Sample records for dystrophy type 1a

  1. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    ClinicalTrials.gov

    2017-08-11

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  2. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease

    PubMed Central

    Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-01-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies. PMID:22131273

  3. [Myotonic dystrophy - a new insight into a well-known disease].

    PubMed

    Lusakowska, Anna; Sułek-Piatkowska, Anna

    2010-01-01

    Myotonic dystrophy (DM), the most common dystrophy in adults, is an autosomal dominant disease characterized by a variety of multisystemic features. Two genetically distinct forms of DM are identified - type 1 (DM1), the classic form first described by Steinert, and type 2 (DM2), identified by Ricker. DM1 is caused by trinucleotide expansion of CTG in the myotonic dystrophy protein kinase gene, whereas in DM2 the expansion of tetranucleotide repeats (CCTG) in the zinc finger protein 9 gene was identified. Both mutations are dynamic and are located in non-coding parts of the genes. Phenotype variability of DM1 and DM2 is caused by a molecular mechanism due to mutated RNA toxicity. This paper reviews the clinical features of both types of myotonic dystrophies and summarizes current views on pathogenesis of myotonic dystrophy.

  4. Epiretinal membrane: a treatable cause of visual disability in myotonic dystrophy type 1.

    PubMed

    Kersten, Hannah M; Roxburgh, Richard H; Child, Nicholas; Polkinghorne, Philip J; Frampton, Chris; Danesh-Meyer, Helen V

    2014-01-01

    A wide range of ocular abnormalities have been documented to occur in patients with myotonic dystrophy type 1. The objectives of this study were to investigate the macular and optic nerve morphology using optical coherence tomography in patients with myotonic dystrophy type 1. A total of 30 myotonic dystrophy type 1 patients and 28 controls were recruited for participation. All participants underwent a thorough ophthalmologic examination, including spectral-domain optical coherence tomography of the macula and retinal nerve fibre layer. Images were reviewed by a retinal specialist ophthalmologist, masked to the diagnosis of the participants. Average macular thickness was significantly greater in the myotonic dystrophy group compared to controls [327.3 μm vs. 308.5 μm (p < 0.001)]. Macular thickness was significantly greater (p < 0.005) in five of the nine macular regions. The increase in macular thickness was due to the increased prevalence of epiretinal membranes in the myotonic dystrophy patient group (p = 0.0002): 48.2 % of myotonic dystrophy patient eyes had evidence of epiretinal membrane, compared with 12.5 % of control eyes. Examination revealed that 56.7 % of myotonic dystrophy patients had an epiretinal membrane in at least one eye. Visual acuity was reduced due to the presence of epiretinal membrane in six patient eyes and none of the control eyes. The presence of an epiretinal membrane was significantly correlated with increasing age in the patient group. We report an increased prevalence of epiretinal membrane in the myotonic dystrophy type 1 group. This may be a previously under-recognised form of visual impairment in this group. Epiretinal membranes can be treated surgically. We suggest that, in addition to a comprehensive clinical examination, optical coherence tomography examination is implemented as part of an ophthalmological assessment for the myotonic dystrophy type 1 patient with reduced visual acuity.

  5. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism

    PubMed Central

    Meola, Giovanni; Cardani, Rosanna

    2015-01-01

    Abstract Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert’s disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies. PMID:27858759

  6. Sleep-Wake Cycle and Daytime Sleepiness in the Myotonic Dystrophies

    PubMed Central

    Romigi, A.; Albanese, M.; Liguori, C.; Placidi, F.; Marciani, M. G.; Massa, R.

    2013-01-01

    Myotonic dystrophy is the most common type of muscular dystrophy in adults and is characterized by progressive myopathy, myotonia, and multiorgan involvement. Two genetically distinct entities have been identified, myotonic dystrophy type 1 (DM1 or Steinert's Disease) and myotonic dystrophy type 2 (DM2). Myotonic dystrophies are strongly associated with sleep dysfunction. Sleep disturbances in DM1 are common and include sleep-disordered breathing (SDB), periodic limb movements (PLMS), central hypersomnia, and REM sleep dysregulation (high REM density and narcoleptic-like phenotype). Interestingly, drowsiness in DM1 seems to be due to a central dysfunction of sleep-wake regulation more than SDB. To date, little is known regarding the occurrence of sleep disorders in DM2. SDB (obstructive and central apnoea), REM sleep without atonia, and restless legs syndrome have been described. Further polysomnographic, controlled studies are strongly needed, particularly in DM2, in order to clarify the role of sleep disorders in the myotonic dystrophies. PMID:26316996

  7. Emerging strategies for cell and gene therapy of the muscular dystrophies

    PubMed Central

    Muir, Lindsey A.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications. PMID:19555515

  8. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  9. Translational Research for Muscular Dystrophy

    DTIC Science & Technology

    2012-05-01

    common in-frame deletions for which clinical information from human Becker muscular dystrophy patients (deletion of exons 44-45, 49-51, 48-53) is lacking... Dystrophy PRINCIPAL INVESTIGATOR: Gregory A. Cox, Ph.D. CONTRACTING ORGANIZATION: The Jackson Laboratory...REPORT TYPE Annual 3. DATES COVERED 1 MAR 2011 - 30 APR 2012 4. TITLE AND SUBTITLE Translational Research for Muscular Dystrophy 5a. CONTRACT

  10. Early-onset facioscapulohumeral muscular dystrophy type 1 with some atypical features.

    PubMed

    Dorobek, Małgorzata; van der Maarel, Silvère M; Lemmers, Richard J L F; Ryniewicz, Barbara; Kabzińska, Dagmara; Frants, Rune R; Gawel, Malgorzata; Walecki, Jerzy; Hausmanowa-Petrusewicz, Irena

    2015-04-01

    Facioscapulohumeral muscular dystrophy cases with facial weakness before the age of 5 and signs of shoulder weakness by the age of 10 are defined as early onset. Contraction of the D4Z4 repeat on chromosome 4q35 is causally related to facioscapulohumeral muscular dystrophy type 1, and the residual size of the D4Z4 repeat shows a roughly inverse correlation with the severity of the disease. Contraction of the D4Z4 repeat on chromosome 4q35 is believed to induce a local change in chromatin structure and consequent transcriptional deregulation of 4qter genes. We present early-onset cases in the Polish population that amounted to 21% of our total population with facioscapulohumeral muscular dystrophy. More than 27% of them presented with severe phenotypes (wheelchair dependency). The residual D4Z4 repeat sizes ranged from 1 to 4 units. In addition, even within early-onset facioscapulohumeral muscular dystrophy type 1 phenotypes, some cases had uncommon features (head drop, early disabling contractures, progressive ptosis, and respiratory insufficiency and cardiomyopathy). © The Author(s) 2014.

  11. Early-Onset LMNA-Associated Muscular Dystrophy with Later Involvement of Contracture.

    PubMed

    Lee, Younggun; Lee, Jung Hwan; Park, Hyung Jun; Choi, Young Chul

    2017-10-01

    The early diagnosis of LMNA-associated muscular dystrophy is important for preventing sudden arrest related to cardiac conduction block. However, diagnosing early-onset Emery-Dreifuss muscular dystrophy (EDMD) with later involvement of contracture and limb-girdle muscular dystrophy type 1B is often delayed due to heterogeneous clinical presentations. We aimed to determine the clinical features that contribute to a delayed diagnosis. We reviewed four patients who were recently diagnosed with LMNA-associated muscular dystrophy by targeted exome sequencing and who were initially diagnosed with nonspecific or other types of muscular dystrophy. Certain clinical features such as delayed contracture involvement and calf hypertrophy were found to contribute to a delayed diagnosis. Muscle biopsies were not informative for the diagnosis in these patients. Genetic testing of single or multiple genes is useful for confirming a diagnosis of LMNA-associated muscular dystrophy. Even EDMD patients could experience the later involvement of contracture, so clinicians should consider early genetic testing for patients with undiagnosed muscular dystrophy or laminopathy. Copyright © 2017 Korean Neurological Association

  12. Survey of Canadian Myotonic Dystrophy Patients' Access to Computer Technology.

    PubMed

    Climans, Seth A; Piechowicz, Christine; Koopman, Wilma J; Venance, Shannon L

    2017-09-01

    Myotonic dystrophy type 1 is an autosomal dominant condition affecting distal hand strength, energy, and cognition. Increasingly, patients and families are seeking information online. An online neuromuscular patient portal under development can help patients access resources and interact with each other regardless of location. It is unknown how individuals living with myotonic dystrophy interact with technology and whether barriers to access exist. We aimed to characterize technology use among participants with myotonic dystrophy and to determine whether there is interest in a patient portal. Surveys were mailed to 156 participants with myotonic dystrophy type 1 registered with the Canadian Neuromuscular Disease Registry. Seventy-five participants (60% female) responded; almost half were younger than 46 years. Most (84%) used the internet; almost half of the responders (47%) used social media. The complexity and cost of technology were commonly cited reasons not to use technology. The majority of responders (76%) were interested in a myotonic dystrophy patient portal. Patients in a Canada-wide registry of myotonic dystrophy have access to and use technology such as computers and mobile phones. These patients expressed interest in a portal that would provide them with an opportunity to network with others with myotonic dystrophy and to access information about the disease.

  13. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    PubMed

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Perceived functioning and disability in adults with myotonic dystrophy type 1: a survey according to the International Classification Of Functioning, Disability and Health.

    PubMed

    Kierkegaard, Marie; Harms-Ringdahl, Karin; Widén Holmqvist, Lotta; Tollbäck, Anna

    2009-06-01

    The purpose of this study was to describe and analyse self-rated perceived functioning, disability and environmental facilitators/barriers with regard to disease severity, using the International Classification of Functioning, Disability and Health (ICF) checklist, in adults with myotonic dystrophy type 1. Cross-sectional design. Forty-one women and 29 men with myotonic dystrophy type 1. A modified ICF checklist was used for self-rating of perceived problems in 29 body-function categories, difficulties in 52 activity and participation categories, and facilitators/barriers in 23 environmental-factor categories according to the verbal anchors of the ICF qualifiers. Disease severity classification was based on the muscular impairment rating scale. Of the persons with myotonic dystrophy type 1, 80% perceived problems of excessive daytime sleepiness, 76% of muscle power, and 66% of energy and drive functions, while over 59% perceived difficulties in physically demanding mobility activities. Disabilities in mobility, self-care and domestic life were more frequently reported by persons with severe disease. Support from the immediate family, medicines and social security services were perceived as facilitators for 50-60% of the participants. Disabilities and important environmental facilitators in adults with myotonic dystrophy type 1 were identified, and this clinically-relevant information can be used for developing health services for people with this condition.

  15. Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS

    PubMed Central

    Gourdon, Genevieve; Meola, Giovanni

    2017-01-01

    Myotonic dystrophies are multisystemic diseases characterized not only by muscle and heart dysfunction but also by CNS alteration. They are now recognized as brain diseases affecting newborns and children for myotonic dystrophy type 1 and adults for both myotonic dystrophy type 1 and type 2. In the past two decades, much progress has been made in understanding the mechanisms underlying the DM symptoms allowing development of new molecular therapeutic tools with the ultimate aim of curing the disease. This review describes the state of the art for the characterization of CNS related symptoms, the development of molecular strategies to target the CNS as well as the available tools for screening and testing new possible treatments. PMID:28473756

  16. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    PubMed

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Prenatal molecular diagnosis of inherited neuromuscular diseases: Duchenne/Becker muscular dystrophy, myotonic dystrophy type 1 and spinal muscular atrophy.

    PubMed

    Esposito, Gabriella; Ruggiero, Raffaella; Savarese, Maria; Savarese, Giovanni; Tremolaterra, Maria Roberta; Salvatore, Francesco; Carsana, Antonella

    2013-12-01

    Neuromuscular disease is a broad term that encompasses many diseases that either directly, via an intrinsic muscle disorder, or indirectly, via a nerve disorder, impairs muscle function. Here we report the experience of our group in the counselling and molecular prenatal diagnosis of three inherited neuromuscular diseases, i.e., Duchenne/Becker muscular dystrophy (DMD/BMD), myotonic dystrophy type 1 (DM1), spinal muscular atrophy (SMA). We performed a total of 83 DMD/BMD, 15 DM1 and 54 SMA prenatal diagnoses using a combination of technologies for either direct or linkage diagnosis. We identified 16, 5 and 10 affected foetuses, respectively. The improvement of analytical procedures in recent years has increased the mutation detection rate and reduced the analytical time. Due to the complexity of the experimental procedures and the high, specific professional expertise required for both laboratory activities and the related counselling, these types of analyses should be preferentially performed in reference molecular diagnostic centres.

  18. Congenital Muscle Disease Study of Patient and Family Reported Medical Information

    ClinicalTrials.gov

    2017-05-05

    Congenital Muscular Dystrophy (Including Unspecified/Undiagnosed); Dystroglycanopathy; Congenital Fiber Type Disproportion; Rigid Spine Muscular Dystrophy; Congenital Myopathy (Including Unspecified/Undiagnosed); Collagen VI CMD (Ullrich CMD, Intermediate, Bethlem Myopathy); Laminin Alpha 2 Related Congenital Muscular Dystrophy; LAMA2-CMD/Merosin Deficient/MDC1A; Walker-Warburg Syndrome; Muscle-Eye-Brain Disease; Fukuyama/Fukutin Related Muscular Dystrophy; Integrin Alpha 7 Deficiency; Integrin Alpha 9 Deficiency; LMNA-CMD/Lamin A/C/Laminopathy; SEPN1-Related Myopathy; Bethlem Myopathy; Actin Aggregation Myopathy; Cap Disease; Central Core Disease; Centronuclear Myopathy; Core Rod Myopathy; Hyaline Body Myopathy; Multiminicore Myopathy; Myotubular Myopathy; Nemaline Myopathy; Tubular Aggregate Myopathy; Zebra Body Myopathy; Reducing Body Myopathy; Spheroid Body Myopathy; LGMD1B (LMNA); LGMD1E (DES); LGMD2G (TCAP); LGMD2H (TRIM32); LGMD2I (FKRP); LGMD2J (TTN); LGMD2K (POMT1); LGMD2M (FKTN); LGMD2N (POMT2); LGMD2O (POMGnT1); LGMD2P (DAG1); LGMD2Q (PLEC1); LGMD2R (DES); LGMD2S (TRAPPC11); LGMD2T (GMPPB); LGMD2U (ISPD); LGMD2V (GAA); Ullrich Congenital Muscular Dystrophy; Titinopathy; Choline Kinase B Receptor; Emery-Dreifuss Muscular Dystrophy; RYR1 Related Myopathy; SYNE1/Nesprin Related Muscular Dystrophy; Telethonin Related Muscular Dystrophy (TCAP/Titin-Cap); Congenital Myasthenic Syndrome; Escobar Syndrome; Myofibrillar Myopathy; Malignant Hyperthermia; Alpha-Dystroglycan Related Muscular Dystrophy (DAG1, DPM1, DPM2, DPM3, FKRP, FKTN); Alpha-Dystroglycan Related Muscular Dystrophy (GAA, ISPD, LARGE, POMT1, POMT2, POMGnT1); Alpha-Dystroglycan Related Muscular Dystrophy (Unspecified/Undiagnosed/Other)

  19. Psychiatric and Cognitive Phenotype of Childhood Myotonic Dystrophy Type 1

    ERIC Educational Resources Information Center

    Douniol, Marie; Jacquette, Aurelia; Cohen, David; Bodeau, Nicolas; Rachidi, Linda; Angeard, Nathalie; Cuisset, Jean-Marie; Vallee, Louis; Eymard, Bruno; Plaza, Monique; Heron, Delphine; Guile, Jean-Marc

    2012-01-01

    Aim: To investigate the psychiatric and cognitive phenotype in young individuals with the childhood form of myotonic dystrophy type 1 (DM1). Method: Twenty-eight individuals (15 females, 13 males) with childhood DM1 (mean age 17y, SD 4.6, range 7-24y) were assessed using standardized instruments and cognitive testing of general intelligence,…

  20. Core Clinical Phenotypes in Myotonic Dystrophies

    PubMed Central

    Wenninger, Stephan; Montagnese, Federica; Schoser, Benedikt

    2018-01-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) represent the most frequent multisystemic muscular dystrophies in adulthood. They are progressive, autosomal dominant diseases caused by an abnormal expansion of an unstable nucleotide repeat located in the non-coding region of their respective genes DMPK for DM1 and CNBP in DM2. Clinically, these multisystemic disorders are characterized by a high variability of muscular and extramuscular symptoms, often causing a delay in diagnosis. For both subtypes, many symptoms overlap, but some differences allow their clinical distinction. This article highlights the clinical core features of myotonic dystrophies, thus facilitating their early recognition and diagnosis. Particular attention will be given to signs and symptoms of muscular involvement, to issues related to respiratory impairment, and to the multiorgan involvement. This article is part of a Special Issue entitled “Beyond Borders: Myotonic Dystrophies—A European Perception.”

  1. The prevalence of Usher syndrome and other retinal dystrophy-hearing impairment associations.

    PubMed

    Rosenberg, T; Haim, M; Hauch, A M; Parving, A

    1997-05-01

    The study was undertaken to procure population-based prevalence data on the various types of Usher syndrome and other retinal dystrophy-hearing impairment associations. The medical files on 646 patients with a panretinal pigmentary dystrophy aged 20-49 years derived from the Danish Retinitis Pigmentosa (RP) register were scrutinised. The data were supplemented by a prior investigation on hearing ability in a part of the study population. After exclusion of patients with possibly extrinsic causes of hearing impairments, 118 patients, including 89 cases of Usher syndrome were allocated to one of five clinically defined groups. We calculated the following prevalence rates: Usher syndrome type I: 1.5/100,000, Usher syndrome type II: 2.2/100,000, and Usher syndrome type III: 0.1/100,000 corresponding to a 2:3 ratio between Usher syndrome type I and II. The overall prevalence rate of Usher syndrome was estimated to 5/100,000 in the Danish population, devoid of genetic isolates. The material comprised 11 cases with retinal dystrophy, hearing impairment, and additional syndromic features. Finally, 18 subjects with various retinal dystrophy-hearing impairment associations without syndromic features were identified, corresponding to a prevalence rate of 0.8/100,000. This group had a significant overrepresentation of X-linked RP, including two persons harboring a mutation in the retinitis pigmentosa GTP-ase regulator (RPGR) gene.

  2. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    PubMed Central

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  3. Late-onset Becker-type muscular dystrophy in a Border terrier dog.

    PubMed

    Jeandel, A; Garosi, L S; Davies, L; Guo, L T; Salgüero, R; Shelton, G D

    2018-01-29

    A 9-year-old Border terrier was presented to a referral hospital after a 1-year history of progressive stiffness and exercise intolerance. Neurological examination was consistent with a neuromuscular disorder. Serum creatine kinase activity was mildly elevated. A myopathy was suspected based on MRI findings and electrophysiological examination. Muscle histopathology was consistent with a severe non-inflammatory myopathy of a dystrophic type. Immunofluorescence and western blotting confirmed a dystrophinopathy with an 80-kDa truncated dystrophin fragment similar to Becker muscular dystrophy in people. To our knowledge, this is the first description of a late-onset Becker-type muscular dystrophy in a dog, and the first description of a dystrophinopathy in a Border terrier. Muscular dystrophy in dogs should not be ruled out based on late onset clinical signs and only mildly elevated creatine kinase. © 2018 British Small Animal Veterinary Association.

  4. Leg Muscle Involvement in Facioscapulohumeral Muscular Dystrophy: Comparison between Facioscapulohumeral Muscular Dystrophy Types 1 and 2.

    PubMed

    Mair, Dorothea; Huegens-Penzel, Monika; Kress, Wolfram; Roth, Christian; Ferbert, Andreas

    2017-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) presents with 2 genetically distinct types. We describe for the first time the MRI patterns of leg muscle involvement in type 2 and compare it with type 1. The intramuscular fat content was assessed on lower extremity axial T1-weighted MRI scans in 6 FSHD1 and 5 FSHD2 patients. Overall, the muscle involvement profile did not differ substantially between FSHD1 and FSHD2. In the thigh, the dorsomedial compartment including the semimembranosus, semitendinosus and adductor magnus was the most affected. The quadriceps was mostly spared, but isolated involvement of the rectus femoris was common. Fat infiltration in the distal soleus and the medial gastrocnemius with sparing of the lateral gastrocnemius was a common finding; involvement of the tibialis anterior was less frequent. A proximal-to-distal increase in fat content was frequently present in some muscles. Muscle involvement appears to be independent of type, confirming a similar pathophysiological pathway in FSHD1 and FSHD2. © 2016 S. Karger AG, Basel.

  5. Granular corneal dystrophy Groenouw type I (GrI) and Reis-Bücklers' corneal dystrophy (R-B). One entity?

    PubMed

    Møller, H U

    1989-12-01

    This paper maintains that Reis-Bücklers' corneal dystrophy and granular corneal dystrophy Groenouw type I are one and the same disease. Included are some of the technically best photographs of Reis-Bücklers' dystrophy found in the literature, and these are compared with photographs from patients with granular corneal dystrophy examined by the author. It is argued that most of the histological and ultrastructural findings on Reis Bücklers' dystrophy described in the literature are either congruent with what is found in granular corneal dystrophy or unspecific.

  6. Endocrine Therapy of Breast Cancer

    DTIC Science & Technology

    2006-06-01

    Becker muscular dystrophy (BMD, hypomorphic for dys- trophin, n = 5), Dysferlin deficiency (putative vesicle traf- fic defect, n = 9), and Calpain III...this study. (1) Limb-girdle muscular dystrophy (LGMD, provided by Children National Medical Center, Center for Genetic Medicine): 4 diagnostic...groups, Fukutin related protein de- ficiency (FKRP) (homozygous missense for glycosylation enzyme, limb-girdle muscular dystrophy sub-type, n = 7

  7. Eosinophilic myositis as first manifestation in a patient with type 2 myotonic dystrophy CCTG expansion mutation and rheumatoid arthritis.

    PubMed

    Meyer, Alain; Lannes, Béatrice; Carapito, Raphaël; Bahram, Seiamak; Echaniz-Laguna, Andoni; Geny, Bernard; Sibilia, Jean; Gottenberg, Jacques Eric

    2015-02-01

    Eosinophilic myositis is characterized by eosinophilic infiltration of skeletal muscles. In the absence of an identifiable causative factor or source (including parasitic infection, intake of drugs or L-tryptophan, certain systemic disorders as well as malignant diseases), the diagnosis of idiopathic eosinophilic myositis is usually retained. However, some muscular dystrophies have been recently identified in this subset of eosinophilic myositis. Here, we report a patient with an 8 kb CCTG expansion in intron 1 of the CNBP gene, a mutation characteristic of myotonic dystrophy type 2 (DM2), whose first manifestation was "idiopathic" eosinophilic myositis. This report suggests that in "idiopathic" eosinophilic myositis, clinicians should consider muscular dystrophies, including DM2. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Increased Cancer Risks in Myotonic Dystrophy

    PubMed Central

    Win, Aung Ko; Perattur, Promilla G.; Pulido, Jose S.; Pulido, Christine M.; Lindor, Noralane M.

    2012-01-01

    Objective To estimate cancer risks for patients with myotonic dystrophy, given that increased risks for neoplasms in association with myotonic dystrophy type 1 and type 2 have been suggested in several studies but the risks of cancers have not been quantified. Patients and Methods A cohort of 307 patients with myotonic dystrophy identified from medical records of Mayo Clinic in Rochester, MN, from January 1, l993, through May 28, 2010, was retrospectively analyzed. We estimated standardized incidence ratios (SIRs) of specific cancers for patients with myotonic dystrophy compared with age- and sex-specific cancer incidences of the general population. Age-dependent cumulative risks were calculated using the Kaplan-Meier method. Results A total of 53 cancers were observed at a median age at diagnosis of 55 years. Patients with myotonic dystrophy had an increased risk of thyroid cancer (SIR, 5.54; 95% confidence interval [CI], 1.80-12.93; P=.001) and choroidal melanoma (SIR, 27.54; 95% CI, 3.34-99.49; P<.001). They may also have an increased risk of testicular cancer (SIR, 5.09; 95% CI, 0.62-18.38; P=.06) and prostate cancer (SIR, 2.21; 95% CI, 0.95-4.35; P=.05). The estimated cumulative risks at age 50 years were 1.72% (95% CI, 0.64%-4.55%) for thyroid cancer and 1.00% (95% CI, 0.25%-3.92%) for choroidal melanoma. There was no statistical evidence of an increased risk of brain, breast, colorectal, lung, renal, bladder, endometrial, or ovarian cancer; lymphoma; leukemia; or multiple myeloma. Conclusion Patients with myotonic dystrophy may have an increased risk of thyroid cancer and choroidal melanoma and, possibly, testicular and prostate cancers. PMID:22237010

  9. Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial.

    PubMed

    Okkersen, Kees; Jimenez-Moreno, Cecilia; Wenninger, Stephan; Daidj, Ferroudja; Glennon, Jeffrey; Cumming, Sarah; Littleford, Roberta; Monckton, Darren G; Lochmüller, Hanns; Catt, Michael; Faber, Catharina G; Hapca, Adrian; Donnan, Peter T; Gorman, Gráinne; Bassez, Guillaume; Schoser, Benedikt; Knoop, Hans; Treweek, Shaun; van Engelen, Baziel G M

    2018-06-18

    Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults and leads to severe fatigue, substantial physical functional impairment, and restricted social participation. In this study, we aimed to determine whether cognitive behavioural therapy optionally combined with graded exercise compared with standard care alone improved the health status of patients with myotonic dystrophy type 1. We did a multicentre, single-blind, randomised trial, at four neuromuscular referral centres with experience in treating patients with myotonic dystrophy type 1 located in Paris (France), Munich (Germany), Nijmegen (Netherlands), and Newcastle (UK). Eligible participants were patients aged 18 years and older with a confirmed genetic diagnosis of myotonic dystrophy type 1, who were severely fatigued (ie, a score of ≥35 on the checklist-individual strength, subscale fatigue). We randomly assigned participants (1:1) to either cognitive behavioural therapy plus standard care and optional graded exercise or standard care alone. Randomisation was done via a central web-based system, stratified by study site. Cognitive behavioural therapy focused on addressing reduced patient initiative, increasing physical activity, optimising social interaction, regulating sleep-wake patterns, coping with pain, and addressing beliefs about fatigue and myotonic dystrophy type 1. Cognitive behavioural therapy was delivered over a 10-month period in 10-14 sessions. A graded exercise module could be added to cognitive behavioural therapy in Nijmegen and Newcastle. The primary outcome was the 10-month change from baseline in scores on the DM1-Activ-c scale, a measure of capacity for activity and social participation (score range 0-100). Statistical analysis of the primary outcome included all participants for whom data were available, using mixed-effects linear regression models with baseline scores as a covariate. Safety data were presented as descriptives. This trial is registered with ClinicalTrials.gov, number NCT02118779. Between April 2, 2014, and May 29, 2015, we randomly assigned 255 patients to treatment: 128 to cognitive behavioural therapy plus standard care and 127 to standard care alone. 33 (26%) of 128 assigned to cognitive behavioural therapy also received the graded exercise module. Follow-up continued until Oct 17, 2016. The DM1-Activ-c score increased from a mean (SD) of 61·22 (17·35) points at baseline to 63·92 (17·41) at month 10 in the cognitive behavioural therapy group (adjusted mean difference 1·53, 95% CI -0·14 to 3·20), and decreased from 63·00 (17·35) to 60·79 (18·49) in the standard care group (-2·02, -4·02 to -0·01), with a mean difference between groups of 3·27 points (95% CI 0·93 to 5·62, p=0·007). 244 adverse events occurred in 65 (51%) patients in the cognitive behavioural therapy group and 155 in 63 (50%) patients in the standard care alone group, the most common of which were falls (155 events in 40 [31%] patients in the cognitive behavioural therapy group and 71 in 33 [26%] patients in the standard care alone group). 24 serious adverse events were recorded in 19 (15%) patients in the cognitive behavioural therapy group and 23 in 15 (12%) patients in the standard care alone group, the most common of which were gastrointestinal and cardiac. Cognitive behavioural therapy increased the capacity for activity and social participation in patients with myotonic dystrophy type 1 at 10 months. With no curative treatment and few symptomatic treatments, cognitive behavioural therapy could be considered for use in severely fatigued patients with myotonic dystrophy type 1. The European Union Seventh Framework Programme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Management of cardiac involvement in muscular dystrophies: paediatric versus adult forms.

    PubMed

    Palladino, Alberto; D'Ambrosio, Paola; Papa, Andrea Antonio; Petillo, Roberta; Orsini, Chiara; Scutifero, Marianna; Nigro, Gerardo; Politano, Luisa

    2016-12-01

    Muscular dystrophies are a group of genetic disorders characterized by muscle degeneration and consequent substitution by fat and fibrous tissue. Cardiac involvement is an almost constant feature in a great part of these diseases, as both primary myocardial involvement and secondary involvement due to respiratory insufficiency, pulmonary hypertension or reduced mobility. Primary myocardial involvement usually begins more precociously compared to the secondary involvement. In fact the first signs of cardiomyopathy can be observed in the first decade of life in muscular dystrophies with childhood onset and later in adult form of muscular dystrophies as myotonic dystrophy type 1. At least an annual cardiac follow-up is recommended in these patients including clinical and instrumental examination (ECG, 24h Holter monitoring, ECHO), to detect cardiac involvement. A more frequent monitoring may be required according to the type of cardiomyopathy and the patient's needs. In this short review practical guide-lines are shown for physicians routinely involved in the management of these patients.

  11. Feasibility and effects of a physical exercise programme in adults with myotonic dystrophy type 1: a randomized controlled pilot study.

    PubMed

    Kierkegaard, Marie; Harms-Ringdahl, Karin; Edström, Lars; Widén Holmqvist, Lotta; Tollbäck, Anna

    2011-07-01

    To investigate the feasibility and effects of a physical exercise programme on functioning and health-related quality of life in adults with myotonic dystrophy type 1. A randomized controlled trial. Thirty-five adults with myotonic dystrophy type 1. After stratification for level of functioning, study participants were assigned by lot to either a training group or a control group. Training-group participants attended a 60-minute comprehensive group-training programme, Friskis&Svettis® Open Doors, twice a week for 14 weeks. The six-minute walk test was the primary outcome measure and the timed-stands test, the timed up-and-go test, the Epworth sleepiness scale and the Short Form-36 health survey were secondary outcome measures. Intention-to-treat analyses revealed no significant differences in any outcome measures, except for an increased between-group difference after intervention in the Short Form-36 mental health subscale and a decrease in the vitality subscale for the control group. The programme was well tolerated and many training-group participants perceived subjective changes for the better. No negative effects were reported. The Friskis&Svettis® Open Doors programme was feasible for adults with myotonic dystrophy type 1 who had been screened for cardiac involvement, had distal or mild-to-moderate proximal muscle impairment, and no severe cognitive impairments. No beneficial or detrimental effects were evident.

  12. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules.

    PubMed

    Childs-Disney, Jessica L; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z; Hoskins, Jason; Southall, Noel; Marugan, Juan J; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P; Schatz, George C; Sobczak, Krzysztof; Thornton, Charles A; Disney, Matthew D

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)(exp)). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. A thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)(exp) and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)(exp). This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)(exp) and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of myotonic dystrophy type 1.

  13. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    PubMed

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  14. Myotonic dystrophy mimicking postpolio syndrome in a polio survivor.

    PubMed

    Lim, Jae-Young; Kim, Kyoung-Eun; Choe, Gheeyoung

    2009-02-01

    We describe a 38-yr-old polio survivor with newly developed weakness from myotonic dystrophy. He suffered muscle atrophy and weakness in his legs as a result of poliomyelitis at the age of 3 yrs. After a stable interval of about 30 yrs, he felt new weakness and fatigue in his legs. Electromyography revealed generalized myotonic discharges, early recruitment, and findings of chronic denervation in his left leg. Genetic testing was consistent with myotonic dystrophy type 1. A biopsy from the right gastrocnemius revealed findings of both myotonic dystrophy and chronic denervation. This case report shows the importance of considering other uncommon conditions in the differential diagnoses of postpolio syndrome.

  15. Types of CMT

    MedlinePlus

    ... Marie-Tooth Disease (CMT) Congenital Muscular Dystrophy (CMD) Duchenne Muscular Dystrophy (DMD) Emery-Dreifuss Muscular Dystrophy Endocrine Myopathies Metabolic Diseases of Muscle Mitochondrial Myopathies (MM) Myotonic Dystrophy (DM) Spinal-Bulbar ...

  16. PubMed Central

    Palladino, Alberto; D'Ambrosio, Paola; Papa, Andrea Antonio; Petillo, Roberta; Orsini, Chiara; Scutifero, Marianna; Nigro, Gerardo

    2016-01-01

    Muscular dystrophies are a group of genetic disorders characterized by muscle degeneration and consequent substitution by fat and fibrous tissue. Cardiac involvement is an almost constant feature in a great part of these diseases, as both primary myocardial involvement and secondary involvement due to respiratory insufficiency, pulmonary hypertension or reduced mobility. Primary myocardial involvement usually begins more precociously compared to the secondary involvement. In fact the first signs of cardiomyopathy can be observed in the first decade of life in muscular dystrophies with childhood onset and later in adult form of muscular dystrophies as myotonic dystrophy type 1. At least an annual cardiac follow-up is recommended in these patients including clinical and instrumental examination (ECG, 24h Holter monitoring, ECHO), to detect cardiac involvement. A more frequent monitoring may be required according to the type of cardiomyopathy and the patient's needs. In this short review practical guide-lines are shown for physicians routinely involved in the management of these patients. PMID:28484313

  17. Intramuscular renin-angiotensin system is activated in human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Dai, Hongmei; Chiba, Yoko; Uematsu, Mitsugu; Hino-Fukuyo, Naomi; Onuma, Akira; Iinuma, Kazuie; Tsuchiya, Shigeru

    2009-05-15

    To investigate the role of the muscular renin-angiotensin system (RAS) in human muscular dystrophy, we used immunohistochemistry and Western blotting to examine the cellular localization of angiotensin-converting enzyme (ACE), the angiotensin II type 1 receptor (AT1) and the angiotensin II type 2 receptor (AT2) in muscle biopsies from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and congenital muscular dystrophy (CMD). In normal muscle, ACE was expressed in vascular endothelial cells and neuromuscular junctions (NMJs), whereas AT1 was immunolocalized to the smooth muscle cells of blood vessels and intramuscular nerve twigs. AT2 was immunolocalized in the smooth muscle cells of blood vessels. These findings suggest that the RAS has a functional role in peripheral nerves and NMJs. ACE and AT1, but AT2 immunoreactivity were increased markedly in dystrophic muscle as compared to controls. ACE and the AT1 were strongly expressed in the cytoplasm and nuclei of regenerating muscle fibers, fibroblasts, and in macrophages infiltrating necrotic fibers. Double immunolabeling revealed that activated fibroblasts in the endomysium and perimysium of DMD and CMD muscle were positive for ACE and AT1. Triple immunolabeling demonstrated that transforming growth factor-beta1 (TGF-beta1) and ACE were colocalized on the cytoplasm of activated fibroblasts in dystrophic muscle. Furthermore, Western blotting showed increases in the expression of AT1 and TGF-beta1 protein in dystrophic muscle, which coincided with our immunohistochemical results. The overexpression of ACE and AT1 in dystrophic muscle would likely result in the increased production of Ang II, which may act on these cells in an autocrine manner via AT1. The activation of AT1 may induce fibrous tissue formation through overexpression of TGF-beta1, which potently activates fibrogenesis and suppresses regeneration. In conclusion, our results imply that the intramuscular RAS-TGF-beta1 pathway is activated in human muscular dystrophy and plays a role at least partly in the pathophysiology of this disease.

  18. Longitudinal in vivo muscle function analysis of the DMSXL mouse model of myotonic dystrophy type 1.

    PubMed

    Decostre, Valérie; Vignaud, Alban; Matot, Béatrice; Huguet, Aline; Ledoux, Isabelle; Bertil, Emilie; Gjata, Bernard; Carlier, Pierre G; Gourdon, Geneviève; Hogrel, Jean-Yves

    2013-12-01

    Myotonic dystrophy is the most common adult muscle dystrophy. In view of emerging therapies, which use animal models as a proof of principle, the development of reliable outcome measures for in vivo longitudinal study of mouse skeletal muscle function is becoming crucial. To satisfy this need, we have developed a device to measure ankle dorsi- and plantarflexion torque in rodents. We present an in vivo 8-month longitudinal study of the contractile properties of the skeletal muscles of the DMSXL mouse model of myotonic dystrophy type 1. Between 4 and 12 months of age, we observed a reduction in muscle strength in the ankle dorsi- and plantarflexors of DMSXL compared to control mice although the strength per muscle cross-section was normal. Mild steady myotonia but no abnormal muscle fatigue was also observed in the DMSXL mice. Magnetic resonance imaging and histological analysis performed at the end of the study showed respectively reduced muscle cross-section area and smaller muscle fibre diameter in DMSXL mice. In conclusion, our study demonstrates the feasibility of carrying out longitudinal in vivo studies of muscle function over several months in a mouse model of myotonic dystrophy confirming the feasibility of this method to test preclinical therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Genetic analysis of CHST6 and TGFBI in Turkish patients with corneal dystrophies: Five novel variations in CHST6

    PubMed Central

    Yaylacioglu Tuncay, Fulya; Kayman Kurekci, Gülsüm; Guntekin Ergun, Sezen; Pasaoglu, Ozge Tugce; Akata, Rustu Fikret; Dincer, Pervin Rukiye

    2016-01-01

    Purpose To identify pathogenic variations in carbohydrate sulfotransferase 6 (CHST6) and transforming growth factor, beta-induced (TGFBI) genes in Turkish patients with corneal dystrophy (CD). Methods In this study, patients with macular corneal dystrophy (MCD; n = 18), granular corneal dystrophy type 1 (GCD1; n = 12), and lattice corneal dystrophy type 1 (LCD1; n = 4), as well as 50 healthy controls, were subjected to clinical and genetic examinations. The level of antigenic keratan sulfate (AgKS) in the serum samples of patients with MCD was determined with enzyme-linked immunosorbent assay (ELISA) to immunophenotypically subtype the patients as MCD type I and MCD type II. DNA was isolated from venous blood samples from the patients and controls. Variations were analyzed with DNA sequencing in the coding region of CHST6 in patients with MCD and exons 4 and 12 in TGFBI in patients with LCD1 and GCD1. Clinical characteristics and the detected variations were evaluated to determine any existing genotype–phenotype correlations. Results The previously reported R555W mutation in TGFBI was detected in 12 patients with GCD1, and the R124C mutation in TGFBI was detected in four patients with LCD1. Serum AgKS levels indicated that 12 patients with MCD were in subgroup I, and five patients with MCD were in subgroup II. No genetic variation was detected in the coding region of CHST6 for three patients with MCD type II. In other patients with MCD, three previously reported missense variations (c. 1A>T, c.738C>G, and c.631 C>T), three novel missense variations (c.164 T>C, c.526 G>A, c. 610 C>T), and two novel frameshift variations (c.894_895 insG and c. 462_463 delGC) were detected. These variations did not exist in the control chromosomes, 1000 Genomes, and dbSNP. Conclusions This is the first molecular analysis of TGFBI and CHST6 in Turkish patients with different types of CD. We detected previously reported, well-known hot spot mutations in TGFBI in the patients with GCD1 and LCD1. Eight likely pathogenic variations in CHST6, five of them novel, were reported in patients with MCD, which enlarges the mutational spectrum of MCD. PMID:27829782

  20. Genetic analysis of CHST6 and TGFBI in Turkish patients with corneal dystrophies: Five novel variations in CHST6.

    PubMed

    Yaylacioglu Tuncay, Fulya; Kayman Kurekci, Gülsüm; Guntekin Ergun, Sezen; Pasaoglu, Ozge Tugce; Akata, Rustu Fikret; Dincer, Pervin Rukiye

    2016-01-01

    To identify pathogenic variations in carbohydrate sulfotransferase 6 ( CHST6 ) and transforming growth factor, beta-induced ( TGFBI ) genes in Turkish patients with corneal dystrophy (CD). In this study, patients with macular corneal dystrophy (MCD; n = 18), granular corneal dystrophy type 1 (GCD1; n = 12), and lattice corneal dystrophy type 1 (LCD1; n = 4), as well as 50 healthy controls, were subjected to clinical and genetic examinations. The level of antigenic keratan sulfate (AgKS) in the serum samples of patients with MCD was determined with enzyme-linked immunosorbent assay (ELISA) to immunophenotypically subtype the patients as MCD type I and MCD type II. DNA was isolated from venous blood samples from the patients and controls. Variations were analyzed with DNA sequencing in the coding region of CHST6 in patients with MCD and exons 4 and 12 in TGFBI in patients with LCD1 and GCD1. Clinical characteristics and the detected variations were evaluated to determine any existing genotype-phenotype correlations. The previously reported R555W mutation in TGFBI was detected in 12 patients with GCD1, and the R124C mutation in TGFBI was detected in four patients with LCD1. Serum AgKS levels indicated that 12 patients with MCD were in subgroup I, and five patients with MCD were in subgroup II. No genetic variation was detected in the coding region of CHST6 for three patients with MCD type II. In other patients with MCD, three previously reported missense variations (c. 1A>T, c.738C>G, and c.631 C>T), three novel missense variations (c.164 T>C, c.526 G>A, c. 610 C>T), and two novel frameshift variations (c.894_895 insG and c. 462_463 delGC) were detected. These variations did not exist in the control chromosomes, 1000 Genomes, and dbSNP. This is the first molecular analysis of TGFBI and CHST6 in Turkish patients with different types of CD. We detected previously reported, well-known hot spot mutations in TGFBI in the patients with GCD1 and LCD1. Eight likely pathogenic variations in CHST6 , five of them novel, were reported in patients with MCD, which enlarges the mutational spectrum of MCD.

  1. Temperament and character in patients with classical myotonic dystrophy type 1 (DM-1).

    PubMed

    Winblad, S; Lindberg, C; Hansen, S

    2005-04-01

    This study was designed to investigate personality in classical Myotonic Dystrophy (DM-1). Forty-six patients with DM-1 (25 women and 21 men), 31 healthy controls and 37 subjects in a contrast group, consisting of patients with other muscle disorders (spinal muscular atrophy, facioscapulohumeral dystrophy and limb girdle muscular dystrophy), completed the Temperament and Character Inventory (TCI) (Cloninger, 1994). We aimed to establish whether CTG triplet repeat size correlated with ratings of personality dimensions in the TCI. The DM-1 patients scored significantly higher on the TCI dimension Harm avoidance and lower on Persistence, Self-directedness and Cooperativeness. Signs of a personality disorder were found in 20% of the DM-1 patients. No correlation was found between the number of CTG repeats and scores in the TCI. This study indicates deviant personality in classical DM-1 regarding temperament and character, both in comparison to healthy controls and to patients with other muscle disorders with no known brain disorder.

  2. Benzalkonium chloride accelerates the formation of the amyloid fibrils of corneal dystrophy-associated peptides.

    PubMed

    Kato, Yusuke; Yagi, Hisashi; Kaji, Yuichi; Oshika, Tetsuro; Goto, Yuji

    2013-08-30

    Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies.

  3. Development of a Genomic DNA Reference Material Panel for Myotonic Dystrophy Type 1 (DM1) Genetic Testing

    PubMed Central

    Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E.; Luebbe, Elizabeth A.; Moxley, Richard T.; Toji, Lorraine

    2014-01-01

    Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3′ untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. PMID:23680132

  4. Myoglobin in Primary Muscular Disease: I. Duchenne Muscular Dystrophy: and: II. Muscular Dystrophy of Distal Type

    PubMed Central

    Romero-Herrera, A. E.; Lehmann, H.; Tomlinson, B. E.; Walton, J. N.

    1973-01-01

    Skeletal myoglobin from two cases of muscular dystrophy, one of Duchenne muscular dystrophy, and one of muscular dystrophy of distal type, have been examined and no differences from normal human myoglobin were found. The opportunity has been taken to discuss the nature of minor fractions of myoglobin-like material which are found when human skeletal myoglobin is isolated. Those which have been observed in the present study have been artefacts and it was possible to demonstrate that they were due to deamidation of certain glutamine and asparagine residues. Images PMID:4590363

  5. Can long-term thiamine treatment improve the clinical outcomes of myotonic dystrophy type 1?

    PubMed

    Costantini, Antonio; Trevi, Erika; Pala, Maria Immacolata; Fancellu, Roberto

    2016-09-01

    Myotonic dystrophy type 1, also known as Steinert's disease, is an autosomal dominant disorder with multisystemic clinical features affecting the skeletal and cardiac muscles, the eyes, and the endocrine system. Thiamine (vitamin B1) is a cofactor of fundamental enzymes involved in the energetic cell metabolism; recent studies described its role in oxidative stress, protein processing, peroxisomal function, and gene expression. Thiamine deficiency is critical mainly in the central and peripheral nervous system, as well as in the muscular cells. Our aim was to investigate the potential therapeutical effects of long-term treatment with thiamine in myotonic dystrophy type 1 in an observational open-label pilot study. We described two patients with myotonic dystrophy type 1 treated with intramuscular thiamine 100 mg twice a week for 12 or 11 months. We evaluated the patients using the grading of muscle strength according to Medical Research Council (MRC), the Muscular Impairment Rating Scale (MIRS), and the Modified Barthel index. High-dose thiamine treatment was well tolerated and effective in improving the motor symptomatology, particularly the muscle strength evaluated with the MRC scale, and the patients' activities of daily living using the Modified Barthel Index. At the end of treatment, the MRC score was 5 in the proximal muscles and 2-4 in the distal muscles (the MRC score before the treatment was 3-4 and 1-3, respectively). The MIRS grade improved by 25% compared to baseline for both patients. In patient #1, the Modified Barthel Index improved by 44%, and in patient #2 by 29%. These findings suggest that clinical outcomes are improved by long-term thiamine treatment.

  6. [Propofol anesthesia for a patient with progressive muscular dystrophy].

    PubMed

    Egi, Moritoki; Tokioka, Hiroaki; Chikai, Takashi; Fukushima, Tomihiro; Ishizu, Tomoko; Tanaka, Toshiaki; Kosogabe, Yoshinori

    2002-02-01

    We gave propofol anesthesia to a patient with limb-girdle type of progressive muscular dystrophy. A 42 year-old male was to have skin graft for third degree burn. His respiratory function test showed %VC of 73.6% and %FEV1.0 of 107.6%. Arterial blood gas data were within normal ranges. He was anesthetized with propofol, fentanyl, vecuronium and nitrous oxide. During position change, Wenckebach type of second degree AV block occurred. AV block returned to sinus rhythm easily by injection of ephedrine hydrochloride and atropine sulfate, and reduction of propofol infusion rate. There were no perioperative respiratory complications and no clinical manifestations of malignant hyperthermia. Propofol anesthesia is suitable for limb-girdle type of progressive muscular dystrophy, because of very little possibility of triggering malignant hyperthermia, rapid awaking, minimal residual effects of the respiratory system, and easiness in controlling anesthetic depth.

  7. Benzalkonium Chloride Accelerates the Formation of the Amyloid Fibrils of Corneal Dystrophy-associated Peptides*

    PubMed Central

    Kato, Yusuke; Yagi, Hisashi; Kaji, Yuichi; Oshika, Tetsuro; Goto, Yuji

    2013-01-01

    Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies. PMID:23861389

  8. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy

    PubMed Central

    Burch, Peter M.; Pogoryelova, Oksana; Goldstein, Richard; Bennett, Donald; Guglieri, Michela; Straub, Volker; Bushby, Kate; Lochmüller, Hanns; Morris, Carl

    2015-01-01

    Abstract Background: Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective: The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method: Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results: All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions: These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies. PMID:26870665

  9. Hypothesis: neoplasms in myotonic dystrophy

    PubMed Central

    Hilbert, James E.; Martens, William; Thornton, Charles A.; Moxley, Richard T.; Greene, Mark H.

    2011-01-01

    Tumorigenesis is a multi-step process due to an accumulation of genetic mutations in multiple genes in diverse pathways which ultimately lead to loss of control over cell growth. It is well known that inheritance of rare germline mutations in genes involved in tumorigenesis pathways confer high lifetime risk of neoplasia in affected individuals. Furthermore, a substantial number of multiple malformation syndromes include cancer susceptibility in their phenotype. Studies of the mechanisms underlying these inherited syndromes have added to the understanding of both normal development and the pathophysiology of carcinogenesis. Myotonic dystrophy (DM) represents a group of autosomal dominant, multisystemic diseases that share the clinical features of myotonia, muscle weakness, and early-onset cataracts. Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) result from unstable nucleotide repeat expansions in their respective genes. There have been multiple reports of tumors in individuals with DM, most commonly benign calcifying cutaneous tumors known as pilomatricomas. We provide a summary of the tumors reported in DM and a hypothesis for a possible mechanism of tumorigenesis. We hope to stimulate further study into the potential role of DM genes in tumorigenesis, and help define DM pathogenesis, and facilitate developing novel treatment modalities. PMID:19642006

  10. NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1†

    PubMed Central

    Parkesh, Raman; Fountain, Matthew; Disney, Matthew D.

    2011-01-01

    The NMR structure of an RNA with a copy of the 5′CUG/3′GUC motif found in the triplet repeating disorder myotonic dystrophy type 1 (DM1) is disclosed. The lowest energy conformation of the UU pair is a single hydrogen bonded structure; however, the UU protons undergo exchange indicating structural dynamics. Molecular dynamics simulations show that the single hydrogen bonded structure is the most populated one but the UU pair interconverts between 0, 1, and 2 hydrogen bonded pairs. These studies have implications for the recognition of the DM1 RNA by small molecules and proteins. PMID:21204525

  11. Analysis of MTMR1 expression and correlation with muscle pathological features in juvenile/adult onset myotonic dystrophy type 1 (DM1) and in myotonic dystrophy type 2 (DM2).

    PubMed

    Santoro, Massimo; Modoni, Anna; Masciullo, Marcella; Gidaro, Teresa; Broccolini, Aldobrando; Ricci, Enzo; Tonali, Pietro Attilio; Silvestri, Gabriella

    2010-10-01

    Among genes abnormally expressed in myotonic dystrophy type1 (DM1), the myotubularin-related 1 gene (MTMR1) was related to impaired muscle differentiation. Therefore, we analyzed MTMR1 expression in correlation with CUG-binding protein1 (CUG-BP1) and muscleblind-like1 protein (MBNL1) steady-state levels and with morphological features in muscle tissues from DM1 and myotonic dystrophy type 2 (DM2) patients. Semi-quantitative RT-PCR for MTMR1 was done on muscle biopsies and primary muscle cultures. The presence of impaired muscle fiber maturation was evaluated using immunochemistry for neural cell adhesion molecule (NCAM), Vimentin and neonatal myosin heavy chain. CUG-BP1 and MBNL1 steady-state levels were estimated by Western blot. RNA-fluorescence in situ hybridization combined with immunochemistry for CUG-BP1, MBNL1 and NCAM were performed on serial muscle sections. An aberrant splicing of MTMR1 and a significant amount of NCAM-positive myofibers were detected in DM1 and DM2 muscle biopsies; these alterations correlated with DNA repeat expansion size only in DM1. CUG-BP1 levels were increased only in DM1 muscles, while MBNL1 levels were similar among DM1, DM2 and controls. Normal and NCAM-positive myofibers displayed no differences either in the amount of ribonuclear foci and the intracellular distribution of MBNL1 and CUG-BP1. In conclusion, an aberrant MTMR1 expression and signs of altered myofiber maturation were documented in both DM1 and in DM2 muscle tissues. The more severe dysregulation of MTMR1 expression in DM1 versus DM2, along with increased CUG-BP1 levels only in DM1 tissues, suggests that the mutual antagonism between MBNL1 and CUG-BP1 on alternative splicing is more unbalanced in DM1. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Reliability and feasibility of the six minute walk test in subjects with myotonic dystrophy.

    PubMed

    Kierkegaard, Marie; Tollbäck, Anna

    2007-12-01

    The objective was to describe test-retest reliability and feasibility of the six minute walk test in adult subjects with myotonic dystrophy type 1. Twelve subjects (28-68 years, mean 44) performed three six minute walk tests on two occasions, one week apart. Relative reliability was high (ICC(2.1)=0.99) and absolute reliability values were low (standard error of measurement 12 m, repeatability 33 m). Feasibility was investigated in a sample of 64 subjects (19-70 years, mean 43). Fifty-two subjects were able to perform two tests on the same day. Subjects with severe proximal weakness had difficulties performing repeated tests. A practice trial followed by a second test on the same day can be recommended for most subjects, and the best test should be used for evaluations. In conclusion, even though the study sample was small, the present study indicates that the six minute walk test is reliable and feasible in subjects with myotonic dystrophy type 1.

  13. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy.

    PubMed

    Villalta, S Armando; Rosenthal, Wendy; Martinez, Leonel; Kaur, Amanjot; Sparwasser, Tim; Tidball, James G; Margeta, Marta; Spencer, Melissa J; Bluestone, Jeffrey A

    2014-10-15

    We examined the hypothesis that regulatory T cells (Tregs) modulate muscle injury and inflammation in the mdx mouse model of Duchenne muscular dystrophy (DMD). Although Tregs were largely absent in the muscle of wild-type mice and normal human muscle, they were present in necrotic lesions, displayed an activated phenotype, and showed increased expression of interleukin-10 (IL-10) in dystrophic muscle from mdx mice. Depletion of Tregs exacerbated muscle injury and the severity of muscle inflammation, which was characterized by an enhanced interferon-γ (IFN-γ) response and activation of M1 macrophages. To test the therapeutic value of targeting Tregs in muscular dystrophy, we treated mdx mice with IL-2/anti-IL-2 complexes and found that Tregs and IL-10 concentrations were increased in muscle, resulting in reduced expression of cyclooxygenase-2 and decreased myofiber injury. These findings suggest that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation in muscle associated with muscle fiber injury, and highlight the potential of Treg-modulating agents as therapeutics for DMD. Copyright © 2014, American Association for the Advancement of Science.

  14. Development of a genomic DNA reference material panel for myotonic dystrophy type 1 (DM1) genetic testing.

    PubMed

    Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E; Luebbe, Elizabeth A; Moxley, Richard T; Toji, Lorraine

    2013-07-01

    Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3' untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Development of Refractive Errors-What Can We Learn From Inherited Retinal Dystrophies?

    PubMed

    Hendriks, Michelle; Verhoeven, Virginie J M; Buitendijk, Gabriëlle H S; Polling, Jan Roelof; Meester-Smoor, Magda A; Hofman, Albert; Kamermans, Maarten; Ingeborgh van den Born, L; Klaver, Caroline C W

    2017-10-01

    It is unknown which retinal cells are involved in the retina-to-sclera signaling cascade causing myopia. As inherited retinal dystrophies (IRD) are characterized by dysfunction of a single retinal cell type and have a high risk of refractive errors, a study investigating the affected cell type, causal gene, and refractive error in IRDs may provide insight herein. Case-control study. Study Population: Total of 302 patients with IRD from 2 ophthalmogenetic centers in the Netherlands. Reference Population: Population-based Rotterdam Study-III and Erasmus Rucphen Family Study (N = 5550). Distributions and mean spherical equivalent (SE) were calculated for main affected cell type and causal gene; and risks of myopia and hyperopia were evaluated using logistic regression. Bipolar cell-related dystrophies were associated with the highest risk of SE high myopia 239.7; odds ratio (OR) mild hyperopia 263.2, both P < .0001; SE -6.86 diopters (D) (standard deviation [SD] 6.38), followed by cone-dominated dystrophies (OR high myopia 19.5, P < .0001; OR high hyperopia 10.7, P = .033; SE -3.10 D [SD 4.49]); rod dominated dystrophies (OR high myopia 10.1, P < .0001; OR high hyperopia 9.7, P = .001; SE -2.27 D [SD 4.65]), and retinal pigment epithelium (RPE)-related dystrophies (OR low myopia 2.7; P = .001; OR high hyperopia 5.8; P = .025; SE -0.10 D [SD 3.09]). Mutations in RPGR (SE -7.63 D [SD 3.31]) and CACNA1F (SE -5.33 D [SD 3.10]) coincided with the highest degree of myopia and in CABP4 (SE 4.81 D [SD 0.35]) with the highest degree of hyperopia. Refractive errors, in particular myopia, are common in IRD. The bipolar synapse and the inner and outer segments of the photoreceptor may serve as critical sites for myopia development. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Survey Study and Records Review of Treatment Outcomes in Freeman-Sheldon Syndrome

    ClinicalTrials.gov

    2018-03-30

    Freeman-Sheldon Syndrome; Arthrogryposis Distal Type 2A; Whistling Face Syndrome; Craniocarpotarsal Dysplasia; Craniocarpotarsal Dystrophy; Freeman-Sheldon Syndrome Variant; Sheldon-Hall Syndrome; Arthrogryposis Distal Type 2B; Gordon Syndrome; Arthrogryposis Distal Type 3; Arthrogryposis Distal Type 1; Arthrogryposis, Distal, Type 1A; Arthrogryposis Distal Type 1B; Arthrogryposis, Distal; Craniofacial Abnormalities; Arthrogryposis

  17. Elevated TGF β2 serum levels in Emery-Dreifuss muscular dystrophy: implications for myocyte and tenocyte differentiation and fibrogenic processes.

    PubMed

    Bernasconi, Pia; Carboni, Nicola; Ricci, Giulia; Siciliano, Gabriele; Politano, Luisa; Maggi, Lorenzo; Mongini, Tiziana; Vercelli, Liliana; Rodolico, Carmelo; Biagini, Elena; Boriani, Giuseppe; Ruggiero, Lucia; Santoro, Lucio; Schena, Elisa; Prencipe, Sabino; Evangelisti, Camilla; Pegoraro, Elena; Morandi, Lucia; Columbaro, Marta; Lanzuolo, Chiara; Sabatelli, Patrizia; Cavalcante, Paola; Cappelletti, Cristina; Bonne, Gisèle; Muchir, Antoine; Lattanzi, Giovanna

    2018-04-25

    Among rare diseases caused by mutations in LMNA gene, Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B are characterized by muscle weakness and wasting, joint contractures, cardiomyopathy with conduction system disorders. Circulating biomarkers for these pathologies have not been identified. Here, we analyzed the secretome of a cohort of patients affected by these muscular laminopathies in the attempt to identify a common signature. Multiplex cytokine assay showed that transforming growth factor beta 2 (TGF β2) and interleukin 17 serum levels are consistently elevated in the vast majority of examined patients, while interleukin 6 and basic fibroblast growth factor are altered in subgroups of patients. Levels of TGF β2 are also increased in fibroblast and myoblast cultures established from patient biopsies as well as in serum from mice bearing the H222P Lmna mutation causing Emery-Dreifuss muscular dystrophy in humans. Both patient serum and fibroblast conditioned media activated a TGF β2-dependent fibrogenic program in normal human myoblasts and tenocytes and inhibited myoblast differentiation. Consistent with these results, a TGF β2 neutralizing antibody avoided fibrogenic marker activation and myogenesis impairment. Cell intrinsic TGF β2-dependent mechanisms were also determined in laminopathic cells, where TGF β2 activated AKT/mTOR phosphorylation. These data show that TGF β2 contributes to the pathogenesis of Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B and can be considered a potential biomarker of those diseases. Further, the evidence of TGF β2 pathogenetic effects in tenocytes provides the first mechanistic insight into occurrence of joint contractures in muscular laminopathies.

  18. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1.

    PubMed

    Benomar, A; Krols, L; Stevanin, G; Cancel, G; LeGuern, E; David, G; Ouhabi, H; Martin, J J; Dürr, A; Zaim, A

    1995-05-01

    Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy (ADCA type II) is a rare neurodegenerative disorder with marked anticipation. We have mapped the ADCA type II locus to chromosome 3 by linkage analysis in a genome-wide search and found no evidence for genetic heterogeneity among four families of different geographic origins. Haplotype reconstruction initially restricted the locus to the 33 cM interval flanked by D3S1300 and D3S1276 located at 3p12-p21.1. Combined multipoint analysis, using the Zmax-1 method, further reduced the candidate interval to an 8 cM region around D3S1285. Our results show that ADCA type II is a genetically homogenous disorder, independent of the heterogeneous group of type I cerebellar ataxias.

  19. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy.

    PubMed

    Kuraoka, Mutsuki; Kimura, En; Nagata, Tetsuya; Okada, Takashi; Aoki, Yoshitsugu; Tachimori, Hisateru; Yonemoto, Naohiro; Imamura, Michihiro; Takeda, Shin'ichi

    2016-05-01

    Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.

    PubMed

    Long, Chengzu; Amoasii, Leonela; Bassel-Duby, Rhonda; Olson, Eric N

    2016-11-01

    Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing. PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9-mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1, were also reviewed. Multiple proof-of-concept studies reveal the feasibility and efficacy of genome-editing-meditated correction of monogenic neuromuscular diseases in cultured cells and animal models. Genome editing is a rapidly evolving technology with enormous translational potential once efficacy, delivery, and safety issues are addressed. The clinical impact of this technology is that genome editing can permanently correct disease-causing mutations and circumvent the hurdles of traditional gene- and cell-based therapies.

  1. Fuchs' Endothelial Corneal Dystrophy in Patients With Myotonic Dystrophy, Type 1

    PubMed Central

    Winkler, Nelson S.; Milone, Margherita; Martinez-Thompson, Jennifer M.; Raja, Harish; Aleff, Ross A.; Patel, Sanjay V.; Fautsch, Michael P.; Wieben, Eric D.

    2018-01-01

    Purpose RNA toxicity from CTG trinucleotide repeat (TNR) expansion within noncoding DNA of the transcription factor 4 (TCF4) and DM1 protein kinase (DMPK) genes has been described in Fuchs' endothelial corneal dystrophy (FECD) and myotonic dystrophy, type 1 (DM1), respectively. We prospectively evaluated DM1 patients and their families for phenotypic FECD and report the analysis of CTG expansion in the TCF4 gene and DMPK expression in corneal endothelium. Methods FECD grade was evaluated by slit lamp biomicroscopy in 26 participants from 14 families with DM1. CTG TNR length in TCF4 and DMPK was determined by a combination of Gene Scan and Southern blotting of peripheral blood leukocyte DNA. Results FECD grade was 2 or higher in 5 (36%) of 14 probands, significantly greater than the general population (5%) (P < 0.001). FECD segregated with DM1; six of eight members of the largest family had both FECD and DM1, while the other two family members had neither disease. All DNA samples from 24 subjects, including four FECD-affected probands, were bi-allelic for nonexpanded TNR length in TCF4 (<40 repeats). Considering a 75% prevalence of TCF4 TNR expansion in FECD, the probability of four FECD probands lacking TNR expansion was 0.4%. Neither severity of DM1 nor DMPK TNR length predicted the presence of FECD in DM1 patients. Conclusions FECD was common in DM1 families, and the diseases cosegregated. TCF4 TNR expansion was lacking in DM1 families. These findings support a hypothesis that DMPK TNR expansion contributes to clinical FECD.

  2. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study.

    PubMed

    Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco

    2016-11-01

    Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.

  3. Limb-girdle muscular dystrophy subtypes: First-reported cohort from northeastern China

    PubMed Central

    Mahmood, Omar Abdulmonem; Jiang, Xinmei; Zhang, Qi

    2013-01-01

    The relative frequencies of different subtypes of limb-girdle muscular dystrophies vary widely among different populations. We estimated the percentage of limb-girdle muscular dystrophy subtypes in Chinese people based on 68 patients with limb-girdle muscular dystrophy from the Myology Clinic, Neurology Department, First Hospital of Jilin University, China. A diagnosis of calpainopathy was made in 12 cases (17%), and dysferlin deficiency in 10 cases (15%). Two biopsies revealed α-sarcoglycan deficiency (3%), and two others revealed a lack of caveolin-3 (3%). A diagnosis of unclassified limb-girdle muscular dystrophy was made in the remaining patients (62%). The appearances of calpain 3- and dysferlin-deficient biopsies were similar, though rimmed vacuoles were unique to dysferlinopathy, while inflammatory infiltrates were present in both these limb-girdle muscular dystrophy type 2D biopsies. Macrophages were detected in seven dysferlinopathy biopsies. The results of this study suggest that the distribution of limb-girdle muscular dystrophy subtypes in the Han Chinese population is similar to that reported in the West. The less necrotic, regenerating and inflammatory appearance of limb-girdle muscular dystrophy type 2A, but with more lobulated fibers, supports the idea that calpainopathy is a less active, but more chronic disease than dysferlinopathy. Unusual features indicated an extended limb-girdle muscular dystrophy disease spectrum. The use of acid phosphatase stain should be considered in suspected dysferlinopathies. To the best of our knowledge, this is the first report to define the relative proportions of the various forms of limb-girdle muscular dystrophy in China, based on protein testing. PMID:25206500

  4. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice.

    PubMed

    Jauvin, Dominic; Chrétien, Jessina; Pandey, Sanjay K; Martineau, Laurie; Revillod, Lucille; Bassez, Guillaume; Lachon, Aline; MacLeod, A Robert; Gourdon, Geneviève; Wheeler, Thurman M; Thornton, Charles A; Bennett, C Frank; Puymirat, Jack

    2017-06-16

    Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG) n trinucleotide repeat in the 3' UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2'-4'-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3' UTR of the DMPK gene, which led to a 70% reduction in CUG exp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUG exp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. R124C mutation of the betaIGH3 gene leads to remarkable phenotypic variability in a Greek four-generation family with lattice corneal dystrophy type 1.

    PubMed

    Hellenbroich, Y; Tzivras, G; Neppert, B; Schwinger, E; Zühlke, C

    2001-01-01

    Five autosomal dominantly inherited corneal dystrophies are caused by missense mutations in the betaIGH3 gene on chromosome 5q31. Here we describe the clinical features and the analysis of the betaIGH3 gene in a Greek four-generation family with lattice corneal dystrophy type 1 (CDL1). Sequencing of the betaIGH3 cDNA from an affected family member revealed the R124C mutation. More recent data indicate that this is probably a mutation hot spot in CDL1. We could not find a common haplotype with another CDL1 family with the R124C mutation demonstrating that this mutation occurs independently in different families. The clinical course of the disease showed a remarkable variability between the affected family members. To investigate a possible role between the phenotypic variability and apolipoprotein E (ApoE), which co-localises with amyloid deposits in CDL1, we determined the ApoE genotype of all family members. The resulting data revealed no association with the variable clinical course. Copyright 2001 S. Karger AG, Basel

  6. Genome Editing of Monogenic Neuromuscular Diseases

    PubMed Central

    Long, Chengzu; Amoasii, Leonela; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    IMPORTANCE Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. OBJECTIVES To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing. EVIDENCE REVIEW PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, andmyotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9–mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1, were also reviewed. FINDINGS Multiple proof-of-concept studies reveal the feasibility and efficacy of genome-editing–meditated correction of monogenic neuromuscular diseases in cultured cells and animal models. CONCLUSIONS AND RELEVANCE Genome editing is a rapidly evolving technology with enormous translational potential once efficacy, delivery, and safety issues are addressed. The clinical impact of this technology is that genome editing can permanently correct disease-causing mutations and circumvent the hurdles of traditional gene- and cell-based therapies. PMID:27668807

  7. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of LV dysfunction and higher mortality in Sgcd-/- mice. Treatment of Sgcd-/- mice with the angiotensin type 1 receptor blocker losartan for 8-9 weeks, beginning at 3 weeks of age, decreased fibrosis and oxidative stress in skeletal muscle, increased locomotor activity and prevented autonomic dysfunction. Chronic infusion of the counter-regulatory peptide angiotensin-(1-7) resulted in similar protection. We conclude that activation of the renin-angiotensin system, at a young age, contributes to skeletal muscle and autonomic dysfunction in muscular dystrophy. We speculate that the latter is mediated via abnormal sensory nerve and/or cytokine signalling from dystrophic skeletal muscle to the brain and contributes to age-related LV dysfunction, dilated cardiomyopathy, arrhythmias and premature death. Therefore, correcting the early autonomic dysregulation and renin-angiotensin system activation may provide a novel therapeutic approach in muscular dystrophy.

  8. Myotonic dystrophies type 1 and 2: anesthetic care.

    PubMed

    Veyckemans, Francis; Scholtes, Jean-Louis

    2013-09-01

    Myotonic dystrophy is classified as one of the myotonic syndromes although myotonia is only a minor characteristic of it. It is, in fact, also a multisystem disease with cardiac, digestive, ocular, and endocrine abnormalities. Two subgroups are currently identified with many similarities: DM1 refers to classic dystrophia myotonica (Steinert disease), while DM2, formerly called proximal myotonic myopathy has a later onset. The congenital form is present only in DM1. The genetic causes of DM1 and 2 are different but end up in a similar way of altering RNAm processing and splicing of other genes. The anesthetic risk is increased in case of DM1 type. This review summarizes current knowledge concerning the pathophysiology and anesthetic management of this disease in children and adults. © 2013 John Wiley & Sons Ltd.

  9. Myotonic Dystrophy Initially Presenting as Tachycardiomyopathy Successful Catheter Ablation of Atrial Flutter

    PubMed Central

    Asbach, S.; Gutleben, K. J.; Dahlem, P.; Brachmann, J.; Nölker, G.

    2010-01-01

    Myotonic dystrophy is a genetic muscular disease that is frequently associated with cardiac arrhythmias. Bradyarrhythmias, such as sinus bradycardia and atrioventricular block, are more common than tachyarrhythmias. Rarely, previously undiagnosed patients with myotonic dystrophy initially present with a tachyarrhythmia. We describe the case of a 14-year-old boy, who was admitted to the hospital with clinical signs and symptoms of decompensated heart failure and severely reduced left ventricular function. Electrocardiography showed common-type atrial flutter with 2 : 1 conduction resulting in a heart rate of 160 bpm. Initiation of medical therapy for heart failure as well as electrical cardioversion led to a marked clinical improvement. Catheter ablation of atrial flutter was performed to prevent future cardiac decompensations and to prevent development of tachymyopathy. Left ventricular function normalized during followup. Genetic analysis confirmed the clinical suspicion of myotonic dystrophy as known in other family members in this case. PMID:20871860

  10. Ventricular fibrillation induced by coagulating mode bipolar electrocautery during pacemaker implantation in Myotonic Dystrophy type 1 patient.

    PubMed

    Russo, Vincenzo; Rago, Anna; DI Meo, Federica; Cioppa, Nadia Della; Papa, Andrea Antonio; Russo, Maria Giovanna; Nigro, Gerardo

    2014-12-01

    The occurrence of ventricular fibrillation, induced by bipolar electrocautery during elective dual chamber pacemaker implantation, is reported in a patient affected by Myotonic Distrophy type 1 with normal left ventricular ejection fraction.

  11. Myotonic Dystrophy Family Registry

    ClinicalTrials.gov

    2016-03-28

    Myotonic Dystrophy; Congenital Myotonic Dystrophy; Myotonic Dystrophy 1; Myotonic Dystrophy 2; Dystrophia Myotonica; Dystrophia Myotonica 1; Dystrophia Myotonica 2; Myotonia Dystrophica; Myotonic Dystrophy, Congenital; Myotonic Myopathy, Proximal; PROMM (Proximal Myotonic Myopathy); Proximal Myotonic Myopathy; Steinert Disease; Steinert Myotonic Dystrophy; Steinert's Disease; Myotonia Atrophica

  12. Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review.

    PubMed

    Taniguchi-Ikeda, Mariko; Morioka, Ichiro; Iijima, Kazumoto; Toda, Tatsushi

    2016-10-01

    α-Dystroglycanopathy, an autosomal recessive disease, is associated with the development of a variety of diseases, including muscular dystrophy. In humans, α-dystroglycanopathy includes various types of congenital muscular dystrophy such as Fukuyama type congenital muscular dystrophy (FCMD), muscle eye brain disease (MEB), and the Walker Warburg syndrome (WWS), and types of limb girdle muscular dystrophy 2I (LGMD2I). α-Dystroglycanopathy share a common etiology, since it is invariably caused by gene mutations that are associated with the O-mannose glycosylation pathway of α-dystroglycan (α-DG). α-DG is a central member of the dystrophin glycoprotein complex (DGC) family in peripheral membranes, and the proper glycosylation of α-DG is essential for it to bind to extracellular matrix proteins, such as laminin, to cell components. The disruption of this ligand-binding is thought to result in damage to cell membrane integration, leading to the development of muscular dystrophy. Clinical manifestations of α-dystroglycanopathy frequently include mild to severe alterations in the central nervous system and optical manifestations in addition to muscular dystrophy. Eighteen causative genes for α-dystroglycanopathy have been identified to date, and it is likely that more will be reported in the near future. These findings have stimulated extensive and energetic investigations in this research field, and novel glycosylation pathways have been implicated in the process. At the same time, the use of gene therapy, antisense therapy, and enzymatic supplementation have been evaluated as therapeutic possibilities for some types of α-dystroglycanopathy. Here we review the molecular and clinical findings associated with α-dystroglycanopathy and the development of therapeutic approaches, by comparing the approaches with the development of Duchenne muscular dystrophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy

    PubMed Central

    Gawlik, Kinga I.; Holmberg, Johan; Svensson, Martina; Einerborg, Mikaela; Oliveira, Bernardo M. S.; Deierborg, Tomas; Durbeej, Madeleine

    2017-01-01

    A large number of human diseases are caused by chronic tissue injury with fibrosis potentially leading to organ failure. There is a need for more effective anti-fibrotic therapies. Congenital muscular dystrophy type 1A (MDC1A) is a devastating form of muscular dystrophy caused by laminin α2 chain-deficiency. It is characterized with early inflammation and build-up of fibrotic lesions, both in patients and MDC1A mouse models (e.g. dy3K/dy3K). Despite the enormous impact of inflammation on tissue remodelling in disease, the inflammatory response in MDC1A has been poorly described. Consequently, a comprehensive understanding of secondary mechanisms (impaired regeneration, enhanced fibrosis) leading to deterioration of muscle phenotype in MDC1A is missing. We have monitored inflammatory processes in dy3K/dy3K muscle and created mice deficient in laminin α2 chain and osteopontin or galectin-3, two pro-inflammatory and pro-fibrotic molecules drastically increased in dystrophic muscle. Surprisingly, deletion of osteopontin worsened the phenotype of dy3K/dy3K mice and loss of galectin-3 did not reduce muscle pathology. Our results indicate that osteopontin could even be a beneficial immunomodulator in MDC1A. This knowledge is essential for the design of future therapeutic interventions for muscular dystrophies that aim at targeting inflammation, especially that osteopontin inhibition has been suggested for Duchenne muscular dystrophy therapy. PMID:28281577

  14. Genetics Home Reference: lattice corneal dystrophy type II

    MedlinePlus

    ... lattice corneal dystrophy type II can have a facial expression that appears sad. Related Information What does it ... links) Children's Craniofacial Association: A Guide to Understanding Facial ... pathogenic mechanisms in gelsolin-related amyloidosis: in vitro expression reveals an abnormal gelsolin fragment. Hum Mol Genet. ...

  15. Refined mapping of a gene responsible for Fukuyama-type congenital muscular dystrophy: Evidence for strong linkage disequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toda, Tatsushi; Ikegawa, Shiro; Okui, Keiko

    1994-11-01

    Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. After our initial mapping of the FCMD locus to chromosome 9q31-33, we further defined the locus within a region of {approximately}5 cM between loci D9S127 and CA246, by homozygosity mapping in patients born to consanguineous marriages and by recombination analyses in other families. We also found evidence for strong linkage disequilibrium between FCMD and a polymorphic microsatellite marker, mfd220, which showed no recombination and a lod score of (Z) 17.49.more » A {open_quotes}111-bp{close_quotes} allele for the mfd220 was observed in 22 (34%) of 64 FCMD chromosomes, but it was present in only 1 of 120 normal chromosomes. This allelic association with FCMD was highly significant ({chi}{sup 2} = 50.7; P < .0001). Hence, we suspect that the FCMD gene could lie within a few hundred kilobases of the mfd220 locus. 32 refs., 2 figs., 2 tabs.« less

  16. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan.

    PubMed

    Carss, Keren J; Stevens, Elizabeth; Foley, A Reghan; Cirak, Sebahattin; Riemersma, Moniek; Torelli, Silvia; Hoischen, Alexander; Willer, Tobias; van Scherpenzeel, Monique; Moore, Steven A; Messina, Sonia; Bertini, Enrico; Bönnemann, Carsten G; Abdenur, Jose E; Grosmann, Carla M; Kesari, Akanchha; Punetha, Jaya; Quinlivan, Ros; Waddell, Leigh B; Young, Helen K; Wraige, Elizabeth; Yau, Shu; Brodd, Lina; Feng, Lucy; Sewry, Caroline; MacArthur, Daniel G; North, Kathryn N; Hoffman, Eric; Stemple, Derek L; Hurles, Matthew E; van Bokhoven, Hans; Campbell, Kevin P; Lefeber, Dirk J; Lin, Yung-Yao; Muntoni, Francesco

    2013-07-11

    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. [Educational and Professional Qualifications of Adults With Myotonic Dystrophies - A Misleading Perception by the Myopathic Face?].

    PubMed

    Stahl, K; Wenninger, S; Schüller, A; Montagnese, F; Schoser, B

    2016-04-01

    Myotonic dystrophies types 1 and 2 (DM1 / DM2) are the most frequent inherited progressive, segmental progeroid, multisystemic neuromuscular diseases in adulthood. The executive impairment is one of the key disease features. The myopathic face triggers the general perception of DM1 patients being associated with a low educational level. We used a standardized questionnaire to evaluate educational levels in adults with genetically confirmed DM1 and DM2 in comparison to data of the general population. Investigated topics included the level of education, e. g. the highest university degree aquired. Out of a total cohort of 546 DM patients, 125 DM1 and 156 DM2 patients (51 %) participated in this study. There was no statistically significant difference between the two collectives as far as high school levels are concerned. 50.4 % of DM1 and 48.3 % of DM2 patients obtained the higher education entrance qualification compared to 29.6 % of the normal German population. However, there were significant differences between the two collectives in "spelling problems" (DM1 cohort: p = 0.039), "difficulty in mental arithmetic" (p = 0.043), and classification of patients "with learning difficulties" (p = 0.012). Misled by a myopathic face, many physicians associate myotonic dystrophy with cognitive deficiency. Based on our study, the minimal deviation between DM1 and DM2 and the normal German population indicates that the multisystemic disease does not significantly influence the maximum attainable level of education in adults with DM1. In summary, physicians should be aware that the general educational levels are rather normal in patients with myotonic dystrophy type 1 and rethink their perception of DM1 patients. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    PubMed

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  19. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    PubMed Central

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  20. A Cross-Sectional Study of School Experiences of Boys with Duchenne and Becker Muscular Dystrophy

    ERIC Educational Resources Information Center

    Soim, Aida; Lamb, Molly; Campbell, Kimberly; Pandya, Shree; Peay, Holly; Howard, James F., Jr.; Fox, Deborah

    2016-01-01

    The objectives of this study were to investigate types of supportive school services received and factors related to provision of these services. We conducted a cross-sectional study to describe the school experience of males with Duchenne and Becker muscular dystrophies. Study subjects were identified through the Muscular Dystrophy Surveillance,…

  1. Ageing and muscular dystrophy differentially affect murine pharyngeal muscles in a region-dependent manner

    PubMed Central

    Randolph, Matthew E; Luo, Qingwei; Ho, Justin; Vest, Katherine E; Sokoloff, Alan J; Pavlath, Grace K

    2014-01-01

    The inability to swallow, or dysphagia, is a debilitating and life-threatening condition that arises with ageing or disease. Dysphagia results from neurological or muscular impairment of one or more pharyngeal muscles, which function together to ensure proper swallowing and prevent the aspiration of food or liquid into the lungs. Little is known about the effects of age or disease on pharyngeal muscles as a group. Here we show ageing affected pharyngeal muscle growth and atrophy in wild-type mice depending on the particular muscle analysed. Furthermore, wild-type mice also developed dysphagia with ageing. Additionally, we studied pharyngeal muscles in a mouse model for oculopharyngeal muscular dystrophy, a dysphagic disease caused by a polyalanine expansion in the RNA binding protein, PABPN1. We examined pharyngeal muscles of mice overexpressing either wild-type A10 or mutant A17 PABPN1. Overexpression of mutant A17 PABPN1 differentially affected growth of the palatopharyngeus muscle dependent on its location within the pharynx. Interestingly, overexpression of wild-type A10 PABPN1 was protective against age-related muscle atrophy in the laryngopharynx and prevented the development of age-related dysphagia. These results demonstrate that pharyngeal muscles are differentially affected by both ageing and muscular dystrophy in a region-dependent manner. These studies lay important groundwork for understanding the molecular and cellular mechanisms that regulate pharyngeal muscle growth and atrophy, which may lead to novel therapies for individuals with dysphagia. PMID:25326455

  2. Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1

    PubMed Central

    Savić Pavićević, Dušanka; Miladinović, Jelena; Brkušanin, Miloš; Šviković, Saša; Djurica, Svetlana; Brajušković, Goran; Romac, Stanka

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling. PMID:23586035

  3. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    ERIC Educational Resources Information Center

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  4. [Analysis of TGFBI gene mutation in a Chinese family affected with Reis-Bucklers corneal dystrophy].

    PubMed

    Guan, Tao; Zhang, Lingjie; Xu, Dejian; Wu, Haijian; Zheng, Libin

    2017-10-10

    To analyze the clinical features and TGFBI gene mutation in a Chinese family affected with Reis-Bucklers corneal dystrophy. Genomic DNA was extracted from 53 members including 9 patients from the family. The 17 exons and splice region of introns of the TGFBI gene were amplified by PCR and directly sequenced. All family members were subjected to ophthalmologic examination. A heterozygous mutation (R124L) was found in exon 4 of the TGFBI gene among all patients from the family. The same mutation was not found among unaffected family members. The inheritance pattern of the family was identified as autosomal dominant, and the Reis-Bucklers corneal dystrophy in the family was diagnosed as the geographic type. The R124L mutation of the TGFBI gene probably underlies the pathogenesis of Reis-Bucklers corneal dystrophy in this Chinese family. Molecular genetic approach is useful for the proper diagnosis of this type of corneal dystrophy.

  5. Oropharyngeal dysphagia in myotonic dystrophy type 1: a systematic review.

    PubMed

    Pilz, Walmari; Baijens, Laura W J; Kremer, Bernd

    2014-06-01

    A systematic review was conducted to investigate the pathophysiology of and diagnostic procedures for oropharyngeal dysphagia in myotonic dystrophy (MD). The electronic databases Embase, PubMed, and The Cochrane Library were used. The search was limited to English, Dutch, French, German, Spanish, and Portuguese publications. Sixteen studies met the inclusion criteria. Two independent reviewers assessed the methodological quality of the included articles. Swallowing assessment tools, the corresponding protocols, the studies' outcome measurements, and main findings are summarized and presented. The body of literature on pathophysiology of swallowing in dysphagic patients with MD type 1 remains scant. The included studies are heterogeneous with respect to design and outcome measures and hence are not directly comparable. More importantly, most studies had methodological problems. These are discussed in detail and recommendations for further research on diagnostic examinations for swallowing disorders in patients with MD type 1 are provided.

  6. French translation and cross-cultural adaptation of The Myotonic Dystrophy Health Index.

    PubMed

    Gagnon, Cynthia; Tremblay, Marjolaine; CôTé, Isabelle; Heatwole, Chad

    2018-04-01

    Validation studies of disease-specific instruments for myotonic dystrophy type-1 (DM1) are required prior to their global use in clinical trials involving different cultures and countries. Here we translate and culturally adapt the Myotonic Dystrophy Health Index (MDHI), a disease-specific patient-reported outcome (PRO) measure, for a French DM1 population. Using the International Society for Pharmacoeconomics and Outcomes Research Task Force method for translation and adaptation of PRO questionnaires, we created a French translation of the MDHI. We subsequently tested this instrument in a cohort of French-speaking patients with DM1. The MDHI was forward and back translated and modified by consensus to create the most compatible translation. Cognitive interviews were conducted with 5 patients with DM1 to ensure the usability and understanding of the translation. The French version of the MDHI is an optimal translation of the original instrument that is acceptable to native patients and ready for clinical trial use. Muscle Nerve 57: 686-689, 2018. © 2017 Wiley Periodicals, Inc.

  7. [Obstetrical care in myotonic dystrophy type 1 (Steinert disease)].

    PubMed

    Jah, H; Schalinksi, E; Fischer, J; Maier, J T; Schunck, K U; Hellmeyer, L

    2015-08-01

    In 1909 the neurologist Dr. Hans Steinert was the first to describe the most common of all neural-muscular diseases: Mytotonic Dystrophy Curschmann Steinert. Up to today this disease is seldom published particularly in obstetrics. This is a case report of a 23-year-old patient. Following extensive interdisciplinary diagnostic a successful caesarian delivery of a healthy boy was performed in the 39(th) week of pregnancy without any complications. © Georg Thieme Verlag KG Stuttgart · New York.

  8. PubMed Central

    MEOLA, GIOVANNI

    2013-01-01

    Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) was described more than 100 years ago and is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) was identified only 18 years ago and is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. DM1 may present in four different forms: congenital, early childhood, adult onset and late-onset oligosymptomatic DM1. Congenital DM1 is the most severe form of DM characterized by extreme muscle weakness and mental retardation. In DM2 the clinical phenotype is extremely variable and there are no distinct clinical subgroups. Congenital and childhood-onset forms are not present in DM2 and, in contrast to DM1, myotonia may be absent even on EMG. Due to the lack of awareness of the disease among clinicians, DM2 remains largely underdiagnosed. The delay in receiving the correct diagnosis after onset of first symptoms is very long in DM: on average more than 5 years for DM1 and more than 14 years for DM2 patients. The long delay in the diagnosis of DM causes unnecessary problems for the patients to manage their lives and anguish with uncertainty of prognosis and treatment. PMID:24803843

  9. Myotonic dystrophy type 1: clinical manifestations in children and adolescents.

    PubMed

    Ho, Genevieve; Carey, Kate A; Cardamone, Michael; Farrar, Michelle A

    2018-06-05

    Myotonic dystrophy type 1 (DM1) is an autosomal-dominant neuromuscular disease with variable severity affecting all ages; however, current care guidelines are adult-focused. The objective of the present study was to profile DM1 in childhood and propose a framework to guide paediatric-focused management. 40 children with DM1 (mean age 12.8 years; range 2-19) were studied retrospectively for a total of 513 follow-up years at Sydney Children's Hospital. 143 clinical parameters were recorded. The clinical spectrum of disease in childhood differs from adults, with congenital myotonic dystrophy (CDM1) having more severe health issues than childhood-onset/juvenile patients (JDM1). Substantial difficulties with intellectual (CDM1 25/26 96.2%; JDM1 9/10, 90.0%), fine motor (CDM1 23/30, 76.6%; JDM1 6/10, 60.0%), gastrointestinal (CDM1 17/30, 70.0%; JDM1 3/10, 30.0%) and neuromuscular function (CDM1 30/30, 100.0%; JDM1 25/30, 83.3%) were evident. The health consequences of DM1 in childhood are diverse, highlighting the need for paediatric multidisciplinary management approaches that encompass key areas of cognition, musculoskeletal, gastrointestinal, respiratory, cardiac and sleep issues. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Abnormal Collagen Metabolism in Cultured Skin Fibroblasts from Patients with Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    Rodemann, H. Peter; Bayreuther, Klaus

    1984-08-01

    Total collagen synthesis is decreased by about 29% (P < 0.01) in skin fibroblasts established in vitro from male patients with Duchenne muscular dystrophy (DMD) as compared with that in normal male skin fibroblasts in vitro. The reduction in collagen synthesis is associated with an approximately 2-fold increase in collagen degradation in DMD fibroblasts. Correlated to these alterations in the metabolism of collagen, DMD fibroblasts express a significantly higher hydroxyproline/proline ratio (DMD: 1.36-1.45; P < 0.01) than do normal fibroblasts (controls: 0.86-0.89). The increased hydroxylation of proline residues of collagen (composed of type I and type III) could be the cause for the enhanced degradation of collagen in DMD fibroblasts.

  11. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    PubMed Central

    Cruz Guzmán, Oriana del Rocío; Chávez García, Ana Laura; Rodríguez-Cruz, Maricela

    2012-01-01

    Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset. PMID:22701119

  12. Lower limb muscle impairment in myotonic dystrophy type 1: the need for better guidelines.

    PubMed

    Petitclerc, Émilie; Hébert, Luc J; Desrosiers, Johanne; Gagnon, Cynthia

    2015-04-01

    In myotonic dystrophy type 1 (DM1), leg muscle weakness is a major impairment. There are challenges to obtaining a clear portrait of muscle strength impairment. A systematic literature review was conducted on lower limb strength impairment in late-onset and adult phenotypes to document variables which affect strength measurement. Thirty-two articles were reviewed using the COSMIN guidelines. Only a third of the studies described a reproducible protocol. Only 2 muscle groups have documented reliability for quantitative muscle testing and only 1 total score for manual muscle testing. Variables affecting muscle strength impairment are not described in most studies. This review illustrates the variability in muscle strength assessment in relation to DM1 characteristics and the questionable validity of the results with regard to undocumented methodological properties. There is therefore a clear need to adopt a consensus on the use of a standardized muscle strength assessment protocol. © 2015 Wiley Periodicals, Inc.

  13. LAMA2-related myopathy: Frequency among congenital and limb-girdle muscular dystrophies.

    PubMed

    Løkken, Nicoline; Born, Alfred Peter; Duno, Morten; Vissing, John

    2015-10-01

    Muscular dystrophy caused by LAMA2-gene mutations is an autosomal recessive disease typically presenting as a severe, early-onset congenital muscular dystrophy (CMD). However, milder cases with a limb-girdle type muscular dystrophy (LGMD) have been described. In this study, we assessed the frequency and phenotypic spectrum of LAMA2-related muscular dystrophy in CMD (n = 18) and LGMD2 (n = 128) cohorts identified in the last 15 years in eastern Denmark. The medical history, brain-MRI, muscle pathology, muscle laminin-α2 expression, and genetic analyses were assessed. Molecular genetics revealed 2 pathogenic LAMA2 mutations in 5 of 18 CMD and 3 of 128 LGMD patients, corresponding to a LAMA2-mutation frequency of 28% in the CMD and 2.3% in the LGMD cohorts, respectively. This study demonstrates a wide clinical spectrum of LAMA2-related muscular dystrophy and its prevalence in an LGMD2 cohort, which indicates that LAMA2 muscular dystrophy should be included in the LGMD2 nomenclature. © 2015 Wiley Periodicals, Inc.

  14. Clinical trial network for the promotion of clinical research for rare diseases in Japan: muscular dystrophy clinical trial network.

    PubMed

    Shimizu, Reiko; Ogata, Katsuhisa; Tamaura, Akemi; Kimura, En; Ohata, Maki; Takeshita, Eri; Nakamura, Harumasa; Takeda, Shin'ichi; Komaki, Hirofumi

    2016-07-11

    Duchenne muscular dystrophy (DMD) is the most commonly inherited neuromuscular disease. Therapeutic agents for the treatment of rare disease, namely "orphan drugs", have recently drawn the attention of researchers and pharmaceutical companies. To ensure the successful conduction of clinical trials to evaluate novel treatments for patients with rare diseases, an appropriate infrastructure is needed. One of the effective solutions for the lack of infrastructure is to establish a network of rare diseases. To accomplish the conduction of clinical trials in Japan, the Muscular dystrophy clinical trial network (MDCTN) was established by the clinical research group for muscular dystrophy, including the National Center of Neurology and Psychiatry, as well as national and university hospitals, all which have a long-standing history of research cooperation. Thirty-one medical institutions (17 national hospital organizations, 10 university hospitals, 1 national center, 2 public hospitals, and 1 private hospital) belong to this network and collaborate to facilitate clinical trials. The Care and Treatment Site Registry (CTSR) calculates and reports the proportion of patients with neuromuscular diseases in the cooperating sites. In total, there are 5,589 patients with neuromuscular diseases in Japan and the proportion of patients with each disease is as follows: DMD, 29 %; myotonic dystrophy type 1, 23 %; limb girdle muscular dystrophy, 11 %; Becker muscular dystrophy, 10 %. We work jointly to share updated health care information and standardized evaluations of clinical outcomes as well. The collaboration with the patient registry (CTSR), allows the MDCTN to recruit DMD participants with specific mutations and conditions, in a remarkably short period of time. Counting with a network that operates at a national level is important to address the corresponding national issues. Thus, our network will be able to contribute with international research activity, which can lead to an improvement of neuromuscular disease treatment in Japan.

  15. The muscular dystrophies associated with central nervous system lesions: a brief review from a standpoint of the localization and function of causative genes.

    PubMed

    Yamamoto, Tomoko; Hiroi, Atsuko; Osawa, Makiko; Shibata, Noriyuki

    2014-01-01

    The muscular dystrophies have been traditionally classified based mainly on clinical manifestation and mode of inheritance. Owing to the discoveries of causative genes, new terminologies derived from each gene, such as dystrophinopathy, α-dystroglycanopathy, sarcoglycanopathy and fukutinopathy, have also become common. Mutations of each gene may cause several clinical phenotypes. Some muscular dystrophies accompany central nervous system (CNS) lesions, especially in the congenital muscular dystrophies. Cobblestone lissencephaly (type II lissencephaly) is a well-known CNS malformation observed in severe forms of α-dystroglycanopathy. Moreover, CNS involvement has been reported in other muscular dystrophies, such as Duchenne muscular dystrophy. In this review, genes related to the muscular dystrophies associated with CNS lesions are briefly described along with the molecular characteristics of each gene and the pathomechanism of the CNS lesions. Understanding of both the clinicopathological characteristics of these CNS lesions and their molecular mechanisms is important for the diagnosis, care of patients, and development of new therapeutic strategies.

  16. Peripheral neuropathy in patients with myotonic dystrophy type 2.

    PubMed

    Leonardis, L

    2017-05-01

    Myotonic dystrophy type 2 (dystrophia myotonica type 2-DM2) is an autosomal dominant multi-organ disorder. The involvement of the peripheral nervous system was found in 25%-45% of patients with myotonic dystrophy type 1, although limited data are available concerning polyneuropathy in patients with DM2, which was the aim of this study with a thorough presentation of the cases with peripheral neuropathy. Patients with genetically confirmed DM2 underwent motor nerve conduction studies of the median, ulnar, tibial and fibular nerves and sensory nerve conduction studies of the median (second finger), ulnar (fifth finger), radial (forearm) and sural nerves. Seventeen adult patients with DM2 participated in the study. Fifty-three percent (9/17) of our patients had abnormality of one or more attributes (latency, amplitude or conduction velocity) in two or more separate nerves. Four types of neuropathies were found: (i) predominantly axonal motor and sensory polyneuropathy, (ii) motor polyneuropathy, (iii) predominantly demyelinating motor and sensory polyneuropathy and (iv) mutilating polyneuropathy with ulcers. The most common forms are axonal motor and sensory polyneuropathy (29%) and motor neuropathy (18% of all examined patients). No correlations were found between the presence of neuropathy and age, CCTG repeats, blood glucose or HbA1C. Peripheral neuropathy is common in patients with DM2 and presents one of the multisystemic manifestations of DM2. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Rhabdomyolysis associated with human parvovirus B19 infection in a patient with Fukuyama-type congenital muscular dystrophy.

    PubMed

    Ishikawa, Aki; Yoto, Yuko; Ohya, Kazuhiro; Tsugawa, Takeshi; Tsutsumi, Hiroyuki

    2014-07-01

    Patients with Fukuyama-type congenital muscular dystrophy sometimes experience transient exacerbations of muscle weakness. We took care of a 9-year-old boy with Fukuyama-type congenital muscular dystrophy who presented with acute respiratory failure and decreased exercise ability with marked elevation of serum creatine kinase indicating rhabdomyolysis. At that time, his younger sister suffered from erythema infectiosum. Although he had no particular symptoms, he was tested and proven to have acute human parvovirus B19 infection based on detection of anti-B19 IgM and parvovirus B19 DNA in his serum. His acute rhabdomyolysis was possibly triggered by human parvovirus B19 infection. © The Author(s) 2013.

  18. Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies

    PubMed Central

    Rouillon, Jérémy; Poupiot, Jérôme; Zocevic, Aleksandar; Amor, Fatima; Léger, Thibaut; Garcia, Camille; Camadro, Jean-Michel; Wong, Brenda; Pinilla, Robin; Cosette, Jérémie; Coenen-Stass, Anna M.L.; Mcclorey, Graham; Roberts, Thomas C.; Wood, Matthew J.A.; Servais, Laurent; Udd, Bjarne; Voit, Thomas; Richard, Isabelle; Svinartchouk, Fedor

    2015-01-01

    Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders. PMID:26060189

  19. PubMed Central

    NIGRO, GERARDO; PAPA, ANDREA ANTONIO; POLITANO, LUISA

    2012-01-01

    Myotonic dystrophy (Dystrophia Myotonica, DM) is the most frequently inherited neuromuscular disease of adult life. It is a multisystemic disease with major cardiac involvement. Core features of myotonic dystrophy are myotonia, muscle weakness, cataract, respiratory failure and cardiac conduction abnormalities. Classical DM, first described by Steinert and called Steinert's disease or DM1 (Dystrophia Myotonica type 1) has been identified as an autosomal dominant disorder associated with the presence of an abnormal expansion of a CTG trinucleotide repeat in the 3' untranslated region of DMPK gene on chromosome 19. This review will mainly focus on the various aspects of cardiac involvement in DM1 patients and the current role of cardiac pacing in their treatment. PMID:23097601

  20. ZNF9 Activation of IRES-Mediated Translation of the Human ODC mRNA Is Decreased in Myotonic Dystrophy Type 2

    PubMed Central

    Sammons, Morgan A.; Antons, Amanda K.; Bendjennat, Mourad; Udd, Bjarne; Krahe, Ralf; Link, Andrew J.

    2010-01-01

    Myotonic dystrophy types 1 and 2 (DM1 and DM2) are forms of muscular dystrophy that share similar clinical and molecular manifestations, such as myotonia, muscle weakness, cardiac anomalies, cataracts, and the presence of defined RNA-containing foci in muscle nuclei. DM2 is caused by an expansion of the tetranucleotide CCTG repeat within the first intron of ZNF9, although the mechanism by which the expanded nucleotide repeat causes the debilitating symptoms of DM2 is unclear. Conflicting studies have led to two models for the mechanisms leading to the problems associated with DM2. First, a gain-of-function disease model hypothesizes that the repeat expansions in the transcribed RNA do not directly affect ZNF9 function. Instead repeat-containing RNAs are thought to sequester proteins in the nucleus, causing misregulation of normal cellular processes. In the alternative model, the repeat expansions impair ZNF9 function and lead to a decrease in the level of translation. Here we examine the normal in vivo function of ZNF9. We report that ZNF9 associates with actively translating ribosomes and functions as an activator of cap-independent translation of the human ODC mRNA. This activity is mediated by direct binding of ZNF9 to the internal ribosome entry site sequence (IRES) within the 5′UTR of ODC mRNA. ZNF9 can activate IRES-mediated translation of ODC within primary human myoblasts, and this activity is reduced in myoblasts derived from a DM2 patient. These data identify ZNF9 as a regulator of cap-independent translation and indicate that ZNF9 activity may contribute mechanistically to the myotonic dystrophy type 2 phenotype. PMID:20174632

  1. Vitelliform dystrophies: Prevalence in Olmsted County, Minnesota, United States.

    PubMed

    Dalvin, Lauren A; Pulido, Jose S; Marmorstein, Alan D

    2017-01-01

    Vitelliform dystrophies are a group of macular degenerative diseases characterized by round yellow lesions in the macula. While often idiopathic, vitelliform dystrophies include inherited maculopathies such as Best disease and some cases of pattern dystrophy. The prevalence of vitelliform dystrophies in the United States has not been reported. This study examined the prevalence of vitelliform dystrophies in Olmsted County, Minnesota. The Rochester Epidemiology Project database was used to identify all cases of vitelliform or pattern dystrophy in Olmsted County from 1 January 2000-31 December 2014. Overall, 27 patients had true vitelliform lesions, indicating a prevalence of 1 in 5500. Of these, two had genetically confirmed Best disease, and an additional five to seven carried a diagnosis of Best disease, which chart reviews confirmed as probable cases; 18-20 patients had adult-onset vitelliform macular dystrophy. The prevalence of Best disease was 1 in 16,500 to 1 in 21,000. Adult-onset vitelliform macular dystrophy was found in 1 in 7400 to 1 in 8200. Vitelliform dystrophies affect 1 in 5500 individuals in Olmsted County. While the values in this study provide good estimates for the prevalence of Best disease versus adult-onset vitelliform macular dystrophy, the results are limited by dependence on diagnoses made by other ophthalmologists and underutilization of genetic testing. Thus, these diseases should be thought of as at least as prevalent as reported here. As therapies for Best disease and other macular degenerative diseases are quickly becoming a reality, genetic testing should be employed as the gold standard for diagnosis of these diseases.

  2. Staufen1s role as a splicing factor and a disease modifier in Myotonic Dystrophy Type I

    PubMed Central

    Bondy-Chorney, Emma; Crawford Parks, Tara E.; Ravel-Chapuis, Aymeric; Jasmin, Bernard J.; Côté, Jocelyn

    2016-01-01

    ABSTRACT In a recent issue of PLOS Genetics, we reported that the double-stranded RNA-binding protein, Staufen1, functions as a disease modifier in the neuromuscular disorder Myotonic Dystrophy Type I (DM1). In this work, we demonstrated that Staufen1 regulates the alternative splicing of exon 11 of the human Insulin Receptor, a highly studied missplicing event in DM1, through Alu elements located in an intronic region. Furthermore, we found that Staufen1 overexpression regulates numerous alternative splicing events, potentially resulting in both positive and negative effects in DM1. Here, we discuss our major findings and speculate on the details of the mechanisms by which Staufen1 could regulate alternative splicing, in both normal and DM1 conditions. Finally, we highlight the importance of disease modifiers, such as Staufen1, in the DM1 pathology in order to understand the complex disease phenotype and for future development of new therapeutic strategies. PMID:27695661

  3. 'Laminopathies': A wide spectrum of human diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013

    2007-06-10

    Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less

  4. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy

    PubMed Central

    Villalta, S. Armando; Rosenthal, Wendy; Martinez, Leonel; Kaur, Amanjot; Sparwasser, Tim; Tidball, James G.; Margeta, Marta; Spencer, Melissa J.; Bluestone, Jeffrey A.

    2016-01-01

    We examined the hypothesis that regulatory T cells (Tregs) modulate muscle injury and inflammation in the mdx mouse model of Duchenne muscular dystrophy (DMD). Although Tregs were largely absent in the muscle of wildtype mice and normal human muscle, they were present in necrotic lesions, displayed an activated phenotype and showed increased expression of interleukin (IL)-10 in dystrophic muscle from mdx mice. Depletion of Tregs exacerbated muscle injury and the severity of muscle inflammation, which was characterized by an enhanced interferon-gamma (IFNγ) response and activation of M1 macrophages. To test the therapeutic value of targeting Tregs in muscular dystrophy, we treated mdx mice with IL-2/anti-IL-2 complexes (IL-2c), and found that Tregs and IL-10 concentrations were increased in muscle, resulting in reduced expression of cyclooygenase-2 and decreased myofiber injury. These findings suggest that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation in muscle associated with muscle fiber injury, and highlight the potential of Treg-modulating agents as therapeutics for DMD. PMID:25320234

  5. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    DOE PAGES

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; ...

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less

  6. Pathogenic mutations of TGFBI and CHST6 genes in Chinese patients with Avellino, lattice, and macular corneal dystrophies.

    PubMed

    Huo, Ya-nan; Yao, Yu-feng; Yu, Ping

    2011-09-01

    To investigate gene mutations associated with three different types of corneal dystrophies (CDs), and to establish a phenotype-genotype correlation. Two patients with Avellino corneal dystrophy (ACD), four patients with lattice corneal dystrophy type I (LCD I) from one family, and three patients with macular corneal dystrophy type I (MCD I) were subjected to both clinical and genetic examinations. Slit lamp examination was performed for all the subjects to assess their corneal phenotypes. Genomic DNA was extracted from peripheral blood leukocytes. The coding regions of the human transforming growth factor β-induced (TGFBI) gene and carbohydrate sulfotransferase 6 (CHST6) gene were amplified by polymerase chain reaction (PCR) and subjected to direct sequencing. DNA samples from 50 healthy volunteers were used as controls. Clinical examination showed three different phenotypes of CDs. Genetic examination identified that two ACD subjects were associated with homozygous R124H mutation of TGFBI, and four LCD I subjects were all associated with R124C heterozygous mutation. One MCD I subject was associated with a novel S51X homozygous mutation in CHST6, while the other two MCD I subjects harbored a previously reported W232X homozygous mutation. Our study highlights the prevalence of codon 124 mutations in the TGFBI gene among the Chinese ACD and LCD I patients. Moreover, we found a novel mutation among MCD I patients.

  7. Preliminary diffusion tensor imaging studies in limb-girdle muscular dystrophies

    NASA Astrophysics Data System (ADS)

    Hidalgo-Tobon, S.; Hernandez-Salazar, G.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodriguez, A. O.; Delgado-Hernandez, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. This type of dystrophy involves the shoulder and pelvic girdles, distinct phenotypic or clinical characteristics are recognized. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee. USA), using a combination of two eight-channel coil array. Diffusion Tensor Imaging (DTI) data were acquired using a SE-EPI sequence, diffusion weighted gradients were applied along 30 non-collinear directions with a b-value=550 s/mm2. The connective tissue content does not appear to have a significant effect on the directionality of the diffusion, as assessed by fractional anisotropy. The fibers of the Sartorius muscle and gracilis showed decreased number of tracts, secondary to fatty infiltration and replacement of connective tissue and muscle mass loss characteristic of the underlying pathology. Our results demonstrated the utility of non-invasive MRI techniques to characterize the muscle pathology, through quantitative and qualitative methods such as the FA values and tractrography.

  8. Genetics Home Reference: Fukuyama congenital muscular dystrophy

    MedlinePlus

    ... Fujii T, Aiba H, Toda T. Seizure-genotype relationship in Fukuyama-type congenital muscular dystrophy. Brain Dev. ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  9. The heart and cardiac pacing in Steinert disease.

    PubMed

    Nigro, Gerardo; Papa, Andrea Antonio; Politano, Luisa

    2012-10-01

    Myotonic dystrophy (Dystrophia Myotonica, DM) is the most frequently inherited neuromuscular disease of adult life. It is a multisystemic disease with major cardiac involvement. Core features of myotonic dystrophy are myotonia, muscle weakness, cataract, respiratory failure and cardiac conduction abnormalities. Classical DM, first described by Steinert and called Steinert's disease or DM1 (Dystrophia Myotonica type 1) has been identified as an autosomal dominant disorder associated with the presence of an abnormal expansion of a CTG trinucleotide repeat in the 3' untranslated region of DMPK gene on chromosome 19. This review will mainly focus on the various aspects of cardiac involvement in DM1 patients and the current role of cardiac pacing in their treatment.

  10. Early Events in the Amyloid Formation of the A546T Mutant of Transforming Growth Factor β-Induced Protein in Corneal Dystrophies Compared to the Nonfibrillating R555W and R555Q Mutants.

    PubMed

    Koldsø, Heidi; Andersen, Ole Juul; Nikolajsen, Camilla Lund; Scavenius, Carsten; Sørensen, Charlotte S; Underhaug, Jarl; Runager, Kasper; Nielsen, Niels Chr; Enghild, Jan J; Schiøtt, Birgit

    2015-09-15

    The human transforming growth factor β-induced protein (TGFBIp) is involved in several types of corneal dystrophies where protein aggregation and amyloid fibril formation severely impair vision. Most disease-causing mutations are located in the last of four homologous fasciclin-1 (FAS1) domains of the protein, and it has been shown that when isolated, the fourth FAS1 domain (FAS1-4) mimics the behavior of full-length TGFBIp. In this study, we use molecular dynamics simulations and principal component analysis to study the wild-type FAS1-4 domain along with three disease-causing mutations (R555W, R555Q, and A546T) to decipher any internal difference in dynamical properties of the domains that may explain their varied stabilities and aggregation properties. In addition, we use a protein-protein docking method in combination with chemical cross-linking experiments and mass spectrometry of the cross-linked species to obtain information about interaction faces between identical FAS1-4 domains. The results show that the pathogenic mutations A546T and R555W affect the packing in the hydrophobic core of FAS1-4 in different directions. We further show that the FAS1-4 monomers associate using their β-rich regions, consistent with peptides observed to be part of the amyloid fibril core in lattice corneal dystrophy patients.

  11. Myotonic Dystrophy Type 1 Management and Therapeutics.

    PubMed

    Smith, Cheryl A; Gutmann, Laurie

    2016-12-01

    Myotonic dystrophy (DM1) is the most common form of adult muscular dystrophy. It is a multisystem disorder with a complex pathophysiology. Although inheritance is autosomal dominant, disease variability is attributed to anticipation, a maternal expansion bias, variable penetrance, somatic mosaicism, and a multitude of aberrant pre-mRNA splicing events. Patient presentations range from asymptomatic or mild late onset adult to severe congenital forms. Multiple organ systems may be affected. Patients may experience early cataracts, myotonia, muscle weakness/atrophy, fatigue, excessive daytime sleepiness, central/obstructive apnea, respiratory failure, cardiac arrhythmia, insulin resistance, dysphagia, GI dysmotility, cognitive impairment, Cluster C personality traits, and/or mood disorders. At present, there is no curative or disease-modifying treatment, although clinical treatment trials have become more promising. Management focuses on genetic counseling, preserving function and independence, preventing cardiopulmonary complications, and symptomatic treatment (e.g., pain, myotonia, hypersomnolence, etc.). Currently, there is an increasing international consensus on monitoring and treatment options for these patients which necessitates a multidisciplinary team to provide comprehensive, coordinated clinical care.

  12. Uncovering the Role of Hypermethylation by CTG Expansion in Myotonic Dystrophy Type 1 Using Mutant Human Embryonic Stem Cells

    PubMed Central

    Yanovsky-Dagan, Shira; Avitzour, Michal; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Mitrani-Rosenbaum, Stella; Levy-Lahad, Ephrat; Birnbaum, Ramon Y.; Gepstein, Lior; Epsztejn-Litman, Silvina; Eiges, Rachel

    2015-01-01

    Summary CTG repeat expansion in DMPK, the cause of myotonic dystrophy type 1 (DM1), frequently results in hypermethylation and reduced SIX5 expression. The contribution of hypermethylation to disease pathogenesis and the precise mechanism by which SIX5 expression is reduced are unknown. Using 14 different DM1-affected human embryonic stem cell (hESC) lines, we characterized a differentially methylated region (DMR) near the CTGs. This DMR undergoes hypermethylation as a function of expansion size in a way that is specific to undifferentiated cells and is associated with reduced SIX5 expression. Using functional assays, we provide evidence for regulatory activity of the DMR, which is lost by hypermethylation and may contribute to DM1 pathogenesis by causing SIX5 haplo-insufficiency. This study highlights the power of hESCs in disease modeling and describes a DMR that functions both as an exon coding sequence and as a regulatory element whose activity is epigenetically hampered by a heritable mutation. PMID:26190529

  13. Proteomics identification of differentially expressed proteins in the muscle of dysferlin myopathy patients.

    PubMed

    De la Torre, Carolina; Illa, Isabel; Faulkner, Georgine; Soria, Laura; Robles-Cedeño, Rene; Dominguez-Perles, Raul; De Luna, Noemí; Gallardo, Eduard

    2009-04-01

    The muscular dystrophies are a large and heterogeneous group of neuromuscular disorders that can be classified according to the mode of inheritance, the clinical phenotype and the molecular defect. To better understand the pathological mechanisms of dysferlin myopathy we compared the protein-expression pattern in the muscle biopsies of six patients with this disease with six patients with limb girdle muscular dystrophy 2A, five with facioscapulohumeral dystrophy and six normal control subjects. To investigate differences in the expression levels of skeletal muscle proteins we used 2-DE and MS. Western blot or immunohistochemistry confirmed relevant results. The study showed specific increase expression of proteins involved in fast-to-slow fiber type conversion (ankyrin repeat protein 2), type I predominance (phosphorylated forms of slow troponin T), sarcomere stabilization (actinin-associated LIM protein), protein ubiquitination (TRIM 72) and skeletal muscle differentiation (Rho-GDP-dissociation inhibitor ly-GDI) in dysferlin myopathy. As anticipated, we also found differential expression of proteins common to all the muscular dystrophies studied. This comparative proteomic analysis suggests that in dysferlin myopathy (i) the type I fiber predominance is an active process of fiber type conversion rather than a selective loss of type II fibers and (ii) the dysregulation of proteins involved in muscle differentiation further confirms the role of dysferlin in this process. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.

    PubMed

    Hightower, Rylie M; Alexander, Matthew S

    2018-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.

  15. Genetic Modifiers of Duchenne and Facioscapulohumeral Muscular Dystrophies

    PubMed Central

    Hightower, Rylie M.; Alexander, Matthew S.

    2017-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost, have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. PMID:28877560

  16. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles.

    PubMed

    Furuta, Mitsuru; Sumi-Akamaru, Hisae; Takahashi, Masanori P; Hayashi, Yukiko K; Nishino, Ichizo; Mochizuki, Hideki

    2016-09-01

    Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for Limb-girdle muscular dystrophy, Facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy.

    PubMed

    Matsuzaka, Yasunari; Kishi, Soichiro; Aoki, Yoshitsugu; Komaki, Hirofumi; Oya, Yasushi; Takeda, Shin-Ichi; Hashido, Kazuo

    2014-11-01

    Muscular dystrophies are a clinically and genetically heterogeneous group of inherited myogenic disorders. In clinical tests for these diseases, creatine kinase (CK) is generally used as diagnostic blood-based biomarker. However, because CK levels can be altered by various other factors, such as vigorous exercise, etc., false positive is observed. Therefore, three microRNAs (miRNAs), miR-1, miR-133a, and miR-206, were previously reported as alternative biomarkers for duchenne muscular dystrophy (DMD). However, no alternative biomarkers have been established for the other muscular dystrophies. We, therefore, evaluated whether these miR-1, miR-133a, and miR-206 can be used as powerful biomarkers using the serum from muscular dystrophy patients including DMD, myotonic dystrophy 1 (DM1), limb-girdle muscular dystrophy (LGMD), facioscapulohumeral muscular dystrophy (FSHD), becker muscular dystrophy (BMD), and distal myopathy with rimmed vacuoles (DMRV) by qualitative polymerase chain reaction (PCR) amplification assay. Statistical analysis indicated that all these miRNA levels in serum represented no significant differences between all muscle disorders examined in this study and controls by Bonferroni correction. However, some of these indicated significant differences without correction for testing multiple diseases (P < 0.05). The median values of miR-1 levels in the serum of patients with LGMD, FSHD, and BMD were approximately 5.5, 3.3 and 1.7 compared to that in controls, 0.68, respectively. Similarly, those of miR-133a and miR-206 levels in the serum of BMD patients were about 2.5 and 2.1 compared to those in controls, 1.03 and 1.32, respectively. Taken together, our data demonstrate that levels of miR-1, miR-133a, and miR-206 in serum of BMD and miR-1 in sera of LGMD and FSHD patients showed no significant differences compared with those of controls by Bonferroni correction. However, the results might need increase in sample sizes to evaluate these three miRNAs as variable biomarkers.

  18. Clinical, pathological, and genetic features of limb-girdle muscular dystrophy type 2A with new calpain 3 gene mutations in seven patients from three Japanese families.

    PubMed

    Kawai, H; Akaike, M; Kunishige, M; Inui, T; Adachi, K; Kimura, C; Kawajiri, M; Nishida, Y; Endo, I; Kashiwagi, S; Nishino, H; Fujiwara, T; Okuno, S; Roudaut, C; Richard, I; Beckmann, J S; Miyoshi, K; Matsumoto, T

    1998-11-01

    We report on the clinical, pathological, and genetic features of 7 patients with limb-girdle muscular dystrophy type 2A (LGMD2A) from three Japanese families. The mean age of onset was 9.7+/-3.1 years (mean+/-SD), and loss of ambulance occurred at 38.5+/-2.1 years. Muscle atrophy was predominant in the pelvic and shoulder girdles, and proximal limb muscles. Muscle pathology revealed dystrophic changes. In two families, an identical G to C mutation at position 1080 the in calpain 3 gene was identified, and a frameshift mutation (1796insA) was found in the third family. The former mutation results in a W360R substitution in the proteolytic site of calpain 3, and the latter in a deletion of the Ca2+-binding domain.

  19. Induction and Reversal of Myotonic Dystrophy Type 1 Pre-mRNA Splicing Defects by Small Molecules

    PubMed Central

    Childs-Disney, Jessica L.; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z.; Hoskins, Jason; Southall, Noel; Marugan, Juan J.; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P.; Schatz, George C.; Sobczak, Krzysztof; Thornton, Charles A.; Disney, Matthew D.

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 (DM1) is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)exp). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. The thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)exp and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)exp. This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)exp and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of DM1. PMID:23806903

  20. Pathogenic mutations of TGFBI and CHST6 genes in Chinese patients with Avellino, lattice, and macular corneal dystrophies

    PubMed Central

    Huo, Ya-nan; Yao, Yu-feng; Yu, Ping

    2011-01-01

    Objective: To investigate gene mutations associated with three different types of corneal dystrophies (CDs), and to establish a phenotype-genotype correlation. Methods: Two patients with Avellino corneal dystrophy (ACD), four patients with lattice corneal dystrophy type I (LCD I) from one family, and three patients with macular corneal dystrophy type I (MCD I) were subjected to both clinical and genetic examinations. Slit lamp examination was performed for all the subjects to assess their corneal phenotypes. Genomic DNA was extracted from peripheral blood leukocytes. The coding regions of the human transforming growth factor β-induced (TGFBI) gene and carbohydrate sulfotransferase 6 (CHST6) gene were amplified by polymerase chain reaction (PCR) and subjected to direct sequencing. DNA samples from 50 healthy volunteers were used as controls. Results: Clinical examination showed three different phenotypes of CDs. Genetic examination identified that two ACD subjects were associated with homozygous R124H mutation of TGFBI, and four LCD I subjects were all associated with R124C heterozygous mutation. One MCD I subject was associated with a novel S51X homozygous mutation in CHST6, while the other two MCD I subjects harbored a previously reported W232X homozygous mutation. Conclusions: Our study highlights the prevalence of codon 124 mutations in the TGFBI gene among the Chinese ACD and LCD I patients. Moreover, we found a novel mutation among MCD I patients. PMID:21887843

  1. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy.

    PubMed

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    [Corrected] Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.

  2. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy

    PubMed Central

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    Backgrond Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion – like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation. PMID:23966782

  3. Wasting Mechanisms in Muscular Dystrophy

    PubMed Central

    Shin, Jonghyun; Tajrishi, Marjan M.; Ogura, Yuji; Kumar, Ashok

    2013-01-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. PMID:23669245

  4. Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet): case definition in surveillance for childhood-onset Duchenne/Becker muscular dystrophy.

    PubMed

    Mathews, Katherine D; Cunniff, Chris; Kantamneni, Jiji R; Ciafaloni, Emma; Miller, Timothy; Matthews, Dennis; Cwik, Valerie; Druschel, Charlotte; Miller, Lisa; Meaney, F John; Sladky, John; Romitti, Paul A

    2010-09-01

    The Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet) is a multisite collaboration to determine the prevalence of childhood-onset Duchenne/Becker muscular dystrophy and to characterize health care and health outcomes in this population. MD STARnet uses medical record abstraction to identify patients with Duchenne/Becker muscular dystrophy born January 1, 1982 or later who resided in 1 of the participating sites. Critical diagnostic elements of each abstracted record are reviewed independently by >4 clinicians and assigned to 1 of 6 case definition categories (definite, probable, possible, asymptomatic, female, not Duchenne/Becker muscular dystrophy) by consensus. As of November 2009, 815 potential cases were reviewed. Of the cases included in analysis, 674 (82%) were either ''definite'' or ''probable'' Duchenne/Becker muscular dystrophy. These data reflect a change in diagnostic testing, as case assignment based on genetic testing increased from 67% in the oldest cohort (born 1982-1987) to 94% in the cohort born 2004 to 2009.

  5. Identification and Characterization of Modified Antisense Oligonucleotides Targeting DMPK in Mice and Nonhuman Primates for the Treatment of Myotonic Dystrophy Type 1

    PubMed Central

    Wheeler, Thurman M.; Justice, Samantha L.; Kim, Aneeza; Younis, Husam S.; Gattis, Danielle; Jauvin, Dominic; Puymirat, Jack; Swayze, Eric E.; Freier, Susan M.; Bennett, C. Frank; Thornton, Charles A.; MacLeod, A. Robert

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3′-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2′,4′-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2′-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1. PMID:26330536

  6. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1.

    PubMed

    Pandey, Sanjay K; Wheeler, Thurman M; Justice, Samantha L; Kim, Aneeza; Younis, Husam S; Gattis, Danielle; Jauvin, Dominic; Puymirat, Jack; Swayze, Eric E; Freier, Susan M; Bennett, C Frank; Thornton, Charles A; MacLeod, A Robert

    2015-11-01

    Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Limb Girdle Muscular Dystrophy Type 2E Due to a Novel Large Deletion in SGCB Gene.

    PubMed

    Ghafouri-Fard, Soudeh; Hashemi-Gorji, Feyzollah; Fardaei, Majid; Miryounesi, Mohammad

    2017-01-01

    Autosomal recessive limb-girdle muscular dystrophies (LGMD type 2) are a group of clinically and genetically heterogeneous diseases with the main characteristics of weakness and wasting of the pelvic and shoulder girdle muscles. Among them are sarcoglycanopathies caused by mutations in at least four genes named SGCA, SGCB, SGCG and SGCD. Here we report a consanguineous Iranian family with two children affected with LGMD type 2E. Mutation analysis revealed a novel homozygous exon 2 deletion of SGCB gene in the patients with the parents being heterozygous for this deletion. This result presents a novel underlying genetic mechanism for LGMD type 2E.

  8. Myotonic dystrophy type 1, daytime sleepiness and REM sleep dysregulation.

    PubMed

    Dauvilliers, Yves A; Laberge, Luc

    2012-12-01

    Myotonic dystrophy type 1 (DM1), or Steinert's disease, is the most common adult-onset form of muscular dystrophy. DM1 also constitutes the neuromuscular condition with the most significant sleep disorders including excessive daytime sleepiness (EDS), central and obstructive sleep apneas, restless legs syndrome (RLS), periodic leg movements in wake (PLMW) and periodic leg movements in sleep (PLMS) as well as nocturnal and diurnal rapid eye movement (REM) sleep dysregulation. EDS is the most frequent non-muscular complaint in DM1, being present in about 70-80% of patients. Different phenotypes of sleep-related problems may mimic several sleep disorders, including idiopathic hypersomnia, narcolepsy without cataplexy, sleep apnea syndrome, and periodic leg movement disorder. Subjective and objective daytime sleepiness may be associated with the degree of muscular impairment. However, available evidence suggests that DM1-related EDS is primarily caused by a central dysfunction of sleep regulation rather than by sleep fragmentation, sleep-related respiratory events or periodic leg movements. EDS also tends to persist despite successful treatment of sleep-disordered breathing in DM1 patients. As EDS clearly impacts on physical and social functioning of DM1 patients, studies are needed to identify the best appropriate tools to identify hypersomnia, and clarify the indications for polysomnography (PSG) and multiple sleep latency test (MSLT) in DM1. In addition, further structured trials of assisted nocturnal ventilation and randomized trials of central nervous system (CNS) stimulant drugs in large samples of DM1 patients are required to optimally treat patients affected by this progressive, incurable condition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Physiology of respiratory disturbances in muscular dystrophies

    PubMed Central

    Lo Mauro, Antonella

    2016-01-01

    Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e. when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. Key points A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination. In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia. Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness. Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase. The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. Educational aims To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy. To understand the impact of respiratory disturbances in patients with muscular dystrophy. To provide a brief description of the main forms of muscular dystrophy with their respiratory implications. PMID:28210319

  10. Physiology of respiratory disturbances in muscular dystrophies.

    PubMed

    Lo Mauro, Antonella; Aliverti, Andrea

    2016-12-01

    Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e . when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination.In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia.Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness.Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase.The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy.To understand the impact of respiratory disturbances in patients with muscular dystrophy.To provide a brief description of the main forms of muscular dystrophy with their respiratory implications.

  11. Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization.

    PubMed

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S; Kristensen, Torsten; Otzen, Daniel E; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J; Nielsen, Niels Chr

    2013-12-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3' containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. © 2013.

  12. Mutation in Transforming Growth Factor Beta Induced protein associated with Granular Corneal Dystrophy Type 1 Reduces the Proteolytic Susceptibility through Local Structural Stabilization#

    PubMed Central

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S.; Kristensen, Torsten; Otzen, Daniel E.; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J.; Nielsen, Niels Chr.

    2014-01-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3′ containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. PMID:24129074

  13. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury

    DTIC Science & Technology

    2011-03-01

    Duchenne muscular dystrophy (DMD). To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor...extracellular matrix, and fat, characterizes muscle dystrophy , and in particular Duchenne muscular dystrophy (DMD) (1,2), as seen also in its animal model...stem cells (MDSC) into myogenic as opposed to lipofibrogenic lineages is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). To

  14. [Sleep and respiratory disorders in myotonic dystrophy of Steinert].

    PubMed

    López-Esteban, P; Peraita-Adrados, R

    2000-03-01

    It has been hypothesized that hypersomnia and sleep related respiratory impairment are both central in origin in myotonic dystrophy. To describe by means of video-polysomnographic recordings the central origin of the sleep respiratory disorders. We studied 11 patients, 6 men and 5 women (mean age 42.7 years) with myotonic dystrophy. A moderate to severe ventilatory impairment of a primarily restrictive type was seen in all patients, three of them after the first episode of respiratory insufficiency. The patients were evaluated in order to determine their body mass index and presence of sleep-related complaints. Video-polysomnographic recordings (EEG, EOG, EKG, submental and tibialis anterior EMGs, respiration and Sa02) and pulmonary function tests were performed in each patient. Identical recordings were repeated in six cases, which were to undergo non-invasive bi-level ventilation (BiPAP) in order to adjust the inspiratory and expiratory pressures and the machine mode. We found slight hypopnea and apnea, predominantly of a central type, in stage 1 and REM sleep and alveolar hypoventilation in all patients. Sleep was disrupted and the efficiency index was very low. In three patients HLA typing showed a positive DQ6 haplotype. Six patients were treated with n-BiPAP. Nasal-BIPAP should be considered as an alternative in ventilatory support during sleep in these patients and video-polysomnography as a valid method of evaluating the ideal time to start treatment.

  15. Uncovering the Role of Hypermethylation by CTG Expansion in Myotonic Dystrophy Type 1 Using Mutant Human Embryonic Stem Cells.

    PubMed

    Yanovsky-Dagan, Shira; Avitzour, Michal; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Mitrani-Rosenbaum, Stella; Levy-Lahad, Ephrat; Birnbaum, Ramon Y; Gepstein, Lior; Epsztejn-Litman, Silvina; Eiges, Rachel

    2015-08-11

    CTG repeat expansion in DMPK, the cause of myotonic dystrophy type 1 (DM1), frequently results in hypermethylation and reduced SIX5 expression. The contribution of hypermethylation to disease pathogenesis and the precise mechanism by which SIX5 expression is reduced are unknown. Using 14 different DM1-affected human embryonic stem cell (hESC) lines, we characterized a differentially methylated region (DMR) near the CTGs. This DMR undergoes hypermethylation as a function of expansion size in a way that is specific to undifferentiated cells and is associated with reduced SIX5 expression. Using functional assays, we provide evidence for regulatory activity of the DMR, which is lost by hypermethylation and may contribute to DM1 pathogenesis by causing SIX5 haplo-insufficiency. This study highlights the power of hESCs in disease modeling and describes a DMR that functions both as an exon coding sequence and as a regulatory element whose activity is epigenetically hampered by a heritable mutation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E.

    PubMed

    Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio

    2018-02-24

    Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.

  17. Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I.

    PubMed

    Frattini, Paola; Villa, Chiara; De Santis, Francesca; Meregalli, Mirella; Belicchi, Marzia; Erratico, Silvia; Bella, Pamela; Raimondi, Manuela Teresa; Lu, Qilong; Torrente, Yvan

    2017-10-01

    α-Dystroglycanopathies are a group of muscular dystrophies characterized by α-DG hypoglycosylation and reduced extracellular ligand-binding affinity. Among other genes involved in the α-DG glycosylation process, fukutin related protein (FKRP) gene mutations generate a wide range of pathologies from mild limb girdle muscular dystrophy 2I (LGMD2I), severe congenital muscular dystrophy 1C (MDC1C), to Walker-Warburg Syndrome and Muscle-Eye-Brain disease. FKRP gene encodes for a glycosyltransferase that in vivo transfers a ribitol phosphate group from a CDP -ribitol present in muscles to α-DG, while in vitro it can be secreted as monomer of 60kDa. Consistently, new evidences reported glycosyltransferases in the blood, freely circulating or wrapped within vesicles. Although the physiological function of blood stream glycosyltransferases remains unclear, they are likely released from blood borne or distant cells. Thus, we hypothesized that freely or wrapped FKRP might circulate as an extracellular glycosyltransferase, able to exert a "glycan remodelling" process, even at distal compartments. Interestingly, we firstly demonstrated a successful transduction of MDC1C blood-derived CD133+ cells and FKRP L276IKI mouse derived satellite cells by a lentiviral vector expressing the wild-type of human FKRP gene. Moreover, we showed that LV-FKRP cells were driven to release exosomes carrying FKRP. Similarly, we observed the presence of FKRP positive exosomes in the plasma of FKRP L276IKI mice intramuscularly injected with engineered satellite cells. The distribution of FKRP protein boosted by exosomes determined its restoration within muscle tissues, an overall recovery of α-DG glycosylation and improved muscle strength, suggesting a systemic supply of FKRP protein acting as glycosyltransferase. © The Author 2017. Published by Oxford University Press.

  18. [Myotonic dystrophies: clinical presentation, pathogenesis, diagnostics and therapy].

    PubMed

    Finsterer, Josef; Rudnik-Schöneborn, S

    2015-01-01

    The autosomal-dominant myotonic dystrophies dystrophia myotonica type-1 (DM1, Curschmann-Steinert disease) and dystrophia myotonica type-2 (DM2, proximal myotonic myopathy (PROMM)), are, contrary to the non-dystrophic myotonias, progressive multisystem disorders. DM1 and DM2 are the most frequent of the muscular dystrophies. In both diseases the skeletal muscle is the most severely affected organ (weakness, wasting, myotonia, myalgia). Additionally, they manifest in the eye, heart, brain, endocrine glands, gastrointestinal tract, skin, skeleton, and peripheral nerves. Phenotypes of DM1 may be classified as congenital, juvenile, classical, or late onset. DM2 is a disorder of the middle or older age and usually has a milder course compared to DM1. DM1 is due to a CTG-repeat expansion > 50 repeats in the non-coding 3' UTR of the DMPK-gene. DM2 is caused by a CCTG-repeat expansion to 75 - 11 000 repeats in intron-1 of the CNBP/ZNF9 gene. Mutant pre-mRNAs of both genes aggregate within the nucleus (nuclear foci), which sequester RNA-binding proteins and result in an abnormal protein expression via alternative splicing in downstream effector genes (toxic RNA diseases). Other mechanisms seem to play an additional pathogenetic role. Clinical severity of DM1 increases from generation to generation (anticipation). The higher the repeat expansion the more severe the DM1 phenotype. In DM2 severity of symptoms and age at onset do not correlate with the expansion size. Contrary to DM2, there is a congenital form and anticipation in DM1. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Effects of hand-training in persons with myotonic dystrophy type 1--a randomised controlled cross-over pilot study.

    PubMed

    Aldehag, Anna; Jonsson, Hans; Lindblad, Jan; Kottorp, Anders; Ansved, Tor; Kierkegaard, Marie

    2013-10-01

    To investigate the effects of a hand-training programme on grip, pinch and wrist force, manual dexterity and activities of daily living, in adults with myotonic dystrophy type 1 (DM1). In this randomised controlled trial with a crossover design, 35 adults with DM1 were, after stratification for grip force, assigned by lot to two groups. Group A started with 12 weeks of hand training, while group B had no intervention. After a wash-out period of 12 weeks, where none received training, the order was reversed. The Grippit® was used as primary outcome measure and the hand-held Microfet2™ myometer, the Purdue Pegboard, the Canadian Occupational Performance Measure (COPM) and the Assessment of Motor and Process Skills (AMPS) were secondary outcome measures. Assessments were performed before and after training and control periods, i.e. four times altogether. Ten persons dropped out and 13 had acceptable adherence. Intention-to-treat analyses revealed significant intervention effects for isometric wrist flexor force (p = 0.048), and for COPM performance (p = 0.047) and satisfaction (p = 0.027). On an individual level, improvements were in general showed after a training period. The hand-training programme had positive effects on wrist flexor force and self-perception of occupational performance, and of satisfaction with performance. No evident detrimental effects were shown. Myotonic dystrophy type 1 (DM1) is a slowly progressive neuromuscular disease characterised by myotonia and muscle weakness and wasting. People with DM1 are often concerned about their ability to carry out ADL and to participate in, e.g. work, sports and hobbies when they gradually become weaker. This pilot study showed that a hand-training programme improved wrist flexor force and self-perception and satisfaction of occupational performance. Resistance training of hand muscles with a silicon-based putty can be a therapy option for people with DM1 in clinical practise.

  20. A Population-based survey of risk for cancer in individuals diagnosed with myotonic dystrophy

    PubMed Central

    Abbott, Diana; Johnson, Nicholas E; Cannon-Albright, Lisa A.

    2018-01-01

    Introduction The risk of cancer in patients diagnosed with myotonic dystrophy (DM) is reported for the homogeneous Utah population. Methods Clinical data accessed from the largest Utah healthcare providers have been record-linked to the Utah Population Database (UPDB), a population-based resource also linked to the Utah Cancer Registry. Relative risks were estimated for 36 cancers of different types in 281 DM patients. Results Testicular cancer (RR=10.74; 95% CI: 1.91, 38.79), endometrial cancer (6.98; 1.24, 25.22), and Non-Hodgkins lymphoma (4.25; 1.16, 12.43) were all observed at significant excess in DM patients. Discussion This study confirms an overall increased risk of cancer in DM. Individuals diagnosed with DM might benefit from risk counseling. PMID:27064430

  1. Rapamycin Reverses Elevated mTORC1 Signaling in Lamin A/C–Deficient Mice, Rescues Cardiac and Skeletal Muscle Function, and Extends Survival

    PubMed Central

    Ramos, Fresnida J.; Chen, Steven C.; Garelick, Michael G.; Dai, Dao-Fu; Liao, Chen-Yu; Schreiber, Katherine H.; MacKay, Vivian L.; An, Elroy H.; Strong, Randy; Ladiges, Warren C.; Rabinovitch, Peter S.; Kaeberlein, Matt; Kennedy, Brian K.

    2013-01-01

    Mutations in LMNA, the gene that encodes A-type lamins, cause multiple diseases including dystrophies of the skeletal muscle and fat, dilated cardiomyopathy, and progeria-like syndromes (collectively termed laminopathies). Reduced A-type lamin function, however, is most commonly associated with skeletal muscle dystrophy and dilated cardiomyopathy rather than lipodystrophy or progeria. The mechanisms underlying these diseases are only beginning to be unraveled. We report that mice deficient in Lmna, which corresponds to the human gene LMNA, have enhanced mTORC1 (mammalian target of rapamycin complex 1) signaling specifically in tissues linked to pathology, namely, cardiac and skeletal muscle. Pharmacologic reversal of elevated mTORC1 signaling by rapamycin improves cardiac and skeletal muscle function and enhances survival in mice lacking A-type lamins. At the cellular level, rapamycin decreases the number of myocytes with abnormal desmin accumulation and decreases the amount of desmin in both muscle and cardiac tissue of Lmna–/– mice. In addition, inhibition of mTORC1 signaling with rapamycin improves defective autophagic-mediated degradation in Lmna–/– mice. Together, these findings point to aberrant mTORC1 signaling as a mechanistic component of laminopathies associated with reduced A-type lamin function and offer a potential therapeutic approach, namely, the use of rapamycin-related mTORC1 inhibitors. PMID:22837538

  2. FAT1 Gene Alteration in Facioscapulohumeral Muscular Dystrophy Type 1.

    PubMed

    Park, Hyung Jun; Lee, Wookjae; Kim, Se Hoon; Lee, Jung Hwan; Shin, Ha Young; Kim, Seung Min; Park, Kee Duk; Lee, Ji Hyun; Choi, Young Chul

    2018-03-01

    Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array. Recent studies revealed that the FAT1 expression is associated with disease activity of FSHD, and the FAT1 alterations result in myopathy with a FSHD-like phenotype. We describe a 59-year-old woman with both contracted D4Z4 repeat units and a FAT1 mutation. Shoulder girdle muscle weakness developed at the age of 56 years, and was followed by proximal leg weakness. When we examined her at 59 years of age, she displayed asymmetric and predominant weakness of facial and proximal muscles. Muscle biopsy showed increased variation in fiber size and multifocal degenerating fibers with lymphocytic infiltration. Southern blot analysis revealed 8 D4Z4 repeat units, and targeted sequencing of modifier genes demonstrated the c.10331 A>G variant in the FAT1 gene. This FAT1 variant has previously been reported as pathogenic variant in a patient with FSHD-like phenotype. Our study is the first report of a FAT1 mutation in a FSHD1 patient, and suggests that FAT1 alterations might work as a genetic modifier. © Copyright: Yonsei University College of Medicine 2018.

  3. Macular hole-associated retinal detachment in Best vitelliform dystrophy: Series of two cases and literature review

    PubMed Central

    Tewari, Ruchir; Kumar, Vinod; Ravani, Raghav; Dubey, Devashish; Chandra, Parijat; Kumar, Atul

    2018-01-01

    Two eyes of 2 patients with macular hole-associated retinal detachment in clinically diagnosed vitelliruptive stage of Best vitelliform dystrophy were surgically managed by 25-gauge sutureless pars plana vitrectomy, internal limiting membrane (ILM) peeling with inverted ILM flap, and short-acting (SF6) gas tamponade. The patients were assessed with respect to best-corrected visual acuity, color fundus photographs, shortwave fundus autofluorescence, and swept source optical coherence tomography. Surgical intervention led to Type 1 closure of macular hole, resolution of retinal detachment, and improvement in vision in both patients. PMID:29676326

  4. Balance outcomes following a tap dance program for a child with congenital myotonic muscular dystrophy.

    PubMed

    Biricocchi, Charlanne; Drake, JaimeLynn; Svien, Lana

    2014-01-01

    This case report describes the effects of a 6-week progressive tap dance program on static and dynamic balance for a child with type 1 congenital myotonic muscular dystrophy (congenital MMD1). A 6-year-old girl with congenital MMD1 participated in a 1-hour progressive tap dance program. Classes were held once a week for 6 consecutive weeks and included 3 children with adaptive needs and 1 peer with typical development. The Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2) balance subsection and the Pediatric Balance Scale were completed at the beginning of the first class and the sixth class. The participant's BOT-2 score improved from 3 to 14. Her Pediatric Balance Scale score did not change. Participation in a progressive tap dance class by a child with congenital MMD1 may facilitate improvements in static and dynamic balance.

  5. Comparative Study of Anterior Eye Segment Measurements with Spectral Swept-Source and Time-Domain Optical Coherence Tomography in Eyes with Corneal Dystrophies

    PubMed Central

    Teper, Sławomir J.; Janiszewska, Dominika A.; Lyssek-Boron, Anita; Dobrowolski, Dariusz; Koprowski, Robert; Wylegala, Edward

    2015-01-01

    Purpose. To compare anterior eye segment measurements and morphology obtained with two optical coherence tomography systems (TD OCT, SS OCT) in eyes with corneal dystrophies (CDs). Methods. Fifty healthy volunteers (50 eyes) and 54 patients (96 eyes) diagnosed with CD (epithelial basement membrane dystrophy, EBMD = 12 eyes; Thiel-Behnke CD = 6 eyes; lattice CD TGFBI type = 15 eyes; granular CD type 1 = 7 eyes, granular CD type 2 = 2 eyes; macular CD = 23 eyes; and Fuchs endothelial CD = 31 eyes) were recruited for the study. Automated and manual central corneal thickness (aCCT, mCCT), anterior chamber depth (ACD), and nasal and temporal trabecular iris angle (nTIA, tTIA) were measured and compared with Bland-Altman plots. Results. Good agreement between the TD and SS OCT measurements was demonstrated for mCCT and aCCT in normal individuals and for mCCT in the CDs group. The ACD, nTIA, and tTIA measurements differed significantly in both groups. TBCD, LCD, and FECD caused increased CCT. MCD caused significant corneal thinning. FECD affected all analyzed parameters. Conclusions. Better agreement between SS OCT and TD OCT measurements was demonstrated in normal individuals compared to the CDs group. OCT provides comprehensive corneal deposits analysis and demonstrates the association of CD with CCT, ACD, and TIA measurements. PMID:26457303

  6. Comparative Study of Anterior Eye Segment Measurements with Spectral Swept-Source and Time-Domain Optical Coherence Tomography in Eyes with Corneal Dystrophies.

    PubMed

    Nowinska, Anna K; Teper, Sławomir J; Janiszewska, Dominika A; Lyssek-Boron, Anita; Dobrowolski, Dariusz; Koprowski, Robert; Wylegala, Edward

    2015-01-01

    To compare anterior eye segment measurements and morphology obtained with two optical coherence tomography systems (TD OCT, SS OCT) in eyes with corneal dystrophies (CDs). Fifty healthy volunteers (50 eyes) and 54 patients (96 eyes) diagnosed with CD (epithelial basement membrane dystrophy, EBMD = 12 eyes; Thiel-Behnke CD = 6 eyes; lattice CD TGFBI type = 15 eyes; granular CD type 1 = 7 eyes, granular CD type 2 = 2 eyes; macular CD = 23 eyes; and Fuchs endothelial CD = 31 eyes) were recruited for the study. Automated and manual central corneal thickness (aCCT, mCCT), anterior chamber depth (ACD), and nasal and temporal trabecular iris angle (nTIA, tTIA) were measured and compared with Bland-Altman plots. Good agreement between the TD and SS OCT measurements was demonstrated for mCCT and aCCT in normal individuals and for mCCT in the CDs group. The ACD, nTIA, and tTIA measurements differed significantly in both groups. TBCD, LCD, and FECD caused increased CCT. MCD caused significant corneal thinning. FECD affected all analyzed parameters. Better agreement between SS OCT and TD OCT measurements was demonstrated in normal individuals compared to the CDs group. OCT provides comprehensive corneal deposits analysis and demonstrates the association of CD with CCT, ACD, and TIA measurements.

  7. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I.

    PubMed

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten; Vissing, John

    2016-09-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat infiltration. The Dixon magnetic resonance imaging technique was used to quantify fat and calculate a fat-free contractile CSA. Strength was assessed by dynamometry. Muscle strength/CSA relationships were significantly lower in patients versus controls. The strength/contractile-CSA relationship was still severely lowered in BMD, but was almost normalized in LGMD2I. Our findings suggest close to intact contractile properties in LGMD2I, which are severely disrupted in BMD. Ann Neurol 2016;80:466-471. © 2016 American Neurological Association.

  8. PABPN1 gene therapy for oculopharyngeal muscular dystrophy

    PubMed Central

    Malerba, A.; Klein, P.; Bachtarzi, H.; Jarmin, S. A.; Cordova, G.; Ferry, A.; Strings, V.; Espinoza, M. Polay; Mamchaoui, K.; Blumen, S. C.; St Guily, J. Lacau; Mouly, V.; Graham, M.; Butler-Browne, G.; Suhy, D. A.; Trollet, C.; Dickson, G.

    2017-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset muscle disorder characterized by ptosis, swallowing difficulties, proximal limb weakness and nuclear aggregates in skeletal muscles. OPMD is caused by a trinucleotide repeat expansion in the PABPN1 gene that results in an N-terminal expanded polyalanine tract in polyA-binding protein nuclear 1 (PABPN1). Here we show that the treatment of a mouse model of OPMD with an adeno-associated virus-based gene therapy combining complete knockdown of endogenous PABPN1 and its replacement by a wild-type PABPN1 substantially reduces the amount of insoluble aggregates, decreases muscle fibrosis, reverts muscle strength to the level of healthy muscles and normalizes the muscle transcriptome. The efficacy of the combined treatment is further confirmed in cells derived from OPMD patients. These results pave the way towards a gene replacement approach for OPMD treatment. PMID:28361972

  9. Simple Repeat-Primed PCR Analysis of the Myotonic Dystrophy Type 1 Gene in a Clinical Diagnostics Environment

    PubMed Central

    Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000

  10. Surgical Orthodontic Treatment of a Patient Affected by Type 1 Myotonic Dystrophy (Steinert Syndrome)

    PubMed Central

    Cacucci, Laura; Ricci, Beatrice; Moretti, Maria; Gasparini, Giulio; Pelo, Sandro

    2017-01-01

    Myotonic dystrophy, or Steinert's disease, is the most common form of muscular dystrophy that occurs in adults. This multisystemic form involves the skeletal muscles but affects also the eye, the endocrine system, the central nervous system, and the cardiac system. The weakness of the facial muscles causes a characteristic facial appearance frequently associated with malocclusions. Young people with myotonic dystrophy, who also have severe malocclusions, have bad oral functions such as chewing, breathing, and phonation. We present a case report of a 15-year-old boy with anterior open bite, upper and lower dental crowding, bilateral crossbite, and constriction of the upper jaw with a high and narrow palate. The patient's need was to improve his quality of life. Because of the severity of skeletal malocclusion, it was necessary to schedule a combined orthodontic and surgical therapy in order to achieve the highest aesthetic and functional result. Although therapy caused an improvement in patient's quality of life, the clinical management of the case was hard. The article shows a balance between costs and benefits of a therapy that challenges the nature of the main problem of the patient, and it is useful to identify the most appropriate course of treatment for similar cases. PMID:28642828

  11. Surgical Orthodontic Treatment of a Patient Affected by Type 1 Myotonic Dystrophy (Steinert Syndrome).

    PubMed

    Cacucci, Laura; Ricci, Beatrice; Moretti, Maria; Gasparini, Giulio; Pelo, Sandro; Grippaudo, Cristina

    2017-01-01

    Myotonic dystrophy, or Steinert's disease, is the most common form of muscular dystrophy that occurs in adults. This multisystemic form involves the skeletal muscles but affects also the eye, the endocrine system, the central nervous system, and the cardiac system. The weakness of the facial muscles causes a characteristic facial appearance frequently associated with malocclusions. Young people with myotonic dystrophy, who also have severe malocclusions, have bad oral functions such as chewing, breathing, and phonation. We present a case report of a 15-year-old boy with anterior open bite, upper and lower dental crowding, bilateral crossbite, and constriction of the upper jaw with a high and narrow palate. The patient's need was to improve his quality of life. Because of the severity of skeletal malocclusion, it was necessary to schedule a combined orthodontic and surgical therapy in order to achieve the highest aesthetic and functional result. Although therapy caused an improvement in patient's quality of life, the clinical management of the case was hard. The article shows a balance between costs and benefits of a therapy that challenges the nature of the main problem of the patient, and it is useful to identify the most appropriate course of treatment for similar cases.

  12. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.

    PubMed

    Angelbello, Alicia J; González, Àlex L; Rzuczek, Suzanne G; Disney, Matthew D

    2016-12-01

    RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG) exp ). Several small molecules have been found to disrupt the MBNL1-r(CUG) exp complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sarcolemmal alpha and gamma sarcoglycan protein deficiencies in Turkish siblings with a novel missense mutation in the alpha sarcoglycan gene.

    PubMed

    Diniz, Gulden; Tosun Yildirim, Hulya; Akinci, Gulcin; Hazan, Filiz; Ozturk, Aysel; Yararbas, Kanay; Tukun, Ajlan

    2014-06-01

    The sarcoglycan alpha gene, also known as the adhalin gene, is located on chromosome 17q21; mutations in this gene are associated with limb-girdle muscular dystrophy type 2D. We describe two Turkish siblings with findings consistent with limb-girdle muscular dystrophy type 2D. The evaluation excluded a dystrophinopathy, which is the most common form of muscular dystrophy. Both siblings had very high levels of creatinine phosphokinase and negative molecular tests for deletions and duplications of the dystrophin gene. The older boy presented at 8 years of age with an inability to climb steps and an abnormal gait. His younger brother was 5 years old and had similar symptoms. The muscle biopsy evaluation was performed only in the older brother. The muscle biopsy showed dystrophic features as well as a deficiency in the expression of two different glycoproteins: the alpha sarcoglycan and the gamma sarcoglycan. Sarcolemmal expressions of dystrophin and other sarcoglycans (beta and delta) were diffusely present. DNA analysis demonstrated the presence of previously unknown homozygous mutations [c.226 C > T (p.L76 F)] in exon 3 in the sarcoglycan alpha genes of both siblings. Similar heterozygous point mutations at the same locus were found in both parents, but the genes of beta, delta, and gamma sarcoglycan were normal in the remaining family members. We describe two siblings with limb-girdle muscular dystrophy type 2D with a novel missense mutation. These patients illustrate that the differential diagnosis of muscular dystrophies is impossible with clinical findings alone. Therefore, a muscle biopsy and DNA analysis remain essential methods for diagnosis of muscle diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Recurrent Corneal Erosions in Corneal Dystrophies: a Review of the Pathogenesis, Differential Diagnosis, and Therapy.

    PubMed

    Omari, Amro A; Mian, Shahzad I

    2018-06-01

    Recurrent corneal erosions in corneal dystrophies are visually significant and bothersome to patients. The goal of this article is to review the pathogenesis, differential diagnosis, and management of recurrent corneal erosions in corneal dystrophies. Forty-eight articles and 1 textbook recently published on corneal erosions in corneal dystrophies were reviewed. The findings on the pathogenesis and clinical characteristics of erosions in each dystrophy were summarized. Any contradicting opinions for which the literature was unclear were either omitted or recorded as lacking strong evidence. The epithelial-stromal complex plays an important role in the pathogenesis of erosions in corneal dystrophies. The clinical features of each corneal dystrophy guide their diagnosis and management. A better understanding of the pathogenesis and clinical features of erosions in corneal dystrophies can lead to better clinical outcomes. Georg Thieme Verlag KG Stuttgart · New York.

  15. Successful gene therapy in the RPGRIP1-deficient dog: a large model of cone-rod dystrophy.

    PubMed

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-02-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment.

  16. Secondary reduction of alpha7B integrin in laminin alpha2 deficient congenital muscular dystrophy supports an additional transmembrane link in skeletal muscle.

    PubMed

    Cohn, R D; Mayer, U; Saher, G; Herrmann, R; van der Flier, A; Sonnenberg, A; Sorokin, L; Voit, T

    1999-03-01

    The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even in young boys (age <2 years). The expression of the beta1D integrin subunit was not altered in any of our patients with different types of muscular dystrophy. In contrast, sarcolemmal expression of beta1D integrin was significantly reduced in the alpha7 integrin knock-out mice, whereas the expression of the components of the DGC was not altered. The secondary loss of alpha7B in laminin alpha2 chain deficiency defines a biochemical change in the composition of the plasma membrane resulting from a primary protein deficiency in the basal lamina. These findings, in addition to the occurrence of a muscular dystrophy in alpha7 deficient mice, implies that the alpha7B integrin is an important laminin receptor within the plasma membrane which plays a significant role in skeletal muscle function and stability.

  17. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy

    PubMed Central

    Sarparanta, Jaakko; Jonson, Per Harald; Golzio, Christelle; Sandell, Satu; Luque, Helena; Screen, Mark; McDonald, Kristin; Stajich, Jeffrey M.; Mahjneh, Ibrahim; Vihola, Anna; Raheem, Olayinka; Penttilä, Sini; Lehtinen, Sara; Huovinen, Sanna; Palmio, Johanna; Tasca, Giorgio; Ricci, Enzo; Hackman, Peter; Hauser, Michael; Katsanis, Nicholas; Udd, Bjarne

    2012-01-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to 7q36 over a decade ago1, but its genetic cause has remained elusive. We have studied nine LGMD families from Finland, the U.S., and Italy, and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar-myopathy-causing protein BAG3. Our data provide the genetic cause of LGMD1D, suggest that the pathogenesis is mediated by defective chaperone function, and highlight how mutations expressed ubiquitously can exert their effect in a tissue-, cellular compartment-, and isoform-specific manner. PMID:22366786

  18. Linkage of a gene for macular corneal dystrophy to chromosome 16.

    PubMed Central

    Vance, J. M.; Jonasson, F.; Lennon, F.; Sarrica, J.; Damji, K. F.; Stauffer, J.; Pericak-Vance, M. A.; Klintworth, G. K.

    1996-01-01

    Autosomal recessive macular corneal dystrophy (MCD) is a heterogeneous disorder leading to visual impairment. Sixteen American and Icelandic families (11 type I and 5 type II) were analyzed for linkage, by use of 208 polymorphic microsatellite markers. A significant maximum LOD score Zmax of 7.82 at a maximum recombination fraction (thetamax) of .06 was found with the 16q22 locus D16S518 for MCD type I. In addition, a peak LOD score of 2.50 at a recombination fraction of .00 was obtained for the MCD type II families, by use of the identical marker. These findings raise the possibility that MCD type II may be due to the same genetic locus that is involved in MCD type I. PMID:8644739

  19. Phenomics in Autoimmune and Inflammatory Diseases

    ClinicalTrials.gov

    2016-12-12

    Healthy Volunteer; Rheumatoid Arthritis; Ankylosing Spondylitis; Systemic Lupus Erythematosus/Antiphospholipid Syndrome; FMF; Cryopyrin-Associated Periodic Syndromes /TNF-receptor Associated Periodic Syndrome; Vasculitis; Uveitis; Myositis; Crohn's Disease; Ulcerative Rectocolitis; Type 1 Diabetes; Unclassified IAD Knee and/or Hip Arthritis, Muscular Dystrophy

  20. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern.

    PubMed

    Cotta, Ana; Paim, Julia Filardi; da-Cunha-Junior, Antonio Lopes; Neto, Rafael Xavier; Nunes, Simone Vilela; Navarro, Monica Magalhaes; Valicek, Jaquelin; Carvalho, Elmano; Yamamoto, Lydia U; Almeida, Camila F; Braz, Shelida Vasconcelos; Takata, Reinaldo Issao; Vainzof, Mariz

    2014-01-01

    Limb girdle muscular dystrophy type 2G (LGMD2G) is a subtype of autosomal recessive muscular dystrophy caused by mutations in the telethonin gene. There are few LGMD2G patients worldwide reported, and this is the first description associated with early tibialis anterior sparing on muscle image and myopathic-neurogenic motor unit potentials. Here we report a 31 years old caucasian male patient with progressive gait disturbance, and severe lower limb proximal weakness since the age of 20 years, associated with subtle facial muscle weakness. Computed tomography demonstrated soleus, medial gastrocnemius, and diffuse thigh muscles involvement with tibialis anterior sparing. Electromyography disclosed both neurogenic and myopathic motor unit potentials. Muscle biopsy demonstrated large groups of atrophic and hypertrophic fibers, frequent fibers with intracytoplasmic rimmed vacuoles full of autophagic membrane and sarcoplasmic debris, and a total deficiency of telethonin. Molecular investigation identified the common homozygous c.157C > T in the TCAP gene. This report expands the phenotypic variability of telethoninopathy/ LGMD2G, including: 1) mixed neurogenic and myopathic motor unit potentials, 2) facial weakness, and 3) tibialis anterior sparing. Appropriate diagnosis in these cases is important for genetic counseling and prognosis.

  1. Translational Research for Muscular Dystrophy

    DTIC Science & Technology

    2014-05-01

    year of work was awarded to allow completion of our transgenic analysis of Becker -like muscular dystrophy rescue experiments, allow completion of the D2... Dystrophy PRINCIPAL INVESTIGATOR: Gregory A. Cox, Ph.D. CONTRACTING ORGANIZATION: The Jackson Laboratory Bar Harbor, ME 04609-1523...April 2014 4. TITLE AND SUBTITLE Translational Research for Muscular Dystrophy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0330 5c

  2. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    PubMed Central

    Saksens, Nicole T.M.; Krebs, Mark P.; Schoenmaker-Koller, Frederieke E.; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B.; Charette, Jeremy R.; Letteboer, Stef J.; Neveling, Kornelia; van Moorsel, Tamara W.; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P.M.; Boon, Camiel J.F.; Roepman, Ronald; Leroy, Bart P.; Peachey, Neal S.; Hoyng, Carel B.; Nishina, Patsy M.; den Hollander, Anneke I.

    2015-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  3. Deletion of Galgt2 (B4Galnt2) Reduces Muscle Growth in Response to Acute Injury and Increases Muscle Inflammation and Pathology in Dystrophin-Deficient Mice

    PubMed Central

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A.; Janssen, Paulus M.L.; Martin, Paul T.

    2016-01-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2−/−mdx). Galgt2−/− mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  4. Stanford Chronic Disease Self-Management Program in myotonic dystrophy: New opportunities for occupational therapists: Stanford Chronic Disease Self-Management Program dans la dystrophie myotonique : De nouvelles opportunités pour les ergothérapeutes.

    PubMed

    Raymond, Kateri; Levasseur, Mélanie; Chouinard, Maud-Christine; Mathieu, Jean; Gagnon, Cynthia

    2016-06-01

    Chronic disease self-management is a priority in health care. Personal and environmental barriers for populations with neuromuscular disorders might diminish the efficacy of self-management programs, although they have been shown to be an effective intervention in many populations. Owing to their occupational expertise, occupational therapists might optimize self-management program interventions. This study aimed to adapt the Stanford Chronic Disease Self-Management Program (CDSMP) for people with myotonic dystrophy type 1 (DM1) and assess its acceptability and feasibility in this population. Using an adapted version of the Stanford CDSMP, a descriptive pilot study was conducted with 10 participants (five adults with DM1 and their caregivers). A semi-structured interview and questionnaires were used. The Stanford CDSMP is acceptable and feasible for individuals with DM1. However, improvements are required, such as the involvement of occupational therapists to help foster concrete utilization of self-management strategies into day-to-day tasks using their expertise in enabling occupation. Although adaptations are needed, the Stanford CDSMP remains a relevant intervention with populations requiring the application of self-management strategies. © CAOT 2016.

  5. Contractility and supersensitivity to adrenaline in dystrophic muscle.

    PubMed Central

    Takamori, M

    1975-01-01

    In the adductor pollicis muscle of patients with limb-girdle and facioscapulohumeral muscular dystrophies and possible carriers of Duchenne type muscular dystrophy, abnormal active state properties were found at the time when there was no alteration of needle electromyography and evoked muscle action potentials. Adrenaline induced a marked reduction of incomplete tetanus via beta receptors without change in neuromuscular transmission. PMID:1151415

  6. Gastrobronchial fistula following minimally invasive esophagectomy for esophageal cancer in a patient with myotonic dystrophy: Case report

    PubMed Central

    Hugin, Silje; Johnson, Egil; Johannessen, Hans-Olaf; Hofstad, Bjørn; Olafsen, Kjell; Mellem, Harald

    2015-01-01

    Introduction Myotonic dystrophies are inherited multisystemic diseases characterized by musculopathy, cardiac arrythmias and cognitive disorders. These patients are at increased risk for fatal post-surgical complications from pulmonary hypoventilation. We present a case with myotonic dystrophy and esophageal cancer who had a minimally invasive esophagectomy complicated with gastrobronchial fistulisation. Presentation of case A 44-year-old male with myotonic dystrophy type 1 and esophageal cancer had a minimally invasive esophagectomy performed instead of open surgery in order to reduce the risk for pulmonary complications. At day 15 respiratory failure occurred from a gastrobronchial fistula between the right intermediary bronchus (defect 7–8 mm) and the esophagogastric anastomosis (defect 10 mm). In order to minimize large leakage of air into the gastric conduit the anastomosis was stented and ventilation maintained at low airway pressures. His general condition improved and allowed extubation at day 29 and stent removal at day 35. Bronchoscopy confirmed that the fistula was healed. The patient was discharged from hospital at day 37 without further complications. Discussion The fistula was probably caused by bronchial necrosis from thermal injury during close dissection using the Ligasure instrument. Fistula treatment by non-surgical intervention was considered safer than surgery which could be followed by potentially life-threatening respiratory complications. Indications for stenting of gastrobronchial fistulas will be discussed. Conclusions Minimally invasive esophagectomy was performed instead of open surgery in a myotonic dystrophy patient as these patients are particularly vulnerable to respiratory complications. Gastrobronchial fistula, a major complication, was safely treated by stenting and low airway pressure ventilation. PMID:26520033

  7. Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet): Case Definition in Surveillance for Childhood-Onset Duchenne/Becker Muscular Dystrophy

    PubMed Central

    Mathews, Katherine D.; Cunniff, Chris; Kantamneni, Jiji R.; Ciafaloni, Emma; Miller, Timothy; Matthews, Dennis; Cwik, Valerie; Druschel, Charlotte; Miller, Lisa; Meaney, F. John; Sladky, John; Romitti, Paul A.

    2013-01-01

    The Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet) is a multisite collaboration to determine the prevalence of childhood-onset Duchenne/Becker muscular dystrophy and to characterize health care and health outcomes in this population. MD STARnet uses medical record abstraction to identify patients with Duchenne/Becker muscular dystrophy born January 1, 1982 or later who resided in one of the participating sites. Critical diagnostic elements of each abstracted record are reviewed independently by ≥4 clinicians and assigned to 1 of 6 case definition categories (definite, probable, possible, asymptomatic, female, not Duchenne/Becker muscular dystrophy) by consensus. As of November 2009, 815 potential cases were reviewed. Of the cases included in analysis, 674 (82%) were either “definite” or “probable” Duchenne/Becker muscular dystrophy. These data reflect a change in diagnostic testing, as case assignment based on genetic testing increased from 67% in the oldest cohort (born 1982–1987) to 94% in the cohort born 2004–2009. PMID:20817884

  8. [Dystrophia myotonica (Steinert disease)--a frequently misdiagnosed disease].

    PubMed

    Kuhn, E; Lehmann-Horn, F; Rüdel, R

    1990-06-01

    Dystrophia myotonica (Steinert's disease) is the most common hereditary disease of the neuromuscular system in adults. Its mode of inheritance is autosomal dominant. The gene responsible for its is located on chromosome 19 in the linkage domain of the loci for the apolipoproteins C2, C1 und E and of the creatine kinase of skeletal muscle (CKMM). Myotonic dystrophy is categorized in an adult and in a congenital form. In the adult form, the characteristic findings are muscular atrophy in certain regions of the body (face, neck and distally in the extremities) and myotonia. Cataract, intraocular hypotension, gonadal atrophy, conduction abnormalities in the heart and hearing deficiencies appear quite often in the course of the disease. In the congenital form, general muscle weekness (particularly pronounced in the face) is the leading finding, combined with retarded loco motor and mental development. A decisive criterion for the diagnosis of this form is the occurrence of myotonic dystrophy in the patient's mother. Electromyographic investigation is indicated when a suspicion of myotonic dystrophy cannot be ascertained on the basis of clinical and genetic findings. Myotonic runs in the EMG will then corroborate the suspicion. Recent electrophysiological investigations have indicated that at least three different types of channels for the passage of ions through the membrane of the skeletal muscle cells show abnormal behaviour, i.e. the channel for Cl-, Na+ and K+. These findings corroborate the hypothesis that the abnormality responsible for myotonic dystrophy is situated in the membrane systems. A pharmacological treatment of the muscular dystrophy has not yet been developed.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Swallowing assessment in myotonic dystrophy type 1 using fiberoptic endoscopic evaluation of swallowing (FEES).

    PubMed

    Pilz, Walmari; Baijens, Laura W J; Passos, Valéria Lima; Verdonschot, Rob; Wesseling, Frederik; Roodenburg, Nel; Faber, Catharina G; Kremer, Bernd

    2014-12-01

    This study describes the swallowing function of patients with myotonic dystrophy type 1 (DM1) and the effect of bolus consistency on swallowing in this group. The aim of the study is twofold: (a) to identify which (and to what extent) swallowing variables change for DM1 patients relative to healthy control subjects and (b) to examine whether the degree of oropharyngeal dysphagia is associated with disease severity. Forty-five consecutive DM1 patients and ten healthy subjects underwent a swallowing assessment, at Maastricht University medical Center in the Netherlands. The assessment included a standardized fiberoptic endoscopic evaluation of swallowing (FEES) protocol using different bolus consistencies. Clinical severity of the disease was assessed using the muscular impairment rating scale (MIRS). Significant differences were found between patients and controls for all FEES variables. The magnitude of these differences depended on the bolus consistency. The odds of a more pathological swallowing outcome increased significantly with higher MIRS levels. In conclusion, swallowing function is found to be significantly altered in DM1 patients. The results emphasize the importance of conducting a detailed swallowing assessment in all patients, even those with mild muscle weakness. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Successful Gene Therapy in the RPGRIP1-deficient Dog: a Large Model of Cone–Rod Dystrophy

    PubMed Central

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-01-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod–cone dystrophies but not in large models of progressive cone–rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone–rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18–72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22–29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone–rod dystrophy provides great promise for human treatment. PMID:24091916

  11. Analysis of meiotic segregation, using single-sperm typing: Meiotic drive at the myotonic dystrophy locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeflang, E.P.; Arnheim, N.; McPeek, M.S.

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelatedmore » to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. 26 refs., 1 fig., 8 tabs.« less

  12. Mouse Regenerating Myofibers Detected as False-Positive Donor Myofibers with Anti-Human Spectrin

    PubMed Central

    Rozkalne, Anete; Adkin, Carl; Meng, Jinhong; Lapan, Ariya; Morgan, Jennifer E.

    2014-01-01

    Abstract Stem cell transplantation is being tested as a potential therapy for a number of diseases. Stem cells isolated directly from tissue specimens or generated via reprogramming of differentiated cells require rigorous testing for both safety and efficacy in preclinical models. The availability of mice with immune-deficient background that carry additional mutations in specific genes facilitates testing the efficacy of cell transplantation in disease models. The muscular dystrophies are a heterogeneous group of disorders, of which Duchenne muscular dystrophy is the most severe and common type. Cell-based therapy for muscular dystrophy has been under investigation for several decades, with a wide selection of cell types being studied, including tissue-specific stem cells and reprogrammed stem cells. Several immune-deficient mouse models of muscular dystrophy have been generated, in which human cells obtained from various sources are injected to assess their preclinical potential. After transplantation, the presence of engrafted human cells is detected via immunofluorescence staining, using antibodies that recognize human, but not mouse, proteins. Here we show that one antibody specific to human spectrin, which is commonly used to evaluate the efficacy of transplanted human cells in mouse muscle, detects myofibers in muscles of NOD/Rag1nullmdx5cv, NOD/LtSz-scid IL2Rγnull mice, or mdx nude mice, irrespective of whether they were injected with human cells. These “reactive” clusters are regenerating myofibers, which are normally present in dystrophic tissue and the spectrin antibody is likely recognizing utrophin, which contains spectrin-like repeats. Therefore, caution should be used in interpreting data based on detection of single human-specific proteins, and evaluation of human stem cell engraftment should be performed using multiple human-specific labeling strategies. PMID:24152287

  13. Genetics Home Reference: Fuchs endothelial dystrophy

    MedlinePlus

    ... a protein that is part of type VIII collagen. Type VIII collagen is largely found within the cornea, surrounding the endothelial cells. Specifically, type VIII collagen is a major component of a tissue at ...

  14. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation

    PubMed Central

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    SUMMARY Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3−/−) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3−/− mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3−/− and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3−/− and mdx mutants have cardiac defects. In cav-3−/− mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3−/− mutants. In double mutant (mdxcav-3+/−) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3+/−), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted entirely from the lower limbs and severely attenuated elsewhere; these data suggest a compensatory rather than a contributory role for the elevated caveolin-3 levels that are found in mdx embryos. These data establish a key role for dystrophin in early muscle formation and demonstrate that caveolin-3 and dystrophin are essential for correct fibre-type specification and emergent stem cell function. These data plug a significant gap in the natural history of muscular dystrophy and will be invaluable in establishing an earlier diagnosis for DMD/LGMD and in designing earlier treatment protocols, leading to better clinical outcome for these patients. PMID:19535499

  15. Duchenne muscular dystrophy and idiopathic hyperCKemia segregating in a family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frydman, M.; Straussberg, R.; Shomrat, R.

    1995-09-11

    A 7-month-old boy with gross motor delay and failure to thrive presented with rhabdomyolysis following an acute asthmatic episode. During hospitalization an electrocardiographic conversion to a Wolff-Parkinson-White type 1 (WPW) pattern took place. Duchenne muscular dystrophy (DMD) was suspected based on elevated creatine kinase (CK) serum levels, muscle biopsy, and family history. The diagnosis was confirmed by molecular analysis, which documented a deletion corresponding to cDNA probe 1-2a in the dystrophin gene, in the propositus and in an affected male cousin of his mother. {open_quotes}Idiopathic{close_quotes} hyperCKemia was found in the propositus, his father, and 5 of his relatives. We suggestmore » that the unusually early and severe manifestations of DMD in this patient may be related to the coincidental inheritance of the maternal DMD gene and of a paternal gene, causing hyperCKemia. 13 refs., 3 figs., 1 tab.« less

  16. [New international classification of corneal dystrophies and clinical landmarks].

    PubMed

    Lisch, W; Seitz, B

    2008-07-01

    The International Committee on Classification of Corneal Dystrophies, briefly IC (3)D, was founded with the sponsorship of the American Cornea Society and the American Academy of Ophthalmology in July 2005. This committee consists of 17 corneal experts (1) from USA, Asia and Europe. The goal of this group was to develop a new, internationally accepted classification of corneal dystrophies (CD) based on modern clinical, histological and genetical knowledge. The aim of the new classification should be to avoid wrong interpretations and misnomers of the different forms of CD. The IC (3)D extensive manuscript is in press as Supplement publication in the journal "Cornea". The 25 different CD are divided in four categories by clinical and genetical knowledge. Additionally, templates for each type of CD are included. Finally, many typical color slit-lamp photos are presented in the publication together with essential references and current genetical results in tabular form. As members of IC (3)D the authors present a clinical landmark survey of the different corneal dystrophies. The ophthalmologist is the first to examine and to diagnose a new patient with a probable CD at the slit-lamp. Our elaborated table of landmarks is supposed to be a "bridge" for the ophthalmologist to precisely define the corneal opacities of a presumed CD. This "bridge" makes it easier for them to study the IC (3)D Supplement publication and to get more information including adequate differential diagnosis.

  17. Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.

    PubMed

    Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M

    2015-04-01

    An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed. © 2015 Stichting International Foundation for Animal Genetics.

  18. The Role of a Novel Myosin Isoform in Prostate Cancer Metastasis

    DTIC Science & Technology

    2013-10-01

    of unconventional myosin function and targeting, Annu. Rev. Cell Dev. Biol. 27 (2011) 133–155. [42] W. Kliche, S. Fujita- Becker , M. Kollmar, D.J...tissue-specific diseases (laminopathies), including Emery–Dreifuss muscular dystrophy , Dunnigan-type familial partial lipodystrophy (FPLD), and...structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies , cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823

  19. Duchenne Muscular Dystrophy and Becker Muscular Dystrophy Confirmed by Multiplex Ligation-Dependent Probe Amplification: Genotype-Phenotype Correlation in a Large Cohort.

    PubMed

    Vengalil, Seena; Preethish-Kumar, Veeramani; Polavarapu, Kiran; Mahadevappa, Manjunath; Sekar, Deepha; Purushottam, Meera; Thomas, Priya Treesa; Nashi, Saraswathi; Nalini, Atchayaram

    2017-01-01

    Studies of cases of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) confirmed by multiplex ligation-dependent probe amplification (MLPA) have determined the clinical characteristics, genotype, and relations between the reading frame and phenotype for different countries. This is the first such study from India. A retrospective genotype-phenotype analysis of 317 MLPA-confirmed patients with DMD or BMD who visited the neuromuscular clinic of a quaternary referral center in southern India. The 317 patients comprised 279 cases of DMD (88%), 32 of BMD (10.1%), and 6 of intermediate phenotype (1.9%). Deletions accounted for 91.8% of cases, with duplications causing the remaining 8.2%. There were 254 cases of DMD (91%) with deletions and 25 (9%) due to duplications, and 31 cases (96.8%) of BMD with deletions and 1 (3.2%) due to duplication. All six cases of intermediate type were due to deletions. The most-common mutation was a single-exon deletion. Deletions of six or fewer exons constituted 68.8% of cases. The deletion of exon 50 was the most common. The reading-frame rule held in 90% of DMD and 94% of BMD cases. A tendency toward a lower IQ and earlier wheelchair dependence was observed with distal exon deletions, though a significant correlation was not found. The reading-frame rule held in 90% to 94% of children, which is consistent with reports from other parts of the world. However, testing by MLPA is a limitation, and advanced sequencing methods including analysis of the structure of mutant dystrophin is needed for more-accurate assessments of the genotype-phenotype correlation.

  20. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice.

    PubMed

    Tsuchida, K

    2008-07-01

    Gene-targeted therapies, such as adeno-associated viral vector (AAV)-mediated gene therapy and cell-mediated therapy using myogenic stem cells, are hopeful molecular strategies for muscular dystrophy. In addition, drug therapies based on the pathophysiology of muscular dystrophy patients are desirable. Multidisciplinary approaches to drug design would offer promising therapeutic strategies. Myostatin, a member of the transforming growth factor-beta superfamily, is predominantly produced by skeletal muscle and negatively regulates the growth and differentiation of cells of the skeletal muscle lineage. Myostatin inhibition would increase the skeletal muscle mass and prevent muscle degeneration, regardless of the type of muscular dystrophy. Myostatin inhibitors include myostatin antibodies, myostatin propeptide, follistatin and follistatin-related protein. Although follistatin possesses potent myostatin-inhibiting activity, it works as an efficient inhibitor of activins. Unlike myostatin, activins regulate the growth and differentiation of nearly all cell types, including cells of the gonads, pituitary gland and skeletal muscle. We have developed a myostatin-specific inhibitor derived from follistatin, designated FS I-I. Transgenic mice expressing this myostatin-inhibiting peptide under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. mdx mice were crossed with FS I-I transgenic mice and any improvement of the pathological signs was investigated. The resulting mdx/FS I-I mice exhibited increased skeletal muscle mass and reduced cell infiltration in muscles. Muscle strength was also recovered in mdx/FS I-I mice. Our data indicate that myostatin inhibition by this follistatin-derived peptide has therapeutic potential for muscular dystrophy.

  1. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.

    PubMed

    Brockhoff, Marielle; Rion, Nathalie; Chojnowska, Kathrin; Wiktorowicz, Tatiana; Eickhorst, Christopher; Erne, Beat; Frank, Stephan; Angelini, Corrado; Furling, Denis; Rüegg, Markus A; Sinnreich, Michael; Castets, Perrine

    2017-02-01

    Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.

  2. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I

    PubMed Central

    Brockhoff, Marielle; Rion, Nathalie; Chojnowska, Kathrin; Wiktorowicz, Tatiana; Eickhorst, Christopher; Erne, Beat; Frank, Stephan; Angelini, Corrado; Rüegg, Markus A.; Sinnreich, Michael

    2017-01-01

    Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3′-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease. PMID:28067669

  3. Abnormal functional brain connectivity and personality traits in myotonic dystrophy type 1.

    PubMed

    Serra, Laura; Silvestri, Gabriella; Petrucci, Antonio; Basile, Barbara; Masciullo, Marcella; Makovac, Elena; Torso, Mario; Spanò, Barbara; Mastropasqua, Chiara; Harrison, Neil A; Bianchi, Maria L E; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2014-05-01

    Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy observed in adults, is a genetic multisystem disorder affecting several other organs besides skeletal muscle, including the brain. Cognitive and personality abnormalities have been reported; however, no studies have investigated brain functional networks and their relationship with personality traits/disorders in patients with DM1. To use resting-state functional magnetic resonance imaging to assess the potential relationship between personality traits/disorders and changes to functional connectivity within the default mode network (DMN) in patients with DM1. We enrolled 27 patients with genetically confirmed DM1 and 16 matched healthy control individuals. Patients underwent personality assessment using clinical interview and Minnesota Multiphasic Personality Inventory-2 administration; all participants underwent resting-state functional magnetic resonance imaging. Investigations were conducted at the Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Catholic University of Sacred Heart, and Azienda Ospedaliera San Camillo Forlanini. Resting-state functional magnetic resonance imaging. Measures of personality traits in patients and changes in functional connectivity within the DMN in patients and controls. Changes in functional connectivity and atypical personality traits in patients were correlated. We combined results obtained from the Minnesota Multiphasic Personality Inventory-2 and clinical interview to identify a continuum of atypical personality profiles ranging from schizotypal personality traits to paranoid personality disorder within our DM1 patients. We also demonstrated an increase in functional connectivity in the bilateral posterior cingulate and left parietal DMN nodes in DM1 patients compared with controls. Moreover, patients with DM1 showed strong associations between DMN functional connectivity and schizotypal-paranoid traits. Our findings provide novel biological evidence that DM1 is a clinical condition that also involves an alteration of functional connectivity of the brain. We speculate that these functional brain abnormalities, similarly to frank psychiatric disorders, may account for the atypical personality traits observed in patients with DM1.

  4. Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus.

    PubMed

    Cleary, John D; Tomé, Stéphanie; López Castel, Arturo; Panigrahi, Gagan B; Foiry, Laurent; Hagerman, Katharine A; Sroka, Hana; Chitayat, David; Gourdon, Geneviève; Pearson, Christopher E

    2010-09-01

    Myotonic dystrophy, caused by DM1 CTG/CAG repeat expansions, shows varying instability levels between tissues and across ages within patients. We determined DNA replication profiles at the DM1 locus in patient fibroblasts and tissues from DM1 transgenic mice of various ages showing different instability. In patient cells, the repeat is flanked by two replication origins demarcated by CTCF sites, with replication diminished at the expansion. In mice, the expansion replicated from only the downstream origin (CAG as lagging template). In testes from mice of three different ages, replication toward the repeat paused at the earliest age and was relieved at later ages-coinciding with increased instability. Brain, pancreas and thymus replication varied with CpG methylation at DM1 CTCF sites. CTCF sites between progressing forks and repeats reduced replication depending on chromatin. Thus, varying replication progression may affect tissue- and age-specific repeat instability.

  5. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    PubMed

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  6. Quantitative Methods to Monitor RNA Biomarkers in Myotonic Dystrophy.

    PubMed

    Wojciechowska, Marzena; Sobczak, Krzysztof; Kozlowski, Piotr; Sedehizadeh, Saam; Wojtkowiak-Szlachcic, Agnieszka; Czubak, Karol; Markus, Robert; Lusakowska, Anna; Kaminska, Anna; Brook, J David

    2018-04-12

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are human neuromuscular disorders associated with mutations of simple repetitive sequences in affected genes. The abnormal expansion of CTG repeats in the 3'-UTR of the DMPK gene elicits DM1, whereas elongated CCTG repeats in intron 1 of ZNF9/CNBP triggers DM2. Pathogenesis of both disorders is manifested by nuclear retention of expanded repeat-containing RNAs and aberrant alternative splicing. The precise determination of absolute numbers of mutant RNA molecules is important for a better understanding of disease complexity and for accurate evaluation of the efficacy of therapeutic drugs. We present two quantitative methods, Multiplex Ligation-Dependent Probe Amplification and droplet digital PCR, for studying the mutant DMPK transcript (DMPK exp RNA) and the aberrant alternative splicing in DM1 and DM2 human tissues and cells. We demonstrate that in DM1, the DMPK exp RNA is detected in higher copy number than its normal counterpart. Moreover, the absolute number of the mutant transcript indicates its low abundance with only a few copies per cell in DM1 fibroblasts. Most importantly, in conjunction with fluorescence in-situ hybridization experiments, our results suggest that in DM1 fibroblasts, the vast majority of nuclear RNA foci consist of a few molecules of DMPK exp RNA.

  7. Mutation in the Auxiliary Calcium-Channel Subunit CACNA2D4 Causes Autosomal Recessive Cone Dystrophy

    PubMed Central

    Wycisk, Katharina Agnes; Zeitz, Christina; Feil, Silke; Wittmer, Mariana; Forster, Ursula; Neidhardt, John; Wissinger, Bernd; Zrenner, Eberhart; Wilke, Robert; Kohl, Susanne; Berger, Wolfgang

    2006-01-01

    Retinal signal transmission depends on the activity of high voltage–gated l-type calcium channels in photoreceptor ribbon synapses. We recently identified a truncating frameshift mutation in the Cacna2d4 gene in a spontaneous mouse mutant with profound loss of retinal signaling and an abnormal morphology of ribbon synapses in rods and cones. The Cacna2d4 gene encodes an l-type calcium-channel auxiliary subunit of the α2δ type. Mutations in its human orthologue, CACNA2D4, were not yet known to be associated with a disease. We performed mutation analyses of 34 patients who received an initial diagnosis of night blindness, and, in two affected siblings, we detected a homozygous nucleotide substitution (c.2406C→A) in CACNA2D4. The mutation introduces a premature stop codon that truncates one-third of the corresponding open reading frame. Both patients share symptoms of slowly progressing cone dystrophy. These findings represent the first report of a mutation in the human CACNA2D4 gene and define a novel gene defect that causes autosomal recessive cone dystrophy. PMID:17033974

  8. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells

    PubMed Central

    Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine

    2017-01-01

    Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954

  9. [Application of targeted capture technology and next generation sequencing in molecular diagnosis of inherited myopathy].

    PubMed

    Fu, Xiaona; Liu, Aijie; Yang, Haipo; Wei, Cuijie; Ding, Juan; Wang, Shuang; Wang, Jingmin; Yuan, Yun; Jiang, Yuwu; Xiong, Hui

    2015-10-01

    To elucidate the usefulness of next generation sequencing for diagnosis of inherited myopathy, and to analyze the relevance between clinical phenotype and genotype in inherited myopathy. Related genes were selected for SureSelect target enrichment system kit (Panel Version 1 and Panel Version 2). A total of 134 patients who were diagnosed as inherited myopathy clinically underwent next generation sequencing in Department of Pediatrics, Peking University First Hospital from January 2013 to June 2014. Clinical information and gene detection result of the patients were collected and analyzed. Seventy-seven of 134 patients (89 males and 45 females, visiting ages from 6-month-old to 26-year-old, average visiting age was 6 years and 1 month) underwent next generation sequencing by Panel Version 1 in 2013, and 57 patients underwent next generation sequencing by Panel Version 2 in 2014. The gene detection revealed that 74 patients had pathogenic gene mutations, and the positive rate of genetic diagnosis was 55.22%. One patient was diagnosed as metabolic myopathy. Five patients were diagnosed as congenital myopathy; 68 were diagnosed as muscular dystrophy, including 22 with congenital muscular dystrophy 1A (MDC1A), 11 with Ullrich congenital muscular dystrophy (UCMD), 6 with Bethlem myopathy (BM), 12 with Duchenne muscular dystrophy (DMD) caused by point mutations in DMD gene, 5 with LMNA-related congenital muscular dystrophy (L-CMD), 1 with Emery-Dreifuss muscular dystrophy (EDMD), 7 with alpha-dystroglycanopathy (α-DG) patients, and 4 with limb-girdle muscular dystrophy (LGMD) patients. Next generation sequencing plays an important role in diagnosis of inherited myopathy. Clinical and biological information analysis was essential for screening pathogenic gene of inherited myopathy.

  10. Myotonic dystrophytype 1 - report of non-24-h sleep-wake disorder with excessive daytime sleepiness.

    PubMed

    Filho, Lucio Huebra Pimentel; Gomes, Ana Carolina Dias; Gonçalves, Bruno; Tufik, Sergio; Coelho, Fernando Morgadinho

    2018-05-15

    Myotonic dystrophy (MD) is a neuromuscular disease with myotonia, progressive weakness, and involvement of CNS, heart, and gastrointestinal system. Excessive daytime sleepiness (EDS) in myotonic dystrophy type 1 (MD1) is related to sleep breathing diseases, restless leg syndrome, periodic limb movements during sleep and narcoleptic-like phenotype. However, authors highlight a central dysfunction of sleep regulation. We describe a 26-year-old, female, MD1 patient with EDS. Sleep diary/actigraphy evidenced two different circadian periods with values of 1442 and 1522 min. Agomelatine, 50 mg at night, was prescribed with improvement of the circadian rhythm and complaints of sleepiness. The identification of unanticipated causes of EDS, such as circadian rhythm disorders permits an appropriated treatment. As we know, it is the first relate of non-24-h sleep-wake disorder in patient with MD1. Sleep diary and actigraphy could be good options to investigate sleep-wake cycle disorder in patients with MD and EDS.

  11. Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1.

    PubMed

    Esposito, Fabio; Cè, Emiliano; Rampichini, Susanna; Limonta, Eloisa; Venturelli, Massimo; Monti, Elena; Bet, Luciano; Fossati, Barbara; Meola, Giovanni

    2016-01-01

    The electromechanical delay during muscle contraction and relaxation can be partitioned into mainly electrochemical and mainly mechanical components by an EMG, mechanomyographic, and force combined approach. Component duration and measurement reliability were investigated during contraction and relaxation in a group of patients with myotonic dystrophy type 1 (DM1, n = 13) and in healthy controls (n = 13). EMG, mechanomyogram, and force were recorded in DM1 and in age- and body-matched controls from tibialis anterior (distal muscle) and vastus lateralis (proximal muscle) muscles during maximum voluntary and electrically-evoked isometric contractions. The electrochemical and mechanical components of the electromechanical delay during muscle contraction and relaxation were calculated off-line. Maximum strength was significantly lower in DM1 than in controls under both experimental conditions. All electrochemical and mechanical components were significantly longer in DM1 in both muscles. Measurement reliability was very high in both DM1 and controls. The high reliability of the measurements and the differences between DM1 patients and controls suggest that the EMG, mechanomyographic, and force combined approach could be utilized as a valid tool to assess the level of neuromuscular dysfunction in this pathology, and to follow the efficacy of pharmacological or non-pharmacological interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    PubMed

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  13. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  14. Perturbation of muscle metabolism in patients with muscular dystrophy in early or acute phase of disease: In vitro, high resolution NMR spectroscopy based analysis.

    PubMed

    Srivastava, Niraj Kumar; Yadav, Ramakant; Mukherjee, Somnath; Sinha, Neeraj

    2018-03-01

    Muscular dystrophy is an inherited muscle disease, characterized by progressive muscle wasting and weakness of variable distribution and severity. In vitro, high-resolution proton nuclear magnetic resonance (NMR) spectroscopy based analysis was performed on perchloric acid (PCA) extract of muscle specimens of patients suffering from various types of muscular dystrophies to identify alteration in hydrophilic low-molecular weight substances (aqueous metabolites) as compared to muscle of control subjects as well as in between the types of muscular dystrophy. Muscle tissue specimens were obtained from Duchenne muscular dystrophy (DMD) [n=11], Becker muscular dystrophy (BMD) [n=12], facioscapulohumeral dystrophy (FSHD) [n=9] and limb girdle muscular dystrophy (LGMD)-2B [n=22]. Control muscle specimens [n=40] were also taken. Concentration of branched chain amino acids (BCA), glutamine/glutamate (Gln/Glu), acetate (Ace) and fumarate (Fum) was decreased and His was increased in muscle tissue of DMD, BMD, FSHD and LGMD-2B patients as compared to control subjects. Alanine (Ala) was significantly reduced in BMD, FSHD and LGMD-2B patients as compared to control subjects. Tyrosine (Tyr) was present only in the muscle tissue of control subjects. Propionate (Prop) was present in muscle tissue of DMD, BMD, FSHD and LGMD-2B patients and was absent in muscle tissue of control subjects. Concentration of BCA and Prop is significantly reduced in patients with DMD as compared to BMD, but Glucose is significantly higher in patients with DMD as compared to BMD. Quantity of Glucose, His and Gln/glu are significantly higher in patients with DMD as compared to FSHD, but Prop is significantly reduced in patients with DMD as compared to FSHD. Concentration of Ala and His is significantly higher in patients with DMD as compared to LGMD-2B, but BCA, Glucose and Prop are significantly reduced in patients with DMD as compared to LGMD-2B. Concentration of His is significantly higher in patients with BMD as compared to FSHD. Concentration of His is significantly reduced and Glucose is higher in patients with LGMD-2B as compared to BMD. Glucose concentration is significantly reduced in patients with FSHD as compared to LGMD-2B. ROC curves supported the noticeable discrimination in between the patients with DMD and FSHD for the quantity of Gln/Glu, and patients with LGMD-2B and DMD for the quantity of Ala. Collectively, these findings showed the perturbation of muscle metabolism in muscular dystrophy. The data of presented study may be used as supporting information for existing methods of the diagnosis for patients with muscular dystrophy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evaluation of MMX1902 as an Oral Treatment for Duchenne Muscular Dystrophy

    DTIC Science & Technology

    2016-10-01

    type control mice. Further, embryonic myosin heavy chain (eMHC) staining of the diaphragm showed a significant increase in eMHC positive muscle...resulting in cardiac functional measures comparable to exercised wild-type control mice (Table 1). Further, embryonic myosin heavy chain (eMHC) staining of...and cost-driver at scale-up, and the synthesis of 10.2 grams of MMX1902 at >98% purity. What opportunities for training and professional

  16. Severe dystrophy in DiGeorge syndrome

    PubMed Central

    Rózsai, Barnabás; Kiss, Ákos; Csábi, Györgyi; Czakó, Márta; Decsi, Tamás

    2009-01-01

    We present the case history of a 3-year-old girl who was examined because of severe dystrophy. In the background, cow’s milk allergy was found, but her body weight was unchanged after eliminating milk from her diet. Other types of malabsorption were excluded. Based on nasal regurgitation and facial dysmorphisms, the possibility of DiGeorge syndrome was suspected and was confirmed by fluorescence in situ hybridization. The authors suggest a new feature associated with DiGeorge syndrome. PMID:19294771

  17. Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1.

    PubMed

    Childs-Disney, Jessica L; Parkesh, Raman; Nakamori, Masayuki; Thornton, Charles A; Disney, Matthew D

    2012-12-21

    Myotonic dystrophy type 1 (DM1) is caused when an expanded r(CUG) repeat (r(CUG)(exp)) binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1) as well as other proteins. Previously, we reported that modularly assembled small molecules displaying a 6'-N-5-hexynoate kanamycin A RNA-binding module (K) on a peptoid backbone potently inhibit the binding of MBNL1 to r(CUG)(exp). However, these parent compounds are not appreciably active in cell-based models of DM1. The lack of potency was traced to suboptimal cellular permeability and localization. To improve these properties, second-generation compounds that are conjugated to a d-Arg(9) molecular transporter were synthesized. These modified compounds enter cells in higher concentrations than the parent compounds and are efficacious in cell-based DM1 model systems at low micromolar concentrations. In particular, they improve three defects that are the hallmarks of DM1: a translational defect due to nuclear retention of transcripts containing r(CUG)(exp); pre-mRNA splicing defects due to inactivation of MBNL1; and the formation of nuclear foci. The best compound in cell-based studies was tested in a mouse model of DM1. Modest improvement of pre-mRNA splicing defects was observed. These studies suggest that a modular assembly approach can afford bioactive compounds that target RNA.

  18. Rational Design of Bioactive, Modularly Assembled Aminoglycosides Targeting the RNA that Causes Myotonic Dystrophy Type 1

    PubMed Central

    Childs-Disney, Jessica L.; Parkesh, Raman; Nakamori, Masayuki; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    Myotonic dystrophy type 1 (DM1) is caused when an expanded r(CUG) repeat (r(CUG)exp) binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1) as well as other proteins. Previously, we reported that modularly assembled small molecules displaying a 6′-N-5-hexynoate kanamycin A RNA-binding module (K) on a peptoid backbone potently inhibit the binding of MBNL1 to r(CUG)exp. However, these parent compounds are not appreciably active in cell-based models of DM1. The lack of potency was traced to suboptimal cellular permeability and localization. To improve these properties, second-generation compounds that are conjugated to a D-Arg9 molecular transporter were synthesized. These modified compounds enter cells in higher concentrations than the parent compounds and are efficacious in cell-based DM1 model systems at low micromolar concentrations. In particular, they improve three defects that are the hallmarks of DM1: a translational defect due to nuclear retention of transcripts containing r(CUG)exp; pre-mRNA splicing defects due to inactivation of MBNL1; and the formation of nuclear foci. The best compound in cell-based studies was tested in a mouse model of DM1. Modest improvement of pre-mRNA splicing defects was observed. These studies suggest that a modular assembly approach can afford bioactive compounds that target RNA. PMID:23130637

  19. Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient

    PubMed Central

    Klyen, Blake R.; Scolaro, Loretta; Shavlakadze, Tea; Grounds, Miranda D.; Sampson, David D.

    2014-01-01

    We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy. PMID:24761302

  20. Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA.

    PubMed

    Ritelli, Marco; Morlino, Silvia; Giacopuzzi, Edoardo; Carini, Giulia; Cinquina, Valeria; Chiarelli, Nicola; Majore, Silvia; Colombi, Marina; Castori, Marco

    2017-01-01

    Filamin A is an X-linked, ubiquitous actin-binding protein whose mutations are associated to multiple disorders with limited genotype-phenotype correlations. While gain-of-function mutations cause various bone dysplasias, loss-of-function variants are the most common cause of periventricular nodular heterotopias with variable soft connective tissue involvement, as well as X-linked cardiac valvular dystrophy (XCVD). The term "Ehlers-Danlos syndrome (EDS) with periventricular heterotopias" has been used in females with neurological, cardiovascular, integument and joint manifestations, but this nosology is still a matter of debate. We report the clinical and molecular update of an Italian family with an X-linked recessive soft connective tissue disorder and which was described, in 1975, as the first example of EDS type V of the Berlin nosology. The cutaneous phenotype of the index patient was close to classical EDS and all males died for a lethal cardiac valvular dystrophy. Whole exome sequencing identified the novel c.1829-1G>C splice variation in FLNA in two affected cousins. The nucleotide change was predicted to abolish the canonical splice acceptor site of exon 13 and to activate a cryptic acceptor site 15 bp downstream, leading to in frame deletion of five amino acid residues (p.Phe611_Gly615del). The predicted in frame deletion clusters with all the mutations previously identified in XCVD and falls within the N-terminus rod 1 domain of filamin A. Our findings expand the male-specific phenotype of FLNA mutations that now includes classical-like EDS with lethal cardiac valvular dystrophy, and offer further insights for the genotype-phenotype correlations within this spectrum. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. PubMed Central

    Paunic, Teodora; Parojcic, Aleksandra; Savic-Pavicevic, Dusanka; Vujnic, Milorad; Pesovic, Jovan; Basta, Ivana; Lavrnic, Dragana; Rakocevic-Stojanovic, Vidosava

    2017-01-01

    Myotonic dystrophy type 2 (DM2) is a multisystem disorder that affects many organs and systems, including the brain. The objective is to analyze personality patterns in myotonic dystrophy type 2 (DM2) compared to DM1 control group. The study comprised 27 consecutive genetically confirmed DM2 patients and control group of 44 DM1 patients. Personality traits were assessed with the Millon Multiaxial Clinical Inventory III (MMCI III). In DM2 group there were no scale with pathological scores, although compulsive and paranoid traits were the most prominent. DM2 patients had lower scores compared to DM1 patients in almost all scales. Pathological scores on clinical symptom scales were not observed, although anxiety scale almost approached this value. Patients with higher compulsive score had higher level of education (rho = +0.53, p < 0.01). On the other hand, higher paranoid score correlated with younger age at onset (rho = -0.34, p < 0.01) and lower educational level (rho = -0.26, p < 0.05). Our results did not show significant personality impairments in patients with DM2. However, following personality traits were predominant: compulsive (in patients with higher education) and paranoid (in patients with lower education and earlier age at onset). The most common clinical symptoms were anxiety and somatization. PMID:28690389

  2. Functioning and disability in adults with myotonic dystrophy type 1.

    PubMed

    Kierkegaard, Marie; Harms-Ringdahl, Karin; Holmqvist, Lotta Widén; Tollbäck, Anna

    2011-01-01

     To provide a comprehensive description of functioning and disability with regard to stages of disease progression in adults with myotonic dystrophy type 1 (DM1). Further to explore associations of measures of manual dexterity and of walking capacity with measures of activities of daily living (ADL) and participation in social and lifestyle activities. Seventy persons with DM1 underwent examinations, tests and answered questionnaires. Stages of disease progression were based on the muscular impairment rating scale.  Overweight, cardiac dysfunctions, respiratory restrictions, fatigue and/or low physical activity levels were found in approximately 40% of those with DM1. Over 75% had muscle impairments, and activity limitations in manual dexterity and walking. Dependence in personal and instrumental ADL was found in 16% and 39%, respectively, and participation restrictions in social and lifestyle activities in 52%. The presence of concurrent body-function impairments, activity limitations and participation restrictions was high. Significant differences were found in muscle impairment, manual dexterity, mobility, ADL and social and lifestyle activities with regard to disease progression. Cut-off values in measures of manual dexterity and walking capacity associated to functioning are proposed.  This information can be used for developing clinical practise and for health promotion for persons with DM1.

  3. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study.

    PubMed

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-02-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect. © The Author(s) 2016.

  4. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses, lipidoses, mucolipidoses), and several skin diseases (X-linked ichthyosis, keratosis follicularis spinolosa decalvans). The management of the corneal dystrophies varies with the specific disease. Some are treated medically or with methods that excise or ablate the abnormal corneal tissue, such as deep lamellar endothelial keratoplasty (DLEK) and phototherapeutic keratectomy (PTK). Other less debilitating or asymptomatic dystrophies do not warrant treatment. The prognosis varies from minimal effect on the vision to corneal blindness, with marked phenotypic variability. PMID:19236704

  5. Global muscular dystrophy research: A 25-year bibliometric perspective.

    PubMed

    Ram, Shri

    2017-01-01

    Muscular dystrophy is a genetic disorder leading to progressive weakness of muscles caused due to dysfunction in or lack of protein in muscle cells. The prevalence of muscular dystrophy has been observed globally and is becoming a critical area of study for better health services. The purpose of the study is to analyze the research strength of muscular dystrophy using bibliographic literature. A quantitative literature analysis was carried out on muscular dystrophy from 1991 to 2015 for assessing the global research trends. This literature-based study was conducted using the documents retrieved from the Science Citation Index using the keywords: Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), Congenital Muscular Dystrophy (CMD), Myotonic Dystrophy, Emery-Dreifuss Muscular Dystrophy, Facioscapulohumeral Muscular Dystrophy, Oculopharyngeal Muscular Dystrophy, and Limb-Girdle Muscular Dystrophy. Analysis was done for annual productivity of publication, authorship, collaboration, country performance, citation frequency, characteristics of most cited document, journal productivity, etc.

  6. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy.

    PubMed

    Rooney, Jachinta E; Knapp, Jolie R; Hodges, Bradley L; Wuebbles, Ryan D; Burkin, Dean J

    2012-04-01

    Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a lethal muscle-wasting disease that is caused by mutations in the LAMA2 gene, resulting in the loss of laminin-α2 protein. MDC1A patients exhibit severe muscle weakness from birth, are confined to a wheelchair, require ventilator assistance, and have reduced life expectancy. There are currently no effective treatments or cures for MDC1A. Laminin-α2 is required for the formation of heterotrimeric laminin-211 (ie, α2, β1, and γ1) and laminin-221 (ie, α2, β2, and γ1), which are major constituents of skeletal muscle basal lamina. Laminin-111 (ie, α1, β1, and γ1) is the predominant laminin isoform in embryonic skeletal muscle and supports normal skeletal muscle development in laminin-α2-deficient muscle but is absent from adult skeletal muscle. In this study, we determined whether treatment with Engelbreth-Holm-Swarm-derived mouse laminin-111 protein could rescue MDC1A in the dy(W-/-) mouse model. We demonstrate that laminin-111 protein systemically delivered to the muscles of laminin-α2-deficient mice prevents muscle pathology, improves muscle strength, and dramatically increases life expectancy. Laminin-111 also prevented apoptosis in laminin-α2-deficient mouse muscle and primary human MDC1A myogenic cells, which indicates a conserved mechanism of action and cross-reactivity between species. Our results demonstrate that laminin-111 can serve as an effective protein substitution therapy for the treatment of muscular dystrophy in the dy(W-/-) mouse model and establish the potential for its use in the treatment of MDC1A. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Rapidly progressive heart failure requiring transplantation in muscular dystrophy: a need for frequent screening.

    PubMed

    Pick, Justin M; Ellis, Zachary D; Alejos, Juan C; Chang, Anthony C

    2017-11-01

    Fukuyama congenital muscular dystrophy weakens both skeletal and cardiac muscles, but the rate of cardiomyopathic progression can accelerate faster than that of skeletal muscles. A 14-year-old boy with Fukuyama congenital muscular dystrophy presented with mild skeletal myopathy but severe cardiomyopathy requiring heart transplantation within 1 year of declining heart function. These patients need frequent screening regardless of musculoskeletal symptoms.

  8. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy

    PubMed Central

    Caillet-Boudin, Marie-Laure; Fernandez-Gomez, Francisco-Jose; Tran, Hélène; Dhaenens, Claire-Marie; Buee, Luc; Sergeant, Nicolas

    2013-01-01

    Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration. PMID:24409116

  9. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy.

    PubMed

    André, Laurène M; Ausems, C Rosanne M; Wansink, Derick G; Wieringa, Bé

    2018-01-01

    Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP , respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.

  10. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy

    PubMed Central

    André, Laurène M.; Ausems, C. Rosanne M.; Wansink, Derick G.; Wieringa, Bé

    2018-01-01

    Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3′ non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient’s lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM. PMID:29892259

  11. [Recurrent Corneal Erosions in Epithelial Corneal Dystrophies].

    PubMed

    Geerling, Gerd; Lisch, Walter; Finis, David

    2018-06-01

    The corneal epithelium is the most important structure of the ocular optical system. Recurrent corneal erosions can result from inflammation, trauma, degeneration and dystrophies. Epithelial basement membrane dystrophy (EBMD), epithelial recurrent erosion dystrophy (ERED) and Francheschetti and Meesmann's epithelial corneal dystrophy (MECD) can all - besides other signs and symptoms - result in more or less frequent corneal erosions. The pathomechanisms involved however are different. In EBMD, corneal erosions are facultative and clinical signs are often subtle. Aberrant basement membrane structures are associated with thinning of the epithelium and can be clinically identified as maps or fingerprints. In ERED, recurrent corneal erosions are - predominantly in the first decades of life - always present. A defect in the COL17A1 gene results in a dysfunctional hemidesmosome. In MECD, punctate corneal erosions are less frequent and result from intraepithelial microcysts which open spontaneously onto the ocular surface. Usually lubricants, therapeutic contact lenses and sometimes epithelial debridement and phototherapeutic keratectomy are the mainstay for treating corneal erosions in these three dystrophies. Georg Thieme Verlag KG Stuttgart · New York.

  12. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model

    PubMed Central

    Bargiela, Ariadna; Cerro-Herreros, Estefanía; Fernandez-Costa, Juan M.; Vilchez, Juan J.; Llamusi, Beatriz; Artero, Ruben

    2015-01-01

    ABSTRACT Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor) or muscleblind, or by RNA interference (RNAi)-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis. PMID:26092529

  13. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model.

    PubMed

    Bargiela, Ariadna; Cerro-Herreros, Estefanía; Fernandez-Costa, Juan M; Vilchez, Juan J; Llamusi, Beatriz; Artero, Ruben

    2015-07-01

    Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor) or muscleblind, or by RNA interference (RNAi)-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis. © 2015. Published by The Company of Biologists Ltd.

  14. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites.

    PubMed

    Philippi, Susanne; Lorain, Stéphanie; Beley, Cyriaque; Peccate, Cécile; Précigout, Guillaume; Spuler, Simone; Garcia, Luis

    2015-07-15

    The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Progressive muscle proteome changes in a clinically relevant pig model of Duchenne muscular dystrophy.

    PubMed

    Fröhlich, Thomas; Kemter, Elisabeth; Flenkenthaler, Florian; Klymiuk, Nikolai; Otte, Kathrin A; Blutke, Andreas; Krause, Sabine; Walter, Maggie C; Wanke, Rüdiger; Wolf, Eckhard; Arnold, Georg J

    2016-09-16

    Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials.

  16. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders

    PubMed Central

    2011-01-01

    Background Investigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies. Methods Using transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders. Results The immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both in vitro and in vivo after transplantation into regenerating muscle of immunodeficient mice. Conclusions Dystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess in vivo the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies. PMID:22040608

  17. Merosin-deficient congenital muscular dystrophy with mental retardation and cerebellar cysts, unlinked to the LAMA2, FCMD, MEB and CMD1B loci, in three Tunisian patients.

    PubMed

    Triki, Chahnez; Louhichi, Nacim; Méziou, Mériam; Choyakh, Fakher; Kéchaou, Mohamed Salah; Jlidi, Rachid; Mhiri, Chokri; Fakhfakh, Faiza; Ayadi, Hamadi

    2003-01-01

    We report three Tunisian patients affected by congenital muscular dystrophy with mental retardation and cerebellar cysts on cranial magnetic resonance imaging. The clinical features were characterized by hypotonia at birth, joint contractures associated with severe psychomotor retardation, absence of speech, inability to walk in three patients, but calf hypertrophy was noted only in two patients. Brain magnetic resonance imaging showed several cerebellar cysts and vermis hypoplasia in all of the patients. Abnormality of the white matter was present in two patients. The pattern of gyration was normal in all cases. Serum creatine kinase was elevated in all three cases and their muscle biopsy showed dystrophic changes compatible with congenital muscular dystrophy. The immunohistochemical analysis of the skeletal muscle revealed partial merosin deficiency, more pronounced for the N-terminal antibody. Linkage analysis excluded congenital muscular dystrophy loci on chromosomes 6q22, 9q31, 1p32 and 1q42. These patients constituted a particular form of congenital muscular dystrophy with a combination of severe motor delay, mental retardation, partial merosin deficiency and cerebellar cysts. Two patients showed white matter abnormalities on magnetic resonance imaging and hypertrophy of the calves. These cases, in addition to those reported previously, confirmed the large phenotypic variability in the group of secondary merosin deficiency congenital muscular dystrophy.

  18. [Myostatin blockade therapy for muscular atrophy].

    PubMed

    Sunada, Yoshihide

    2011-11-01

    Myostatin, a member of the muscle-specific transforming growth factor (TGF)-β family, negatively regulates skeletal muscle growth. It inhibits muscle stem cell proliferation and differentiation and attenuates adult muscle fiber protein accretion, resulting in decreased skeletal muscle mass. As such, it has been considered a therapeutic target of muscular dystrophy. Notably, administration of a blocking antibody against myostatin ameliorated the pathophysiology of dystrophin-deficient mdx mice. Although a clinical trial of anti-myostatin antibody MYO-029 failed to achieve a significant outcome in patients with muscular dystrophies, various distinct approaches have been taken to establish anti-myostatin therapy, including myostatin decoy receptor ACE-031, small-molecule inhibitors against the myostatin receptor, and myostatin short intertering RNA with collagen-derived carrier particles. The clinical application of anti-myostatin therapeutics in treatment of patients with muscular dystrophy needs further evaluation for safety and specification of the target disease types among the various muscular dystrophies. In addition, myostatin inhibition could be effective for muscle-wasting conditions other than muscular dystrophy- for instance, steroid-induced myopathy, mitochondrial myopathy, or sarcopenia in elderly patients. Moreover, considerable evidence shows that myostatin regulates energy metabolism and that its inhibition can significantly attenuate the progression of obesity and diabetes. It may also be applicable for the prevention of metabolic syndrome. Thus, safe and potent anti-myostatin therapy will have a wide variety of applications in modern medicine.

  19. [Central Nervous Involvement in Patients with Fukuyama Congenital Muscular Dystrophy].

    PubMed

    Ishigaki, Keiko

    2016-02-01

    Fukuyama congenital muscular dystrophy (FCMD), the second most common muscular dystrophy in the Japanese population, is an autosomal recessive disorder caused by mutations in the fukutin (FKTN) gene. The main features of FCMD are a combination of infantile-onset hypotonia, generalized muscle weakness, eye abnormalities and central nervous system involvement with mental retardation and seizures associated with cortical migration defects. The FKTN gene product is thought to be necessary for maintaining migrating neurons in an immature state during migration, and for supporting migration via α-dystroglycan in the central nervous system. Typical magnetic resonance imaging findings in FCMD patients are cobblestone lissencephaly and cerebellar cystic lesions. White matter abnormalities with hyperintensity on T(2)-weighted images are seen especially in younger patients and those with severe phenotypes. Most FCMD patients are mentally retarded and the level is moderate to severe, with IQs ranging from 30 to 50. In our recent study, 62% of patients developed seizures. Among them, 71% had only febrile seizures, 6% had afebrile seizures from the onset, and 22% developed afebrile seizures following febrile seizures. Most patients had seizures that were controllable with just 1 type of antiepileptic drug, but 18% had intractable seizures that must be treated with 3 medications.

  20. Cardiac involvement in facio-scapulo-humeral muscular dystrophy: a family study using Thallium-201 single-photon-emission-computed tomography.

    PubMed

    Faustmann, P M; Farahati, J; Rupilius, B; Dux, R; Koch, M C; Reiners, C

    1996-12-01

    Fifteen persons from two consecutive generations of one family affected with facio-scapulo-humeral muscular dystrophy (FSHD) were clinically and neurophysiologically examined. Diagnostic muscle biopsies were obtained from two members. Linkage analysis showed that all four affected members of the family inherit the same 4q35 haplotype giving a lod score of z = +1.44. Six family members were examined by ECG at rest and under stress, by two-dimensional echocardiography, and by cardiac Thallium-201 single-photon-emission computed tomography (Tl-201-SPECT) under dobutamine stress and at rest. Abnormal reduced Tl-201 uptake in cardiac SPECT was only found in the affected members of the family. Therefore we suggest that cardiac Tl-201-SPECT abnormalities in FSHD reflect cardiomyogenic changes in this type of muscular disease.

  1. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy.

    PubMed

    Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali

    2015-12-01

    Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.

  2. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1.

    PubMed

    Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2006-05-15

    During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx-/- mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx-/- mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration.

  3. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy.

    PubMed

    Hofhuis, Julia; Bersch, Kristina; Büssenschütt, Ronja; Drzymalski, Marzena; Liebetanz, David; Nikolaev, Viacheslav O; Wagner, Stefan; Maier, Lars S; Gärtner, Jutta; Klinge, Lars; Thoms, Sven

    2017-03-01

    The multi-C2 domain protein dysferlin localizes to the plasma membrane and the T-tubule system in skeletal muscle; however, its physiological mode of action is unknown. Mutations in the DYSF gene lead to autosomal recessive limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Here, we show that dysferlin has membrane tubulating capacity and that it shapes the T-tubule system. Dysferlin tubulates liposomes, generates a T-tubule-like membrane system in non-muscle cells, and links the recruitment of phosphatidylinositol 4,5-bisphosphate to the biogenesis of the T-tubule system. Pathogenic mutant forms interfere with all of these functions, indicating that muscular wasting and dystrophy are caused by the dysferlin mutants' inability to form a functional T-tubule membrane system. © 2017. Published by The Company of Biologists Ltd.

  4. Detection of ultrastructural changes in genetically altered and exercised skeletal muscle using PS-OCT

    NASA Astrophysics Data System (ADS)

    Pasquesi, James J.; Schlachter, Simon C.; Boppart, Marni D.; Chaney, Eric; Kaufman, Stephen J.; Boppart, Stephen A.

    2006-02-01

    Birefringence of skeletal muscle has been associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Murine skeletal muscle (gastrocnemius) was imaged with a fiber-based PS-OCT imaging system to determine the level of birefringence present in the tissue under various conditions. In addition to muscle controls from wild-type mice, muscle from abnormal mice included: genetically-modified (mdx) mice which model human muscular dystrophy, transgenic mice exhibiting an overexpression of integrin (α7β1), and transgenic integrin (α7β1)knockout mice. Comparisons were also made between rested and exercised muscles to determine the effects of exercise on muscle birefringence for each of these normal and abnormal conditions. The PS-OCT images revealed that the presence of birefringence was similar in the rested muscle with dystrophy-like features (i.e., lacking the structural protein dystrophin - mdx) and in the integrin (α7β1)knockout muscle when compared to the normal (wild-type) control. However, exercising these abnormal muscle tissues drastically reduced the presence of birefringence detected by the PS-OCT system. The muscle exhibiting an overexpression of integrin (α7β1) remained heavily birefringent before and after exercise, similar to the normal (wild-type) muscle. These results suggest that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

  5. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline.

    PubMed

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-09-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.

  6. Brain gray matter structural network in myotonic dystrophy type 1.

    PubMed

    Sugiyama, Atsuhiko; Sone, Daichi; Sato, Noriko; Kimura, Yukio; Ota, Miho; Maikusa, Norihide; Maekawa, Tomoko; Enokizono, Mikako; Mori-Yoshimura, Madoka; Ohya, Yasushi; Kuwabara, Satoshi; Matsuda, Hiroshi

    2017-01-01

    This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1) patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset), excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM) and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.

  7. Immortalized myogenic cells from congenital muscular dystrophy type1A patients recapitulate aberrant caspase activation in pathogenesis: a new tool for MDC1A research

    PubMed Central

    2013-01-01

    Background Congenital muscular dystrophy Type 1A (MDC1A) is a severe, recessive disease of childhood onset that is caused by mutations in the LAMA2 gene encoding laminin-α2. Studies with both mouse models and primary cultures of human MDC1A myogenic cells suggest that aberrant activation of cell death is a significant contributor to pathogenesis in laminin-α2-deficiency. Methods To overcome the limited population doublings of primary cultures, we generated immortalized, clonal lines of human MDC1A myogenic cells via overexpression of both CDK4 and the telomerase catalytic component (human telomerase reverse transcriptase (hTERT)). Results The immortalized MDC1A myogenic cells proliferated indefinitely when cultured at low density in high serum growth medium, but retained the capacity to form multinucleate myotubes and express muscle-specific proteins when switched to low serum medium. When cultured in the absence of laminin, myotubes formed from immortalized MDC1A myoblasts, but not those formed from immortalized healthy or disease control human myoblasts, showed significantly increased activation of caspase-3. This pattern of aberrant caspase-3 activation in the immortalized cultures was similar to that found previously in primary MDC1A cultures and laminin-α2-deficient mice. Conclusions Immortalized MDC1A myogenic cells provide a new resource for studies of pathogenetic mechanisms and for screening possible therapeutic approaches in laminin-α2-deficiency. PMID:24314268

  8. Immortalized myogenic cells from congenital muscular dystrophy type1A patients recapitulate aberrant caspase activation in pathogenesis: a new tool for MDC1A research.

    PubMed

    Yoon, Soonsang; Stadler, Guido; Beermann, Mary Lou; Schmidt, Eric V; Windelborn, James A; Schneiderat, Peter; Wright, Woodring E; Miller, Jeffrey Boone

    2013-12-06

    Congenital muscular dystrophy Type 1A (MDC1A) is a severe, recessive disease of childhood onset that is caused by mutations in the LAMA2 gene encoding laminin-α2. Studies with both mouse models and primary cultures of human MDC1A myogenic cells suggest that aberrant activation of cell death is a significant contributor to pathogenesis in laminin-α2-deficiency. To overcome the limited population doublings of primary cultures, we generated immortalized, clonal lines of human MDC1A myogenic cells via overexpression of both CDK4 and the telomerase catalytic component (human telomerase reverse transcriptase (hTERT)). The immortalized MDC1A myogenic cells proliferated indefinitely when cultured at low density in high serum growth medium, but retained the capacity to form multinucleate myotubes and express muscle-specific proteins when switched to low serum medium. When cultured in the absence of laminin, myotubes formed from immortalized MDC1A myoblasts, but not those formed from immortalized healthy or disease control human myoblasts, showed significantly increased activation of caspase-3. This pattern of aberrant caspase-3 activation in the immortalized cultures was similar to that found previously in primary MDC1A cultures and laminin-α2-deficient mice. Immortalized MDC1A myogenic cells provide a new resource for studies of pathogenetic mechanisms and for screening possible therapeutic approaches in laminin-α2-deficiency.

  9. Use of placental extract for the treatment of myopic and senile chorio-retinal dystrophies.

    PubMed

    Girotto, G; Malinverni, W

    1982-01-01

    After an examination of the literature, the authors evaluate the activity of placenta extract in 34 subjects suffering from chorio-retinal dystrophy of different types (myopic and senile) and of different degrees of anatomo-functional alteration. The parameters used for this study were visual acuity, the luminous sense, the visual field and the electrophysiological activity of the retina. The aqueous solution was administered by intramuscular route at a daily dose of 3 ml (equivalent to 1,80 g of fresh organ) during 20 days; the parameters were tested before and at the end of the treatment. The results obtained during this study show that the parameters were improved, in different degrees, by the administration of the placenta extract. This is clearly demonstrated by the significant improvement in the luminous sense.

  10. Focal Choroidal Excavation in Best Vitelliform Macular Dystrophy: Case Report

    PubMed Central

    Esfahani, Mohammad Riazi; Esfahani, Hamid Riazi; Mahmoudi, Alireza; Johari, Mohammad Karim

    2015-01-01

    Focal choroidal excavation (FCE) was first reported as a choroidal posteriorly excavated zone without any scleral change. Choroidal excavation also divided into conforming and nonconforming type. Numerous reports demonstrated association between FCE and other disease such as choroidal neovascularization and central serous choroidoretinopathy. Here, we report a rare case of FCE in a patient with Best disease. The patient was diagnosed by spectoral domain optical coherence tomography (SD-OCT). To the best of our knowledge, our patient is the second report of choroidal excavation in Best vitelliform macular dystrophy. PMID:26155505

  11. Fukutin-related protein localizes to the Golgi apparatus and mutations lead to mislocalization in muscle in vivo.

    PubMed

    Keramaris-Vrantsis, Elizabeth; Lu, Pei J; Doran, Timothy; Zillmer, Allen; Ashar, Jignya; Esapa, Christopher T; Benson, Matthew A; Blake, Derek J; Rosenfeld, Jeffrey; Lu, Qi L

    2007-10-01

    Mutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo. Both normal human and mouse FKRPs localize in part of the Golgi apparatus in muscle fibers. Mutations in the FKRP gene invariably altered the localization of the protein, leading to endoplasmic reticulum retention within cells and diminished Golgi localization in muscle fibers. Our results therefore suggest that an individual missense point mutation can confer at least two independent effects on the protein, causing (1) reduction or loss of the presumed glycosyltransferase activity directly and (2) mislocalization that could further alter the function of the protein. The complexity of the effect of individual missense point mutations may partly explain the wide variation of the FKRP-related myopathies.

  12. [Treatment with sympathetic intravenous block with reserpine in work-related reflex sympathetic dystrophy].

    PubMed

    Morros, C; Cedo, F

    1994-01-01

    To assess the results obtained in treatment of sympathetic reflex dystrophy by sympathetic endovenous blockades with reserpine in working patients. We reviewed 170 diagnoses of sympathetic reflex dystrophy in 165 patients. One hundred seven were located in the foot, 13 were in the knee and 50 were in the hand. All were treated once a week for 3 weeks with local sympathetic endovenous blocks with reserpine (1 mg in the upper extremity and 1.5 mg in the lower extremity). We analyzed the location, etiology, course, X-rays, gammagrams, psychological state, other treatments, associated conditions, number of blocks received and side effects. The results were classified as excellent, good, fair and nil. We particularly reviewed sympathetic reflex dystrophy associated to Colles' fractures. Five hundred forty endovenous sympathetic blocks with reserpine were performed. Results obtained were excellent in 57 (34%) patients, good in 77 (45%), fair in 29 (17%) and nil in 7 (4%). Sympathetic reflex dystrophy leads to loss of 215 +/- 91 working days. In patients with Colles' fracture without sympathetic reflex dystrophy the loss is 96 +/- 31 days, although this period lengthens to 115 +/- 15 days if the two conditions are associated in stage I and to loss of 193 +/- 71 days if the association is in stage II. Results of treating sympathetic reflex dystrophy with sympathetic endovenous blocks with reserpine are satisfactory, particularly when diagnosis and treatment are early, clearly demonstrating the usefulness of this technique in workplace medicine.

  13. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative tomore » Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.« less

  14. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    PubMed

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  15. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    DTIC Science & Technology

    2012-10-01

    Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism CINRG: Systems Biology of Glucocorticoids in Muscle Disease Zuyi Wang, Ph.D...2011-2012) for Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy ...DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis

  16. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    DTIC Science & Technology

    2013-10-01

    Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy (DMD) is the most...common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis. Corticosteroid... muscle and enable the development of better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant

  17. Mutations in PCYT1A cause spondylometaphyseal dysplasia with cone-rod dystrophy.

    PubMed

    Yamamoto, Guilherme L; Baratela, Wagner A R; Almeida, Tatiana F; Lazar, Monize; Afonso, Clara L; Oyamada, Maria K; Suzuki, Lisa; Oliveira, Luiz A N; Ramos, Ester S; Kim, Chong A; Passos-Bueno, Maria Rita; Bertola, Débora R

    2014-01-02

    Spondylometaphyseal dysplasia with cone-rod dystrophy is a rare autosomal-recessive disorder characterized by severe short stature, progressive lower-limb bowing, flattened vertebral bodies, metaphyseal involvement, and visual impairment caused by cone-rod dystrophy. Whole-exome sequencing of four individuals affected by this disorder from two Brazilian families identified two previously unreported homozygous mutations in PCYT1A. This gene encodes the alpha isoform of the phosphate cytidylyltransferase 1 choline enzyme, which is responsible for converting phosphocholine into cytidine diphosphate-choline, a key intermediate step in the phosphatidylcholine biosynthesis pathway. A different enzymatic defect in this pathway has been previously associated with a muscular dystrophy with mitochondrial structural abnormalities that does not have cartilage and/or bone or retinal involvement. Thus, the deregulation of the phosphatidylcholine pathway may play a role in multiple genetic diseases in humans, and further studies are necessary to uncover its precise pathogenic mechanisms and the entirety of its phenotypic spectrum. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Respiratory function in facioscapulohumeral muscular dystrophy 1.

    PubMed

    Wohlgemuth, M; Horlings, C G C; van der Kooi, E L; Gilhuis, H J; Hendriks, J C M; van der Maarel, S M; van Engelen, B G M; Heijdra, Y F; Padberg, G W

    2017-06-01

    To test the hypothesis that wheelchair dependency and (kypho-)scoliosis are risk factors for developing respiratory insufficiency in facioscapulohumeral muscular dystrophy, we examined 81 patients with facioscapulohumeral muscular dystrophy 1 of varying degrees of severity ranging from ambulatory patients to wheelchair-bound patients. We examined the patients neurologically and by conducting pulmonary function tests: Forced Vital Capacity, Forced Expiratory Volume in 1 second, and static maximal inspiratory and expiratory mouth pressures. We did not find pulmonary function test abnormalities in ambulant facioscapulohumeral muscular dystrophy patients. Even though none of the patients complained of respiratory dysfunction, mild to severe respiratory insufficiency was found in more than one third of the wheelchair-dependent patients. Maximal inspiratory pressures and maximal expiratory pressures were decreased in most patients, with a trend that maximal expiratory pressures were more affected than maximal inspiratory pressures. Wheelchair-dependent patients with (kypho-)scoliosis showed the most restricted lung function. Wheelchair-dependent patients with (kypho-)scoliosis are at risk for developing respiratory function impairment. We advise examining this group of facioscapulohumeral muscular dystrophy patients periodically, even in the absence of symptoms of respiratory insufficiency, given its frequency and impact on daily life and the therapeutic consequences. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of sleep hypoventilation in young individuals with Becker muscular dystrophy: A pilot study.

    PubMed

    Nakamura, Yuko; Saito, Yoshiaki; Kubota, Norika; Matsumura, Wataru; Hosoda, Chika; Tamasaki-Kondo, Akiko; Nishimura, Yoko; Sunada, Yoshihide; Fukada, Masuyuki; Ohno, Takako; Maegaki, Yoshihiro; Matsuo, Masafumi; Tokita, Yasuko

    2018-03-08

    To report on sleep hypercapnia in Becker muscular dystrophy (BMD) at earlier stages than ever recognized. This retrospective study examined nocturnal hypercapnia in six young Becker muscular dystrophy (BMD) patients with deletions of one or more exons of DMD gene. Clinical information, consecutive data on forced vital capacity (FVC%), forced expiratory volume in one second (FEV1%), peak expiratory flow (PEF%), peak cough flow (PCF), average PCO 2 in all-night monitoring, and left ventricular ejection fraction (LVEF) were reviewed. In five BMD patients, including three who were still ambulant, nocturnal average PCO 2 was elevated to >45 mmHg at 12-31 years of age. Noninvasive positive pressure ventilation was initiated in four patients. Gradual declines in FVC% and PEF% were evident in one BMD patient with exon 3-7 deletion, whereas these functions did not change in the remaining BMD patients. PCF, FEV1%, and LVEF were less informative for the assessment of respiratory function in this patient series. Sleep hypercapnia was present in certain BMD patients, which was unexpected from the routine pulmonary function tests. Individualized assessment of nocturnal PCO 2 , partly based on the deletion types, should be further explored in the clinical practice of BMD patients. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Functions of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in neuromuscular system and other somatic organs.

    PubMed

    Yamamoto, Tomoko; Shibata, Noriyuki; Saito, Yoshiaki; Osawa, Makiko; Kobayashi, Makio

    2010-06-01

    Fukuyama type congenital muscular dystrophy (FCMD) is an autosomal recessive disease, exhibiting muscular dystrophy, and central nervous system (CNS) and ocular malformations. It is included in alpha-dystroglycanopathy, a group of muscular dystrophy showing reduced glycosylation of alpha-dystroglycan. alpha-Dystroglycan is one of the components of dystrophin-glycoprotein complex linking extracellular and intracellular proteins. The sugar chains of alpha-dystroglycan are receptors for extracellular matrix proteins such as laminin. Fukutin, a gene responsible for FCMD, is presumably related to the glycosylation of alpha-dystroglycan like other causative genes of alpha-dystroglycanopathy. The CNS lesion of FCMD is characterized by cobblestone lissencephaly, associated with decreased glycosylation of alpha-dystroglycan in the glia limitans where the basement membrane is formed. Astrocytes whose endfeet form the glia limitans seem to be greatly involved in the genesis of the CNS lesion. Fukutin is probably necessary for astrocytic function. Other components of the CNS may also need fukutin, such as migration and synaptic function in neurons. However, roles of fukutin in oligodendroglia, microglia, leptomeninges and capillaries are unknown at present. Fukutin is expressed in various somatic organs as well, and appears to work differently between epithelial cells and astrocytes. In the molecular level, since the dystrophin-glycoprotein complex is linked to cell signaling pathways involving c-src and c-jun, fukutin may be able to affect cell proliferation/survival. Fukutin was localized in the nucleus on cancer cell lines. With the consideration that mutations of fukutin give rise to wide spectrum of the clinical phenotype, more unknown functions of fukutin besides the glycosylation of alpha-dystroglycan can be suggested. Trials for novel treatments including gene therapy are in progress in muscular dystrophies. Toward effective therapies with minimal side effects, precise evaluation of the pathomechanism of FCMD and the function of fukutin would be required.

  1. Participation restriction in childhood phenotype of myotonic dystrophy type 1: a systematic retrospective chart review.

    PubMed

    Gagnon, Cynthia; Kierkegaard, Marie; Blackburn, Catherine; Chrestian, Nicolas; Lavoie, Mélissa; Bouchard, Marie-Frédéric; Mathieu, Jean

    2017-03-01

    Myotonic dystrophy type 1 (DM1), a neuromuscular disorder, is divided into four clinical phenotypes: congenital; childhood; adult-onset, and late-onset. Publications about the childhood phenotype, especially the long-term outcome, are scarce. The aims of this study were to assess and describe participation outcomes in adults with the childhood phenotype. A retrospective chart methodology. Data were extracted from health records for 63 adults with childhood DM1 (32 males, 31 females; mean age 34y, standard deviation [SD] 11y 6mo; range 18-54y) who had attended the Saguenay Neuromuscular Clinic, Canada. Thirty-four adults (54%) lived with their parents or in foster homes, and most patients needed services or help to live independently. A significant proportion (22%) were isolated in regard to friendship. Very few adults had children, although 33% lived with a spouse. The majority of patients (86%) relied on social security and only one person was currently working. Financial responsibilities were often an issue and 13 (21%) were under legal guardianship. This study showed that patients with the childhood phenotype present a guarded prognosis regarding long-term social participation. These participation restrictions could be related to behavioural, cognitive, and social stigma problems in childhood. This study illustrates the absolute necessity to pursue an interdisciplinary follow-up of these patients when they are reaching adulthood. © 2016 Mac Keith Press.

  2. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials.

    PubMed

    Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S; Verschuuren, Jan J; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E; Muntoni, Francesco

    2011-12-01

    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy.

  3. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials

    PubMed Central

    Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S.; Verschuuren, Jan J.; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E.

    2011-01-01

    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy. PMID:22102647

  4. Motor Physical Therapy Affects Muscle Collagen Type I and Decreases Gait Speed in Dystrophin-Deficient Dogs

    PubMed Central

    Gaiad, Thaís P.; Araujo, Karla P. C.; Serrão, Júlio C.; Miglino, Maria A.; Ambrósio, Carlos Eduardo

    2014-01-01

    Golden Retriever Muscular Dystrophy (GRMD) is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD) in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT) is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD) underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD) maintained their routine of activities of daily living. At t0 (pre) and t1 (post-physical therapy), collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy), mediolateral (Fz) and craniocaudal (Fx) ground reaction forces (GRF) were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000). The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function. PMID:24713872

  5. Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1.

    PubMed

    Algalarrondo, Vincent; Wahbi, Karim; Sebag, Frédéric; Gourdon, Geneviève; Beldjord, Chérif; Azibi, Kamel; Balse, Elise; Coulombe, Alain; Fischmeister, Rodolphe; Eymard, Bruno; Duboc, Denis; Hatem, Stéphane N

    2015-04-01

    Myotonic dystrophy type 1 (DM1) is the most common neuromuscular disorder and is associated with cardiac conduction defects. However, the mechanisms of cardiac arrhythmias in DM1 are unknown. We tested the hypothesis that abnormalities in the cardiac sodium current (INa) are involved, and used a transgenic mouse model reproducing the expression of triplet expansion observed in DM1 (DMSXL mouse). The injection of the class-I antiarrhythmic agent flecainide induced prominent conduction abnormalities and significantly lowered the radial tissular velocities and strain rate in DMSXL mice compared to WT. These abnormalities were more pronounced in 8-month-old mice than in 3-month-old mice. Ventricular action potentials recorded by standard glass microelectrode technique exhibited a lower maximum upstroke velocity [dV/dt](max) in DMSXL. This decreased [dV/dt](max) was associated with a 1.7 fold faster inactivation of INa in DMSXL myocytes measured by the whole-cell patch-clamp technique. Finally in the DMSXL mouse, no mutation in the Scn5a gene was detected and neither cardiac fibrosis nor abnormalities of expression of the sodium channel protein were observed. Therefore, alterations in the sodium current markedly contributed to electrical conduction block in DM1. This result should guide pharmaceutical and clinical research toward better therapy for the cardiac arrhythmias associated with DM1. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Translational Studies of GALGT2 Gene Therapy for Duchenne Muscular Dystrophy

    DTIC Science & Technology

    2014-10-01

    myofibers has been demonstrated to protect both wild type and dystrophic muscles from injury and to inhibit the development of muscular dystrophy in...dose for functional muscle correction after rAAVrh74.MCK.GALGT2 treatment in mdx mouse muscle . The second thing we have learned is that the MHCK7...post- treatment showed very low levels of sustained muscle transduction, however, co-injection of rAAVrh74.MHCK7.GALGT2 with an equivalent dose of

  7. Deficiency of merosin in dystrophic dy mouse homologue of congenital muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunada, Y.; Campbell, K.P.; Bernier, S.M.

    1994-09-01

    Merosin (laminin M chain) is the predominant laminin isoform in the basal lamina of striated muscle and peripheral nerve and is a native ligand for {alpha}-dystroglycan, a novel laminin receptor. Merosin is linked to the subsarcolemmal actin cytoskeleton via the dystrophin-glycoprotein complex (DGC), which plays an important role for maintenance of normal muscle function. We have mapped the mouse merosin gene, Lamm, to the region containing the dystrophia muscularis (dy) locus on chromosome 10. This suggested the possibility that a mutation in the merosin gene could be responsible for the dy mouse, an animal model for autosomal recessive muscular dystrophy,more » and prompted us to test this hypothesis. We analyzed the status of merosin expression in dy mouse by immunofluorescence and immunoblotting. In dy mouse skeletal and cardiac muscle and peripheral nerve, merosin was reduced greater than 90% as compared to control mice. However, the expression of laminin B1/B2 chains and collagen type IV was smaller to that in control mice. These findings strongly suggest that merosin deficiency may be the primary defect in the dy mouse. Furthermore, we have identified two patients afflicted with congenital muscular dystrophy with merosin deficiency, providing the basis for future studies of molecular pathogenesis and gene therapy.« less

  8. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy.

    PubMed

    Morales, Maria Gabriela; Gutierrez, Jaime; Cabello-Verrugio, Claudio; Cabrera, Daniel; Lipson, Kenneth E; Goldschmeding, Roel; Brandan, Enrique

    2013-12-15

    In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-β (TGF-β), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.

  9. Mild and severe muscular dystrophy caused by a single {gamma}-sarcoglycan mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, E.M.; Boennemann, C.G.; Lidov, H.G.W.

    1996-11-01

    Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein {gamma}-sarcoglycan. The previous mutation analysis of {gamma}-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the {gamma}-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding {gamma}-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the {gamma}-sarcoglycan gene. Thesemore » patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of {alpha}-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the {gamma}-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from {gamma}-sarcoglycan gene mutations. 19 refs., 5 figs., 3 tabs.« less

  10. The effect of myotonic dystrophy transcript levels and location on muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastroyiannopoulos, Nikolaos P.; Chrysanthou, Elina; Kyriakides, Tassos C.

    2008-12-12

    In myotonic dystrophy type I (DM1), nuclear retention of mutant DMPK transcripts compromises muscle cell differentiation. Although several reports have identified molecular defects in myogenesis, it remains still unclear how exactly the retention of the mutant transcripts induces this defect. We have recently created a novel cellular model in which the mutant DMPK 3' UTR transcripts were released to the cytoplasm of myoblasts by using the WPRE genetic element. As a result, muscle cell differentiation was repaired. In this paper, this cellular model was further exploited to investigate the effect of the levels and location of the mutant transcripts onmore » muscle differentiation. Results show that the levels of these transcripts were proportional to the inhibition of both the initial fusion of myoblasts and the maturity of myotubes. Moreover, the cytoplasmic export of the mutant RNAs to the cytoplasm caused less inhibition only in the initial fusion of myoblasts.« less

  11. Muscular Dystrophy

    MedlinePlus

    ... Gardner-Medwin D. Variability in clinical, genetic and protein abnormalities in manifesting carriers of Duchenne and Becker muscular dystrophy . Neuromuscul. Disord. Jan 1993;3(1):57-64. 3. Bushby KM, Appleton R, Anderson ...

  12. [Steinert disease].

    PubMed

    Bouhour, Françoise; Bost, Muriel; Vial, Christophe

    2007-06-01

    Steinert disease, also known as myotonic dystrophy type 1, is a muscle disease characterized by myotonia and by multiorgan damage that combines various degrees of muscle weakness, arrhythmia and/or cardiac conduction disorders, cataract, endocrine damage, sleep disorders and baldness. It is the most frequent of the adult-onset muscular dystrophies; its prevalence is estimated at 1/20,000 inhabitants. Diagnosis is confirmed by the demonstration of an abnormality at the 19q13-2 locus, with the use of molecular genetic techniques. Its transmission is autosomal dominant, and anticipation may occur, that is, disease may be more severe and occur earlier in offspring. Genetic counseling is often delicate for this condition because of the great variability of clinical expression, both within and between families. Prenatal diagnosis is proposed especially for maternal transmission because of the severity of the possible neonatal forms. Management ideally includes multidisciplinary annual follow-up. Disease course is usually slowly progressive but rapid deterioration may sometimes be observed. Life expectancy is reduced by the increased mortality associated with the pulmonary and cardiac complications.

  13. Rehabilitative technology use among individuals with Duchenne/Becker muscular dystrophy.

    PubMed

    Pandya, Shree; Andrews, Jennifer; Campbell, Kim; Meaney, F John

    2016-01-01

    To document use of rehabilitative technology among individuals with Duchenne/Becker muscular dystrophy (DBMD) among sites of the Muscular Dystrophy Surveillance, Tracking, and Research network (MD STARnet). Data from 362 caregivers who participated in the MD STARnet caregiver interview between April 2006 and March 2012 (54.7% response rate) were analyzed to assess the type, frequency and duration of use of assistive technology. Caregiver reports of technology use by individuals with DBMD across five MD STARnet sites in the US demonstrated significant regional differences in the proportion of individuals who had ever used night splints (36.9%-73.0%), standers (3.1%-22.2%) and scooters (10.7%-54.5%). Among individuals who used night splints 59.7% stopped using them at a mean age of 10.3 years after a mean duration of 2.9 years in spite of the current recommendation to continue using them through the non-ambulatory phase. Results of this comprehensive survey document the frequency of assistive device use by individuals with DBMD in the USA and also provides data on differences across the sites. Further research is needed to understand the reasons for and the impact of these differences on clinical outcomes and health related quality of life of individuals with DBMD.

  14. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy.

    PubMed

    Vissing, John; Barresi, Rita; Witting, Nanna; Van Ghelue, Marijke; Gammelgaard, Lise; Bindoff, Laurence A; Straub, Volker; Lochmüller, Hanns; Hudson, Judith; Wahl, Christoph M; Arnardottir, Snjolaug; Dahlbom, Kathe; Jonsrud, Christoffer; Duno, Morten

    2016-08-01

    Limb girdle muscular dystrophy type 2A is the most common limb girdle muscular dystrophy form worldwide. Although strict recessive inheritance is assumed, patients carrying a single mutation in the calpain 3 gene (CAPN3) are reported. Such findings are commonly attributed to incomplete mutation screening. In this investigation, we report 37 individuals (age range: 21-85 years, 21 females and 16 males) from 10 families in whom only one mutation in CAPN3 could be identified; a 21-bp, in-frame deletion (c.643_663del21). This mutation co-segregated with evidence of muscle disease and autosomal dominant transmission in several generations. Evidence of muscle disease was indicated by muscle pain, muscle weakness and wasting, significant fat replacement of muscles on imaging, myopathic changes on muscle biopsy and loss of calpain 3 protein on western blotting. Thirty-one of 34 patients had elevated creatine kinase or myoglobin. Muscle weakness was generally milder than observed in limb girdle muscular dystrophy type 2A, but affected the same muscle groups (proximal leg, lumbar paraspinal and medial gastrocnemius muscles). In some cases, the weakness was severely disabling. The 21-bp deletion did not affect mRNA maturation. Calpain 3 expression in muscle, assessed by western blot, was below 15% of normal levels in the nine mutation carriers in whom this could be tested. Haplotype analysis in four families from three different countries suggests that the 21-bp deletion is a founder mutation. This study provides strong evidence that heterozygosity for the c.643_663del21 deletion in CAPN3 results in a dominantly inherited muscle disease. The normal expression of mutated mRNA and the severe loss of calpain 3 on western blotting, suggest a dominant negative effect with a loss-of-function mechanism affecting the calpain 3 homodimer. This renders patients deficient in calpain 3 as in limb girdle muscular dystrophy type 2A, albeit in a milder form in most cases. Based on findings in 10 families, our study indicates that a dominantly inherited pattern of calpainopathy exists, and should be considered in the diagnostic work-up and genetic counselling of patients with calpainopathy and single-allele aberrations in CAPN3. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Molecular and Genetic Studies of Congenital Myopathies

    ClinicalTrials.gov

    2018-03-21

    Central Core Disease; Centronuclear Myopathy; Congenital Fiber Type Disproportion; Multiminicore Disease; Myotubular Myopathy; Nemaline Myopathy; Rigid Spine Muscular Dystrophy; Undefined Congenital Myopathy

  16. Neuromuscular diseases: Diagnosis and management.

    PubMed

    Mary, P; Servais, L; Vialle, R

    2018-02-01

    Neuromuscular diseases (NMDs) affect the peripheral nervous system, which includes the motor neurons and sensory neurons; the muscle itself; or the neuromuscular junction. Thus, the term NMDs encompasses a vast array of different syndromes. Some of these syndromes are of direct relevance to paediatric orthopaedic surgeons, either because the presenting manifestation is a functional sign (e.g., toe-walking) or deformity (e.g., pes cavus or scoliosis) suggesting a need for orthopaedic attention or because orthopaedic abnormalities requiring treatment develop during the course of a known NMD. The main NMDs relevant to the orthopaedic surgeon are infantile spinal muscular atrophy (a motor neuron disease), peripheral neuropathies (chiefly, Charcot-Marie-Tooth disease), congenital muscular dystrophies, progressive muscular dystrophies, and Steinert myotonic dystrophy (or myotonic dystrophy type 1). Muscle weakness is a symptom shared by all these conditions. The paediatric orthopaedic surgeon must be familiar, not only with the musculoskeletal system, but also with many other domains (particularly respiratory and cardiac function and nutrition) that may interfere with the treatment and require preoperative management. Good knowledge of the natural history of each NMD is essential to ensure optimal timing of the therapeutic interventions, which must be performed under the best possible conditions in these usually frail patients. Timing is particularly crucial for the treatment of spinal deformities due to paraspinal muscle hypotonia during growth: depending on the disease and natural history, the treatment may involve non-operative methods or growing rods, followed by spinal fusion. A multidisciplinary approach is always required. Finally, the survival gains achieved in recent years increasingly require attention to preparing for adult life, to orthopaedic problems requiring treatment before the patient leaves the paediatric environment, and to the transition towards the adult healthcare system. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Chronic pain has a strong impact on quality of life in facioscapulohumeral muscular dystrophy

    PubMed Central

    Wood, Libby; FernáNdez‐Torrón, Roberto; González Coraspe, José Andrés; Turner, Chris; Hilton‐Jones, David; Norwood, Fiona; Willis, Tracey; Parton, Matt; Rogers, Mark; Hammans, Simon; Roberts, Mark; Househam, Elizabeth; Williams, Maggie; Lochmüller, Hanns; Evangelista, Teresinha

    2017-01-01

    ABSTRACT Introduction Earlier small case series and clinical observations reported on chronic pain playing an important role in facioscapulohumeral dystrophy (FSHD). The aim of this study was to determine the characteristics and impact of pain on quality of life (QoL) in patients with FSHD. Methods We analyzed patient reported outcome measures collected through the U.K. FSHD Patient Registry. Results Of 398 patients, 88.6% reported pain at the time of study. The most frequent locations were shoulders and lower back. A total of 203 participants reported chronic pain, 30.4% of them as severe. The overall disease impact on QoL was significantly higher in patients with early onset and long disease duration. Chronic pain had a negative impact on all Individualised Neuromuscular Quality of Life Questionnaire domains and overall disease score. Discussion Our study shows that pain in FSHD type 1 (FSHD1) is frequent and strongly impacts on QoL, similar to other chronic, painful disorders. Management of pain should be considered when treating FSHD1 patients. Muscle Nerve 57: 380–387, 2018 PMID:29053898

  18. Health services received by individuals with duchenne/becker muscular dystrophy.

    PubMed

    Pandya, Shree K; Campbell, Kim A; Andrews, Jennifer G; Meaney, F John; Ciafaloni, Emma

    2016-02-01

    Anecdotal reports from families and care providers suggest a wide variation in services received by individuals with Duchenne/Becker muscular dystrophy (DBMD). We documented the type and frequency of health services received by individuals with DBMD using the Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet) interview data released in June 2012. Interviews with eligible caregivers from 5 sites (Arizona, Colorado, Georgia, Iowa, and western New York) were conducted from April 2007 to March 2012. Two hundred ninety-six caregivers (66% of those contactable) participated in the interview. There were significant differences among sites in the specialists seen and services received. Concurrence with cardiac recommendations was higher than that with respiratory recommendations. The results of this survey support and quantify the anecdotal reports from families and care providers regarding the disparities in services received by individuals with DBMD. It remains to be determined whether these differences affect outcomes. © 2015 Wiley Periodicals, Inc.

  19. Fat embolism after fractures in Duchenne muscular dystrophy: an underdiagnosed complication? A systematic review.

    PubMed

    Feder, David; Koch, Miriam Eva; Palmieri, Beniamino; Fonseca, Fernando Luiz Affonso; Carvalho, Alzira Alves de Siqueira

    2017-01-01

    Duchenne muscular dystrophy is the most frequent lethal genetic disease. Several clinical trials have established both the beneficial effect of steroids in Duchenne muscular dystrophy and the well-known risk of side effects associated with their daily use. For many years it has been known that steroids associated with ambulation loss lead to obesity and also damage the bone structure resulting in the bone density reduction and increased incidence of bone fractures and fat embolism syndrome, an underdiagnosed complication after fractures. Fat embolism syndrome is characterized by consciousness disturbance, respiratory failure and skin rashes. The use of steroids in Duchenne muscular dystrophy may result in vertebral fractures, even without previous trauma. Approximately 25% of patients with Duchenne muscular dystrophy have a long bone fracture, and 1% to 22% of fractures have a chance to develop fat embolism syndrome. As the patients with Duchenne muscular dystrophy have progressive cardiac and respiratory muscle dysfunction, the fat embolism may be unnoticed clinically and may result in increased risk of death and major complications. Different treatments and prevention measures of fat embolism have been proposed; however, so far, there is no efficient therapy. The prevention, early diagnosis and adequate symptomatic treatment are of paramount importance. The fat embolism syndrome should always be considered in patients with Duchenne muscular dystrophy presenting with fractures, or an unexplained and sudden worsening of respiratory and cardiac symptoms.

  20. Fat embolism after fractures in Duchenne muscular dystrophy: an underdiagnosed complication? A systematic review

    PubMed Central

    Feder, David; Koch, Miriam Eva; Palmieri, Beniamino; Fonseca, Fernando Luiz Affonso; Carvalho, Alzira Alves de Siqueira

    2017-01-01

    Duchenne muscular dystrophy is the most frequent lethal genetic disease. Several clinical trials have established both the beneficial effect of steroids in Duchenne muscular dystrophy and the well-known risk of side effects associated with their daily use. For many years it has been known that steroids associated with ambulation loss lead to obesity and also damage the bone structure resulting in the bone density reduction and increased incidence of bone fractures and fat embolism syndrome, an underdiagnosed complication after fractures. Fat embolism syndrome is characterized by consciousness disturbance, respiratory failure and skin rashes. The use of steroids in Duchenne muscular dystrophy may result in vertebral fractures, even without previous trauma. Approximately 25% of patients with Duchenne muscular dystrophy have a long bone fracture, and 1% to 22% of fractures have a chance to develop fat embolism syndrome. As the patients with Duchenne muscular dystrophy have progressive cardiac and respiratory muscle dysfunction, the fat embolism may be unnoticed clinically and may result in increased risk of death and major complications. Different treatments and prevention measures of fat embolism have been proposed; however, so far, there is no efficient therapy. The prevention, early diagnosis and adequate symptomatic treatment are of paramount importance. The fat embolism syndrome should always be considered in patients with Duchenne muscular dystrophy presenting with fractures, or an unexplained and sudden worsening of respiratory and cardiac symptoms. PMID:29066903

  1. Complementary and alternative medicine for Duchenne and Becker muscular dystrophies: characteristics of users and caregivers.

    PubMed

    Zhu, Yong; Romitti, Paul A; Conway, Kristin M; Andrews, Jennifer; Liu, Ke; Meaney, F John; Street, Natalie; Puzhankara, Soman; Druschel, Charlotte M; Matthews, Dennis J

    2014-07-01

    Complementary and alternative medicine is frequently used in the management of chronic pediatric diseases, but little is known about its use by those with Duchenne or Becker muscular dystrophy. Complementary and alternative medicine use by male patients with Duchenne or Becker muscular dystrophy and associations with characteristics of male patients and their caregivers were examined through interviews with 362 primary caregivers identified from the Muscular Dystrophy Surveillance, Tracking, and Research Network. Overall, 272 of the 362 (75.1%) primary caregivers reported that they had used any complementary and alternative medicine for the oldest Muscular Dystrophy Surveillance, Tracking, and Research Network male in their family. The most commonly reported therapies were from the mind-body medicine domain (61.0%) followed by those from the biologically based practice (39.2%), manipulative and body-based practice (29.3%), and whole medical system (6.9%) domains. Aquatherapy, prayer and/or blessing, special diet, and massage were the most frequently used therapies. Compared with nonusers, male patients who used any therapy were more likely to have an early onset of symptoms and use a wheel chair; their caregivers were more likely to be non-Hispanic white. Among domains, associations were observed with caregiver education and family income (mind-body medicines [excluding prayer and/or blessing only] and whole medical systems) and Muscular Dystrophy Surveillance, Tracking, and Research Network site (biologically based practices and mind-body medicines [excluding prayer and/or blessing only]). Complementary and alternative medicine use was common in the management of Duchenne and Becker muscular dystrophies among Muscular Dystrophy Surveillance, Tracking, and Research Network males. This widespread use suggests further study to evaluate the efficacy of integrating complementary and alternative medicine into treatment regimens for Duchenne and Becker muscular dystrophies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

    PubMed

    Caron, Leslie; Kher, Devaki; Lee, Kian Leong; McKernan, Robert; Dumevska, Biljana; Hidalgo, Alejandro; Li, Jia; Yang, Henry; Main, Heather; Ferri, Giulia; Petek, Lisa M; Poellinger, Lorenz; Miller, Daniel G; Gabellini, Davide; Schmidt, Uli

    2016-09-01

    : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development. ©AlphaMed Press.

  3. Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othmane, K.B.; Speer, M.C.; Stauffer, J.

    1995-09-01

    Duchenne-like muscular dystrophy (DLMD) is an autosomal recessive Limb Girdle muscular dystrophy (LGMD2C) characterized by late age of onset, proximal muscle weakness leading to disability, high creatine kinase values, normal intelligence and normal dystrophin in muscle biopsy. We have shown previously that three DLMD families from Tunisia are linked to chromosome 13q12. To further localize the LGMD2C gene, we have investigated seven additional families (119 individuals). Both genotyping and two-point linkage analysis were performed as described elsewhere. 7 refs., 1 fig., 1 tab.

  4. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming.

    PubMed

    Matsakas, Antonios; Yadav, Vikas; Lorca, Sabina; Narkar, Vihang

    2013-10-01

    Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.

  5. Structure and Dynamics of RNA Repeat Expansions That Cause Huntington's Disease and Myotonic Dystrophy Type 1.

    PubMed

    Chen, Jonathan L; VanEtten, Damian M; Fountain, Matthew A; Yildirim, Ilyas; Disney, Matthew D

    2017-07-11

    RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.

  6. Cognition and event-related potentials in adult-onset non-demented myotonic dystrophy type 1.

    PubMed

    Tanaka, H; Arai, M; Harada, M; Hozumi, A; Hirata, K

    2012-02-01

    To clarify the cognitive and event-related potentials (ERPs) profiles of adult-onset genetically-proven non-demented myotonic dystrophy type 1 (DM1). Fourteen DM1 patients and matched 14 normal controls were enrolled. DM1 patients were compared with normal controls, using a variety of neuropsychological tests; an auditory "oddball" counting paradigm for the ERPs, and low-resolution brain electromagnetic tomography (LORETA). For patients, ERPs and neuropsychological parameters were correlated with CTG repeat size, duration of illness, grip strength, and arterial blood gas analysis. Frontal lobe dysfunction, prolonged N1 latency, and attenuated N2/P3 amplitudes were observed in DM1. Longer CTG repeat size was associated with fewer categories achieved on Wisconsin Card Sorting Test. Greater grip strength was associated with better scores on color-word "interference" of Stroop test. P3 latency was negatively correlated with PaO(2). LORETA revealed significant hypoactivities at the orbitofrontal and medial temporal lobe, cingulate, and insula. There was no correlation between ERPs and CTG expansion. Adult-onset non-demented DM1 presented frontal lobe dysfunction. Absence of correlations between CTG repeat size and objective ERP parameters suggested CTG expansion in lymphocytes does not directly contribute to cognitive dysfunction. CTG expansion in lymphocytes does not directly contribute to cognitive dysfunction of adult-onset non-demented DM1. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F

    1998-04-01

    Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

  8. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins.

    PubMed

    van den Broek, Walther J A A; Nelen, Marcel R; Wansink, Derick G; Coerwinkel, Marga M; te Riele, Hein; Groenen, Patricia J T A; Wieringa, Bé

    2002-01-15

    The mechanism of expansion of the (CTG)n repeat in myotonic dystrophy (DM1) patients and the cause of its pathobiological effects are still largely unknown. Most likely, long repeats exert toxicity at the level of nuclear RNA transport or splicing. Here, we analyse cis- and trans-acting parameters that determine repeat behaviour in novel mouse models for DM1. Our mice carry 'humanized' myotonic dystrophy protein kinase (Dmpk) allele(s) with either a (CTG)84 or a (CTG)11 repeat, inserted at the correct position into the endogenous DM locus. Unlike in the human situation, the (CTG)84 repeat in the syntenic mouse environment was relatively stable during intergenerational segregation. However, somatic tissues showed substantial repeat expansions which were progressive upon aging and prominent in kidney, and in stomach and small intestine, where it was cell-type restricted. Other tissues examined showed only marginal size changes. The (CTG)11 allele was completely stable, as anticipated. Introducing the (CTG)84 allele into an Msh3-deficient background completely blocked the somatic repeat instability. In contrast, Msh6 deficiency resulted in a significant increase in the frequency of somatic expansions. Competition of Msh3 and Msh6 for binding to Msh2 in functional complexes with different DNA mismatch-recognition specificity may explain why the somatic (CTG)n expansion rate is differentially affected by ablation of Msh3 and Msh6.

  9. Clinical characteristics and current therapies for inherited retinal degenerations.

    PubMed

    Sahel, José-Alain; Marazova, Katia; Audo, Isabelle

    2014-10-16

    Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations

    PubMed Central

    Sahel, José-Alain; Marazova, Katia; Audo, Isabelle

    2015-01-01

    Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307–316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod–cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone–rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances. PMID:25324231

  11. β1D chain increases α7β1 integrin and laminin and protects against sarcolemmal damage in mdx mice

    PubMed Central

    Liu, Jianming; Milner, Derek J.; Boppart, Marni D.; Ross, Robert S.; Kaufman, Stephen J.

    2012-01-01

    The dystrophin–glycoprotein complex connects myofibers with extracellular matrix laminin. In Duchenne muscular dystrophy, this linkage system is absent and the integrity of muscle fibers is compromised. One potential therapy for addressing muscular dystrophy is to augment the amount of α7β1 integrin, the major laminin-binding integrin in skeletal muscle. Whereas transgenic over-expression of α7 chain may alleviate development of muscular dystrophy and extend the lifespan of severely dystrophic mdx/utrn−/− mice, further enhancing levels of α7 chain provided little additional membrane integrin and negligible additional improvement in mdx mice. We demonstrate here that normal levels of β1 chain limit formation of integrin heterodimer and that increasing β1D chain in mdx mice results in more functional integrin at the sarcolemma, more matrix laminin and decreased damage of muscle fibers. Moreover, increasing the amount of β1D chain in vitro enhances transcription of α7 integrin and α2 laminin genes and the amounts of these proteins. Thus manipulation of β1D integrin expression offers a novel approach to enhance integrin-mediated therapy for muscular dystrophy. PMID:22180459

  12. Identification of Plant-derived Alkaloids with Therapeutic Potential for Myotonic Dystrophy Type I*

    PubMed Central

    Herrendorff, Ruben; Faleschini, Maria Teresa; Stiefvater, Adeline; Erne, Beat; Wiktorowicz, Tatiana; Kern, Frances; Hamburger, Matthias; Potterat, Olivier; Kinter, Jochen; Sinnreich, Michael

    2016-01-01

    Myotonic dystrophy type I (DM1) is a disabling neuromuscular disease with no causal treatment available. This disease is caused by expanded CTG trinucleotide repeats in the 3′ UTR of the dystrophia myotonica protein kinase gene. On the RNA level, expanded (CUG)n repeats form hairpin structures that sequester splicing factors such as muscleblind-like 1 (MBNL1). Lack of available MBNL1 leads to misregulated alternative splicing of many target pre-mRNAs, leading to the multisystemic symptoms in DM1. Many studies aiming to identify small molecules that target the (CUG)n-MBNL1 complex focused on synthetic molecules. In an effort to identify new small molecules that liberate sequestered MBNL1 from (CUG)n RNA, we focused specifically on small molecules of natural origin. Natural products remain an important source for drugs and play a significant role in providing novel leads and pharmacophores for medicinal chemistry. In a new DM1 mechanism-based biochemical assay, we screened a collection of isolated natural compounds and a library of over 2100 extracts from plants and fungal strains. HPLC-based activity profiling in combination with spectroscopic methods were used to identify the active principles in the extracts. The bioactivity of the identified compounds was investigated in a human cell model and in a mouse model of DM1. We identified several alkaloids, including the β-carboline harmine and the isoquinoline berberine, that ameliorated certain aspects of the DM1 pathology in these models. Alkaloids as a compound class may have potential for drug discovery in other RNA-mediated diseases. PMID:27298317

  13. A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family.

    PubMed

    Audo, Isabelle; Bujakowska, Kinga; Mohand-Saïd, Saddek; Tronche, Sophie; Lancelot, Marie-Elise; Antonio, Aline; Germain, Aurore; Lonjou, Christine; Carpentier, Wassila; Sahel, José-Alain; Bhattacharya, Shomi; Zeitz, Christina

    2011-01-01

    To identify the genetic defect of a consanguineous Portuguese family with rod-cone dystrophy and varying degrees of decreased audition. A detailed ophthalmic and auditory examination was performed on a Portuguese patient with severe autosomal recessive rod-cone dystrophy. Known genetic defects were excluded by performing autosomal recessive retinitis pigmentosa (arRP) genotyping microarray analysis and by Sanger sequencing of the coding exons and flanking intronic regions of eyes shut homolog-drosophila (EYS) and chromosome 2 open reading frame 71 (C2orf71). Subsequently, genome-wide homozygosity mapping was performed in DNA samples from available family members using a 700K single nucleotide polymorphism (SNP) microarray. Candidate genes present in the significantly large homozygous regions were screened for mutations using Sanger sequencing. The largest homozygous region (~11 Mb) in the affected family members was mapped to chromosome 9, which harbors deafness, autosomal recessive 31 (DFNB31; a gene previously associated with Usher syndrome). Mutation analysis of DFNB31 in the index patient identified a novel one-base-pair deletion (c.737delC), which is predicted to lead to a truncated protein (p.Pro246HisfsX13) and co-segregated with the disease in the family. Ophthalmic examination of the index patient and the affected siblings showed severe rod-cone dystrophy. Pure tone audiometry revealed a moderate hearing loss in the index patient, whereas the affected siblings were reported with more profound and early onset hearing impairment. We report a novel truncating mutation in DFNB31 associated with severe rod-cone dystrophy and varying degrees of hearing impairment in a consanguineous family of Portuguese origin. This is the second report of DFNB31 implication in Usher type 2.

  14. Heme oxygenase and carbon monoxide protect from muscle dystrophy.

    PubMed

    Chan, Mun Chun; Ziegler, Olivia; Liu, Laura; Rowe, Glenn C; Das, Saumya; Otterbein, Leo E; Arany, Zoltan

    2016-11-28

    Duchenne muscle dystrophy (DMD) is one of the most common lethal genetic diseases of children worldwide and is 100% fatal. Steroids, the only therapy currently available, are marred by poor efficacy and a high side-effect profile. New therapeutic approaches are urgently needed. Here, we leverage PGC-1α, a powerful transcriptional coactivator known to protect against dystrophy in the mdx murine model of DMD, to search for novel mechanisms of protection against dystrophy. We identify heme oxygenase-1 (HO-1) as a potential novel target for the treatment of DMD. Expression of HO-1 is blunted in the muscles from the mdx murine model of DMD, and further reduction of HO-1 by genetic haploinsufficiency worsens muscle damage in mdx mice. Conversely, induction of HO-1 pharmacologically protects against muscle damage. Mechanistically, HO-1 degrades heme into biliverdin, releasing in the process ferrous iron and carbon monoxide (CO). We show that exposure to a safe low dose of CO protects against muscle damage in mdx mice, as does pharmacological treatment with CO-releasing molecules. These data identify HO-1 and CO as novel therapeutic agents for the treatment of DMD. Safety profiles and clinical testing of inhaled CO already exist, underscoring the translational potential of these observations.

  15. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy

    PubMed Central

    Marshall, Jamie L.; Kwok, Yukwah; McMorran, Brian; Baum, Linda G.; Crosbie-Watson, Rachelle H.

    2013-01-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important therapeutic target. Here, we review current protein replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082

  16. Mutations in LAMA1 Cause Cerebellar Dysplasia and Cysts with and without Retinal Dystrophy

    PubMed Central

    Aldinger, Kimberly A.; Mosca, Stephen J.; Tétreault, Martine; Dempsey, Jennifer C.; Ishak, Gisele E.; Hartley, Taila; Phelps, Ian G.; Lamont, Ryan E.; O’Day, Diana R.; Basel, Donald; Gripp, Karen W.; Baker, Laura; Stephan, Mark J.; Bernier, Francois P.; Boycott, Kym M.; Majewski, Jacek; Parboosingh, Jillian S.; Innes, A. Micheil; Doherty, Dan

    2014-01-01

    Cerebellar dysplasia with cysts (CDC) is an imaging finding typically seen in combination with cobblestone cortex and congenital muscular dystrophy in individuals with dystroglycanopathies. More recently, CDC was reported in seven children without neuromuscular involvement (Poretti-Boltshauser syndrome). Using a combination of homozygosity mapping and whole-exome sequencing, we identified biallelic mutations in LAMA1 as the cause of CDC in seven affected individuals (from five families) independent from those included in the phenotypic description of Poretti-Boltshauser syndrome. Most of these individuals also have high myopia, and some have retinal dystrophy and patchy increased T2-weighted fluid-attenuated inversion recovery (T2/FLAIR) signal in cortical white matter. In one additional family, we identified two siblings who have truncating LAMA1 mutations in combination with retinal dystrophy and mild cerebellar dysplasia without cysts, indicating that cysts are not an obligate feature associated with loss of LAMA1 function. This work expands the phenotypic spectrum associated with the lamininopathy disorders and highlights the tissue-specific roles played by different laminin-encoding genes. PMID:25105227

  17. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1

    PubMed Central

    Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.

    2006-01-01

    During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx−/− mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx−/− mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration. PMID:16702404

  18. Vitelliform dystrophy and pattern dystrophy of the retinal pigment epithelium: concomitant presence in a family.

    PubMed Central

    Giuffrè, G; Lodato, G

    1986-01-01

    We describe three siblings presenting unusual pigmented dystrophic lesions of the fovea. The first sibling showed macroreticular dystrophy associated with butterfly shaped dystrophy in one eye and associated with vitelliform cyst in the other eye. The second showed the atrophic outcome of a vitelliform cyst with development of subretinal neovascular membrane in one eye and a radial pigmented macular dystrophy in the other eye. The third sibling had bilateral macular vitelliform lesions. This vitelliform patterned dystrophy of the retinal pigment epithelium may represent a new form that should be classified near Best's disease and the pattern dystrophies. Images PMID:3718916

  19. Comparison of Short-Wavelength Reduced-Illuminance and Conventional Autofluorescence Imaging in Stargardt Macular Dystrophy.

    PubMed

    Strauss, Rupert W; Muñoz, Beatriz; Jha, Anamika; Ho, Alexander; Cideciyan, Artur V; Kasilian, Melissa L; Wolfson, Yulia; Sadda, SriniVas; West, Sheila; Scholl, Hendrik P N; Michaelides, Michel

    2016-08-01

    To compare grading results between short-wavelength reduced-illuminance and conventional autofluorescence imaging in Stargardt macular dystrophy. Reliability study. setting: Moorfields Eye Hospital, London (United Kingdom). Eighteen patients (18 eyes) with Stargardt macular dystrophy. A series of 3 fundus autofluorescence images using 3 different acquisition parameters on a custom-patched device were obtained: (1) 25% laser power and total sensitivity 87; (2) 25% laser power and freely adjusted sensitivity; and (3) 100% laser power and freely adjusted total sensitivity (conventional). The total area of 2 hypoautofluorescent lesion types (definitely decreased autofluorescence and poorly demarcated questionably decreased autofluorescence) was measured. Agreement in grading between the 3 imaging methods was assessed by kappa coefficients (κ) and intraclass correlation coefficients. The mean ± standard deviation area for images acquired with 25% laser power and freely adjusted total sensitivity was 2.04 ± 1.87 mm(2) for definitely decreased autofluorescence (n = 15) and 1.86 ± 2.14 mm(2) for poorly demarcated questionably decreased autofluorescence (n = 12). The intraclass correlation coefficient (95% confidence interval) was 0.964 (0.929, 0.999) for definitely decreased autofluorescence and 0.268 (0.000, 0.730) for poorly demarcated questionably decreased autofluorescence. Short-wavelength reduced-illuminance and conventional fundus autofluorescence imaging showed good concordance in assessing areas of definitely decreased autofluorescence. However, there was significantly higher variability between imaging modalities for assessing areas of poorly demarcated questionably decreased autofluorescence. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Abnormal lipid metabolism in skeletal muscle tissue of patients with muscular dystrophy: In vitro, high-resolution NMR spectroscopy based observation in early phase of the disease.

    PubMed

    Srivastava, Niraj Kumar; Yadav, Ramakant; Mukherjee, Somnath; Pal, Lily; Sinha, Neeraj

    2017-05-01

    Qualitative (assignment of lipid components) and quantitative (quantification of lipid components) analysis of lipid components were performed in skeletal muscle tissue of patients with muscular dystrophy in early phase of the disease as compared to control/normal subjects. Proton nuclear magnetic resonance (NMR) spectroscopy based experiment was performed on the lipid extract of skeletal muscle tissue of patients with muscular dystrophy in early phase of the disease and normal individuals for the analysis of lipid components [triglycerides, phospholipids, total cholesterol and unsaturated fatty acids (arachidonic, linolenic and linoleic acid)]. Specimens of muscle tissue were obtained from patients with Duchenne muscular dystrophy (DMD) [n=11; Age, Mean±SD; 9.2±1.4years; all were males], Becker muscular dystrophy (BMD) [n=12; Age, Mean±SD; 21.4±5.0years; all were males], facioscapulohumeral muscular dystrophy (FSHD) [n=11; Age, Mean±SD; 23.7±7.5years; all were males] and limb girdle muscular dystrophy-2B (LGMD-2B) [n=18; Age, Mean±SD; 24.2±4.1years; all were males]. Muscle specimens were also obtained from [n=30; Mean age±SD 23.1±6.0years; all were males] normal/control subjects. Assigned lipid components in skeletal muscle tissue were triglycerides (TG), phospholipids (PL), total cholesterol (CHOL) and unsaturated fatty acids (arachidonic, linolenic and linoleic acid)]. Quantity of lipid components was observed in skeletal muscle tissue of DMD, BMD, FSHD and LGMD-2B patients as compared to control/normal subjects. TG was significantly elevated in muscle tissue of DMD, BMD and LGMD-2B patients. Increase level of CHOL was found only in muscle of DMD patients. Level of PL was found insignificant for DMD, BMD and LGMD-2B patients. Quantity of TG, PL and CHOL was unaltered in the muscle of patients with FSHD as compared to control/normal subjects. Linoleic acids were significantly reduced in muscle tissue of DMD, BMD, FSHD and LGMD-2B as compared to normal/control individuals. Results clearly indicate alteration of lipid metabolism in patients with muscular dystrophy in early phase of the disease. Moreover, further evaluation is required to understand whether these changes are primary or secondary to muscular dystrophy. In future, these findings may prove an additional and improved approach for the diagnosis of different forms of muscular dystrophy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Responsiveness of performance-based outcome measures for mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1.

    PubMed

    Kierkegaard, Marie; Petitclerc, Émilie; Hébert, Luc J; Mathieu, Jean; Gagnon, Cynthia

    2018-02-28

    To assess changes and responsiveness in outcome measures of mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1. A 9-year longitudinal study conducted with 113 patients. The responsiveness of the Timed Up and Go test, Berg Balance Scale, quantitative muscle testing, grip and pinch-grip strength, and Purdue Pegboard Test was assessed using criterion and construct approaches. Patient-reported perceived changes (worse/stable) in balance, walking, lower-limb weakness, stair-climbing and hand weakness were used as criteria. Predefined hypotheses about expected area under the receiver operating characteristic curves (criterion approach) and correlations between relative changes (construct approach) were explored. The direction and magnitude of median changes in outcome measures corresponded with patient-reported changes. Median changes in the Timed Up and Go test, grip strength, pinch-grip strength and Purdue Pegboard Test did not, in general, exceed known measurement errors. Most criterion (72%) and construct (70%) approach hypotheses were supported. Promising responsiveness was found for outcome measures of mobility, balance and muscle strength. Grip strength and manual dexterity measures showed poorer responsiveness. The performance-based outcome measures captured changes over the 9-year period and responsiveness was promising. Knowledge of measurement errors is needed to interpret the meaning of these longitudinal changes.

  2. The cognitive profile of myotonic dystrophy type 1: A systematic review and meta-analysis.

    PubMed

    Okkersen, Kees; Buskes, Melanie; Groenewoud, Johannes; Kessels, Roy P C; Knoop, Hans; van Engelen, Baziel; Raaphorst, Joost

    2017-10-01

    To examine the cognitive profile of patients with myotonic dystrophy type 1 (DM1) on the basis of a systematic review and meta-analysis of the literature. Embase, Medline and PsycInfo were searched for studies reporting ≥1 neuropsychological test in both DM1 patients and healthy controls. Search, data extraction and risk of bias analysis were independently performed by two authors to minimize error. Neuropsychological tests were categorized into 12 cognitive domains and effect sizes (Hedges' g) were calculated for each domain and for tests administered in ≥5 studies. DM1 participants demonstrated a significantly worse performance compared to controls in all cognitive domains. Effect sizes ranged from -.33 (small) for verbal memory to -1.01 (large) for visuospatial perception. Except for the domains global cognition, intelligence and social cognition, wide confidence intervals (CIs) were associated with moderate to marked statistical heterogeneity that necessitates careful interpretation of results. Out of the individual tests, the Rey-Osterrieth complex figure-copy (both non-verbal memory and visuoconstruction) showed consistent impairment with acceptable heterogeneity. In DM1 patients, cognitive deficits may include a variable combination of global cognitive impairment with involvement across different domains, including social cognition, memory and visuospatial functioning. Although DM1 is a heterogeneous disorder, our study shows that meta-analysis is feasible, contributes to the understanding of brain involvement and may direct bedside testing. The protocol for this study has been registered in PROSPERO (International prospective register of systematic reviews) under ID: 42016037415. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury

    PubMed Central

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C.; Warner, James L.; Vo, Andy H.; Hadhazy, Michele; Demonbreun, Alexis R.; Spencer, Melissa J.; McNally, Elizabeth M.

    2017-01-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy. PMID:29065150

  4. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury.

    PubMed

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C; Warner, James L; Vo, Andy H; Earley, Judy U; Hadhazy, Michele; Demonbreun, Alexis R; Spencer, Melissa J; McNally, Elizabeth M

    2017-10-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.

  5. Disrupted cell cycle arrest and reduced proliferation in corneal fibroblasts from GCD2 patients: A potential role for altered autophagy flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seung-il; Dadakhujaev, Shorafidinkhuja; Maeng, Yong-Sun

    Highlights: • Reduced cell proliferation in granular corneal dystrophy type 2. • Abnormal cell cycle arrest by defective autophagy. • Decreased Cyclin A1, B1, and D1 in Atg7 gene knockout cells. • Increase in p16 and p27 expressions were observed in Atg7 gene knockout cells. - Abstract: This study investigates the role of impaired proliferation, altered cell cycle arrest, and defective autophagy flux of corneal fibroblasts in granular corneal dystrophy type 2 (GCD2) pathogenesis. The proliferation rates of homozygous (HO) GCD2 corneal fibroblasts at 72 h, 96 h, and 120 h were significantly lower (1.102 ± 0.027, 1.397 ± 0.039,more » and 1.527 ± 0.056, respectively) than those observed for the wild-type (WT) controls (1.441 ± 0.029, 1.758 ± 0.043, and 2.003 ± 0.046, respectively). Flow cytometry indicated a decreased G{sub 1} cell cycle progression and the accumulation of cells in the S and G{sub 2}/M phases in GCD2 cells. These accumulations were associated with decreased levels of Cyclin A1, B1, and E1, and increased expression of p16 and p27. p21 and p53 expression was also significantly lower in GCD2 cells compared to the WT. Interestingly, treatment with the autophagy flux inhibitor, bafilomycin A{sub 1}, resulted in similarly decreased Cyclin A1, B1, D1, and p53 expression in WT fibroblasts. Furthermore, similar findings, including a decrease in Cyclin A1, B1, and D1 and an increase in p16 and p27 expression were observed in autophagy-related 7 (Atg7; known to be essential for autophagy) gene knockout cells. These data provide new insight concerning the role of autophagy in cell cycle arrest and cellular proliferation, uncovering a number of novel therapeutic possibilities for GCD2 treatment.« less

  6. Fighting Against Disuse of the Masticatory System in Duchenne Muscular Dystrophy: A Pilot Study Using Chewing Gum.

    PubMed

    van Bruggen, H Willemijn; van den Engel-Hoek, Lenie; Steenks, Michel H; van der Bilt, Andries; Bronkhorst, Ewald M; Creugers, Nico H J; de Groot, Imelda J M; Kalaykova, Stanimira I

    2015-10-01

    Duchenne muscular dystrophy patients report masticatory problems. The aim was to determine the efficacy of mastication training in Duchenne muscular dystrophy using chewing gum for 4 weeks. In all, 17 patients and 17 healthy age-matched males participated. The masticatory performance was assessed using a mixing ability test and measuring anterior bite force before, shortly after and 1 month after the training. In the patient group the masticatory performance improved and remained after 1-month follow-up, no significant changes in anterior maximum bite force was observed after mastication training. In the healthy subject the bite force increased and remained at the 1-month follow-up; no significant differences in masticatory performance were observed. Mastication training by using sugar-free chewing gum in Duchenne muscular dystrophy patients improved their masticatory performance. Since bite force did not improve, the working mechanism of the improvement in chewing may relate to changes of the neuromuscular function and coordination, resulting in improvement of skills in performing mastication. © The Author(s) 2015.

  7. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

    PubMed

    Childs-Disney, Jessica L; Hoskins, Jason; Rzuczek, Suzanne G; Thornton, Charles A; Disney, Matthew D

    2012-05-18

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.

  8. Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy.

    PubMed

    Parodi, Maurizio Battaglia; Iacono, Pierluigi; Del Turco, Claudia; Bandello, Francesco

    2014-12-01

    To describe fundus autofluorescence (FAF) on short-wavelength FAF and near-infrared FAF in the subclinical form of Best vitelliform macular dystrophy. Cross-sectional prospective study. Patients affected by the subclinical form of Best vitelliform macular dystrophy (positive testing for BEST1 gene mutation, fully preserved best-corrected visual acuity, normal fundus appearance) were recruited. Each patient underwent a complete ophthalmologic examination, including electro-oculogram (EOG), short-wavelength FAF, near-infrared FAF, spectral-domain OCT (SD OCT), and microperimetry. Main outcome measure was the identification of abnormal FAF patterns. Forty-six patients showing mutations in the BEST1 gene were examined. Forty patients presented a bilateral Best vitelliform macular dystrophy, 2 patients showed a unilateral Best vitelliform macular dystrophy, and 4 patients had a bilateral subclinical form. Patients with the unilateral form (2 eyes) and patients with the subclinical form (8 eyes) were analyzed. Three BEST1 sequence variants were identified: c.73C>T (p.Arg25Trp), c.28G>A (p.Ala10Thr), and c.652C>G (p.Arg218Gly). Short-wavelength FAF was normal in all eyes. Near-infrared FAF detected a pattern consisting of a central hypo-autofluorescence surrounded by a round area of hyper-autofluorescence. A bilateral reduced EOG response was detected in 1 patient. SD OCT revealed a thicker, well-defined, and more reflective interdigitation zone in 2 patients (4 eyes, 40%). Microperimetry of the central 10 degrees revealed a slight, diffuse reduction of retinal sensitivity. Mean retinal sensitivity within the central 2 and 4 degrees was lower and matched the hypo-autofluorescent area detected on near-infrared FAF. Additional relative scotomata were detected within the 10-degree area. No change in clinical, functional, or FAF pattern was found over the follow-up. Subclinical Best vitelliform macular dystrophy is characterized by the absence of biomicroscopic fundus abnormality and fully preserved visual acuity, but shows an abnormal near-infrared FAF pattern, with central hypo-autofluorescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication

    MedlinePlus

    ... Boost from Existing Medication Spotlight on Research Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication By Colleen Labbe, M.S. | March 1, 2013 A mouse hanging on a wire during a test of muscle strength. Mice with a mutant dystrophin gene, which ...

  10. YAC and cosmid contigs encompassing the Fukuyama-type congenital muscular dystrophy (FCMD) candidate region on 9q31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Masashi; Nakahori, Yutaka; Matsushita, Ikumi

    1997-03-01

    Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. We had mapped the FCMD gene to an approximately 5-cM interval between D9S127 and D9S2111 on 9q31-q33 and had also found evidence for linkage disequilibrium between FCMD and D9S306 in this candidate region. Through further analysis, we have defined another marker, D9S172, which showed stronger linkage disequilibrium than D9S306. A yeast artificial chromosome (YAC) contig spanning 3.5 Mb, which includes this D9S306-D9S172 interval on 9q31, has been constructed by amore » combination of sequence-tagged site, Alu-PCR, and restriction mapping. Also, cosmid clones subcloned from the YAC were assembled into three contigs, one of which contains D9S2107, which showed the strongest linkage disequilibrium with FCMD. These contigs also allowed us to order the markers as follows: cen-D9S127-({approximately}800 kb)-D9S306 (identical to D9S53)-({approximately}700 kb)-A107XF9-({approximately}500 kb)-D9S172-({approximately}30 kb)-D9S299 (identical to D9S774)-({approximately}120 kb)-WI2269-tel. Thus, we have constructed the first high-resolution physical map of the FCMD candidate region. The YAC and cosmid contigs established here will be a crucial resource for identification of the FCMD gene and other genes in this region. 37 refs., 7 figs., 2 tabs.« less

  11. Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations.

    PubMed

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W; Disney, Matthew D

    2011-11-15

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[UUGGGC(CUG)(3)GUCC](2), refined to 2.20 and 1.52 Å resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 × 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 × 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 × 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 Å structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 × 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 × 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.

  12. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Amit; Park, HaJeung; Fang, Pengfei

    2012-03-27

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations.more » In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.« less

  13. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype

    PubMed Central

    Capote, Joana; Martinez, Leonel; Vetrone, Sylvia; Barton, Elisabeth R.; Sweeney, H. Lee; Miceli, M. Carrie

    2016-01-01

    In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors. PMID:27091452

  14. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1×1 Nucleotide UU Internal Loop Conformations⊥

    PubMed Central

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D.

    2011-01-01

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5′CUG/3′GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures are disclosed of a model DM1 triplet repeating construct, 5′r(UUGGGC(CUG)3GUCC)2, refined to 2.20 Å and 1.52 Å resolution. Here, differences in orientation of the 5′ dangling UU end between the two structures induce changes in the backbone groove width, which reveals that non-canonical 1×1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5′UU forms one hydrogen-bonded pairs with a 5′UU of a neighboring helix in the unit cell to form a pseudo-infinite helix. The central 1×1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1×1 nucleotide UU internal loops each form a one hydrogen-bonded pair. In the 1.52 Å structure, CUGb, the 5′ UU dangling end is tucked into the major groove of the duplex. While the canonical paired bases show no change in base pairing, in CUGb the terminal 1×1 nucleotide UU internal loops form now two hydrogen-bonded pairs. Thus, the shift in major groove induced by the 5′UU dangling end alters non-canonical base patterns. Collectively, these structures indicate that 1×1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands. PMID:21988728

  15. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy.

    PubMed

    Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H

    2013-09-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. © 2013 FEBS.

  16. Design of a Bioactive Small Molecule that Targets the Myotonic Dystrophy Type 1 RNA Via an RNA Motif-Ligand Database & Chemical Similarity Searching

    PubMed Central

    Parkesh, Raman; Childs-Disney, Jessica L.; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5′CUG/3′GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, Sarco(endo)plasmic reticulum Ca2+ ATPase 1 (Serca1/Atp2a1), and cardiac troponin T (cTNT). Based on these observations, the development of small molecule ligands that target specifically expanded DM1 repeats could serve as therapeutics. In the present study, computational screening was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of inhibitors of the RNA-protein complex with low micromolar IC50’s, which are >20-fold more potent than the query compounds, were identified. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with virtual screening. PMID:22300544

  17. [Atypical reaction to anesthesia in Duchenne/Becker muscular dystrophy].

    PubMed

    Silva, Helga Cristina Almeida da; Hiray, Marcia; Vainzof, Mariz; Schmidt, Beny; Oliveira, Acary Souza Bulle; Amaral, José Luiz Gomes do

    2017-05-31

    Duchenne/Becker muscular dystrophy affects skeletal muscles and leads to progressive muscle weakness and risk of atypical anesthetic reactions following exposure to succinylcholine or halogenated agents. The aim of this report is to describe the investigation and diagnosis of a patient with Becker muscular dystrophy and review the care required in anesthesia. Male patient, 14 years old, referred for hyperCKemia (chronic increase of serum creatine kinase levels - CK), with CK values of 7,779-29,040IU.L -1 (normal 174IU.L -1 ). He presented with a discrete delay in motor milestones acquisition (sitting at 9 months, walking at 18 months). He had a history of liver transplantation. In the neurological examination, the patient showed difficulty in walking on one's heels, myopathic sign (hands supported on the thighs to stand), high arched palate, calf hypertrophy, winged scapulae, global muscle hypotonia and arreflexia. Spirometry showed mild restrictive respiratory insufficiency (forced vital capacity: 77% of predicted). The in vitro muscle contracture test in response to halothane and caffeine was normal. Muscular dystrophy analysis by Western blot showed reduced dystrophin (20% of normal) for both antibodies (C and N-terminal), allowing the diagnosis of Becker muscular dystrophy. On preanesthetic assessment, the history of delayed motor development, as well as clinical and/or laboratory signs of myopathy, should encourage neurological evaluation, aiming at diagnosing subclinical myopathies and planning the necessary care to prevent anesthetic complications. Duchenne/Becker muscular dystrophy, although it does not increase susceptibility to MH, may lead to atypical fatal reactions in anesthesia. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  18. Loss of Drosophila A-type lamin C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in muscular defects.

    PubMed

    Uchino, Ryo; Nonaka, Yu-Ki; Horigome, Tuneyoshi; Sugiyama, Shin; Furukawa, Kazuhiro

    2013-01-01

    Lamins are the major components of nuclear envelope architecture, being required for both the structural and informational roles of the nuclei. Mutations of lamins cause a spectrum of diseases in humans, including muscular dystrophy. We report here that the loss of the A-type lamin gene, lamin C in Drosophila resulted in pupal metamorphic lethality caused by tendon defects, matching the characteristics of human A-type lamin revealed by Emery-Dreifuss muscular dystrophy (EDMD). In tendon cells lacking lamin C activity, overall cell morphology was affected and organization of the spectraplakin family cytoskeletal protein Shortstop which is prominently expressed in tendon cells gradually disintegrated, notably around the nucleus and in a manner correlating well with the degradation of musculature. Furthermore, lamin C null mutants were efficiently rescued by restoring lamin C expression to shortstop-expressing cells, which include tendon cells but exclude skeletal muscle cells. Thus the critical function of A-type lamin C proteins in Drosophila musculature is to maintain proper function and morphology of tendon cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Echocardiographic diagnosis, management and monitoring of pulmonary embolism with right heart thrombus in a patient with myotonic dystrophy: a case report

    PubMed Central

    2010-01-01

    Acute pulmonary embolism (PE) is a common disease which frequently results in life-threatening right ventricular (RV) failure. High-risk PE, presenting with hypotension, shock, RV dysfunction or right heart thrombus is associated with a high mortality, particularly during the first few hours. Accordingly, it is important to commence effective therapy as soon as possible. In the case described in this report, a 49-year-old woman with myotonic dystrophy type 1 presented with acute respiratory failure and hypotension. Transthoracic echocardiography showed signs of right heart failure and a mobile right heart mass highly suspicious of a thrombus. Based on echocardiographic findings, acute thrombolysis was performed resulting in hemodynamic stabilization of the patient and complete resolution of the right heart thrombus. This case underscores the important role of transthoracic echocardiography for the diagnosis, management and monitoring of PE and underlines the efficacy and safety of thrombolysis in the treatment of PE associated with right heart thrombus. PMID:20470437

  20. Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.

    PubMed

    Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E

    2014-10-01

    Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P < .0001), whereas the shape of the skull was significantly rounder compared to controls. Temporal muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.

  1. Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching.

    PubMed

    Parkesh, Raman; Childs-Disney, Jessica L; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A; Disney, Matthew D

    2012-03-14

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3'-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5'CUG/3'GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, sarco(endo)plasmic reticulum Ca(2+) ATPase 1, and cardiac troponin T. Based on these observations, the development of small-molecule ligands that target specifically expanded DM1 repeats could be of use as therapeutics. In the present study, chemical similarity searching was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of in vitro inhibitors of the RNA-protein complex were identified with low micromolar IC(50)'s, which are >20-fold more potent than the query compounds. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with chemical similarity searching.

  2. [30-year-old Patient with suspected Marfan Syndrome and Progressive Gait disturbance].

    PubMed

    Balke, Maryam; Lehmann, Helmar C; Fink, Gereon R; Wunderlich, Gilbert

    2017-07-01

    History  A 30-year-old man presented with a history of progressive muscle weakness, difficulty in concentrating, and a slender habitus since early childhood. Marfan syndrome was suspected since the age of 14. Examinations  13 years later he was examined by Marfan experts and by genetic testing and Marfan syndrome could not be confirmed. Further neurological examination revealed the suspected diagnosis of myotonic dystrophy type 1, which was confirmed by genetic testing. Treatment and course  Similar to Marfan syndrome, myotonic dystrophy is a multisystemic disorder with the risk of cardiac arrythmias. It is necessary to provide an interdisciplinary care by neurologists, internists, ophthalmologists, speech therapists, and physiotherapists. Conclusion  It is not enough to take the habitus as the principle sign to diagnose Marfan syndrome. Furthermore, it is essential to consider symptoms that are not typical for Marfan syndrome, such as cognitive deficiencies or progressive paresis. © Georg Thieme Verlag KG Stuttgart · New York.

  3. CRISPR/Cas9-Induced (CTG⋅CAG)n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing.

    PubMed

    van Agtmaal, Ellen L; André, Laurène M; Willemse, Marieke; Cumming, Sarah A; van Kessel, Ingeborg D G; van den Broek, Walther J A A; Gourdon, Geneviève; Furling, Denis; Mouly, Vincent; Monckton, Darren G; Wansink, Derick G; Wieringa, Bé

    2017-01-04

    Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG) n -repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    PubMed

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    PubMed

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  6. Dystrophin Expressing Chimeric (DEC) Human Cells Provide a Potential Therapy for Duchenne Muscular Dystrophy.

    PubMed

    Siemionow, Maria; Cwykiel, Joanna; Heydemann, Ahlke; Garcia, Jesus; Marchese, Enza; Siemionow, Krzysztof; Szilagyi, Erzsebet

    2018-06-01

    Duchenne Muscular Dystrophy (DMD) is a progressive and lethal disease caused by mutations of the dystrophin gene. Currently no cure exists. Stem cell therapies targeting DMD are challenged by limited engraftment and rejection despite the use of immunosuppression. There is an urgent need to introduce new stem cell-based therapies that exhibit low allogenic profiles and improved cell engraftment. In this proof-of-concept study, we develop and test a new human stem cell-based approach to increase engraftment, limit rejection, and restore dystrophin expression in the mdx/scid mouse model of DMD. We introduce two Dystrophin Expressing Chimeric (DEC) cell lines created by ex vivo fusion of human myoblasts (MB) derived from two normal donors (MB N1 /MB N2 ), and normal and DMD donors (MB N /MB DMD ). The efficacy of fusion was confirmed by flow cytometry and confocal microscopy based on donor cell fluorescent labeling (PKH26/PKH67). In vitro, DEC displayed phenotype and genotype of donor parent cells, expressed dystrophin, and maintained proliferation and myogenic differentiation. In vivo, local delivery of both DEC lines (0.5 × 10 6 ) restored dystrophin expression (17.27%±8.05-MB N1 /MB N2 and 23.79%±3.82-MB N /MB DMD ) which correlated with significant improvement of muscle force, contraction and tolerance to fatigue at 90 days after DEC transplant to the gastrocnemius muscles (GM) of dystrophin-deficient mdx/scid mice. This study establishes DEC as a potential therapy for DMD and other types of muscular dystrophies.

  7. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls.

    PubMed

    Fanin, Marina; Angelini, Corrado

    2015-08-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology. © 2015 Wiley Periodicals, Inc.

  8. Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice.

    PubMed

    Pietraszek-Gremplewicz, Katarzyna; Kozakowska, Magdalena; Bronisz-Budzynska, Iwona; Ciesla, Maciej; Mucha, Olga; Podkalicka, Paulina; Madej, Magdalena; Glowniak, Urszula; Szade, Krzysztof; Stepniewski, Jacek; Jez, Mateusz; Andrysiak, Kalina; Bukowska-Strakova, Karolina; Kaminska, Anna; Kostera-Pruszczyk, Anna; Jozkowicz, Alicja; Loboda, Agnieszka; Dulak, Jozef

    2018-07-10

    Muscle damage in Duchenne muscular dystrophy (DMD) caused by the lack of dystrophin is strongly linked to inflammation. Heme oxygenase-1 (HO-1; Hmox1) is an anti-inflammatory and cytoprotective enzyme affecting myoblast differentiation by inhibiting myomiRs. The role of HO-1 has not been so far well addressed in DMD. In dystrophin-deficient mdx mice, expression of Hmox1 in limb skeletal muscles and diaphragm is higher than in wild-type animals, being consistently elevated from 8 up to 52 weeks, both in myofibers and inflammatory leukocytes. Accordingly, HO-1 expression is induced in muscles of DMD patients. Pharmacological inhibition of HO-1 activity or genetic ablation of Hmox1 aggravates muscle damage and inflammation in mdx mice. Double knockout animals (Hmox1 -/- mdx) demonstrate impaired exercise capacity in comparison with mdx mice. Interestingly, in contrast to the effect observed in muscle fibers, in dystrophin-deficient muscle satellite cells (SCs) expression of Hmox1 is decreased, while MyoD, myogenin, and miR-206 are upregulated compared with wild-type counterparts. Mdx SCs demonstrate disturbed and enhanced differentiation, which is further intensified by Hmox1 deficiency. RNA sequencing revealed downregulation of Atf3, MafK, Foxo1, and Klf2 transcription factors, known to activate Hmox1 expression, as well as attenuation of nitric oxide-mediated cGMP-dependent signaling in mdx SCs. Accordingly, treatment with NO-donor induces Hmox1 expression and inhibits differentiation. Finally, differentiation of mdx SCs was normalized by CO, a product of HO-1 activity. Innovation and Conclusions: HO-1 is induced in DMD, and HO-1 inhibition aggravates DMD pathology. Therefore, HO-1 can be considered a therapeutic target to alleviate this disease. Antioxid. Redox Signal. 00, 000-000.

  9. [Combined spinal-epidural anesthesia for cesarean section in a parturient with myotonic dystrophy].

    PubMed

    Mori, Kosuke; Mizuno, Ju; Nagaoka, Takehiko; Harashima, Toshiya; Morita, Sigeho

    2010-08-01

    Myotonic dystrophy (MD) is a muscle disorder characterized by progressive muscle wasting and weakness, and is the most common form of muscular dystrophy that begins in adulthood, often after pregnancy. MD might be related to occurrence of malignant hyperthermia. Therefore, the cesarean section is often performed for the parturient with MD. We had an experience of combined spinal-epidural anesthesia for cesarean section in a parturient complicated with MD. A 40-year-old woman had rhabdomyolysis caused by ritodrine at 15-week gestation and was diagnosed as MD by electromyography. Her first baby died due to respiratory failure fourth day after birth. She had hatchet face, slight weakness of her lower extremities, and easy fatigability. Her manual muscle test was 5/5 at upper extremities and 4/5 at lower extremities. She underwent emergency cesarean section for premature rupture of the membrane, weak pain during labor, and obstructed labor at 33-week gestation. We placed an epidural catheter from T12/L1 and punctured arachnoid with 25 G spinal needle. We performed spinal anesthesia using 0.5% hyperbaric bupivacaine 1.5 ml and epidural anesthesia using 2% lidocaine 6 ml. Her anesthetic level reached bilaterally to T7 and operation started 18 minutes after combined spinal-epidural anesthesia. Her baby was born 23 minutes after the anesthesia. As her baby was 1/5 at Apgar score, the baby was tracheally intubated and artificially ventilated. The cesarean section was finished in 33 minutes uneventfully. She had no adverse events and was discharged on the 8th postoperative day. Later her baby was diagnosed as congenital MD by gene analysis. Combined spinal-epidural anesthesia with the amide-typed local anesthetic agents could be useful and safe for cesarean section in the parturient with MD.

  10. Stem cell transplantation for treating Duchenne muscular dystrophy: A Web of Science-based literature analysis.

    PubMed

    Yang, Xiaofeng

    2012-08-05

    To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation for treating Duchenne muscular dystrophy. The publications on stem cell transplantation for treating Duchenne muscular dystrophy were relatively few. It also needs more research to confirm that stem cell therapy is a reliable treatment for Duchenne muscular dystrophy.

  11. The Role of the Atrial Electromechanical Delay in Predicting Atrial Fibrillation in Myotonic Dystrophy Type 1 Patients.

    PubMed

    Russo, Vincenzo; Rago, Anna; Ciardiello, Carmine; Russo, Maria Giovanna; Calabrò, Paolo; Politano, Luisa; Nigro, Gerardo

    2016-01-01

    Paroxysmal atrial tachyarrhythmias frequently occur in myotonic dystrophy type 1 (DM1) patients. The aim of the current study was to evaluate the atrial electromechanical-delay (AEMD) in a DM1-population with normal cardiac function and its relationship to atrial fibrillation (AF) onset. Fifty DM1 patients (28 male; mean age 34.2 ± 11.4 years) and 50 healthy subjects used as controls, matched for age and gender, were studied for the occurrence of atrial fibrillation during a 4-year follow-up, through 30-day external loop recorder (ELR) monitoring performed every 6 months. Intra-AEMD and inter-AEMD of both atrium were measured through tissue-Doppler echocardiography. Compared to the healthy control group, the DM1 group showed a statistically significant increase in inter-AEMD and intraleft-AEMD. Dividing the DM1-group into 2 subgroups (patients with or without AF), the inter-AEMD and intraleft-AEMD were significantly higher in the subgroup with AF compared to the subgroup without AF. A cut off value of 39.2 milliseconds for intraleft-AEMD had a sensitivity of 90% and a specificity of 90% in identifying DM1 patients with AF risk. A cut off value of 57.7 milliseconds for inter-AEMD had a sensitivity of 84.2% and a specificity of 93.5% in identifying this category of patients. Our results showed that the echocardiographic atrial electromechanical delay indices (intraleft and inter-AEMD) were significantly increased in DM1 subjects with normal cardiac function. Intraleft and inter-AEMD represent noninvasive, inexpensive, useful and simple parameters to assess the AF risk in DM1 patients. © 2015 Wiley Periodicals, Inc.

  12. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia

    PubMed Central

    Fyfe, John C.; Al-Tamimi, Raba' A.; Castellani, Rudy J.; Rosenstein, Diana; Goldowitz, Daniel; Henthorn, Paula S.

    2010-01-01

    Neuroaxonal dystrophy in brainstem, spinal cord tracts, and spinal nerves accompanied by cerebellar hypoplasia was observed in a colony of laboratory dogs. Fetal akinesia was documented by ultrasonographic examination. At birth, affected puppies exhibited stereotypical positioning of limbs, scoliosis, arthrogryposis, pulmonary hypoplasia, and respiratory failure. Regional hypoplasia in the central nervous system was apparent grossly, most strikingly as underdeveloped cerebellum and spinal cord. Histopathologic abnormalities included swollen axons and spheroids in brainstem and spinal cord tracts; reduced cerebellar foliation, patchy loss of Purkinje cells, multifocal thinning of the external granular cell layer, and loss of neurons in the deep cerebellar nuclei; spheroids and loss of myelinated axons in spinal roots and peripheral nerves; increased myocyte apoptosis in skeletal muscle; and fibrofatty connective tissue proliferation around joints. Breeding studies demonstrated that the canine disorder is a fully penetrant, simple autosomal recessive trait. The disorder demonstrated a type and distribution of lesions homologous to that of human infantile neuroaxonal dystrophy (INAD), most commonly caused by mutations of PLA2G6, but alleles of informative markers flanking the canine PLA2G6 locus did not associate with the canine disorder. Thus, fetal-onset neuroaxonal dystrophy in dogs, a species with well-developed genome mapping resources, provides a unique opportunity for additional disease gene discovery and understanding of this pathology. PMID:20653033

  14. Genetics Home Reference: Laing distal myopathy

    MedlinePlus

    ... Muscular Dystrophy Association: Facts About Rare Muscular Dystrophies (PDF) Muscular Dystrophy Canada Muscular Dystrophy UK National Organization for Rare Disorders (NORD): Distal Myopathy Resource list ...

  15. Genome Modification Leads to Phenotype Reversal in Human Myotonic Dystrophy type 1 iPS-cell Derived Neural Stem Cells

    PubMed Central

    Xia, Guangbin; Gao, Yuanzheng; Jin, Shouguang; Subramony, SH.; Terada, Naohiro; Ranum, Laura P.W.; Swanson, Maurice S.; Ashizawa, Tetsuo

    2015-01-01

    Objective Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3’ UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step towards autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Methods Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 iPS cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization (RNA-FISH). Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. Results The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs was reversed to normal pattern in genome-modified NSCs. Interpretation Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1. PMID:25702800

  16. Evaluation of MMX1902 as an Oral Treatment for Duchenne Muscular Dystrophy

    DTIC Science & Technology

    2017-10-01

    0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...min for 60 minutes 2 times a week for 10 weeks. Four different SQ treatment groups (n = 9/group) were evaluated – wild-type controls and three groups...potential for MMX1902 treatment to stimulate and sustain regeneration even in the face of long- term, intensive exercise. 15. SUBJECT TERMS Duchenne

  17. Muscular dystrophy - resources

    MedlinePlus

    Resources - muscular dystrophy ... The following organizations are good resources for information on muscular dystrophy : Muscular Dystrophy Association -- www.mda.org National Institute of Neurological Disorders and Stroke -- www.ninds.nih. ...

  18. [Delayed diagnosis of Duchenne muscular dystrophy in Chile].

    PubMed

    de los Angeles Avaria, M; Kleinsteuber, K; Herrera, L; Carvallo, P

    1999-01-01

    Duchenne muscular dystrophy is the most frequent neuromuscular disease in children. To determine the causes of delayed diagnosis of the disease. The clinical records of 61 children diagnosed as Duchenne progressive muscular dystrophy were analyzed. the first symptoms of the disease were noticed at a mean age of 1.5 years. Parents consulted at the mean age of 3 years, but the accurate diagnosis was made at a mean age of 5.7 years. In only 15% of children, the disease was diagnosed in the first four years of age. Less than 20% of children were referred for an adequate study and the rest were managed mainly as flat feet. Duchenne dystrophy is the most common neuromuscular disorder in children, with an incidence of 1 in 3679 male newborns. The lack of recognition of non specific symptoms such as retardation in independent walking and frequent falls as forms of presentation, is probably the most important cause of diagnostic delay. Strong recommendation is made to measure creatinphosphokinase and to study every male child that is not walking independently by the age of 18 months.

  19. What Can DuchenneConnect Teach Us About Treating Duchenne Muscular Dystrophy?

    PubMed Central

    Wang, Richard T; Nelson, Stanley F

    2015-01-01

    Purpose of Review This review aims to describe the benefits and limitations of using the DuchenneConnect patient registry to provide information particularly in regard to active treatment choices in Duchenne muscular dystrophy and their impact on disease progression. Recent findings Clinical trials and natural history studies are difficult for rare diseases like Duchenne muscular dystrophy. Using an online patient self-report survey model, DuchenneConnect provides relevant data that are difficult to gather in other ways. Validation of the overall dataset is supported by comparable mutational spectrum relative to other cohorts and demonstrated beneficial effect of corticosteroid use in prolonging ambulation. These types of analyses are provocative and allow multivariate analyses across the breadth of patient and physician medication and supplement practices. Because the data is self-reported and online, the barrier to participation is low and great potential exists for novel directions of further research in a highly participatory forum. Summary Patient registries for Duchenne and Becker muscular dystrophy are powerful tools for monitoring patient outcomes, comparing treatments options, and relating information between patients, researchers and clinicians. DuchenneConnect is an online patient self-report registry for individuals with DBMD that facilitates aggregation of treatment modalities, outcomes and genotype data and has played a vital role in furthering DBMD research, particularly in the US, in a highly participatory and low cost manner. PMID:26356412

  20. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    PubMed

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  1. Three Wishes and Psychological Functioning in Boys with Duchenne Muscular Dystrophy

    PubMed Central

    NEREO, NANCY E.; HINTON, VERONICA J.

    2007-01-01

    This study examined Three Wishes (a projective technique commonly used with children) in boys with Duchenne muscular dystrophy (DMD), a fatal, progressive illness (n = 74). A reliable and parsimonious scoring system was developed to code wish type. Probands’ responses were compared with unaffected siblings (n = 32) and a male comparison group (n = 43). Contrary to what was expected, the DMD group did not make significantly more health-related wishes than their siblings or the comparison group. Further, no association between health-related wishes and problem behaviors was observed in the DMD group. These findings indicate that, despite increased stressors, boys with DMD present wishes similar to those of their healthy peers. PMID:12692454

  2. NMNAT1 variants cause cone and cone-rod dystrophy.

    PubMed

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  3. Comparisons of intellectual capacities between mild and classic adult-onset phenotypes of myotonic dystrophy type 1 (DM1).

    PubMed

    Jean, Stéphane; Richer, Louis; Laberge, Luc; Mathieu, Jean

    2014-11-26

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic multisystem disorder and the commonest adult-onset form of muscular dystrophy. DM1 results from the expansion of an unstable trinucleotide cytosine-thymine-guanine (CTG) repeat mutation. CTG repeats in DM1 patients can range from 50 to several thousands, with a tendency toward increased repeats with successive generations (anticipation). Associated findings can include involvements in almost every systems, including the brain, and cognitive abnormalities occur in the large majority of patients. The objectives are to describe and compare the intellectual abilities of a large sample of DM1 patients with mild and classic adult-onset phenotypes, to estimate the validity of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) in DM1 patients with muscular weakness, and to appraise the relationship of intelligence quotient (IQ) to CTG repeat length, age at onset of symptoms, and disease duration. A seven-subtest WAIS-R was administered to 37 mild and 151 classic adult-onset DM1 patients to measure their Full-Scale (FSIQ), Verbal (VIQ) and Performance IQ (PIQ). To control for potential bias due to muscular weakness, Standard Progressive Matrices (SPM), a motor-independent test of intelligence, were also completed. Total mean FSIQ was 82.6 corresponding to low average IQ, and 82% were below an average intelligence. Mild DM1 patients had a higher mean FSIQ (U=88.7 vs 81.1, p<0.001), VIQ (U=87.8 vs 82.3, p=0.001), and PIQ (U=94.8 vs 83.6, p<0.001) than classic adult-onset DM1 patients. In both mild and classic adult-onset patients, all subtests mean scaled scores were below the normative sample mean. FSIQ also strongly correlate with SPM (r s =0.67, p<0.001), indicating that low intelligence scores are not a consequence of motor impairment. FSIQ scores decreased with both the increase of (CTG)n (r s =-0.41, p<0.001) and disease duration (r s =-0.26, p=0.003). Results show that intellectual impairment is an extremely common and important feature in DM1, not only among the classic adult-onset patients but also among the least severe forms of DM1, with low IQ scores compared to general reference population. Health care providers involved in the follow-up of these patients should be aware of their intellectual capacities and should adapt their interventions accordingly.

  4. Hypotonia

    MedlinePlus

    ... can be seen in Down syndrome, muscular dystrophy, cerebral palsy, Prader-Willi syndrome, myotonic dystrophy, and Tay-Sachs ... can be seen in Down syndrome, muscular dystrophy, cerebral palsy, Prader-Willi syndrome, myotonic dystrophy, and Tay-Sachs ...

  5. Targeted Deletion of the Muscular Dystrophy Gene myotilin Does Not Perturb Muscle Structure or Function in Mice▿

    PubMed Central

    Moza, Monica; Mologni, Luca; Trokovic, Ras; Faulkner, Georgine; Partanen, Juha; Carpén, Olli

    2007-01-01

    Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myofibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo−/− mice. Surprisingly, myo−/− mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo−/− mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent. PMID:17074808

  6. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin

    PubMed Central

    Marshall, Jamie L.; Oh, Jennifer; Chou, Eric; Lee, Joy A.; Holmberg, Johan; Burkin, Dean J.; Crosbie-Watson, Rachelle H.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin–glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan ‘rescue’ of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. PMID:25504048

  7. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy

    PubMed Central

    Wang, Guey-Shin; Kearney, Debra L.; De Biasi, Mariella; Taffet, George; Cooper, Thomas A.

    2007-01-01

    Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide expansion in the 3′ untranslated region (3′ UTR) of DM protein kinase (DMPK). The key feature of DM1 pathogenesis is nuclear accumulation of RNA, which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of CUG-binding proteins (CUGBPs). Cardiac involvement occurs in more than 80% of individuals with DM1 and is responsible for up to 30% of disease-related deaths. We have generated an inducible and heart-specific DM1 mouse model expressing expanded CUG RNA in the context of DMPK 3′ UTR that recapitulated pathological and molecular features of DM1 including dilated cardiomyopathy, arrhythmias, systolic and diastolic dysfunction, and misregulated alternative splicing. Combined in situ hybridization and immunofluorescent staining for CUGBP1 and CUGBP2, the 2 CUGBP1 and ETR-3 like factor (CELF) proteins expressed in heart, demonstrated elevated protein levels specifically in nuclei containing foci of CUG repeat RNA. A time-course study demonstrated that colocalization of MBNL1 with RNA foci and increased CUGBP1 occurred within hours of induced expression of CUG repeat RNA and coincided with reversion to embryonic splicing patterns. These results indicate that CUGBP1 upregulation is an early and primary response to expression of CUG repeat RNA. PMID:17823658

  8. The Mechanosensory Ca2+ Channel as a Central Regulator of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2008-01-01

    contribute to major human diseases, including muscular dystrophy, kidney disease, cardiac arrhythmias, hyper- tension, and tumor cell invasion...explain why the absence of dystrophin in Duchenne muscular dystrophic muscle results in TRPC1 channels being abnormally gated open (Section VIII.A.3... Muscular Dystrophy BothTRPC1andMscCa are expressed in skeletalmuscle and bothhave been implicated in the muscular degeneration that occurs in Duchenne

  9. Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study.

    PubMed

    Dogan, Celine; De Antonio, Marie; Hamroun, Dalil; Varet, Hugo; Fabbro, Marianne; Rougier, Felix; Amarof, Khadija; Arne Bes, Marie-Christine; Bedat-Millet, Anne-Laure; Behin, Anthony; Bellance, Remi; Bouhour, Françoise; Boutte, Celia; Boyer, François; Campana-Salort, Emmanuelle; Chapon, Françoise; Cintas, Pascal; Desnuelle, Claude; Deschamps, Romain; Drouin-Garraud, Valerie; Ferrer, Xavier; Gervais-Bernard, Helene; Ghorab, Karima; Laforet, Pascal; Magot, Armelle; Magy, Laurent; Menard, Dominique; Minot, Marie-Christine; Nadaj-Pakleza, Aleksandra; Pellieux, Sybille; Pereon, Yann; Preudhomme, Marguerite; Pouget, Jean; Sacconi, Sabrina; Sole, Guilhem; Stojkovich, Tanya; Tiffreau, Vincent; Urtizberea, Andoni; Vial, Christophe; Zagnoli, Fabien; Caranhac, Gilbert; Bourlier, Claude; Riviere, Gerard; Geille, Alain; Gherardi, Romain K; Eymard, Bruno; Puymirat, Jack; Katsahian, Sandrine; Bassez, Guillaume

    2016-01-01

    Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity. We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (>18 y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate. Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trials.

  10. Cone rod dystrophies

    PubMed Central

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, and the visual prognosis is poor. Management aims at slowing down the degenerative process, treating the complications and helping patients to cope with the social and psychological impact of blindness. PMID:17270046

  11. Age at onset of first signs or symptoms predicts age at loss of ambulation in Duchenne and Becker Muscular Dystrophy: Data from the MD STARnet.

    PubMed

    Ciafaloni, Emma; Kumar, Anil; Liu, Ke; Pandya, Shree; Westfield, Christina; Fox, Deborah J; Caspers Conway, Kristin M; Cunniff, Christopher; Mathews, Katherine; West, Nancy; Romitti, Paul A; McDermott, Michael P

    2016-01-01

    We investigated the prognostic utility of onset age at first signs and symptoms (SS) to predict onset age at loss of ambulation (LOA) for childhood-onset Duchenne and Becker Muscular Dystrophies (DBMD). Our cohort comprised male cases with DBMD ascertained by the population-based Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models for associations between onset ages of first SS and LOA. Covariates controlled for were corticosteroid use, family history of DBMD, birth year, race/ethnicity, and MD STARnet site. Onset age at first SS was considered as a continuous and as a categorical variable. A one-year increase in onset age at first SS was significantly associated with a 10% reduction in annual risk of LOA (HR = 0.90, CI = 0.87-0.94). Treating onset age at first SS as a categorical variable yielded a similar association (≥ 5 years: referent; ≥ 3 to < 5 years: HR = 1.36, CI = 1.02-1.81; 18 months to < 3 years: HR = 1.72, CI = 1.31-2.26; < 18 months: HR = 1.52, CI = 1.14-2.02). Earlier onset age at first SS is associated with earlier onset age at LOA and may have clinical utility in differentiating childhood-onset Duchenne and Becker muscular dystrophies.

  12. What Are the Types of Muscular Dystrophy?

    MedlinePlus

    ... or sitting position Waddle when walking Have difficulty running and jumping Have calf muscles that appear large ... that causes shoulders to appear slanted and shoulder blades to appear "winged" Impaired reflexes only at the ...

  13. Types of Leukodystrophies

    MedlinePlus

    ... Leukoencephalopathy (RNASET2 related) Elongation of Very Long-Chain Fatty Acids-4 (ELOVL4; Pseudo-Sjogren-Larsson) Extensive Cerebral White ... with Adult Onset Dementia and Abnormal Glycolipid Storage Fatty Acid 2-Hydroxylase Deficiency Fucosidosis Fukuyama Congential Muscular Dystrophy ...

  14. Laparoscopic cholecystectomy in a patient with Steinert myotonic dystrophy. Case report.

    PubMed

    Agrusa, A; Mularo, S; Alessi, R; Di Paola, P; Mularo, A; Amato, G; Romano, G

    2011-01-01

    Myotonic dystrophy (MD) is a serious multi-systemic autosomal dominant disease. The estimated incidence is 1 in every 8000 births, with an estimated prevalence of between 2.1 and 14.3 cases per 100,000 inhabitants. Signs and symptoms vary from a severe form of congenital myopathy, present from birth and often fatal, to a classic form and a delayed form, which generally presents after the age of 50 and in which the only sign is a cataract and life expectancy is completely normal. We describe the clinical case of a 40-year-old woman with Steinert myotonic dystrophy who underwent laparoscopic cholecystectomy (under general anesthesia) for symptomatic gallbladder stones. The conduct of anesthesia in such patients must be carefully considered, as hypothermia, shivering, electrical and mechanical stimulation, and the drugs used can all trigger myotonia.

  15. Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy.

    PubMed

    Brinkmeyer-Langford, Candice; Balog-Alvarez, Cynthia; Cai, James J; Davis, Brian W; Kornegay, Joe N

    2016-08-22

    Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes.

  16. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F.

    PubMed

    Peter, Angela K; Miller, Gaynor; Capote, Joana; DiFranco, Marino; Solares-Pérez, Alhondra; Wang, Emily L; Heighway, Jim; Coral-Vázquez, Ramón M; Vergara, Julio; Crosbie-Watson, Rachelle H

    2017-06-06

    Sarcospan (SSPN) is a transmembrane protein that interacts with the sarcoglycans (SGs) to form a tight subcomplex within the dystrophin-glycoprotein complex that spans the sarcolemma and interacts with laminin in the extracellular matrix. Overexpression of SSPN ameliorates Duchenne muscular dystrophy in murine models. Standard cloning approaches were used to identify nanospan, and nanospan-specific polyclonal antibodies were generated and validated. Biochemical isolation of skeletal muscle membranes and two-photon laser scanning microscopy were used to analyze nanospan localization in muscle from multiple murine models. Duchenne muscular dystrophy biopsies were analyzed by immunoblot analysis of protein lysates as well as indirect immunofluorescence analysis of muscle cryosections. Nanospan is an alternatively spliced isoform of sarcospan. While SSPN has four transmembrane domains and is a core component of the sarcolemmal dystrophin-glycoprotein complex, nanospan is a type II transmembrane protein that does not associate with the dystrophin-glycoprotein complex. We demonstrate that nanospan is enriched in the sarcoplasmic reticulum (SR) fractions and is not present in the T-tubules. SR fractions contain membranes from three distinct structural regions: a region flanking the T-tubules (triadic SR), a SR region across the Z-line (ZSR), and a longitudinal SR region across the M-line (LSR). Analysis of isolated murine muscles reveals that nanospan is mostly associated with the ZSR and triadic SR, and only minimally with the LSR. Furthermore, nanospan is absent from the SR of δ-SG-null (Sgcd -/- ) skeletal muscle, a murine model for limb girdle muscular dystrophy 2F. Analysis of skeletal muscle biopsies from Duchenne muscular dystrophy patients reveals that nanospan is preferentially expressed in type I (slow) fibers in both control and Duchenne samples. Furthermore, nanospan is significantly reduced in Duchenne biopsies. Alternative splicing of proteins from the SG-SSPN complex produces δ-SG3, microspan, and nanospan that localize to the ZSR and the triadic SR, where they may play a role in regulating resting calcium levels as supported by previous studies (Estrada et al., Biochem Biophys Res Commun 340:865-71, 2006). Thus, alternative splicing of SSPN mRNA generates three protein isoforms (SSPN, microspan, and nanospan) that differ in the number of transmembrane domains affecting subcellular membrane association into distinct protein complexes.

  17. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy.

    PubMed

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S; Madsen, Karen L; Hansen, Jonas B; Madsen, Mads; Vissing, John

    2013-12-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies. Fourteen patients with Becker (BMD), facioscapulohumeral (FSHD), or limb-girdle type 2 (LGMD2) muscular dystrophy, and 8 healthy subjects performed 5 cycling tests: an incremental max test, and tests at 65%, 75%, 85%, and 95% of maximal oxygen uptake (VO2max ). Heart rate and oxygen consumption were measured during the tests, and plasma CK was measured before, immediately after, and 24 hours after exercise. All subjects were able to perform high-intensity exercise at the different levels. In patients with LGMD2 and FSHD, CK normalized 24 hours after exercise compared with the pre-exercise value, whereas those with BMD and healthy controls had elevated CK values 24 hours after exercise. The findings suggest that high-intensity exercise is generally well tolerated in patients with LGMD2 and FSHD, whereas those with BMD may be more prone to exercise-induced damage. Copyright © 2013 Wiley Periodicals, Inc.

  18. Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-α2 chain-null congenital muscular dystrophy mice.

    PubMed

    Aoki, Yoshitsugu; Nagata, Tetsuya; Yokota, Toshifumi; Nakamura, Akinori; Wood, Matthew J A; Partridge, Terence; Takeda, Shin'ichi

    2013-12-15

    Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is among the more promising approaches to the treatment of several neuromuscular disorders including Duchenne muscular dystrophy. The main weakness of this approach arises from the low efficiency and sporadic nature of the delivery of charge-neutral PMO into muscle fibers, the mechanism of which is unknown. In this study, to test our hypothesis that muscle fibers take up PMO more efficiently during myotube formation, we induced synchronous muscle regeneration by injection of cardiotoxin into the tibialis anterior muscle of Dmd exon 52-deficient mdx52 and wild-type mice. Interestingly, by in situ hybridization, we detected PMO mainly in embryonic myosin heavy chain-positive regenerating fibers. In addition, we showed that PMO or 2'-O-methyl phosphorothioate is taken up efficiently into C2C12 myotubes when transfected 24-72 h after the induction of differentiation but is poorly taken up into undifferentiated C2C12 myoblasts suggesting efficient uptake of PMO in the early stages of C2C12 myotube formation. Next, we tested the therapeutic potential of PMO for laminin-α2 chain-null dy(3K)/dy(3K) mice: a model of merosin-deficient congenital muscular dystrophy (MDC1A) with active muscle regeneration. We confirmed the recovery of laminin-α2 chain and slightly prolonged life span following skipping of the mutated exon 4 in dy(3K)/dy(3K) mice. These findings support the idea that PMO entry into fibers is dependent on a developmental stage in myogenesis rather than on dystrophinless muscle membranes and provide a platform for developing PMO-mediated therapies for a variety of muscular disorders, such as MDC1A, that involve active muscle regeneration.

  19. Low D4Z4 copy number and gender difference in Korean patients with facioscapulohumeral muscular dystrophy type 1.

    PubMed

    Park, Hyung Jun; Hong, Ji-Man; Lee, Jung Hwan; Lee, Hyung Seok; Shin, Ha Young; Kim, Seung Min; Ki, Chang-Seok; Lee, Ji Hyun; Choi, Young-Chul

    2015-11-01

    The objective of this study was to investigate the clinical and genetic features of Korean patients with facioscapulohumeral muscular dystrophy type 1 (FSHD), and assessed the impact of molecular defects on phenotypic expression. We enrolled 104 FSHD patients from 87 unrelated Korean families with D4Z4 repeat array of less than 11 copies on 4q35. Sixty-one men and forty-three women were enrolled. Median D4Z4 copy number was 4 units and 99 (95%) Korean patients with FSHD carried 1-6 units. The median age at symptom onset was 13 [interquartile range: 8-17] years old. In 100 symptomatic patients, muscle weakness began in facial muscles in 58 patients, shoulder-girdle muscles in 37, and pelvic-girdle muscles in 5. Disease severity was significantly correlated with D4Z4 copy number. In addition, women were more severely affected than men even though there were no differences in age at examination or in D4Z4 copy number between the two genders. This gender difference among Korean patients was the opposite of analysis on individuals of European ancestry. In conclusion, the present study demonstrated the new diagnostic threshold for FSHD in Koreans based on the D4Z4 repeat array size distribution from 1 to 6 units and expanded the clinical spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The relative frequency of common neuromuscular diagnoses in a reference center.

    PubMed

    Cotta, Ana; Paim, Júlia Filardi; Carvalho, Elmano; da-Cunha-Júnior, Antonio Lopes; Navarro, Monica M; Valicek, Jaquelin; Menezes, Miriam Melo; Nunes, Simone Vilela; Xavier-Neto, Rafael; Baptista, Sidney; Lima, Luciano Romero; Takata, Reinaldo Issao; Vargas, Antonio Pedro

    2017-11-01

    The diagnostic procedure in neuromuscular patients is complex. Knowledge of the relative frequency of neuromuscular diseases within the investigated population is important to allow the neurologist to perform the most appropriate diagnostic tests. To report the relative frequency of common neuromuscular diagnoses in a reference center. A 17-year chart review of patients with suspicion of myopathy. Among 3,412 examinations, 1,603 (46.98%) yielded confirmatory results: 782 (48.78%) underwent molecular studies, and 821 (51.21%) had muscle biopsies. The most frequent diagnoses were: dystrophinopathy 460 (28.70%), mitochondriopathy 330 (20.59%), spinal muscular atrophy 158 (9.86%), limb girdle muscular dystrophy 157 (9.79%), Steinert myotonic dystrophy 138 (8.61%), facioscapulohumeral muscular dystrophy 99 (6.17%), and other diagnoses 261 (16.28%). Using the presently-available diagnostic techniques in this service, a specific limb girdle muscular dystrophy subtype diagnosis was reached in 61% of the patients. A neuromuscular-appropriate diagnosis is important for genetic counseling, rehabilitation orientation, and early treatment of respiratory and cardiac complications.

  1. Prevalence and Characteristics of Chinese Patients With Duchenne and Becker Muscular Dystrophy: A Territory Wide Collaborative Study in Hong Kong.

    PubMed

    Chan, Sophelia H S; Lo, Ivan F M; Cherk, Sharon W W; Cheng, Wai Wai; Fung, Eva L W; Yeung, Wai Lan; Ngan, Mary; Lee, Wing Cheong; Kwong, Ling; Wong, Suet Na; Ma, Che Kwan; Tai, Shuk Mui; Ng, Grace S F; Wu, Shun Ping; Wong, Virginia C N

    2015-01-01

    The aim of this collaborative study on Duchenne muscular dystrophy and Becker muscular dystrophy is to determine the prevalence and to develop data on such patients as a prelude to the development of registry in Hong Kong. Information on clinical and molecular findings, and patient care, was systematically collected in 2011 and 2012 from all Pediatric Neurology Units in Hong Kong. Ninety patients with dystrophinopathy were identified, and 83% has Duchenne muscular dystrophy. The overall prevalence of dystrophinopathy in Hong Kong in 2010 is 1.03 per 10 000 males aged 0 to 24 years. Among the Duchenne group, we observed a higher percentage (40.6%) of point mutations with a lower percentage (45.3%) of exon deletions in our patients when compared with overseas studies. Although we observed similar percentage of Duchenne group received scoliosis surgery, ventilation support, and cardiac treatment when compared with other countries, the percentage (25%) of steroid use is lower.

  2. Identifying Key Networks Linked to Light-Independent Photoreceptor Degeneration in Visual Arrestin 1 Knockout Mice.

    PubMed

    Kim, Hwa Sun; Huang, Shun-Ping; Lee, Eun-Jin; Craft, Cheryl Mae

    2018-01-01

    When visual arrestin 1 (ARR1, S-antigen, 48 KDa protein) was genetically knocked out in mice (original Arr1 -/- , designated Arr1 -/-A ), rod photoreceptors degenerated in a light-dependent manner. Subsequently, a light-independent cone dystrophy was identified with minimal rod death in ARR1 knockout mice (Arr1 -/-A Arr4 +/+ , designated Arr1 -/-B ), which were F2 littermates from breeding the original Arr1 -/-A and cone arrestin knockout 4 (Arr4 -/- ) mice. To resolve the genetic and phenotypic differences between the two ARR1 knockouts, we performed Affymetrix™ exon array analysis to focus on the potential differential gene expression profile and to explore the molecular and cellular pathways leading to this observed susceptibility to cone dystrophy in Arr1 -/-B compared to Arr1 -/-A or control Arr1 +/+ Arr4 +/+ (wild type [WT]). Only in the Arr1 -/-B retina did we observe an up-regulation of retinal transcripts involved in the immune response, inflammatory response and JAK-STAT signaling molecules, OSMRβ and phosphorylation of STAT3. Of these responses, the complement system was significantly higher, and a variety of inflammatory responses by complement regulation and anti-inflammatory cytokine or factors were identified in Arr1 -/-B retinal transcripts. This discovery supports that Arr1 -/-B has a distinct genetic background from Arr1 -/-A that results in alterations in its retinal phenotype leading to susceptibility to cone degeneration induced by inappropriate inflammatory and immune responses.

  3. Wide-field fundus autofluorescence abnormalities and visual function in patients with cone and cone-rod dystrophies.

    PubMed

    Oishi, Maho; Oishi, Akio; Ogino, Ken; Makiyama, Yukiko; Gotoh, Norimoto; Kurimoto, Masafumi; Yoshimura, Nagahisa

    2014-05-20

    To evaluate the clinical utility of wide-field fundus autofluorescence (FAF) in patients with cone dystrophy and cone-rod dystrophy. Sixteen patients with cone dystrophy (CD) and 41 patients with cone-rod dystrophy (CRD) were recruited at one institution. The right eye of each patient was included for analysis. We obtained wide-field FAF images using a ultra-widefield retinal imaging device and measured the area of abnormal FAF. The association between the area of abnormal FAF and the results of visual acuity measurements, kinetic perimetry, and electroretinography (ERG) were investigated. The mean age of the participants was 51.4 ± 17.4 years, and the mean logarithm of the minimum angle of resolution was 1.00 ± 0.57. The area of abnormal FAF correlated with the scotoma measured by the Goldman perimetry I/4e isopter (ρ = 0.79, P < 0.001). The area also correlated with amplitudes of the rod ERG (ρ = -0.63, P < 0.001), combined ERG a-wave (ρ = -0.72, P < 0.001), combined ERG b-wave (ρ = -0.66, P < 0.001), cone ERG (ρ = -0.44, P = 0.001), and flicker ERG (ρ = -0.47, P < 0.001). The extent of abnormal FAF reflects the severity of functional impairment in patients with cone-dominant retinal dystrophies. Fundus autofluorescence measurements are useful for predicting retinal function in these patients. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Inherited Retinal Degenerative Disease Registry

    ClinicalTrials.gov

    2017-09-13

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  5. Genetics Home Reference: lattice corneal dystrophy type I

    MedlinePlus

    ... have recurrent corneal erosions, which are caused by separation of particular layers of the cornea from one ... intricate network that forms in the spaces between cells and provides structural support to tissues. The protein ...

  6. Risk Factors for First Fractures Among Males With Duchenne or Becker Muscular Dystrophy.

    PubMed

    James, Katherine A; Cunniff, Christopher; Apkon, Susan D; Mathews, Katherine; Lu, Zhenqiang; Holtzer, Caleb; Pandya, Shree; Ciafaloni, Emma; Miller, Lisa

    2015-09-01

    Fractures are a significant concern for individuals with Duchenne/Becker muscular dystrophy with 21% to 44% of males experiencing a fracture. Factors that increase or decrease the risk for fracture have been suggested in past research, although statistical risk has not been determined. In this retrospective cohort study, we used the Muscular Dystrophy Surveillance, Tracking and Research Network cohort, a large, population-based sample to identify risk factors associated with first fractures in patients with Duchenne or Becker muscular dystrophy. Our study cohort included males with Duchenne or Becker muscular dystrophy born between 1982 and 2006 who resided in Arizona, Colorado, Georgia, Iowa, and Western New York, retrospectively identified and followed through 2010. We utilized a multivariate Cox proportional hazard model to determine hazard ratios for relevant factors associated with first fracture risk including race/ethnicity, surveillance site, ambulation status, calcium/vitamin D use and duration, bisphosphonate use and duration, and corticosteroid use and duration. Of 747 cases, 249 had at least 1 fracture (33.3%). Full-time wheelchair use increased the risk of first fracture by 75% for every 3 months of use (hazard ratio=1.75, 95% confidence interval, 1.14, 2.68), but corticosteroid use, bisphosphonate use, and calcium/vitamin D use did not significantly affect risk in the final adjusted model. In this cohort, first fractures were common and full-time wheelchair use, but not corticosteroid use, was identified as a risk factor. The impact of prevention measures should be more thoroughly assessed. Fractures are a significant concern for individuals with dystrophinopathies, but the contribution of various risk factors has not been consistently demonstrated.

  7. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    PubMed

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Co-incidence of Turner syndrome and Duchenne muscular dystrophy - an important problem for the clinician.

    PubMed

    Kaczorowska, Ewa; Zimowski, Janusz; Cichoń-Kotek, Monika; Mrozińska, Agnieszka; Purzycka, Joanna; Wierzba, Jolanta; Limon, Janusz; Lipska-Ziętkiewicz, Beata S

    Turner syndrome is a relatively common chromosomal disorder which affects about one in 2000 live born females. Duchenne muscular dystrophy is an X-linked recessive disorder affecting 1:3600 live born males. Considering the above, the coexistence of these two diseases may occur only anecdotally. Here, we report a 4 ½ year-old female with classical 45,X Turner syndrome who also had Duchenne muscular dystrophy caused by a point mutation in the dystrophin gene (c.9055delG). The patient showed the typical phenotype of Turner syndrome including distinctive dysmorphic features (short neck, low posterior hairline, wide position of nipples), aortic coarctation and feet lymphedema. Besides, she presented with an unusually early beginning of muscular dystrophy symptoms with infantile-onset motor developmental delay, intellectual disability and early calf muscular hypertrophy. The coexistence of an X-linked recessive disorder should be considered in women affected by Turner syndrome presenting with additional atypical clinical features.

  9. Prevalence and Characteristics of Chinese Patients With Duchenne and Becker Muscular Dystrophy

    PubMed Central

    Lo, Ivan F. M.; Cherk, Sharon W. W.; Cheng, Wai Wai; Fung, Eva L. W.; Yeung, Wai Lan; Ngan, Mary; Lee, Wing Cheong; Kwong, Ling; Wong, Suet Na; Ma, Che Kwan; Tai, Shuk Mui; Ng, Grace S. F.; Wu, Shun Ping; Wong, Virginia C. N.

    2015-01-01

    The aim of this collaborative study on Duchenne muscular dystrophy and Becker muscular dystrophy is to determine the prevalence and to develop data on such patients as a prelude to the development of registry in Hong Kong. Information on clinical and molecular findings, and patient care, was systematically collected in 2011 and 2012 from all Pediatric Neurology Units in Hong Kong. Ninety patients with dystrophinopathy were identified, and 83% has Duchenne muscular dystrophy. The overall prevalence of dystrophinopathy in Hong Kong in 2010 is 1.03 per 10 000 males aged 0 to 24 years. Among the Duchenne group, we observed a higher percentage (40.6%) of point mutations with a lower percentage (45.3%) of exon deletions in our patients when compared with overseas studies. Although we observed similar percentage of Duchenne group received scoliosis surgery, ventilation support, and cardiac treatment when compared with other countries, the percentage (25%) of steroid use is lower. PMID:28503591

  10. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.

    PubMed

    Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre

    2017-09-01

    What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  11. Usefulness of sugammadex in a patient with Becker muscular dystrophy and dilated cardiomyopathy.

    PubMed

    Shimauchi, Tsukasa; Yamaura, Ken; Sugibe, Sayaka; Hoka, Sumio

    2014-09-01

    A 54-year-old patient with Becker muscular dystrophy and dilated cardiomyopathy underwent laparoscopic cholecystectomy under total intravenous anesthesia. Muscle relaxation was induced by rocuronium (0.4 mg/kg body weight) under train-of-four (TOF) ratio monitoring. The TOF ratio was 0 at intubation, and 0.2 at the end of surgery. Residual muscle relaxant activity was successfully reversed by sugammadex (2 mg/kg body weight) without any hemodynamic adverse effects (TOF ratio 1.0 at extubation). The clinical and hemodynamic findings suggest that sugammadex can be safely used in patients with Becker muscular dystrophy and dilated cardiomyopathy. Copyright © 2014. Published by Elsevier B.V.

  12. Cardiac manifestations of congenital LMNA-related muscular dystrophy in children: three case reports and recommendations for care.

    PubMed

    Heller, Felice; Dabaj, Ivana; Mah, Jean K; Bergounioux, Jean; Essid, Aben; Bönnemann, Carsten G; Rutkowski, Anne; Bonne, Gisèle; Quijano-Roy, Susana; Wahbi, Karim

    2017-08-01

    Skeletal and cardiac muscle laminopathies, caused by mutations in the lamin A/C gene, have a clinical spectrum from congenital LMNA-related muscular dystrophy to later-onset Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, and dilated cardiomyopathy. Although cardiac involvement is observed at all ages, it has only been well described in adults. We present the evolution of cardiac disease in three children with congenital muscular dystrophy presentation of LMNA-related muscular dystrophy. In this series, atrial arrhythmia was the presenting cardiac finding in all three patients. Heart failure developed up to 5 years later. Symptoms of right heart failure, including diarrhoea and peripheral oedema, preceded a rapid decline in left ventricular ejection fraction. Recommendations for cardiac surveillance and management in these patients are made.

  13. A Structure of a Collagen VI VWA Domain Displays N and C Termini at Opposite Sides of the Protein

    PubMed Central

    Becker, Ann-Kathrin A.; Mikolajek, Halina; Paulsson, Mats; Wagener, Raimund; Werner, Jörn M.

    2014-01-01

    Summary Von Willebrand factor A (VWA) domains are versatile protein interaction domains with N and C termini in close proximity placing spatial constraints on overall protein structure. The 1.2 Å crystal structures of a collagen VI VWA domain and a disease-causing point mutant show C-terminal extensions that place the N and C termini at opposite ends. This allows a “beads-on-a-string” arrangement of multiple VWA domains as observed for ten N-terminal domains of the collagen VI α3 chain. The extension is linked to the core domain by a salt bridge and two hydrophobic patches. Comparison of the wild-type and a muscular dystrophy-associated mutant structure identifies a potential perturbation of a protein interaction interface and indeed, the secretion of mutant collagen VI tetramers is affected. Homology modeling is used to locate a number of disease-associated mutations and analyze their structural impact, which will allow mechanistic analysis of collagen-VI-associated muscular dystrophy phenotypes. PMID:24332716

  14. Changes in Muscle Metabolism are Associated with Phenotypic Variability in Golden Retriever Muscular Dystrophy




    PubMed Central

    Nghiem, Peter P.; Bello, Luca; Stoughton, William B.; López, Sara Mata; Vidal, Alexander H.; Hernandez, Briana V.; Hulbert, Katherine N.; Gourley, Taylor R.; Bettis, Amanda K.; Balog-Alvarez, Cynthia J.; Heath-Barnett, Heather; Kornegay, Joe N.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy. PMID:28955176

  15. Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers

    PubMed Central

    Rahimov, Fedik; King, Oliver D.; Leung, Doris G.; Bibat, Genila M.; Emerson, Charles P.; Kunkel, Louis M.; Wagner, Kathryn R.

    2012-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. The pathophysiology of FSHD is unknown and, as a result, there is currently no effective treatment available for this disease. To better understand the pathophysiology of FSHD and develop mRNA-based biomarkers of affected muscles, we compared global analysis of gene expression in two distinct muscles obtained from a large number of FSHD subjects and their unaffected first-degree relatives. Gene expression in two muscle types was analyzed using GeneChip Gene 1.0 ST arrays: biceps, which typically shows an early and severe disease involvement; and deltoid, which is relatively uninvolved. For both muscle types, the expression differences were mild: using relaxed cutoffs for differential expression (fold change ≥1.2; nominal P value <0.01), we identified 191 and 110 genes differentially expressed between affected and control samples of biceps and deltoid muscle tissues, respectively, with 29 genes in common. Controlling for a false-discovery rate of <0.25 reduced the number of differentially expressed genes in biceps to 188 and in deltoid to 7. Expression levels of 15 genes altered in this study were used as a “molecular signature” in a validation study of an additional 26 subjects and predicted them as FSHD or control with 90% accuracy based on biceps and 80% accuracy based on deltoids. PMID:22988124

  16. Dependent and paranoid personality patterns in myotonic dystrophy type 1.

    PubMed

    Peric, S; Sreckov, M; Basta, I; Lavrnic, D; Vujnic, M; Marjanovic, I; Rakocevic Stojanovic, V

    2014-04-01

    To analyze frequency and type of personality pattern in patients with myotonic dystrophy type 1 (DM1), to correlate these findings with clinical data, and to assess its possible influence on quality of life (QoL). This cross-sectional study comprised 62 patients with DM1. Following measures were used: Muscular Impairment Rating Scale, Raven's Standard Progressive Matrices (RSPM), Millon Multiaxial Clinical Inventory I (MMCI), SF-36, and Individualized Neuromuscular Quality of Life (INQoL) questionnaires. The presence of at least one pathological personality trait with score above 85 on MMCI was found in 47 (75.8%) patients. After clinical interview, 36 (58.1%) subjects had significant personality impairment. The most common personality trait in our cohort of patients was dependent found in 51.6% of patients, followed by paranoid (38.7%). Higher score on dependent personality scale correlated with lower education (rho = -0.251, P = 0.049). Dependent personality scores significantly differed between patients with physical and intellectual work (93.1 ± 8.9 vs 66.9 ± 31.7, P = 0.011). Paranoid score was higher in patients with lower education (rho = -0.293, P = 0.021), lower score on RSPM test (rho = -0.398, P = 0.004) and larger number of CTG repeats (rho = 0.254, P = 0.046). Presence of dependent personality was not in association with QoL scores (P > 0.05). On the other hand, patients with paranoid personality trait had worse QoL than those without it (P < 0.05). Almost 60% of our patients with DM1 had clinically significant personality impairment, with dependent and paranoid personality patterns being the most common. Paranoid personality may decrease QoL in these patients, which gives us new opportunities for symptomatic therapy in DM1. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A Neuroprosthesis System Utilizing Optical Spatial Feedback Control

    DTIC Science & Technology

    2004-03-19

    tetraplegia, muscular dystrophy, amyotrophic lateral sclerosis (i.e., “Lou Gehrig’s disease ”), and other neurological or musculoskeletal disease ...commonly used by individuals with high tetraplegia, muscular dystrophy, amyotrophic lateral sclerosis (i.e., “Lou Gehrig’s disease ”), and other...neurological or musculoskeletal disease . - 5 - REPORT ORGANIZATION This report is organized into the following sections: 1. Introduction: An

  18. Peripheral nerve pathology, including aberrant Schwann cell differentiation, is ameliorated by doxycycline in a laminin-α2-deficient mouse model of congenital muscular dystrophy

    PubMed Central

    Homma, Sachiko; Beermann, Mary Lou; Miller, Jeffrey Boone

    2011-01-01

    The most common form of childhood congenital muscular dystrophy, Type 1A (MDC1A), is caused by mutations in the human LAMA2 gene that encodes the laminin-α2 subunit. In addition to skeletal muscle deficits, MDC1A patients typically show a loss of peripheral nerve function. To identify the mechanisms underlying this loss of nerve function, we have examined pathology and cell differentiation in sciatic nerves and ventral roots of the laminin-α2-deficient (Lama2−/−) mice, which are models for MDC1A. We found that, compared with wild-type, sciatic nerves of Lama2−/− mice had a significant increase in both proliferating (Ki67+) cells and premyelinating (Oct6+) Schwann cells, but also had a significant decrease in both immature/non-myelinating [glial fibrillary acidic protein (GFAP)+] and myelinating (Krox20+) Schwann cells. To extend our previous work in which we found that doxycycline, which has multiple effects on mammalian cells, improves motor behavior and more than doubles the median life-span of Lama2−/− mice, we also determined how nerve pathology was affected by doxycycline treatment. We found that myelinating (Krox20+) Schwann cells were significantly increased in doxycycline-treated compared with untreated sciatic nerves. In addition, doxycycline-treated peripheral nerves had significantly less pathology as measured by assays such as amount of unmyelinated or disorganized axons. This study thus identified aberrant proliferation and differentiation of Schwann cells as key components of pathogenesis in peripheral nerves and provided proof-of-concept that pharmaceutical therapy can be of potential benefit for peripheral nerve dysfunction in MDC1A. PMID:21505075

  19. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy.

    PubMed

    Paran, Christopher W; Zou, Kai; Ferrara, Patrick J; Song, Haowei; Turk, John; Funai, Katsuhiko

    2015-12-01

    Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition. Copyright © 2015. Published by Elsevier B.V.

  20. Cone opsins, colour blindness and cone dystrophy: Genotype-phenotype correlations.

    PubMed

    Gardner, J C; Michaelides, M; Hardcastle, A J

    2016-05-25

    X-linked cone photoreceptor disorders caused by mutations in the OPN1LW (L) and OPN1MW (M) cone opsin genes on chromosome Xq28 include a range of conditions from mild stable red-green colour vision deficiencies to severe cone dystrophies causing progressive loss of vision and blindness. Advances in molecular genotyping and functional analyses of causative variants, combined with deep retinal phenotyping, are unravelling genetic mechanisms underlying the variability of cone opsin disorders.

  1. Advanced Gene Therapy for Treatment of Cardiomyopathy and Respiratory Insufficiency in Duchenne Muscular Dystrophy

    DTIC Science & Technology

    2014-09-01

    TITLE: Advanced Gene Therapy for Treatment of Cardiomyopathy and Respiratory Insufficiency in Duchenne Muscular Dystrophy PRINCIPAL...Advanced Gene Therapy for Treatment of Cardiomyopathy and Respiratory Insufficiency in Duchenne Muscular Dystrophy 5a. CONTRACT NUMBER 5b. GRANT...effective recombinant AAV vector serotype 9 delivery system for the treatment of cardiorespiratory dysfunction in Duchenne Muscular Dystrophy . 2

  2. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  3. Retinitis pigmentosa and allied conditions today: a paradigm of translational research

    PubMed Central

    2010-01-01

    Monogenic human retinal dystrophies are a group of disorders characterized by progressive loss of photoreceptor cells leading to visual handicap. Retinitis pigmentosa is a type of retinal dystrophy where degeneration of rod photoreceptors occurs at the early stages. At present, there are no available effective therapies to maintain or improve vision in patients affected with retinitis pigmentosa, but post-genomic studies are allowing the development of potential therapeutic approaches. This review summarizes current knowledge on genes that have been identified to be responsible for retinitis pigmentosa, the involvement of these genes in the different forms of the disorder, the role of the proteins encoded by these genes in retinal function, the utility of genotyping, and current efforts to develop novel therapies. PMID:20519033

  4. A Study of CAP-1002 in Ambulatory and Non-Ambulatory Patients With Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2018-06-16

    Muscular Dystrophies; Muscular Dystrophy, Duchenne; Muscular Disorders, Atrophic; Muscular Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  5. Limb-Girdle Muscular Dystrophy (LGMD)

    MedlinePlus

    ... Association (MDA) is a qualified 501(c)(3) tax-exempt organization. ©2018, Muscular Dystrophy Association Inc. All ... Association (MDA) is a qualified 501(c)(3) tax-exempt organization. ©2018, Muscular Dystrophy Association Inc. All ...

  6. Muscle-Specific SIRT1 Gain-of-Function Increases Slow-Twitch Fibers and Ameliorates Pathophysiology in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Chalkiadaki, Angeliki; Igarashi, Masaki; Nasamu, Armiyaw Sebastian; Knezevic, Jovana; Guarente, Leonard

    2014-01-01

    SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases. PMID:25032964

  7. Myotonic Dystrophy Type 2 Found in Two of Sixty-Three Persons Diagnosed as Having Fibromyalgia

    PubMed Central

    Auvinen, Satu; Suominen, Tiina; Hannonen, Pekka; Bachinski, Linda L.; Krahe, Ralf; Udd, Bjarne

    2008-01-01

    Because of its high prevalence, fibromyalgia (FM) is a major general health issue. Myotonic dystrophy type 2 (DM2) is a recently described autosomal-dominant multisystem disorder. Besides variable proximal muscle weakness, myotonia, and precocious cataracts, muscle pain and stiffness are prominent presenting features of DM2. After noting that several of our mutation-positive DM2 patients had a previous diagnosis of FM, suggesting that DM2 may be misdiagnosed as FM, we invited 90 randomly selected patients diagnosed as having FM to undergo genetic testing for DM2. Of the 63 patients who agreed to participate, 2 (3.2%) tested positive for the DM2 mutation. Their cases are described herein. DM2 was not found in any of 200 asymptomatic controls. We therefore suggest that the presence of DM2 should be investigated in a large sample of subjects diagnosed as having FM, and clinicians should be aware of overlap in the clinical presentation of these 2 distinct disorders. PMID:18975316

  8. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. PMID:23109907

  9. Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd and mdx/Largemyd.

    PubMed

    Martins-Bach, Aurea B; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C M; Almeida, Camila F; Caldeira, Waldir; Ribeiro, Alberto F; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G; Vainzof, Mariz

    2015-01-01

    Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant-T2-measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.

  10. Quantitative T2 Combined with Texture Analysis of Nuclear Magnetic Resonance Images Identify Different Degrees of Muscle Involvement in Three Mouse Models of Muscle Dystrophy: mdx, Largemyd and mdx/Largemyd

    PubMed Central

    Martins-Bach, Aurea B.; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C. M.; Almeida, Camila F.; Caldeira, Waldir; Ribeiro, Alberto F.; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G.; Vainzof, Mariz

    2015-01-01

    Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research. PMID:25710816

  11. Diffusion and ideal MRI techniques to characterize limb-girdle muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Hernández-Salazar, G.; Hidalgo-Tobon, S.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodríguez, A. O.; Delgado-Hernández, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. In the thigh, muscles at the back are affected, with a tendency to preserve the tibialis anterior and gastrocnemius. The aim of this study was to compare quantitative MRI measurements from IDEAL-based imaging and DW imaging in the thigh muscles of adults with LGMDs and healthy volunteers(HC). Six women (three patients and three healthy volunteers) were examined. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee). T1 IDEAL 2D images and diffusion images were acquired. Results demonstrated that the use of noninvasive MRI techniques may provide the means to characterize the muscle through quantitative methods to determine the percentage of fat and ADC values.

  12. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H

    PubMed Central

    Kudryashova, Elena; Kramerova, Irina; Spencer, Melissa J.

    2012-01-01

    Mutations in the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) are responsible for the disease limb-girdle muscular dystrophy 2H (LGMD2H). Previously, we generated Trim32 knockout mice (Trim32–/– mice) and showed that they display a myopathic phenotype accompanied by neurogenic features. Here, we used these mice to investigate the muscle-specific defects arising from the absence of TRIM32, which underlie the myopathic phenotype. Using 2 models of induced atrophy, we showed that TRIM32 is dispensable for muscle atrophy. Conversely, TRIM32 was necessary for muscle regrowth after atrophy. Furthermore, TRIM32-deficient primary myoblasts underwent premature senescence and impaired myogenesis due to accumulation of PIAS4, an E3 SUMO ligase and TRIM32 substrate that was previously shown to be associated with senescence. Premature senescence of myoblasts was also observed in vivo in an atrophy/regrowth model. Trim32–/– muscles had substantially fewer activated satellite cells, increased PIAS4 levels, and growth failure compared with wild-type muscles. Moreover, Trim32–/– muscles exhibited features of premature sarcopenia, such as selective type II fast fiber atrophy. These results imply that premature senescence of muscle satellite cells is an underlying pathogenic feature of LGMD2H and reveal what we believe to be a new mechanism of muscular dystrophy associated with reductions in available satellite cells and premature sarcopenia. PMID:22505452

  13. Physical Activity in Boys With Duchenne Muscular Dystrophy Is Lower and Less Demanding Compared to Healthy Boys.

    PubMed

    Heutinck, Lotte; Kampen, Nadine van; Jansen, Merel; Groot, Imelda J M de

    2017-04-01

    This study describes the amount of physical activity and perception of physical activity in boys with Duchenne muscular dystrophy (DMD) compared to healthy boys. A questionnaire described 6 domains of physical activity. Four Duchenne muscular dystrophy subgroups were made: early and late ambulatory, nonambulatory with relative good, or limited arm function. Eighty-four boys with Duchenne muscular dystrophy (15.0 ± 6.4 years) and 198 healthy boys (14.0 ± 4.3 years) participated. Daily activities were more passive for boys with Duchenne muscular dystrophy. Physical activity was less and low demanding compared to healthy boys. It decreased with disease severity ( P < .05), whereas screen time increased ( P < .05). Benefits of physical activity in boys with Duchenne muscular dystrophy were having fun and making friends. Barriers were lack of sport facilities and insufficient health. This study helps to quantify poor engagement in physical activity by boys with Duchenne muscular dystrophy, and demonstrates factors that contribute to it. Suggestions to stimulate physical activity are made.

  14. Borate transporter SLC4A11 mutations cause both Harboyan syndrome and non‐syndromic corneal endothelial dystrophy

    PubMed Central

    Desir, Julie; Moya, Graciela; Reish, Orit; Van Regemorter, Nicole; Deconinck, Hilde; David, Karen L; Meire, Françoise M; Abramowicz, Marc J

    2007-01-01

    Harboyan syndrome, or corneal dystrophy and perceptive deafness (CDPD), consists of congenital corneal endothelial dystrophy and progressive perceptive deafness, and is transmitted as an autosomal recessive trait. CDPD and autosomal recessive, non‐syndromic congenital hereditary endothelial corneal dystrophy (CHED2) both map at overlapping loci at 20p13, and mutations of SLC4A11 were reported recently in CHED2. A genotype study on six families with CDPD and on one family with either CHED or CDPD, from various ethnic backgrounds (in the seventh family, hearing loss could not be assessed because of the proband's young age), is reported here. Novel SLC4A11 mutations were found in all patients. Why some mutations cause hearing loss in addition to corneal dystrophy is presently unclear. These findings extend the implication of the SLC4A11 borate transporter beyond corneal dystrophy to perceptive deafness. PMID:17220209

  15. Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability.

    PubMed

    Donkervoort, Sandra; Hu, Ying; Stojkovic, Tanya; Voermans, Nicol C; Foley, A Reghan; Leach, Meganne E; Dastgir, Jahannaz; Bolduc, Véronique; Cullup, Thomas; de Becdelièvre, Alix; Yang, Lin; Su, Hai; Meilleur, Katherine; Schindler, Alice B; Kamsteeg, Erik-Jan; Richard, Pascale; Butterfield, Russell J; Winder, Thomas L; Crawford, Thomas O; Weiss, Robert B; Muntoni, Francesco; Allamand, Valérie; Bönnemann, Carsten G

    2015-01-01

    Collagen 6-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy, intermediate phenotypes, to the milder Bethlem myopathy. Both inter- and intrafamilial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked intergenerational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional fifth simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2, and COL6A3) in genomic DNA from various tissues, including blood, dermal fibroblasts, and saliva. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared with the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intrafamilial/intergenerational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected. © 2014 WILEY PERIODICALS, INC.

  16. A rare subclinical or mild type of Becker muscular dystrophy caused by a single exon 48 deletion of the dystrophin gene.

    PubMed

    Zimowski, Janusz G; Pilch, Jacek; Pawelec, Magdalena; Purzycka, Joanna K; Kubalska, Jolanta; Ziora-Jakutowicz, Karolina; Dudzińska, Magdalena; Zaremba, Jacek

    2017-08-01

    In the material of 227 families with Becker muscular dystrophy (BMD), we found nine non-consanguineous families with 17 male individuals carrying a rare mutation-a single exon 48 deletion of the dystrophin gene-who were affected with a very mild or subclinical form of BMD. They were usually detected thanks to accidental findings of elevated serum creatine phosphokinase (sCPK). A thorough clinical analysis of the carriers, both children (12) and adults (5), revealed in some of them muscle hypotonia (10/17) and/or very mild muscle weakness (9/17), as well as decreased tendon reflexes (6/17). Adults, apart from very mild muscle weakness and calf hypertrophy in some, had no significant abnormalities on neurological assessments and had good exercise tolerance. Parents of the children carriers of the exon 48 deletion are usually unaware of their children being affected, and possibly at risk of developing life-threatening cardiomyopathy. The same concerns the adult male carriers. Therefore, the authors postulate undertaking preventive measures such as cascade screening of the relatives of the probands. Newborn screening programmes of Duchenne muscular dystrophy (DMD)/BMD based on sCPK marked increase may be considered.

  17. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity.

    PubMed

    Mattout, Anna; Pike, Brietta L; Towbin, Benjamin D; Bank, Erin M; Gonzalez-Sandoval, Adriana; Stadler, Michael B; Meister, Peter; Gruenbaum, Yosef; Gasser, Susan M

    2011-10-11

    In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy

    PubMed Central

    Afshari, Natalie A.; Igo, Robert P.; Morris, Nathan J.; Stambolian, Dwight; Sharma, Shiwani; Pulagam, V. Lakshmi; Dunn, Steven; Stamler, John F.; Truitt, Barbara J.; Rimmler, Jacqueline; Kuot, Abraham; Croasdale, Christopher R.; Qin, Xuejun; Burdon, Kathryn P.; Riazuddin, S. Amer; Mills, Richard; Klebe, Sonja; Minear, Mollie A.; Zhao, Jiagang; Balajonda, Elmer; Rosenwasser, George O.; Baratz, Keith H; Mootha, V. Vinod; Patel, Sanjay V.; Gregory, Simon G.; Bailey-Wilson, Joan E.; Price, Marianne O.; Price, Francis W.; Craig, Jamie E.; Fingert, John H.; Gottsch, John D.; Aldave, Anthony J.; Klintworth, Gordon K.; Lass, Jonathan H.; Li, Yi-Ju; Iyengar, Sudha K.

    2017-01-01

    The structure of the cornea is vital to its transparency, and dystrophies that disrupt corneal organization are highly heritable. To understand the genetic aetiology of Fuchs endothelial corneal dystrophy (FECD), the most prevalent corneal disorder requiring transplantation, we conducted a genome-wide association study (GWAS) on 1,404 FECD cases and 2,564 controls of European ancestry, followed by replication and meta-analysis, for a total of 2,075 cases and 3,342 controls. We identify three novel loci meeting genome-wide significance (P<5 × 10−8): KANK4 rs79742895, LAMC1 rs3768617 and LINC00970/ATP1B1 rs1200114. We also observe an overwhelming effect of the established TCF4 locus. Interestingly, we detect differential sex-specific association at LAMC1, with greater risk in women, and TCF4, with greater risk in men. Combining GWAS results with biological evidence we expand the knowledge of common FECD loci from one to four, and provide a deeper understanding of the underlying pathogenic basis of FECD. PMID:28358029

  19. [Two cases of Duchenne muscular dystrophy over 40 years after onset].

    PubMed

    Ishizaki, Masatoshi; Ueyama, Hidetsugu; Masuda, Teruaki; Nishida, Yasuto; Imamura, Shigehiro; Ando, Yukio

    2013-01-01

    We report two 45 year old men with Duchenne muscular dystrophy. Case 1 showed a deleted exon 50 of the dystrophin gene by MLPA analysis, and Case 2 showed deleted exons 46-52. Both patients presented with severe weakness of the skeletal muscles and respiratory dysfunction, while cardiac involvement was mild and cognitive function was almost normal. The patients are able to shop at a mall, participate in activities, and attend hobbies, although they are bedridden with artificial respiration through tracheotomy. With the progress of the respiratory care and cardiac protective therapy, the prognosis of Duchenne muscular dystrophy has improved remarkably. At present, it is possible to survive over 40 years with maintenance of quality of life, if cardiac damage is not severe.

  20. Muscular dystrophies due to defective glycosylation of dystroglycan

    PubMed Central

    Muntoni, F; Brockington, M; Godfrey, C; Ackroyd, M; Robb, S.; Manzur, A; Kinali, M; Mercuri, E; Kaluarachchi, M; Feng, L; Jimenez-Mallebrera, C.; Clement, E; Torelli, S; Sewry, CA; Brown, SC

    2007-01-01

    Summary Muscular dystrophies are a clinically and genetically heterogeneous group of disorders. Until recently most of the proteins associated with muscular dystrophies were believed to be proteins of the sarcolemma associated with reinforcing the plasma membrane or in facilitating its re-sealing following injury. In the last few years a novel and frequent pathogenic mechanism has been identified that involves the abnormal glycosylation of alpha-dystroglycan (ADG). This peripheral membrane protein undergoes complex and crucial glycosylation steps that enable it to interact with LG domain containing extracellular matrix proteins such as laminins, agrin and perlecan. Mutations in six genes (POMT1, POMT2, POMGnT1, fukutin, FKRP and LARGE) have been identified in patients with reduced glycosylation of ADG. While initially a clear correlation between gene defect and phenotype was observed for each of these 6 genes (for example, Walker Warburg syndrome was associated with mutations in POMT1 and POMT2, Fukuyama congenital muscular dystrophy associated with fukutin mutations, and Muscle Eye Brain disease associated with POMGnT1 mutations), we have recently demonstrated that allelic mutations in each of these 6 genes can result in a much wider spectrum of clinical conditions. Thus, the crucial aspect in determining the phenotypic severity is not which gene is primarily mutated, but how severely the mutation affects the glycosylation of ADG. Systematic mutation analysis of these 6 glycosyltransferases in patients with a dystroglycan glycosylation disorder identifies mutations in approximately 65% suggesting that more genes have yet to be identified. PMID:18646561

  1. Implementation of Duchenne Muscular Dystrophy Care Considerations.

    PubMed

    Andrews, Jennifer G; Conway, Kristin; Westfield, Christina; Trout, Christina; Meaney, F John; Mathews, Katherine; Ciafaloni, Emma; Cunniff, Christopher; Fox, Deborah J; Matthews, Dennis; Pandya, Shree

    2018-06-20

    Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness and multisystem involvement. Recent advances in management of individuals with DMD have prolonged survival. Lack of standardized care spurred an international collaboration to develop consensus-based care considerations for diagnosis and management. In this study, we evaluate adherence to considerations at selected sites. We collaborated with the Muscular Dystrophy Surveillance, Tracking, and Research Network. Our sample included males with DMD and Becker muscular dystrophy <21 years as of December 31, 2010, with 1 health care encounter on or after January 1, 2012. We collected data from medical records on encounters occurring January 1, 2012, through December 31, 2014. Adherence was determined when frequency of visits or assessments were at or above recommendations for selected care considerations. Our analytic sample included 299 individuals, 7% of whom (20/299) were classified as childhood-onset Becker muscular dystrophy. Adherence for neuromuscular and respiratory clinician visits was 65% for the cohort; neuromuscular assessments and corticosteroid side effect monitoring measures ranged from 16% to 68%. Adherence was 83% for forced vital capacity and ≤58% for other respiratory diagnostics. Cardiologist assessments and echocardiograms were found for at least 84%. Transition planning for education or health care was documented for 31% of eligible males. Medical records data were used to identify areas in which practice aligns with the care considerations. However, there remains inconsistency across domains and insufficiency in critical areas. More research is needed to explain this variability and identify reliable methods to measure outcomes. Copyright © 2018 by the American Academy of Pediatrics.

  2. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies

    PubMed Central

    Lev, Rachel

    2018-01-01

    Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies. PMID:29343633

  3. Probable high prevalence of limb-girdle muscular dystrophy type 2D in Taiwan.

    PubMed

    Liang, Wen-Chen; Chou, Po-Ching; Hung, Chia-Cheng; Su, Yi-Ning; Kan, Tsu-Min; Chen, Wan-Zi; Hayashi, Yukiko K; Nishino, Ichizo; Jong, Yuh-Jyh

    2016-03-15

    Limb-girdle muscular dystrophy type 2D (LGMD2D), an autosomal-recessive inherited LGMD, is caused by the mutations in SGCA. SGCA encodes alpha-sarcoglycan (SG) that forms a heterotetramer with other SGs in the sarcolemma, and comprises part of the dystrophin-glycoprotein complex. The frequency of LGMD2D is variable among different ethnic backgrounds, and so far only a few patients have been reported in Asia. We identified five patients with a novel homozygous mutation of c.101G>T (p.Arg34Leu) in SGCA from a big aboriginal family ethnically consisting of two tribes in Taiwan. Patient 3 is the maternal uncle of patients 1 and 2. All their parents, heterozygous for c.101G>T, denied consanguineous marriages although they were from the same tribe. The heterozygous parents of patients 4 and 5 were from two different tribes, originally residing in different geographic regions in Taiwan. Haplotype analysis showed that all five patients shared the same mutation-associated haplotype, indicating the probability of a founder effect and consanguinity. The results suggest that the carrier rate of c.101G>T in SGCA may be high in Taiwan, especially in the aboriginal population regardless of the tribes. It is important to investigate the prevalence of LGMD2D in Taiwan for early diagnosis and treatment. Copyright © 2016. Published by Elsevier B.V.

  4. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    PubMed

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  5. Effect of Donor and Recipient Factors on Corneal Graft Rejection

    PubMed Central

    Stulting, R. Doyle; Sugar, Alan; Beck, Roy; Belin, Michael; Dontchev, Mariya; Feder, Robert S.; Gal, Robin L.; Holland, Edward J.; Kollman, Craig; Mannis, Mark J.; Price, Francis; Stark, Walter; Verdier, David D.

    2014-01-01

    Purpose To assess the relationship between donor and recipient factors and corneal allograft rejection in eyes that underwent penetrating keratoplasty (PK) in the Cornea Donor Study. Methods 1090 subjects undergoing corneal transplantation for a moderate risk condition (principally Fuchs’ dystrophy or pseudophakic corneal edema) were followed for up to 5 years. Associations of baseline recipient and donor factors with the occurrence of a probable or definite rejection event were assessed in univariate and multivariate proportional hazards models. Results Eyes with pseudophakic or aphakic corneal edema (N=369) were more likely to experience a rejection event than eyes with Fuchs’ dystrophy (N=676) (34% ± 6% versus 22% ± 4%; hazard ratio = 1.56; 95% confidence interval 1.21 to 2.03). Among eyes with Fuchs’dystrophy, a higher probability of a rejection event was observed in phakic post-transplant eyes compared with eyes that underwent cataract extraction with or without intraocular lens implantation during PK (29% vs. 19%; hazard ratio = 0.54; 95% confidence interval 0.36 to 0.82). Female recipients had a higher probability of a rejection event than males (29% vs. 21%; hazard ratio=1.42; 95% confidence interval 1.08 to 1.87), after controlling for the effect of preoperative diagnosis and lens status. Donor age and donor recipient ABO compatibility were not associated with rejection. Conclusions There was a substantially higher graft rejection rate in eyes with pseudophakic or aphakic corneal edema compared with eyes with Fuchs’ dystrophy. Female recipients were more likely to have a rejection event than males. Graft rejection was not associated with donor age. PMID:22488114

  6. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shomrat, R.; Gluck, E.; Legum, C.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and themore » remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.« less

  7. Corneal electrolysis for recurrence of corneal stromal dystrophy after keratoplasty

    PubMed Central

    Mashima, Y; Kawai, M; Yamada, M

    2002-01-01

    Aims: To evaluate corneal electrolysis as a treatment for recurrent diffuse corneal opacities at the host-graft interface of the stroma or at the subepithelial region in two types of granular corneal dystrophy (GCD). Methods: Recurrence developed at the host-graft interface of the stroma after lamellar keratoplasty in a patient with Avellino corneal dystrophy (ACD). At surgery, the deep aspect of the graft in this patient was partially separated from host tissue to expose the deposits, with one third of the host-graft junction left intact. The graft was everted, and electrolysis was applied directly to remove the deposits attached to both surfaces of the host and the graft. Then the graft was returned to its place and sutured. In two patients with homozygous ACD and one patient with the superficial variant of GCD, diffuse subepithelial opacities developed following penetrating keratoplasty. Electrolysis was applied directly to the corneal surface. Results: Deposits at the host-graft interface of the stroma and in the subepithelial region disappeared following treatment, and vision recovered in all patients. Conclusions: This method is a simple, easy, and inexpensive way to remove deposits that recur after lamellar or penetrating keratoplasty. PMID:11864880

  8. Corneal electrolysis for recurrence of corneal stromal dystrophy after keratoplasty.

    PubMed

    Mashima, Y; Kawai, M; Yamada, M

    2002-03-01

    To evaluate corneal electrolysis as a treatment for recurrent diffuse corneal opacities at the host-graft interface of the stroma or at the subepithelial region in two types of granular corneal dystrophy (GCD). Recurrence developed at the host-graft interface of the stroma after lamellar keratoplasty in a patient with Avellino corneal dystrophy (ACD). At surgery, the deep aspect of the graft in this patient was partially separated from host tissue to expose the deposits, with one third of the host-graft junction left intact. The graft was everted, and electrolysis was applied directly to remove the deposits attached to both surfaces of the host and the graft. Then the graft was returned to its place and sutured. In two patients with homozygous ACD and one patient with the superficial variant of GCD, diffuse subepithelial opacities developed following penetrating keratoplasty. Electrolysis was applied directly to the corneal surface. Deposits at the host-graft interface of the stroma and in the subepithelial region disappeared following treatment, and vision recovered in all patients. This method is a simple, easy, and inexpensive way to remove deposits that recur after lamellar or penetrating keratoplasty.

  9. Center of Excellence in Biotechnology (Research)

    DTIC Science & Technology

    1993-03-01

    1990) "Canine X-linked Muscular Dystrophy : Morphologic Lesions", J. Neurol Sci, 29. 1-23. F. Walker, E. Nice, L. Fabri, F.J. Moy, J-F. Liu, R. Wu...antidepressmats, and anesthetics. In this program, the mRNAs for the muscle and neuronal types of the receptor have been expressed in yeast, and have shown to...been used in chemical kinetic measurements of receptor function in neuronal PC12 cells, muscle BC3HI cells and XenoQfs oocytes. Another principal area of

  10. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy

    PubMed Central

    Kanadia, Rahul N.; Shin, Jihae; Yuan, Yuan; Beattie, Stuart G.; Wheeler, Thurman M.; Thornton, Charles A.; Swanson, Maurice S.

    2006-01-01

    RNA-mediated pathogenesis is a recently developed disease model that proposes that certain types of mutant genes produce toxic transcripts that inhibit the activities of specific proteins. This pathogenesis model was proposed first for the neuromuscular disease myotonic dystrophy (DM), which is associated with the expansion of structurally related (CTG)n and (CCTG)n microsatellites in two unrelated genes. At the RNA level, these expansions form stable hairpins that alter the pre-mRNA splicing activities of two antagonistic factor families, the MBNL and CELF proteins. It is unclear which altered activity is primarily responsible for disease pathogenesis and whether other factors and biochemical pathways are involved. Here, we show that overexpression of Mbnl1 in vivo mediated by transduction of skeletal muscle with a recombinant adeno-associated viral vector rescues disease-associated muscle hyperexcitability, or myotonia, in the HSALR poly(CUG) mouse model for DM. Myotonia reversal occurs concurrently with restoration of the normal adult-splicing patterns of four pre-mRNAs that are misspliced during postnatal development in DM muscle. Our results support the hypothesis that the loss of MBNL1 activity is a primary pathogenic event in the development of RNA missplicing and myotonia in DM and provide a rationale for therapeutic strategies designed either to overexpress MBNL1 or inhibit MBNL1 interactions with CUG and CCUG repeat expansions. PMID:16864772

  11. Muscle Weakness and Fibrosis Due to Cell Autonomous and Non-cell Autonomous Events in Collagen VI Deficient Congenital Muscular Dystrophy.

    PubMed

    Noguchi, Satoru; Ogawa, Megumu; Malicdan, May Christine; Nonaka, Ikuya; Nishino, Ichizo

    2017-02-01

    Congenital muscular dystrophies with collagen VI deficiency are inherited muscle disorders with a broad spectrum of clinical presentation and are caused by mutations in one of COL6A1-3 genes. Muscle pathology is characterized by fiber size variation and increased interstitial fibrosis and adipogenesis. In this study, we define critical events that contribute to muscle weakness and fibrosis in a mouse model with collagen VI deficiency. The Col6a1 GT/GT mice develop non-progressive weakness from younger age, accompanied by stunted muscle growth due to reduced IGF-1 signaling activity. In addition, the Col6a1 GT/GT mice have high numbers of interstitial skeletal muscle mesenchymal progenitor cells, which dramatically increase with repeated myofiber necrosis/regeneration. Our results suggest that impaired neonatal muscle growth and the activation of the mesenchymal cells in skeletal muscles contribute to the pathology of collagen VI deficient muscular dystrophy, and more importantly, provide the insights on the therapeutic strategies for collagen VI deficiency. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. What is muscular dystrophy? Forty years of progressive ignorance.

    PubMed

    Dubowitz, V

    2000-01-01

    This lecture traces recent advances in knowledge of the muscular dystrophies, as well as their increasing complexity. They are described through the eyes of the author from his first exposure to and complete ignorance of the disease in the late 1950s, through the advent of modern techniques, to the molecular genetic revolution, with the recognition of individual genes and proteins for disorders within the muscular dystrophy umbrella. There initially seemed to be a logical sequence of linked membrane proteins from dystrophin in Duchenne and Becker dystrophy, through the dystrophin-associated glycoproteins (sarcoglycans) in some of the limb girdle muscular dystrophies (LGMD), to the extracellular matrix protein merosin (alpha-2 laminin) in congenital muscular dystrophy (CMD). The first spoke in the wheel came with the discovery of a calcium activated protease enzyme, calpain 3, in one form of LGMD, and subsequently another novel non-membrane protein, dysferlin, in another. There are currently at least eight distinct genetic forms of LGMD alone, and another eight separate genetic entities in the CMD group. This has highlighted our ignorance of the pathogenesis of the muscular dystrophies in relation to a diverse array of protein deficiencies. To compound things further, the X-linked and dominant forms of Emery-Dreifuss muscular dystrophy have recently been linked to emerin and lamin A/C, respectively, two proteins of the nuclear membrane, opening up yet another new ballpark of discovery.

  13. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.

    PubMed

    Sato, Shinya; Peshenko, Igor V; Olshevskaya, Elena V; Kefalov, Vladimir J; Dizhoor, Alexander M

    2018-03-21

    The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S + rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca 2+ phototransduction feedback and abnormally high free-Ca 2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2 +/+ or GCAP1,2 +/- backgrounds, was prevented in GCAP1,2 -/- mice lacking Ca 2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca 2+ levels in photoreceptors. SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D ), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to the cyclase mediated by guanylyl cyclase activating proteins (GCAPs), which are calcium-sensor proteins. The abnormal calcium sensitivity of the cyclase increases cGMP-gated dark current in the rod outer segments, reshapes rod photoresponses, and triggers photoreceptor death. This work is the first to demonstrate a direct physiological effect of GUCY2D CORD6-linked mutation on photoreceptor physiology in vivo It also identifies the abnormal regulation of the cyclase by calcium-sensor proteins as the main trigger for the photoreceptor death. Copyright © 2018 the authors 0270-6474/18/382990-11$15.00/0.

  14. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa.

    PubMed

    Trichonas, George; Traboulsi, Elias I; Ehlers, Justis P

    2017-01-01

    Ultra-widefield fundus autofluorescence (UW-FAF) allows the characterization of the peripheral retinal features of vitreoretinal diseases. The purpose of this study was to examine possible genotypic/phenotypic correlations of UW-FAF patterns in patients with a variety of retinal dystrophies and retinitis pigmentosa (RP). An IRB-approved retrospective consecutive case series study was performed of genetically characterized retinal dystrophy or RP patients who underwent UW-FAF imaging. UW-FAF was performed with the Optos 200Tx system. Clinical variables, genotypic analysis, and phenotypic characteristics were reviewed. Seventeen patients were identified who had identified mutations in retinal dystrophy or RP genes and who also had undergone UW-FAF. Three patients had X-linked RP with RPGR mutations. Six patients had autosomal dominant RP (four with RHO mutations and one with a PRPF31 mutation, and one with RDS/PRPH2 mutation). Four patients had autosomal recessive RP (four with USH2A mutations). Three patients had Leber Congenital Amaurosis (LCA) with mutations including CRB1, CEP290, and RPGRIP1. Macular hyperautofluorescence was noted in all patients. A ring of hyperautofluorescence was clear in patients with RHO and USH2A mutations, and patients with USH2A mutations demonstrated a second ring of hyperautofluorescence. In the periphery, patients with RHO or RPGR mutations exhibited hyperautofluorescence with patchy areas of hypoautofluorescence. Patients with USH2A mutations had a distinctive pattern of diffuse and homogeneous peripheral hypoautofluorescence. UW-FAF may provide important information to facilitate diagnosis and further research is needed to better characterize this technology as an imaging biomarker for genotype association in retinal dystrophies and RP.

  15. Electrical Stimuli Are Anti-Apoptotic in Skeletal Muscle via Extracellular ATP. Alteration of This Signal in Mdx Mice Is a Likely Cause of Dystrophy

    PubMed Central

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497

  16. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    PubMed

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.

  17. Melatonin reduces endoplasmic reticulum stress and corneal dystrophy-associated TGFBIp through activation of endoplasmic reticulum-associated protein degradation.

    PubMed

    Choi, Seung-Il; Lee, Eunhee; Akuzum, Begum; Jeong, Jang Bin; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2017-10-01

    Endoplasmic reticulum (ER) stress is emerging as a factor for the pathogenesis of granular corneal dystrophy type 2 (GCD2). This study was designed to investigate the molecular mechanisms underlying the protective effects of melatonin on ER stress in GCD2. Our results showed that GCD2 corneal fibroblasts were more susceptible to ER stress-induced death than were wild-type cells. Melatonin significantly inhibited GCD2 corneal cell death, caspase-3 activation, and poly (ADP-ribose) polymerase 1 cleavage caused by the ER stress inducer, tunicamycin. Under ER stress, melatonin significantly suppressed the induction of immunoglobulin heavy-chain-binding protein (BiP) and activation of inositol-requiring enzyme 1α (IRE1α), and their downstream target, alternative splicing of X-box binding protein 1(XBP1). Notably, the reduction in BiP and IRE1α by melatonin was suppressed by the ubiquitin-proteasome inhibitor, MG132, but not by the autophagy inhibitor, bafilomycin A1, indicating involvement of the ER-associated protein degradation (ERAD) system. Melatonin treatment reduced the levels of transforming growth factor-β-induced protein (TGFBIp) significantly, and this reduction was suppressed by MG132. We also found reduced mRNA expression of the ERAD system components HRD1 and SEL1L, and a reduced level of SEL1L protein in GCD2 cells. Interestingly, melatonin treatments enhanced SEL1L levels and suppressed the inhibition of SEL1L N-glycosylation caused by tunicamycin. In conclusion, this study provides new insights into the mechanisms by which melatonin confers its protective actions during ER stress. The results also indicate that melatonin might have potential as a therapeutic agent for ER stress-related diseases including GCD2. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. European Home Mechanical Ventilation Registry

    ClinicalTrials.gov

    2016-10-25

    Pulmonary Disease, Chronic Obstructive; Amyotrophic Lateral Sclerosis; Spinal Cord Injury; Muscular Dystrophies; Obesity Hypoventilation Syndrome; Kyphoscoliosis; Congenital Central Hypoventilation Syndrome; Duchenne Muscular Dystrophy; Myopathies; Myotonic Dystrophy

  19. Mouthpiece ventilation in Duchenne muscular dystrophy: a rescue strategy for noncompliant patients

    PubMed Central

    Fiorentino, Giuseppe; Annunziata, Anna; Cauteruccio, Rosa; Frega, Gianfranco Scotto di; Esquinas, Antonio

    2016-01-01

    ABSTRACT Objective: To evaluate mouthpiece ventilation (MPV) in patients with Duchenne muscular dystrophy (DMD) who are noncompliant with noninvasive ventilation (NIV). Methods: We evaluated four young patients with DMD who had previously refused to undergo NIV. Each patient was reassessed and encouraged to try MPV. Results: The four patients tolerated MPV well and were compliant with NIV at home. MPV proved to be preferable and more comfortable than NIV with any other type of interface. Two of the patients required overnight NIV and eventually agreed to use a nasal mask during the night. Conclusions: The advantages of MPV over other types of NIV include fewer speech problems, better appearance, and less impact on the patient, eliminating the risk of skin breakdown, gastric distension, conjunctivitis, and claustrophobia. The use of a mouthpiece interface should be always considered in patients with DMD who need to start NIV, in order to promote a positive approach and a rapid acceptance of NIV. Using MPV during the daytime makes patients feel safe and more likely to use NIV at night. In addition, MPV increases treatment compliance for those who refuse to use other types of interfaces. PMID:28117478

  20. Changes in calsequestrin, TNF-α, TGF-β and MyoD levels during the progression of skeletal muscle dystrophy in mdx mice: a comparative analysis of the quadriceps, diaphragm and intrinsic laryngeal muscles.

    PubMed

    Barros Maranhão, Juliana; de Oliveira Moreira, Drielen; Maurício, Adriana Fogagnolo; de Carvalho, Samara Camaçari; Ferretti, Renato; Pereira, Juliano Alves; Santo Neto, Humberto; Marques, Maria Julia

    2015-10-01

    In Duchenne muscular dystrophy (DMD), the search for new biomarkers to follow the evolution of the disease is of fundamental importance in the light of the evolving gene and pharmacological therapies. In addition to the lack of dystrophin, secondary events including changes in calcium levels, inflammation and fibrosis greatly contribute to DMD progression and the molecules involved in these events may represent potential biomarkers. In this study, we performed a comparative evaluation of the progression of dystrophy within muscles that are differently affected by dystrophy (diaphragm; DIA and quadriceps; QDR) or spared (intrinsic laryngeal muscles) using the mdx mice model of DMD. We assessed muscle levels of calsequestrin (calcium-related protein), tumour necrosis factor (TNF-α; pro-inflammatory cytokine), tumour growth factor (TGF-β; pro-fibrotic factor) and MyoD (muscle proliferation) vs. histopathology at early (1 and 4 months of age) and late (9 months of age) stages of dystrophy. Fibrosis was the primary feature in the DIA of mdx mice (9 months: 32% fibrosis), which was greater than in the QDR (9 months: 0.6% fibrosis). Muscle regeneration was the primary feature in the QDR (9 months: 90% of centrally nucleated fibres areas vs. 33% in the DIA). The QDR expressed higher levels of calsequestrin than the DIA. Laryngeal muscles showed normal levels of TNF-α, TGF-β and MyoD. A positive correlation between histopathology and cytokine levels was observed only in the diaphragm, suggesting that TNF-α and TGF-β serve as markers of dystrophy primarily for the diaphragm. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  1. Systems Biology of Glucocorticoids in Muscle Disease

    DTIC Science & Technology

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  2. Pigmentation Phenotype, Photosensitivity, and Skin Neoplasms in Patients with Myotonic Dystrophy

    PubMed Central

    Gadalla, Shahinaz M.; Hilbert, James E.; Martens, William B.; Givens, Shannon; Moxley, Richard T.; Greene, Mark H.

    2017-01-01

    Background Recent studies have suggested a possible excess risk of skin neoplasms in patients with myotonic dystrophy (DM). Risk factors related to this observation have not been defined. Method We collected information regarding personal history of skin tumors, pigmentation phenotype, and skin reaction to sun exposure from 266 DM patients who were enrolled in the US NIH National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members. Results Seventy-seven subjects reported having skin tumors that were either benign (n=31), malignant (n=32), or both (n=14). Female gender (OR=2.27, 95%CI=1.02–5.05, p=0.04), older age (OR=1.10, 95%CI=1.05–1.16, p<0.001), and DM1 subtype (OR=3.42, 95%CI=1.27–9.26, p=0.02) were associated with a malignant skin tumor. The association between malignant skin tumors and known risk factors [light eye color (OR=1.62, 95%CI=0.78–3.39, p=0.20); light skin complexion (OR=1.31, 95% CI=0.63–2.73, p=0.48), moderate/extensive face freckles (OR=1.47, 95% CI=0.50–4.34, p=0.49)] were modest. Strong, but not statistically significant, associations were noted with sunburn reactions when exposed to sunlight (OR=4.28, 95%CI=0.91–19.95, p=0.06, and 2.19, 95%CI=0.67–7.09, p=0.19 for sunburns with and without blistering, respectively). Conclusions Although our study was limited by small sample size, the risk factors for malignant skin tumors in DM strongly resemble the general population. We recommend that DM patients adhere to sun exposure protective behavior. PMID:28317292

  3. Muscular dystrophy in a dog resembling human becker muscular dystrophy.

    PubMed

    Baroncelli, A B; Abellonio, F; Pagano, T B; Esposito, I; Peirone, B; Papparella, S; Paciello, O

    2014-05-01

    A 3-year-old, male Labrador retriever dog was presented with clinical signs of progressive exercise intolerance, bilateral elbow extension, rigidity of the forelimbs, hindlimb flexion and kyphosis. Microscopical examination of muscle tissue showed marked variability in myofibre size, replacement of muscle with mature adipose tissue and degeneration/regeneration of muscle fibres, consistent with muscular dystrophy. Immunohistochemical examination for dystrophin showed markedly reduced labelling with monoclonal antibodies specific for the rod domain and the carboxy-terminal of dystrophin, while expression of β-sarcoglycan, γ-sarcoglycan and β-dystroglycan was normal. Immunoblotting revealed a truncated dystrophin protein of approximately 135 kDa. These findings supported a diagnosis of congenital canine muscular dystrophy resembling Becker muscular dystrophy in man. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.

    PubMed

    Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C; Disney, Matthew D

    2014-02-21

    Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops.

  5. Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity

    PubMed Central

    Park, HaJeung; Lohman, Jeremy R.; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C.; Disney, Matthew D.

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is an untreatable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)exp) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5’CCUG/3’GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG)exp refined to 2.35 Å. Structural analysis of the three 5’CCUG/3’GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na+ and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5’CCUG/3’GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  6. Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing.

    PubMed

    Xu, Yan; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong

    2015-01-01

    Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704-5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy.

  7. Cardiac function in muscular dystrophy associates with abdominal muscle pathology.

    PubMed

    Gardner, Brandon B; Swaggart, Kayleigh A; Kim, Gene; Watson, Sydeaka; McNally, Elizabeth M

    The muscular dystrophies target muscle groups differentially. In mouse models of muscular dystrophy, notably the mdx model of Duchenne Muscular Dystrophy, the diaphragm muscle shows marked fibrosis and at an earlier age than other muscle groups, more reflective of the histopathology seen in human muscular dystrophy. Using a mouse model of limb girdle muscular dystrophy, the Sgcg mouse, we compared muscle pathology across different muscle groups and heart. A cohort of nearly 200 Sgcg mice were studied using multiple measures of pathology including echocardiography, Evans blue dye uptake and hydroxyproline content in multiple muscle groups. Spearman rank correlations were determined among echocardiographic and pathological parameters. The abdominal muscles were found to have more fibrosis than other muscle groups, including the diaphragm muscle. The abdominal muscles also had more Evans blue dye uptake than other muscle groups. The amount of diaphragm fibrosis was found to correlate positively with fibrosis in the left ventricle, and abdominal muscle fibrosis correlated with impaired left ventricular function. Fibrosis in the abdominal muscles negatively correlated with fibrosis in the diaphragm and right ventricles. Together these data reflect the recruitment of abdominal muscles as respiratory muscles in muscular dystrophy, a finding consistent with data from human patients.

  8. Long-Term Outcomes of Ataluren in Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2018-05-16

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Disease; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  9. Abnormal carbohydrate metabolism in a canine model for muscular dystrophy.

    PubMed

    Amaral, Andressa R; Brunetto, Márcio A; Brólio, Marina P; Cima, Daniela S; Miglino, Maria A; Santos, João Paulo F; Ambrósio, Carlos E

    2017-01-01

    The canine golden retriever muscular dystrophy (GRMD) model is the best animal model for studying Duchenne muscular dystrophy in humans. Considering the importance of glucose metabolism in the muscles, the existence of metabolic and endocrine alterations in a wide range of muscular dystrophies, and the pre-existing relationship between blood insulin concentration and muscular atrophy, the present study aimed to evaluate the postprandial glucose and insulin response in GRMD dogs. A total of eighteen golden retriever dogs were randomly distributed into three experimental groups: healthy/control (G1), female GRMD carriers (G2), and male dogs affected by GRMD (G3). Higher plasma resting glucose levels ( P = 0·0047) were seen in G2 and G3 compared with G1, as was the case for minimum ( P = <0·0001), mean ( P = 0·0002) and maximum ( P = 0·0359) glucose values for G3 compared with G1. Fructosamine concentrations were in accordance with reference values found in the literature for dogs. Insulin levels were lower in G3 compared with G1 ( P = 0·0065); however, there was no evidence of insulin resistance according to the homeostasis model assessment index values obtained. As for the evaluation of postprandial responses, fluctuations of glucose ( P = 0·0007) and insulin ( P = 0·0149) were observed in G1 and G2, while in G3 the values remained constant. The results allowed us to identify metabolic changes related to carbohydrate metabolism in GRMD dogs, highlighting the importance of adequate food management for these animals.

  10. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  11. Curvilinear pigmentary lesions in a rod-cone dystrophy.

    PubMed

    Tamaki, Y; Sawa, M; Yannuzzi, L A

    2005-01-01

    To report a peculiar curvilinear pigmentary lesion in the peripheral fundus in a rod-cone dystrophy. Observational case report. Fundus examination of a 57-year-old woman who was known to have a generalized rod-cone dystrophy since she was 8 years old. The peripheral fundus examination revealed a curvilinear lesion which resembles a well-known finding associated with a presumed ocular histoplasmosis syndrome or multifocal choroiditis. The differential diagnosis of a peculiar curvilinear pigmentary lesion in the peripheral fundus may be expanded to include a generalized rod-cone dystrophy.

  12. Sulforaphane alleviates muscular dystrophy in mdx mice by activation of Nrf2.

    PubMed

    Sun, Chengcao; Yang, Cuili; Xue, Ruilin; Li, Shujun; Zhang, Ting; Pan, Lei; Ma, Xuejiao; Wang, Liang; Li, Dejia

    2015-01-15

    Sulforaphane (SFN), one of the most important isothiocyanates in the human diet, is known to have chemo-preventive and antioxidant activities in different tissues via activation of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1. However, its effects on muscular dystrophy remain unknown. This work was undertaken to evaluate the effects of SFN on Duchenne muscular dystrophy. Four-week-old mdx mice were treated with SFN by gavage (2 mg·kg body wt(-1)·day(-1) for 8 wk), and our results demonstrated that SFN treatment increased the expression and activity of muscle phase II enzymes NAD(P)H quinone oxidoreductase 1 and heme oxygenase-1 with a Nrf2-dependent manner. SFN significantly increased skeletal muscle mass, muscle force (∼30%), running distance (∼20%), and GSH-to-GSSG ratio (∼3.2-fold) of mdx mice and decreased the activities of plasma creatine phosphokinase (∼45%) and lactate dehydrogenase (∼40%), gastrocnemius hypertrophy (∼25%), myocardial hypertrophy (∼20%), and malondialdehyde levels (∼60%). Furthermore, SFN treatment also reduced the central nucleation (∼40%), fiber size variability, and inflammation and improved the sarcolemmal integrity of mdx mice. Collectively, these results show that SFN can improve muscle function and pathology and protect dystrophic muscle from oxidative damage in mdx mice associated with Nrf2 signaling pathway, which indicate Nrf2 may have clinical implications for the treatment of patients with muscular dystrophy. Copyright © 2015 the American Physiological Society.

  13. A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss.

    PubMed

    Servián-Morilla, Emilia; Takeuchi, Hideyuki; Lee, Tom V; Clarimon, Jordi; Mavillard, Fabiola; Area-Gómez, Estela; Rivas, Eloy; Nieto-González, Jose L; Rivero, Maria C; Cabrera-Serrano, Macarena; Gómez-Sánchez, Leonardo; Martínez-López, Jose A; Estrada, Beatriz; Márquez, Celedonio; Morgado, Yolanda; Suárez-Calvet, Xavier; Pita, Guillermo; Bigot, Anne; Gallardo, Eduard; Fernández-Chacón, Rafael; Hirano, Michio; Haltiwanger, Robert S; Jafar-Nejad, Hamed; Paradas, Carmen

    2016-11-01

    Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experiments demonstrated that the mutation reduces O-glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle-specific α-dystroglycan hypoglycosylation not present in patients' fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7 + cells. A robust rescue of the myogenesis was demonstrated by increasing Notch signaling. None of these alterations were found in muscles from secondary dystroglycanopathy patients. These data suggest that a key pathomechanism for this novel form of muscular dystrophy is Notch-dependent loss of satellite cells. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Refinement of the cone-rod retinal dystrophy locus on chromosome 19q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, C.Y.; Evans, K.; Bhattacharya, S.S.

    1994-11-01

    Cone-rod dystrophy (CRD) is a severe example of an inherited retinal dystrophy: ophthalmic diseases that as a group constitute the commonest causes of blindness in children in the developed world and account for a significant proportion of visual handicap in adults. Two case reports suggested loci for CRD-causing genes on chromosomes 18q and chromosome 17q. Recently, we reported the results of a total genome search that localized an autosomal dominant form of CRD to chromosome 19q in the region 19q13.1-q13.2. Since then, using data from a short tandem repeat-polymorphism linkage map of chromosome 19 and recently developed microsatellite markers inmore » this region, we have been able to further refine the localization of the chromosome 19q CRD-causing gene. Seven new microsatellite markers were used to genotype 34 affected subjects, 22 unaffected subjects, and 15 spouses. Two-point, multipoint, and FASTMAP analyses were performed. 11 refs., 1 tab.« less

  15. UBIAD1 Mutation Alters a Mitochondrial Prenyltransferase to Cause Schnyder Corneal Dystrophy

    PubMed Central

    Nickerson, Michael L.; Kostiha, Brittany N.; Brandt, Wolfgang; Fredericks, William; Xu, Ke-Ping; Yu, Fu-Shin; Gold, Bert; Chodosh, James; Goldberg, Marc; Lu, Da Wen; Yamada, Masakazu; Tervo, Timo M.; Grutzmacher, Richard; Croasdale, Chris; Hoeltzenbein, Maria; Sutphin, John; Malkowicz, S. Bruce; Wessjohann, Ludger; Kruth, Howard S.; Dean, Michael; Weiss, Jayne S.

    2010-01-01

    Background Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD). SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure. Methodology/Principal Findings We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules. Conclusions/Significance Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly conserved function that, at least in humans, is involved in cholesterol metabolism in a novel manner. PMID:20505825

  16. Heterogeneity in macular corneal dystrophy.

    PubMed

    Edward, D P; Yue, B Y; Sugar, J; Thonar, E J; SunderRaj, N; Stock, E L; Tso, M O

    1988-11-01

    Macular corneal dystrophy is an autosomal recessive disorder in which abnormal deposits in the corneal stroma have been identified. We examined the corneal buttons of 12 patients, who had clinical features of macular dystrophy, by histochemical staining, transmission electron microscopy, and immunohistochemical techniques. All corneas exhibited positive staining with Muller Mowry's colloidal iron. Using monoclonal antibodies 1/20/5-D-4, J-10, J-19, and J-36 that recognize specific sites on the sulfated keratan sulfate molecule, we stained corneal sections by an avidin-biotin-peroxidase complex method and identified two groups of macular corneal dystrophy. One group consisting of four corneas reacted positively with all four antibodies, and the other group consisting of eight corneas did not react with any of the antibodies used. These results confirmed those recently presented by Yang et al that there may be subgroups of macular dystrophy that can be identified by immunohistochemical methods. Also, serum levels of sulfated keratan sulfate were determined in seven patients. One patient who displayed a normal level of serum keratan sulfate had positive corneal immunoreactivity. Of the six patients who lacked serum keratan sulfate, four showed negative and two had positive corneal immunostaining, suggesting at least three subgroups in the disease. An attempt was made to correlate the clinical features, histochemical-staining characteristics, and ultrastructural morphology with the immunoreactivity to keratan sulfate antibodies, but no correlations could be made.

  17. Quality of life in patients with myotonic dystrophy type 2.

    PubMed

    Rakocevic Stojanovic, Vidosava; Peric, Stojan; Paunic, Teodora; Pesovic, Jovan; Vujnic, Milorad; Peric, Marina; Nikolic, Ana; Lavrnic, Dragana; Savic Pavicevic, Dusanka

    2016-06-15

    To analyze quality of life (QoL) in a large cohort of myotonic dystrophy type 2 (DM2) patients in comparison to DM1 control group using both generic and disease specific questionnaires. In addition, we intended to identify different factors that might affect QoL of DM2 subjects. 49 DM2 patients were compared with 42 adult-onset DM1 patients. Patients completed SF-36 questionnaire and individualized neuromuscular quality of life questionnaire (INQoL). Following measures were also included: Medical Research Council 0-5 point scale for muscle strength, Addenbrooke's cognitive examination revised for cognitive status, Hamilton rating scale for depression, Krupp's fatigue severity scale and daytime sleepiness scale (DSS) RESULTS: SF-36 total score and physical composite score did not differ between DM1 and DM2 patients (p>0.05). However, role emotional and mental composite score were better in DM2 (p<0.05). INQoL total score was similar in both groups (p>0.05), although DM2 patients showed less impairment in independence (p<0.05) and body image domains (p<0.01). Regarding symptoms assessed by INQoL, DM2 patients showed less severe complaint of myotonia (p<0.01). Multiple linear regression analysis showed that significant predictors of worse QoL in DM2 patients were older age, worse muscle strength and higher level of fatigue. QoL reports of DM2 patients with the most severe form of the disease are comparable to those of DM1 patients. Special attention of clinicians should be paid to DM2 patients with older age, more severe muscle weakness and higher level of fatigue since they may be at higher risk to have worse QoL. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Encopresis revealing myotonic dystrophy in 2 children].

    PubMed

    Avez-Couturier, J; Michaud, L; Cuisset, J-M; Lamblin, M-D; Dolhem, P; Turck, D; Vallée, L; Gottrand, F

    2009-05-01

    Gastrointestinal symptoms are very frequent in myotonic dystrophy but largely unrecognized. They can be the revealing factors of the disease. We report 2 cases of 10 and 17-year-old children with persistent encopresis starting at the age of 3 and 5 years in spite of laxative treatment. Neurological examination and anorectal manometry provided the diagnosis of myotonic dystrophy. Procainamide treatment was introduced and the digestive symptoms improved. Any child with encopresis should have complete evaluation to rule out the diagnosis of myotonic dystrophy and physicians should look for upper and/or lower gastrointestinal symptoms in every patient with myotonic dystrophy.

  19. [Congenital myotonic dystrophy in a Neonatal Intensive Care Unit: case series].

    PubMed

    Domingues, Sara; Alves Pereira, Clara; Machado, Angela; Pereira, Sandra; Machado, Leonilde; Fraga, Carla; Oliveira, Abílio; Vale, Isabel; Quelhas, Ilídio

    2014-02-01

    Steinert myotonic dystrophy is a multisystemic disease, autosomal dominant, with a wide spectrum of severity and clinical manifestations. The most severe form is one that manifests in the neonatal period, called congenital myotonic dystrophy. This condition is distinguished by overall hypotonia at birth and respiratory function compromise. Complications are frequent, mainly psychomotor development delay, growth failure, food difficulties and constipation. It is associated with a poor prognosis, with an overall mortality of up to 50% of severely affected children. We present five patients with congenital myotonic dystrophy in order to describe clinical manifestations, diagnosis, treatment and prognosis. Existing data in the literature on psychomotor development, complications and prognosis of survivors with congenital myotonic dystrophy are scarce. In our case studies, we have found significant chronic psychomotor limitations.

  20. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2017-12-11

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  1. Is Going Beyond Rasch Analysis Necessary to Assess the Construct Validity of a Motor Function Scale?

    PubMed

    Guillot, Tiffanie; Roche, Sylvain; Rippert, Pascal; Hamroun, Dalil; Iwaz, Jean; Ecochard, René; Vuillerot, Carole

    2018-04-03

    To examine whether a Rasch analysis is sufficient to establish the construct validity of the Motor Function Measure (MFM) and discuss whether weighting the MFM item scores would improve the MFM construct validity. Observational cross-sectional multicenter study. Twenty-three physical medicine departments, neurology departments, or reference centers for neuromuscular diseases. Patients (N=911) aged 6 to 60 years with Charcot-Marie-Tooth disease (CMT), facioscapulohumeral dystrophy (FSHD), or myotonic dystrophy type 1 (DM1). None. Comparison of the goodness-of-fit of the confirmatory factor analysis (CFA) model vs that of a modified multidimensional Rasch model on MFM item scores in each considered disease. The CFA model showed good fit to the data and significantly better goodness of fit than the modified multidimensional Rasch model regardless of the disease (P<.001). Statistically significant differences in item standardized factor loadings were found between DM1, CMT, and FSHD in only 6 of 32 items (items 6, 27, 2, 7, 9 and 17). For multidimensional scales designed to measure patient abilities in various diseases, a Rasch analysis might not be the most convenient, whereas a CFA is able to establish the scale construct validity and provide weights to adapt the item scores to a specific disease. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Bibliography of Soviet Laser Developments, Number 59, May - June 1982.

    DTIC Science & Technology

    1983-06-01

    COMPONENTS 1. Resonators a. Design and Performance 113. Becker , H. (NS). Lens enlarger system as a component part of a laser resonator. Patent GDR, no. 150973...sclerotic and post-traumatic central dystrophies of the retina. OZh, no. 4, 1982, 212-214. 265. Berenov, S.N., and B.G. Orazmukhamedov (681). Laser...stimulation in complex therapy of central dystrophies of the retina. OZh, no. 4, 1982, 214-216. 266. Burilkov, V.K., and T.I. Saltanovich (0

  3. [Ocular findings in patients with Steinert myotonic dystrophy].

    PubMed

    Markowska, Elzbieta; Zalewska, Renata; Mariak, Zofia; Wojnar, Małgorzata

    2006-01-01

    The authors present one of many myotonic dystrophies: Steinert myotonic dystrophy (Steinert disease), which is a disease occuring seldom, and causing a lot of problems during the diagnostic and treatment process. Genetic factors, results of the histopathology tests, main clinical symptoms, particularly ophtalmic manifestation are described in this article.

  4. Homozygosity Mapping in Patients with Cone–Rod Dystrophy: Novel Mutations and Clinical Characterizations

    PubMed Central

    Littink, Karin W.; Koenekoop, Robert K.; van den Born, L. Ingeborgh; Collin, Rob W. J.; Moruz, Luminita; Veltman, Joris A.; Roosing, Susanne; Zonneveld, Marijke N.; Omar, Amer; Darvish, Mahshad; Lopez, Irma; Kroes, Hester Y.; van Genderen, Maria M.; Hoyng, Carel B.; Rohrschneider, Klaus; van Schooneveld, Mary J.; Cremers, Frans P. M.

    2010-01-01

    Purpose. To determine the genetic defect and to describe the clinical characteristics in a cohort of mainly nonconsanguineous cone–rod dystrophy (CRD) patients. Methods. One hundred thirty-nine patients with diagnosed CRD were recruited. Ninety of them were screened for known mutations in ABCA4, and those carrying one or two mutations were excluded from further research. Genome-wide homozygosity mapping was performed in the remaining 108. Known genes associated with autosomal recessive retinal dystrophies located within a homozygous region were screened for mutations. Patients in whom a mutation was detected underwent further ophthalmic examination. Results. Homozygous sequence variants were identified in eight CRD families, six of which were nonconsanguineous. The variants were detected in the following six genes: ABCA4, CABP4, CERKL, EYS, KCNV2, and PROM1. Patients carrying mutations in ABCA4, CERKL, and PROM1 had typical CRD symptoms, but a variety of retinal appearances on funduscopy, optical coherence tomography, and autofluorescence imaging. Conclusions. Homozygosity mapping led to the identification of new mutations in consanguineous and nonconsanguineous patients with retinal dystrophy. Detailed clinical characterization revealed a variety of retinal appearances, ranging from nearly normal to extensive retinal remodeling, retinal thinning, and debris accumulation. Although CRD was initially diagnosed in all patients, the molecular findings led to a reappraisal of the diagnosis in patients carrying mutations in EYS, CABP4, and KCNV2. PMID:20554613

  5. Vortex pattern of corneal deposits in granular corneal dystrophy associated with the p. (ArgR555WTrp) mutation in TGFBI

    PubMed Central

    Kattan, Jaffer M.; Serna-Ojeda, Juan Carlos; Sharma, Anushree; Kim, Eung K.; Ramirez-Miranda, Arturo; Cruz-Aguilar, Marisa; Cervantes, Aleck E.; Frausto, Ricardo F.; Zenteno, Juan Carlos; Graue-Hernandez, Enrique O.; Aldave, Anthony J.

    2016-01-01

    Purpose To describe two unrelated families with multiple members demonstrating a less commonly recognized vortex pattern of corneal deposits confirmed to be granular corneal dystrophy type 1(GCD1) following identification of the p.(Arg555Trp) mutation in the transforming growth factor β-induced gene (TGFBI). Methods A slit lamp examination was performed on individuals from two families, one of Mexican descent and a second of Italian descent. Following DNA extraction from affected individuals and their unaffected relatives, TGFBI screening was performed. Results Eight of 20 individuals in the Mexican family and 20 of 55 in the Italian family demonstrated corneal stromal opacities. Seven of the eight affected individuals in the Mexican family and four of the 20 affected individuals in the Italian family demonstrated a phenotype characterized by a “sea fan” or vortex pattern of superficial stromal corneal deposits originating from the inferior aspect of the cornea. Screening of TGFBI in both families revealed a heterozygous missense mutation (p.(Arg555Trp)) in exon 12, confirming the diagnosis of GCD1. Conclusion Our findings demonstrate that GCD1 may present with a vortex pattern of anterior stromal deposits. Although this pattern of dystrophic deposits is not recognized by clinicians as a typical phenotype of GCD1, it is consistent with the production of the majority of the TGFBI protein by the corneal epithelium. PMID:28060069

  6. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Cone phototransduction and survival of cones in the human macula is essential for color vision and for visual acuity. Progressive cone degeneration in age-related macular degeneration, Stargardt disease, and recessive cone dystrophies is a major cause of blindness. Thyroid hormone (TH) signaling, which regulates cell proliferation, differentiation, and apoptosis, plays a central role in cone opsin expression and patterning in the retina. Here, we investigated whether TH signaling affects cone viability in inherited retinal degeneration mouse models. Retinol isomerase RPE65-deficient mice [a model of Leber congenital amaurosis (LCA) with rapid cone loss] and cone photoreceptor function loss type 1 mice (severe recessive achromatopsia) were used to determine whether suppressing TH signaling with antithyroid treatment reduces cone death. Further, cone cyclic nucleotide-gated channel B subunit-deficient mice (moderate achromatopsia) and guanylate cyclase 2e-deficient mice (LCA with slower cone loss) were used to determine whether triiodothyronine (T3) treatment (stimulating TH signaling) causes deterioration of cones. We found that cone density in retinol isomerase RPE65-deficient and cone photoreceptor function loss type 1 mice increased about sixfold following antithyroid treatment. Cone density in cone cyclic nucleotide-gated channel B subunit-deficient and guanylate cyclase 2e-deficient mice decreased about 40% following T3 treatment. The effect of TH signaling on cone viability appears to be independent of its regulation on cone opsin expression. This work demonstrates that suppressing TH signaling in retina dystrophy mouse models is protective of cones, providing insights into cone preservation and therapeutic interventions. PMID:24550448

  7. Facioscapulohumeral Muscular Dystrophy.

    PubMed

    DeSimone, Alec M; Pakula, Anna; Lek, Angela; Emerson, Charles P

    2017-09-12

    Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  8. An epidemiological approach for the estimation of disease onset in Central Europe in central and peripheral monogenic retinal dystrophies.

    PubMed

    Prokofyeva, Elena; Wilke, Robert; Lotz, Gunnar; Troeger, Eric; Strasser, Torsten; Zrenner, Eberhart

    2009-07-01

    To study clinical patterns of disease onset in monogenic retinal dystrophies (MRD), using an epidemiological approach. Records of patients with MRD, seen at the University Eye Hospital Tuebingen from 1994 to 1999, were selected from a database and retrospectively reviewed. For analysis, patients were divided into 2 groups by predominant part of visual field (VF) involvement: group 1 (predominantly central involvement) included Stargardt disease (ST), macular dystrophy (MD), and central areolar choroidal dystrophy (CACD), and group 2 (predominantly peripheral involvement) included Bardet-Biedl syndrome (BBD), Usher syndrome (USH) I and II, and choroideremia (CHD). Age, sex, age of first diagnosis, age of visual acuity (VA) decrease and VF emergence, night blindness and photophobia onset, types of VF defects and age of its onset, color discrimination defects and best corrected VA were analyzed. Records of 259 patients were studied. Men were more prevalent than women. Mean age of the patients was 47.2 (SD = 15.6) years old. Forty-five patients in the first group and 40 in the second were first diagnosed between 21 and 30 years of age. Ninety-four patients in the first group had VA decrease before 30 years of age; in the second group, 68 patients had VA decrease onset between 21 and 40 years of age. Forty-four patients in the first group noticed VF at an age between 21 and 30 years, and 74 patients between 11 and 30 years in the second group. Central scotoma was typical for the first group, and was detected in 115 patients. Concentric constriction was typical for the second group, and was found in 81 patients. Half of patients in both groups preserved best-corrected VA in the better eye at a level of 20/40 or better; 7% in the first group and 6% in the second group were registered as legally blind according to WHO criteria, having VA <1/50 or VF <5 degrees . Diagnosis frequency was USH I and II-34%, ST-31%, MD-18%, CHD-14%, BBD-5%. An epidemiological approach to the estimation of the disease onset of various subtypes of monogenic retinal degenerations will be useful for detection of disease duration, its prognosis, rehabilitation and the researching of future treatment possibilities.

  9. Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A

    PubMed Central

    Sáenz, Amets; Azpitarte, Margarita; Armañanzas, Rubén; Leturcq, France; Alzualde, Ainhoa; Inza, Iñaki; García-Bragado, Federico; De la Herran, Gaspar; Corcuera, Julián; Cabello, Ana; Navarro, Carmen; De la Torre, Carolina; Gallardo, Eduard; Illa, Isabel; de Munain, Adolfo López

    2008-01-01

    Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies. PMID:19015733

  10. Rhabdomyolysis featuring muscular dystrophies.

    PubMed

    Lahoria, Rajat; Milone, Margherita

    2016-02-15

    Rhabdomyolysis is a potentially life threatening condition of various etiology. The association between rhabdomyolysis and muscular dystrophies is under-recognized in clinical practice. To identify muscular dystrophies presenting with rhabdomyolysis at onset or as predominant feature. We retrospectively reviewed clinical and laboratory data of patients with a genetically confirmed muscular dystrophy in whom rhabdomyolysis was the presenting or main clinical manifestation. Thirteen unrelated patients (males=6; females=7) were identified. Median age at time of rhabdomyolysis was 18 years (range, 2-47) and median duration between the first episode of rhabdomyolysis and molecular diagnosis was 2 years. Fukutin-related protein (FKRP) muscular dystrophy (n=6) was the most common diagnosis, followed by anoctaminopathy-5 (n=3), calpainopathy-3 (n=2) and dystrophinopathy (n=2). Four patients experienced recurrent rhabdomyolysis. Eight patients were asymptomatic and 3 reported myalgia and exercise intolerance prior to the rhabdomyolysis. Exercise (n=6) and fever (n=4) were common triggers; rhabdomyolysis was unprovoked in 3 patients. Twelve patients required hospitalization. Baseline CK levels were elevated in all patients (median 1200 IU/L; range, 600-3600). Muscular dystrophies can present with rhabdomyolysis; FKRP mutations are particularly frequent in causing such complication. A persistently elevated CK level in patients with rhabdomyolysis warrants consideration for underlying muscular dystrophy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Loss of Calpain 3 Proteolytic Activity Leads to Muscular Dystrophy and to Apoptosis-Associated Iκbα/Nuclear Factor κb Pathway Perturbation in Mice

    PubMed Central

    Richard, Isabelle; Roudaut, Carinne; Marchand, Sylvie; Baghdiguian, Stephen; Herasse, Muriel; Stockholm, Daniel; Ono, Yasuko; Suel, Laurence; Bourg, Nathalie; Sorimachi, Hiroyuki; Lefranc, Gérard; Fardeau, Michel; Sébille, Alain; Beckmann, Jacques S.

    2000-01-01

    Calpain 3 is known as the skeletal muscle–specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. It was previously shown that defects in the human calpain 3 gene are responsible for limb girdle muscular dystrophy type 2A (LGMD2A), an inherited disease affecting predominantly the proximal limb muscles. To better understand the function of calpain 3 and the pathophysiological mechanisms of LGMD2A and also to develop an adequate model for therapy research, we generated capn3-deficient mice by gene targeting. capn3-deficient mice are fully fertile and viable. Allele transmission in intercross progeny demonstrated a statistically significant departure from Mendel's law. capn3-deficient mice show a mild progressive muscular dystrophy that affects a specific group of muscles. The age of appearance of myopathic features varies with the genetic background, suggesting the involvement of modifier genes. Affected muscles manifest a similar apoptosis-associated perturbation of the IκBα/nuclear factor κB pathway as seen in LGMD2A patients. In addition, Evans blue staining of muscle fibers reveals that the pathological process due to calpain 3 deficiency is associated with membrane alterations. PMID:11134085

  12. Prevalence and correlates of apathy in myotonic dystrophy type 1.

    PubMed

    Gallais, Benjamin; Montreuil, Michèle; Gargiulo, Marcela; Eymard, Bruno; Gagnon, Cynthia; Laberge, Luc

    2015-08-22

    Apathy in DM1 has long been acknowledged in clinical practice. However, a major drawback is that the concept has been only sparsely explored in previous specific studies. This study aimed to determine the prevalence of apathy in myotonic dystrophy (DM1), to compare it with facioscapulohumeral dystrophy (FSHD) patients and normal healthy controls, and explore its relationship to psychopathological features and cognitive function. Levels of apathy in 38 DM1 patients with adult phenotypes were compared with 19 patients with FSHD and 20 matched controls. Patient participants were consecutively recruited, regarding their interdisciplinary annual evaluation at the neuromuscular pathology reference center (Institute of Myology, Paris, France), within an 18-month period. Additional measurements included motor disability, fatigue, depression, anxiety, and cognitive abilities. Inter-group comparisons were performed using non-parametric Kruskal-Wallis tests and Mann-Whitney U Tests. Intra-group comparisons were carried out with the Wilcoxon Signed rank and Friedman tests. Also, Spearman's correlations were used to assess the strength of linear relationships between pairs of variables. The significance level was set at 0.05. Global score of apathy was significantly higher in DM1 patients than in FSHD patients (p < 0.01) and in controls (p < 0.001). Sixteen of 38 DM1 patients (39.5 %) met the criterion for apathy, contrasting with only 4 of the 19 (21.1 %) FSHD patients. No control subject was apathetic. Moreover, apathy in DM1 patients was negatively correlated to MMSE (r = -.46, p < .05) and Stroop Word (r = -.55, p < .01) scores, but not with age, educational level, disease duration, CTG repeats, motor functional disability, fatigue, depression, and anxiety. Apathy is a frequent symptom in DM1 (almost 40 %). It is more prevalent than in a similarly disabled group of patients with FSHD and in controls. Results also show that apathy in DM1 is independent of the psychopathological domain, fatigue, age, and motor disability, but associated to general cognitive status. These results altogether could suggest a central cause for apathy in DM1 rather than an adjustment process to cope with the progressive and debilitating nature of the disease. Data emphasize the importance to evaluate this symptom in routine clinical management of DM1 patients.

  13. Electrolysis for corneal opacities in a young patient with superficial variant of granular corneal dystrophy (Reis-Bücklers corneal dystrophy).

    PubMed

    Kamoi, Mizuka; Mashima, Yukihiko; Kawashima, Motoko; Tsubota, Kazuo

    2005-06-01

    To report the efficacy of electrolysis as a treatment of corneal opacities in a young patient with the superficial variant of granular corneal dystrophy. Interventional case report. An 11-year-old boy presented with subepithelial opacities in both eyes. His visual acuity was 0.2 in the left eye; he received corneal electrolysis under topical anesthesia. The electrolysis, which required only 5 minutes, resulted in the disappearance of the subepithelial opacities. His visual acuity improved to 0.4 on the next day and was 1.0 eight months later. The corneal curvature and thickness were not altered by the electrolysis. Corneal electrolysis proved to be an effective treatment for subepithelial opacities, and we recommend electrolysis as an effective and simple treatment for young patients with SGCD.

  14. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    PubMed

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy)

    PubMed Central

    Kramerova, Irina; Ermolova, Natalia; Eskin, Ascia; Hevener, Andrea; Quehenberger, Oswald; Armando, Aaron M.; Haller, Ronald; Romain, Nadine; Nelson, Stanley F.; Spencer, Melissa J.

    2016-01-01

    Limb girdle muscular dystrophy 2A is due to loss-of-function mutations in the Calpain 3 (CAPN3) gene. Our previous data suggest that CAPN3 helps to maintain the integrity of the triad complex in skeletal muscle. In Capn3 knock-out mice (C3KO), Ca2+ release and Ca2+/calmodulin kinase II (CaMKII) signaling are attenuated. We hypothesized that calpainopathy may result from a failure to transmit loading-induced Ca2+-mediated signals, necessary to up-regulate expression of muscle adaptation genes. To test this hypothesis, we compared transcriptomes of muscles from wild type (WT) and C3KO mice subjected to endurance exercise. In WT mice, exercise induces a gene signature that includes myofibrillar, mitochondrial and oxidative lipid metabolism genes, necessary for muscle adaptation. C3KO muscles fail to activate the same gene signature. Furthermore, in agreement with the aberrant transcriptional profile, we observe a commensurate functional defect in lipid metabolism whereby C3KO muscles fail to release fatty acids from stored triacylglycerol. In conjunction with the defects in oxidative metabolism, C3KO mice demonstrate reduced exercise endurance. Failure to up-regulate genes in C3KO muscles is due, in part, to decreased levels of PGC1α, a transcriptional co-regulator that orchestrates the muscle adaptation response. Destabilization of PGC1α is attributable to decreased p38 MAPK activation via diminished CaMKII signaling. Thus, we elucidate a pathway downstream of Ca2+-mediated CaMKII activation that is dysfunctional in C3KO mice, leading to reduced transcription of genes involved in muscle adaptation. These studies identify a novel mechanism of muscular dystrophy: a blunted transcriptional response to muscle loading resulting in chronic failure to adapt and remodel. PMID:27005420

  16. One year outcome of boys with Duchenne muscular dystrophy using the Bayley-III scales of infant and toddler development.

    PubMed

    Connolly, Anne M; Florence, Julaine M; Cradock, Mary M; Eagle, Michelle; Flanigan, Kevin M; McDonald, Craig M; Karachunski, Peter I; Darras, Basil T; Bushby, Kate; Malkus, Elizabeth C; Golumbek, Paul T; Zaidman, Craig M; Miller, J Philip; Mendell, Jerry R

    2014-06-01

    The pathogenesis of Duchenne muscular dystrophy starts before birth. Despite this, clinical trials exclude young boys because traditional outcome measures rely on cooperation. We recently used the Bayley-III Scales of Infant and Toddler Development to study 24 infants and boys with Duchenne muscular dystrophy. Clinical evaluators at six centers were trained and certified to perform the Bayley-III. Here, we report 6- and 12-month follow-up of two subsets of these boys. Nineteen boys (1.9 ± 0.8 years) were assessed at baseline and 6 months. Twelve boys (1.5 ± 0.8 years) were assessed at baseline, 6, and 12 months. Gross motor scores were lower at baseline compared with published controls (6.2 ± 1.7; normal 10 ± 3; P < 0.0001) and revealed a further declining trend to 5.7 ± 1.7 (P = 0.20) at 6 months. Repeated measures analysis of the 12 boys monitored for 12 months revealed that gross motor scores, again low at baseline (6.6 ± 1.7; P < 0.0001), declined at 6 months (5.9 ± 1.8) and further at 12 months (5.3 ± 2.0) (P = 0.11). Cognitive and language scores were lower at baseline compared with normal children (range, P = 0.002-<0.0001) and did not change significantly at 6 or 12 months (range, P = 0.89-0.09). Fine motor skills, also low at baseline, improved >1 year (P = 0.05). Development can reliably be measured in infants and young boys with Duchenne muscular dystrophy across time using the Bayley-III. Power calculations using these data reveal that motor development may be used as an outcome measure. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Corneal transplantation trends in France from 2004 to 2015: A 12-year review.

    PubMed

    Bigan, Guillaume; Puyraveau, Marc; Saleh, Maher; Gain, Philippe; Martinache, Isabelle; Delbosc, Bernard; Gauthier, Anne-Sophie

    2018-04-01

    The aim of this study was to report the 12-year longitudinal trends in indication and corneal transplantation techniques in France from 2004 to 2015. The records of all corneal transplantations performed from 2004 to 2015 in France were retrospectively reviewed. The patient indications and types of transplant performed were analyzed. A total of 46,658 corneal transplantations were performed between 2004 and 2015, with 34,187 (73.3%) penetrating keratoplasty and 10,452 (22.4%) lamellar keratoplasty. The leading surgical indications were secondary endothelial failure (24.3%), keratoconus (18.8%), regraft (13.5%), and Fuchs endothelial corneal dystrophy (15.1%). Endothelial keratoplasty became the preferred technique for endothelial diseases and deep anterior lamellar keratoplasty the preferred technique for keratoconus, surpassing penetrating keratoplasty in 2013. Secondary endothelial failure is the top indication for performing a keratoplasty over the 12-year period. There was a shift from penetrating keratoplasty to endothelial keratoplasty performed for Fuchs endothelial corneal dystrophy and secondary endothelial failure, and to deep anterior lamellar keratoplasty, performed for keratoconus. This highlights an important shift in managing corneal diseases toward the application of selective and more conservative surgeries and changes in indications in corneal transplantation.

  18. Neuromuscular Highlights-AAN 2005.

    PubMed

    Cheema, Zahid; Saperstein, David; Jackson, Carolyn; Newman, Daniel

    2006-06-01

    Summary of Neuromuscular Presentations at the 57 Annual AAN 2005 meeting in Miami Florida on topics of Facioscapulohumeral muscular dystrophy (FSHD), Duchenne muscular dystrophy (DMD), Diabetic Neuropathy, Charco Marie Tooth disease (CMT), Comparison of injected steroids versus Surgery for carpal tunnel syndrome, Rituximab in Anti-MAG associated polyneuropathy, Cannabis based medicine (CBM) in the treatment of neuropathic pain, utility of skin biopsy with intraepidermal nerve fiber density (IENFD) in sensory complaints, comparing sympathetic skin responses (SSRs) and skin biopsy in diagnosing small fiber sensory neuropathy, Chronic inflammatory demyelinating polyneuropathy (CIDP) clinical and electrophysiologic predictors, affect of limb warming in mild ulnar nerve conduction study (NCS) abnormalities, Tamoxifen affect in ALS, open label study of 3,4 DAP, Pyridostigmine and Ephedrine in fast channel syndrome, Mexilitine as an antimyotonia treatment in myotonic dystrophy (DM1), frontal lobe impairment evaluation in DM1 and DM2 patients and phenotype-genotype correlation in patients with dysferlinopathy.

  19. Measuring tendon properties in mdx mice: cell viability and viscoelastic characteristics.

    PubMed

    Rizzuto, E; Musarò, A; Catizone, A; Del Prete, Z

    2009-10-16

    Muscular dystrophy is a genetic disorder of skeletal muscle characterized by progressive muscle weakness. Here we assessed whether muscle wasting affects cell viability and mechanical properties of extensor digitorum longus (EDL) and of tibialis anterior (TA) tendons from mdx dystrophic mice compared to wild type (WT) mice. mdx mice represent the classical animal model for human Duchenne muscular dystrophy, and show several signs of the pathology, including a decrease in specific force and an increase of fibrotic index. Cell viability of tendons was evaluated by histological analysis, and viscoelastic properties have been assessed by a rapid measurement protocol that allowed us to compute, at the same time, tissue complex compliance for all the frequencies of interest. Confocal microscopy and mechanical properties measurements revealed that mdx tendons, compared to WT ones, have an increase in the number of dead cells and a significant reduction in tissue elasticity for all the frequencies that were tested. These findings indicate a reduced quality of the tissue. Moreover, mdx tendons have an increase in the viscous response, indicating that during dynamic loading, they dissipate more energy compared to WT. Our results demonstrate that muscular dystrophy involves not only muscle wasting, but also alteration in the viscoelastic properties of tendons, suggesting a paracrine effect of altered skeletal muscle on tendinous tissue.

  20. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes.

    PubMed

    Trivedi, Jaya R; Bundy, Brian; Statland, Jeffrey; Salajegheh, Mohammad; Rayan, Dipa Raja; Venance, Shannon L; Wang, Yunxia; Fialho, Doreen; Matthews, Emma; Cleland, James; Gorham, Nina; Herbelin, Laura; Cannon, Stephen; Amato, Anthony; Griggs, Robert C; Hanna, Michael G; Barohn, Richard J

    2013-07-01

    Non-dystrophic myotonias are rare diseases caused by mutations in skeletal muscle chloride and sodium ion channels with considerable phenotypic overlap between diseases. Few prospective studies have evaluated the sensitivity of symptoms and signs of myotonia in a large cohort of patients. We performed a prospective observational study of 95 participants with definite or clinically suspected non-dystrophic myotonia recruited from six sites in the USA, UK and Canada between March 2006 and March 2009. We used the common infrastructure and data elements provided by the NIH-funded Rare Disease Clinical Research Network. Outcomes included a standardized symptom interview and physical exam; the Short Form-36 and the Individualized Neuromuscular Quality of Life instruments; electrophysiological short and prolonged exercise tests; manual muscle testing; and a modified get-up-and-go test. Thirty-two participants had chloride channel mutations, 34 had sodium channel mutations, nine had myotonic dystrophy type 2, one had myotonic dystrophy type 1, and 17 had no identified mutation. Phenotype comparisons were restricted to those with sodium channel mutations, chloride channel mutations, and myotonic dystrophy type 2. Muscle stiffness was the most prominent symptom overall, seen in 66.7% to 100% of participants. In comparison with chloride channel mutations, participants with sodium mutations had an earlier age of onset of stiffness (5 years versus 10 years), frequent eye closure myotonia (73.5% versus 25%), more impairment on the Individualized Neuromuscular Quality of Life summary score (20.0 versus 9.44), and paradoxical eye closure myotonia (50% versus 0%). Handgrip myotonia was seen in three-quarters of participants, with warm up of myotonia in 75% chloride channel mutations, but also 35.3% of sodium channel mutations. The short exercise test showed ≥10% decrement in the compound muscle action potential amplitude in 59.3% of chloride channel participants compared with 27.6% of sodium channel participants, which increased post-cooling to 57.6% in sodium channel mutations. In evaluation of patients with clinical and electrical myotonia, despite considerable phenotypic overlap, the presence of eye closure myotonia, paradoxical myotonia, and an increase in short exercise test sensitivity post-cooling suggest sodium channel mutations. Outcomes designed to measure stiffness or the electrophysiological correlates of stiffness may prove useful for future clinical trials, regardless of underlying mutation, and include patient-reported stiffness, bedside manoeuvres to evaluate myotonia, muscle specific quality of life instruments and short exercise testing.

  1. Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy.

    PubMed

    Yu, Hong-Hao; Zhao, Heng; Qing, Yu-Bo; Pan, Wei-Rong; Jia, Bao-Yu; Zhao, Hong-Ye; Huang, Xing-Xu; Wei, Hong-Jiang

    2016-10-09

    Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD . Two piglets were obtained after embryo transfer, one of piglets was identified as DMD -modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD -modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD -modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig.

  2. Reliability, validity and description of timed performance of the Jebsen-Taylor Test in patients with muscular dystrophies.

    PubMed

    Artilheiro, Mariana Cunha; Fávero, Francis Meire; Caromano, Fátima Aparecida; Oliveira, Acary de Souza Bulle; Carvas, Nelson; Voos, Mariana Callil; Sá, Cristina Dos Santos Cardoso de

    2017-12-08

    The Jebsen-Taylor Test evaluates upper limb function by measuring timed performance on everyday activities. The test is used to assess and monitor the progression of patients with Parkinson disease, cerebral palsy, stroke and brain injury. To analyze the reliability, internal consistency and validity of the Jebsen-Taylor Test in people with Muscular Dystrophy and to describe and classify upper limb timed performance of people with Muscular Dystrophy. Fifty patients with Muscular Dystrophy were assessed. Non-dominant and dominant upper limb performances on the Jebsen-Taylor Test were filmed. Two raters evaluated timed performance for inter-rater reliability analysis. Test-retest reliability was investigated by using intraclass correlation coefficients. Internal consistency was assessed using the Cronbach alpha. Construct validity was conducted by comparing the Jebsen-Taylor Test with the Performance of Upper Limb. The internal consistency of Jebsen-Taylor Test was good (Cronbach's α=0.98). A very high inter-rater reliability (0.903-0.999), except for writing with an Intraclass correlation coefficient of 0.772-1.000. Strong correlations between the Jebsen-Taylor Test and the Performance of Upper Limb Module were found (rho=-0.712). The Jebsen-Taylor Test is a reliable and valid measure of timed performance for people with Muscular Dystrophy. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. Role of dystroglycan in limiting contraction-induced injury to the sarcomeric cytoskeleton of mature skeletal muscle.

    PubMed

    Rader, Erik P; Turk, Rolf; Willer, Tobias; Beltrán, Daniel; Inamori, Kei-Ichiro; Peterson, Taylor A; Engle, Jeffrey; Prouty, Sally; Matsumura, Kiichiro; Saito, Fumiaki; Anderson, Mary E; Campbell, Kevin P

    2016-09-27

    Dystroglycan (DG) is a highly expressed extracellular matrix receptor that is linked to the cytoskeleton in skeletal muscle. DG is critical for the function of skeletal muscle, and muscle with primary defects in the expression and/or function of DG throughout development has many pathological features and a severe muscular dystrophy phenotype. In addition, reduction in DG at the sarcolemma is a common feature in muscle biopsies from patients with various types of muscular dystrophy. However, the consequence of disrupting DG in mature muscle is not known. Here, we investigated muscles of transgenic mice several months after genetic knockdown of DG at maturity. In our study, an increase in susceptibility to contraction-induced injury was the first pathological feature observed after the levels of DG at the sarcolemma were reduced. The contraction-induced injury was not accompanied by increased necrosis, excitation-contraction uncoupling, or fragility of the sarcolemma. Rather, disruption of the sarcomeric cytoskeleton was evident as reduced passive tension and decreased titin immunostaining. These results reveal a role for DG in maintaining the stability of the sarcomeric cytoskeleton during contraction and provide mechanistic insight into the cause of the reduction in strength that occurs in muscular dystrophy after lengthening contractions.

  4. Exacerbation of pathology by oxidative stress in respiratory and locomotor muscles with Duchenne muscular dystrophy.

    PubMed

    Lawler, John M

    2011-05-01

    Duchenne muscular dystrophy (DMD) is the most devastating type of muscular dystrophy, leading to progressive weakness of respiratory (e.g. diaphragm) and locomotor muscles (e.g. gastrocnemius). DMD is caused by X-linked defects in the gene that encodes for dystrophin, a key scaffolding protein of the dystroglycan complex (DCG) within the sarcolemmal cytoskeleton. As a result of a compromised dystroglycan complex, mechanical integrity is impaired and important signalling proteins (e.g. nNOS, caveolin-3) and pathways are disrupted. Disruption of the dystroglycan complex leads to high susceptibility to injury with repeated, eccentric contractions as well as inflammation, resulting in significant damage and necrosis. Chronic damage and repair cycling leads to fibrosis and weakness. While the link between inflammation with damage and weakness in the DMD diaphragm is unresolved, elevated oxidative stress may contribute to damage, weakness and possibly fibrosis. While utilization of non-specific antioxidant interventions has yielded inconsistent results, recent data suggest that NAD(P)H oxidase could play a pivotal role in elevating oxidative stress via integrated changes in caveolin-3 and stretch-activated channels (SACs). Oxidative stress may act as an amplifier, exacerbating disruption of the dystroglycan complex, upregulation of the inflammatory transcription factor NF-B, and thus functional impairment of force-generating capacity.

  5. Repair of an inguinoscrotal hernia in a patient with Becker muscular dystrophy.

    PubMed

    Tatulli, F; Caraglia, A; Delcuratolo, A; Cassano, S; Chetta, G S

    2017-01-01

    Inguinal hernia repairs are routinely performed as outpatient procedures in most patients, whereas a few require admission due to clinical or social peculiarities. Muscular dystrophies are inherited disorders characterized by progressive muscle wasting and weakness. In case of surgery there is no definite recommendation for either general or regional anesthesia. This contribution regards a 48 y. o. male patient diagnosed with Becker Muscular Dystrophy by muscle biopsy 10 years earlier. He had a left-sided sizable inguinoscrotal hernia with repeat episodes of incarceration. An elective mesh repair with suction drainage was accomplished under selective spinal anesthesia. The post-operative course was uneventful. A few inguinal hernia repairs require admission due to peculiarities such as extensive scrotal hernias requiring suction drainage. Muscular dystrophies are inherited disorders with no cure and no two dystrophy patients are exactly alike, therefore the health issues will be different for each individual. In case of surgery there is no definite recommendation for either general or regional anesthesia. This contribution regards the successful elective mesh repair with suction drainage of a large left-sided inguino-scrotal hernia in a 48 y. o. male patient affected by Becker muscular dystrophy by selective spinal anesthesia obtained by 10 milligrams of hyperbaric bupivacaine. Effective mesh repair with suction drainage of large inguinal hernias under spinal anesthesia can be achieved in patients affected by muscular dystrophy.

  6. Contractile dysfunction in muscle may underlie androgen-dependent motor dysfunction in spinal bulbar muscular atrophy

    PubMed Central

    Oki, Kentaro; Halievski, Katherine; Vicente, Laura; Xu, Youfen; Zeolla, Donald; Poort, Jessica; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Wiseman, Robert W.; Breedlove, S. Marc

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by progressive muscle weakness linked to a polyglutamine expansion in the androgen receptor (AR). Current evidence indicates that mutant AR causes SBMA by acting in muscle to perturb its function. However, information about how muscle function is impaired is scant. One fundamental question is whether the intrinsic strength of muscles, an attribute of muscle independent of its mass, is affected. In the current study, we assess the contractile properties of hindlimb muscles in vitro from chronically diseased males of three different SBMA mouse models: a transgenic (Tg) model that broadly expresses a full-length human AR with 97 CAGs (97Q), a knock-in (KI) model that expresses a humanized AR containing a CAG expansion in the first exon, and a Tg myogenic model that overexpresses wild-type AR only in skeletal muscle fibers. We found that hindlimb muscles in the two Tg models (97Q and myogenic) showed marked losses in their intrinsic strength and resistance to fatigue, but were minimally affected in KI males. However, diseased muscles of all three models showed symptoms consistent with myotonic dystrophy type 1, namely, reduced resting membrane potential and deficits in chloride channel mRNA. These data indicate that muscle dysfunction is a core feature of SBMA caused by at least some of the same pathogenic mechanisms as myotonic dystrophy. Thus mechanisms controlling muscle function per se independent of mass are prime targets for SBMA therapeutics. PMID:25663674

  7. Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients.

    PubMed

    Zanotti, Simona; Bragato, Cinzia; Zucchella, Andrea; Maggi, Lorenzo; Mantegazza, Renato; Morandi, Lucia; Mora, Marina

    2016-01-15

    Tissue fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the end point of diseases affecting the kidney, bladder, liver, lung, gut, skin, heart and muscle. In Duchenne muscular dystrophy (DMD), connective fibrotic tissue progressively substitutes muscle fibers. So far no specific pharmacological treatment is available for muscle fibrosis. Among promising anti-fibrotic molecules, pirfenidone has shown anti-fibrotic and anti-inflammatory activity in animal and cell models, and has already been employed in clinical trials. Therefore we tested pirfenidone anti-fibrotic properties in an in vitro model of muscle fibrosis. We evaluated effect of pirfenidone on fibroblasts isolated from DMD muscle biopsies. These cells have been previously characterized as having a pro-fibrotic phenotype. We tested cell proliferation and migration, secretion of soluble collagens, intracellular levels of collagen type I and fibronectin, and diameter of 3D fibrotic nodules. We found that pirfenidone significantly reduced proliferation and cell migration of control and DMD muscle-derived fibroblasts, decreased extracellular secretion of soluble collagens by control and DMD fibroblasts, as well as levels of collagen type I and fibronectin, and, in DMD fibroblasts only, reduced synthesis and deposition of intracellular collagen. Furthermore, pirfenidone was able to reduce the diameter of fibrotic-nodules in our 3D model of in vitro fibrosis. These pre-clinical results indicate that pirfenidone has potential anti-fibrotic effects also in skeletal muscle fibrosis, urging further studies in in vivo animal models of muscular dystrophy in order to translate the drug into the treatment of muscle fibrosis in DMD patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Altered Splicing of the BIN1 Muscle-Specific Exon in Humans and Dogs with Highly Progressive Centronuclear Myopathy

    PubMed Central

    Böhm, Johann; Vasli, Nasim; Maurer, Marie; Cowling, Belinda; Shelton, G. Diane; Kress, Wolfram; Toussaint, Anne; Prokic, Ivana; Schara, Ulrike; Anderson, Thomas James; Weis, Joachim; Tiret, Laurent; Laporte, Jocelyn

    2013-01-01

    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies. PMID:23754947

  9. Diagnosis and management of adult hereditary cardio-neuromuscular disorders: A model for the multidisciplinary care of complex genetic disorders.

    PubMed

    Sommerville, R Brian; Vincenti, Margherita Guzzi; Winborn, Kathleen; Casey, Anne; Stitziel, Nathan O; Connolly, Anne M; Mann, Douglas L

    2017-01-01

    Genetic disorders that disrupt the structure and function of the cardiovascular system and the peripheral nervous system are common enough to be encountered in routine cardiovascular practice. Although often these patients are diagnosed in childhood and come to the cardiologist fully characterized, some patients with hereditary neuromuscular disease may not manifest until adulthood and will present initially to the adult cardiologist for an evaluation of an abnormal ECG, unexplained syncope, LV hypertrophy, and or a dilated cardiomyopathy of unknown cause. Cardiologists are often ill-equipped to manage these patients due to lack of training and exposure as well as the complete absence of practice guidelines to aid in the diagnosis and management of these disorders. Here, we review three key neuromuscular diseases that affect the cardiovascular system in adults (myotonic dystrophy type 1, Friedreich ataxia, and Emery-Dreifuss muscular dystrophy), with an emphasis on their clinical presentation, genetic and molecular pathogenesis, and recent important research on medical and interventional treatments. We also advocate the development of interdisciplinary cardio-neuromuscular clinics to optimize the care for these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiler, T.; Nylen, E.; Wrogemann, K.

    1996-10-01

    We report the results of our investigations of a large, inbred, aboriginal Canadian kindred with nine muscular dystrophy patients. The ancestry of all but two of the carrier parents could be traced to a founder couple, seven generations back. Seven patients presented with proximal myopathy consistent with limb girdle-type muscular dystrophy (LGMD), whereas two patients manifested predominantly distal wasting and weakness consistent with Miyoshi myopathy (distal autosomal recessive muscular dystrophy) (MM). Age at onset of symptoms, degree of creatine kinase elevation, and muscle histology were similar in both phenotypes. Segregation of LGMD/MM is consistent with autosomal recessive inheritance, and themore » putative locus is significantly linked (LOD scores >3.0) to six marker loci that span the region of the LGMD2B locus on chromosome 2p. Our initial hypothesis that the affected patients would all be homozygous by descent for microsatellite markers surrounding the disease locus was rejected. Rather, two different core haplotypes, encompassing a 4-cM region spanned by D2S291-D2S145-D2S286, segregated with the disease, indicating that there are two mutant alleles of independent origin in this kindred. There was no association, however, between the two different haplotypes and clinical variability; they do not distinguish between the LGMD and MM phenotypes. Thus, we conclude that LGMD and MM in our population are caused by the same mutation in LGMD2B and that additional factors, both genetic and nongenetic, must contribute to the clinical phenotype. 37 refs., 2 figs., 2 tabs.« less

  11. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    PubMed

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration.

  12. Adaptive Immune Response Impairs the Efficacy of Autologous Transplantation of Engineered Stem Cells in Dystrophic Dogs

    PubMed Central

    Sitzia, Clementina; Farini, Andrea; Jardim, Luciana; Razini, Paola; Belicchi, Marzia; Cassinelli, Letizia; Villa, Chiara; Erratico, Silvia; Parolini, Daniele; Bella, Pamela; da Silva Bizario, Joao Carlos; Garcia, Luis; Dias-Baruffi, Marcelo; Meregalli, Mirella; Torrente, Yvan

    2016-01-01

    Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin. PMID:27506452

  13. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy

    PubMed Central

    Panaite, Petrica-Adrian; Kuntzer, Thierry; Gourdon, Geneviève; Lobrinus, Johannes Alexander; Barakat-Walter, Ibtissam

    2013-01-01

    SUMMARY Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1. PMID:23180777

  14. Characterization of sarcoplasmic reticulum Ca(2+) ATPase pumps in muscle of patients with myotonic dystrophy and with hypothyroid myopathy.

    PubMed

    Guglielmi, V; Oosterhof, A; Voermans, N C; Cardani, R; Molenaar, J P; van Kuppevelt, T H; Meola, G; van Engelen, B G; Tomelleri, G; Vattemi, G

    2016-06-01

    Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Meeting the Assistive Technology Needs of Students with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Heller, Kathryn Wolff; Mezei, Peter J.; Avant, Mary Jane Thompson

    2009-01-01

    Students with Duchenne muscular dystrophy (DMD) have a degenerative disease that requires ongoing changes in assistive technology (AT). The AT team needs to be knowledgeable about the disease and its progression in order to meet these students' changing needs in a timely manner. The unique needs of students with Duchenne muscular dystrophy in…

  16. [The diabetic hand].

    PubMed

    Schiavon, F; Circhetta, C; Dani, L

    2004-01-01

    Diabetes mellitus is a chronic metabolic condition characterized by persistent hyperglycaemia with resultant morbidity and mortality related to its microvascular and macrovascular complications. In addition diabetes is also associated with several musculoskeletal disorders of the hand, that can be debilitating. There is increased incidence of these abnormalities in patients with type 1 and type 2 diabetes compared with the general population, related to disease duration but not to the age or sex. Typical diabetes associated hand condition include the palmar flexor tenosynovitis, Dupuytren's contracture, syndrome of limited joint mobility, carpal tunnel syndrome, Charcot arthropathy and reflex sympathetic dystrophy. Maintaining good glycaemic control by exercise, diet and drugs improves or prevents the development of these hand rheumatic condition. In this brief report we review the rational therapeutic approach to these disorders.

  17. Plasma membrane repair in plants.

    PubMed

    Schapire, Arnaldo L; Valpuesta, Victoriano; Botella, Miguel A

    2009-12-01

    Resealing is the membrane-repair process that enables cells to survive disruption, preventing the loss of irreplaceable cell types and eliminating the cost of replacing injured cells. Given that failure in the resealing process in animal cells causes diverse types of muscular dystrophy, plasma membrane repair has been extensively studied in these systems. Animal proteins with Ca(2+)-binding domains such as synaptotagmins and dysferlin mediate Ca(2+)-dependent exocytosis to repair plasma membranes after mechanical damage. Until recently, no components or proof for membrane repair mechanisms have been discovered in plants. However, Arabidopsis SYT1 is now the first plant synaptotagmin demonstrated to participate in Ca(2+)-dependent repair of membranes. This suggests a conservation of membrane repair mechanisms between animal and plant cells.

  18. Myositis-specific autoantibodies are specific for myositis compared to genetic muscle disease.

    PubMed

    Mammen, Andrew L; Casciola-Rosen, Livia; Christopher-Stine, Lisa; Lloyd, Thomas E; Wagner, Kathryn R

    2015-12-01

    To determine the specificity of myositis-specific autoantibodies (MSAs) for autoimmune myopathy compared with inherited muscle diseases. Serum samples from 47 patients with genetically confirmed inherited muscle diseases were screened for the most common MSAs, including those recognizing TIF1γ, NXP2, Mi2, MDA5, Jo1, SRP, and HMGCR. We compared these results with the findings in a cohort of patients with dermatomyositis (DM) previously screened for anti-TIF1γ, -NXP2, -Mi2, -MDA5, and -Jo1. Overall, the presence of anti-TIF1γ, -NXP2, -Mi2, -MDA5, or -Jo1 was 96% specific and 67% sensitive for DM compared to patients with genetic muscle diseases. No patients with inherited muscle disease had anti-SRP or anti-HMGCR autoantibodies. Only 2 patients with genetic muscle disease had a MSA. One patient with anti-Mi2 autoantibodies had both genetically confirmed facioscapulohumeral dystrophy and dermatomyositis based on a typical skin rash and partial response to immunosuppressive medications. A second patient with anti-Jo-1 autoantibodies had both genetically defined limb-girdle muscular dystrophy type 2A (i.e., calpainopathy) and a systemic autoimmune process based on biopsy-confirmed lupus nephritis, sicca symptoms, and anti-Ro52 autoantibodies. The MSAs tested for in this study are highly specific for autoimmune muscle disease and are rarely, if ever, found in patients who only have genetic muscle disease. In patients with genetic muscle disease, the presence of a MSA should suggest the possibility of a coexisting autoimmune process.

  19. Myositis-specific autoantibodies are specific for myositis compared to genetic muscle disease

    PubMed Central

    Casciola-Rosen, Livia; Christopher-Stine, Lisa; Lloyd, Thomas E.; Wagner, Kathryn R.

    2015-01-01

    Objective: To determine the specificity of myositis-specific autoantibodies (MSAs) for autoimmune myopathy compared with inherited muscle diseases. Methods: Serum samples from 47 patients with genetically confirmed inherited muscle diseases were screened for the most common MSAs, including those recognizing TIF1γ, NXP2, Mi2, MDA5, Jo1, SRP, and HMGCR. We compared these results with the findings in a cohort of patients with dermatomyositis (DM) previously screened for anti-TIF1γ, -NXP2, -Mi2, -MDA5, and -Jo1. Results: Overall, the presence of anti-TIF1γ, -NXP2, -Mi2, -MDA5, or -Jo1 was 96% specific and 67% sensitive for DM compared to patients with genetic muscle diseases. No patients with inherited muscle disease had anti-SRP or anti-HMGCR autoantibodies. Only 2 patients with genetic muscle disease had a MSA. One patient with anti-Mi2 autoantibodies had both genetically confirmed facioscapulohumeral dystrophy and dermatomyositis based on a typical skin rash and partial response to immunosuppressive medications. A second patient with anti-Jo-1 autoantibodies had both genetically defined limb-girdle muscular dystrophy type 2A (i.e., calpainopathy) and a systemic autoimmune process based on biopsy-confirmed lupus nephritis, sicca symptoms, and anti-Ro52 autoantibodies. Conclusions: The MSAs tested for in this study are highly specific for autoimmune muscle disease and are rarely, if ever, found in patients who only have genetic muscle disease. In patients with genetic muscle disease, the presence of a MSA should suggest the possibility of a coexisting autoimmune process. PMID:26668818

  20. A Novel Mutation in DMD (c.10797+5G>A) Causes Becker Muscular Dystrophy Associated with Intellectual Disability.

    PubMed

    Banihani, Rudaina; Baskin, Berivan; Halliday, William; Kobayashi, Jeff; Kawamura, Anne; McAdam, Laura; Ray, Peter N; Yoon, Grace

    2016-04-01

    Severe intellectual disability has been reported in a subgroup of patients with Duchenne muscular dystrophy but is not typically associated with Becker muscular dystrophy. The authors report a 13-year-old boy, with severe intellectual disability (Wechsler Intelligence Scales for Children-IV, Full Scale IQ < 0.1 percentile), attention-deficit hyperactivity disorder, and mild muscle weakness. He had elevated serum creatine kinase and dystrophic changes on muscle biopsy. Dystrophin immunohistochemistry revealed decreased staining with the C-terminal and mid-rod antibodies and essentially absent staining of the N-terminal immunostain. Sequencing of muscle mRNA revealed aberrant splicing due to a c.10797+5G > A mutation in DMD. Dystrophinopathy may be associated with predominantly cognitive impairment and neurobehavioral disorder, and should be considered in the differential diagnosis of unexplained cognitive or psychiatric disturbance in males.

  1. Genetics Home Reference: limb-girdle muscular dystrophy

    MedlinePlus

    ... age of onset, and features of limb-girdle muscle dystrophy vary among the many subtypes of this condition ... occurs in some people with limb-girdle muscular dystrophy . Weakening of the heart muscle (cardiomyopathy) occurs in some forms of limb-girdle ...

  2. Psychometric properties of the Zarit Caregiver Burden Interview administered to caregivers to patients with Duchenne muscular dystrophy: a Rasch analysis.

    PubMed

    Landfeldt, Erik; Mayhew, Anna; Straub, Volker; Bushby, Katharine; Lochmüller, Hanns; Lindgren, Peter

    2017-12-18

    To explore the psychometric properties of the full 22-item English (UK and US) version of the Zarit Caregiver Burden Interview administered to caregivers to patients with Duchenne muscular dystrophy. Caregivers to patients with Duchenne muscular dystrophy from the United Kingdom and the United States, recruited through the TREAT-NMD network, completed the Zarit Caregiver Burden Interview online. The psychometric properties of the Zarit Caregiver Burden Interview were examined using Rasch analysis. A total of 475 caregivers completed the Zarit Caregiver Burden Interview. Model misfit was identified for 9 of 22 items (mean item fit residual 0.061, SD: 2.736) and 13 of 22 items displayed disordered thresholds. The overall item-trait interaction chi-square value was 499 (198 degrees of freedom, p < 0.001). The mean person fit residual was estimated at -0.213 (SD: 1.235). The Person Separation Index and Cronbach's α were estimated at 0.902 and 0.914, respectively. Item dependency was low and we found no significant differential item functioning by country or sex. Our Rasch analysis shows that the Zarit Caregiver Burden Interview fails to fully operationalize a quantitative conceptualization of caregiver burden among caregivers to patients with Duchenne muscular dystrophy from the United Kingdom and the United States. Further research is needed to understand the psychometric properties of the Zarit Caregiver Burden Interview in other populations and settings. Implications for Rehabilitation Duchenne muscular dystrophy is a terminal disease characterized by progressive muscle degeneration resulting in substantial disability and a significant burden on family caregivers. The Zarit Caregiver Burden Interview is one of the most widely applied measures of caregiver burden. Our Rasch analysis suggests that the Zarit Caregiver Burden Interview is not fit for purpose to measure burden in UK and US caregivers to patients with Duchenne muscular dystrophy. Clinicians and decision-makers should interpret Zarit Caregiver Burden Interview data from these populations with caution.

  3. Recurrent Fat Embolic Strokes in a Patient With Duchenne Muscular Dystrophy With Long Bone Fractures and a Patent Foramen Ovale.

    PubMed

    Bugnitz, Christopher J; Cripe, Linda H; Lo, Warren D; Flanigan, Kevin M

    2016-10-01

    Individuals with Duchenne muscular dystrophy have an increased risk of long bone fractures. Such fractures are sometimes associated with brain dysfunction due to fat embolism syndrome, although this syndrome has seldom been documented in muscular dystrophy patients. We describe a child with Duchenne muscular dystrophy who developed fat embolism syndrome with neurological dysfunction following multiple long bone fractures. He experienced recurrent cerebral infarctions that probably resulted from embolization through a patent foramen ovale. The patent foramen ovale was closed by an occluder device in the cardiac catheterization laboratory, and he did not experience further infarctions. Fat embolism with ischemic cerebral infarction can occur in individuals with Duchenne muscular dystrophy following long bone fractures. In this setting it is important to identify and close atrial level shunts in order to prevent additional infarctions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Genetic diagnosis of Duchenne and Becker muscular dystrophy using multiplex ligation-dependent probe amplification in Rwandan patients.

    PubMed

    Uwineza, Annette; Hitayezu, Janvier; Murorunkwere, Seraphine; Ndinkabandi, Janvier; Kalala Malu, Celestin Kaputu; Caberg, Jean Hubert; Dideberg, Vinciane; Bours, Vincent; Mutesa, Leon

    2014-04-01

    Duchenne and Becker muscular dystrophies are the most common clinical forms of muscular dystrophies. They are genetically X-linked diseases caused by a mutation in the dystrophin (DMD) gene. A genetic diagnosis was carried out in six Rwandan patients presenting a phenotype of Duchenne and Becker muscular dystrophies and six asymptomatic female carrier relatives using multiplex ligation-dependent probe amplification (MLPA). Our results revealed deletion of the exons 48-51 in one patient, an inherited deletion of the exons 8-21 in two brothers and a de novo deletion of the exons 46-50 in the fourth patient. No copy number variation was found in two patients. Only one female carrier presented exon deletion in the DMD gene. This is the first cohort of genetic analysis in Rwandan patients affected by Duchenne and Becker muscular dystrophies. This report confirmed that MLPA assay can be easily implemented in low-income countries.

  5. Drusen in patient-derived hiPSC-RPE models of macular dystrophies

    PubMed Central

    Galloway, Chad A.; Dalvi, Sonal; Hung, Sandy S. C.; MacDonald, Leslie A.; Latchney, Lisa R.; Wong, Raymond C. B.; Guymer, Robyn H.; Williams, David S.; Chung, Mina M.; Gamm, David M.; Pébay, Alice; Hewitt, Alex W.; Singh, Ruchira

    2017-01-01

    Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby’s fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich “drusen-like” composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE–ECM interface. PMID:28878022

  6. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy.

    PubMed

    Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori

    2017-12-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.

  7. COUP-TFII regulates satellite cell function and muscular dystrophy.

    PubMed

    Xie, Xin; Tsai, Sophia Y; Tsai, Ming-Jer

    2016-10-03

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disease caused by mutations in the dystrophin gene. Although dystrophin deficiency in myofiber triggers the disease's pathological changes, the degree of satellite cell (SC) dysfunction defines disease progression. Here, we have identified chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) hyperactivity as a contributing factor underlying muscular dystrophy in a dystrophin-deficient murine model of DMD. Ectopic expression of COUP-TFII in murine SCs led to Duchenne-like dystrophy in the muscles of control animals and exacerbated degenerative myopathies in dystrophin-deficient mice. COUP-TFII-overexpressing mice exhibited regenerative failure that was attributed to deficient SC proliferation and myoblast fusion. Mechanistically, we determined that COUP-TFII coordinated a regenerative program through combined regulation of multiple promyogenic factors. Furthermore, inhibition of COUP-TFII preserved SC function and counteracted the muscle weakness associated with Duchenne-like dystrophy in the murine model, suggesting that targeting COUP-TFII is a potential treatment for DMD. Together, our findings reveal a regulatory role of COUP-TFII in the development of muscular dystrophy and open up a potential therapeutic opportunity for managing disease progression in patients with DMD.

  8. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING.

    PubMed

    Hafler, Brian P

    2017-03-01

    Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.

  9. High-Resolution Adaptive Optics Retinal Image Analysis at Early Stage Central Areolar Choroidal Dystrophy With PRPH2 Mutation.

    PubMed

    Gocho, Kiyoko; Akeo, Keiichiro; Itoh, Naoko; Kameya, Shuhei; Hayashi, Takaaki; Katagiri, Satoshi; Gekka, Tamaki; Ohkuma, Yasuhiro; Tsuneoka, Hiroshi; Takahashi, Hiroshi

    2016-12-01

    To report the clinical features of Japanese patients at Stage 1 and 2 of central areolar choroidal dystrophy (CACD). Five family members had comprehensive ophthalmic examinations including adaptive optics (AO) retinal imaging. Mutation analysis of the PRPH2 gene was performed by Sanger sequencing. The protocol conformed to the tenets of the Declaration of Helsinki and was approved by the institutional review board of The Jikei University School of Medicine. Four family members had a heterozygous PRPH2 mutation, p.R172Q; however, one member with a mutation did not show any ophthalmological abnormalities. Two patients had mild parafoveal retinal dystrophy and a reduction of cone density determined by AO analysis. The results indicate that the parafoveal cone photoreceptors can be affected even at the early stage of CACD. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:1115-1126.]. Copyright 2016, SLACK Incorporated.

  10. The use of field-inversion gel electrophoresis for deletion detection in Duchenne muscular dystrophy.

    PubMed Central

    Chen, J D; Denton, M J; Morgan, G; Pearn, J H; Mackinlay, A G

    1988-01-01

    Deletion is a common cause of Duchenne muscular dystrophy (DMD). Field-inversion gel electrophoresis, in conjunction with Southern blot hybridization, was used to detect large SfiI DNA fragments in the DMD locus. Two unrelated boys with DMD were found to have abnormal sized DNA fragments resulting from deletions. Some of the female relatives of these patients were also shown by this method to have deletions in the DMD locus. Images Figure 1 PMID:3358426

  11. Isolation of Genes Involved in Rac Induced Invasion and Metastasis of Breast Carcinoma Cells

    DTIC Science & Technology

    2001-08-01

    dystrophy kinase-related Cdc42-binding kinase acts 64 oetGPernCaL.adMcr,1..(20) Myotonic4dystrophyrkinaseoretatedCdc42-bindingekrnasezatson. The cell...kinase homologous to myotonic dystrophy kinase. EMBO J. J. Biol. Chem. 273, 5542-5548. 15, 1885-1893. 97. Fukata, Y., Oshiro, N., Kinoshita, N., Kawano... Becker , D., Williams, D.S., Thorpe, J., Fleming, J., Brown, S.D. and Steel, K.P.: A missense mutation in myosin VIIA prevents aminoglycoside accumulation

  12. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study.

    PubMed

    McDonald, Craig M; Henricson, Erik K; Abresch, Richard T; Duong, Tina; Joyce, Nanette C; Hu, Fengming; Clemens, Paula R; Hoffman, Eric P; Cnaan, Avital; Gordish-Dressman, Heather

    2018-02-03

    Glucocorticoid treatment is recommended as a standard of care in Duchenne muscular dystrophy; however, few studies have assessed the long-term benefits of this treatment. We examined the long-term effects of glucocorticoids on milestone-related disease progression across the lifespan and survival in patients with Duchenne muscular dystrophy. For this prospective cohort study, we enrolled male patients aged 2-28 years with Duchenne muscular dystrophy at 20 centres in nine countries. Patients were followed up for 10 years. We compared no glucocorticoid treatment or cumulative treatment duration of less than 1 month versus treatment of 1 year or longer with regard to progression of nine disease-related and clinically meaningful mobility and upper limb milestones. We used Kaplan-Meier analyses to compare glucocorticoid treatment groups for time to stand from supine of 5 s or longer and 10 s or longer, and loss of stand from supine, four-stair climb, ambulation, full overhead reach, hand-to-mouth function, and hand function. Risk of death was also assessed. This study is registered with ClinicalTrials.gov, number NCT00468832. 440 patients were enrolled during two recruitment periods (2006-09 and 2012-16). Time to all disease progression milestone events was significantly longer in patients treated with glucocorticoids for 1 year or longer than in patients treated for less than 1 month or never treated (log-rank p<0·0001). Glucocorticoid treatment for 1 year or longer was associated with increased median age at loss of mobility milestones by 2·1-4·4 years and upper limb milestones by 2·8-8·0 years compared with treatment for less than 1 month. Deflazacort was associated with increased median age at loss of three milestones by 2·1-2·7 years in comparison with prednisone or prednisolone (log-rank p<0·012). 45 patients died during the 10-year follow-up. 39 (87%) of these deaths were attributable to Duchenne-related causes in patients with known duration of glucocorticoids usage. 28 (9%) deaths occurred in 311 patients treated with glucocorticoids for 1 year or longer compared with 11 (19%) deaths in 58 patients with no history of glucocorticoid use (odds ratio 0·47, 95% CI 0·22-1·00; p=0·0501). In patients with Duchenne muscular dystrophy, glucocorticoid treatment is associated with reduced risk of losing clinically meaningful mobility and upper limb disease progression milestones across the lifespan as well as reduced risk of death. US Department of Education/National Institute on Disability and Rehabilitation Research; US Department of Defense; National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases; and Parent Project Muscular Dystrophy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Reviewing Large LAMA2 Deletions and Duplications in Congenital Muscular Dystrophy Patients.

    PubMed

    Oliveira, Jorge; Gonçalves, Ana; Oliveira, Márcia E; Fineza, Isabel; Pavanello, Rita C M; Vainzof, Mariz; Bronze-da-Rocha, Elsa; Santos, Rosário; Sousa, Mário

    2014-01-01

    Congenital muscular dystrophy (CMD) type 1A (MDC1A) is caused by recessive mutations in laminin-α2 (LAMA2) gene. Laminin-211, a heterotrimeric glycoprotein that contains the α2 chain, is crucial for muscle stability establishing a bond between the sarcolemma and the extracellular matrix. More than 215 mutations are listed in the locus specific database (LSDB) for LAMA2 gene (May 2014). A limited number of large deletions/duplications have been reported in LAMA2. Our main objective was the identification of additional large rearrangements in LAMA2 found in CMD patients and a systematic review of cases in the literature and LSDB. In four of the fifty-two patients studied over the last 10 years, only one heterozygous mutation was identified, after sequencing and screening for a frequent LAMA2 deletion. Initial screening of large mutations was performed by multiplex ligation-dependent probe application (MLPA). Further characterization implied several techniques: long-range PCR, cDNA and Southern-blot analysis. Three novel large deletions in LAMA2 and the first pathogenic large duplication were successfully identified, allowing a definitive molecular diagnosis, carrier screening and prenatal diagnosis. A total of fifteen deletions and two duplications previously reported were also reviewed. Two possible mutational "hotspots" for deletions may exist, the first encompassing exons 3 and 4 and second in the 3' region (exons 56 to 65) of LAMA2. Our findings show that this type of mutation is fairly frequent (18.4% of mutated alleles) and is underestimated in the literature. It is important to include the screening of large deletions/duplications as part of the genetic diagnosis strategy.

  14. Immunophenotypes of macular corneal dystrophy in India and correlation with mutations in CHST6.

    PubMed

    Sultana, Afia; Klintworth, Gordon K; Thonar, Eugene J-M A; Vemuganti, Geeta K; Kannabiran, Chitra

    2009-01-01

    To determine the immunophenotypes of macular corneal dystrophy (MCD) in Indian patients and to correlate them with mutations in the carbohydrate 6-sulfotransferase (CHST6) gene. Sixty-four patients from 53 families with MCD that were previously screened for mutations in CHST6 were included in an immunophenotype analysis. Antigenic keratan sulfate (AgKS) in serum as well as corneal tissue was evaluated in 31 families. Only cornea was evaluated in 11 families, and only serum was evaluated in 11 families. AgKS was detected in formalin-fixed, paraffin-embedded corneal sections by immunohistochemistry and in serum by ELISA using a monoclonal antibody against sulfated forms of KS in patients with MCD as well as normal controls. Analysis of corneal and/or serum AgKS disclosed MCD type I (27 families), MCD type IA (5 families), and MCD type II (3 families) in the cases studied. An additional 10 families were either MCD type I or MCD type IA since only serum AgKS data were available. Seven families manifested atypical immunophenotypes since the corneal AgKS expression was either of MCD type I or MCD type IA, but serum AgKS levels ranged from 19 ng/ml to 388 ng/ml. More than one immunophenotype was detected amongst siblings in two families. Each immunophenotype was associated with mutational heterogeneity in CHST6. MCD type I was the predominant immunophenotype in the Indian population studied followed by MCD type IA and then MCD type II. We detected further immunophenotypic heterogeneity by finding atypical patterns of AgKS reactivity in a subset of families. There were no simple correlations between immunophenotypes and specific mutations in CHST6, suggesting that factors other than CHST6 mutations may be contributing to the immunophenotypes in MCD.

  15. Clinical features of children and adults with a muscular dystrophy using powered indoor/outdoor wheelchairs: disease features, comorbidities and complications of disability.

    PubMed

    Frank, Andrew Oliver; De Souza, Lorraine H

    2018-05-01

    To describe the clinical features of electric powered indoor/outdoor wheelchair users with a muscular dystrophy, likely to influence optimal prescription; reflecting features of muscular dystrophies, conditions secondary to disability, and comorbidities impacting on equipment provision. Cross-sectional retrospective case note review of recipients of electric powered indoor/outdoor wheelchairs provided by a specialist regional wheelchair service. Data on demography, diagnostic/clinical, and wheelchair prescription were systematically extracted. Fifty-one men and 14 women, mean age 23.7 (range 10-67, s.d. 12.95) years, were studied. Forty had Duchenne muscular dystrophy, 22 had other forms of muscular dystrophy, and three were unclassified. Twenty-seven were aged under 19. Notable clinical features included problematic pain (10), cardiomyopathy (5), and ventilatory failure (4). Features related to disability were (kypho)scoliosis (20) and edema/cellulitis (3) whilst comorbidities included back pain (5). Comparison of younger with older users revealed younger users had more features of muscular dystrophy affecting electric powered chair provision (56%) whilst older users had more comorbidity (37%). Tilt-in-space was prescribed for 81% of users, specialized seating for 55% and complex controls for 16%. Muscular dystrophy users were prescribed electric powered indoor/outdoor chairs with many additional features reflecting the consequences of profound muscle weakness. In addition to facilitating independence and participation, electric powered indoor/outdoor chairs have major therapeutic benefits. Implications for rehabilitation Powered wheelchairs have therapeutic benefits in managing muscular dystrophy pain and weakness. The use of specialized seating needs careful consideration in supporting progressive muscle weakness and the management of scoliosis. Pain, discomfort, pressure risk, and muscle fatigue may be reduced by use of tilt-in-space.

  16. Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Manning, Jennifer; Kulbida, Rebecca; Rai, Prerana; Jensen, Lindsay; Bouma, Judith; Singh, Sanjay P; O'Malley, Dervla; Yilmazer-Hanke, Deniz

    2014-10-01

    Mutations in the structural protein dystrophin underlie muscular dystrophies characterized by progressive deterioration of muscle function. Dystrophin-deficient mdx mice are considered a model for Duchenne muscular dystrophy (DMD). Individuals with DMD are also susceptible to mood disorders, such as depression and anxiety. Therefore, the study objectives were to investigate the effects of the tricyclic antidepressant amitriptyline on mood, learning, central cytokine expression and skeletal muscle inflammation in mdx mice. Amitriptyline-induced effects (10 mg kg(-1) daily s.c. injections, 25 days) on the behaviour of mdx mice were investigated using the open field arena and tail suspension tests. The effects of chronic amitriptyline treatment on inflammatory markers were studied in the muscle and plasma of mdx mice, and mood-associated monoamine and cytokine concentrations were measured in the amygdala, hippocampus, prefrontal cortex, striatum, hypothalamus and midbrain. The mdx mice exhibited increased levels of anxiety and depressive-like behaviour compared with wild-type mice. Amitriptyline treatment had anxiolytic and antidepressant effects in mdx mice associated with elevations in serotonin levels in the amygdala and hippocampus. Inflammation in mdx skeletal muscle tissue was also reduced following amitriptyline treatment as indicated by decreased immune cell infiltration of muscle and lower levels of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the forelimb flexors. Interleukin-6 mRNA expression was remarkably reduced in the amygdala of mdx mice by chronic amitriptyline treatment. Positive effects of amitriptyline on mood, in addition to its anti-inflammatory effects in skeletal muscle, may make it an attractive therapeutic option for individuals with DMD. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  17. Instructional Constraints Faced by Learners with Muscular Dystrophy: A Case of Joytown Special Primary School, Thika, Kenya

    ERIC Educational Resources Information Center

    Wang'ang'a, Annrose Wanjiku; Wamocho, Franciscah Irangi; Kioy, Paul

    2015-01-01

    The purpose of this study was to investigate the instructional constraints facing learners with muscular dystrophy in Joy Town special primary school, Thika, Kenya. Descriptive design was used for this study. The target population were all the 20 learners suffering from muscular dystrophy from S.A Joy Town Special Primary School. The total target…

  18. Autonomic dysfunction in muscular dystrophy: a theoretical framework for muscle reflex involvement

    PubMed Central

    Smith, Scott A.; Downey, Ryan M.; Williamson, Jon W.; Mizuno, Masaki

    2014-01-01

    Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy. PMID:24600397

  19. At the Crossroads of Clinical and Preclinical Research for Muscular Dystrophy-Are We Closer to Effective Treatment for Patients?

    PubMed

    Gawlik, Kinga I

    2018-05-16

    Among diseases affecting skeletal muscle, muscular dystrophy is one of the most devastating and complex disorders. The term 'muscular dystrophy' refers to a heterogeneous group of genetic diseases associated with a primary muscle defect that leads to progressive muscle wasting and consequent loss of muscle function. Muscular dystrophies are accompanied by numerous clinical complications and abnormalities in other tissues that cause extreme discomfort in everyday life. The fact that muscular dystrophy often takes its toll on babies and small children, and that many patients die at a young age, adds to the cruel character of the disease. Clinicians all over the world are facing the same problem: they have no therapy to offer except for symptom-relieving interventions. Patients, their families, but also clinicians, are in urgent need of an effective cure. Despite advances in genetics, increased understanding of molecular mechanisms underlying muscle disease, despite a sweeping range of successful preclinical strategies and relative progress of their implementation in the clinic, therapy for patients is currently out of reach. Only a greater comprehension of disease mechanisms, new preclinical studies, development of novel technologies, and tight collaboration between scientists and physicians can help improve clinical treatment. Fortunately, inventiveness in research is rapidly extending the limits and setting new standards for treatment design. This review provides a synopsis of muscular dystrophy and considers the steps of preclinical and clinical research that are taking the muscular dystrophy community towards the fundamental goal of combating the traumatic disease.

  20. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I.

    PubMed

    Thomas, Paul J; Xu, Rui; Martin, Paul T

    2016-09-01

    Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Characteristics of Japanese Patients with Becker Muscular Dystrophy and Intermediate Muscular Dystrophy in a Japanese National Registry of Muscular Dystrophy (Remudy): Heterogeneity and Clinical Variation.

    PubMed

    Mori-Yoshimura, Madoka; Mitsuhashi, Satomi; Nakamura, Harumasa; Komaki, Hirofumi; Goto, Kanako; Yonemoto, Naohiro; Takeuchi, Fumi; Hayashi, Yukiko K; Murata, Miho; Takahashi, Yuji; Nishino, Ichizo; Takeda, Shin'ichi; Kimura, En

    2018-01-01

    Obtaining an adequate number of patients to conduct a natural history study for rare diseases such as Becker muscular dystrophy (BMD) is difficult. The present study used data from Remudy, a national registry for neuromuscular diseases in Japan, to conduct a phenotypic analysis of BMD. We analyzed Remudy data of participants with dystrophinopathy. All participants who were aged 17 and older and were ambulant at age 13 were included in this study. Participants were divided into two groups: those with BMD who were ambulant at age 17, and those with intermediate muscular dystrophy (IMD) who lost ambulation by age 17. Frequent mutations were analyzed by age at ambulation, cardiopulmonary function, and genotype. For clinical comparisons, participants who were administered steroids were excluded. From July 2009 through September 2015, 192 participants had registered with Remudy. Mean participant age was 34.80±13.3 (range, 17-78) years, and 52.1% of participants were ambulant. Of the entire study population, 50.5% had cardiomyopathy and 35.9% had respiratory failure. Three participants required invasive ventilation and 30 required non-invasive ventilation. Nineteen of the 30 non-invasive ventilator users were part-time users. In total, 138 (71.9%) had BMD and 54 (28.1%) had IMD. The most frequent mutation was ex45_ex47del (36 participants). Among participants with frequent in-frame mutations, those with the ex45-49del mutation lost their ambulation earlier than those with the ex45_ex47del mutation. A total of 67 different exon deletions and duplications were identified in the study population. We clarified the clinical phenotypes of Japanese patients with BMD/IMD using data from Remudy. Our results suggest that not only IMD but also BMD are associated with risk of respiratory dysfunction.

  2. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings

    PubMed Central

    Suneja, B; Suneja, ES; Chandna, P

    2015-01-01

    ABSTRACT Duchenne muscular dystrophy (DMD) is an recessive X-linked mediated, musculoskeletal disorder that affects only males. It is the most common and severe form of muscular dystrophy where there is failure to manufacture dystrophin. Clinically, it is characterized by progressive muscle wasting eventually leading to premature death. This case report describes the genetic, oral and systemic findings in two cases of DMD in male siblings. How to cite this article: Suneja B, Suneja ES, Adlakha VK, Chandna P. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings. Int J Clin Pediatr Dent 2015;8(2):163-165. PMID:26379389

  3. Cholinomimetic teratogens. IV. Effects of the genotype for muscular dystrophy in chickens.

    PubMed

    Landauer, W; Clark, E M; Larner, M M

    1976-12-01

    Embryos of a family of chickens homozygous for muscular dystrophy (md/md) reacted with a higher incidence of malformations to treatment with carbachol than did White Leghorn embryos. The same difference in response of embryos from the two stocks occurred after treatment with sulfanilamide. Embryos of reciprocal crosses between these two stocks differed greatly, however, in their response to carbachol, F1 embryos from dystrophic hens producing a much higher incidence of malformations than did those from Leghorn hens. In contrast, both F1 sibs reacted similarly to sulfanilamide, the teratogenic effects being intermediate between those of embryos from the parent stocks.

  4. Contact lens fitting in a patient with Alport syndrome and posterior polymorphous corneal dystrophy: a case report.

    PubMed

    Rosa, Juliana Maria da Silva; Andrade Sobrinho, Marcelo Vicente de; Lipener, César

    2016-02-01

    Alport Syndrome is a hereditary disease that is caused by a gene mutation and affects the production of collagen in basement membranes; this condition causes hemorrhagic nephritis associated with deafness and ocular changes. The X-linked form of this disease is the most common and mainly affects males. Typical ocular findings are dot-and-fleck retinopathy, anterior lenticonus, and posterior polymorphous corneal dystrophy. Some cases involving polymorphous corneal dystrophy and corneal ectasia have been previously described. Here we present a case report of a 33-year-old female with Alport syndrome, posterior polymorphous corneal dystrophy, and irregular astigmatism, whose visual acuity improved with a rigid gas permeable contact lens.

  5. Autoimmune polyglandular syndromes: interplay between the immune and the endocrine systems leading to a diverse set of clinical diseases and new insights into immune regulation.

    PubMed

    Lebovitz, Harold E

    2013-06-01

    During the last 50 years, three major classes of autoimmune polyglandular syndromes (APSs) have been defined, and their characteristics and heritability have been delineated. Simultaneously, studies of the immunologic bases of these syndromes provided fundamental information in understanding immune regulation. Genetic analyses of patients and their families with APS type 1 (autoimmune polyendocrinopathy candidiasis, ectodermal dystrophy) identified the autoimmune regulator (AIRE) gene, which drives the expression of peripheral tissue-specific antigens in thymic cells and is critical in the development of self-tolerance. Mutations in this gene cause APS type 1. In contrast, studies in APS type 2 have been instrumental in understanding the role of human leukocyte antigen type II and related molecules in the pathogenesis of polygenetic autoimmune diseases such as type 1A diabetes. Immune dysfunction polyendocrinopathy, enteropathy, X-linked syndrome, which is caused by mutations in the forkhead box P3 gene, has been a model for studying regulatory T cell biology. The APSs epitomize the synergies that the merger of clinical and basic science can achieve. This is the environment that George Eisenbarth was able to create at the Barbara Davis Center for Diabetes.

  6. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein.

    PubMed

    Ameziane-Le Hir, Sarah; Paboeuf, Gilles; Tascon, Christophe; Hubert, Jean-François; Le Rumeur, Elisabeth; Vié, Véronique; Raguénès-Nicol, Céline

    2016-07-26

    Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe.

  7. Adult patient with Becker dystrophy undergoing orthopedic surgery: an anesthesia challenge.

    PubMed

    Parish, Masoud; Farzin, Haleh

    2018-01-01

    Muscular dystrophies are considered to be a series of neuromuscular diseases with genetic causes and are characterized by progressive muscle weakness and degeneration of the skeletal muscle. The case of an adult man with Becker dystrophy referred for repair of the patella tendon tearing and patella fracture is described. He underwent successful surgery using total intravenous anesthesia without any complications.

  8. [Posterior polymorphous dystrophy, case report and literature review].

    PubMed

    Mendoza-Adam, G; Hernandez-Camarena, J C; Valdez-García, J E

    2015-09-01

    Posterior Polymorphous Dystrophy (DPP) is a rare posterior corneal dystrophy that is genetically transmitted as autosomal dominant. Corneal structures affected in this dystrophy are Descemet membrane and the endothelium. A case is presented on a 47 years old woman with no relevant history, with typical findings of DPP (vesicular and band lesions at the endothelium and posterior Descemet). To our knowledge there are no reported cases of DPP in Latin-American patients in the literature. The clinical manifestations in our patient were found to be very similar to the cases reported in other populations. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    PubMed

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  10. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus.

    PubMed

    Torres, Manuel; Jimenez, Sebastian; Sanchez-Varo, Raquel; Navarro, Victoria; Trujillo-Estrada, Laura; Sanchez-Mejias, Elisabeth; Carmona, Irene; Davila, Jose Carlos; Vizuete, Marisa; Gutierrez, Antonia; Vitorica, Javier

    2012-11-22

    Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer's patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months) and aged (18 months) PS1(M146L)/APP(751sl) transgenic mice. Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. A progressive age-dependent cytoskeletal pathology along with a reduction of lysosomal and, in minor extent, proteasomal activity could be directly implicated in the progressive accumulation of APP derived fragments (and Abeta peptides) in parallel with the increase of BACE-1 and gamma-secretase activities. This retard in the APP metabolism seemed to be directly implicated in the synaptic Abeta accumulation and, in consequence, in the pathology progression between synaptically connected regions.

  11. Propofol-induced violent coughing in a patient with Becker's muscular dystrophy

    PubMed Central

    Jain, Amit

    2011-01-01

    Propofol anesthesia is often associated with decreased incidence of gagging, coughing or laryngospasm, and provides intense suppression on airway reflex during tracheal intubation and laryngeal mask airway insertion. Propofol pretreatment is also effective in reducing the occurrence of opioid-induced coughing. These benefits are often attributed to bronchodilator and sedative effects of propofol. However, severe coughing following sedative doses of 1% propofol has not been reported so far. We report a rare case of violent coughing following low-dose propofol infusion in a patient with Becker's muscular dystrophy. PMID:21845012

  12. Identifying mutations in Tunisian families with retinal dystrophy.

    PubMed

    Habibi, Imen; Chebil, Ahmed; Falfoul, Yosra; Allaman-Pillet, Nathalie; Kort, Fedra; Schorderet, Daniel F; El Matri, Leila

    2016-11-22

    Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.

  13. Physiotherapy, based on the Bobath concept, may influence the gait pattern in persons with limb-girdle muscle dystrophy: a multiple case series study.

    PubMed

    Oygard, Kjellaug; Haestad, Helge; Jørgensen, Lone

    2011-03-01

     There are few studies on possible effects of physiotherapy for adults with muscular dystrophy. The aim of this study was to examine if treatment based on the Bobath concept may influence specific gait parameters in some of these patients.   A single-subject experimental design with A-B-A-A phases was used, and four patients, three with limb-girdle muscular dystrophy (LGMD) and one with fascioscapulohumeral muscular dystrophy (FSHD), were included. The patients had 1 hour of individually tailored physiotherapy at each working day for a period of 3 weeks. Step length, step width and gait velocity were measured during the A-B-A-A phases by use of an electronic walkway. Walking distance and endurance were measured by use of the '6 minute walk test'.  . The three LGMD patients, who initially walked with a wide base of support, had a narrower, velocity-adjusted step width after treatment, accompanied with the same or even longer step length. These changes lasted throughout follow-up. Moreover, two of the patients were able to walk a longer distance within 6 minutes after the treatment period. The fourth patient (with FSHD) had a normal step width at baseline, which did not change during the study.   The results indicate that physiotherapy treatment based on the Bobath concept may influence the gait pattern in patients with LGMD. However, in order to evaluate the effectiveness of physiotherapy to patients with muscular dystrophies, we call for larger studies and controlled trials. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Muscle wasting in myotonic dystrophies: a model of premature aging.

    PubMed

    Mateos-Aierdi, Alba Judith; Goicoechea, Maria; Aiastui, Ana; Fernández-Torrón, Roberto; Garcia-Puga, Mikel; Matheu, Ander; López de Munain, Adolfo

    2015-01-01

    Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.

  15. Mechanisms and management of the heart in Myotonic Dystrophy

    PubMed Central

    McNally, Elizabeth M.; Sparano, Dina

    2015-01-01

    Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy and is caused by expansion of short nucleotide repeats that, in turn, produce toxic RNA aggregates within cells. DM is multisystemic, and the heart is primary site of pathology. DM patients exhibit cardiac conduction disorders including atrial fibrillation, atrio-ventricular heart block and ventricular arrhythmias. DM patients are also at risk for cardiomyopathy and congestive heart failure. Myotonic dystrophy is also characterized by myotonia, muscle weakness, and profound fatigue. The management of these symptoms requires input from the cardiologist and a team approach to minimize the debilitating aspects of the disorder and optimize cardiac function. PMID:21642660

  16. Sarcoidosis: nail dystrophy without underlying bone changes.

    PubMed

    Wakelin, S H; James, M P

    1995-06-01

    Sarcoidosis is a chronic granulomatous disease of unknown origin that affects multiple organs and may present with a variety of skin lesions. Involvement of the nails is rare and almost invariably associated with underlying bone disease. We describe a patient with sarcoid nail dystrophy in whom this diagnosis was confirmed by a proximal nail fold biopsy. Radiologic investigation did not show evidence of an associated bone dystrophy in this case.

  17. Restoration of Vision in the pde6β-deficient Dog, a Large Animal Model of Rod-cone Dystrophy

    PubMed Central

    Petit, Lolita; Lhériteau, Elsa; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Guihal, Caroline; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2012-01-01

    Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment. PMID:22828504

  18. Absence of integrin alpha 7 causes a novel form of muscular dystrophy.

    PubMed

    Mayer, U; Saher, G; Fässler, R; Bornemann, A; Echtermeyer, F; von der Mark, H; Miosge, N; Pöschl, E; von der Mark, K

    1997-11-01

    Integrin alpha 7 beta 1 is a specific cellular receptor for the basement membrane protein laminin-1 (refs 1,2), as well as for the laminin isoforms -2 and -4 (ref. 3). The alpha 7 subunit is expressed mainly in skeletal and cardiac muscle and has been suggested to be involved in differentiation and migration processes during myogenesis. Three cytoplasmic and two extracellular splice variants that have been described are developmentally regulated and expressed in different sites in the muscle. In adult muscle, the alpha 7A and alpha 7B subunits are concentrated in myotendinous junctions but can also be detected in neuromuscular junctions and along the sarcolemmal membrane. To study the potential involvement of alpha 7 integrin, during myogenesis and its role in muscle integrity and function, we generated a null allele of the alpha 7 gene (Itga7) in the germline of mice by homologous recombination in embryonic stem (ES) cells. Surprisingly, mice homozygous for the mutation are viable and fertile, indicating that the alpha 7 beta 1 integrin is not essential for myogenesis. However, histological analysis of skeletal muscle revealed typical symptoms of a progressive muscular dystrophy starting soon after birth, but with a distinct variability in different muscle types. The observed histopathological changes strongly indicate an impairment of function of the myotendinous junctions. These findings demonstrate that alpha 7 beta 1 integrin represents an indispensable linkage between the muscle fibre and the extracellular matrix that is independent of the dystrophin-dystroglycan complex-mediated interaction of the cytoskeleton with the muscle basement membrane.

  19. Restoration of vision in the pde6β-deficient dog, a large animal model of rod-cone dystrophy.

    PubMed

    Petit, Lolita; Lhériteau, Elsa; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Guihal, Caroline; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2012-11-01

    Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.

  20. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial

    PubMed Central

    Raman, Subha V; Hor, Kan N; Mazur, Wojciech; Halnon, Nancy J; Kissel, John T; He, Xin; Tran, Tam; Smart, Suzanne; McCarthy, Beth; Taylor, Michael D; Jefferies, John L; Rafael-Fortney, Jill A; Lowe, Jeovanna; Roble, Sharon L; Cripe, Linda H

    2015-01-01

    Summary Background Cardiomyopathy is a leading cause of death in patients with Duchenne muscular dystrophy and myocardial damage precedes decline in left ventricular systolic function. We tested the efficacy of eplerenone on top of background therapy in patients with Duchenne muscular dystrophy with early myocardial disease. Methods In this randomised, double-blind, placebo-controlled trial, boys from three centres in the USA aged 7 years or older with Duchenne muscular dystrophy, myocardial damage by late gadolinium enhancement cardiac MRI and preserved ejection fraction received either eplerenone 25 mg or placebo orally, every other day for the first month and once daily thereafter, in addition to background clinician-directed therapy with either angiotensin-converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB). Computer-generated randomisation was done centrally using block sizes of four and six, and only the study statistician and the investigational pharmacy had the preset randomisation assignments. The primary outcome was change in left ventricular circumferential strain (Ecc) at 12 months, a measure of contractile dysfunction. Safety was established through serial serum potassium levels and measurement of cystatin C, a non-creatinine measure of kidney function. This trial is registered with ClinicalTrials.gov, number NCT01521546. Findings Between Jan 26, 2012, and July 3, 2013, 188 boys were screened and 42 were enrolled. 20 were randomly assigned to receive eplerenone and 22 to receive placebo, of whom 20 in the eplerenone group and 20 in the placebo group completed baseline, 6-month, and 12-month visits. After 12 months, decline in left ventricular circumferential strain was less in those who received eplerenone than in those who received placebo (median ΔEcc 1.0 [IQR 0.3–2.2]vs2.2 [1.3–3.1]; p=0.020). Cystatin C concentrations remained normal in both groups, and all non-haemolysed blood samples showed normal potassium concentrations. One 23-year-old patient in the placebo group died of fat embolism, and another patient in the placebo group withdrew from the trial to address long-standing digestive issues. All other adverse events were mild: short-lived headaches coincident with seasonal allergies occurred in one patient given eplerenone, flushing occurred in one patient given placebo, and anxiety occurred in another patient given placebo. Interpretation In boys with Duchenne muscular dystrophy and preserved ejection fraction, addition of eplerenone to background ACEI or ARB therapy attenuates the progressive decline in left ventricular systolic function. Early use of available drugs warrants consideration in this population at high risk of cardiac death, but further studies are needed to determine the effect of combination cardioprotective therapy on event-free survival in Duchenne muscular dystrophy. Funding BallouSkies, Parent Project for Muscular Dystrophy, US National Center for Advancing Translational Sciences, and US National Institutes of Health. PMID:25554404

Top