotherapy to improve function and quality of life. Over the last two decades, FSHD has been better understood as a disease genetically characterized by a pathogenic contraction of a subset of macrosatellite repeats on chromosome 4. Specifically, several studies support an FSHD pathogenesis model involving the aberrant expression of the double homeobox protein 4 (DUX4) gene. Hence, potential therapies revolving around inhibition of DUX4 have been explored. One of the potential treatment options is the use of effective antisense oligonucleotides (AOs) to knockdown expression of the myopathic DUX4 gene and its downstream molecules including paired-like homeodomain transcription factor 1 (PITX1). Success in the suppression of PITX1 expression has already been demonstrated systemically in vivo in recent studies. In this article, we will review the pathogenesis of FSHD and the latest research involving the use of antisense knockdown therapy.

  14. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA.

    PubMed

    Long, Chengzu; McAnally, John R; Shelton, John M; Mireault, Alex A; Bassel-Duby, Rhonda; Olson, Eric N

    2014-09-01

    Duchenne muscular dystrophy (DMD) is an inherited X-linked disease caused by mutations in the gene encoding dystrophin, a protein required for muscle fiber integrity. DMD is characterized by progressive muscle weakness and a shortened life span, and there is no effective treatment. We used clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9)-mediated genome editing to correct the dystrophin gene (Dmd) mutation in the germ line of mdx mice, a model for DMD, and then monitored muscle structure and function. Genome editing produced genetically mosaic animals containing 2 to 100% correction of the Dmd gene. The degree of muscle phenotypic rescue in mosaic mice exceeded the efficiency of gene correction, likely reflecting an advantage of the corrected cells and their contribution to regenerating muscle. With the anticipated technological advances that will facilitate genome editing of postnatal somatic cells, this strategy may one day allow correction of disease-causing mutations in the muscle tissue of patients with DMD.

  15. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes.

    PubMed

    Zatti, Susi; Martewicz, Sebastian; Serena, Elena; Uno, Narumi; Giobbe, Giovanni; Kazuki, Yasuhiro; Oshimura, Mitsuo; Elvassore, Nicola

    2014-01-01

    Duchenne muscular dystrophy (DMD)-associated cardiac diseases are emerging as a major cause of morbidity and mortality in DMD patients, and many therapies for treatment of skeletal muscle failed to improve cardiac function. The reprogramming of patients' somatic cells into pluripotent stem cells, combined with technologies for correcting the genetic defect, possesses great potential for the development of new treatments for genetic diseases. In this study, we obtained human cardiomyocytes from DMD patient-derived, induced pluripotent stem cells genetically corrected with a human artificial chromosome carrying the whole dystrophin genomic sequence. Stimulation by cytokines was combined with cell culturing on hydrogel with physiological stiffness, allowing an adhesion-dependent maturation and a proper dystrophin expression. The obtained cardiomyocytes showed remarkable sarcomeric organization of cardiac troponin T and α-actinin, expressed cardiac-specific markers, and displayed electrically induced calcium transients lasting less than 1 second. We demonstrated that the human artificial chromosome carrying the whole dystrophin genomic sequence is stably maintained throughout the cardiac differentiation process and that multiple promoters of the dystrophin gene are properly activated, driving expression of different isoforms. These dystrophic cardiomyocytes can be a valuable source for in vitro modeling of DMD-associated cardiac disease. Furthermore, the derivation of genetically corrected, patient-specific cardiomyocytes represents a step toward the development of innovative cell and gene therapy approaches for DMD.

  16. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient–derived cardiomyocytes

    PubMed Central

    Zatti, Susi; Martewicz, Sebastian; Serena, Elena; Uno, Narumi; Giobbe, Giovanni; Kazuki, Yasuhiro; Oshimura, Mitsuo; Elvassore, Nicola

    2014-01-01

    Duchenne muscular dystrophy (DMD)–associated cardiac diseases are emerging as a major cause of morbidity and mortality in DMD patients, and many therapies for treatment of skeletal muscle failed to improve cardiac function. The reprogramming of patients’ somatic cells into pluripotent stem cells, combined with technologies for correcting the genetic defect, possesses great potential for the development of new treatments for genetic diseases. In this study, we obtained human cardiomyocytes from DMD patient–derived, induced pluripotent stem cells genetically corrected with a human artificial chromosome carrying the whole dystrophin genomic sequence. Stimulation by cytokines was combined with cell culturing on hydrogel with physiological stiffness, allowing an adhesion-dependent maturation and a proper dystrophin expression. The obtained cardiomyocytes showed remarkable sarcomeric organization of cardiac troponin T and α-actinin, expressed cardiac-specific markers, and displayed electrically induced calcium transients lasting less than 1 second. We demonstrated that the human artificial chromosome carrying the whole dystrophin genomic sequence is stably maintained throughout the cardiac differentiation process and that multiple promoters of the dystrophin gene are properly activated, driving expression of different isoforms. These dystrophic cardiomyocytes can be a valuable source for in vitro modeling of DMD-associated cardiac disease. Furthermore, the derivation of genetically corrected, patient-specific cardiomyocytes represents a step toward the development of innovative cell and gene therapy approaches for DMD. PMID:26015941

  17. Tongue pressure during swallowing is decreased in patients with Duchenne muscular dystrophy.

    PubMed

    Hamanaka-Kondoh, Sato; Kondoh, Jugo; Tamine, Ken-Ichi; Hori, Kazuhiro; Fujiwara, Shigehiro; Maeda, Yoshinobu; Matsumura, Tsuyoshi; Yasui, Kumiko; Fujimura, Harutoshi; Sakoda, Saburo; Ono, Takahiro

    2014-06-01

    Although dysphagia is a life-threatening problem in patients with Duchenne muscular dystrophy (DMD), the pathophysiology of oral stage dysphagia is yet to be understood. The present study investigated the tongue motor deficit during swallowing in patients with DMD and its relationship with disease-specific palatal morphology. Tongue pressure during swallowing water was recorded in 11 male patients with DMD and 11 age- and sex-matched healthy subjects using an intra-oral sensor with five measuring points, and the state of tongue pressure production was compared between the groups. Palatal morphology was assessed by a non-contact three-dimensional scanner on maxillary plaster models. In patients with DMD, the normal sequential order of tongue-palate contact was lost and the maximal magnitude and integrated value of tongue pressure on the mid-anterior part of palate were smaller than those in healthy subjects. The width of the palate in patients was greater than that in healthy subjects and the depth of the palate in patients had a negative correlation with tongue pressure magnitude on the median palate. Our results suggested that the deteriorated tongue motor kinetics prevented tongue movement during swallowing that was appropriate for the depth of the palate and affects the state of tongue pressure production during swallowing.

  18. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy.

    PubMed

    Schmidts, Miriam; Vodopiutz, Julia; Christou-Savina, Sonia; Cortés, Claudio R; McInerney-Leo, Aideen M; Emes, Richard D; Arts, Heleen H; Tüysüz, Beyhan; D'Silva, Jason; Leo, Paul J; Giles, Tom C; Oud, Machteld M; Harris, Jessica A; Koopmans, Marije; Marshall, Mhairi; Elçioglu, Nursel; Kuechler, Alma; Bockenhauer, Detlef; Moore, Anthony T; Wilson, Louise C; Janecke, Andreas R; Hurles, Matthew E; Emmet, Warren; Gardiner, Brooke; Streubel, Berthold; Dopita, Belinda; Zankl, Andreas; Kayserili, Hülya; Scambler, Peter J; Brown, Matthew A; Beales, Philip L; Wicking, Carol; Duncan, Emma L; Mitchison, Hannah M

    2013-11-01

    Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.

  19. Mutations in the Gene Encoding IFT Dynein Complex Component WDR34 Cause Jeune Asphyxiating Thoracic Dystrophy

    PubMed Central

    Schmidts, Miriam; Vodopiutz, Julia; Christou-Savina, Sonia; Cortés, Claudio R.; McInerney-Leo, Aideen M.; Emes, Richard D.; Arts, Heleen H.; Tüysüz, Beyhan; D’Silva, Jason; Leo, Paul J.; Giles, Tom C.; Oud, Machteld M.; Harris, Jessica A.; Koopmans, Marije; Marshall, Mhairi; Elçioglu, Nursel; Kuechler, Alma; Bockenhauer, Detlef; Moore, Anthony T.; Wilson, Louise C.; Janecke, Andreas R.; Hurles, Matthew E.; Emmet, Warren; Gardiner, Brooke; Streubel, Berthold; Dopita, Belinda; Zankl, Andreas; Kayserili, Hülya; Scambler, Peter J.; Brown, Matthew A.; Beales, Philip L.; Wicking, Carol; Duncan, Emma L.; Mitchison, Hannah M.

    2013-01-01

    Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery. PMID:24183451

  20. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy.

    PubMed

    Cossu, Giulio; Previtali, Stefano C; Napolitano, Sara; Cicalese, Maria Pia; Tedesco, Francesco Saverio; Nicastro, Francesca; Noviello, Maddalena; Roostalu, Urmas; Natali Sora, Maria Grazia; Scarlato, Marina; De Pellegrin, Maurizio; Godi, Claudia; Giuliani, Serena; Ciotti, Francesca; Tonlorenzi, Rossana; Lorenzetti, Isabella; Rivellini, Cristina; Benedetti, Sara; Gatti, Roberto; Marktel, Sarah; Mazzi, Benedetta; Tettamanti, Andrea; Ragazzi, Martina; Imro, Maria Adele; Marano, Giuseppina; Ambrosi, Alessandro; Fiori, Rossana; Sormani, Maria Pia; Bonini, Chiara; Venturini, Massimo; Politi, Letterio S; Torrente, Yvan; Ciceri, Fabio

    2015-12-01

    Intra-arterial transplantation of mesoangioblasts proved safe and partially efficacious in preclinical models of muscular dystrophy. We now report the first-in-human, exploratory, non-randomized open-label phase I-IIa clinical trial of intra-arterial HLA-matched donor cell transplantation in 5 Duchenne patients. We administered escalating doses of donor-derived mesoangioblasts in limb arteries under immunosuppressive therapy (tacrolimus). Four consecutive infusions were performed at 2-month intervals, preceded and followed by clinical, laboratory, and muscular MRI analyses. Two months after the last infusion, a muscle biopsy was performed. Safety was the primary endpoint. The study was relatively safe: One patient developed a thalamic stroke with no clinical consequences and whose correlation with mesoangioblast infusion remained unclear. MRI documented the progression of the disease in 4/5 patients. Functional measures were transiently stabilized in 2/3 ambulant patients, but no functional improvements were observed. Low level of donor DNA was detected in muscle biopsies of 4/5 patients and donor-derived dystrophin in 1. Intra-arterial transplantation of donor mesoangioblasts in human proved to be feasible and relatively safe. Future implementation of the protocol, together with a younger age of patients, will be needed to approach efficacy. PMID:26543057

  1. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice

    PubMed Central

    Puckelwartz, Megan J.; Kessler, Eric; Zhang, Yuan; Hodzic, Didier; Randles, K. Natalie; Morris, Glenn; Earley, Judy U.; Hadhazy, Michele; Holaska, James M.; Mewborn, Stephanie K.; Pytel, Peter; McNally, Elizabeth M.

    2009-01-01

    Mutations in the gene encoding the inner nuclear membrane proteins lamins A and C produce cardiac and skeletal muscle dysfunction referred to as Emery Dreifuss muscular dystrophy. Lamins A and C participate in the LINC complex that, along with the nesprin and SUN proteins, LInk the Nucleoskeleton with the Cytoskeleton. Nesprins 1 and 2 are giant spectrin-repeat containing proteins that have large and small forms. The nesprins contain a transmembrane anchor that tethers to the nuclear membrane followed by a short domain that resides within the lumen between the inner and outer nuclear membrane. Nesprin’s luminal domain binds directly to SUN proteins. We generated mice where the C-terminus of nesprin-1 was deleted. This strategy produced a protein lacking the transmembrane and luminal domains that together are referred to as the KASH domain. Mice homozygous for this mutation exhibit lethality with approximately half dying at or near birth from respiratory failure. Surviving mice display hindlimb weakness and an abnormal gait. With increasing age, kyphoscoliosis, muscle pathology and cardiac conduction defects develop. The protein components of the LINC complex, including mutant nesprin-1α, lamin A/C and SUN2, are localized at the nuclear membrane in this model. However, the LINC components do not normally associate since coimmunoprecipitation experiments with SUN2 and nesprin reveal that mutant nesprin-1 protein no longer interacts with SUN2. These findings demonstrate the role of the LINC complex, and nesprin-1, in neuromuscular and cardiac disease. PMID:19008300

  2. The Status of Exon Skipping as a Therapeutic Approach to Duchenne Muscular Dystrophy

    PubMed Central

    Lu, Qi-Long; Yokota, Toshifumi; Takeda, Shin'ichi; Garcia, Luis; Muntoni, Francesco; Partridge, Terence

    2011-01-01

    Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level. PMID:20978473

  3. SLC4A11 and the Pathophysiology of Congenital Hereditary Endothelial Dystrophy

    PubMed Central

    Patel, Sangita P.; Parker, Mark D.

    2015-01-01

    Congenital hereditary endothelial dystrophy (CHED) is a rare autosomal recessive disorder of the corneal endothelium characterized by nonprogressive bilateral corneal edema and opacification present at birth. Here we review the current knowledge on the role of the SLC4A11 gene, protein, and its mutations in the pathophysiology and clinical presentation of CHED. Individuals with CHED have mutations in SLC4A11 which encodes a transmembrane protein in the SLC4 family of bicarbonate transporters. The expression of SLC4A11 in the corneal endothelium and inner ear patterns the deficits seen in CHED with corneal edema and hearing loss (Harboyan syndrome). slc4a11-null-mouse models recapitulate the CHED disease phenotype, thus establishing a functional role for SLC4A11 in CHED. However, the transport function of SLC4A11 remains unsettled. Some of the roles that have been attributed to SLC4A11 include H+ and NH4+ permeation, electrogenic Na+-H+ exchange, and water transport. Future studies of the consequences of SLC4A11 dysfunction as well as further understanding of corneal endothelial ion transport will help clarify the involvement of SLC4A11 in the pathophysiology of CHED. PMID:26451371

  4. Genetic Basis of Inherited Macular Dystrophies and Implications for Stem Cell Therapy

    PubMed Central

    Mellough, Carla B; Steel, David HW; Lako, Majlinda

    2009-01-01

    Untreatable hereditary macular dystrophy (HMD) presents a major burden to society in terms of the resulting patient disability and the cost to the healthcare provision system. HMD results in central vision loss in humans sufficiently severe for blind registration, and key issues in the development of therapeutic strategies to target these conditions are greater understanding of the causes of photoreceptor loss and the development of restorative procedures. More effective and precise analytical techniques coupled to the development of transgenic models of disease have led to a prolific growth in the identification and our understanding of the genetic mutations that underly HMD. Recent successes in driving differentiation of pluripotent cells towards specific somatic lineages have led to the development of more efficient protocols that can yield enriched populations of a desired phenotype. Retinal pigmented epithelial cells and photoreceptors derived from these are some of the most promising cells that may soon be used in the treatment of specific HMD, especially since rapid developments in the field of induced pluripotency have now set the stage for the production of patient-derived stem cells that overcome the ethical and methodological issues surrounding the use of embryonic derivatives. In this review we highlight a selection of HMD which appear suitable candidates for combinatorial restorative therapy, focusing specifically on where those photoreceptor loss occurs. This technology, along with increased genetic screening, opens up an entirely new pathway to restore vision in patients affected by HMD. PMID:19551904

  5. β-Catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy.

    PubMed

    Banerji, Christopher R S; Knopp, Paul; Moyle, Louise A; Severini, Simone; Orrell, Richard W; Teschendorff, Andrew E; Zammit, Peter S

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease, characterized by skeletal muscle weakness and wasting. Genetically, FSHD is characterized by contraction or hypomethylation of repeat D4Z4 units on chromosome 4, which causes aberrant expression of the transcription factor DUX4 from the last repeat. Many genes have been implicated in FSHD pathophysiology, but an integrated molecular model is currently lacking. We developed a novel differential network methodology, Interactome Sparsification and Rewiring (InSpiRe), which detects network rewiring between phenotypes by integrating gene expression data with known protein interactions. Using InSpiRe, we performed a meta-analysis of multiple microarray datasets from FSHD muscle biopsies, then removed secondary rewiring using non-FSHD datasets, to construct a unified network of rewired interactions. Our analysis identified β-catenin as the main coordinator of FSHD-associated protein interaction signalling, with pathways including canonical Wnt, HIF1-α and TNF-α clearly perturbed. To detect transcriptional changes directly elicited by DUX4, gene expression profiling was performed using microarrays on murine myoblasts. This revealed that DUX4 significantly modified expression of the genes in our FSHD network. Furthermore, we experimentally confirmed that Wnt/β-catenin signalling is affected by DUX4 in murine myoblasts. Thus, we provide the first unified molecular map of FSHD signalling, capable of uncovering pathomechanisms and guiding therapeutic development.

  6. β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy

    PubMed Central

    Banerji, Christopher R. S.; Knopp, Paul; Moyle, Louise A.; Severini, Simone; Orrell, Richard W.; Teschendorff, Andrew E.; Zammit, Peter S.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease, characterized by skeletal muscle weakness and wasting. Genetically, FSHD is characterized by contraction or hypomethylation of repeat D4Z4 units on chromosome 4, which causes aberrant expression of the transcription factor DUX4 from the last repeat. Many genes have been implicated in FSHD pathophysiology, but an integrated molecular model is currently lacking. We developed a novel differential network methodology, Interactome Sparsification and Rewiring (InSpiRe), which detects network rewiring between phenotypes by integrating gene expression data with known protein interactions. Using InSpiRe, we performed a meta-analysis of multiple microarray datasets from FSHD muscle biopsies, then removed secondary rewiring using non-FSHD datasets, to construct a unified network of rewired interactions. Our analysis identified β-catenin as the main coordinator of FSHD-associated protein interaction signalling, with pathways including canonical Wnt, HIF1-α and TNF-α clearly perturbed. To detect transcriptional changes directly elicited by DUX4, gene expression profiling was performed using microarrays on murine myoblasts. This revealed that DUX4 significantly modified expression of the genes in our FSHD network. Furthermore, we experimentally confirmed that Wnt/β-catenin signalling is affected by DUX4 in murine myoblasts. Thus, we provide the first unified molecular map of FSHD signalling, capable of uncovering pathomechanisms and guiding therapeutic development. PMID:25551153

  7. Segregation distortion of the CTG repeats at the myotonic dystrophy locus

    SciTech Connect

    Chakraborty, R.; Stivers, D.N.; Deka, R.; Yu, Ling M.; Shriver, M.D.; Ferrell, R.E.

    1996-07-01

    Myotonic dystrophy (DM), an autosomal dominant neuromuscular disease, is caused by a CTG-repeat expansion, with affected individuals having {ge}50 repeats of this trinucleotide, at the DMPK locus of human chromosome 19q13.3. Severely affected individuals die early in life; the milder form of this disease reduces reproductive ability. Alleles in the normal range of CTG repeats are not as unstable as the (CTG){sub {ge}50} alleles. In the DM families, anticipation and parental bias of allelic expansions have been noted. However, data on mechanism of maintenance of DM in populations are conflicting. We present a maximum-likelihood model for examining segregation distortion of CTG-repeat alleles in normal families. Analyzing 726 meiotic events in 95 nuclear families from the CEPH panel pedigrees, we find evidence of preferential transmission of larger alleles (of size {le}29 repeats) from females (the probability of transmission of larger alleles is .565 {plus_minus} 0.03, different from .5 at P {approx} .028). There is no evidence of segregation distortion during male meiosis. We propose a hypothesis that preferential transmission of larger CTG-repeat alleles during female meiosis can compensate for mutational contraction of repeats within the normal allelic size range, and reduced viability and fertility of affected individuals. Thus, the pool of premutant alleles at the DM locus can be maintained in populations, which can subsequently mutate to the full mutation status to give rise to DM. 31 refs., 1 fig., 5 tabs.

  8. Circulating miRNAs are generic and versatile therapeutic monitoring biomarkers in muscular dystrophies

    PubMed Central

    Israeli, David; Poupiot, Jérôme; Amor, Fatima; Charton, Karine; Lostal, William; Jeanson-Leh, Laurence; Richard, Isabelle

    2016-01-01

    The development of medical approaches requires preclinical and clinical trials for assessment of therapeutic efficacy. Such evaluation entails the use of biomarkers, which provide information on the response to the therapeutic intervention. One newly-proposed class of biomarkers is the microRNA (miRNA) molecules. In muscular dystrophies (MD), the dysregulation of miRNAs was initially observed in muscle biopsy and later extended to plasma samples, suggesting that they may be of interest as biomarkers. First, we demonstrated that dystromiRs dysregulation occurs in MD with either preserved or disrupted expression of the dystrophin-associated glycoprotein complex, supporting the utilization of dystromiRs as generic biomarkers in MD. Then, we aimed at evaluation of the capacity of miRNAs as monitoring biomarkers for experimental therapeutic approach in MD. To this end, we took advantage of our previously characterized gene therapy approach in a mouse model for α-sarcoglycanopathy. We identified a dose-response correlation between the expression of miRNAs on both muscle tissue and blood serum and the therapeutic benefit as evaluated by a set of new and classically-used evaluation methods. This study supports the utility of profiling circulating miRNAs for the evaluation of therapeutic outcome in medical approaches for MD. PMID:27323895

  9. Rapid DNA haplotyping using a multiplex heteroduplex approach: Application to Duchenne muscula dystrophy carrier detection

    SciTech Connect

    Prior, T.W.; Wenger, G.D.; Moore, J.

    1994-09-01

    A new strategy has been developed for rapid haplotype analysis. It is based on an initial multiplex amplification of several polymorphic sites, followed by heteroduplex detection. Heteroduplexes formed between two different alleles are detected because they migrate differently than the corresponding homoduplexes in Hydrolink-MDE gel. The method is simple, rapid, does not depend on specific sequences such as restriction enzyme sites or CA boxes and does not require the use of isotope. This approach has been tested using 12 commonly occurring polymorphisms spanning the dystrophin gene as a model. We describe the use of the method to assign the carrier status of females in Duchenne muscular dystrophy (DMD) pedigrees. As a result of expanding the number of detectable polymorphisms throughout the dystrophin gene, we show how the method can easily be combined with dinucleotide analysis to improve the accuracy of carrier detection in the nondeletion cases. The technique is also shown to be used as an effective screen for improving carrier detection in several families with deletions. The finding of heterozygosity within the deletion identifies the at-risk female as a noncarrier. Using this method, we have identified and incorporated 3 new dystrophin polymorphisms (one of which in exon 16 is unique to African Americans). The method may be used other genetic diseases when mutations are unknown, or there are few dinucleotide markers in the gene proximity, or for the identification of haplotype backgrounds of mutant alleles.

  10. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    PubMed

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  11. SLC4A11 and the Pathophysiology of Congenital Hereditary Endothelial Dystrophy.

    PubMed

    Patel, Sangita P; Parker, Mark D

    2015-01-01

    Congenital hereditary endothelial dystrophy (CHED) is a rare autosomal recessive disorder of the corneal endothelium characterized by nonprogressive bilateral corneal edema and opacification present at birth. Here we review the current knowledge on the role of the SLC4A11 gene, protein, and its mutations in the pathophysiology and clinical presentation of CHED. Individuals with CHED have mutations in SLC4A11 which encodes a transmembrane protein in the SLC4 family of bicarbonate transporters. The expression of SLC4A11 in the corneal endothelium and inner ear patterns the deficits seen in CHED with corneal edema and hearing loss (Harboyan syndrome). slc4a11-null-mouse models recapitulate the CHED disease phenotype, thus establishing a functional role for SLC4A11 in CHED. However, the transport function of SLC4A11 remains unsettled. Some of the roles that have been attributed to SLC4A11 include H(+) and NH4 (+) permeation, electrogenic Na(+)-H(+) exchange, and water transport. Future studies of the consequences of SLC4A11 dysfunction as well as further understanding of corneal endothelial ion transport will help clarify the involvement of SLC4A11 in the pathophysiology of CHED.

  12. A comprehensive genetic diagnosis of Chinese muscular dystrophy and congenital myopathy patients by targeted next-generation sequencing.

    PubMed

    Dai, Yi; Wei, Xiaoming; Zhao, Yanhuan; Ren, Haitao; Lan, Zhangzhang; Yang, Yun; Chen, Lin; Cui, Liying

    2015-08-01

    Muscular dystrophies and congenital myopathies are a large group of heterogeneous inherited muscle disorders. The spectrum of muscular dystrophies and congenital myopathies extends to more than 50 diseases today, even excluding the common forms Duchenne Muscular Dystrophy, Myotonic Dystrophy and Facioscapulohumeral Dystrophy. Unfortunately, even by critical clinical evaluation and muscle pathology, diagnosis is still difficult. To potentially remediate this difficulty, we applied a microarray-based targeted next-generation sequencing (NGS) technology to diagnose these patients. There were 55 consecutive unrelated patients who underwent the test, 36 of which (65%) were found to have a causative mutation. Our result shows the accuracy and efficiency of next-generation sequencing in clinical circumstances and reflects the features and relative distribution of inherited myopathies in the Chinese population.

  13. Computer method for the analysis of evoked motor unit potentials. 2. Duchenne, limb-girdle, facioscapulohumeral and myotonic muscular dystrophies.

    PubMed Central

    Ballantyne, J P; Hansen, S

    1975-01-01

    Single motor unit potentials recorded from surface electrodes over the extensor digitorum brevis muscle and evoked by stimulation of the anterior tibial nerve at the ankle were obtained by a computer subtraction method. Their latencies, durations, amplitudes, and areas were measured in control subjects and patients with Duchenne, limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy. Lateral popliteal motor nerve conduction velocities were also recorded. In the muscular dystrophies there was a significant increase in both the latencies and durations of motor unit potentials, the latter in notable contrast with the findings of conventional needle electromyography. Fastest motor conduction velocities were significantly reduced in the limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy patients, while the shortest distal motor latencies were significantly prolonged in these patients and those with Duchenne muscular dystrophy. The results support the presence of a definitive neurogenic influence in the muscular dystrophies. PMID:1151411

  14. Chondroitin sulfate is a crucial determinant for skeletal muscle development/regeneration and improvement of muscular dystrophies.

    PubMed

    Mikami, Tadahisa; Koyama, Shinji; Yabuta, Yumi; Kitagawa, Hiroshi

    2012-11-01

    Skeletal muscle formation and regeneration require myoblast fusion to form multinucleated myotubes or myofibers, yet their molecular regulation remains incompletely understood. We show here that the levels of extra- and/or pericellular chondroitin sulfate (CS) chains in differentiating C2C12 myoblast culture are dramatically diminished at the stage of extensive syncytial myotube formation. Forced down-regulation of CS, but not of hyaluronan, levels enhanced myogenic differentiation in vitro. This characteristic CS reduction seems to occur through a cell-autonomous mechanism that involves HYAL1, a known catabolic enzyme for hyaluronan and CS. In vivo injection of a bacterial CS-degrading enzyme boosted myofiber regeneration in a mouse cardiotoxin-induced injury model and ameliorated dystrophic pathology in mdx muscles. Our data suggest that the control of CS abundance is a promising new therapeutic approach for the treatment of skeletal muscle injury and progressive muscular dystrophies.

  15. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy.

    PubMed

    Touboul, David; Brunelle, Alain; Halgand, Frédéric; De La Porte, Sabine; Laprévote, Olivier

    2005-07-01

    Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse. Specific distribution of different lipid classes (fatty acids, triglycerides, phospholipids, tocopherol, coenzyme Q9, and cholesterol) allows us to distinguish three different regions on a mouse leg section: one is destroyed, another is degenerating (oxidative stress and deregulation of the phosphoinositol cycle), and the last one is stable. TOF-SIMS imaging shows the ability to localize directly on a tissue section a great number of lipid compounds that reflect the state of the cellular metabolism. PMID:15834124

  16. Posterior amorphous corneal dystrophy is associated with a deletion of small leucine-rich proteoglycans on chromosome 12.

    PubMed

    Kim, Michelle J; Frausto, Ricardo F; Rosenwasser, George O D; Bui, Tina; Le, Derek J; Stone, Edwin M; Aldave, Anthony J

    2014-01-01

    Posterior amorphous corneal dystrophy (PACD) is a rare, autosomal dominant disorder affecting the cornea and iris. Next-generation sequencing of the previously identified PACD linkage interval on chromosome 12q21.33 failed to yield a pathogenic mutation. However, array-based copy number analysis and qPCR were used to detect a hemizygous deletion in the PACD linkage interval containing 4 genes encoding small leucine-rich proteoglycans (SLRPs): KERA, LUM, DCN, and EPYC. Two other unrelated families with PACD also demonstrated deletion of these SLRPs, which play important roles in collagen fibrillogenesis and matrix assembly. Given that these genes are essential to the maintenance of corneal clarity and the observation that knockout murine models display corneal phenotypic similarities to PACD, we provide convincing evidence that PACD is associated with haploinsufficiency of these SLRPs.

  17. [Principles of multidisciplinary management of Duchenne muscular dystrophy].

    PubMed

    Chabrol, B; Mayer, M

    2015-12-01

    Given the gradual progression observed in Duchenne muscular dystrophy, organization of care in multidisciplinary consultations is essential for optimal management of the different aspects of the disease. Drawing up a care plan is always preceded by a specific consultation for the announcement of the diagnosis with both the parents and the child. Explaining to the child the origin of his problems with simple words, telling him that why he experienced a particular symptom has been understood, is a fundamental step. The child needs to receive the information at different times of the disease following the rhythms of the disease stages, with an appropriate lead time. With the progress achieved in managing this disease, more than 90% of these children now live into adulthood. The switch from pediatric consultations to adult consultations, marking the transition from childhood management at adulthood, is a major challenge in the organization of care. Although today death occurs most often in adulthood, some children die in childhood. For the majority of teams who care for children, whatever the initial pathology may be, the notion of care continuity and accompaniment from the announcement of the disease to the terminal phase is essential. Increasing numbers of therapeutic trials have been developed over the past few years aiming to investigate children with DMD. However, they must not neglect the overall management of these patients and provide the best accompaniment possible.

  18. In vitro mapping of Myotonic Dystrophy (DM) gene promoter

    SciTech Connect

    Storbeck, C.J.; Sabourin, L.; Baird, S.

    1994-09-01

    The Myotonic Dystrophy Kinase (DMK) gene has been cloned and shared homology to serine/threonine protein kinases. Overexpression of this gene in stably transfected mouse myoblasts has been shown to inhibit fusion into myotubes while myoblasts stably transfected with an antisense construct show increased fusion potential. These experiments, along with data showing that the DM gene is highly expressed in muscle have highlighted the possibility of DMK being involved in myogenesis. The promoter region of the DM gene lacks a consensus TATA box and CAAT box, but harbours numerous transcription binding sites. Clones containing extended 5{prime} upstream sequences (UPS) of DMK only weakly drive the reporter gene chloramphenicol acetyl transferase (CAT) when transfected into C2C12 mouse myoblasts. However, four E-boxes are present in the first intron of the DM gene and transient assays show increased expression of the CAT gene when the first intron is present downstream of these 5{prime} UPS in an orientation dependent manner. Comparison between mouse and human sequence reveals that the regions in the first intron where the E-boxes are located are highly conserved. The mapping of the promoter and the importance of the first intron in the control of DMK expression will be presented.

  19. Reflex sympathetic dystrophy--a complex regional pain syndrome.

    PubMed

    Turner-Stokes, L

    2002-12-15

    Reflex sympathetic dystrophy (RSD) is a complex and poorly-understood condition characterized by: (a) pain and altered sensation; (b) motor disturbance and soft tissue change; (c) vasomotor and autonomic changes; and (d) psychosocial disturbance. Neurological symptoms typically do not conform to any particular pattern of nerve damage. Many different names have been ascribed to this condition and most recently the term 'complex regional pain syndrome' has been coined to emphasize the complex interaction of somatic, psychological and behavioural factors. Diagnostic criteria have been proposed by the International Association for the Study of Pain, but are still subject to debate. This review article describes the clinical features which may present as part of the condition, and the patho-physiology and pre-disposing factors so far identified. The evidence for effectiveness of different interventions is presented and a treatment approach outlined for inter-disciplinary management. While RSD is traditionally associated with pain in the extremities, the possibility is raised that the same process may underlie chronic pain syndromes affecting more central structures, such as testicular or pelvic pain.

  20. Severe metabolic acidosis in adult patients with Duchenne muscular dystrophy.

    PubMed

    Lo Cascio, Christian M; Latshang, Tsogyal D; Kohler, Malcolm; Fehr, Thomas; Bloch, Konrad E

    2014-01-01

    Duchenne muscular dystrophy (DMD) leads to progressive paresis, respiratory failure and premature death. Long-term positive pressure ventilation can improve quality of life and survival, but previously unrecognized complications may arise. We analyzed the characteristics of severe metabolic acidosis occurring in 8 of 55 DMD patients, of 20-36 years of age, observed over a 5-year period. All patients were on positive pressure ventilation and were being treated for chronic constipation. Before admission, they had had a reduced intake of fluids and food. Upon examination, they were severely ill, dyspneic and suffering from abdominal discomfort. Metabolic acidosis with a high anion gap was noted in 5 of the 8 patients and with a normal anion gap in the other 3. They all recovered after the administration of fluids and nutrition, the regulation of bowel movements and treatment with antibiotics, as appropriate. Metabolic acidosis is a life-threatening, potentially preventable complication in older DMD patients. Early recognition, subsequent administration of fluids, nutrition and antibiotics and regulation of bowel movements seem to be essential.

  1. Social adjustment in adult males affected with progressive muscular dystrophy.

    PubMed

    Eggers, S; Zatz, M

    1998-02-01

    Adult male patients affected with Becker (BMD, N = 22), limb girdle (LGMD, N = 22) and facioscapulohumeral (FSHMD, N = 18) muscular dystrophy were interviewed to assess for the first time how the disease's severity and recurrence risk (RR) magnitude alter their social adjustment. BMD (X-linked recessive) is the severest form and confers an intermediate RR because all daughters will be carriers, LGMD (autosomal-recessive) is moderately severe with a low RR in the absence of consanguineous marriage, and FSHMD (autosomal-dominant) is clinically the mildest of these three forms of MD but with the highest RR, of 50%. Results of the semistructured questionnaire [WHO (1988): Psychiatric Disability Assessment Schedule] showed no significant difference between the three clinical groups, but more severely handicapped patients as well as patients belonging to lower socioeconomic levels from all clinical groups showed poorer social adjustment. Taken together, myopathic patients displayed intermediate social dysfunction compared to controls and schizophrenics studied by Jablensky [1988: WHO Psychiatric Disability Assessment Schedule]. Since the items of major dysfunction proportion among myopathic patients concern intimate relationships (70%), interest in working among those unemployed (67%), and social isolation (53%), emotional support and social and legal assistance should concentrate on these aspects. Interestingly, the results of this study also suggest that high RRs do not affect relationships to the opposite sex.

  2. [Social Cognitive Impairment in Myotonic Dystrophy Type 1].

    PubMed

    Kobayakawa, Mutsutaka

    2016-02-01

    Myotonic dystrophy type 1 (DM 1) is a heritable, multisystem disease that affects not only the muscles but also the brain. DM 1 is often accompanied by developmental behavioral disorders, such as autism spectrum disorders. The autistic traits in DM 1 may be related to social cognitive dysfunction. The social cognitive function of patients with DM 1 was examined with respect to facial emotion recognition and theory of mind, which is the specific cognitive ability to understand the mental states of other people. With respect to facial emotion recognition, the sensitivities to disgust and anger were lower among patients with DM 1 than among healthy subjects, and this difference could not be attributed to visual impairment. To examine the theory of mind ability, the "Reading the Mind in the Eyes" test and the faux pas recognition test were used. Patients with DM 1 were found to be impaired in both tests, but the results were not attributed to visual ability and lexical comprehension. The possible causes of social cognitive dysfunction in DM 1 are the l cerebral atrophy and white matter abnormalities in the temporal, frontal, and insular cortex. Dysfunctions in these areas may affect the emotional and theory of mind abilities in DM 1, which result in the behavioral and communication disorders.

  3. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy

    PubMed Central

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  4. Catheter Ablation of Multiple Accessory Pathways in Duchenne Muscular Dystrophy

    PubMed Central

    Stöllberger, Claudia; Steger, Christine; Gatterer, Edmund

    2013-01-01

    A 23-year-old male with Duchenne muscular dystrophy (DMD) experienced self-limiting palpitations at age 19 years for the first time. Palpitations recurred not earlier than at age 23 years, and were attributed to narrow complex tachycardia, which could be terminated with adenosine. Since electrocardiography showed a delta-wave, Wolff-Parkinson-White (WPW) syndrome was diagnosed, ajmaline prescribed and radio-frequency catheter ablation of three accessory pathways carried out one week later. One day after ablation, however, a relapse of the supraventricular tachycardia occurred and was terminated with ajmaline. Re-entry tachycardia occurred a second time six days after ablation, and as before, it was stopped only with ajmaline. Despite administration of verapamil to prevent tachycardia, it occurred a third time four months after ablation. This case shows that cardiac involvement in DMD may manifest also as WPW-syndrome. In these patients, repeated radio-frequency catheter ablation of accessory pathways may be necessary to completely block the re-entry mechanism. PMID:23508228

  5. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy

    PubMed Central

    Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity. PMID:27622734

  6. Acceptance of the different denominations for reflex sympathetic dystrophy

    PubMed Central

    Alvarez-Lario, B; Aretxabala-Alciba..., I; Alegre-Lopez, J; Alonso-Valdiviels..., J

    2001-01-01

    OBJECTIVE—To elucidate the real impact in the medical literature of the different denominations for reflex sympathetic dystrophy (RSD).
METHODS—A search was performed through the Medline database (WinSPIRS, SilverPlatter International, NS), from 1995 to 1999, including the following descriptors: RSD, complex regional pain syndrome (CRPS), CRPS type I, algodystrophy, Sudeck, shoulder-hand syndrome, transient osteoporosis, causalgia, and CRPS type II.
RESULTS—The descriptor RSD was detected in 576 references, algodystrophy in 54, transient osteoporosis in 42, CRPS type I in 24, Sudeck in 16, and shoulder-hand syndrome in 11. One hundred records were obtained for the descriptor causalgia and five for CRPS type II. The descriptor RSD was detected in the title of 262 references, algodystrophy in 29, transient osteoporosis in 29, CRPS type I in 15, Sudeck in 3, shoulder-hand syndrome in 5, causalgia in 17, and CRPS type II in 3 references.
CONCLUSIONS—The new CRPS terminology has not effectively replaced the old one. RSD and causalgia are the most used denominations.

 PMID:11114289

  7. Diffusion tensor imaging study in Duchenne muscular dystrophy

    PubMed Central

    Fu, Ya; Dong, Yuru; Zhang, Chao; Sun, Yu; Zhang, Shu; Mu, Xuetao; Wang, Hong; Xu, Weihai

    2016-01-01

    Background Duchenne muscular dystrophy (DMD) is a progressive muscle disorder associated with an intellectual deficit which is non-progressive. The aim of this study was to investigate brain microstructural changes in DMD and to explore the relationship between such changes and cognitive impairment. Methods All participants (12 DMD patients, 14 age-matched healthy boys), intelligence quotients (IQs) [both full (FIQ) and verbal (VIQ)] were evaluated using the Wechsler intelligence scale for children China revised (WISC-CR) edition, and brain gray matter (GM) and white matter (WM) changes were mapped using diffusion tensor imaging (DTI) with fractional anisotropy (FA). The differences between groups were analyzed using the t-test and the association of cognition with neuroimaging parameters was evaluated using Pearson’s correlation coefficient. Results Compared to the normal controls, the DMD group had lower FIQ (82.0±15.39 vs. 120.21±16.06) and significantly lower splenium of corpus callosum (CC) FA values (P<0.05). Splenium of CC FA was positively correlated with VIQ (r=0.588, P=0.044). Conclusions There were microstructural changes of splenium of CC in DMD patients, which was associated with cognitive impairment. PMID:27127762

  8. The immune system in Duchenne muscular dystrophy: Friend or foe

    PubMed Central

    Villalta, S Armando; Rosenberg, Amy S; Bluestone, Jeffrey A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disease caused by mutations in the X-linked dystrophin gene, resulting in reduced or absent protein production, subsequently leading to the structural instability of the dystroglycan complex (DGC), muscle degeneration, and early death in males. Thus, current treatments have been targeting the genetic defect either by bypassing the mutation through exon skipping or replacing the defective gene through gene therapy and stem cell approaches. However, what has been an underappreciated mediator of muscle pathology and, ultimately, of muscle degeneration and fibrotic replacement, is the prominent inflammatory response. Of potentially critical importance, however, is the fact that the elements mediating the inflammatory response also play an essential role in tissue repair. In this opinion piece, we highlight the detrimental and supportive immune parameters that occur as a consequence of the genetic disorder and discuss how changes to immunity can potentially ameliorate the disease intensity and be employed in conjunction with efforts to correct the genetic disorder. PMID:26481612

  9. miRNAs as serum biomarkers for Duchenne muscular dystrophy.

    PubMed

    Cacchiarelli, Davide; Legnini, Ivano; Martone, Julie; Cazzella, Valentina; D'Amico, Adele; Bertini, Enrico; Bozzoni, Irene

    2011-05-01

    Dystrophin absence in Duchenne muscular dystrophy (DMD) causes severe muscle degeneration. We describe that, as consequence of fibre damage, specific muscle-miRNAs are released in to the bloodstream of DMD patients and their levels correlate with the severity of the disease. The same miRNAs are abundant also in the blood of mdx mice and recover to wild-type levels in animals 'cured' through exon skipping. Even though creatine kinase (CK) blood levels have been utilized as diagnostic markers of several neuromuscular diseases, including DMD, we demonstrate that they correlate less well with the disease severity. Although the analysis of a larger number of patients should allow to obtain more refined correlations with the different stages of disease progression, we propose that miR-1, miR-133, and miR-206 are new and valuable biomarkers for the diagnosis of DMD and possibly also for monitoring the outcomes of therapeutic interventions in humans. Despite many different DMD therapeutic approaches are now entering clinical trials, a unifying method for assessing the benefit of different treatments is still lacking.

  10. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy.

    PubMed

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient's tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient's tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient's tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  11. Corneal haze in course of Fuchs' endothelial dystrophy.

    PubMed

    Pescosolido, N; Komaiha, C; Dapoto, L; Lenarduzzi, F; Nebbioso, M

    2012-07-01

    This article describes the observations obtained with confocal microscopy (CM) on the corneal structure in course of corneal edema in a patient with Fuchs endothelial corneal dystrophy (FD). The patient was a 40 year old male, suffering from second stage FD, in course of corneal edema and bullous keratopathy. The tissue structure was analyzed with CM confoscan CS4 (Nidek Technologies(®), Birmingham, UK) using the 40x mode. The CM has shown the presence of gaps due to corneal edema and a diffuse stromal hyper reflectivity related to the alteration of the extracellular matrix. It has also showed the presence of binucleate cells, assimilable to keratocytes, in cytokinesis which presented a typical fusiform aspect with two highly reflective nuclei awaiting cell division. The total number of cells was much lower than that of healthy control subjects of similar age, sex and race. The CM in this case suggests a significantly lower number of cells, presumably keratocytes, compared to normal range, but mostly it shows the presence of cells undergoing cytokinesis, which witnesses the active processes of collagenogenesis and possible vasculogenesis that represent early stages of loss of the normal corneal transparency. PMID:23007820

  12. Dropped-head in recessive oculopharyngeal muscular dystrophy.

    PubMed

    Garibaldi, Matteo; Pennisi, Elena Maria; Bruttini, Mirella; Bizzarri, Veronica; Bucci, Elisabetta; Morino, Stefania; Talerico, Caterina; Stoppacciaro, Antonella; Renieri, Alessandra; Antonini, Giovanni

    2015-11-01

    A 69-year-old woman presented a dropped head, caused by severe neck extensor weakness that had started two years before. She had also developed a mild degree of dysphagia, rhinolalia, eyelid ptosis and proximal limb weakness during the last months. EMG revealed myopathic changes. Muscle MRI detected fatty infiltration in the posterior neck muscles and tongue. Muscle biopsy revealed fiber size variations, sporadic rimmed vacuoles, small scattered angulated fibers and a patchy myofibrillar network. Genetic analysis revealed homozygous (GCN)11 expansions in the PABPN1 gene that were consistent with recessive oculopharyngeal muscular dystrophy (OPMD). There are a few reports of the recessive form, which has a later disease onset with milder symptoms and higher clinical variability than the typical dominantly inherited form. This patient, who is the first Italian and the eighth worldwide reported case of recessive OPMD, is also the first case of OPMD with dropped-head syndrome, which thus expands the clinical phenotype of recessive OPMD. PMID:26494409

  13. Myotonic Dystrophy-1 Complicated by Factor-V (Leiden) Mutation

    PubMed Central

    Finsterer, Josef; Stöllberger, Claudia

    2015-01-01

    Objectives. Presence of a factor-V Leiden mutation in a patient with myotonic dystrophy type 1 (DM1) has been reported only once. Here we report the second DM1 patient carrying a factor-V mutation who died from long-term complications of this mutation. Case Report. A 66-year-old DM1 patient with multi-organ-disorder syndrome developed a first deep venous thrombosis (DVT) and consecutive pulmonary embolism (PE) at age 50 y. Acetyl-salicylic acid was given. One year later he experienced a second DVT; that is why phenprocoumon was started. Despite anticoagulation, he experienced a third DVT bilaterally and a second PE bilaterally at 61 y; that is why a vena cava filter was additionally deployed. Despite therapeutic anticoagulation, he experienced a vena cava filter thrombosis at age 62 y. Genetic workup revealed a heterozygous factor-V mutation in addition to a CTG-repeat expansion of 500. As a consequence of PE he developed chronic obstructive pulmonary disease and experienced recurrent pulmonary infections, which were lastly responsible for decease at age 66 y despite intensive care measures. Conclusion. The heterozygous Leiden mutation may severely affect DM1 patients to such a degree that they die from its complications. If DM1 patients present with unusual manifestations, search for causes other than a CTG-repeat expansion is indicated. PMID:25918532

  14. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.

    PubMed

    Ropars, Juliette; Lempereur, Mathieu; Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël; Brochard, Sylvain

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity. PMID:27622734

  15. Anesthetic and surgical complications in 219 cases of myotonic dystrophy.

    PubMed

    Mathieu, J; Allard, P; Gobeil, G; Girard, M; De Braekeleer, M; Bégin, P

    1997-12-01

    The objective of this study was to assess the frequency, type, and severity of perioperative complications after a first surgery under general anesthesia in patients with myotonic dystrophy (DM) and to measure the association with suspected risk factors. Numerous cases of perioperative complications in DM patients have been reported. Hazards have been associated with the use of thiopentone, suxamethonium, neostigmine, and halothane. A retrospective study of perioperative complications was conducted for 219 DM patients who had their first surgery under general anesthesia at the Chicoutimi Hospital. The overall frequency of complications was 8.2% (18 of 219). Most complications (16 of 18) were pulmonary, including five patients with acute ventilatory failure necessitating ventilatory support, four patients with atelectasis, and three patients with pneumonia. Using multivariate analysis, we found that the risk of perioperative pulmonary complications (PPC) was significantly higher after an upper abdominal surgery (odds ratio (OR), 24.4; 95% CI, 4.0 to 149.3) and for patients with a severe muscular disability, as assessed by the presence of proximal limb weakness (OR, 14.1; 95% CI, 1.5 to 134.4). The likelihood of PPC was not related to any specific anesthetic drug. Because of the increased risk of PPC, careful monitoring during the early postoperative period, protection of upper airways, chest physiotherapy, and incentive spirometry are mandatory in all symptomatic DM patients, particularly those with a severe muscular disability or those who have undergone an upper abdominal surgery.

  16. Reachable Workspace in Facioscapulohumeral muscular dystrophy (FSHD) by Kinect

    PubMed Central

    Han, Jay J.; Kurillo, Gregorij; Abresch, Richard T.; de Bie, Evan; Nicorici, Alina; Bajcsy, Ruzena

    2014-01-01

    Introduction A depth-ranging sensor (Kinect) based upper extremity motion analysis system was applied to determine the spectrum of reachable workspace encountered in facioscapulohumeral muscular dystrophy (FSHD). Methods Reachable workspaces were obtained from 22 individuals with FSHD and 24 age- and height-matched healthy controls. To allow comparison, total and quadrant reachable workspace relative surface areas (RSA) were obtained by normalizing the acquired reachable workspace by each individual’s arm length. Results Significantly contracted reachable workspace and reduced RSAs were noted for the FSHD cohort compared to controls (0.473±0.188 vs. 0.747±0.082; P<0.0001). With worsening upper extremity function as categorized by the FSHD evaluation subscale II+III, the upper quadrant RSAs decreased progressively, while the lower quadrant RSAs were relatively preserved. There were no side-to-side differences in reachable workspace based on hand-dominance. Discussion This study demonstrates the feasibility and potential of using an innovative Kinect-based reachable workspace outcome measure in FSHD. PMID:24828906

  17. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G.

    PubMed

    Paim, Julia F; Cotta, Ana; Vargas, Antonio P; Navarro, Monica M; Valicek, Jaquelin; Carvalho, Elmano; da-Cunha, Antonio L; Plentz, Estevão; Braz, Shelida V; Takata, Reinaldo I; Almeida, Camila F; Vainzof, Mariz

    2013-06-01

    Limb girdle muscular dystrophy type 2 G (LGMD2G) is caused by mutations in the telethonin gene. Only few families were described presenting this disease, and they are mainly Brazilians. Here, we identified one additional case carrying the same common c.157C > T mutation in the telethonin gene but with an atypical histopathological muscle pattern. In a female patient with a long duration of symptoms (46 years), muscle biopsy showed, in addition to telethonin deficiency, the presence of nemaline rods, type 1 fiber predominance, nuclear internalization, lobulated fibers, and mitochondrial paracrystalline inclusions. Her first clinical signs were identified at 8 years old, which include tiptoe walking, left lower limb deformity, and frequent falls. Ambulation loss occurred at 41 years old, and now, at 54 years old, she presented pelvic girdle atrophy, winging scapula, foot deformity with incapacity to perform ankle dorsiflexion, and absent tendon reflexes. The presence of nemaline bodies could be a secondary phenomenon, possibly associated with focal Z-line abnormalities of a long-standing disease. However, these new histopathological findings, characteristic of congenital myopathies, expand muscle phenotypic variability of telethoninopathy. PMID:23479141

  18. Actin-organising properties of the muscular dystrophy protein myotilin.

    PubMed

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  19. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy.

    PubMed

    Nash, Benjamin M; Wright, Dale C; Grigg, John R; Bennetts, Bruce; Jamieson, Robyn V

    2015-04-01

    Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs. PMID:26835369

  20. Population-based incidence and prevalence of facioscapulohumeral dystrophy

    PubMed Central

    Arnts, Hisse; van der Maarel, Silvère M.; Padberg, George W.; Verschuuren, Jan J.G.M.; Bakker, Egbert; Weinreich, Stephanie S.; Verbeek, André L.M.; van Engelen, Baziel G.M.

    2014-01-01

    Objective: To determine the incidence and prevalence of facioscapulohumeral muscular dystrophy (FSHD) in the Netherlands. Methods: Using 3-source capture-recapture methodology, we estimated the total yearly number of newly found symptomatic individuals with FSHD, including those not registered in any of the 3 sources. To this end, symptomatic individuals with FSHD were available from 3 large population-based registries in the Netherlands if diagnosed within a 10-year period (January 1, 2001 to December 31, 2010). Multiplication of the incidence and disease duration delivered the prevalence estimate. Results: On average, 52 people are newly diagnosed with FSHD every year. This results in an incidence rate of 0.3/100,000 person-years in the Netherlands. The prevalence rate was 12/100,000, equivalent to 2,000 affected individuals. Conclusions: We present population-based incidence and prevalence estimates regarding symptomatic individuals with FSHD, including an estimation of the number of symptomatic individuals not present in any of the 3 used registries. This study shows that the total number of symptomatic persons with FSHD in the population may well be underestimated and a considerable number of affected individuals remain undiagnosed. This suggests that FSHD is one of the most prevalent neuromuscular disorders. PMID:25122204