Sample records for e layer

  1. Midlatitude sporadic-E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1976-01-01

    The partially transparent echo from midlatitude sporadic E layers was recorded by ionosondes between the blanketing frequency and the maximum frequency. The theory that the midlatitude sporadic E layers are not uniform in the horizontal plane but contain localized regions of high electron density was evaluated using data obtained by incoherent scatter radar and found to provide a satisfactory explanation. The main features of midlatitude sporadic E layers are consistent with the convergence of metallic ions as described by the wind shear theory applied to gravity waves and tides. The interference of gravity waves with other gravity waves and tides can be recognized in the altitudes of occurrence and the structure of the layers. Small scale horizontal irregularities are attributed in some cases to critical level effects and in others to fluid instabilities. The convergence of a meteor trail can, under some circumstances, account for localized enhancement of the electron density in the layer.

  2. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  3. Midlatitude Sporadic E Layers: Physical mechanisms and observational characteristics

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos

    The sporadic E and its abbreviation Es refer to rather thin layers of metallic ions which form in the dynamo region of the Earth’s ionosphere, mostly between 100 and 130 km, where ion motion is controlled by collisions with the neutrals, making them move with the local winds, while electrons are strongly magnetized. The physics of sporadic E relies on the Windshear theory, in which vertical shears in the horizontal wind can form layers of long-lived metallic ions through the combined action of ion-neutral collisional coupling and geomagnetic Lorentz forcing. Once formed, the layers tend to gradually descend with time downwards below 100 km where they eventually disappear because of 3-body recombination that becomes increasingly effective in depleting them of their plasma. This is a comprehensive presentation on sporadic E, a topic which has been researched extensively over many decades. First, it reviews the basics of windshear theory and its plasma convergence mechanisms and then updates our physical understanding through a synthesis of key observational characteristics and findings. The emphasis is placed on the wind shear control of the diurnal and sub-diurnal variability and altitude descent of sporadic E layers and the key role behind this of atmospheric tides, which also drive the formation of upper E region descending intermediate layers (IDL). The evidence suggests that IDLs constitute an integral part within a broader sporadic E layer system. The presentation summarizes observations that establish a role also for the planetary waves which, through the modulation of tides, affect sporadic E layer occurrence and longer-term variability. In addition, findings are presented that provide a better physical insight in relation with the seasonal dependence and the global occurrence of sporadic E layers. The observational facts imply that sporadic E is controlled macroscopically mostly by tidal and planetary wind atmospheric dynamics, the Earth’s magnetic field

  4. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  5. Influence of Sporadic E layers on Mesospheric Na and Fe Layers over Arecibo

    NASA Astrophysics Data System (ADS)

    Raizada, S.; Tepley, C. A.; Zhou, Q.; Sarkhel, S.; Mathews, J. D.; Aponte, N.; Kerr, R.

    2014-12-01

    Arecibo offers unique opportunity to investigate the structure of the mesospheric metal layers and their response to Sporadic E as observed by the incoherent scatter radar data. Previous studies have shown higher occurrences of sporadic activity in the neutral Fe layers as compared to Na at mid-latitudes. Other studies demonstrated that Sporadic Na (NaS) layers are more common at low and high latitudes as compared to FeS. It is important to note that case studies based on a few nights of observations are significant as they can shed more light on factors that are important on short term scales. These efforts can also help in evaluation of the role played by these factors in the climatological or global studies. In this study, we have used two adjacent nights of simultaneous Na and Fe data obtained using resonance lidars at Arecibo, while the co-located Incoherent Scatter Radar (ISR) provides information about Sporadic E (ES). On both the nights (17 and 18 March 2004) ES was observed with electron densities exceeding 3000 electrons/cc. Some interesting observations are worth noting: The Fe main layer (below 90 km) was stronger than the corresponding sporadic layer around 95 km. However, Na data displayed a weaker main layer below 90 km with stronger NaS activity. Hence, the ratio of densities determined within layers of 3 km thickness centered at 97 km and at 87 km are less than 1 for Fe and exceeds 1 in the case of Na. A correlation analysis between Na/Ne and Fe/Ne also displays dissimilarities in the 94-100 km altitude range. An onsite all-sky imager recorded similar wave activities on both the nights with both ripple and band type structures that were observed in the 557.7 nm airglow. We will discuss the dissimilar response of Na and Fe to Sporadic E activity in relation to neutralization lifetimes of their respective ions and their sensitivity to temperatures.

  6. Nano-decoration of the Hemagglutinating Virus of Japan envelope (HVJ-E) using a layer-by-layer assembly technique.

    PubMed

    Okada, Takaharu; Uto, Koichiro; Sasai, Masao; Lee, Chun Man; Ebara, Mitsuhiro; Aoyagi, Takao

    2013-06-18

    In this study, we created a nanoscale layer of hyaluronic acid (HA) on the inactivated Hemagglutinating Virus of Japan envelope (HVJ-E) via a layer-by-layer (LbL) assembly technique for CD-44 targeted delivery. HVJ-E was selected as the template virus because it has shown a tumor-suppressing ability by eliciting inflammatory cytokine production in dendritic cells. Although it has been required to increase the tumor-targeting ability and reduce nonspecific binding because HVJ-E fuses with virtually all cells and induces hemagglutination in the bloodstream, complete modifications of single-envelope-type viruses with HA have been difficult. Therefore, we studied the surface ζ potential of HVJ-E at different pH values and carefully examined the deposition conditions for the first layer using three cationic polymers: poly-L-lysine (PLL), chitosan (CH), and glycol chitosan (GC). GC-coated HVJ-E particles showed the highest disperse ability under physiological pH and salt conditions without aggregation. An HA layer was then prepared via alternating deposition of HA and GC. The successive decoration of multilayers on HVJ-E has been confirmed by dynamic light scattering (DLS), ζ potentials, and transmission electron microscopy (TEM). An enzymatic degradation assay revealed that only the outermost HA layer was selectively degraded by hyaluronidase. However, entire layers were destabilized at lower pH. Therefore, the HA/GC-coated HVJ-E describe here can be thought of as a potential bomb for cancer immunotherapy because of the ability of targeting CD44 as well as the explosion of nanodecorated HA/GC layers at endosomal pH while preventing nonspecific binding at physiological pH and salt conditions such as in the bloodstream or normal tissues.

  7. Case study of simultaneous observations of sporadic sodium layer, E-region field-aligned irregularities and sporadic E layer at low latitude of China

    NASA Astrophysics Data System (ADS)

    Xie, H. Y.; Ning, B. Q.; Zhao, X. K.; Hu, L. H.

    2017-03-01

    Using the Na lidar at Haikou (20.0°N, 110.3°E), the VHF coherent radar and the digital ionosonde both at Sanya (18.4°N, 109.6°E), cases of simultaneous observations of sporadic sodium layer (SSL), E-region field-aligned irregularities (FAI) and sporadic E layer (Es) in the mesosphere and lower thermosphere (MLT) region at low latitude of China are studied. It is found that SSL occurs simultaneously or follows the enhancement of Es and FAI. The Es, FAI and SSL descend slowly with time which is mostly controlled by the diurnal tide (DT). Besides, the interaction of gravity wave (GW) with tides can cause oscillations in FAI and SSL. Our observations support the neutralization of ions for SSL formation: when the metallic ions layer descents to the altitudes where models predict, the sodium ions convert rapidly to atomic Na that may form an SSL event. Moreover, the SSL peak density will increase (decrease) in the convergence (divergence) vertical shear region of zonal wind.

  8. A comparative sporadic-E layer study between two mid-latitude ionospheric stations

    NASA Astrophysics Data System (ADS)

    Pietrella, M.; Pezzopane, M.; Bianchi, C.

    2014-07-01

    Hourly systematic measurements of the highest frequency reflected by the sporadic-E layer (foEs) recorded from January 1976 to June 2009 at the ionospheric stations of Rome (Italy, 41.8°N, 12.5°E) and Gibilmanna (Italy, 37.9°N, 14.0°E) were considered to carry out a comparative study between the sporadic E layer (Es) over Rome and Gibilmanna. Different statistical analysis were performed taking into account foEs observations near the periods of minimum and maximum solar activity. The results reveal that: (1) independently from the solar activity, Es develops concurrently over extended regions in space, instead of being a spatially limited layer which is transported horizontally by neutral winds over a larger area; especially during summer months, when an Es layer is present at Rome, there is a high probability that an Es layer is also present over Gibilmanna, and vice versa; (2) Es layer lifetimes of 1-5 h were found; in particular, Es layers with lifetimes of 5 h both over Gibilmanna and Rome are observed with highest percentages of occurrence in summer ranging between 80% and 90%, independently from the solar activity; (3) latitudinal effects on Es layer occurrence emerge mostly for low solar activity during winter, equinoctial, and summer months, when Es layers are detected more frequently over Gibilmanna rather than Rome; (4) when the presence of an Es layer over Rome and Gibilmanna is not simultaneous, Es layer appearance both over Rome and Gibilmanna confirms to be a locally confined event, because drifting phenomena from Rome to Gibilmanna or vice versa have not been emphasized.

  9. Automatic layer segmentation of H&E microscopic images of mice skin

    NASA Astrophysics Data System (ADS)

    Hussein, Saif; Selway, Joanne; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    Mammalian skin is a complex organ composed of a variety of cells and tissue types. The automatic detection and quantification of changes in skin structures has a wide range of applications for biological research. To accurately segment and quantify nuclei, sebaceous gland, hair follicles, and other skin structures, there is a need for a reliable segmentation of different skin layers. This paper presents an efficient segmentation algorithm to segment the three main layers of mice skin, namely epidermis, dermis, and subcutaneous layers. It also segments the epidermis layer into two sub layers, basal and cornified layers. The proposed algorithm uses adaptive colour deconvolution technique on H&E stain images to separate different tissue structures, inter-modes and Otsu thresholding techniques were effectively combined to segment the layers. It then uses a set of morphological and logical operations on each layer to removing unwanted objects. A dataset of 7000 H&E microscopic images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm. Experimental results examined by domain experts have confirmed the viability of the proposed algorithms.

  10. Sporadic E ionization layers observed with radar imaging and ionospheric modification

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Munk, J.; McCarrick, M.

    2014-10-01

    Sporadic E ionization layers have been observed in the daytime subauroral ionospheric E layer by a 30 MHz radar in Alaska. The radar detects coherent backscatter from meter-scale field-aligned plasma density irregularities. The irregularities were generated by ionospheric modification—by the emission of strong HF electromagnetic waves directly beneath the layers—making the layers visible to the radar. Aperture-synthesis methods are used to generate imagery of the layers from the radar data. The layers are patchy, with patches organized along fronts spaced by tens of kilometers and propagating slowly toward the southwest. Similar, naturally occurring layers are commonly observed at middle latitudes at night in the absence of ionospheric modification. That the patchy layers can be found at high magnetic latitudes during the day argues that they are most likely produced through the interaction of the ionospheric layer with neutral atmospheric waves and instabilities. Attenuation of the radar echoes when the HF emission frequency exceeded the third harmonic of the electron gyrofrequency was observed and is discussed.

  11. Magnetic eta index and the ability to forecast sporadic E layer appearance

    NASA Astrophysics Data System (ADS)

    Dziak-Jankowska, Beata; Stanislawska, Iwona; Pozoga, Mariusz; Tomasik, Lukasz; Ernst, Tomasz

    2012-07-01

    We analysed the correlation of the changes of the magnetic vertical component with the ionospheric deviations from monthly median of the E layer characteristics. Promising results indicate that the eta parameter can be used to predict sporadic E layer during magnetically quiet days. Our previous work concern the data from only one year - 2004. During the descending phase of solar cycle in 2004 there was not numerous amount of quiet days. We extend our research to other years starting from 1996 and focusing on 2007 - 2009, years of the prolonged solar minimum. The analysis shows that under magnetically quiet circumstances the magnetic index eta indicates large magnetic disturbance, especially in vertical component when other magnetic indices inform about quiet magnetic conditions. The results indicate that the increase of the magnetic eta index (the ratio of the variations of vertical component of the external magnetic field to the horizontal component) is associated with the emergence of sporadic E layer or with increase of foEs critical frequency of sporadic E layer. The appearance of sporadic E layer followed 1-2 h after growth of magnetic index eta. An important conclusion is that the analysis of the hourly ionospheric data does not give 100% correlation between the increase of eta and the emergence of Es layer, however, studies of dense measurement data show that the correlation is almost 100%. An advantage of the eta index is the fact that after eliminating the effect of currents induced within the Earth, eta index bring independent and meaningful information on the system of current in the ionosphere. Hence, the eta index could be an important element of the ionosphere monitoring and can be used to predict such local phenomenon like the appearance of the sporadic E layer.

  12. The Role of Iron In Sporadic E Layers

    NASA Astrophysics Data System (ADS)

    Vondrak, T.; Woodcock, K. R. I.; Plane, J. M. C.

    Sporadic E layers in the lower thermosphere are mostly composed of metallic ions, of which Fe+ is the most abundant. Because dielectric recombination (Fe+ + elec- tron) is very slow, the lifetime of Fe+ above about 100 km is at least several days. However, below this height molecular ions such as FeO+, FeO2+ and FeN2+ form in- creasingly rapidly through reactions with O3, O2 and N2, respectively. These undergo rapid dissociative recombination with electrons, causing Fe+ to be neutralised increas- ingly rapidly as a sporadic E layer descends. Indeed, this is the most likely mechanism for the formation of the sporadic neutral Fe layers that are observed by lidar. However, atomic O plays a very important role in reducing these molecular ions back to Fe+, competing with dissociative recombination and thus slowing the rate at which Fe+ is neutralised and a sporadic E layer dissipates. This paper will discuss a laboratory and modelling study of the reactions of FeO+, FeO2+ and FeN2+ with atomic O. These reactions were studied (for the first time) in a fast flow tube, using the pulsed laser ablation of a rotating iron rod as the source of Fe+ ions in the upstream section of the tube. Reactants were then added to produce molecular ions, and atomic O further downstream through a movable injector. Fe+ and the molecular ions were detected at the downstream end of the tube using a two-stage quadrupole mass spectrometer. The spectroscopy of the FeO+ ion, observed by laser induced fluorescence, will also be discussed as a candidate for future ground-based lidar studies of the ion chemistry of the lower thermosphere.

  13. Features of the amplitude-height-frequency characteristics of midlatitude sporadic-E layer

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2012-07-01

    At early investigation of an ionosphere the vertical pulse sounding was without separation magnetoionic components and such conditions allowed to observe interferential beatings or polarized fading over frequencies where traces of various magnetoionic component was crossing (overlapping). The beatings in F layer traces are often observed and their origin easily are explain by an interference o - and x-mode whereas in sporadic-E layer traces even observability of beatings of o- and x-modes is in doubt. Absence of experimental evidences of beatings is explain that measurements did not manage to be performed over the necessary time moment because of randomness and a rarity of occurrence high-intensity sporadic-E layers (without properties of scattering on small scale irregularities) and because of high labour input at recording and processing of amplitude-frequency characteristics. The direct observation of interferential beatings became problematic when ionosondes with separations of magnetoionic components appeared. Moreover because of relative vicinity of gyro and background plasma frequencies and also the steep electron profile gradient the beatings in sporadic-E traces should occur between two o-modes because in typical diurnal low-intensity sporadic-E layers (foEs<5MHz) x-mode will be strongly absorbed and the steep gradient on the bottom of sporadic-E layer will strengthen magnetoionic coupling (between o- and x-modes) and lead occurrence of so-called z-mode. The z-mode (extraordinary mode with ordinary polarization) reflected in higher height again takes the form of ordinary mode after passage of height of reflection of ordinary mode and interferes with ordinary mode. However our observations show that beating in sporadic-E traces mostly occur because of interference about o- and x-modes. For detailed research of interference conditions the approximation of width of interference fringes (distance between consecutive minima in interference pattern) as a

  14. Electron density modification in ionospheric E layer by inserting fine dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.

    2015-02-15

    In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less

  15. Thunderstorm related variations of the ionospheric sporadic E layer over Rome

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Scotto, Carlo; Pietrella, Marco

    2013-04-01

    Meteorological events in the lower atmosphere can affect the ionosphere by electromagnetic and mechanical processes. One type of the latter ones is the internal atmospheric gravity waves (AGWs) which can often be generated by thunderstorms. According to a Superposed Epoch Analyses (SEA) using the time series of the critical frequency (foEs) and virtual height (h'Es) of the sporadic E layer and WWLLN (World Wide Lightning Location Network) lightning data over the ionospheric station of Rome (41.9° 12.5°) there is a statistically significant decrease in the foEs of the sporadic E layer after the time of the lightnings. This may indicate a sudden decrease in the electron density of the sporadic E layer associated to lightnings. In order to understand the physical explanation for this phenomenon further studies are performed as follows: a SEA for different seasons and for daytime - nightime lightnings separately. Direction of arrival of thunderstorms is also taken into account.

  16. Ion Layer Separation and Equilibrium Zonal Winds in Midlatitude Sporadic E

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kane, T. J.; Pfaff, R. F.; Bounds, S. R.

    2000-01-01

    In-situ observations of a moderately strong mid-latitude sporadic-E layer show a separation in altitude between distinct sublayers composed of Fe(+), Mg(+), and NO(+). From these observations it is possible to estimate the zonal wind field consistent with diffusive equilibrium near the altitude of the layer. The amplitude of the zonal wind necessary to sustain the layer against diffusive effects is less than 10 meters per second, and the vertical wavelength is less than 10 km.

  17. Comparison of Observations of Sporadic-E Layers in the Nighttime and Daytime Mid-Latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Clemmons, J.; Larsen, M.; Kudeki, E.; Franke, S.; Urbina, J.; Bullett, T.

    2012-01-01

    A comparison of numerous rocket experiments to investigate mid-latitude sporadic-E layers is presented. Electric field and plasma density data gathered on sounding rockets launched in the presence of sporadic-E layers and QP radar echoes reveal a complex electrodynamics including both DC parameters and plasma waves detected over a large range of scales. We show both DC and wave electric fields and discuss their relationship to intense sporadic-E layers in both nighttime and daytime conditions. Where available, neutral wind observations provide the complete electrodynamic picture revealing an essential source of free energy that both sets up the layers and drives them unstable. Electric field data from the nighttime experiments reveal the presence of km-scale waves as well as well-defined packets of broadband (10's of meters to meters) irregularities. What is surprising is that in both the nighttime and daytime experiments, neither the large scale nor short scale waves appear to be distinctly organized by the sporadic-E density layer itself. The observations are discussed in the context of current theories regarding sporadic-E layer generation and quasi-periodic echoes.

  18. Ion composition during the formation of a midlatitude E sub S layer

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Goldberg, R. A.; Azcarraga, A.

    1973-01-01

    The positive ion composition within a midlatitude sporadic E layer has been measured with the aid of a rocket-borne ion mass spectrometer launched from El Arenosillo, Spain on July 3, 1972 at 0743 LMT. Ionograms taken before and during the rocket flight showed a developing sporadic E layer near 114 km. Rocket data showed peaks in electron density and metallic ions at this same height. Both the maximum and total content of the metals are observed to be greater on the downleg than the upleg measurement.

  19. Mid-latitude sporadic-E layers: a comparative study between the ionospheric stations of Rome and Gibilmanna

    NASA Astrophysics Data System (ADS)

    Pietrella, Marco

    Hourly systematic measurements of the highest frequency reflected by the sporadic-E layer (foEs) recorded from January 1976 to June 2009 at the ionospheric stations of Rome (Italy, 41.8 N, 12.5 E) and Gibilmanna (Italy, 37.9 N, 14.0 E) were considered to carry out a comparative study between the sporadic E layer (Es) over Rome and Gibilmanna. Different statistical analysis were performed taking into account foEs observations near the periods of minimum and maximum solar activity. The results reveal that: (1) Independently from the solar activity, Es develops concurrently over extended regions in space, instead of being a spatially limited layer which is transported horizontally by neutral winds over a larger area; especially during summer months, when an Es layer is present at Rome, there is a high probability that an Es layer is also present over Gibilmanna, and vice versa; (2) Es layer lifetimes of 1-5 hours were found; in particular, Es layers with lifetimes of 5 hours both over Gibilmanna and Rome are observed with highest percentages of occurrence in summer ranging between 80% and 90%, independently from the solar activity; (3) a latitudinal effect for low solar activity is observed, especially during winter and equinoctial months, when Es layers are detected more frequently over Gibilmanna rather than Rome; (4) when the presence of an Es layer over Rome and Gibilmanna is not simultaneous, Es layer appearance both over Rome and Gibilmanna confirms to be a locally confined event, because drifting phenomena from Rome to Gibilmanna or vice versa have not been emphasized.

  20. Case study on complex sporadic E layers observed by GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Yue, X.; Schreiner, W. S.; Zeng, Z.; Kuo, Y.-H.; Xue, X.

    2015-01-01

    The occurrence of sporadic E (Es) layers has been a hot scientific topic for a long time. The GNSS (global navigation satellite system)-based radio occultation (RO) has proven to be a powerful technique for detecting the global Es layers. In this paper, we focus on some cases of complex Es layers based on the RO data from multiple missions processed in UCAR/CDAAC (University Corporation for Atmospheric Research (UCAR) the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Data Analysis and Archive Center (CDAAC)). We first show some examples of multiple Es layers occurred in one RO event. Based on the evaluations between colocated simultaneous RO events and between RO and lidar observations, it could be concluded that some of these do manifest the multiple Es layer structures. We then show a case of the occurrence of Es in a broad region during a certain time interval. The result is then validated by independent ionosondes observations. It is possible to explain these complex Es structures using the popular wind shear theory. We could map the global Es occurrence routinely in the near future, given that more RO data will be available. Further statistical studies will enhance our understanding of the Es mechanism. The understanding of Es should benefit both Es-based long-distance communication and accurate neutral RO retrievals.

  1. Is there a conclusive evidence on lightning-related effects on sporadic E layers?

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos

    2018-07-01

    In recent years, there have been a few studies claiming that thunderstorm cloud-to-ground lightning discharges affect sporadic E layers existing over the storm. In this brief paper, we consider and critically evaluate the results of these studies in the context of our present knowledge on sporadic E layers and the coupling processes of thunderstorm and lightning wave energy into the upper atmosphere and lower ionosphere. It is shown that the reported findings and their implications raise questions and cast doubts, therefore the conclusions of the existing studies are not substantiated and thus need to be treated with caution. We reason that, the anticipated occurrence of lighting-related effects on midlatitude sporadic E lacks at present firm verification.

  2. Composition of the low seismic velocity E' layer at the top of Earth's core

    NASA Astrophysics Data System (ADS)

    Badro, J.; Brodholt, J. P.

    2017-12-01

    Evidence for a layer (E') at the top of the outer core has been available since the '90s and while different studies suggest slightly different velocity contrasts and thicknesses, the common observation is that the layer has lower velocities than the bulk outer core (PREM). Although there are no direct measurements on the density of this layer, dynamic stability requires it to be less dense than the bulk outer core under those same pressure and temperature conditions. Using ab initio simulations on Fe-Ni-S-C-O-Si liquids we constrain the origin and composition of the low-velocity layer E' at the top of Earth's outer core. We find that increasing the concentration of any light-element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffusion or upwards sedimentation of a light phase for its origin. However, exchanging elements can—depending on the elements exchanged—produce such a layer. We evaluate three possibilities. Firstly, crystallization of a light phase from a core containing more than one light element may make such a layer, but only if the crystalizing phase is very Fe-rich, which is at odds with available phase diagrams at CMB conditions. Secondly, the E' layer may result from incomplete mixing of an early Earth core with a late impactor, depending on the light element compositions of the impactor and Earth's core, but such a primordial stratification is neither supported by dynamical models of the core nor thermodynamic models of core merger after the giant impact. The last and most plausible scenario is core-mantle chemical interaction; using thermodynamic models for metal-silicate partitioning of silicon and oxygen at CMB conditions, we show that a reaction between the core and an FeO-rich basal magma ocean can enrich the core in oxygen while depleting it in silicon, in relative amounts that produce a light and slow layer

  3. New Boundary Layer Facility at Andøya, 69N 16E

    NASA Astrophysics Data System (ADS)

    Gausa, M. A.; Reuder, J.; Blindheim, S.

    2016-12-01

    The present presentation introduces an inative for a new boundary layer research facility on the island of Andøya (69N,16E) in Norway. The facility will appreciate international cooperation and contributions.Most boundary layer observatories (as e.g. the Lindenberg Observatory in Germany, the Cabauw facility in the Netherlands, or the Boulder Atmospheric Observatory in the US) are located in mid latitudes. Arctic or sub-arctic stations are rare or not representative due to their location in valleys (e.g. Ny Ålesund). In addition, most of the existing sites are representative for a continental boundary layer and do not allow to observe coupling processes to the free troposphere and the upper atmosphere. The island of Andøya has a unique location at 69N. To the West, Andøya is open to the Norwegian Sea. Its orology maintains an almost undisturbed marine boundary on the foreseen location under SW and W wind weather conditions. Due to rugged mountains, other wind directions provide a more transformed PBL. The understanding of the Planetary Boundary Layer (PBL), in particular with respect to turbulence and turbulent exchange processes, is crucial for a wide range of science fields and environmental monitoring tasks: To name a few: basic atmospheric science, monitoring of pollutants, weather forecast, and climate projection. The PBL is consequently research focus for several research groups, which investigate the empirical and theoretical description of this complex height region. In particular, in high latitudes this lowermost layer of the atmosphere the understanding is poor. The following research topics of the new facility are foreseen: present climate projections show their largest bias in polar regions; this is mostly attributed to inappropriate parameterization of PBL processes in the numerical models forecasts of extreme weather events at high latitudes, e.g. of Polar lows with their potential of hazards for infrastructure and traffic, are still poor for the

  4. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition.

    PubMed

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-19

    Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  5. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    PubMed Central

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-01

    Dense and crack-free barium titanate (BaTiO3, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film. PMID:28787860

  6. Direct visualization of a two-dimensional topological insulator in the single-layer 1 T'-WT e2

    NASA Astrophysics Data System (ADS)

    Jia, Zhen-Yu; Song, Ye-Heng; Li, Xiang-Bing; Ran, Kejing; Lu, Pengchao; Zheng, Hui-Jun; Zhu, Xin-Yang; Shi, Zhi-Qiang; Sun, Jian; Wen, Jinsheng; Xing, Dingyu; Li, Shao-Chun

    2017-07-01

    We have grown nearly freestanding single-layer 1 T'-WT e2 on graphitized 6 H -SiC(0001) by using molecular beam epitaxy (MBE), and characterized its electronic structure with scanning tunneling microscopy/spectroscopy (STM/STS). The existence of topological edge states at the periphery of single-layer WT e2 islands was confirmed. Surprisingly, a bulk band gap at the Fermi level and insulating behaviors were also found in single-layer WT e2 at low temperature, which are likely associated with an incommensurate charge order transition. The realization of two-dimensional topological insulators (2D TIs) in single-layer transition-metal dichalcogenide provides a promising platform for further exploration of the 2D TIs' physics and related applications.

  7. Equatorial E Region Electric Fields and Sporadic E Layer Responses to the Recovery Phase of the November 2004 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Moro, J.; Resende, L. C. A.; Denardini, C. M.; Xu, J.; Batista, I. S.; Andrioli, V. F.; Carrasco, A. J.; Batista, P. P.; Schuch, N. J.

    2017-12-01

    Equatorial E region electric fields (EEFs) inferred from coherent radar data, sporadic-E (Es) layers observed from a digital ionosonde data, and modeling results are used to study the responses of the equatorial E region over São Luís (SLZ, 2.3°S, 44.2°W, -7° dip angle), Brazil, during the super storm of November 2004. The EEF is presented in terms of the zonal (Ey) and vertical (Ez) components in order to analyze the corresponding characteristics of different types of Es seen in ionograms and simulated with the E region ionospheric model. We bring out the variabilities of Ey and Ez components with storm time changes in the equatorial E region. In addition, some aspects of the electric fields and Es behavior in three cases of weak, very weak, and strong Type II occurrences during the recovery phase of the geomagnetic storm are discussed. The connection between the enhanced occurrence and suppressions of the Type II irregularities and the q-type Es (Esq) controlled by electric fields, with the development or disruption of the blanketing sporadic E (Esb) layers produced by wind shear mechanism, is also presented. The mutual presence of Esq along with the Esb occurrences is a clear indicator of the secular drift of the magnetic equator and hence that of the equatorial electrojet (EEJ) over SLZ. The results show evidence about the EEJ and Es layer electrodynamics and coupling during geomagnetic disturbance time electric fields.

  8. Model Simulation of Ionosphere Electron Density with Dynamic Transportation and Mechanism of Sporadic E Layers in Lower Part of Ionosphere

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chu, Y. H.

    2015-12-01

    There are many physical theories responsible for explanation the generation mechanism of sporadic E (Es) plasma irregularities. In middle latitude, it's generally believed that sporadic E layers occur in vertical ion convergent areas driven by horizontal neutral wind shear. The sporadic E layers appear characteristic of abundant metallic ion species (i.e., Fe+, Mg+, Na+), that lifetime are longer than molecular ions by a factor of several orders, have been demonstrated by rocket-borne mass spectrometric measurements. On the basic of the GPS Radio Occultation (RO), using the scintillations of the GPS signal-to-noise ratio and intense fluctuation of excess phase, the global and seasonal sporadic E layers occurrence rates could be retrieved. In our previous study we found there is averaged 10 kilometers shift in height between the COSMIC-retrieved sporadic E layer occurrence rate and the sporadic E occurrence rate modeled from considering the convergence/divergence of Fe+ vertical flux. There are many reasons that maybe result in the altitude differences, e.g., tidal wind with phase shift, electric field driven force, iron species distributions. In this research, the quantitative analyses for electric field drives Es layers translations in vertical direction are presented. The tidal wind driven sporadic E layers have been simulating by modeling several nonmetallic ions (O+(4S), O+(2D), O+(2p), N+, N2+, O2+, NO+) and metallic ions (Fe+, FeO2+, FeN2+, FeO+) with wind shear transportation. The simulation result shows the Fe+ particles accumulate at zonal wind shear convergent regions and form the thin sporadic E layers. With the electric field taking into account, the whole shape of sporadic E layers vertical shift 2~5 km that depending on what magnitude and direction of electric field is added.

  9. Single Layer Surface-Grafted PMMA as a Negative-Tone e-Beam Resist.

    PubMed

    Yamada, Hirotaka; Aydinoglu, Ferhat; Liu, Yaoze; Dey, Ripon K; Cui, Bo

    2017-12-05

    One of the important challenges in electron beam lithography is nanofabrication on nonflat or irregular surfaces. Although spin coating is the most popular technique for resist coating, it is not suitable for nonflat, irregular substrates because a uniform film cannot be achieved on those surfaces. Here, it is demonstrated that single layer surface-grafted PMMA can be used as a negative-tone e-beam resist, and it can be applied to nonflat, irregular surfaces as well as flat, conventional surfaces. Although it is well known that heavily exposed PMMA undergoes cross-linking and works as a negative-tone e-beam resist when developed by solvent, solvent does not work as a developer for negative-tone single-layer surface-grafted PMMA. Instead, thermal treatment at 360 °C for 1 min is used to develop PMMA.

  10. Layer-dependent second-order Raman intensity of Mo S2 and WS e2 : Influence of intervalley scattering

    NASA Astrophysics Data System (ADS)

    Qian, Qingkai; Zhang, Zhaofu; Chen, Kevin J.

    2018-04-01

    Acoustic-phonon Raman scattering, as a defect-induced second-order Raman scattering process (with incident photon scattered by one acoustic phonon at the Brillouin-zone edge and the momentum conservation fulfilled by defect scattering), is used as a sensitive tool to study the defects of transition-metal dichalcogenides (TMDs). Moreover, second-order Raman scattering processes are closely related to the valley depolarization of single-layer TMDs in potential valleytronic applications. Here, the layer dependence of second-order Raman intensity of Mo S2 and WS e2 is studied. The electronic band structures of Mo S2 and WS e2 are modified by the layer thicknesses; hence, the resonance conditions for both first-order and second-order Raman scattering processes are tuned. In contrast to the first-order Raman scattering, second-order Raman scattering of Mo S2 and WS e2 involves additional intervalley scattering of electrons by phonons with large momenta. As a result, the electron states that contribute most to the second-order Raman intensity are different from that to first-order process. A weaker layer-tuned resonance enhancement of second-order Raman intensity is observed for both Mo S2 and WS e2 . Specifically, when the incident laser has photon energy close to the optical band gap and the Raman spectra are normalized by the first-order Raman peaks, single-layer Mo S2 or WS e2 has the strongest second-order Raman intensity. This layer-dependent second-order Raman intensity can be further utilized as an indicator to identify the layer number of Mo S2 and WS e2 .

  11. Nonlinear interaction of an intense radio wave with ionospheric D/E layer plasma

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar

    2018-05-01

    This paper considers the nonlinear interaction of an intense electromagnetic wave with the D/E layer plasma in the ionosphere. A simultaneous solution of the electromagnetic wave equation and the equations describing the kinetics of D/E layer plasma is obtained; the phenomenon of ohmic heating of electrons by the electric field of the wave causes enhanced collision frequency and ionization of neutral species. Electron temperature dependent recombination of electrons with ions, electron attachment to O 2 molecules, and detachment of electrons from O2 - ions has also been taken into account. The dependence of the plasma parameters on the square of the electric vector of the wave E0 2 has been evaluated for three ionospheric heights (viz., 90, 100, and 110 km) corresponding to the mid-latitude mid-day ionosphere and discussed; these results are used to investigate the horizontal propagation of an intense radio wave at these heights.

  12. Planetary and tidal wave-type oscillations in the ionospheric sporadic E layers over Tehran region

    NASA Astrophysics Data System (ADS)

    Karami, K.; Ghader, S.; Bidokhti, A. A.; Joghataei, M.; Neyestani, A.; Mohammadabadi, A.

    2012-04-01

    It is believed that in the lower ionosphere, particularly in the ionospheric sporadic E (Es) layers (90-130 km), the planetary and tidal wave-type oscillations in the ionized component indicate the planetary and tidal waves in the neutral atmosphere. In the present work, the presence of wave-type oscillations, including planetary and tidal waves in the ionospheric sporadic E layers over Tehran region is examined. Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran, from July 2006 to June 2007 are used to investigate seasonal variations of planetary and tidal waves activities. For the purpose of accurate comparison between different seasons, wavelet transform is applied to time series of foEs and h‧Es, namely, the critical frequency and virtual height of Es layers, respectively. The results show that the sporadic E layers over Tehran region are strongly under the influence of upward propagation of waves from below. More specifically, among diverse range of periodicities in the sporadic E layers, we found that diurnal (24 hours) and semidiurnal (12 hours) oscillations in all seasons for both parameters. Moreover, terdiurnal (8 hours) tide-like variation is observed during spring and summer for foEs parameter and summer and winter for h‧Es. Furthermore, the results show that diurnal tidal waves obtain their maximum activities during autumn and winter seasons, and their activities decrease during the late spring and summer. In addition, periods of about 2, 4, 6, 10, 14, and 16 days in our observation verifies the hypothesis of upward propagation of planetary waves from lower atmosphere to the ionosphere. Moreover, planetary waves have their maximum activities during equinox.

  13. Wave behaviour of sporadic E-layer variations at the latitudes 30-70N

    NASA Astrophysics Data System (ADS)

    Ryabchenko, E. Yu.; Sherstyukov, O. N.

    A wave behaviour of sporadic E-layer variations was investigated by analysing time series of twenty European ionosonde stations (30°N--80°N, 15°W--45°E) for 1985-1988. Wavelet transform was used to explore 3-30 periodicities in variations of Es-layer relative electron density δ NEs defined here as (foEs2--foE2)/foE2. Such compound parameter allowed us to partly exclude solar ionisation factor and concentrate on meteorological nature of Es-layer synoptical oscillations. A typical synoptical atmospheric 3-30 day oscillations were discovered in foEs and also in δ NEs. Due to nonorthgonal wavelet transform used in this work, it is advisable to divide frequency domain into several optimal intervals. Five periods 4,6,10,16 and 24 day were chosen which cover 3-5, 5-7, 8-12, 13-20 and 20-30 day intervals. Low value of oscillation amplitude not greater than 1.5 is typical for most of European ionospheric stations in January-March and September-December. A higher values were observed at latitudes higher than 60°N. A wave vortex were discovered during the analysis of dynamics of δ NEs spatio-temporal variations in summer for each period interval. In May and June we observed wave penetration from north and south into the middle latitudes 45°N--55°N with amplitudes up to 5.0 for the most of considered years. In Jule and August all amplitudes reach their average values.

  14. Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Mošna, Z.; Koucká Knížová, P.

    2012-12-01

    The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.

  15. Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.

    PubMed

    Huang, Ruiying; Gao, Xiangkai; Wang, Jian; Chen, Haoxiang; Tong, Chunyi; Tan, Yongjun; Tan, Zhikai

    2018-05-29

    Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying. The biocompatible triple-layer graft was used for in vivo implantation, and results demonstrated that the longitudinally-aligned fibers within the lumen of the graft could enhance the proliferation and migration of endothelial cells, while maintained good mechanical properties. The exterior layer provided a pathway that encouraged cells to migrate into the scaffold after implantation. This experimental graft overcame the limitations of conventionally electrospun vascular grafts of inadequate porosity and lowly cell penetration. The unique structure of the triple-layer vascular graft promoted cell growth and infiltration in vivo, thus provided an encouraging substitute for in situ tissue engineering.

  16. Searching for effects caused by thunderstorms in midlatitude sporadic E layers

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Haldoupis, Christos; Sátori, Gabriella; Buresova, Dalia; Chum, Jaroslav; Pozoga, Mariusz; Berényi, Kitti A.; Bór, József; Popek, Martin; Kis, Árpád; Bencze, Pál

    2017-08-01

    Possible thunderstorm - sporadic E (Es) layer coupling effects are investigated during two measurement periods, one in 2013 and one in 2014. The analysis was based on ionospheric observations obtained from a Digisonde at Pruhonice, the Czech Republic, an ionosonde at Nagycenk, Hungary, and a 3.59 MHz five-point continuous HF Doppler system located in the western part of the Czech Republic. The latter is capable of detecting ionospheric wave-like variations caused by neutral atmospheric waves generated by thunderstorms. The present study searches for possible impacts on Es layers caused by the presence of two active thunderstorms: one passing across the Czech Republic on June 20, 2013 (19:00-01:00 LT), and one through Hungary on July 30, 2014 (11:00-01:00 LT). During these two time periods, presence and parameters of Es layer were inferred from ionograms, recorded every minute at Pruhonice and every two minutes at Nagycenk, whereas concurrent lightning activity was monitored by the LINET detection network. In addition, transient luminous events (TLEs) were also observed during both nights from Sopron, Hungary and from Nýdek, the Czech Republic. A noticeable fact was the reduction and disappearance of the ongoing Es layer activity during part of the time in both of the traversing thunderstorms. The analysis indicated that the critical frequency foEs dropped below ionosonde detection levels in both cases, possibly because of thunderstorm activity effects. This option, however, needs more case studies in order to be further substantiated.

  17. Analysis of the disturbed electric field effects in the sporadic E-layers at equatorial and low latitude regions

    NASA Astrophysics Data System (ADS)

    Araujo Resende, Laysa Cristina; Moro, Juliano; Denardini, Clezio Marcos; Carrasco, Alexander J.; Batista, Paulo; Chen, Sony Su; Batista, Inez S.; Andrioli, Vania Fatima

    2016-07-01

    In the present work we analyze the disturbed electric field effects in the sporadic E-layers at equatorial regions, Jicamarca (11.57°S, 76.52°O, I: -2°) and São Luís (2°S, 44° O, I: -2.3°), and at low latitude regions, Fortaleza (3.9°S, 38.45°O, I: -9°) and Cachoeira Paulista (22.42°S, 45°O, I: -15°). We have conducted a deep analysis to investigate these effects using a theoretical model for the ionospheric E region, called MIRE. This model is able to simulate the Es layers taking into account the E region winds and electric fields. It calculates the densities for the main molecular (NO^{+}, O_{2}^{+}, N_{2}^{+}) and metallic ions (Fe^{+}, Mg^{+}) by solving the continuity and momentum equations for each species. The main purpose of this analysis is to verify the disturbed electric fields role in the occurrence or disruption of Es layers through simulations. The analysis show that the Es layer formation and dynamics can be influenced by the prompt penetration electric fields that occur during magnetic disturbances. Therefore, the simulations present interesting results that helps to improve the understanding of Es layer behavior during the disturbed periods.

  18. Competition between winds and electric fields in the formation of blanketing sporadic E layers at equatorial regions

    NASA Astrophysics Data System (ADS)

    Resende, Laysa Cristina Araújo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Carrasco, Alexander José; de Fátima Andrioli, Vânia; Moro, Juliano; Batista, Paulo Prado; Chen, Sony Su

    2016-12-01

    In the present work, we analyze the competition between tidal winds and electric fields in the formation of blanketing sporadic E layers (Esb) over São Luís, Brazil (2° 31' S, 44° 16' W), a quasi-equatorial station. To investigate this competition, we have used an ionospheric E region model (MIRE) that is able to model the Esb layers taking into account the E region winds and electric fields. The model calculates the densities for the main molecular and metallic ions by solving the continuity and momentum equations for each of the species. Thus, the main purpose of this analysis is to verify the electric fields role in the occurrence or disruption of Esb layers through simulations. The first results of the simulations show that the Esb layer is usually present when only the tidal winds were considered. In addition, when the zonal component of the electric field is introduced in the simulation, the Esb layers do not show significant changes. However, the simulations show the disruption of the Esb layers when the vertical electric field is included. In this study, we present two specific cases in which Esb layers appear during some hours over São Luís. We can see that these layers appear when the vertical electric field was weak, which means that the tidal components were more effective during these hours. Therefore, the vertical component of the electric field is the main agent responsible for the Esb layer disruption. [Figure not available: see fulltext. Caption: Ionograms from São Luís on January 5, 2005, show a clear case of the competition between electric fields and wind effects in the Es layer formation. In ionograms, the Esq trace is clearly seen and identified by a blue arrow. Besides the Esq, we can identify another Es trace at 1415 UT (identified by a black arrow) that persists until 1600 UT. This layer becomes stronger in each ionogram, as can be seen by its effect on partially blocking the reflection from the low-frequency end of F region above

  19. Observations of metal concentrations in E-region sporadic thin layers using incoherent-scatter radar

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuhiro

    This thesis has used incoherent-scatter radar data from the facility at Sondrestrom, Greenland to determine the ion mass values inside thin sporadic-E layers in the lower ionosphere. Metallic positively-charged ions of meteoric origin are deposited in the earth's upper atmosphere over a height range of about 85-120 km. Electric fields and neutral-gas (eg N2, O, O2) winds at high latitudes may produce convergent ion dynamics that results in the re-distribution of the background altitude distribution of the ions to form thin (1-3 km) high-density layers that are detectable with radar. A large database of experimental radar observations has been processed to determine ion mass values inside these thin ion layers. The range resolution of the radar was 600 meters that permitted mass determinations at several altitude steps within the layers. Near the lower edge of the layers the ion mass values were in the range 20-25 amu while at the top portion of the layers the mass values were generally in the range 30-40 amu. The numerical values are consistent with in-situ mass spectrometer data obtained by other researchers that suggest these layers are mainly composed of a mixture or Mg +, Si+, and Fe + ions. The small tendency for heavier ions to reside at the top portion of the layers is consistent with theory. The results have also found new evidence for the existence of complex-shaped multiple layers; the examples studied suggest similar ion mass values in different layers that in some cases are separated in altitude by several km.

  20. Searching for possible effects on midlatitude sporadic E layer, caused by tropospheric lightning.

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Haldoupis, Christos; Sátori, Gabriella; Buresova, Dalia

    2016-07-01

    Thunderstorms in the troposphere may affect the overlying ionosphere through electrodynamic and/or neutral atmosphere wave coupling processes. For example, it is well known that lightning discharges may impact upper atmosphere through quasi-electrostatic fields and strong electromagnetic pulses, leading to transient luminous phenomena, such as sprites and elves, along with electron heating and ionization changes in the upper D and lower E-region ionosphere that have been detected in VLF transmissions propagating in the earth-ionosphere waveguide. On the other hand, mechanical coupling between the troposphere and the ionosphere may be caused by neutral atmosphere gravity waves which are known to have their origin in massive thunderstorms. The effects of troposphere-ionosphere coupling during thunderstorms, are not yet fully established and understood, therefore there is need for more correlative studies, for example by using concurrent ionospheric and lightning observations. In the present work an effort is made to investigate a possible relationship between tropospheric lighting and sporadic E layer, which are known to dominate at bottomside ionosphere and at middle latitudes during summer. For this, a correlative analysis was undertaken using lightning data obtained with the LINET lightning detection network in Central Europe, and E region ionospheric parameters (fmin, foE, foEs, fbEs) measured with the Pruhonice (50° N, 14.5° E) DPS-4D digisonde in the summer of 2009. For direct correlation with the digisonde data, the lightning activity was quantified every 15 minutes in coincidence with the measured ionogram parameters. In the search for relation between lightning and sporadic E, the digisonde observations during lightning were also compared with those taken during a number of tropospheric storm-free days in Pruhonice. The results of this correlative study did not provide evidence of significance that favors a relationship between tropospheric lightning and

  1. Influence of tides and planetary waves on E sporadic layer at mid latitudes

    NASA Astrophysics Data System (ADS)

    Pezzopane, Michael; Pignalberi, Alessio; Zuccheretti, Enrico

    This paper describes the influence that tides and planetary waves have on the variability shown by the main characteristics of the E sporadic (Es) layer, that is the top frequency (ftEs) and the lowest virtual height (h’Es). The study is based on ionograms recorded during the summertime of 2013, a year falling in the maximum of solar activity of cycle 24, and precisely in June, July, August and September, by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. We applied the height-time-intensity (HTI) methodology proposed by Haldoupis et al. (2006) to investigate how tides control the Es dynamics. As a whole, the HTI analysis showed that a well-defined semidiurnal periodicity characterizes the Es layer descent and occurrence for all the considered months, although in September some cases which showed a prevailing diurnal periodicity were recorded. Through the application of the wavelet analysis it was also found that the tidal oscillations shown by ftEs and h’Es are affected by a strong amplitude modulation with periods of several days but with important differences between the two parameters. This amplitude modulation is a proof that Es layers are indirectly affected by planetary waves through their nonlinear interaction with tides at lower altitudes; this nonlinear interaction produces the presence of secondary waves with frequencies that are the sum and difference of the primary waves frequencies involved in the interaction as proposed by Teitelbaum and Vial [1991]. This work adds to those that were already done by Haldoupis et al. (2004, 2006), and confirms that ionosonde data, especially those registered in summertime, can be used as a powerful tool for studying tidal and planetary waves properties, as well as their climatology, in the mesosphere-low-termosphere region.

  2. On the influence of solar activity on the mid-latitude sporadic E layer

    NASA Astrophysics Data System (ADS)

    Pezzopane, Michael; Pignalberi, Alessio; Pietrella, Marco

    2015-09-01

    To investigate the influence of solar cycle variability on the sporadic E layer (Es), hourly measurements of the critical frequency of the Es ordinary mode of propagation, foEs, and of the blanketing frequency of the Es layer, fbEs, recorded from January 1976 to December 2009 at the Rome (Italy) ionospheric station (41.8° N, 12.5° E), were examined. The results are: (1) a high positive correlation between the F10.7 solar index and foEs as well as between F10.7 and fbEs, both for the whole data set and for each solar cycle separately, the correlation between F10.7 and fbEs being much higher than the one between F10.7 and foEs; (2) a decreasing long-term trend of the F10.7, foEs and fbEs time series, with foEs decreasing more rapidly than F10.7 and fbEs; (3) clear and statistically significant peaks at 11 years in the foEs and fbEs time series, inferred from Lomb-Scargle periodograms.

  3. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  4. Multi-layered proton-conducting electrolyte

    DOEpatents

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  5. Fractionation of the rice bran layer and quantification of vitamin E, oryzanol, protein, and rice bran saccharide

    PubMed Central

    Schramm, Rebecca; Abadie, Alicia; Hua, Na; Xu, Zhimin; Lima, Marybeth

    2007-01-01

    Value-added processing with respect to rice milling has traditionally treated the rice bran layer as a homogenous material that contains significant concentrations of high-value components of interest for pharmaceutical and nutraceutical applications. Investigators have shown that high-value components in the rice bran layer vary from differences in kernel-thickness, bran fraction, rice variety, and environmental conditions during the growing season. The objectives of this study were to quantify the amount of rice bran removed at pre-selected milling times and to correlate the amount of rice bran removed at each milling time with the concentration of vitamin E, gamma-oryzanol, rice bran saccharide, and protein obtained. The ultimate goal of this research is to show that rice bran fractionation is a useful method to obtain targeted, nutrient-rich bran samples for value-added processing. Two long grain rice cultivars, Cheniere and Cypress, were milled at discrete times between 3 and 40 seconds using a McGill mill to obtain bran samples for analysis. Results showed that the highest oryzanol and protein concentrations were found in the outer portion of the rice bran layer, while the highest rice bran saccharide concentration was found in the inner portion of the bran layer. Vitamin E concentration showed no significant difference across the bran layer within a variety, though the highest magnitude of concentration occurs within the first 10 seconds of milling for both varieties. To extract the higher concentration of oryzanol and protein only the outer portion of the bran layer requires processing, while to extract the higher concentration of rice bran saccharide, only the inner portion of the bran layer requires processing. Rice bran fractionation allows for the selective use of portions of the bran layer and is advantageous for two reasons: (1) bran fractions contain higher concentrations of components of interest with respect to the overall bran layer average, and

  6. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene

    PubMed Central

    Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2014-01-01

    Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications. PMID:25327586

  7. Equatorial Plasma Bubble Development and Dynamics, and Sporadic E Layer Structuring, under Storm Time Electric Fields.

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Batista, I. S.; Sobral, J. H. A.; Souza, J.; Santos, A.

    2016-12-01

    Equatorial and low - midlatitude ionospheric plasma dynamics and related phenomenology can be severely affected by disturbance electric fields associated with magnetic storms. Penetration electric fields, of under-shielding or over-shielding types, can cause anomalous development of plasma bubbles even during their non-occurrence season, or can lead to suppression of their normal development. Depending upon the longitude sector and local time, large relative changes in the Hall and Pedersen conductivities can occur due to storm induced extra E layer ionization or modifications in F layer plasma density, as a result of which the penetration electric fields may produce, among other effects, (1) plasma bubble zonal drift velocity reversal to westward, (2) large/abnormal F layer plasma uplift, (3) sporadic E layer disruption or its formation with instabilities. Beside these effects, the equatorial ionization anomaly is known to suffer latitudinal expansion and retraction. In this paper we will discuss some outstanding response features of the low altitude ionosphere under disturbance electric field as diagnosed by Digisondes, radars and optical imagers in the South American longitude sector, a region that is strongly influenced by the South Atlantic Magnetic anomaly (SAMA). The results will be discussed in the context of satellite observations (from C/NOFS) and modeling results based on SUPIM simulation of a realistic low latitude ionosphere.

  8. Occurrence of Sporadic -E layer during the Low Solar Activity over the Anomaly Crest Region Bhopal, India

    NASA Astrophysics Data System (ADS)

    Bhawre, Purushottam

    2016-07-01

    Ionospheric anomaly crest regions are most challenging for scientific community to understand its mechanism and investigation, for this purpose we are investigating some inospheric result for this region. The study is based on the ionogram data recorded by IPS-71 Digital Ionosonde installed over anomaly crust region Bhopal (Geo.Lat.23.2° N, Geo. Long77.4° E, Dip latitude18.4°) over a four year period from January 2007 to December 2010, covering the ending phase of 23rd Solar Cycle and starting phase of 24th solar cycle. This particular period is felt to be very suitable for examining the sunspot number and it encompasses periods of low solar activities. Quarterly ionograms are analyzed for 24 hours during these study years and have been carefully examined to note down the presence of sporadic- E. We also note down the space weather activities along with the study. The studies are divided in mainly four parts with space and geomagnetic activities during these periods. The occurrence probability of this layer is highest in summer solstice, moderate during equinox and low during winter solstice. Remarkable occurrence peaks appear from June to July in summer and from December to January in winter. The layer occurrence showed a double peak variation with distinct layer groups, in the morning (0200 LT) and the other during evening (1800 LT).The morning layer descent was associated with layer density increase indicating the strengthening of the layer while it decreased during the evening layer descent. The result indicates the presence of semi-diurnal tide over the location while the higher descent velocities could be due to the modulation of the ionization by gravity waves along with the tides. The irregularities associated with the gradient-drift instability disappear during the counter electrojet and the current flow is reversed in westward.

  9. Study of sporadic E layers based on GPS radio occultation measurements and digisonde data over the Brazilian region

    NASA Astrophysics Data System (ADS)

    Resende, Laysa C. A.; Arras, Christina; Batista, Inez S.; Denardini, Clezio M.; Bertollotto, Thainá O.; Moro, Juliano

    2018-04-01

    This work presents new results about sporadic E-layers (Es layers) using GPS (global positioning system) radio occultation (RO) measurements obtained from the FORMOSAT-3/COSMIC satellites and digisonde data. The RO profiles are used to study the Es layer occurrence as well as its intensity of the signal-to-noise ratio (SNR) of the 50 Hz GPS L1 signal. The methodology was applied to identify the Es layer on RO measurements over Cachoeira Paulista, a low-latitude station in the Brazilian region, in which the Es layer development is not driven tidal winds only as it is at middle latitudes. The coincident events were analyzed using the RO technique and ionosonde observations during the year 2014 to 2016. We used the electron density obtained using the blanketing frequency parameter (fbEs) and the Es layer height (h'Es) acquired from the ionograms to validate the satellite measurements. The comparative results show that the Es layer characteristics extracted from the RO measurements are in good agreement with the Es layer parameters from the digisonde.

  10. Co-observation of sporadic K layer and sporadic Na layer at Beijing, China (40.6°N, 116.2°E)

    NASA Astrophysics Data System (ADS)

    Jiao, Jing

    2016-07-01

    A double-laser beam lidar was successfully developed to simultaneously measure K and Na layers at Beijing (40.6°N, 116.2°E) in 2010. Statistical analysis of the parameters of sporadic K (Ks) and sporadic Na (Nas) layers was performed over two years of lidar data, and different characteristics of them were found. The average Ks occurrence (2.9 %) was lower than that of Nas (5.9 %); the Nas occurrence had a maximum (19.3 %) in May-June months and a minimum (1.6 %) in January-February months, while the Ks occurrence had a maximum (4.9 %) in January-February months and a minimum (1.0 %) in September-Octerbor months; most Ks peaks tended to occur around 93 km, which was ~ 2 km lower than that of Nas (~ 95 km); the Ks peak density was often at least one order of magnitude lower than that of Nas; notably, two Ks with high peak densities (> 1000 cm-3) were observed, which was much higher than K density (15-300 cm-3) reported before. The ascending time of Ks was often longer than its descending time, but an opposite trend occurred for Nas. During the 152 cases of joint observation for the K and Na layers, 21 % (32/152) were cases in which Ks and Nas events simultaneously occurred, while 79% (120/152) were cases in which only one layer (K or Na) exhibited a strong Ks or Nas.

  11. Temperature Dependence of Raman-Active In-Plane E2g Phonons in Layered Graphene and h-BN Flakes

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Liu, Jian; Ding, Kai; Zhao, Xiaohui; Li, Shuai; Zhou, Wenguang; Liang, Baolai

    2018-01-01

    Thermal properties of sp2 systems such as graphene and hexagonal boron nitride (h-BN) have attracted significant attention because of both systems being excellent thermal conductors. This research reports micro-Raman measurements on the in-plane E2g optical phonon peaks ( 1580 cm-1 in graphene layers and 1362 cm-1 in h-BN layers) as a function of temperature from - 194 to 200 °C. The h-BN flakes show higher sensitivity to temperature-dependent frequency shifts and broadenings than graphene flakes. Moreover, the thermal effect in the c direction on phonon frequency in h-BN layers is more sensitive than that in graphene layers but on phonon broadening in h-BN layers is similar as that in graphene layers. These results are very useful to understand the thermal properties and related physical mechanisms in h-BN and graphene flakes for applications of thermal devices.

  12. Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA

    NASA Astrophysics Data System (ADS)

    Shinagawa, H.; Miyoshi, Y.; Jin, H.; Fujiwara, H.

    2017-04-01

    There have been a number of papers reporting that the statistical occurrence rate of the sporadic E (Es) layer depends not only on the local time and season but also on the geographical location, implying that geographical and seasonal dependence in vertical neutral wind shear is one of the factors responsible for the geographical and seasonal dependence in Es layer occurrences rate. To study the role of neutral wind shear in the global distribution of the Es layer occurrence rate, we employ a self-consistent atmosphere-ionosphere coupled model called GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy), which incorporates meteorological reanalysis data in the lower atmosphere. The average distribution of neutral wind shear in the lower thermosphere is derived for the June-August and December-February periods, and the global distribution of vertical ion convergence is obtained to estimate the Es layer occurrence rate. It is found that the local and seasonal dependence of neutral wind shear is an important factor in determining the dependence of the Es layer occurrence rate on geographical distribution and seasonal variation. However, there are uncertainties in the simulated vertical neutral wind shears, which have larger scales than the observed wind shear scales. Furthermore, other processes such as localization of magnetic field distribution, background metallic ion distribution, ionospheric electric fields, and chemical processes of metallic ions are also likely to make an important contribution to geographical distribution and seasonal variation of the Es occurrence rate.

  13. Application of the E - Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Duynkerke, P. G.

    1988-03-01

    In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.

  14. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  15. Case study of inclined sporadic E layers in the Earth's ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves

    NASA Astrophysics Data System (ADS)

    Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.

    2018-04-01

    We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.

  16. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  17. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  18. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.

    PubMed

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O; Carlin, Frédéric; Broussolle, Véronique

    2016-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Electronic energy loss spectra from mono-layer to few layers of phosphorene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Thakur, Rajesh; Ahluwalia, P. K.

    2016-05-23

    Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.

  20. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    NASA Astrophysics Data System (ADS)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  1. Multilayer article having stabilized zirconia outer layer and chemical barrier layer

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article includes a substrate that includes at least one of a ceramic compound and a Si-containing metal alloy. An outer layer includes stabilized zirconia. Intermediate layers are located between the outer layer and the substrate and include a mullite-containing layer and a chemical barrier layer. The mullite-containing layer includes 1) mullite or 2) mullite and an alkaline earth metal aluminosilicate. The chemical barrier layer is located between the mullite-containing layer and the outer layer. The chemical barrier layer includes at least one of mullite, hafnia, hafnium silicate and rare earth silicate (e.g., at least one of RE.sub.2 SiO.sub.5 and RE.sub.2 Si.sub.2 O.sub.7 where RE is Sc or Yb). The multilayer article is characterized by the combination of the chemical barrier layer and by its lack of a layer consisting essentially of barium strontium aluminosilicate between the mullite-containing layer and the chemical barrier layer. Such a barium strontium aluminosilicate layer may undesirably lead to the formation of a low melting glass or unnecessarily increase the layer thickness with concomitant reduced durability of the multilayer article. In particular, the chemical barrier layer may include at least one of hafnia, hafnium silicate and rare earth silicate.

  2. The influence of tidal winds in the formation of blanketing sporadic e-layer over equatorial Brazilian region

    NASA Astrophysics Data System (ADS)

    Resende, Laysa Cristina Araujo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia Fátima; Moro, Juliano

    2018-06-01

    This work analysis the blanketing sporadic layers (Esb) behavior over São Luís, Brazil (2° 31‧ S, 44° 16‧ W, dip: -4.80) which is classified as a transition region between equatorial and low-latitude. Hence, some peculiarities can appear as Esb occurrence instead of the common Esq, which is a non-blanketing irregularity layer. The analysis presented here was obtained using a modified version of a theoretical model for the E region (MIRE), which computes the densities of the metallic ions (Fe+ and Mg+) and the densities of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. In that model, the Es layer physics driven by both diurnal and semidiurnal tidal winds are taken into account and it was extended in height coverage by adding a novel neutral wind model derived from the all-sky meteor radar measurements. Thus, we provide more trustworthy results related to the Es layer formation in the equatorial region. We verified the contribution of each tidal wind component to the Esb layer formation in this equatorial region. Additionally, we compared the Es layer electron density computed by MIRE with the data obtained by using the blanketing frequency parameter (fbEs) deduced from ionograms. The results show that the diurnal component of the tidal wind is more important in the Esb layer formation whereas the semidiurnal component has a little contribution in our simulations. Finally, it was verified that the modified MIRE presented here can be used to study the Esb layers occurrence over the equatorial region in the Brazilian sector.

  3. On the role of electric field direction in the formation of sporadic E-layers in the southern polar cap ionosphere

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Dyson, P. L.; Monselesan, D. P.; Morris, R. J.

    1998-03-01

    Measurements of the occurrence of sporadic E (Es)-layers and F-region electric fields were obtained with a modern, HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E, 81°S CGM latitude) during the late austral summer of 1995/96. The occurrence of Es-layers was inferred from the presence of appropriate traces in normal swept-frequency ionograms, and the electric fields were inferred from F-region ``drift-mode'' velocities assuming that the plasma convection velocities given by E × B/B2 were measured, on average, by the interferometer. The theory of formation of high-latitude Es-layers predicts that electric fields directed toward the south west (SW) should be particularly effective at producing thin layers in the southern hemisphere. Our measurements made at a true polar cap station are consistent with this expectation, and are contrasted with observations made by incoherent scatter radars in the northern hemisphere, which also show the importance of SW electric fields, whereas the same theory predicts that NW electric fields should be important at northern latitudes. We reconcile the interhemispheric differences with simple calculations of ion convergence driven by the electric fields specified by the IZMIRAN electrodynamic model (IZMEM) in both hemispheres. The importance of the interplanetary magnetic field in the control of high-latitude Es formation is emphasised as an important adjunct to space weather modelling and forecasting.

  4. First observations of SPEAR-induced topside and bottomside sporadic E layer heating observed using the EISCAT Svalbard and SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Baddeley, L. J.; Haggstrøm, I.; Yeoman, T. K.; Rietveld, M.

    2012-01-01

    We present the first observations of heater-induced simultaneous topside and bottomside sporadic E layer enhancements at very high latitudes (78.15°N) using the Space Plasma Exploration by Active Radar (SPEAR) heating facility and the European Incoherent Scatter (EISCAT) Svalbard Radar. During the experiment the SPEAR heating facility was transmitting with O-mode polarization in a field-aligned direction with a constant effective radiated power of ˜16 MW. Results show distinct heater-induced enhancements in both the ion and plasma line spectra. The plasma line enhancements are observed at the SPEAR heater frequency of 4.45 MHz. The plasma line observations represent the highest spatial resolution data (100 m) obtained of such heater-induced enhancements and indicate simultaneous enhancements at both the topside and bottomside of the layer, respectively (located at ˜107.5 and 109 km altitude, respectively). It is postulated that the results represent evidence of O- to Z-mode conversion of the heater wave occurring at the bottom of the E layer, allowing propagation through the layer resulting in simultaneous topside enhancements. The Z-mode enhancements are observed outside the Spitze angle, which is thought to be a result of field-aligned irregularities causing an increase in angular extent of the observations. Additional data from the Super Dual Auroral Radar Network (SuperDARN) HF Finland radar are also shown, which indicate that upon a thinning of the sporadic E layer, the heater beam propagated into the F region, where it induced artificial field-aligned irregularities.

  5. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.

    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  6. Preparation of pH-Responsive Hollow Capsules via Layer-by-Layer Assembly of Exfoliated Layered Double Hydroxide Nanosheets and Polyelectrolytes.

    PubMed

    Katagiri, Kiyofumi; Shishijima, Yoshinori; Koumoto, Kunihito; Inumaru, Kei

    2018-01-01

    pH-Responsive smart capsules were developed by the layer-by-layer assembly with a colloidtemplating technique. Polystyrene (PS) particles were employed as core templates. Acid-soluble inorganic nanosheets were prepared from Mg-Al layered double hydroxide (LDH) by an exfoliation technique. LDH nanosheets and anionic polyelectrolytes were alternatively deposited on PS core particles by the layer-by-layer assembly using electrostatic interaction. Hollow capsules were obtained by the removal of the PS core particles. The hollow capsules obtained thus were collapsed at acidic conditions by dissolution of LDH nanosheets in the hollow shells. The dissolution rate, i.e., the responsiveness of capsule, is tunable according to the strength of acids.

  7. Effects of sporadic E-layer characteristics on spread-F generation in the nighttime ionosphere near a northern equatorial anomaly crest during solar minimum

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Chen, W. S.

    2015-06-01

    This study is to know how the characteristics of sporadic E-layer (Es-layer) affect the generation of spread-F in the nighttime ionosphere near the crest of equatorial ionization anomaly during solar minimum. The data of Es-layer parameters and spread-F are obtained from the Chungli ionograms of 1996. The Es-layer parameters include foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). Results show that the nighttime variations of foEs and fbEs medians (Δf medians) are different from (similar to) that of the occurrence probabilities of spread-F. Because the total number of Es-layer events is greater than that of spread-F events, the comparison between the medians of Es-layer parameters and the occurrence probabilities of spread-F might have a shortfall. Further, we categorize the Es-layer and spread-F events into each frequency interval of Es-layer parameters. For the occurrence probabilities of spread-F versus foEs, an increasing trend is found in post-midnight of all three seasons. The increasing trend also exists in pre-midnight of the J-months and in post-midnight of all seasons, for the occurrence probabilities of spread-F versus Δf. These demonstrate that the spread-F occurrence increases with increasing foEs and/or Δf. Moreover, the increasing trends indicate that polarization electric fields generated in Es-layer assist to produce spread-F, through the electrodynamical coupling of Es-layer and F-region. Regarding the occurrence probabilities of spread-F versus fbEs, the significant trend only appears in post-midnight of the E-months. This implies that fbEs might not be a major factor for the spread-F formation.

  8. Hydrogen Sorption Kinetics on Bare and Platinum-Modified Palladium Nanofilms, Grown by Electrochemical Atomic Layer Deposition (E-ALD)

    DOE PAGES

    Jagannathan, Kaushik; Benson, David M.; Robinson, David B.; ...

    2016-01-01

    Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd.more » Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H 2SO 4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films’ hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.« less

  9. Layer-by-layer assembled biopolymer microcapsule with separate layer cavities generated by gas-liquid microfluidic approach.

    PubMed

    Wang, Yifeng; Zhou, Jing; Guo, Xuecheng; Hu, Qian; Qin, Chaoran; Liu, Hui; Dong, Meng; Chen, Yanjun

    2017-12-01

    In this work, a layer-by-layer (LbL) assembled biopolymer microcapsule with separate layer cavities is generated by a novel and convenient gas-liquid microfluidic approach. This approach exhibits combined advantages of microfluidic approach and LbL assembly method, and it can straightforwardly build LbL-assembled capsules in mild aqueous environments at room temperature. In particular, using this approach we can build the polyelectrolyte multilayer capsule with favorable cavities in each layer, and without the need for organic solvent, emulsifying agent, or sacrificial template. Various components (e.g., drugs, proteins, fluorescent dyes, and nanoparticles) can be respectively encapsulated in the separate layer cavities of the LbL-assembled capsules. Moreover, the encapsulated capsules present the ability as colorimetric sensors, and they also exhibit the interesting release behavior. Therefore, the LbL-assembled biopolymer capsule is a promising candidate for biomedical applications in targeted delivery, controlled release, and bio-detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A.

    PubMed

    Agrawal, Anurag; Weisshaar, James C

    2018-04-22

    The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Reflective article having a sacrificial cathodic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formedmore » from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.« less

  12. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films.

    PubMed Central

    Pum, D; Weinhandl, M; Hödl, C; Sleytr, U B

    1993-01-01

    S-layer protein isolated from Bacillus coagulans E38-66 could be recrystallized into large-scale coherent monolayers at an air/water interface and on phospholipid films spread on a Langmuir-Blodgett trough. Because of the asymmetry in the physiochemical surface properties of the S-layer protein, the subunits were associated with their more hydrophobic outer face with the air/water interface and oriented with their negatively charged inner face to the zwitterionic head groups of the dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine (DPPE) monolayer films. The dynamic crystal growth at both types of interfaces was first initiated at several distant nucleation points. The individual monocrystalline areas grew isotropically in all directions until the front edge of neighboring crystals was met. The recrystallized S-layer protein and the S-layer-DPPE layer could be chemically cross-linked from the subphase with glutaraldehyde. Images PMID:8478338

  13. Characteristics of convective structures of sodium layer in lower thermosphere (105-120 km) at Haikou (19.99°N, 110.34°E), China

    NASA Astrophysics Data System (ADS)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Zhang, Tiemin; Peng, Hongyan; Xun, Yuchang; Liu, Zhengkuan; Wang, Chi

    2017-11-01

    The atmospheric sodium layer normally occurs in the mesopause (80-105 km) region, but rarely in the lower thermosphere region (>105 km) at low latitude. We observed a kind of peculiar sodium layer in lower thermosphere at Haikou (19.99°N, 110.34°E)-the thermospheric convective sodium layer (TCSL) in a lidargram. The TCSL's sodium density unstably developed over time and appeared as several discontinuous convective shapes vertically. It is the first time convective sodium layer observed in the lower thermosphere region (105-120 km). Based on Haikou lidar data, we obtained 14 TCSL events during 180 nights from March 2010 to August 2012. Most of the apogees of the TCSL events are higher than 108 km. A TCSL event lasts several hours and is composed of several convective structures, with each veitical shape lasting ∼5-30 min. All TCSL events occurred during spring and summer, and generally appear near midnight (22:00-00:00 LT). The TCSL has potential regional feature and appears to be related to the thermospheric sporadic E (Es) layers, winds, and field-aligned ionospheric irregularities (FAI).

  14. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    PubMed

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  16. High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiOx Electron Extraction Layer.

    PubMed

    Meng, Tianyu; Liu, Chang; Wang, Kai; He, Tianda; Zhu, Yu; Al-Enizi, Abdullah; Elzatahry, Ahmed; Gong, Xiong

    2016-01-27

    Perovskite hybrid solar cells (pero-HSCs) have drawn great attention in the last 5 years. The efficiencies of pero-HSCs have been boosted from 3.8% to over 20%. However, one of the bottlenecks for commercialization of pero-HSCs is to make a high electrical conductive TiOx electron extraction layer (EEL). In this study, we report high performance pero-HSCs with TiOx EEL, where the TiOx EEL is fabricated by electron beam (e-beam) evaporation, which has been proved to be a well-developed manufacturing process. The resistance of the e-beam evaporated TiOx EEL is smaller than that of sol-gel processed TiOx EEL. Moreover, the dark current densities and interfacial charge carrier recombination of pero-HSCs incorporated with e-beam processed TiOx EEL is also smaller than that of pero-HSCs incorporated with sol-gel processed TiOx EEL. All these result in efficient pero-HSCs with high reproducibility. These results demonstrate that our method provides a simple and facile way to approach high performance pero-HSCs.

  17. Methods for improved growth of group III nitride buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphologymore » of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).« less

  18. A spectral study of the mid-latitude sporadic E layer characteristic oscillations comparable to those of the tidal and the planetary waves

    NASA Astrophysics Data System (ADS)

    Pignalberi, A.; Pezzopane, M.; Zuccheretti, E.

    2015-01-01

    In this paper different spectral analyses are employed to investigate the tidal and planetary wave periodicities imprinted in the following two main characteristics of the sporadic E (Es) layer: the top frequency (ftEs) and the lowest virtual height (h‧Es). The study is based on ionograms recorded during the summertime of 2013, and precisely in June, July, August and September, by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. It was confirmed that the diurnal and semidiurnal atmospheric tides play a fundamental role in the formation of the mid-latitude Es layers, acting through their vertical wind-shear forcing of the long-living metallic ions in the lower thermosphere, and at the same time it was found that the planetary atmospheric waves might affect the Es layers acting through their horizontal wind-shear forcing with periods close to the normal Rossby modes, that is 2, 5, 10 and 16 days. The wavelet analysis shows also that the ftEs and h‧Es tidal oscillations undergo a strong amplitude modulation with periods of several days and with important differences between the two parameters. This amplitude modulation, characterizing markedly the first thirty days of the ftEs spectrogram, suggests that Es layers are affected indirectly by planetary waves through their nonlinear interaction with the atmospheric tides at lower altitudes. This study wants to be a continuation of the Haldoupis et al. (2004) work in order to verify their results for the foEs characteristic and on the other hand to extend the study also to the h‧Es characteristic not yet shown so far. Anyhow, the study confirms that ionosonde data, especially those registered in summertime, represent a powerful tool for studying tidal and planetary waves properties and their climatology in the mesosphere-low-thermosphere region.

  19. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    DOEpatents

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  20. Atomically thin transition metal layers: Atomic layer stabilization and metal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae

    2018-04-01

    We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.

  1. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  2. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The topside behavior in the mesospheric sodium layer observed by lidar at Yanqing (40.46°N, 115.98°E) and at Haikou (20.01°N, 110.32°E)

    NASA Astrophysics Data System (ADS)

    Liu, Yingjie; Clemesha, Barclay Robert; Wang, Jihong

    2016-04-01

    Due to meteoric ablation, large amounts of metal atoms deposit in the mesopause region, forming the metal layers that can be observed by ground-based lidars. It is widely acknowledged that the meteoric metal layers are normally confined to altitudes of 75-115 km. In fact, the observable upper limit of the topside layer depends largely on the performance of the instruments, the integration time and the observation conditions. With the support of the Chinese Meridional project in the eastern hemisphere, two brand new sodium fluorescence lidars with the same configuration were respectively set up at Yanqing (40.46°N, 115.98°E) and at Haikou (20.01°N, 110.32°E) in April, 2010. They displayed powerful detection capabilities which allow us to study the topside behavior of the mesospheric sodium layer. Based on the observations made at Yanqing between April 2010 and June 2012 and those at Haikou between April 2010 and December 2012, seasonal variations of sodium densities were studied. Comparison between these two sites (~2300 km apart) reveals a strong correlation in the topside sodium layer. Independently of their seasonal characteristics at lower altitudes, they both show an extension to 120 km and above, predominantly during summer. 90 nights of simultaneous observations at these two sites shows that the variation trends of sodium densities above 102 km are remarkably similar in contrast to their different seasonal characteristics below 98 km. At 105 km the correlation coefficient reaches up to 0.71, and almost all of the major peaks can be found one by one with their relative strengths reproduced to a large degree. It indicates that the topside extension effect is global in the mesospheric sodium layer, combined with the observations at other latitudes. Comparison with known meteor showers shows that most of these extensions correspond well to one or more meteor showers, although not one by one. Meteor showers with velocities less than 35 km/s appear to have more

  4. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  5. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  6. Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers

    NASA Astrophysics Data System (ADS)

    Jennissen, Herbert P.

    2005-10-01

    Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The

  7. Layered Wyner-Ziv video coding.

    PubMed

    Xu, Qian; Xiong, Zixiang

    2006-12-01

    Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks.

  8. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  9. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  10. Gravitational instability of thin gas layer between two thick liquid layers

    NASA Astrophysics Data System (ADS)

    Pimenova, A. V.; Goldobin, D. S.

    2016-12-01

    We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.

  11. Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration.

    PubMed

    Björnmalm, Mattias; Roozmand, Ali; Noi, Ka Fung; Guo, Junling; Cui, Jiwei; Richardson, Joseph J; Caruso, Frank

    2015-08-25

    Layer-by-layer (LbL) assembly on nano- and microparticles is of interest for a range of applications, including catalysis, optics, sensors, and drug delivery. One current limitation is the standard use of manual, centrifugation-based (pellet/resuspension) methods to perform the layering steps, which can make scalable, highly controllable, and automatable production difficult to achieve. Here, we develop a fully flow-based technique using tangential flow filtration (TFF) for LbL assembly on particles. We demonstrate that multilayered particles and capsules with different sizes (from micrometers to submicrometers in diameter) can be assembled on different templates (e.g., silica and calcium carbonate) using several polymers (e.g., poly(allylamine hydrochloride), poly(styrenesulfonate), and poly(diallyldimethylammonium chloride)). The full system only contains fluidic components routinely used (and automated) in industry, such as pumps, tanks, valves, and tubing in addition to the TFF filter modules. Using the TFF LbL system, we also demonstrate the centrifugation-free assembly, including core dissolution, of drug-loaded capsules. The well-controlled, integrated, and automatable nature of the TFF LbL system provides scientific, engineering, and practical processing benefits, making it valuable for research environments and potentially useful for translating LbL assembled particles into diverse applications.

  12. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain

    DOE PAGES

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; ...

    2016-06-13

    Two-dimensional (2D) nanostructures emerge as one of leading topics in fundamental materials science and could enable next generation nanoelectronic devices. Beyond graphene and molybdenum disulphide, layered complex oxides are another large group of promising 2D candidates because of their strong interplay of intrinsic charge, spin, orbital and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials exhibiting new phenomena beyond their conventional form. Here we report the strain-driven self-assembly of Bismuth-based supercells (SC) with a 2D layered structure, and elucidate the fundamental growth mechanism with combined experimental tools and first-principles calculations.more » The study revealed that the new layered structures were formed by the strain-enabled self-assembled atomic layer stacking, i.e., alternative growth of Bi 2O 2 layer and [Fe 0.5Mn 0.5]O 6 layer. The strain-driven approach is further demonstrated in other SC candidate systems with promising room-temperature multiferroic properties. This well-integrated theoretical and experimental study inspired by the Materials Genome Initiatives opens up a new avenue in searching and designing novel 2D layered complex oxides with enormous promises.« less

  13. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  14. EDITORIAL: Atomic layer deposition Atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek

    2012-07-01

    The growth method of atomic layer deposition (ALD) was introduced in Finland by Suntola under the name of atomic layer epitaxy (ALE). The method was originally used for deposition of thin films of sulphides (ZnS, CaS, SrS) activated with manganese or rare-earth ions. Such films were grown for applications in thin-film electroluminescence (TFEL) displays. The ALE mode of growth was also tested in the case of molecular beam epitaxy. Films grown by ALD are commonly polycrystalline or even amorphous. Thus, the name ALE has been replaced by ALD. In the 80s ALD was developed mostly in Finland and neighboring Baltic countries. Deposition of a range of different materials was demonstrated at that time, including II-VI semiconductors (e.g. CdTe, CdS) and III-V (e.g. GaAs, GaN), with possible applications in e.g. photovoltaics. The number of publications on ALD was slowly increasing, approaching about 100 each year. A real boom in interest came with the development of deposition methods of thin films of high-k dielectrics. This research was motivated by a high leakage current in field-effect transistors with SiO2-based gate dielectrics. In 2007 Intel introduced a new generation of integrated circuits (ICs) with thin films of HfO2 used as gate isolating layers. In these and subsequent ICs, films of HfO2 are deposited by the ALD method. This is due to their unique properties. The introduction of ALD to the electronics industry led to a booming interest in the ALD growth method, with the number of publications increasing rapidly to well above 1000 each year. A number of new applications were proposed, as reflected in this special issue of Semiconductor Science and Technology. The included articles cover a wide range of possible applications—in microelectronics, transparent electronics, optoelectronics, photovoltaics and spintronics. Research papers and reviews on the basics of ALD growth are also included, reflecting a growing interest in precursor chemistry and growth

  15. Assessing Layered Materials in Gale Crater

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    2001-01-01

    The recent analysis of high resolution Mars Orbiter Camera (MOC) images of layered outcrops in equatorial regions reinforces two important ideas, which will probably eventually become paradigms, about Mars: 1) It has had a long, complex geologic history marked by change, as manifested in the different layers observed, and 2) Standing bodies of water existed for substantial lengths of time, indicating clement conditions possibly conducive to life. Although observations of layering and evidence for lakes and oceans has been reported for years based on Mariner 9 and Viking data, the MOC data show that this layering is much more pervasive and complex than previously thought. These layered sites are ideal for studying the geologic, and possibly biologic, history of Mars. Here, a layered site within Gale Crater is advocated as a Mars Exploration Rover (MER) target. This is one of the few layered areas within closed depressions (e.g., other craters and Vallis Marineris) that meets the landing site constraints and is accessible to both MER A and B.

  16. Rashba effect in single-layer antimony telluroiodide SbTeI

    DOE PAGES

    Zhuang, Houlong L.; Cooper, Valentino R.; Xu, Haixuan; ...

    2015-09-04

    Exploring spin-orbit coupling (SOC) in single-layer materials is important for potential spintronics applications. In this paper, using first-principles calculations, we show that single-layer antimony telluroiodide SbTeI behaves as a two-dimensional semiconductor exhibiting a G 0W 0 band gap of 1.82 eV. More importantly, we observe the Rashba spin splitting in the SOC band structure of single-layer SbTeI with a sizable Rashba coupling parameter of 1.39 eV Å, which is significantly larger than that of a number of two-dimensional systems including surfaces and interfaces. The low formation energy and real phonon modes of single-layer SbTeI imply that it is stable. Finally,more » our study suggests that single-layer SbTeI is a candidate single-layer material for applications in spintronics devices.« less

  17. Molecular processes in a high temperature shock layer

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1984-01-01

    Models of the shock layer encountered by an Aeroassisted Orbital Transfer Vehicle require as input accurate cross sections and rate constants for the atomic and molecular processes that characterize the shock radiation. From the estimated atomic and molecular densities in the shock layer and the expected residence time of 1 m/s, it can be expected that electron-ion collision processes will be important in the shock model. Electron capture by molecular ions followed by dissociation, e.g., O2(+) + e(-) yields 0 + 0, can be expected to be of major importance since these processes are known to have high rates (e.g., 10 to the -7th power cu/cm/sec) at room temperature. However, there have been no experimental measurements of dissociative recombination (DR) at temperatures ( 12000K) that are expected to characterize the shock layer. Indeed, even at room temperature, it is often difficult to perform experiments that determine the dependence of the translational energy and quantum yields of the product atoms on the electronic and vibrational state of the reactant molecular ions. Presented are ab initio quantum chemical studies of DR for molecular ions that are likely to be important in the atmospheric shock layer.

  18. Luminescence properties of ZnxMg1-xSe layers

    NASA Astrophysics Data System (ADS)

    Bala, Waclaw; Firszt, Franciszek; Dzik, Janusz; Gapinski, Adam; Glowacki, Grzegorz

    1995-10-01

    This work deals with the study of luminescence properties of ZnxMg1-xSe layers prepared by different methods. ZnxMg1-xSe mixed crystal layers were obtained by: (a) thermal diffusion of Mg metal in the temperature range 1050 K - 1200 K into ZnSe single crystal grown by Bridgman method, and (b) epitaxial growth on (001) GaAs and (111) ZnTe substrates by MBE using elemental Zn, Se and Mg sources. The luminescence spectra of ZnxMg1-xSe layers grown on (001) GaAs and (111) ZnTe substrates are dominated by narrow blue and violet emission bands with maxima positioned at about 3.05 - 3.28 eV, 2.88 - 3.04 eV, and 2.81 - 2.705 eV.

  19. Sporadic-E As Observed with Rockets

    NASA Technical Reports Server (NTRS)

    Seddon, J. Carl

    1961-01-01

    Data obtained with rockets flown over New Mexico, U.S.A. and Manitoba, Canada have always shown the sporadic-E layer to be a thin layer with a large electron density gradient. The vertical electron density profiles and the horizontal uniformity of the sporadic-E layer are discussed herein. These layers have a strong tendency to form at preferential altitudes separated by approximately 6 km, and a striking correlation exists with wind- shears and magnetic field variations. In two cases where comparisons with ionograms were possible, the minimum frequency of the F-region echoes was found approximately equal to the plasma frequency of the sporadic-E layer reduced by half the gyrofrequency. On the other hand, the maximum frequency of the sporadic-E echoes as noted on ionograms was sometimes as much as 1 to 2 Mc greater than the plasma frequency.

  20. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III; Edward, James [Newton, MA; Mazur, Eric [Concord, MA

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  1. Low-Temperature Synthesis of Vertically Align ZnO Layer on ITO Glass: The Role of Seed Layer and Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Sholehah, Amalia; Achmad, NurSumiati; Dimyati, Arbi; Dwiyanti, Yanyan; Partuti, Tri

    2017-05-01

    ZnO thin layer has a broad potential application in optoelectronic devices. In the present study, vertically align ZnO layers on ITO glass were synthesized using wet chemical method. The seed layers were prepared using electrodeposition method at 3°C. After that, the growing process was carried out using chemical bath deposition (CBD) at 90°C. To improve the structural property of the ZnO layers, hydrothermal technique was used subsequently. Results showed that seeding layer has a great influence on the physical properties of the ZnO layers. Moreover, hydrothermal process conducted after the ZnO growth can enhance the morphological property of the layers. From the experiments, it is found that the ZnO layers has diameter of ∼60 nm with increasing thickness from ∼0.8 to 1.2 μm and band-gap energies of ∼3.2 eV.

  2. Mixed Layer Heat and Fresh Water Balance in North Bay of Bengal (18N, 90E) Using a Seaglider and Mooring

    NASA Astrophysics Data System (ADS)

    Thangaprakash, V. P.; Girishkumar, M. S.; S, S.; Chaudhuri, D.; Sureshkumar, N.; Ravichandran, M.; Sengupta, D.; Weller, R. A.

    2016-02-01

    The Bay of Bengal (BoB) receives the large quantity of freshwater by excess precipitation over evaporation and runoff. This large freshwater flux into the BoB leads to strong haline stratification in the near surface layer, which have significant impact on the evolution of near thermo-haline structure and air-sea interactions process in those areas. However, lack of systematic measurements of observations, the factors that are modulating near mixed layer salinity and temperature in these freshwater pool in the northern BoB is not yet understood clearly. Under OMM - ASIRI (Ocean mixing and monsoon - Air sea interaction regional initiatives in the Northern Indian Ocean) programme, 3 month repeated hydrographic survey using seaglider in a butterfly (or bowtie) track centered around a mooring in the North Bay of Bengal (18N, 89E) equipped with near surface ASIMET sensors and subsurface temperature and salinity measurements, which provides unprecedental data source to quantify the relative contribution of different process on the evolution of near surface thermo-haline field through mixed layer heat and salt budget. The results of the analysis will be presented.

  3. Novel Layered Supercell Structure from Bi 2AlMnO 6 for Multifunctionalities

    DOE PAGES

    Li, Leigang; Boullay, Philippe; Lu, Ping; ...

    2017-10-02

    Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less

  4. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  5. Layering in Spallanzani Crater

    NASA Image and Video Library

    2015-04-22

    In this image from NASA Mars Mars Reconnaissance Orbiter, we can see quite a spectacular layering pattern inside an impact crater called Spallanzani. Seeing layering is always exciting to geologists because it implies that the region has experienced multiple climatic conditions or geologic processes through time. The study of layering is so important in geology that it has its own dedicated branch of study: stratigraphy! Commonly, layering implies different lithologies (i.e., rock types). However, sometimes the layers could be of very similar composition but formed in different periods of time. This could happen for example in the case of annual flood deposits from rivers, multiple volcanic eruptions, or annual or periodic deposition of ice-rich material. We can also see in this image another feature called terracing, which happens when the layers form distinctive planes on top of one another like terraces. This could imply that the layers are being eroded with time but some of the layers are being eroded quicker than others because they are less resistant to erosion. So what is the composition of these layers? Spallanzani Crater lies in the high latitudes of the Southern hemisphere (around 60 degrees in latitude) so there is a good possibility that the deposits are ice-rich. If we look more closely we will notice fractured mounds, which sometimes indicate the presence of subsurface ice. Another interesting observation is the presence of grooves in the shaded slopes of some of the layers. Perhaps these grooves formed because of the sublimation (the direct transfer of solid ice to water vapor) of ice from these slopes since slopes tend to get warmer than the surrounding terrains. A close inspection of this image may help answer this question and investigate the multiple cycles in which these deposits were laid down as well as the duration of these individual cycles. http://photojournal.jpl.nasa.gov/catalog/PIA19367

  6. Physical criteria for the interface passivation layer in hydrogenated amorphous/crystalline silicon heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing

    2018-01-01

    AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.

  7. Innovation in Layer-by-Layer Assembly.

    PubMed

    Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank

    2016-12-14

    Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.

  8. Turbulent entrainment in a strongly stratified barrier layer

    NASA Astrophysics Data System (ADS)

    Pham, H. T.; Sarkar, S.

    2017-06-01

    Large-eddy simulation (LES) is used to investigate how turbulence in the wind-driven ocean mixed layer erodes the stratification of barrier layers. The model consists of a stratified Ekman layer that is driven by a surface wind. Simulations at a wide range of N0/f are performed to quantify the effect of turbulence and stratification on the entrainment rate. Here, N0 is the buoyancy frequency in the barrier layer and f is the Coriolis parameter. The evolution of the mixed layer follows two stages: a rapid initial deepening and a late-time growth at a considerably slower rate. During the first stage, the mixed layer thickens to the depth that is proportional to u∗/fN0 where u∗ is the frictional velocity. During the second stage, the turbulence in the mixed layer continues to deepen further into the barrier layer, and the turbulent length scale is shown to scale with u∗/N0, independent of f. The late-time entrainment rate E follows the law of E=0.035Ri∗-1/2 where Ri∗ is the Richardson number. The exponent of -1/2 is identical but the coefficient of 0.035 is much smaller relative to the value of 2-3/2 for the nonrotating boundary layer. Simulations using the KPP model (version applicable to this simple case without additional effects of Langmuir turbulence or surface buoyancy flux) also yield the entrainment scaling of E∝Ri∗-1/2; however, the proportionality coefficient varies with the stratification. The structure of the Ekman current is examined to illustrate the strong effect of stratification in the limit of large N0/f.

  9. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides.

    PubMed

    Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi; Liu, Shaoqin

    2016-04-15

    We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time-saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5-100 μg L(-1) under the optimized conditions with the limit of detection (LOD) of 10 μg L(-1). The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tailoring graphene layer-to-layer growth

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi

    2017-06-01

    A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.

  11. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  12. Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly

    PubMed Central

    Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui

    2018-01-01

    This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric. PMID:29570646

  13. Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly.

    PubMed

    Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui

    2018-03-23

    This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric.

  14. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

  15. Surface Layering Near Room Temperature in a Nonmetallic Liquid

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudeshna; Stripe, Benjamin; Shively, Patrick; Evmenenko, Geunnadi; Dutta, Pulak; Ehrlich, Steven; Mo, Haiding

    2009-03-01

    Oscillatory density profiles (layers) have been observed at the free surfaces of many liquid metals at and above room temperature [1]. A surface-layered state has been previously reported only in one dielectric liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), and only at lower temperatures [2]. We have used x-ray reflectivity to study a molecular liquid, pentaphenyl trimethyl trisiloxane. Below T˜ 267K (well above the freezing point for this liquid), density oscillations appear at the surface. This liquid has a higher Tc (˜1200K) than TEHOS (˜950K), so that layers appear at T/Tc 0.2 in both cases. Our results indicate that surface order is a universal phenomenon in both metallic and dielectric liquids, and that the underlying physics is likely to be the same since layers always appear at T<˜0.2Tc as theoretically predicted [3] [3pt] REFERENCES: [0pt] [1]. e.g. O. M. Magnussen et al., Phys. Rev. Lett. 74, 4444 (1995) [0pt] [2]. H. Mo et al. Phys. Rev. Lett. 96, 096107 (2006); Phys. Rev. B 76, 024206 (2007) [0pt] [3]. e.g. E. Chac'on et al., Phys. Rev. Lett. 87, 166101 (2001)

  16. Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Midlatitude Sporadic-E Layers

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1998-01-01

    Sporadic layers, which appear in the region from 100 km to 120 km are thought to be formed by convergent Pedersen drifts induced by altitude gradients in the zonal neutral wind. In this altitude region NO+ and 02+ are the major ions produced by photoionization and charge exchange of atmospheric and ionospheric species. The relative composition of atmospheric ions and meteoric ions in sporadic layers is important in determining their persistence, the time scales for formation, and the electrical conductivity of the layers. This rocket investigation will include a diagnosis of the neutral wind field and the electric field distribution. Coupled with ion composition measurements we will be able to expose the relevant formation mechanisms and the electrodynamic consequences of their existence. A rocket trajectory has been chosen to provide substantial horizontal sampling of the layer properties and knowledge of the horizontal gradients in composition and density are essential to determine the polarization electric fields that may be associated with ionospheric layers. The University of Texas at Dallas (UTD) is responsible for designing, building, and operating the ion mass spectrometers included on these rockets. The following provides a summary of the UTD accomplishments in the second year of the project as well as a description of the plans for the third year's activities. The UTD mass spectrometer acronym has been coined as PRIMS for Puerto Rico Ion Mass Spectrometer.

  17. A comparative density functional study on electrical properties of layered penta-graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less

  18. The efficacy of inactivated Escherichia coli autogenous vaccines against the E. coli peritonitis syndrome in layers.

    PubMed

    Landman, W J M; van Eck, J H H

    2017-12-01

    Autogenous Escherichia coli vaccines to prevent the E. coli peritonitis syndrome (EPS) in laying hens are often used in the field, although their effectiveness has not been demonstrated yet. Therefore, in this study, which consisted of two experiments, their efficacy was assessed. In the first experiment, the EPS-inducing ability of three E. coli isolates originating from bone marrow of hens that died due to EPS and with different Pulsed-Field Gel Electrophoresis patterns, was examined by intravenous inoculation of the isolates in 17-week-old brown layers. Based on the results one isolate was chosen for the preparation of the vaccines and for homologous challenge and another one for heterologous challenge performed in the second experiment. In the named experiment, groups of laying hens which had been vaccinated intramuscularly at 14 and 18 weeks of age with inactivated vaccine either formulated as aqueous suspension or as water-in-oil emulsion were homologously or heterologously challenged per aerosol at 30 weeks of age. The vaccines contained ≥10 8.2 formaldehyde-inactivated colony-forming units (cfu) of E. coli per hen dose in 0.5 ml. The estimated E. coli challenge dose uptake ranged from 10 5.8 to 10 6.5  cfu per hen. Groups consisted of 18 hens each and were housed in separate isolators from 27 weeks of age. Control groups were included in this experiment, which was ended eight days after challenge. Vaccinations had no effect on body growth and both vaccine types induced (almost) complete protection against homologous challenge, while protection against heterologous challenge was inconclusive.

  19. N-halamine biocidal coatings via a layer-by-layer assembly technique.

    PubMed

    Cerkez, Idris; Kocer, Hasan B; Worley, S D; Broughton, R M; Huang, T S

    2011-04-05

    Two N-halamine copolymer precursors, poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-acrylic acid potassium salt) and poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-trimethyl-2-methacryloxyethylammonium chloride) have been synthesized and successfully coated onto cotton fabric via a layer-by-layer (LbL) assembly technique. A multilayer thin film was deposited onto the fiber surfaces by alternative exposure to polyelectrolyte solutions. The coating was rendered biocidal by a dilute household bleach treatment. The biocidal efficacies of tested swatches composed of treated fibers were evaluated against Staphylococcus aureus and Escherichia coli. It was determined that chlorinated samples inactivated both S. aureus and E. coli O157:H7 within 15 min of contact time, whereas the unchlorinated control samples did not exhibit significant biocidal activities. Stabilities of the coatings toward washing and ultraviolet light exposure have also been studied. It was found that the stability toward washing was superior, whereas the UVA light stability was moderate compared to previously studied N-halamine moieties. The layer-by-layer assembly technique can be used to attach N-halamine precursor polymers onto cellulose surfaces without using covalently bonding tethering groups which limit the structure designs. In addition, ionic precursors are very soluble in water, thus promising for biocidal coatings without the use of organic solvents.

  20. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  1. Prediction of weak topological insulators in layered semiconductors.

    PubMed

    Yan, Binghai; Müchler, Lukas; Felser, Claudia

    2012-09-14

    We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors.

  2. Comparison of mesospheric sodium layers at different latitudes

    NASA Astrophysics Data System (ADS)

    Liu, Yingjie

    With the support of the Chinese Meridional project in the eastern hemisphere, two brand new sodium fluorescence lidars with the same configuration were respectively set up at Yanqing (40.46(°) N, 115.98(°) E) and Haikou (20.04(°) N, 110.34(°) E) in April, 2010. Based on the observations obtained from 2010 to 2012, comparison of the Na layer at these two latitudes was performed. It reveals a strong correlation in the topside layer between these two sites. Independently of their seasonal characteristics at lower altitudes, they both show an extension to 120 km and above, predominantly during summer. Simultaneous observations at these two sites show that the correlation above 102 km is remarkable in contrast to their different seasonal characteristics below 98 km. It indicates that different processes dominate different height ranges in the Na layer. Meanwhile, it indicates that the topside extension effect is global, combined with the observations at other latitudes. Besides, when the topside layer has an extension, the bottom side layer extends slightly downward, too. Comparison with known meteor showers shows that most of these extensions correspond well to one or more meteor showers, although not one by one. Meteor showers with velocities less than 35 km/s appear to have more influence on these extensions.

  3. Layer-Based Approach for Image Pair Fusion.

    PubMed

    Son, Chang-Hwan; Zhang, Xiao-Ping

    2016-04-20

    Recently, image pairs, such as noisy and blurred images or infrared and noisy images, have been considered as a solution to provide high-quality photographs under low lighting conditions. In this paper, a new method for decomposing the image pairs into two layers, i.e., the base layer and the detail layer, is proposed for image pair fusion. In the case of infrared and noisy images, simple naive fusion leads to unsatisfactory results due to the discrepancies in brightness and image structures between the image pair. To address this problem, a local contrast-preserving conversion method is first proposed to create a new base layer of the infrared image, which can have visual appearance similar to another base layer such as the denoised noisy image. Then, a new way of designing three types of detail layers from the given noisy and infrared images is presented. To estimate the noise-free and unknown detail layer from the three designed detail layers, the optimization framework is modeled with residual-based sparsity and patch redundancy priors. To better suppress the noise, an iterative approach that updates the detail layer of the noisy image is adopted via a feedback loop. This proposed layer-based method can also be applied to fuse another noisy and blurred image pair. The experimental results show that the proposed method is effective for solving the image pair fusion problem.

  4. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator.

    PubMed

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub M; Abu-Heiba, Ahmad

    2017-10-25

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizations has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. The DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.

  5. Characterization of E 471 food emulsifiers by high-performance thin-layer chromatography-fluorescence detection.

    PubMed

    Oellig, Claudia; Brändle, Klara; Schwack, Wolfgang

    2018-07-13

    Mono- and diacylglycerol (MAG and DAG) emulsifiers, also known as food additive E 471, are widely used to adjust techno-functional properties in various foods. Besides MAGs and DAGs, E 471 emulsifiers additionally comprise different amounts of triacylglycerols (TAGs) and free fatty acids (FFAs). MAGs, DAGs, TAGs and FFAs are generally determined by high-performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to mass selective detection, analyzing the individual representatives of the lipid classes. In this work we present a rapid and sensitive method for the determination of MAGs, DAGs, TAGs and FFAs in E 471 emulsifiers by high-performance thin-layer chromatography with fluorescence detection (HPTLC-FLD), including a response factor system for quantitation. Samples were simply dissolved and diluted with t-butyl methyl ether before a two-fold development was performed on primuline pre-impregnated LiChrospher silica gel plates with diethyl ether and n-pentane/n-hexane/diethyl ether (52:20:28, v/v/v) as the mobile phases to 18 and 75 mm, respectively. For quantitation, the plate was scanned in the fluorescence mode at UV 366/>400 nm, when the cumulative signal for each lipid class was used. Calibration was done with 1,2-distearin and amounts of lipid classes were calculated with response factors and expressed as monostearin, distearin, tristearin and stearic acid. Limits of detection and quantitation were 1 and 4 ng/zone, respectively, for 1,2-distearin. Thus, the HPTLC-FLD approach represents a simple, rapid and convenient screening alternative to HPLC and GC analysis of the individual compounds. Visual detection additionally enables an easy characterization and the direct comparison of emulsifiers through the lipid class pattern, when utilized as a fingerprint. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Observation of warm, higher energy electrons transiting a double layer in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yung-Ta, E-mail: ysung2@wisc.edu; Li, Yan; Scharer, John E.

    2015-03-15

    Measurements of an inductive RF helicon argon plasma double layer with two temperature electron distributions including a fast (>80 eV) tail are observed at 0.17 mTorr Ar pressure. The fast, untrapped electrons observed downstream of the double layer have a higher temperature (13 eV) than the trapped (T{sub e} = 4 eV) electrons. The reduction of plasma potential and density observed in the double layer region would require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The experimental observation in Madison helicon experiment indicates that fast electrons with substantial density fractions can be created at low helicon operating pressures.

  7. Work Function Variations in Twisted Graphene Layers

    DOE PAGES

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...

    2018-01-31

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  8. Work Function Variations in Twisted Graphene Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  9. Layering and Ordering in Electrochemical Double Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yihua; Kawaguchi, Tomoya; Pierce, Michael S.

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  10. The inner core thermodynamics of the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2016-10-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  11. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  12. Infrared fingerprints of few-layer black phosphorus

    PubMed Central

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V. Ongun; Low, Tony; Yan, Hugen

    2017-01-01

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics. PMID:28059084

  13. Infrared fingerprints of few-layer black phosphorus.

    PubMed

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V Ongun; Low, Tony; Yan, Hugen

    2017-01-06

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics.

  14. ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS

    EPA Science Inventory

    There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...

  15. Meteoric metal layers in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Plane, John; Whalley, Charlotte

    Radio occultation measurements from several spacecraft (e.g., Mars Express, Mars Global Sur-veyor) have revealed the presence of a "third" ion layer in the Martian atmosphere, which occurs sporadically around 90 km. Because this is the aerobraking region of the atmosphere, and the layers resemble sporadic E layers observed in the terrestrial atmosphere, it has been proposed that these layers consist of metallic ions (principally Fe+ and Mg+ ). A major problem with this hypothesis is that we have shown recently that metallic ions re-combine rapidly in a CO2 -rich atmosphere, both because of the efficiency of CO2 as the "third body" and because of the very low temperatures (about 140 K). In fact, both Fe+ and Mg+ form CO2 cluster ions about 200 times faster than current Mars models predict. These cluster ions should rapidly be destroyed by dissociative recombination with electrons, so that sporadic layers containing metallic ions would have lifetimes of only minutes. We will present a new laboratory study of all the reactions that appear to be required to solve this problem. Most importantly, we will show that the reactions of molecular magnesium ions (Mg+ .CO2 , MgO2 + and MgO+ ) with atomic O are about 20 times faster than expected. The laboratory will then be used to construct a new model of the Martian upper atmosphere, which demonstrates that the sporadic third layers must largely be composed of Mg+ and not Fe+ . These layers should then have lifetimes of more than 10 hours, in accord with observations from Mars Express made on successive orbits.

  16. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less

  17. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator

    DOE PAGES

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh; ...

    2017-10-25

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less

  18. Ablation of selected conducting layers by fiber laser

    NASA Astrophysics Data System (ADS)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria

    2014-08-01

    Laser Direct Writing (LDW) are used in the manufacture of electronic circuits, pads, and paths in sub millimeter scale. They can also be used in the sensors systems. Ablative laser writing in a thin functional layer of material deposited on the dielectric substrate is one of the LDW methods. Nowadays functional conductive layers are composed from graphene paint or nanosilver paint, indium tin oxide (ITO), AgHTTM and layers containing carbon nanotubes. Creating conducting structures in transparent layers (ITO, AgHT and carbon nanotubes layers) may have special importance e.g. for flexi electronics. The paper presents research on the fabrication of systems of paths and appropriate pattern systems of paths and selected electronic circuits in AgHTTM and ITO layers deposited on glass and polymer substrates. An influence of parameters of ablative fiber laser treatment in nanosecond regime as well as an influence of scanning mode of laser beam on the pattern fidelity and on electrical parameters of a generated circuit was investigated.

  19. Improved insulator layer for MIS devices

    NASA Technical Reports Server (NTRS)

    Miller, W. E.

    1980-01-01

    Insulating layer of supersonic conductor such as LaF sub 3 has been shown able to impart improved electrical properties to photoconductive detectors and promises to improve other metal/insulator/semiconductor (MIS) devices, e.g., MOSFET and integrated circuits.

  20. A charge carrier transport model for donor-acceptor blend layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less

  1. Turbulent dusty boundary layer in an ANFO surface-burst explosion

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.

    1992-01-01

    This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.

  2. Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus.

    PubMed

    Liu, Jun; Falke, Sven; Drobot, Bjoern; Oberthuer, Dominik; Kikhney, Alexey; Guenther, Tobias; Fahmy, Karim; Svergun, Dmitri; Betzel, Christian; Raff, Johannes

    2017-01-01

    The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg 2+ and Ca 2+ . Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.

  3. Polar Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02153 Polar Layers

    This image of the south polar region shows layered material. It is not known if the layers are formed yearly or if they form over the period of 10s to 100s of years or more.

    Image information: VIS instrument. Latitude -80.3N, Longitude 296.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Comparison and characterization of different tunnel layers, suitable for passivated contact formation

    NASA Astrophysics Data System (ADS)

    Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf

    2017-08-01

    Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.

  5. A Theory of Density Layering in Stratified Turbulence using Statistical State Dynamics

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2016-12-01

    Stably stratified turbulent fluids commonly develop density structures that are layered in the vertical direction (e.g., Manucharyan et al., 2015). Within layers, density is approximately constant and stratification is weak. Between layers, density varies rapidly and stratification is strong. A common explanation for the existence of layers invokes the negative diffusion mechanism of Phillips (1972) & Posmentier (1977). The physical principle underlying this mechanism is that the flux-gradient relationship connecting the turbulent fluxes of buoyancy to the background stratification must have the special property of weakening fluxes with strengthening gradient. Under these conditions, the evolution of the stratification is governed by a negative diffusion problem which gives rise to spontaneous layer formation. In previous work on stratified layering, this flux-gradient property is often assumed (e.g, Posmentier, 1977) or drawn from phenomenological models of turbulence (e.g., Balmforth et al., 1998).In this work we develop the theoretical underpinnings of layer formation by applying stochastic turbulence modeling and statistical state dynamics (SSD) to predict the flux-gradient relation and analyze layer formation directly from the equations of motion. We show that for stochastically-forced homogeneous 2D Boussinesq turbulence, the flux-gradient relation can be obtained analytically and indicates that the fluxes always strengthen with stratification. The Phillips mechanism thus does not operate in this maximally simplified scenario. However, when the problem is augmented to include a large scale background shear, we show that the flux-gradient relationship is modified so that the fluxes weaken with stratification. Sheared and stratified 2D Boussinesq turbulence thus spontaneously forms density layers through the Phillips mechanism. Using SSD (Farrell & Ioannou 2003), we obtain a closed, deterministic dynamics for the stratification and the statistical turbulent

  6. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  7. Lead bromide-based layered perovskite Langmuir-Blodgett films having π-conjugated molecules as organic layer prepared by using squeezed out technique

    NASA Astrophysics Data System (ADS)

    Era, Masanao; Shironita, Yu; Soda, Koichi

    2018-03-01

    Using the squeezed out technique, we successfully prepared PbBr-based layered perovskite Langmuir-Blodgett (LB) films, which have π-conjugated materials as an organic layer (i.e., a phenylenevinylene oligomer, a dithienylethene derivative, and a π-conjugated polyfluorene derivative). The mixed monolayers of π-conjugated materials and octadecylammonium bromide were spread on an aqueous subphase containing saturated PbBr2. During pressing, octadecylammonium molecules were squeezed from the mixed monolayer, and the squeezed ammonium molecules formed the PbBr-based layered perovskite structure at the air-aqueous subphase interface. The monolayers with the PbBr-based layered perovskite structure could be deposited on fused quartz substrates by the LB technique. In addition to the preparation procedure, the structural and optical properties of the layered perovskite LB films and their formation mechanism are reported in this paper.

  8. Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2018-06-01

    The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.

  9. Carbazole/triarylamine based polymers as a hole injection/transport layer in organic light emitting devices.

    PubMed

    Wang, Hui; Ryu, Jeong-Tak; Kwon, Younghwan

    2012-05-01

    This study examined the influence of the charge injection barriers on the performance of organic light emitting diodes (OLEDs) using polymers with a stepwise tuned ionization potential (I(p) approximately -5.01 - -5.29 eV) between the indium tin oxide (ITO) (phi approximately -4.8 eV) anode and tris(8-hydroxyquinolinato) aluminium (Alq3) (I(p) approximately -5.7 eV) layer. The energy levels of the polymers were tuned by structural modification. Double layer devices were fabricated with a configuration of ITO/polymer/Alq3/LiF/Al, where the polymers, Alq3, and LiF/Al were used as the hole injection/transport layer, emissive electron transport layer, and electron injection/cathode, respectively. Using the current density-voltage (J-V), luminescence-voltage (L-V) and efficiencies in these double layer devices, the device performance was evaluated in terms of the energy level alignments at the interfaces, such as the hole injection barriers (phi(h)(iTO/polymer) and phi(h)(polymer/Alq3)) from ITO through the polymers into the Alq3 layer, and the electron injection barrier (phi(e)(polymer/Alq3) or electron/exciton blocking barrier) at the polymer/Alq3 interface.

  10. Nanoscale multiple gaseous layers on a hydrophobic surface.

    PubMed

    Zhang, Lijuan; Zhang, Xuehua; Fan, Chunhai; Zhang, Yi; Hu, Jun

    2009-08-18

    The nanoscale gas state at the interfaces of liquids (water, acid, and salt solutions) and highly oriented pyrolytic graphite (HOPG) was investigated via tapping-mode atomic force microscopy (AFM). For the first time, we report that the interfacial gases could form bilayers and trilayers, i.e., on the top of a flat gas layer, there are one or two more gas layers. The formation of these gas layers could be induced by a local supersaturation of gases, which can be achieved by (1) temperature difference between the liquids and the HOPG substrates or (2) exchange ethanol with water. Furthermore, we found that the gas layers were less stable than spherical bubbles. They could transform to bubbles with time or under the perturbation of the AFM tip.

  11. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001-2008, 1: zonal currents

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.

    2017-08-01

    The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.

  12. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); West, William C. (Inventor); Smart, Marshall C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  13. Development of a Beam Trajectory Monitoring System Using e+/e- Pair Production Events

    NASA Astrophysics Data System (ADS)

    Kimura, Shota; Emoto, Yusaku; Fujihara, Kento; Ito, Hiroshi; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro

    2018-01-01

    In particle therapy, it is important to monitor the Bragg-peak position. It was simulated by GEANT4 Monte Carlo Simulation Code that the distribution of secondary generated gamma rays on the carbon beam therapy and the proton beam therapy. This simulation shows that gamma rays whose energy is 10 MeV or more are intensively generated at the Bragg-peak position. We are developing the system to monitor the Bragg-peak position which can measure pair production events occurred in the detector by gamma rays from irradiation points. The momentum direction of the gamma ray can be determined by measuring passing points and energy of e+ and e- generated by pair production. This system has 5 parts. The first is the conversion part. This part consists of several layers. Each layer is composed of a La-GPS ((Gd0.75La0.24Ce0.01)2Si2O7) scintillator plate and wavelength-shifting fibre (WLSF) sheets. The scintillator plate is sandwiched between sheets, where the directions of the sheets are in orthogonally x and y directions. In this part, gamma rays are converted to e+ e- pairs and the position where the conversion occured is determined. The second is the tracking part. This part consists of 2 layers of scintillating fibre tracker. Each layer has 6 scintillating fibre sheets for x, x', u, u', v, and v'. The third is the energy measurement part. It measures the energy of e+ and e- by scintillator array and Silicon Photomultipliers. The fourth is the veto counter for bremsstrahlung gamma rays from e+ and e-. The fifth is the beam monitor. By experiment, the number of photoelectrons of La-GPS with a WLSF (B-3(300)MJ, Kuraray) sheet and scintillating fibre (SCSF-78, Kuraray) when charged particle passed was measured as 9.7 and 7.6 respectively.

  14. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    PubMed

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Macular Choroidal Small-Vessel Layer, Sattler's Layer and Haller's Layer Thicknesses: The Beijing Eye Study.

    PubMed

    Zhao, Jing; Wang, Ya Xing; Zhang, Qi; Wei, Wen Bin; Xu, Liang; Jonas, Jost B

    2018-03-13

    To study macular choroidal layer thickness, 3187 study participants from the population-based Beijing Eye Study underwent spectral-domain optical coherence tomography with enhanced depth imaging for thickness measurements of the macular small-vessel layer, including the choriocapillaris, medium-sized choroidal vessel layer (Sattler's layer) and large choroidal vessel layer (Haller's layer). In multivariate analysis, greater thickness of all three choroidal layers was associated (all P < 0.05) with higher prevalence of age-related macular degeneration (AMD) (except for geographic atrophy), while it was not significantly (all P > 0.05) associated with the prevalence of open-angle glaucoma or diabetic retinopathy. There was a tendency (0.07 > P > 0.02) toward thinner choroidal layers in chronic angle-closure glaucoma. The ratio of small-vessel layer thickness to total choroidal thickness increased (P < 0.001; multivariate analysis) with older age and longer axial length, while the ratios of Sattler's layer and Haller's layer thickness to total choroidal thickness decreased. A higher ratio of small-vessel layer thickness to total choroidal thickness was significantly associated with a lower prevalence of AMD (early type, intermediate type, late geographic type). Axial elongation-associated and aging-associated choroidal thinning affected Haller's and Sattler's layers more markedly than the small-vessel layer. Non-exudative and exudative AMD, except for geographic atrophy, was associated with slightly increased choroidal thickness.

  16. Horton, pipe hydraulics, and the atmospheric boundary layer (The Robert E. Horton Memorial Lecture)

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried

    1993-01-01

    The early stages of Horton's scientific career which provided the opportunity and stimulus to delve into the origins of some contemporary concepts on the atmospheric boundary layer are reviewed. The study of Saph and Schoder provided basis for the experimental verification and validation of similarity by Blasius, Staton and Pannel, and for the subsequent developments that led to the present understanding of the turbulent boundary layer. Particular attention is given to incorporation of similarity and scaling in the analysis of turbulent flow.

  17. Dynamics in Layer Models of Solid Flame Propagation

    NASA Technical Reports Server (NTRS)

    Aldushin, A. P.; Bayliss, A.; Matkowsky, B. J.; Gokoglu, S. (Technical Monitor)

    2000-01-01

    Self-propagating high-temperature synthesis (SHS) is a process in which combustion waves, e.g., "solid flames", which are considered here, are employed to synthesize desired materials. Like many other systems, SHS is a pattern forming system. The problem of describing experimentally observed patterns and of predicting new, as yet unobserved, patterns continues to attract the attention of scientists and mathematicians due to the fundamental significance of the phenomena in combustion in particular, and in nonlinear science in general. Here, we analyze the dynamics of solid flame propagation in a 2D region by considering the region to be composed of parallel, identical layers aligned along the direction of propagation and having thermal contact. Each layer is then described by wave propagation in 1D, with the transverse Laplacian replaced by a term describing heat exchange between neighboring layers. This configuration is the simplest model of a 2D system because it accounts, in a simple way, for the principal feature of the problem, i.e., heat exchange between neighbors in the transverse direction. For simplicity, we describe the situation for two layers. Because the layers are identical, uniformly propagating waves in each layer must be identical, independent of the heat exchange rate alpha. When the Zeldovich number Z exceeds a critical value Z(sub c), which depends on alpha, uniformly propagating waves become unstable. The stability diagram for the two coupled layers reproduces that for the full 2D problem after appropriate identification of parameters in the two problems. Depending on parameter values, we determine three different steady-state dynamical behaviors (though additional behaviors are also expected to occur). The three behaviors are: (i) waves in each layer which pulsate in phase as they propagate, so that together they form a single pulsating propagating wave; (ii) the waves in each layer are no longer identical, and antiphase pulsations occur, with

  18. Modelling Biogenic Carbon Cycling and Remineralization In The Mesopelagic Layer 1. Conceptual Development

    NASA Astrophysics Data System (ADS)

    Legendre, L.; Rivkin, R. B.; Nagata, T.

    Most of the biogenic carbon (BC) that is exported (E) from the euphotic zone to the mesopelagic layer (i.e. 100 to 1000 m) is remineralized to CO2 (i.e. respiration, R). A significant part of this remineralized CO2 is ventilated back to the surface layer on decadal time scales, where it equilibrates with the atmosphere. Only the BC that is remineralized or buried (i.e.. sequestration, S) below the permanent pycnocline, typi- cally ca. 1000 m, is isolated from the atmosphere long enough to be of significance to the global climate. Current estimates of E and S for the World Ocean are ca. 7 to 12 and 1 to 2 Gt C/year, respectively. The main biological mechanisms that control R in the mesopelagic layer are the size structure, sinking velocity and chemical composi- tion of E. The interactions among these factors are non-linear. Because the changing climate will modify both R and the downward propagation of characteristics of the surface ocean (e.g. heat, storm mixing), these factors will influence S, which will in turn feedback to climate.

  19. Negative post sunset height rise of F layer: Causes and implications

    NASA Astrophysics Data System (ADS)

    Joshi, Lalit Mohan; Patra, Amit

    Post sunset height rise (PSHR) of the F layer is a manifestation of the pre reversal enhancement (PRE) of zonal electric field in the equatorial and low latitude ionosphere. Ionosonde observations, made during the equinox period from Sriharikota (13.7 degree North, 80.1 degree East, 6.7 degree North magnetic latitude), a low latitude station in India, have been utilized to study the PSHR of the F layer. Normally, the height of the F layer increases during the early post sunset period (positive PSHR) whose magnitude has a direct bearing on the equatorial spread F (ESF). However, observations revealed that on a few nights (about 3% nights) the height of the F layer descended in the early post sunset period itself, indicating the absence of PRE of zonal field. Such events have been termed as negative PSHR events. Such events never preceded ESF. Detailed investigations revealed that the negative PSHR events were accompanied by an enhancement of low latitude sporadic E (Es) activity with increase in the Es blanketing (fbEs) and top (ftEs) frequencies, during the post sunset period. Numerical simulations have been carried out to evaluate the effectiveness of the westward Pedersen and Hall conductivity gradients that exists in the low latitude E region during the evening hours, in causing the PRE of zonal field and the PSHR of the F layer. Model simulation reveals that the dominant cause of PRE of zonal field is the divergence of Hall current in the low latitude E region. When the zonal conductivity gradient of the low latitude E region was assumed to be either zero or slightly eastward, owing to the intensification of Es, model computation resulted in the negative PSHR of the F layer. Thus, the observational and computational results highlight the important role of the low latitude Es in the PRE of the zonal electric field.

  20. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  1. Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations.

    PubMed

    Rajesh, Sahadevan; Yan, Yu; Chang, Hsueh-Chia; Gao, Haifeng; Phillip, William A

    2014-12-23

    Charge mosaic membranes, which possess distinct cationic and anionic domains that traverse the membrane thickness, are capable of selectively separating dissolved salts from similarly sized neutral solutes. Here, the generation of charge mosaic membranes using facile layer-by-layer assembly methodologies is reported. Polymeric nanotubes with pore walls lined by positively charged polyethylenimine moieties or negatively charged poly(styrenesulfonate) moieties were prepared via layer-by-layer assembly using track-etched membranes as sacrificial templates. Subsequently, both types of nanotubes were deposited on a porous support in order to produce mixed mosaic membranes. Scanning electron microscopy demonstrates that the facile deposition techniques implemented result in nanotubes that are vertically aligned without overlap between adjacent elements. Furthermore, the nanotubes span the thickness of the mixed mosaic membranes. The effects of this unique nanostructure are reflected in the transport characteristics of the mixed mosaic membranes. The hydraulic permeability of the mixed mosaic membranes in piezodialysis operations was 8 L m(-2) h(-1) bar(-1). Importantly, solute rejection experiments demonstrate that the mixed mosaic membranes are more permeable to ionic solutes than similarly sized neutral molecules. In particular, negative rejection of sodium chloride is observed (i.e., the concentration of NaCl in the solution that permeates through a mixed mosaic membrane is higher than in the initial feed solution). These properties illustrate the ability of mixed mosaic membranes to permeate dissolved ions selectively without violating electroneutrality and suggest their utility in ionic separations.

  2. Inter-layer synchronization in non-identical multi-layer networks

    NASA Astrophysics Data System (ADS)

    Leyva, I.; Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Gutiérrez, R.; Buldú, J. M.; Boccaletti, S.

    2017-04-01

    Inter-layer synchronization is a dynamical process occurring in multi-layer networks composed of identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to the case in which all layers have an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship connecting the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of multiplexed layers of electronic circuits, we study the inter-layer synchronization as a function of the removed links.

  3. Localization of excitons by molecular layer formation in a polymer film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.; Datta, A.

    2005-10-15

    Spin coated films of atactic polystyrene of two different molecular weights have been studied with uv spectroscopy and x-ray reflectivity, the film thickness (d) varying from {approx}2R{sub g} to {approx}12R{sub g} where R{sub g} is the unperturbed radius of gyration of the polymer. uv extinction due to the pure electronic singlet {sup 1}A{sub 1g}{yields}{sup 1}E{sub 1u} is seen to increase with d{sup -1} for 4R{sub g}{<=}d{<=}12R{sub g} (region 1). This suggests excitonic interaction along d. The variation of total exciton energy (E) of the A{sub 1g}{yields}E{sub 1u} singlet with d in region 1 can be well explained by formation ofmore » linear J-aggregates of polystyrene molecules, in a lattice with spacing 'a' (in A) R{sub g}E with d{sup -2} the effective mass (m{sub eff}) of the exciton is also determined. For R{sub g}E become essentially independent of d, indicating exciton localization along d, and the value of m{sub eff} becomes very large. This enhancement in the effective mass maybe used to quantify localization. The variations of electron density ({rho}) with d, i.e., the electron density profiles (EDPs) of the films extracted from x-ray reflectivity studies, indicate formation of layers with period 'b' (in A), R{sub g}layering was seen to almost vanish, as obtained from both the EDP and the Patterson function of the reflectivity profile. The close correspondence between 'a' and 'b' indicates that the molecules forming the J-aggregates form the layers, too. The average difference in {rho} between successive extrema in the EDPs in region 2, denoted by {delta}, can be

  4. Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovich, M. V., E-mail: davidovichmv@info.sgu.ru

    2016-12-15

    Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO{sub 2}) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.

  5. Joint-layer encoder optimization for HEVC scalable extensions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  6. The E2A splice variant E47 regulates the differentiation of projection neurons via p57(KIP2) during cortical development.

    PubMed

    Pfurr, Sabrina; Chu, Yu-Hsuan; Bohrer, Christian; Greulich, Franziska; Beattie, Robert; Mammadzada, Könül; Hils, Miriam; Arnold, Sebastian J; Taylor, Verdon; Schachtrup, Kristina; Uhlenhaut, N Henriette; Schachtrup, Christian

    2017-11-01

    During corticogenesis, distinct classes of neurons are born from progenitor cells located in the ventricular and subventricular zones, from where they migrate towards the pial surface to assemble into highly organized layer-specific circuits. However, the precise and coordinated transcriptional network activity defining neuronal identity is still not understood. Here, we show that genetic depletion of the basic helix-loop-helix (bHLH) transcription factor E2A splice variant E47 increased the number of Tbr1-positive deep layer and Satb2-positive upper layer neurons at E14.5, while depletion of the alternatively spliced E12 variant did not affect layer-specific neurogenesis. While ChIP-Seq identified a big overlap for E12- and E47-specific binding sites in embryonic NSCs, including sites at the cyclin-dependent kinase inhibitor (CDKI) Cdkn1c gene locus, RNA-Seq revealed a unique transcriptional regulation by each splice variant. E47 activated the expression of the CDKI Cdkn1c through binding to a distal enhancer. Finally, overexpression of E47 in embryonic NSCs in vitro impaired neurite outgrowth, and overexpression of E47 in vivo by in utero electroporation disturbed proper layer-specific neurogenesis and upregulated p57(KIP2) expression. Overall, this study identifies E2A target genes in embryonic NSCs and demonstrates that E47 regulates neuronal differentiation via p57(KIP2). © 2017. Published by The Company of Biologists Ltd.

  7. Dual ion beam assisted deposition of biaxially textured template layers

    DOEpatents

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  8. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests.

    PubMed

    Park, Haejun; Rangwala, Ali S; Dembsey, Nicholas A

    2009-08-30

    A method to estimate thermal and kinetic parameters of Pittsburgh seam coal subject to thermal runaway is presented using the standard ASTM E 2021 hot surface ignition test apparatus. Parameters include thermal conductivity (k), activation energy (E), coupled term (QA) of heat of reaction (Q) and pre-exponential factor (A) which are required, but rarely known input values to determine the thermal runaway propensity of a dust material. Four different dust layer thicknesses: 6.4, 12.7, 19.1 and 25.4mm, are tested, and among them, a single steady state dust layer temperature profile of 12.7 mm thick dust layer is used to estimate k, E and QA. k is calculated by equating heat flux from the hot surface layer and heat loss rate on the boundary assuming negligible heat generation in the coal dust layer at a low hot surface temperature. E and QA are calculated by optimizing a numerically estimated steady state dust layer temperature distribution to the experimentally obtained temperature profile of a 12.7 mm thick dust layer. Two unknowns, E and QA, are reduced to one from the correlation of E and QA obtained at criticality of thermal runaway. The estimated k is 0.1 W/mK matching the previously reported value. E ranges from 61.7 to 83.1 kJ/mol, and the corresponding QA ranges from 1.7 x 10(9) to 4.8 x 10(11)J/kg s. The mean values of E (72.4 kJ/mol) and QA (2.8 x 10(10)J/kg s) are used to predict the critical hot surface temperatures for other thicknesses, and good agreement is observed between measured and experimental values. Also, the estimated E and QA ranges match the corresponding ranges calculated from the multiple tests method and values reported in previous research.

  9. Modified Coaxial Probe Feeds for Layered Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.

    2006-01-01

    In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.

  10. Sound transmission through a poroelastic layered panel

    NASA Astrophysics Data System (ADS)

    Nagler, Loris; Rong, Ping; Schanz, Martin; von Estorff, Otto

    2014-04-01

    Multi-layered panels are often used to improve the acoustics in cars, airplanes, rooms, etc. For such an application these panels include porous and/or fibrous layers. The proposed numerical method is an approach to simulate the acoustical behavior of such multi-layered panels. The model assumes plate-like structures and, hence, combines plate theories for the different layers. The poroelastic layer is modelled with a recently developed plate theory. This theory uses a series expansion in thickness direction with subsequent analytical integration in this direction to reduce the three dimensions to two. The same idea is used to model either air gaps or fibrous layers. The latter are modeled as equivalent fluid and can be handled like an air gap, i.e., a kind of `air plate' is used. The coupling of the layers is done by using the series expansion to express the continuity conditions on the surfaces of the plates. The final system is solved with finite elements, where domain decomposition techniques in combination with preconditioned iterative solvers are applied to solve the final system of equations. In a large frequency range, the comparison with measurements shows very good agreement. From the numerical solution process it can be concluded that different preconditioners for the different layers are necessary. A reuse of the Krylov subspace of the iterative solvers pays if several excitations have to be computed but not that much in the loop over the frequencies.

  11. Low Cost, Single Layer Replacement for the Back-Sheet and Encapsulant Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Thapa, P.

    2008-01-01

    Ethylene propylene diene monomer (EPDM) based polymers have been formulated for specific use in photovoltaic modules to produce better performance and longer term stability at a lower cost than standard materials. EPDM formulations are advantageous over ethylene vinyl-acetate (EVA) because they can use the same lamination/cure cycle as EVA, they do not need a second back-sheet protective material (e.g. PET/Tedlar), they have a lower glass transition temperature, no melting transition, more constant mechanical moduli as a function of temperature, they are less polar than EVA (provides better corrosion protection), and they have excellent damp heat (85 C/85% relative humidity) resistancemore » against delamination. Module designs typically use EVA on the back side of cells despite the fact that transparency is not advantageous. We have developed a single encapsulant layer that will replace standard module back-sheet constructions consisting of EVA/PET/Tedlar. Because a single low-cost material layer is used, it will provide a significant materials cost savings of about $6 to $8/m{sup 2} as compared to traditional back-sheets. Electrical insulation tests were conducted using 0.85 mm thick stainless steel sheets as a model for a cell. It was found that a polymer layer thickness of about 0.33mm provided better high voltage electrical insulation than a combined film of Tedla (0.038 mm)/PET (0.051 mm)/EVA (0.55 mm). When formulated with a white pigment, reflectivity was comparable to Tedlar{trademark}. Upon accelerated exposure to light at 60C and 60% RH it was found that an EVA layer in front of these materials would decompose before significant yellowing and delamination of the back EPDM layer occurs.« less

  12. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, Bingkun; Xue, Xianghui; Lu, Gaopeng; Kuo, Chengling; Dou, Xiankang; Gao, Qi; Qie, Xiushu; Wu, Jianfei; Tang, Yihuan

    2017-04-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region. The ionospheric observations made with two digisondes near the Na lidar, the thunderstorm model, ionosphere model, and Na chemistry model are all used to discuss the possible mechanisms responsible for the enhancement of Na layer after thunderstorms.

  13. Satellite to measure equatorial ozone layer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  14. e-Learning development in medical physics and engineering

    PubMed Central

    Tabakov, S

    2008-01-01

    Medical Physics and Engineering was among the first professions to develop and apply e-Learning (e-L). The profession provides excellent background for application of simulations and other e-L materials. The paper describes several layers for e-L development: Programming specific simulations; Building e-L modules; Development of e-L web-based programmes. The paper shows examples from these layers and outlines their specificities. At the end, the newest e-L development (project EMITEL) is briefly introduced and the necessity of a regularly updated list of e-L activities is emphasised. PMID:21614312

  15. Interfacial Properties of Germanium Nitride Dielectric Layers on Germanium.

    DTIC Science & Technology

    1986-09-30

    choice or a process for growing Ge N , layers on germa - nium. a number of workers have employed various de. mum. posited layers on germanium. While...N00014-84-K-0459 V6 Office of Naval Research (Mr. Max N . Yoder, Electronic Division) 4: 800 North Quincy Street Arlington, Virginia 22217 Interfacial...z4) 3 Co0 C14 CM- Lfl n X sj E 𔃺 01 N S) Li (m* m n1 Ln m CU OT X)-(, (L 0IX) D/13si E- 1 0n CtZ) 4-4C ~ IN I- I L L0tX Cd) JN N in - Growth of

  16. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing; Xiong, Bo; Ren, Zhipeng; Zhao, Biqiang; Zhang, Yun; Ning, Baiqi; Liu, Libo

    2015-05-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation coefficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  17. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing

    2016-04-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  18. Facile Approach to Preparing a Vanadium Oxide Hydrate Layer as a Hole-Transport Layer for High-Performance Polymer Solar Cells.

    PubMed

    Cong, Hailin; Han, Dongwei; Sun, Bingbing; Zhou, Dongying; Wang, Chen; Liu, Ping; Feng, Lai

    2017-05-31

    We demonstrate a facile and green approach to preparing a vanadium oxide hydrate (VO x ·nH 2 O) layer to serve as the hole-transport layer (HTL) in high-performance polymer solar cells (PSCs). The VO x ·nH 2 O layer was in situ prepared by a combined H 2 O 2 and ultraviolet-ozone (UVO) processing on a VO x layer. The as-prepared VO x ·nH 2 O layer featured a work function of 5.0 ± 0.1 eV, high transmittance, and better interface properties compared to those of the generally prepared VO x (UVO or thermal annealing) layers. PSCs based on poly[(ethylhexyl-thiophenyl)-benzodithiophene-(ethylhexyl)-thienothiophene]/[6,6]-phenyl-C 71 -butyric acid methyl ester using the VO x ·nH 2 O layer as the HTL yielded high power conversion efficiencies (PCEs) up to 8.11%, outperforming the devices with VO x layers (PCE of 6.79% for the UVO-processed VO x layer and 6.10% for the thermally annealed VO x layer) and conventional polyethylenedioxythiophene-polystyrenesulfonate (PEDOT:PSS) layers (PCE of 7.67%). The improved PCE was attributed to the enhanced J SC and/or fill factor, which mainly correlate to the improved interfacial contact between the photoactive layer and the indium tin oxide/HTL or cathode when using the VO x ·nH 2 O layer as the HTL. A similar improvement in the PCE was also observed for the PSCs based on poly(3-hexylthiophene)/[6,6]-phenyl-C 61 -butyric acid methyl ester. In addition, PSCs with a VO x ·nH 2 O layer as the HTL showed a higher stability than that of those with a PEDOT:PSS layer. Hence, it would be possible to use this simply and in situ prepared VO x ·nH 2 O layer as an inexpensive HTL for high-performance PSCs.

  19. Organic photovoltaic devices with a single layer geometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Aizawa, Naoya; Larrain, Felipe A.; Chou, Wen-Fang; Perrotta, Alberto; Graham, Samuel; Kippelen, Bernard

    2016-09-01

    Organic photovoltaics (OPV) can lead to a low cost and short energy payback time alternative to existing photovoltaic technologies. However, to fulfill this promise, power conversion efficiencies must be improved and simultaneously the architecture of the devices and their processing steps need to be further simplified. In the most efficient devices to date, the functions of photocurrent generation, and hole/electron collection are achieved in different layers adding complexity to the device fabrication. In this talk, we present a novel approach that yields devices in which all these functions are combined in a single layer. Specifically, we report on bulk heterojunction devices in which amine-containing polymers are first mixed in the solution together with the donor and acceptor materials that form the active layer. A single-layer coating yields a self-forming bottom electron-collection layer comprised of the amine-containing polymer (e.g. PEIE). Hole-collection is achieved by subsequent immersion of this single layer in a solution of a polyoxometalate (e.g. phosphomolybdic acid (PMA)) leading to an electrically p-doped region formed by the diffusion of the dopant molecules into the bulk. The depth of this doped region can be controlled with values up to tens of nm by varying the immersion time. Devices with a single 500 nm-thick active layer of P3HT:ICBA processed using this method yield power conversion efficiency (PCE) values of 4.8 ± 0.3% at 1 sun and demonstrate a performance level superior to that of benchmark three-layer devices with separate layers of PEIE/P3HT:ICBA/MoOx (4.1 ± 0.4%). Devices remain stable after shelf lifetime experiments carried-out at 60 °C over 280 h.

  20. Localization of excitons by molecular layer formation in a polymer film

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Datta, A.

    2005-10-01

    Spin coated films of atactic polystyrene of two different molecular weights have been studied with uv spectroscopy and x-ray reflectivity, the film thickness (d) varying from ˜2Rg to ˜12Rg where Rg is the unperturbed radius of gyration of the polymer. uv extinction due to the pure electronic singlet A1g1→E1u1 is seen to increase with d-1 for 4Rg⩽d⩽12Rg (region 1). This suggests excitonic interaction along d . The variation of total exciton energy (E) of the A1g→E1u singlet with d in region 1 can be well explained by formation of linear J -aggregates of polystyrene molecules, in a lattice with spacing “ a ” (in Å) RgE with d-2 the effective mass (meff) of the exciton is also determined. For RgE become essentially independent of d , indicating exciton localization along d , and the value of meff becomes very large. This enhancement in the effective mass maybe used to quantify localization. The variations of electron density (ρ) with d , i.e., the electron density profiles (EDPs) of the films extracted from x-ray reflectivity studies, indicate formation of layers with period “ b ” (in Å), Rglayering was seen to almost vanish, as obtained from both the EDP and the Patterson function of the reflectivity profile. The close correspondence between “ a ” and “ b ” indicates that the molecules forming the J -aggregates form the layers, too. The average difference in ρ between successive extrema in the EDPs in region 2, denoted by δ , can be used as the order parameter for the layering transition. For PS-5, δ>0 at d≃4Rg , where the exciton is still delocalized. Layering

  1. Characterization of Softmagnetic Thin Layers Using Barkhausen Noise Microscopy

    DTIC Science & Technology

    2001-04-01

    magnetoresistive (MR) sensors softmagnetic thin layer systems are used. Optimal performance of these layers requires homogeneous magnetic properties , especially a...Sendust, used in inductive sensors and nanocrystalline NiFe , used in MR-sensors. In quality correlations to Barkhausen noise parameters were found...Brillouin scattering are frequently used. An important issue is the influence of mechanical properties , e.g. residual stress on the magnetic performance

  2. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Heo, Yun; Ishida, Masayoshi; Nakano, Akihiro; Someya, Satoshi; Munakata, Tetsuo

    2017-02-01

    The intrinsic effect of properties of a self-supporting microporous layer (MPL) on the performance of proton exchange membrane fuel cells (PEMFCs) is identified. First, a self-supporting MPL is fabricated and applied to a gas diffusion layer (GDL) of a PEMFC, when the GDL is either an integrated sample composed of a gas diffusion backing (GDB, i.e., carbon paper) combined with MPL or a sample with only MPL. Cell performance tests reveal that, the same as the MPL fabricated by the coating method, the self-supporting MPL on the GDB improves the cell performance at high current density. Furthermore, the GDL composed only of the MPL (i.e., GDB-free GDL) shows better performance than does the integrated GDB/MPL GDL. These results along with literature data strongly suggest that the low thermal conductivity of MPL induces a high temperature throughout the GDL, and thus vapor diffusion is dominant in the transport of product water through the MPL.

  3. Atomic-layer soft plasma etching of MoS2

    PubMed Central

    Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2016-01-01

    Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335

  4. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Lanyi; Ying, Jun; Han, Jinhua

    2016-04-25

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (V{sub on}) and severe degradation of the memory window (ΔV{sub on}) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electronsmore » transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of V{sub on} at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔV{sub on} of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.« less

  5. Dark current of organic heterostructure devices with insulating spacer layers

    NASA Astrophysics Data System (ADS)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-03-01

    The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.

  6. Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsubasa; Kato, Hiromitsu; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Yamasaki, Satoshi; Imura, Masataka; Ueda, Akihiro; Inokuma, Takao; Tokuda, Norio

    2018-04-01

    The electrical properties of Al2O3/p-type diamond (111) MOS capacitors were studied with the goal of furthering diamond-based semiconductor research. To confirm the formation of an inversion layer in the p-type diamond body, an n-type layer for use as a minority carrier injection layer was selectively deposited onto p-type diamond. To form the diamond MOS capacitors, Al2O3 was deposited onto OH-terminated diamond using atomic layer deposition. The MOS capacitor showed clear inversion capacitance at 10 Hz. The minority carrier injection from the n-type layer reached the inversion n-channel diamond MOS field-effect transistor (MOSFET). Using the high-low frequency capacitance method, the interface state density, D it, within an energy range of 0.1-0.5 eV from the valence band edge energy, E v, was estimated at (4-9) × 1012 cm-2 eV-1. However, the high D it near E v remains an obstacle to improving the field effect mobility for the inversion p-channel diamond MOSFET.

  7. Improved CLARAty Functional-Layer/Decision-Layer Interface

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang

    2008-01-01

    Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.

  8. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  9. Physical Layer Ethernet Clock Synchronization

    DTIC Science & Technology

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  10. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  11. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  12. High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.

    2015-11-01

    We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.

  13. A statistical study of sporadic sodium layer observed by Sodium lidar at Hefei (31.8° N, 117.3° E)

    NASA Astrophysics Data System (ADS)

    Dou, X.-K.; Xue, X.-H.; Chen, T.-D.; Wan, W.-X.; Cheng, X.-W.; Li, T.; Chen, C.; Qiu, S.; Chen, Z.-Y.

    2009-06-01

    Sodium lidar observations of sporadic sodium layers (SSLs) during the past 3 years at a mid-latitude location (Hefei, China, 31.8° N, 117.3° E) are reported in this paper. From 64 SSL events detected in about 900 h of observation, an SSL occurrence rate of 1 event every 14 h at our location was obtained. This result, combined with previous studies, reveals that the SSL occurrence can be relatively frequent at some mid-latitude locations. Statistical analysis of main parameters for the 64 SSL events was performed. By examining the corresponding data from an ionosonde, a considerable correlation was found with a Pearson coefficient of 0.66 between seasonal variations of SSL and those of sporadic E (Es) during nighttime, which was in line with the research by Nagasawa and Abo (1995). From comparison between observations from the University of Science and Technology of China (USTC) lidar and from Wuhan Institute of Physics and Mathematics (WIPM) lidar (Wuhan, China, 31° N, 114° E), the minimum horizontal range for some events was estimated to be over 500 km.

  14. Method of making a layered composite electrode/electrolyte

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-01-25

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  15. nBn Infrared Detector Containing Graded Absorption Layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.

    2009-01-01

    It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.

  16. Cooperative transformation and coexpression of bovine papillomavirus type 1 E5 and E7 proteins.

    PubMed

    Bohl, J; Hull, B; Vande Pol, S B

    2001-01-01

    Productively infected bovine fibropapillomas were examined for bovine papillomavirus type 1 (BPV-1) E7 localization. BPV-1 E7 was observed in the cytoplasm of basal and lower spinous epithelial cells, coexpressed in the cytoplasm of basal cells with the E5 oncoprotein. E7 was also observed in nucleoli throughout the basal and spinous layers but not in the granular cell layer. Ectopic expression of E7 in cultured epithelial cells gave rise to localization similar to that seen in productive fibropapillomas, with cytoplasmic and nucleolar expression observed. Consistent with the coexpression of E7 and E5 in basal keratinocytes, BPV-1 E7 cooperated with E5 as well as E6 in an anchorage independence transformation assay. While E5 is expressed in both basal and superficial differentiating keratinocytes, BPV-1 E7 is only observed in basal and lower spinous epithelial cells. Therefore, BPV-1 E7 may serve to modulate the cellular response of basal epithelial cells to E5 expression.

  17. Fabrication and characterization of anode catalyst layers with structural variations for DMFC

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Shi, Peng; Zhou, Peng; Mao, Qing; Liang, Junsheng; Wang, Suli; Li, Yang; Ren, Tongqun; Sun, Gongquan

    2018-04-01

    In this work, the electrohydrodynamic jet (E-Jet) Layer-by-Layer (LbL) deposition technique was employed to produce anode catalyst layer (CL) structure for direct methanol fuel cells (DMFC). The CLs with different thickness and porosity were fabricated with the control of the E-Jet deposition parameters. Then, the deposited anode CLs with structural variations were assembled to membrane electrode assemblies (MEAs). The results showed that the anode CL with higher porosity contributed higher dispersed catalyst, which further induced greater electrochemical active surface area (ESA) and higher performance. At optimized working condition the anode CL with high-dispersed catalyst of was produced using the E-Jet LbL deposition technique. It was observed that the peak power density is 72.8 mW cm‑2 for the cell having a porosity of 0.63, which has an increase of about 33% after modification of the CL structure.

  18. Effect of inserting a hole injection layer in organic light-emitting diodes: A numerical approach

    NASA Astrophysics Data System (ADS)

    Lee, Hyeongi; Hwang, Youngwook; Won, Taeyoung

    2015-01-01

    For investigating the effect of inserting a hole injection layer (HIL), we carried out a computational study concerning organic light-emitting diodes (OLEDs) that had a thin CuPc layer as the hole injection layer. We used S-TAD (2, 2', 7, 7'-tetrakis-(N, Ndiphenylamino)-9, 9-spirobifluoren) for the hole transfer layer, S-DPVBi (4, 4'-bis (2, 2'-diphenylvinyl)-1, 1'-spirobiphenyl) for the emission layer and Alq3 (Tris (8-hyroxyquinolinato) aluminium) for the electron transfer layer. This tri-layer device was compared with four-layer devices. To this tri-layer device, we added a thin CuPc layer, which had a 5.3 eV highest occupied molecular orbital (HOMO) level and a 3.8 eV lowest unoccupied molecular orbital (LUMO) level, as a hole injection layer, and we chose this device for Device A. Also, we varied the LUMO level or the HOMO level of the thin CuPc layer. These two devices were identified as Device C and Device D, respectively. In this paper, we simulated the carrier injection, transport and recombination in these four devices. Thereby, we showed the effect of the HIL, and we demonstrated that the characteristics of these devices were improved by adding a thin layer of CuPc between the anode and the HTL.

  19. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  20. Multicaloric effect in bi-layer multiferroic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vopson, M. M., E-mail: melvin.vopson@port.ac.uk; Zhou, D.; Caruntu, G.

    2015-11-02

    The multicaloric effect was theoretically proposed in 2012 and, despite numerous follow up studies, the effect still awaits experimental confirmation. The main limitation is the fact that the multicaloric effect is only observed at a temperature equal to the transition temperature of the magnetic and electric phases coexisting within a multiferroic (MF) (i.e., T ≈ T{sub c}{sup m} ≈ T{sub c}{sup e}). Such condition is hard to fulfill in single phase MFs and a solution is to develop suitable composite MF materials. Here, we examine the multicaloric effect in a bi-layer laminated composite MF in order to determine the optimal design parameters for bestmore » caloric response. We show that magnetically induced multicaloric effect requires magnetic component of heat capacity smaller than that of the electric phase, while the layer thickness of the magnetic phase must be at least 5 times the thickness of the electric phase. The electrically induced multicaloric effect requires the magnetic layer to be 10% of the electric phase thickness, while its heat capacity must be larger than that of the electric phase. These selection rules are generally applicable to bulk as well as thin film MF composites for optimal multicaloric effect.« less

  1. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation

    NASA Astrophysics Data System (ADS)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-05-01

    Graphene oxide (GO)-chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ˜1 μm and thickness of ˜1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ˜80% and 45%, respectively. Similar to the chitosan layer, the GO-chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)-chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  2. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  3. Magnetic conjugate observation of the F3 layer using the SEALION ionosonde network

    NASA Astrophysics Data System (ADS)

    Uemoto, Jyunpei; Ono, Takayuki; Maruyama, Takashi; Saito, Susumu; Iizima, Masahide; Kumamoto, Atsushi

    2007-01-01

    Results from the meridional ionosonde network located in Southeast Asia (SEALION) demonstrate the interesting nature of the F 3 layer, showing its generation mechanism. Ionograms obtained on 16 November 2004 and 31 March 2005 at Chiang Mai (CMU; geographic latitude 18.8°N, geographic longitude 98.9°E, and magnetic latitude 13.2°N), Chumphon (CPN; 10.7°N, 99.4°E, and 3.2°N) and Kototabang (KTB; 0.2°S, 100.3°E, and 10.1°S) showed significant differences between CPN near the magnetic equator, and CMU and KTB in the magnetic low-latitude region. The simultaneous magnetic conjugate observations of the F 3 layer achieved using the SEALION ionosonde network data showed clear dependences of the F 3 layer on the magnetic latitude. It is suggested that these magnetic latitude dependences of the F 3 layer can be explained by considering the plasma diffusion effects along the magnetic field lines in the magnetic low-latitude region.

  4. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  5. Photosensitivity of layered semiconductor propolis heterocontact

    NASA Astrophysics Data System (ADS)

    Drapak, Stepan I.; Orletskii, Volodymyr B.; Bahtinov, Anatolii P.; Kovalyuk, Zakhar D.; Fotiy, Vasyl D.

    2003-03-01

    Room temperature photosensitivity and its spectral distribution are investigated for a hetercontact between a layered semiconductor (p-InSe) and a biological entity (propolis). The obtained heterocontacts has a maximum photosensitivity >= 10^4 V/W. It is shown that the form of spectral sensitivity curve depends on the way of the heterocontact preparation. The long-wave edge of relative quantum efficiency varies from hν =1.2 eV (the energy gap for InSe at T=300 K) to 1.6 eV depending on a state of aggregation of propolis. The maximum photosensitivity in the long-wave spectral range takes place when the propolis layer is under illumination. The obtained peculiarities of the photoelectrical properties cannot be explained in the framework of the classical description of photosensitivity spectral description (the window effect) what follows from the optical absorption measurements for InSe and propolis in the range hν <= 1.2 eV. Impurity states in the energy gap of InSe and states at the heterocontact interface (a classical case of isotype p-p heterojunction) also do not give an appropriate explanation. To interpret the obtained results the complexity of the chemical composition of propolis, a product from honey bee, must be taken into account.

  6. Polyethylene oxide hydration in grafted layers

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  7. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj

    2018-04-01

    Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.

  8. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.

    PubMed

    Palomero-Gallagher, Nicola; Zilles, Karl

    2017-08-12

    Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.

  9. Water generation and transport through the high-pressure ice layers of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Choblet, G.; Tobie, G.; Grasset, O.

    2017-09-01

    We investigate the generation and transport of water through the high-pressure (HP) ice layers of Ganymede and Titan using a numerical model of two-phase convection in 2D geometry. Our results suggest that water can be generated at the silicate/HP ice interface for small to intermediate values of Rayleigh number (Ra 1.e8-1.e10) while no melt is generated for the higher values (Ra 1.e11). If generated, water is transported through the layer by the upwelling plumes and, depending on the vigor of convection, it stays liquid (smaller Ra) or it may freeze (intermediate Ra) before melting again as the plume reaches the temperate layer at the interface with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the HP ice permeability. This process may enable the transfer of volatiles and salts that might have been leached from silicates by the meltwater. Since the HP ice layer is much thinner on Titan than on Ganymede, it is probably more permeable for volatiles and salts leached from the silicate core.

  10. Processes for multi-layer devices utilizing layer transfer

    DOEpatents

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  11. Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-κ oxide/tungsten nitride gate stacks

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.

    2007-05-01

    Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.

  12. Issues in designing transport layer multicast facilities

    NASA Technical Reports Server (NTRS)

    Dempsey, Bert J.; Weaver, Alfred C.

    1990-01-01

    Multicasting denotes a facility in a communications system for providing efficient delivery from a message's source to some well-defined set of locations using a single logical address. While modem network hardware supports multidestination delivery, first generation Transport Layer protocols (e.g., the DoD Transmission Control Protocol (TCP) (15) and ISO TP-4 (41)) did not anticipate the changes over the past decade in underlying network hardware, transmission speeds, and communication patterns that have enabled and driven the interest in reliable multicast. Much recent research has focused on integrating the underlying hardware multicast capability with the reliable services of Transport Layer protocols. Here, we explore the communication issues surrounding the design of such a reliable multicast mechanism. Approaches and solutions from the literature are discussed, and four experimental Transport Layer protocols that incorporate reliable multicast are examined.

  13. Bulk β-Te to few layered β-tellurenes: indirect to direct band-Gap transitions showing semiconducting property

    NASA Astrophysics Data System (ADS)

    Wu, Bozhao; Liu, Xinghui; Yin, Jiuren; Lee, Hyoyoung

    2017-09-01

    Herein we report a prediction of a highly kinetic stable layered structure of tellurium (namely, bulk β-Te), which is similar to these layered bulk materials such as graphite, black phosphorus, and gray arsenic. Bulk β-Te turns out to be a semiconductor that has a band gap of 0.325 eV (HSE06: 0.605 eV), based on first-principles calculations. Moreover, the single-layer form of the bulk β-Te, called β-tellurene, is predicted to have a high stability. When the bulk β-Te is thinned to one atomic layer, an indirect semiconductor of band gap is changed to 1.265 eV (HSE06: 1.932 eV) with a very high kinetic stability. Interestingly, an increase of the number of the β-tellurene layers from one to three is accompanied by a shift from an indirect to direct band gap. Furthermore, the effective carrier masses, the optical properties and phonon modes of few-layer β-tellurenes are characterized. Few-layer β-tellurenes strongly absorb the ultraviolet and blue-violet visible lights. The dramatic changes in the electronic structure and excellent photo absorptivities are expected to pave the way for high speed ultrathin transistors, as well as optoelectronic devices working in the UV or blue-green visible regions.

  14. Underwater Flow Visualization Methods in the Upper Layer of the Ocean.

    DTIC Science & Technology

    1981-05-22

    AD-A107 919 NAVAL RESEARCH LAB WASHINGTON DC F/G 8/3 UNDERWATER FLOW VISUALIZATION METHODS IN T1E UPPER LAYER OF THE-ETC(U) AMAY 81 J R MCGRATH, C M...S.bOti1.) S. TYPE OF REPORT I PERIOD COVERED UNDERWATER FLOW VISUALIZATION METHODS Interim report on a continuingNRL problem. IN THE UPPER LAYER OF THE...56 UNDERWATER FLOW VISUALIZATION METHODS IN THE UPPER LAYER OF THE OCEAN 1. INTRODUCTION a) Purpose This report documents the

  15. Cathodoluminescence of SiOx under-stoichiometric silica layers

    NASA Astrophysics Data System (ADS)

    Salh, Roushdey; von Czarnowski, A.; Zamoryanskaya, M. V.; Kolesnikova, E. V.; Fitting, H.-J.

    2006-06-01

    Under-stoichiometric thin silica layers SiOx with different stoichiometric degree 1 x 2, were prepared by thermal evaporation of silicon monoxide in vacuum and in ambient oxygen atmosphere of various pressure onto crystalline silicon substrates. The chemical composition has been determined by Fourier transform infrared spectroscopy (FTIR). A special formula is derived to correlate the stoichiometric degree x with the wavenumber of the main TO stretching mode (Si-O-Si) in silica, finally to determine the actual composition values x of the layers. Cathodoluminescence (CL) of these layers shows the development of typical amorphous SiO2 luminescence bands at the composition threshold x > 1.5 and then onwards to x = 2. These luminescence bands were observed at 4.3, 2.7, 2.15, and 1.9 eV. The green-yellow luminescence (2.15 eV) is strongly increasing with the annealing temperature up to 1300 °C and is assigned to phase separation of SiOx into Si and SiO2 and formation of hexamer silicon rings in the understoichiometric silica network. Finally we observe Si nanoclusters by means of transmission elec- tron microscopy (TEM) micrographs.

  16. Generation and characterization of surface layers on acoustically levitated drops.

    PubMed

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs.

  17. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  18. Sensitivity analysis of bi-layered ceramic dental restorations.

    PubMed

    Zhang, Zhongpu; Zhou, Shiwei; Li, Qing; Li, Wei; Swain, Michael V

    2012-02-01

    The reliability and longevity of ceramic prostheses have become a major concern. The existing studies have focused on some critical issues from clinical perspectives, but more researches are needed to address fundamental sciences and fabrication issues to ensure the longevity and durability of ceramic prostheses. The aim of this paper was to explore how "sensitive" the thermal and mechanical responses, in terms of changes in temperature and thermal residual stress of the bi-layered ceramic systems and crown models will be with respect to the perturbation of the design variables chosen (e.g. layer thickness and heat transfer coefficient) in a quantitative way. In this study, three bi-layered ceramic models with different geometries are considered: (i) a simple bi-layered plate, (ii) a simple bi-layer triangle, and (iii) an axisymmetric bi-layered crown. The layer thickness and convective heat transfer coefficient (or cooling rate) seem to be more sensitive for the porcelain fused on zirconia substrate models. The resultant sensitivities indicate a critical importance of the heat transfer coefficient and thickness ratio of core to veneer on the temperature distributions and residual stresses in each model. The findings provide a quantitative basis for assessing the effects of fabrication uncertainties and optimizing the design of ceramic prostheses. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Observation of surface layering in a nonmetallic liquid

    NASA Astrophysics Data System (ADS)

    Mo, Haiding; Evmenenko, Guennadi; Kewalramani, Sumit; Kim, Kyungil; Dutta, Pulak; Ehrlich, Steven

    2006-03-01

    Non-monotonic density profiles (layers) have previously been observed at the free surfaces of many metallic liquids, but not in isotropic dielectric liquids. Whether the presence of an electron gas is necessary for surface layering has been the subject of debate. Until recently, MD simulations have suggested that layering at free liquid interface may be a generic phenomenon and is not limited to the metallic liquids^1. The theories predict that if normal liquids can be cooled down to temperatures low enough, layering structure should be observed experimentally. However, this is difficult for most molecular liquids because these liquids freeze well above the temperature necessary for observing the layering structure. By studying the surface structure of liquid TEHOS (tetrakis(2-ethylhexoxy)silane), which combines relatively low freezing point and high boiling point compared to that of most molecular liquids, we have observed the evidence of layering at the free interface of liquid TEHOS using x-ray reflectivity. When cooled to T/Tc 0.25 (well above the bulk freezing point, Tc is the critical temperature of TEHOS), the surface roughness drops sharply and density oscillations appear near the surface. Lateral ordering of the surface layers is liquid-like, just as at liquid metal surfaces. 1. E. Chac'on and P. Tarazona, Phys. Rev. Lett. 91 166103-1 (2003)

  20. Freestanding and Reactive Thin Films Fabricated by Covalent Layer-by-Layer Assembly and Subsequent Lift-Off of Azlactone-Containing Polymer Multilayers

    PubMed Central

    Buck, Maren E.

    2010-01-01

    We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and

  1. Finite-size effects and magnetic exchange coupling in thin CoO layers

    NASA Astrophysics Data System (ADS)

    Ambrose, Thomas Francis

    Finite size effects in CoO have been observed in CoO/SiOsb2 multilayers. The Neel temperatures of the CoO layers, as determined by dc susceptibility measurements, follow a finite-size scaling relation with a shift exponent lambda = 1.55 ± 0.05. This determined exponent is close to the theoretical value for finite size scaling in an Ising system. The value of the zero temperature correlation length has also been determined to be 18A, while antiferromagnetic ordering persists down to a CoO layer thickness of 10A. The properties of exchange biasing have been extensively studied in NiFe/CoO bilayers. The effects of the cooling field (Hsb{FC}), up to 50 kOe, on the resultant exchange field (Hsb{E}) and coercivity (Hsb{C}) have been examined. The value of Hsb{E} increases rapidly at low cooling fields (Hsb{FC} < 1kOe) and levels off for Hsb{FC} larger than 4 kOe. The value of Hsb{C} also depends upon Hsb{FC}, but less sensitively. The bilayer thickness also influences exchange biasing. We find that Hsb{E} varies inversely proprotional to both tsb{FM} and tsb{AF} where tsb{FM} and tsb{AF} are the ferromagnetic and antiferromagnetic layer thickness respectively. Because of the 1/tsb{AF}, the simple picture of interfacial coupling between ferromagnet and antiferromagnet spins appears to be inadequate. The assertion of long range coupling between ferromagnetic and antiferromagnetic layers has been verified by the observation of antiferromagnetic exchange coupling across spacer layers in NiFe/NM/CoO trilayers, where NM is a non-magnetic material. Exchange biasing has been observed in trilayers with metallic spacer layers up to 50A thick using Ag, Cu and Au, while no exchange field was observed for insulating spacer layers of any thickness using Alsb2Osb3, SiOsb2 and MgO. The temperature dependence of Hsb{E} and Hsb{C} and the effect of the deposition order have been studied in a series of bilayer (NiFe/CoO and CoO/NiFe) and trilayer (NiFe/CoO/NiFe) films. A profound

  2. Effect of the Graded-Gap Layer Composition on the Formation of n + -n - -p Structures in Boron-Implanted Heteroepitaxial Cd x Hg1- x Te Layers

    NASA Astrophysics Data System (ADS)

    Talipov, N. Kh.; Voitsekhovskii, А. V.; Grigor'ev, D. V.

    2014-07-01

    Processes of formation of n + -n--p-structures in boron-implanted heteroepitaxial (HEL) CdxHg1-xTe (CMT) layers of p-type grown by molecular beam epitaxy (HEL CMT MBE) with different compositions of the upper graded-gap layer are studied. It is shown that the surface composition (xs) of HEL CMT MBE significantly affects both the electrical parameters of the implanted layer and the spatial distribution of radiation defects of donor type. For HEL CMT MBE with the small surface composition xs = 0.22-0.33, it is found that the layer electron concentration (Ns) is decreased after saturation with accumulation of radiation defects, as the dose of B+ ions is increased in the range of D = 1ṡ1011-3ṡ1015 сm-2. An increase of the surface composition up to xs = 0.49-0.56 results in a significant decrease in Ns and a disappearance of the saturation of concentration in the whole dose range. The value of Ns monotonically increases with the energy (E) of boron ions and composition xs. It is found that for B+-ion energies E = 20-100 keV, the depth of the surface n + -layer increases with increasing energy and exceeds the total projected path of boron ions. However, in the energy range E = 100-150 keV, the depth of n+-layer stops increasing with the increase of the surface composition. The depth (dn) of a lightly doped n--layer monotonically decreases with increasing energy of boron ions in the entire range of E = 20-150 keV. With increasing dose (D) of B+ ions in the interval D = 1ṡ1014-1ṡ1015сm-2, deep n--layers with dn = 4-5 μm are formed only in the HEL CMT MBE with xs = 0.22-0.33. For the samples with xs = 0.49-0.56, the depth changes in the interval dn = 1.5-2.5 μm. At D ≤ 3ṡ1013сm-2, n + -n--p-structure is not formed for all surface compositions, if implantation is performed at room temperature. However, implantation at T = 130°C leads to the formation of a deep n--layer. Planar photodiodes with the n-p-junction area of A = 35×35 μm2 made on the basis of

  3. The Application of Layer Theory to Design: The Control Layer

    ERIC Educational Resources Information Center

    Gibbons, Andrew S.; Langton, Matthew B.

    2016-01-01

    A theory of design layers proposed by Gibbons ("An Architectural Approach to Instructional Design." Routledge, New York, 2014) asserts that each layer of an instructional design is related to a body of theory closely associated with the concerns of that particular layer. This study focuses on one layer, the control layer, examining…

  4. Structural analysis and characterization of layer perovskite oxynitrides made from Dion Jacobson oxide precursors

    NASA Astrophysics Data System (ADS)

    Schottenfeld, Joshua A.; Benesi, Alan J.; Stephens, Peter W.; Chen, Gugang; Eklund, Peter C.; Mallouk, Thomas E.

    2005-07-01

    A three-layer oxynitride Ruddlesden-Popper phase Rb 1+xCa 2Nb 3O 10-xN x· yH 2O ( x=0.7-0.8, y=0.4-0.6) was synthesized by ammonialysis at 800 °C from the Dion-Jacobson phase RbCa 2Nb 3O 10 in the presence of Rb 2CO 3. Incorporation of nitrogen into the layer perovskite structure was confirmed by XPS, combustion analysis, and MAS NMR. The water content was determined by thermal gravimetric analysis and the rubidium content by ICP-MS. A similar layered perovskite interconversion occurred in the two-layer Dion-Jacobson oxide RbLaNb 2O 7 to yield Rb 1+xLaNb 2O 7-xN x· yH 2O ( x=0.7-0.8, y=0.5-1.0). Both compounds were air- and moisture-sensitive, with rapid loss of nitrogen by oxidation and hydrolysis reactions. The structure of the three-layer oxynitride Rb 1.7Ca 2Nb 3O 9.3N 0.7·0.5H 2O was solved in space group P4 /mmm with a=3.887(3) and c=18.65(1) Å, by Rietveld refinement of X-ray powder diffraction data. The two-layer oxynitride structure Rb 1.8LaNb 2O 6.3N 0.7·1.0H 2O was also determined in space group P4 /mmm with a=3.934(2) and c=14.697(2) Å. GSAS refinement of synchrotron X-ray powder diffraction data showed that the water molecules were intercalated between a double layer of Rb+ ions in both the two- and three-layer Ruddlesden-Popper structures. Optical band gaps were measured by diffuse reflectance UV-vis for both materials. An indirect band gap of 2.51 eV and a direct band gap of 2.99 eV were found for the three-layer compound, while an indirect band gap of 2.29 eV and a direct band gap of 2.84 eV were measured for the two-layer compound. Photocatalytic activity tests of the three-layer compound under 380 nm pass filtered light with AgNO 3 as a sacrificial electron acceptor gave a quantum yield of 0.025% for oxygen evolution.

  5. Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Herper, Heike C.

    Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.

  6. (CaO)(FeSe): A layered wide-gap oxychalcogenide semiconductor

    DOE PAGES

    Han, Fei; Wang, Di; Malliakas, Christos D.; ...

    2015-07-20

    A new iron-oxychalcogenide (CaO)(FeSe) was obtained which crystallizes in the orthorhombic space group Pnma (No. 62) with a = 5.9175(12) Å, b = 3.8797(8) Å, c = 13.170(3) Å. The unique structure of (CaO)(FeSe) is built up of a quasi-two-dimensional network of corrugated infinite layers of corner-shared FeSe 2O 2 tetrahedra that extend in the ab-plane. The FeSe 2O 2 layers stack along the c-axis with Ca 2+ cations sandwiched between the layers. Optical spectroscopy and resistivity measurements reveal semiconducting behavior with an indirect optical band gap of around 1.8 eV and an activation energy of 0.19(1) eV. Furthermore, electronicmore » band structure calculations at the density function level predict a magnetic configuration as ground state and confirm the presence of an indirect wide gap in (CaO)(FeSe).« less

  7. A case study of atmospheric boundary layer features during winter over a tropical inland station — Kharagpur (22.32°N, 87.32°E)

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Kunhikrishnan, P. K.; Aloysius, Marina; Mohan, M.

    2009-08-01

    The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient ( V C), a factor determining the air pollution potential over a region, is also discussed in detail.

  8. Stability of Boundary Layer Flow.

    DTIC Science & Technology

    1980-03-01

    climato- logical frequency of convection in the North Atlantic, and offered recom- U mendations on the modelling of triggered convection. The current ...support of the current investigation we have carried out several additional calculations of the marine boundary layer with SIGMET. These calculations...In a fixed coordinate system x ( positive eastward), y ( positive northward), and z ( positive vertically upward) the equations are au .U +vE + W+-U

  9. Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors

    DTIC Science & Technology

    2010-11-11

    patterned on the sur- face of the source substrate. The InAs layer was then pattern etched into nano- ribbons using a mixture of citric acid (1 g per ml of...Electron. Dev. 55, 547–556 (2008). 27. DeSalvo, G. C., Kaspi, R. & Bozada, C. A. Citric acid etching of GaAs1-xSbx, Al0.5Ga0.5Sb, and InAs for...interfacial layer formed by thermal oxidation and used for surface passivation is clearly evident. LETTER RESEARCH 1 1 N O V E M B E R 2 0 1 0 | V O L

  10. Effects of sporadic E-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere: A climatological study

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Chen, W. S.

    2018-04-01

    The aim of this study is to examine the effects of Es-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere. The Es-layer parameters and spread-F appearance of the 23rd solar cycle (1996-2008) are recorded by the Kokubunji ionosonde. The Es-layer parameters are foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). In order to completely explore the effects, the pre-midnight and post-midnight data are classified by seasons, solar activities, and geomagnetic conditions. Results show that the spread-F occurs more frequently in post-midnight and in summer. And, the occurrence probabilities of spread-F are greater, when the solar activity is lower. For the occurrence probabilities of spread-F versus foEs and Δf under geomagnetic quiet-conditions, the trend is increasing, when the associated probabilities are significant. These indicate that the spread-F occurrence increases with increasing foEs and/or Δf. Further, the increasing trends demonstrate that polarization electric fields generated in Es-layer would be helpful to generate spread-F, through the electrodynamical coupling of Es-layer and F-region. Moreover, this electrodynamical coupling is efficient not only under quiet-conditions but under disturbed-conditions, since the significant increasing trend can also be found under disturbed-conditions. Regarding the occurrence probabilities of spread-F versus fbEs, the evident trends are not in the majority. This implies that fbEs might not be a major factor for the spread-F formation.

  11. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  12. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    PubMed

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  13. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, B.; Xue, X.; Lu, G.; Dou, X.; Gao, Q.; Qie, X.; Wu, J.; Tang, Y.; Holzworth, R.

    2016-12-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region.

  14. The near‐global mesospheric potassium layer: Observations and modeling

    PubMed Central

    Dawkins, E. C. M.; Chipperfield, M. P.; Feng, W.

    2015-01-01

    Abstract The meteoric metal layers act as unique tracers of chemistry and dynamics in the upper atmosphere. Existing lidar studies from a few locations show that K exhibits a semiannual seasonality (winter and summer maxima), quite unlike the annual seasonality (winter maximum and summer minimum) seen with Na and Fe. This work uses spaceborne observations made with the Optical Spectrograph and InfraRed Imager System instrument on the Odin satellite to retrieve the near‐global K layer for the first time. The satellite data (2004 to mid‐2013) are used to validate the implementation of a recently proposed potassium chemistry scheme in a whole atmosphere chemistry climate model, which provides a chemical basis for this semiannual seasonal behavior. The satellite and model data show that this semiannual seasonality is near global in extent, with the strongest variation at middle and high latitudes. The column abundance, centroid layer height, and root‐mean‐square width of the K layer are consistent with the limited available lidar record. The K data set is then used to investigate the impact of polar mesospheric clouds on the metal layers at high latitudes during summer. Finally, the occurrence frequency of sporadic K layers and their possible link to sporadic E layers are examined. PMID:27478716

  15. Nano-oxide-layer specular spin valve heads with synthetic pinned layer: Head performance and reliability

    NASA Astrophysics Data System (ADS)

    Hasegawa, N.; Koike, F.; Ikarashi, K.; Ishizone, M.; Kawamura, M.; Nakazawa, Y.; Takahashi, A.; Tomita, H.; Iwasaki, H.; Sahashi, M.

    2002-05-01

    To implement the specular nano-oxide-layer (NOL) spin valve (SV) heads for use in practical applications, it is key to simultaneously achieve a good specular effect of the NOL inserted in the synthetic ferrimagnet pinned layer (i.e., high magnetoresistance MR performance) and a strong pinning field through the NOL. By using CoFe+X as a substance to be subjected to oxidation, we obtained the NOL specular SV films simultaneously achieving a high MR ratio of 17%-18% and a high pinning field of 1100-1500 Oe. Narrow track (0.12 μm) heads were fabricated and they showed a high sensitivity of 10 mV/μm. Several reliability tests were done both at the sheet film level and the actual head level. The oxygen inside NOL was found to be stable up to 350 °C, and pinned layer magnetization canting after orthogonal field annealing was found to be almost the same as today's non-NOL SV films. An electrostatic discharge test and accelerated lifetime test were also performed and NOL specular heads were demonstrated to have almost the same robustness as today's non-NOL heads.

  16. S-Layer Nanosheet Binding of Zn and Gd

    DOE Data Explorer

    Ajo-Franklin, Caroline (ORCID:0000000189096712); Charrier, Marimikel; Yang, Li

    2016-04-15

    This data characterizes binding of Zn2+ and Gd3+ to engineered nanosheets at 40C and in a brine solution. The engineered nanosheets are composed of surface-layer (S-layer) proteins which form 2 D crystalline sheets and display Zn2+- or Gd3+-binding domains on these sheets. Their ability to bind Zn2+ is compared to S-layer nanosheets that do not contain Zn2+-binding domains. We found that the purification method of these nanosheets was a critical determinant of their function and thus have provided data on the binding from two different purification methods. A key distinction of this dataset from other datasets is that the engineered nanosheets were expressed and purified from E. coli grown at 37C as described in (Kinns, 2010; Howorka, 2000), Kinns, H., et al. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus. Journal of Molecular Biology, 2010. 395(4): p. 742-753. Howorka, S., et al. Surface-accessible residues in the monomeric and assembled forms of a bacterial surface layer protein. Journal of Biological Chemistry, 2000. 275(48): p. 37876-37886.

  17. Intrinsic electron traps in atomic-layer deposited HfO{sub 2} insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerbu, F.; Madia, O.; Afanas'ev, V. V.

    2016-05-30

    Analysis of photodepopulation of electron traps in HfO{sub 2} films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around E{sub t} ≈ 2.0 eV and E{sub t} ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO{sub 2} layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behaviormore » of HfO{sub 2}, suggesting that alternative defect models should be considered.« less

  18. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    EPA Pesticide Factsheets

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  19. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    NASA Astrophysics Data System (ADS)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  20. Silica Encapsulation of Ferrimagnetic Zinc Ferrite Nanocubes Enabled by Layer-by-layer Polyelectrolyte Deposition

    PubMed Central

    Park, Jooneon; Porter, Marc D.; Granger, Michael C.

    2016-01-01

    Stable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, due to the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, i.e., >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper. The seed ZFNCs are uniform in shape and size and have high saturation mass magnetic moment (σs ~100 emu/g, m~4×10−13 emu/particle at 150 Oe). For the MNP system described within, successful silica encapsulation and creation of discrete ZFNCs were realized only after depositing polyelectrolyte multilayers composed of alternating polyallylamine and polystyrene sulfonate. Without the intermediary polyelectrolyte layers, magnetic dipole-dipole interactions led to the formation of linearly chained ZFNCs embedded in a silica matrix. Characterization of particle samples was performed by electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, powder X-ray diffraction, dynamic light scattering (hydrodynamic size and ζ-potential), and vibrating sample magnetometry. The results of these characterizations, which were performed after each of the synthetic steps, and synthetic details are presented. PMID:25756216

  1. Managing the Quality of Experience in the Multimedia Internet of Things: A Layered-Based Approach.

    PubMed

    Floris, Alessandro; Atzori, Luigi

    2016-12-02

    This paper addresses the issue of evaluating the Quality of Experience (QoE) for Internet of Things (IoT) applications, with particular attention to the case where multimedia content is involved. A layered IoT architecture is firstly analyzed to understand which QoE influence factors have to be considered in relevant application scenarios. We then introduce the concept of Multimedia IoT (MIoT) and define a layered QoE model aimed at evaluating and combining the contributions of each influence factor to estimate the overall QoE in MIoT applications. Finally, we present a use case related to the remote monitoring of vehicles during driving practices, which is used to validate the proposed layered model, and we discuss a second use case for smart surveillance, to emphasize the generality of the proposed framework. The effectiveness in evaluating classes of influence factors separately is demonstrated.

  2. Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.

    2008-01-01

    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.

  3. First-principles analysis of phase stability in layered-layered composite cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Iddir, Hakim; Benedek, Roy; Voltage Fade Team

    2014-03-01

    The atomic order in layered-layered composites with composition xLi2MnO3 .(1-x)LiCoO2 is investigated with first-principles calculations at the GGA +U level. This material, and others in its class, are often regarded as solid solutions, however, only a minute solubility of Li2MnO3 in a LiCoO2 host is predicted. Calculations of Co-vacancy formation and migration energies in LiCoO2 are presented, to elucidate the rate of vacancy-mediated ordering in the transition-metal-layer, and thus determine whether low vacancy mobility could result in slow equilibration. The Co-vacancy formation energy can be predicted only to within a range, because of uncertainty in the chemical potentials. Predicted migration energies, however, are approximately 1 eV, small enough to be consistent with rapid ordering in the transition metal layer, and therefore separated Li2MnO3 and LiCoO2 phases. The relatively small (of the order of a few nm) Li2MnO3 domain sizes observed with TEM in some xLi2MnO3 .(1-x)LiMO2 composites may result from other factors, such as coherency strain, which perhaps block further domain coarsening in these materials. Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. Semantic layers for illustrative volume rendering.

    PubMed

    Rautek, Peter; Bruckner, Stefan; Gröller, Eduard

    2007-01-01

    Direct volume rendering techniques map volumetric attributes (e.g., density, gradient magnitude, etc.) to visual styles. Commonly this mapping is specified by a transfer function. The specification of transfer functions is a complex task and requires expert knowledge about the underlying rendering technique. In the case of multiple volumetric attributes and multiple visual styles the specification of the multi-dimensional transfer function becomes more challenging and non-intuitive. We present a novel methodology for the specification of a mapping from several volumetric attributes to multiple illustrative visual styles. We introduce semantic layers that allow a domain expert to specify the mapping in the natural language of the domain. A semantic layer defines the mapping of volumetric attributes to one visual style. Volumetric attributes and visual styles are represented as fuzzy sets. The mapping is specified by rules that are evaluated with fuzzy logic arithmetics. The user specifies the fuzzy sets and the rules without special knowledge about the underlying rendering technique. Semantic layers allow for a linguistic specification of the mapping from attributes to visual styles replacing the traditional transfer function specification.

  5. The Seed Semipermeable Layer and Its Relation to Seed Quality Assessment in Four Grass Species.

    PubMed

    Lv, Yan Y; He, Xue Q; Hu, Xiao W; Wang, Yan R

    2017-01-01

    The existence of a semipermeable layer in grass seeds has been extensively reported, yet knowledge of its influence on tests for seed viability and vigor that depend upon measurement of electrical conductivity (EC) is limited. This study determined the presence and location of the semipermeable layer, and its relation to seed viability and vigor assessment, in seeds of four important grass species- Elymus nutans Griseb., Lolium perenne L., Leymus chinensis (Trin.) Tzvel., and Avena sativa L. Intact seeds of E. nutans, Lolium perenne , and Leymus chinensis exhibited little staining with triphenyl tetrazolium chloride (TTC), and there were no differences in EC between seeds with different germination percentage (GP) ( P > 0.05). After piercing the seed coat, however, all three species displayed positive staining with TTC, along with a significant negative correlation between EC and GP ( E. nutans : R 2 = 0.7708; Lolium perenne : R 2 = 0.8414; Leymus chinensis : R 2 = 0.859; P < 0.01). In contrast, both intact and pierced seeds of A. sativa possessed a permeable seed coat that showed positive staining with TTC and EC values that were significantly negatively correlated with GP [ R 2 = 0.9071 (intact) and 0.9597 (pierced); P < 0.01]. In commercial seed lots of A. sativa , a field emergence test indicated that EC showed a significant negative correlation with field emergence at two sowing dates ( R 2 = 0.6069, P < 0.01 and 0.5316, P < 0.05). Analysis of seed coat permeability revealed the presence of a semipermeable layer located in the seed coat adjacent to the endosperm in E. nutans, Lolium perenne , and Leymus chinensis ; however, no semipermeable layer was observed in A. sativa. This is the first report of the absence of a semipermeable layer in a grass species. The existence of a semipermeable layer is one of the most important factors affecting seed viability and vigor testing (based on EC measurement) in E. nutans, Lolium perenne , and Leymus chinensis

  6. Electrochemical Atomic Layer Epitaxy of Thin Film CdSe

    NASA Astrophysics Data System (ADS)

    Pham, L.; Kaleida, K.; Happek, U.; Mathe, M. K.; Vaidyanathan, R.; Stickney, J. L.; Radevic, M.

    2002-10-01

    Electrochemical atomic layer epitaxy (EC-ALE) is a current developmental technique for the fabrication of compound semiconductor thin films. The deposition of elements making up the compound utilizes surface limited reactions where the potential is less than that required for bulk growth. This growth method offers mono-atomic layer control, allowing the deposition of superlattices with sharp interfaces. Here we report on the EC-ALE formation of CdSe thin films on Au and Cu substrates using an automated flow cell system. The band gap was measured using IR absorption and photoconductivity and found to be consistent with the literature value of 1.74 eV at 300K and 1.85 eV at 20K. The stoichiometry of the thin film was confirmed with electron microprobe analysis and x-ray diffraction.

  7. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  8. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  9. Seasonal Mixed Layer Heat Budget in the Southeast Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Scannell, H. A.; McPhaden, M. J.

    2016-12-01

    We analyze a mixed layer heat budget at 6ºS, 8ºE from a moored buoy of the Prediction and Research Moored Array in the Atlantic (PIRATA) to better understand the causes of seasonal mixed layer temperature variability in the southeast tropical Atlantic. This region is of interest because it is susceptible to warm biases in coupled global climate models and has historically been poorly sampled. Previous work suggests that thermodynamic changes in both latent heat loss and absorbed solar radiation dominate mixed layer properties away from the equator in the tropical Atlantic, while advection and entrainment are more important near the equator. Changes in mixed layer salinity can also influence temperature through the formation of barrier layers and density gradients. Freshwater flux from the Congo River, migration of the Intertropical Convergence Zone and advection of water masses are considered important contributors to mixed layer salinity variability in our study region. We analyze ocean temperature, salinity and meteorological data beginning in 2013 using mooring, Argo, and satellite platforms to study how seasonal temperature variability in the mixed layer is influenced by air-sea interactions and ocean dynamics.

  10. Development of a Boundary Layer Property Interpolation Tool in Support of Orbiter Return To Flight

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Hamilton, H. Harris

    2006-01-01

    A new tool was developed to predict the boundary layer quantities required by several physics-based predictive/analytic methods that assess damaged Orbiter tile. This new tool, the Boundary Layer Property Prediction (BLPROP) tool, supplies boundary layer values used in correlations that determine boundary layer transition onset and surface heating-rate augmentation/attenuation factors inside tile gouges (i.e. cavities). BLPROP interpolates through a database of computed solutions and provides boundary layer and wall data (delta, theta, Re(sub theta)/M(sub e), Re(sub theta)/M(sub e), Re(sub theta), P(sub w), and q(sub w)) based on user input surface location and free stream conditions. Surface locations are limited to the Orbiter s windward surface. Constructed using predictions from an inviscid w/boundary-layer method and benchmark viscous CFD, the computed database covers the hypersonic continuum flight regime based on two reference flight trajectories. First-order one-dimensional Lagrange interpolation accounts for Mach number and angle-of-attack variations, whereas non-dimensional normalization accounts for differences between the reference and input Reynolds number. Employing the same computational methods used to construct the database, solutions at other trajectory points taken from previous STS flights were computed: these results validate the BLPROP algorithm. Percentage differences between interpolated and computed values are presented and are used to establish the level of uncertainty of the new tool.

  11. The effect of layer-by-layer chitosan-hyaluronic acid coating on graft-to-bone healing of a poly(ethylene terephthalate) artificial ligament.

    PubMed

    Li, Hong; Ge, Yunsheng; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi

    2012-01-01

    Surface coating with an organic layer-by-layer self-assembled template of chitosan and hyaluronic acid on a poly(ethylene terephthalate) (PET) artificial ligament was designed for the promotion and enhancement of graft-to-bone healing after artificial ligament implantation in a bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells supported the hypothesis that the layer-by-layer coating of chitosan and hyaluronic acid could promote the cell compatibility of grafts and could promote osteoblast proliferation. A rabbit extra-articular tendon-to-bone healing model was used to evaluate the effect of this kind of surface-modified stainless artificial ligament in vivo. The final results proved that this organic compound coating could significantly promote and enhance new bone formation at the graft-bone interface histologically and, correspondingly, the experimental group with coating had significantly higher biomechanical properties compared with controls at 8 weeks (P < 0.05).

  12. Attached flow structure and streamwise energy spectra in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Srinath, S.; Vassilicos, J. C.; Cuvier, C.; Laval, J.-P.; Stanislas, M.; Foucaut, J.-M.

    2018-05-01

    On the basis of (i) particle image velocimetry data of a turbulent boundary layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that the scalings of the streamwise energy spectrum E11(kx) in a wave-number range directly affected by the wall are determined by wall-attached eddies but are not given by the Townsend-Perry attached eddy model's prediction of these spectra, at least at the Reynolds numbers Reτ considered here which are between 103 and 104. Instead, we find E11(kx) ˜kx-1 -p where p varies smoothly with distance to the wall from negative values in the buffer layer to positive values in the inertial layer. The exponent p characterizes the turbulence levels inside wall-attached streaky structures conditional on the length of these structures. A particular consequence is that the skin friction velocity is not sufficient to scale E11(kx) for wave numbers directly affected by the wall.

  13. Eo-Ulrichian to Neo-Ulrichian views: The renaissance of "layer-cake stratigraphy"

    USGS Publications Warehouse

    Brett, Carlton E.; McLaughlin, P.I.; Baird, G.C.

    2007-01-01

    Classical notions of "layer-cake stratigraphy" have been denigrated as representing an antiquated "Neptunian" view of the geologic record with the American paleontologist-stratigrapher E.O. Ulrich vilified as its quintessential advocate. Some of the extreme "layer-cake" interpretations of E.O. Ulrich are demonstrably incorrect, especially where applied in marginal marine and terrestrial settings. However, close scrutiny of Ulrich's work suggests that the bulk was correct and demonstrated considerable insight for the time. Subsequent development of facies concepts revolutionized geologists' view of time-space relationships in stratigraphy, but rather than focusing on facies patterns within the established stratigraphic (layer-cake) frameworks many geologists in North America came to view strata as parts of diachronous facies mosaics. Recent advances in the development of event and sequence stratigraphic paradigms are beginning to swing the pendulum back the other way. Possible causes of "layer-cake" patterns are numerous and varied, including: (1) parallelism of depositional strike and outcrop belts, especially in foreland basins, (2) very widespread environmental belts developed in low-relief cratonic areas, (3) time-averaging homogenizes facies to a limited extent, resulting in a very subtle signature of lateral change, (4) condensed beds (hardgrounds, bone beds, ironstones, etc.) often form in responses to extrabasinal forces, thus they cross-cut facies, and (5) large events (i.e. hurricanes, floods, tsunamis, eruptions, etc.) are "over represented" in the rock record. A revised ("Neo-Ulrichian") layer-cake paradigm carries many of the original correct empirical observations of pattern, noted by Ulrich, recast in terms of event and sequence stratigraphy.

  14. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2014-05-01

    Previous numerical studies of mantle convection focusing on subduction dynamics have indicated that the viscosity contrast between the subducting plate and the surrounding mantle have a primary effect on the behavior of subducting plates. The seismically observed plate stagnation at the base of the mantle transition zone (MTZ) under the Western Pacific and Eastern Eurasia is considered to mainly result from a viscosity increase at the ringwoodite to perovskite + magnesiowüstite (Rw→Pv+Mw) phase decomposition boundary, i.e., the boundary between the upper and lower mantle. The harzburgite layer, which is sandwiched between basaltic crust and depleted peridotite (lherzolite) layers, is a key component of highly viscous, cold oceanic plates. However, the possible sensitivity of the effective viscosity of harzburgite layers in the morphology of subducting plates that are flattened in the MTZ and/or penetrated in the lower mantle has not been examined systematically in previous three-dimensional (3D) numerical modeling studies that consider the viscosity increase at the boundary between the upper and lower mantle. In this study, in order to investigate the role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, I performed a series of numerical simulations of mantle convection with semi-dynamic plate subduction in 3D regional spherical-shell geometry. The results show that a buckled crustal layer is observed under the "heel" of the stagnant slab that begins to penetrate into the lower mantle, regardless of the magnitude of the viscosity contrast between the harzburgite layer and the underlying mantle, when the factor of viscosity increase at the boundary of the upper and lower mantle is larger than 60-100. As the viscosity contrast between the harzburgite layer and the underlying mantle increases, the curvature of buckling is larger. When the viscosity increase at the boundary of the upper and lower mantle and the

  15. Influence of confining layers' heterogeneity on the barometric response functions in semi-confined aquifers

    NASA Astrophysics Data System (ADS)

    Redaelli, Marco; Perulero Serrano, Raul

    2017-04-01

    protocols. The results are promising and support the merit of additional developments through, e.g., numerical Monte Carlo simulations which can be performed to extract meaningful statistical information on the nature of BRFs as a function of randomly heterogeneous confining layers. Keywords: groundwater vulnerability, numerical modeling, barometric response functions, semi-confined aquifers References Hussein M.E.A., Odling N.E. & Clark R.A. (2013). Borehole water level response to barometric pressure as an indicator of aquifer vulnerability, Water Resources Research, 49: 7102-7119. Odling N.E, Perulero Serrano R., Hussein M.E.A, Riva M. & Guadagnini A. (2015). Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions, Journal of Hydrology, 520: 143-156.

  16. Quality improvements of ZnxCdyMg1-x-ySe layers grown on InP substrates by a thin ZnCdSe interfacial layer

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Yang, B. X.; Tamargo, M. C.; Snoeks, E.; Zhao, L.

    1998-03-01

    The quality of lattice-matched ZnxCdyMg1-x-ySe epitaxial layers grown on (001) InP substrates with a III-V buffer layer has been improved by initially growing a ZnCdSe interfacial layer (50 Å) at low temperature. The widths of double crystal x-ray rocking curves for ZnxCdyMg1-x-ySe epilayers with band gaps as high as 3.05 eV were reduced to about 70 arcsec. The defect density evaluated from etch pit density and plan-view transmission electron microscopy measurements was reduced by two orders of magnitude, to 106-107cm-2. The photoluminescence band edge emission became more symmetric and slightly narrower. It is proposed that an initial two-dimensional growth mode has been achieved by incorporating such a lattice-matched ZnCdSe layer.

  17. The Functioning of a Cortex without Layers.

    PubMed

    Guy, Julien; Staiger, Jochen F

    2017-01-01

    A major hallmark of cortical organization is the existence of a variable number of layers, i.e., sheets of neurons stacked on top of each other, in which neurons have certain commonalities. However, even for the neocortex, variable numbers of layers have been described and it is just a convention to distinguish six layers from each other. Whether cortical layers are a structural epiphenomenon caused by developmental dynamics or represent a functionally important modularization of cortical computation is still unknown. Here we present our insights from the reeler mutant mouse, a model for a developmental, "molecular lesion"-induced loss of cortical layering that could serve as ground truth of what an intact layering adds to the cortex in terms of functionality. We could demonstrate that the reeler neocortex shows no inversion of cortical layers but rather a severe disorganization that in the primary somatosensory cortex leads to the complete loss of layers. Nevertheless, the somatosensory system is well organized. When exploring an enriched environment with specific sets of whiskers, activity-dependent gene expression takes place in the corresponding modules. Precise whisker stimuli lead to the functional activation of somatotopically organized barrel columns as visualized by intrinsic signal optical imaging. Similar results were obtained in the reeler visual system. When analyzing pathways that could be responsible for preservation of tactile perception, lemniscal thalamic projections were found to be largely intact, despite the smearing of target neurons across the cortical mantle. However, with optogenetic experiments we found evidence for a mild dispersion of thalamic synapse targeting on layer IV-spiny stellate cells, together with a general weakening in thalamocortical input strength. This weakening of thalamic inputs was compensated by intracortical mechanisms involving increased recurrent excitation and/or reduced feedforward inhibition. In conclusion, a

  18. Ozone Layer Protection

    MedlinePlus

    ... Offices Labs and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “ ... to ozone-depleting substances, and sun safety. Stratospheric Ozone Layer Basic Ozone Layer Science Health and Environmental ...

  19. Electrophoretic formation of semiconductor layers with adjustable band gap

    NASA Astrophysics Data System (ADS)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  20. Graded recombination layers for multijunction photovoltaics.

    PubMed

    Koleilat, Ghada I; Wang, Xihua; Sargent, Edward H

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers.

  1. Natural melanin composites by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  2. Longevity of Compositionally Stratified Layers in Ice Giants

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  3. Reading the climate record of the martian polar layered deposits

    USGS Publications Warehouse

    Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K. E.

    2012-01-01

    The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ∼1 million years with an average net deposition rate of ice and dust of 0.55 mm a−1. The model stratigraphy contains a quasi-periodic ∼30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375

  4. Improved Efficiency of Polymer Solar Cells by means of Coating Hole Transporting Layer as Double Layer Deposition

    NASA Astrophysics Data System (ADS)

    Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.

    2017-09-01

    Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.

  5. Evaluation of white matter hyperintensities and retinal fiber layer, ganglion cell layer, inner-plexiform layer, and choroidal layer in migraine patients.

    PubMed

    Tak, Ali Zeynel Abidin; Sengul, Yıldızhan; Bilak, Şemsettin

    2018-03-01

    The aim of our study is to assess retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), inner-plexiform layer (IPL), and choroidal layer in migraine patients with white matter lesion (WML) or without WML, using spectral domain optical coherence tomography (OCT). To our study, 77 migraine patients who are diagnosed with migraine in accordance to the International Classification of Headache Disorders (ICHD)-3 beta and 43 healthy control are included. In accordance to cranial MRI, migraine patients are divided into two groups as those who have white matter lesions (39 patients), and those who do not have a lesion (38 patients). OCT was performed for participants. The average age of participants was comparable. The RNFL average thickness parameter in the migraine group was significantly lower than in the control group (p < 0.01). However, no significant difference was detected among those migraine patients who have WML, and those who do not have. No significant difference is detected among all groups in terms of IPL, GCL, and choroidal layer measuring scales. The proofs showing that affected retinal nerve fiber layer are increased in migraine patients. However, it is not known whether this may affect other layers of retina, or whether there is a correlation between affected retinal structures and white matter lesions. In our study, we found thinner RNFL in migraine patients when we compared with controls but IPL, GCL, and choroid layer values were similar between each patient groups and controls. Also, all parameters were similar between patients with WML and without WML. Studies in this regard are required.

  6. GePb Alloy Growth Using Layer Inversion Method

    NASA Astrophysics Data System (ADS)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-04-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  7. GePb Alloy Growth Using Layer Inversion Method

    NASA Astrophysics Data System (ADS)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-07-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  8. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    PubMed Central

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  9. Color coding of control room displays: the psychocartography of visual layering effects.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2007-06-01

    To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).

  10. Daytime dependence of disturbances of ionospheric Es-layers connected to earthquakes

    NASA Astrophysics Data System (ADS)

    Liperovskaya, E. V.; Liperovsky, A. V.; Meister, C.-V.; Silina, A. S.

    2012-04-01

    In the present work variations of the semi-transparency of the sporadic E-layer of the ionosphere due to seismic activities are studied. The semi-transparency Q is determined by the blanketing frequency fbEs and the characteristic frequency foEs, Q = (foEs - fbEs)/fbEs. At low values of the blanketing frequency fbEs, the critical frequency foEs does not describe the maximum ionisation density of the Es-layer, as the critical frequencies of regular ionospheric layers (e.g. foF2) do, but it describes the occurrence of small-scall (tenths of meters) inhomogeneities of the ionisation density along the vertical in the layer. The maximum ionisation density of the sporadic layer is proportional to the square of fbEs. In the case of vertical ionospheric sounding, the sporadic layer becomes transparent for signals with frequencies larger than fbEs. Investigations showed that about three days before an earthquake an increase of the semi-transparency interval is observed during sunset and sunrise. In the present work, analogous results are found for data of the vertical sounding stations "Tokyo" and "Petropavlovsk-Kamchatsky". Using the method of superposition of epoches, more than 50 earthquakes with magnitudes M > 5, depths h < 40 km, and distances between the station and the epicenter R < 300 km are considered in case of the vertical sounding station "Tokyo". More than 20 earthquakes with such parameters were analysed in case of the station "Petropavlovsk-Kamchatsky". Days with strong geomagnetic activity were excluded from the analysis. According to the station "Petropavlovsk-Kamchatsky" about 1-3 days before earthquakes, an increase of Es-spread is observed a few hours before midnight. This increase is a sign of large-scale inhomogeneities in the sporadic layers.

  11. Managing the Quality of Experience in the Multimedia Internet of Things: A Layered-Based Approach †

    PubMed Central

    Floris, Alessandro; Atzori, Luigi

    2016-01-01

    This paper addresses the issue of evaluating the Quality of Experience (QoE) for Internet of Things (IoT) applications, with particular attention to the case where multimedia content is involved. A layered IoT architecture is firstly analyzed to understand which QoE influence factors have to be considered in relevant application scenarios. We then introduce the concept of Multimedia IoT (MIoT) and define a layered QoE model aimed at evaluating and combining the contributions of each influence factor to estimate the overall QoE in MIoT applications. Finally, we present a use case related to the remote monitoring of vehicles during driving practices, which is used to validate the proposed layered model, and we discuss a second use case for smart surveillance, to emphasize the generality of the proposed framework. The effectiveness in evaluating classes of influence factors separately is demonstrated. PMID:27918437

  12. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  13. Creation of deuterium protective layer below the tungsten surface

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Kaganovich, Igor; Startsev, Edward

    2014-10-01

    By cumulative irradiation of both pre-damaged and virgin surfaces of monocrystal tungsten by deuterium atoms of impact energy of few tens of eV, we simulate by classical molecular dynamics the creation of a deuterium protective layer. The depth and width of the layer depend on the deuterium impact energy and the diffusion rate of deuterium in tungsten, the latter being influenced by the tungsten temperature and damage. Found simulation results are in concert with the experimental results, found recently in DIFFER. Support of the PPPL LDRD project acknowledged.

  14. Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2

    PubMed Central

    Katase, Takayoshi; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2014-01-01

    A1–xFe2–ySe2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Néel transition temperatures. However, control of carrier doping into the parent AFM insulators has been difficult due to their intrinsic phase separation. Here, we fabricated an Fe-vacancy-ordered TlFe1.6Se2 insulating epitaxial film with an atomically flat surface and examined its electrostatic carrier doping using an electric double-layer transistor (EDLT) structure with an ionic liquid gate. The positive gate voltage gave a conductance modulation of three orders of magnitude at 25 K, and further induced and manipulated a phase transition; i.e., delocalized carrier generation by electrostatic doping is the origin of the phase transition. This is the first demonstration, to the authors' knowledge, of an EDLT using a Mott insulator iron selenide channel and opens a way to explore high Tc superconductivity in iron-based layered materials, where carrier doping by conventional chemical means is difficult. PMID:24591598

  15. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  16. Excitonic resonance effects and Davydov splitting in circularly polarized Raman spectra of few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Kim, Sanghun; Kim, Kangwon; Lee, Jae-Ung; Cheong, Hyeonsik

    2017-12-01

    Few-layer tungsten diselenide (WSe2) is investigated using circularly polarized Raman spectroscopy with up to eight excitation energies. The main E2\\text{g}1 and A 1g modes near 250 cm-1 appear as a single peak in the Raman spectrum taken without consideration of polarization but are resolved by using circularly polarized Raman scattering. The resonance behaviors of the E2\\text{g}1 and A 1g modes are examined. Firstly, both the E2\\text{g}1 and A 1g modes are enhanced near resonances with the exciton states. The A 1g mode exhibits Davydov splitting for trilayers or thicker near some of the exciton resonances. The low-frequency Raman spectra show shear and breathing modes involving rigid vibrations of the layers and also exhibit strong dependence on the excitation energy. An unidentified peak at ~19 cm-1 that does not depend on the number of layers appears near resonance with the B exciton state at 1.96 eV (632.8 nm). The strengths of the intra- and inter-layer interactions are estimated by comparing the mode frequencies and Davydov splitting with the linear chain model, and the contribution of the next-nearest-neighbor interaction to the inter-layer interaction turns out to be about 34% of the nearest-neighbor interaction. Fano resonance is observed for 1.58 eV excitation, and its origin is found to be the interplay between two-phonon scattering and indirect band transition.

  17. Effect of hole injection layer/hole transport layer polymer and device structure on the properties of white OLED.

    PubMed

    Cho, Ho Young; Park, Eun Jung; Kim, Jin-Hoo; Park, Lee Soon

    2008-10-01

    Copolymers containing carbazole and aromatic amine unit were synthesized by using Pd-catalyzed polycondensation reaction. The polymers were characterized in terms of their molecular weight and thermal stability and their UV and PL properties in solution and film state. The band gap energy of the polymers was also determined by the UV absorption and HOMO energy level data. The polymers had high HOMO energy level of 5.19-5.25 eV and work function close to that of ITO. The polymers were thus tested as hole injection/transport layer in the white organic light emitting diodes (OLED) by using 4,4'-bis(2,2-diphenyl-ethen-1-yl)diphenyl (DPVBi) as blue emitting material and 5,6,11,12-tetraphenylnaphthacene (Rubrene) as orange emitting dopant. The synthesized polymer, poly bis[6-bromo-N-(2-ethylhexyl)-carbazole-3-yl] was found to be useful as hole injection layer/hole transport layer (HIL/HTL) multifunctional material with high luminance efficiency and stable white color coordinate in the wide range of applied voltage.

  18. Toward an Understanding of Surface Layer Formation, Growth, and Transformation at the Glass–Fluid Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopf, Juliane; Eskelsen, Jeremy R.; Chiu, Michelle Y.

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (~200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formationmore » of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterized reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. This estimate is within the experimental error of the value estimated from the B release rate data (~10 ±1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ~20 to 40 GPa, which is in the range of porous silica that contains from ~20 to ~50% porosity, yet significantly lower than dense silica (~70 to 80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image of a region provides a qualitative estimate of ≥ 22% porosity in this layer with variations in the hydrated layer in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS) and STEM-EDS, clearly show

  19. Toward an Understanding of Surface Layer Formation, Growth, and Transformation at the Glass–Fluid Interface

    DOE PAGES

    Hopf, Juliane; Eskelsen, Jeremy R.; Chiu, Michelle Y.; ...

    2018-02-01

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (~200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formationmore » of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterized reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. This estimate is within the experimental error of the value estimated from the B release rate data (~10 ±1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ~20 to 40 GPa, which is in the range of porous silica that contains from ~20 to ~50% porosity, yet significantly lower than dense silica (~70 to 80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image of a region provides a qualitative estimate of ≥ 22% porosity in this layer with variations in the hydrated layer in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS) and STEM-EDS, clearly show

  20. Toward an understanding of surface layer formation, growth, and transformation at the glass-fluid interface

    NASA Astrophysics Data System (ADS)

    Hopf, J.; Eskelsen, J. R.; Chiu, M.; Ievlev, A. V.; Ovchinnikova, O. S.; Leonard, D.; Pierce, E. M.

    2018-05-01

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as a model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (∼200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formation of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterize reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. The estimate of hydrated layer thickness is within the experimental error of the value estimated from the B release rate data (∼10 ± 1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ∼20 and 40 GPa, which is in the range of porous silica that contains from ∼20 to ∼50% porosity, yet significantly lower than dense silica (∼70-80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image provides a qualitative estimate of ≥22% porosity in the hydrated layer with variations in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS), scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS), and STEM-EDS, clearly show

  1. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.

    PubMed

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M

    2018-05-04

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  2. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization

    NASA Astrophysics Data System (ADS)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.

    2018-05-01

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  3. New Perspectives on the Dynamical State of Extraplanar Diffuse Ionized Gas Layers

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Zweibel, Ellen; Gallagher, John S.; Benjamin, Robert A.

    2018-01-01

    Gaseous, disk-halo interfaces are an important boundary in the baryon cycle in galaxies like the Milky Way, and their structure, support, and kinematics carry clues about the star formation feedback and accretion processes that produce them. Due to their unexpectedly large scale heights, which are often several times greater than their thermal scale heights, it is unclear whether they are in dynamical equilibrium, or are evidence of a galactic fountain, wind, or accretion flow. In the nearby, edge-on disk galaxies NGC 891 and NGC 5775, we test a dynamical equilibrium model of the extraplanar diffuse ionized gas (eDIG) layer by quantifying the thermal, turbulent, magnetic field, and cosmic ray pressure gradients using optical emission-line spectroscopy from the SparsePak IFU at the WIYN Observatory and the Robert Stobie Spectrograph on the Southern African Large Telescope and radio continuum observations from Continuum Halos in Nearby Galaxies - an EVLA Survey. The vertical pressure gradients are too shallow to produce the observed scale heights at the moderate galactocentric radii where the gas is believed to be found (R < 8 kpc). For the low-inclination galaxy M83, we develop a Markov Chain Monte Carlo method to decompose the [NII]λλ6548, 6583, Hα, and [SII]λλ6717, 6731 emission lines into multiple components, and identify eDIG emission based on its rotational velocity lag and elevated [NII]/Hα and [SII]/Hα line ratios. The median, line-of-sight velocity dispersion of the eDIG layer, σ = 96 km/s, greatly exceeds the horizontal velocity dispersions observed in edge-on eDIG layers (σ = 20 - 60 km/s), presenting the possibility that these layers have anisotropic random motions. The role of an anisotropic velocity dispersion in producing eDIG scale heights, as well as the absence of evidence for large-scale inflow or outflow, motivates further study of eDIG dynamics in face-on galaxies with a range of star formation rates. This work was supported by the NSF

  4. Large energy storage efficiency of the dielectric layer of graphene nanocapacitors.

    PubMed

    Bezryadin, A; Belkin, A; Ilin, E; Pak, M; Colla, Eugene V; Hubler, A

    2017-12-08

    Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al 2 O 3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm -1 (i.e., 1 GV m -1 ), which is much larger than the table value of the Al 2 O 3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.

  5. Large energy storage efficiency of the dielectric layer of graphene nanocapacitors

    NASA Astrophysics Data System (ADS)

    Bezryadin, A.; Belkin, A.; Ilin, E.; Pak, M.; Colla, Eugene V.; Hubler, A.

    2017-12-01

    Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al2O3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm-1 (i.e., 1 GV m-1), which is much larger than the table value of the Al2O3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.

  6. The Density and Refractive Index of Adsorbing Protein Layers

    PubMed Central

    Vörös, Janos

    2004-01-01

    The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces. PMID:15240488

  7. Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100).

    PubMed

    Shklyaev, A A; Latyshev, A V

    2016-12-01

    We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.

  8. Internal stratigraphy of the South Polar Layered Deposits, Mars from SHARAD data

    NASA Astrophysics Data System (ADS)

    Whitten, J. L.; Campbell, B. A.

    2017-12-01

    The South Polar Layered Deposits (SPLD) are one of the largest deposits of water ice on Mars, composed of alternating layers of ice and dust. The accumulation of the layers is driven by orbital forcings (e.g., obliquity) and both the cadence and structure of these layers preserve a record of the past martian climate. Image of very limited exposed layering suggest several distinct sequences, demarcated by erosional hiatuses, with a gently domical shape. Here we use the Shallow Radar (SHARAD) sounder dataset to investigate the internal stratigraphy of the SPLD in order to further constrain the south polar climate record. We identify four distinct units based in part on their degree of vertical sharpness (focus) in the SHARAD data: (1) upper focused layer packets, (2) focused layer packets, (3) blurred layer packets, and (4) reflection free zones (RFZs). A diffuse echo pattern related to uncertain aspects of composition or layer roughness is termed fog. The upper focused layer packets are concentrated in the area between 270° to 90°E, close to the residual polar cap. The focused and blurred layer packets cover a large portion of the SPLD and are subdivided into two different units, those with an average reflecting-interface brightness and those with substantially brighter reflectors. The brighter radar reflectors have a coherent spatial distribution and only comprise a small portion of the entire unit. The diffuse echoes are separated into a fog that is present throughout the entire vertical column of the SPLD and a fog that begins at the surface and traverses only the uppermost layers. Depending on the geometry of individual SHARAD tracks, reflectors can be traced for hundreds of kilometers, but the fog obscures much of the internal layering, and is related to the focusing distortion that prevents individual reflectors from being traced across the entire SPLD. We identify a major deviation from a gently domical SPLD shape in a 200 km dome. Its presence suggests

  9. Wideband acoustic wave resonators composed of hetero acoustic layer structure

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2018-07-01

    “Hetero acoustic layer (HAL) surface acoustic wave (SAW) device” is a new type of SAW device using a single crystal piezoelectric thin plate supported by a substrate. In this study, a HAL SAW resonator using a LiNbO3 (LN) thin plate and a multi-layer acoustic film was designed by finite element method (FEM) and fabricated. The thickness of LN is 3.6 µm and the pitch of an interdigital transducer (IDT) (λ) is 5.24 µm for a resonance frequency of 600 MHz. The multi-layer acoustic film is composed of 3 layers of SiO2 and AlN for each, i.e., 6 layers in total, alternately deposited on a glass substrate. The HAL SAW resonator achieved a wide bandwidth of 20.3% and a high impedance ratio of 83 dB. Compared with a 0th shear horizontal (SH0) mode plate wave resonator, the performance is better and the thickness of LN is 7 times larger. The HAL SAW without a cavity is advantageous in terms of mechanical stability, thickness controllability and fabrication yield.

  10. Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.

    PubMed

    Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou

    2014-01-21

    We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.

  11. The double layers in the plasma sheet boundary layer during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, J.; Yu, B.

    2014-11-01

    We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.

  12. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    NASA Astrophysics Data System (ADS)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  13. Superpixel guided active contour segmentation of retinal layers in OCT volumes

    NASA Astrophysics Data System (ADS)

    Bai, Fangliang; Gibson, Stuart J.; Marques, Manuel J.; Podoleanu, Adrian

    2018-03-01

    Retinal OCT image segmentation is a precursor to subsequent medical diagnosis by a clinician or machine learning algorithm. In the last decade, many algorithms have been proposed to detect retinal layer boundaries and simplify the image representation. Inspired by the recent success of superpixel methods for pre-processing natural images, we present a novel framework for segmentation of retinal layers in OCT volume data. In our framework, the region of interest (e.g. the fovea) is located using an adaptive-curve method. The cell layer boundaries are then robustly detected firstly using 1D superpixels, applied to A-scans, and then fitting active contours in B-scan images. Thereafter the 3D cell layer surfaces are efficiently segmented from the volume data. The framework was tested on healthy eye data and we show that it is capable of segmenting up to 12 layers. The experimental results imply the effectiveness of proposed method and indicate its robustness to low image resolution and intrinsic speckle noise.

  14. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe 3

    DOE PAGES

    Zhuang, Houlong L.; Xie, Yu; Kent, P. R. C.; ...

    2015-07-06

    Despite many single-layer materials being reported in the past decade, few of them exhibit magnetism. Here we perform first-principles calculations using accurate hybrid density functional methods (HSE06) to predict that single-layer CrSnTe 3 (CST) is a ferromagnetic semiconductor, with band gaps of 0.9 and 1.2 eV for the majority and minority spin channels, respectively. We determine the Curie temperature as 170 K, significantly higher than that of single-layer CrSiTe 3 (90K) and CrGeTe 3 (130 K). This is due to the enhanced ionicity of the Sn-Te bond, which in turn increases the superexchange coupling between the magnetic Cr atoms. Wemore » further explore the mechanical and dynamical stability and strain response of this single-layer material for possible epitaxial growth. Lastly, our study provides an intuitive approach to understand and design novel single-layer magnetic semiconductors for a wide range of spintronics and energy applications.« less

  15. Origin of Martian Interior Layered Deposits (ILDs) by atmospherically driven processes

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Niles, P. B.

    2011-12-01

    Since the first photogeologic exploration of Mars, vast mounds of layered sediments found within the Valles Marineris canyon system (Interior Layered Deposits or ILDs) have remained unexplained. Recent spectroscopic results showing that these materials contain coarse-grained hematite [1] and sulfate [2-8] suggest that they are fundamentally similar to layered sulfate deposits seen elsewhere on Mars [3], and are therefore a key piece of Mars' global aqueous history. Layered sulfate deposits (including ILDs) are often considered to have formed in association with transient, wet surface environments caused by groundwater upwelling [9] in the Hesperian. Here, we use spectroscopic mapping along with geomorphic observations and mass balance calculations to demonstrate that the sulfate-bearing ILDs likely did not form due to groundwater upwelling or any similar playa-lacustrine scenario. Instead, the ILDs likely formed from atmospherically driven processes in a configuration similar to that observed today. We suggest that Hesperian layered sulfate deposits formed in response to massive amounts of pyroclastic volcanism and SO2-outgassing that peaked near 3.5-3.7 Ga in a Martian climate that was largely cold and dry. This origin for the ILDs is also applicable to other layered terrain of similar age and characteristics, including sulphate-bearing crater fill, chaos terrains, and the Meridiani Planum sediments. [1] Weitz, C. M., Lane, M. D., Staid, M. & Dobrea, E. N. Gray hematite distribution and formation in Ophir and Candor chasmata. Journal of Geophysical Research-Planets 113, doi:E02016 10.1029/2007je002930 (2008). [2] Wendt, L. et al. Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213, 86-103, doi:10.1016/j.icarus.2011.02.013 (2011). [3] Murchie, S. et al. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. Journal of Geophysical Research-Planets 114, doi:E

  16. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  17. Magnetization reversal in ferromagnetic nanopillar by varying fixed layer orientation: A micromagnetic study

    NASA Astrophysics Data System (ADS)

    Bhoomeeswaran, H.; Vivek, T.; Savithri, R.; Gowthaman, I.; Sabareesan, P.

    2018-05-01

    In this micromagnetic framework, Spin transfer torque induced magnetization switching in Co/Cu/Co nanopillar device is investigated numerically. The magnetization switching dynamics of the free layer in the nanopillar device is governed by the Landau Lifshitz Gilbert Slonczewski (LLGS) equation and solving it numerically by employing OOMMF, a micromagnetic software. Results are obtained by varying the fixed layer orientation (β) of our nanopillar device from in-plane to out-of-plane (i.e.) from 0° to 80° and the corresponding switching time is noted. Results of the micromagnetic simulation reveals that there is an extreme reduction of switching time in the free layer of our devised nanopillar, if we increase the fixed layer angle (β) from 0° to 80°. The corresponding switching time got shortened from 1651 picoseconds to 104.44 picoseconds and is obtained for an applied current density of 2.25×1011Am-2 with 0.05 T as applied bias field. For 90° (i.e.) out-of-plane orientation, the magnetization switching is not exist, because the free layer magnetization follows an oscillation state. Moreover, when we compare 0° to 80°, the switching time is reduced almost 16 times which solely provoked as a source of future spintronic devices for magnetic storage applications.

  18. Inter-layer synchronization in multiplex networks of identical layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Leyva, I.

    2016-06-15

    Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a given layer evolves synchronously with all its replicas in other layers, irrespective of whether or not it is synchronized with the other units of the same layer. We analytically derive the necessary conditions for the existence and stability of such a state, and verify numerically the analytical predictions in several cases where such a state emerges. We further inspect its robustness against a progressive de-multiplexing of the network, and provide experimental evidence by means of multiplexes of nonlinear electronic circuits affected by intrinsic noise and parametermore » mismatch.« less

  19. The formation of organic (propolis films)/inorganic (layered crystals) interfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Kovalyuk, Z. D.; Lytvyn, O. S.

    2008-10-01

    Propolis (honeybee glue) organic films were prepared from an alcoholic solution on the surfaces of inorganic layered semiconductors (indium, gallium and bismuth selenides). Atomic force microscopy (AFM) and X-ray diffraction (XRD) are used to characterize structural properties of an organic/inorganic interfaces. It is shown that nanodimensional linear defects and nanodimensional cavities of various shapes are formed on the van der Waals (VDW) surfaces of layered crystals as a result of chemical interaction between the components of propolis (flavonoids, aminoacids and phenolic acids) and the VDW surfaces as well as deformation interaction between the VDW surfaces and propolis films during their polymerization. The nanocavities are formed as a result of the rupture of strong covalent bonds in the upper layers of layered crystals and have the shape of hexagons or triangles in the (0001) plane. The shape, lateral size and distribution of nanodimensional defects on the VDW surfaces depends on the type of crystals, the magnitude and distribution of surface stresses. We have obtained self-organized nanofold structures of propolis/InSe interface. It is established that such heterostructures have photosensitivity in the infrared range hν<1.2 eV (the values of energy gap are 1.2 eV for InSe and 3.07 eV for propolis films at room temperature).

  20. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness.

    PubMed

    Rocha Maia, Rodrigo; Oliveira, Dayane; D'Antonio, Tracy; Qian, Fang; Skiff, Frederick

    2018-05-01

    To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness ( n = 10). All increments were light-cured to 16 J/cm 2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test ( p = 0.05). Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues.

  1. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex

    PubMed Central

    Gray, Lucas T; Yao, Zizhen; Nguyen, Thuc Nghi; Kim, Tae Kyung; Zeng, Hongkui; Tasic, Bosiljka

    2017-01-01

    Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex. DOI: http://dx.doi.org/10.7554/eLife.21883.001 PMID:28112643

  2. Optical property measurement from layered biological media

    NASA Astrophysics Data System (ADS)

    Muller, Matthew R.

    1998-12-01

    concisely, and Ke becomes a tool in describing the layered optical properties. This approach is applied clinically to measure changes in the blood concentration and oxygenation measured in vivo from normals and patients with peripheral vascular disease. A significant finding from the modeling was to identify the functional relationship of Ke to the top and lower layer diffusion constants, and the top layer thickness. When applied to in vitro measurements from media containing homogeneous layers with known optical properties, this functional relationship predicted Ke within the 95% confidence interval of the measured Ke. For the in vivo measurements, changes in K e with exercise are consistent with expected exercise physiology. With the incorporation of the known optical absorbance of hemoglobin in the presence of oxygen, the SRPs provide a means to measure the oxygen saturation of a deep tissue layer from the surface light reflectance.

  3. Development of layer 1 neurons in the mouse neocortex.

    PubMed

    Ma, Jian; Yao, Xing-Hua; Fu, Yinghui; Yu, Yong-Chun

    2014-10-01

    Layer 1 of the neocortex harbors a unique group of neurons that play crucial roles in synaptic integration and information processing. Although extensive studies have characterized the properties of layer 1 neurons in the mature neocortex, it remains unclear how these neurons progressively acquire their distinct morphological, neurochemical, and physiological traits. In this study, we systematically examined the dynamic development of Cajal-Retzius cells and γ-aminobutyric acid (GABA)-ergic interneurons in layer 1 during the first 2 postnatal weeks. Cajal-Retzius cells underwent morphological degeneration after birth and gradually disappeared from layer 1. The majority of GABAergic interneurons showed clear expression of at least 1 of the 6 distinct neurochemical markers, including Reelin, GABA-A receptor subunit delta (GABAARδ), neuropeptide Y, vasoactive intestinal peptide (VIP), calretinin, and somatostatin from postnatal day 8. Furthermore, according to firing pattern, layer 1 interneurons can be divided into 2 groups: late-spiking (LS) and burst-spiking (BS) neurons. LS neurons preferentially expressed GABAARδ, whereas BS neurons preferentially expressed VIP. Interestingly, both LS and BS neurons exhibited a rapid electrophysiological and morphological development during the first postnatal week. Our results provide new insights into the molecular, morphological, and functional developments of the neurons in layer 1 of the neocortex. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Correlation of Device Performance and Fermi Level Shift in the Emitting Layer of Organic Light-Emitting Diodes with Amine-Based Electron Injection Layers.

    PubMed

    Stolz, Sebastian; Lemmer, Uli; Hernandez-Sosa, Gerardo; Mankel, Eric

    2018-03-14

    We investigate three amine-based polymers, polyethylenimine and two amino-functionalized polyfluorenes, as electron injection layers (EILs) in organic light-emitting diodes (OLEDs) and find correlations between the molecular structure of the polymers, the electronic alignment at the emitter/EIL interface, and the resulting device performance. X-ray photoelectron spectroscopy measurements of the emitter/EIL interface indicate that all three EIL polymers induce an upward shift of the Fermi level in the emitting layer close to the interface similar to n-type doping. The absolute value of this Fermi level shift, which can be explained by an electron transfer from the EIL polymers into the emitting layer, correlates with the number of nitrogen-containing groups in the side chains of the polymers. Whereas polyethylenimine (PEI) and one of the investigated polyfluorenes (PFCON-C) have six such groups per monomer unit, the second investigated polyfluorene (PFN) only possesses two. Consequently, we measure Fermi level shifts of 0.5-0.7 eV for PEI and PFCON-C and only 0.2 eV for PFN. As a result of these Fermi level shifts, the energetic barrier for electron injection is significantly lowered and OLEDs which comprise PEI or PFCON-C as an EIL exhibit a more than twofold higher luminous efficacy than OLEDs with PFN.

  5. Piezoelectric Resonator with Two Layers

    NASA Technical Reports Server (NTRS)

    Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)

    2013-01-01

    A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.

  6. Investigating the Modification of Spontaneous Emission using Layer-by-Layer Self-Assembly

    NASA Astrophysics Data System (ADS)

    Ashry, Islam Ahmed Ibrahim Youssef

    The process of spontaneous emission can be dramatically modified by optical micro- and nanostructures. We studied the modification of fluorescence dynamics using a polymer spacer layer fabricated through layer-by-layer (LbL) self-assembly. The advantages of this method are numerous: The self-assembled spacers can possess exceptional smooth surface morphology; The thickness of the spacer can be controlled with nanometer accuracy; And depending on fabrication conditions, the spacer layer is stimuli responsive and its thickness can be dynamically tuned. This thesis contains three interlinked components. First, we vary LbL spacer layer thickness and explore the change in fluorescence lifetime induced by the modified photonic density of states (PDOS), i.e., Purcell effects. Our experimental results agree well with theoretical predictions based on a classical dipole model, which also yields consistent values for the fluorophores' intrinsic fluorescence lifetime and quantum yield near a dielectric as well as a plasmonic interface. Based on this observation, we further demonstrate that self-assembled fluorophores can be used to probe the modified PDOS near optical micro- and nano-structures. These results naturally lead to the second component of our research. In particularly, based on the PDOS-induced changes in fluorescent lifetime, we develop a non-contact method that can measure morphological changes with nanoscale resolution. Our method relies on quantitatively linking fluorophore position with PDOS, and is validated through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. To demonstrate the potential application of this method, we investigated the swelling/deswelling of LbL films induced by pH changes. Our results indicate significant difference between a LbL film composed of a single polymer monolayer and a LbL film with 3 monolayers. Such stimuli-responsive polymers can be used to construct active and tunable plasmonic nano

  7. Numerical Simulation of Transition in Hypersonic Boundary Layers

    DTIC Science & Technology

    2011-02-01

    sile domes. AGARD Report CP 493. Advisory Group for Aerospace Research and Development. 273 Horvath, T. 2002 Boundary layer transition on slender...reference skin-friction coefficient cp , cv Specific heats at constant pressure and volume, respectively cph Phase speed in propagation direction e...y)) 73 and two-dimensional (W = 0): u = U (y) + u′ , (4.9a) v = v′ , (4.9b) w = w′ , (4.9c) p = 1 + p′ , (4.9d) T = T (y) + T ′ , (4.9e) ρ = 1 T (y

  8. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, A. M., E-mail: zam@plasma.mephi.ru; Dvoichenkova, O. A.; Evsin, A. E.

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  9. A Chaos MIMO-OFDM Scheme for Mobile Communication with Physical-Layer Security

    NASA Astrophysics Data System (ADS)

    Okamoto, Eiji

    Chaos communications enable a physical-layer security, which can enhance the transmission security in combining with upper-layer encryption techniques, or can omit the upper-layer secure protocol and enlarges the transmission efficiency. However, the chaos communication usually degrades the error rate performance compared to unencrypted digital modulations. To achieve both physical-layer security and channel coding gain, we have proposed a chaos multiple-input multiple-output (MIMO) scheme in which a rate-one chaos convolution is applied to MIMO multiplexing. However, in the conventional study only flat fading is considered. To apply this scheme to practical mobile environments, i.e., multipath fading channels, we propose a chaos MIMO-orthogonal frequency division multi-plexing (OFDM) scheme and show its effectiveness through computer simulations.

  10. Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)

    2005-01-01

    An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.

  11. Self-Assembled Layered Supercell Structure of Bi2AlMnO6 with Strong Room-Temperature Multiferroic Properties.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Leigang; Boullay, Philippe; Lu, Ping

    2017-02-01

    Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highlymore » anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.« less

  12. Layer Control of WSe2 via Selective Surface Layer Oxidation.

    PubMed

    Li, Zhen; Yang, Sisi; Dhall, Rohan; Kosmowska, Ewa; Shi, Haotian; Chatzakis, Ioannis; Cronin, Stephen B

    2016-07-26

    We report Raman and photoluminescence spectra of mono- and few-layer WSe2 and MoSe2 taken before and after exposure to a remote oxygen plasma. For bilayer and trilayer WSe2, we observe an increase in the photoluminescence intensity and a blue shift of the photoluminescence peak positions after oxygen plasma treatment. The photoluminescence spectra of trilayer WSe2 exhibit features of a bilayer after oxygen plasma treatment. Bilayer WSe2 exhibits features of a monolayer, and the photoluminescence of monolayer WSe2 is completely absent after the oxygen plasma treatment. These changes are observed consistently in more than 20 flakes. The mechanism of the changes observed in the photoluminescence spectra of WSe2 is due to the selective oxidation of the topmost layer. As a result, N-layer WSe2 is reduced to N-1 layers. Raman spectra and AFM images taken from the WSe2 flakes before and after the oxygen treatment corroborate these findings. Because of the low kinetic energy of the oxygen radicals in the remote oxygen plasma, the oxidation is self-limiting. By varying the process duration from 1 to 10 min, we confirmed that the oxidation will only affect the topmost layer of the WSe2 flakes. X-ray photoelectron spectroscopy shows that the surface layer WOx of the sample can be removed by a quick dip in KOH solution. Therefore, this technique provides a promising way of controlling the thickness of WSe2 layer by layer.

  13. Aspects of turbulent-shear-layer dynamics and mixing

    NASA Astrophysics Data System (ADS)

    Slessor, Michael David

    Experiments have been conducted in the GALCIT Supersonic Shear Layer Facility to investigate some aspects of high-Reynolds-number, turbulent, shear-layer flows in both incompressible- and compressible-flow regimes. Experiments designed to address several issues were performed; effects of inflow boundary conditions, freestream conditions (supersonic/subsonic flow), and compressibility, on both large-scale dynamics and small-scale mixing, are described. Chemically-reacting and non-reacting flows were investigated, the former relying on the (Hsb2 + NO)/Fsb2 chemical system, in the fast-kinetic regime, to infer the structure and amount of molecular-scale mixing through use of "flip" experiments. A variety of experimental techniques, including a color-schlieren visualization system developed as part of this work, were used to study the flows. Both inflow conditions and compressibility are found to have significant effects on the flow. In particular, inflow conditions are "remembered" for long distances downstream, a sensitivity similar to that observed in low-dimensionality, non-linear (chaotic) systems. The global flowfields (freestreams coupled by the shear layer) of transonic flows exhibit a sensitivity to imposed boundary conditions, a.e., local area ratios. A previously-proposed mode-selection rule for turbulent-structure convection speeds, based on the presence of a lab-frame subsonic freestream, was experimentally demonstrated to be incorrect. Compressibility, when decoupled from ail other parameters, e.g., Reynolds number, velocity and density ratios, etc., reduces large-scale entrainment and turbulent growth, but slightly enhances small-scale mixing, with an associated change in the structure of the molecularly-mixed fluid. This reduction in shear-layer growth rate is examined and a new parameter that interprets compressibility as an energy-exchange mechanism is proposed. The parameter reconciles and collapses experimentally-observed growth rates.

  14. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  15. In situ monitoring of atomic layer epitaxy via optical ellipsometry

    NASA Astrophysics Data System (ADS)

    Lyzwa, F.; Marsik, P.; Roddatis, V.; Bernhard, C.; Jungbauer, M.; Moshnyaga, V.

    2018-03-01

    We report on the use of time-resolved optical ellipsometry to monitor the deposition of single atomic layers with subatomic sensitivity. Ruddlesden-Popper thin films of SrO(SrTiO3) n=4 were grown by means of metalorganic aerosol deposition in the atomic layer epitaxy mode on SrTiO3(1 0 0), LSAT(1 0 0) and DyScO3(1 1 0) substrates. The measured time dependences of ellipsometric angles, Δ(t) and Ψ(t), were described by using a simple optical model, considering the sequence of atomic layers SrO and TiO2 with corresponding bulk refractive indices. As a result, valuable online information on the atomic layer epitaxy process was obtained. Ex situ characterization techniques, i.e. transmission electron microscopy, x-ray diffraction and x-ray reflectometry verify the crystal structure and confirm the predictions of optical ellipsometry.

  16. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  17. Inner-outer interactions in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Salesky, S.

    2017-12-01

    Recently, observational and numerical studies have revealed the existence of so-called large scale motions (LSMs) that populate the logarithmic layer of wall-bounded turbulent shear flows and modulate the amplitude and frequency of turbulence dynamics near the ground. Properties of LSMs are well understood in neutrally stratified flows over smooth and rough walls. However, the implications of previous studies for the convective atmospheric boundary layer (CBL) are not entirely clear, since the morphology of both small-scale and large-scale turbulent structures is known to be strongly affected by buoyancy [e.g. Salesky et al., Bound.-Layer Meteorol. 163:41-68 (2017)]. In the present study, inner-outer interactions in the CBL are investigated using a suite of large eddy simulations spanning neutral to highly convective conditions. Simulation results reveal that, as the atmosphere becomes increasingly unstable, the inclination angle of structures near the ground increases from 12-15° to nearly 90°. Furthermore, the scale separation between the inner and outer peaks in the premultiplied velocity spectra decreases until only a single peak remains (comparable in magnitude to the boundary layer depth). The extent to which the amplitude modulation of surface layer turbulence by outer layer structures changes with increasing instability will be considered, following the decoupling procedure proposed by Mathis et al. [J. Fluid Mech., vol 628, 311-337 (2009)]. Frequency modulation of surface layer turbulence also will be examined, following the wavelet analysis approach of Baars et al. [Exp. Fluids, 56:188, (2015)].

  18. Influence of electrical double-layer interaction on coal flotation.

    PubMed

    Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M

    2002-06-15

    In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.

  19. Use of layer strains in strained-layer superlattices to make devices for operation in new wavelength ranges, E. G. , InAsSb at 8 to 12. mu. m. [InAs/sub 1-x/Sb/sub x/

    DOEpatents

    Osbourn, G.C.

    1983-10-06

    An intrinsic semiconductor electro-optical device comprises a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8 to 12 ..mu..m. This radiation responsive p-n junction comprises a strained-layer superlattice (SLS) of alternating layers of two different III-V semiconductors. The lattice constants of the two semiconductors are mismatched, whereby a total strain is imposed on each pair of alternating semiconductor layers in the SLS structure, the proportion of the total strain which acts on each layer of the pair being proportional to the ratio of the layer thicknesses of each layer in the pair.

  20. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  1. Interlayer tunneling in double-layer quantum hall pseudoferromagnets.

    PubMed

    Balents, L; Radzihovsky, L

    2001-02-26

    We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.

  2. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  3. Study of the Effect of Free-Stream Turbulence upon Disturbances in the Pre-Transitional Laminar Boundary Layer. Part I. Laminar Boundary Layer Distortion by Surface Roughness; Effect upon Stability. Part II.

    DTIC Science & Technology

    1982-04-01

    Boundary Layer Near a Plate." NACA Rept. 562, 1936. 5) A. A. Hall and G. S. Hislop , "Experiments on the Transition of the Laminar Boundary Layer on a...Cylinder." Proc. 5th Inter. Congr. Appl. Math, 1938. 7) G. S. Hislop , "The Transition of a Laminar Boundary Layer in a Wind Tunnel." Ph.D. Thesis...Small Vertical Cylinder Attached to a Flat Plate", h Fa- Elul"s, Vol. 23, Part 1, pp. 221-223, Jan. 1980 . 9. A. Von Doenhoff and E. A. Horton, "A Low

  4. Evidence of the Dampening Effect of Dense E-region Structures on E-F Coupling

    NASA Astrophysics Data System (ADS)

    Helmboldt, J.

    2012-12-01

    Results from a combination of instruments including ionosondes, GPS receivers, the Very Large Array (VLA), and the Long Wavelength Array (LWA) are used to demonstrate the role structure within the E-region plays in coupling between instabilities within the E and F regions at midlatitudes. VLA observations of cosmic sources at 74 MHz during summer nighttime in 2002 detected northwest-to-southeast aligned wavefronts, consistent with medium-scale traveling ionospheric disturbances (MSTIDs). These waves were only found when contemporaneous observations from nearby ionosondes detected echoes from sporadic-E layers. However, when the peak density of these layers was high (foEs> 3 MHz), there were no MSTIDs detected. Similar results are presented using the first station of the LWA, LWA1, to perform all-sky imaging of dense E-region structures (sporadic-E "clouds") via coherent scattering of distant analog TV broadcasts at 55 MHz. These observations were conducted during summer/autumn 2012 and include simultaneous GPS-based observations of F-region disturbances.Left: LWA1 all-sky image of ionospheric echoes of analog TV transmissions at 55.25 MHz. Right: Doppler speed maps for the brightest echoes.

  5. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.

    PubMed

    Lv, Ruitao; Robinson, Joshua A; Schaak, Raymond E; Sun, Du; Sun, Yifan; Mallouk, Thomas E; Terrones, Mauricio

    2015-01-20

    CONSPECTUS: In the wake of the discovery of the remarkable electronic and physical properties of graphene, a vibrant research area on two-dimensional (2D) layered materials has emerged during the past decade. Transition metal dichalcogenides (TMDs) represent an alternative group of 2D layered materials that differ from the semimetallic character of graphene. They exhibit diverse properties that depend on their composition and can be semiconductors (e.g., MoS2, WS2), semimetals (e.g., WTe2, TiSe2), true metals (e.g., NbS2, VSe2), and superconductors (e.g., NbSe2, TaS2). The properties of TMDs can also be tailored according to the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. For example, 2H-MoS2 is semiconducting, whereas 1T-MoS2 is metallic. Bulk 2H-MoS2 possesses an indirect band gap, but when 2H-MoS2 is exfoliated into monolayers, it exhibits direct electronic and optical band gaps, which leads to enhanced photoluminescence. Therefore, it is important to learn to control the growth of 2D TMD structures in order to exploit their properties in energy conversion and storage, catalysis, sensing, memory devices, and other applications. In this Account, we first introduce the history and structural basics of TMDs. We then briefly introduce the Raman fingerprints of TMDs of different layer numbers. Then, we summarize our progress on the controlled synthesis of 2D layered materials using wet chemical approaches, chemical exfoliation, and chemical vapor deposition (CVD). It is now possible to control the number of layers when synthesizing these materials, and novel van der Waals heterostructures (e.g., MoS2/graphene, WSe2/graphene, hBN/graphene) have recently been successfully assembled. Finally, the unique optical, electrical, photovoltaic, and catalytic properties of few-layered TMDs are summarized and discussed. In particular, their enhanced photoluminescence (PL), photosensing, photovoltaic conversion, and

  6. Structural and electrical properties of Nb doped TiO{sub 2} films prepared by the sol–gel layer-by-layer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duta, M., E-mail: mduta@icf.ro; Simeonov, S.; Teodorescu, V.

    2016-02-15

    Highlights: • TiO{sub 2}:Nb (1.2 at.%) multilayer films were deposited by sol–gel method on glass and Si. • 5 and 10 layers TiO{sub 2}:Nb films crystallize only in the anatase phase. • E{sub g} values are within 3.24–3.32 eV showing a decrease with increasing the layer number. • The specific resistivity, effective donor and sheet energy densities were obtained. • Nb donor compensation by acceptor levels in TiO{sub 2}:Nb film was suggested. - Abstract: Thin films of 5 and 10-layered sol–gel TiO{sub 2} were doped with 1.2 at.% Nb and their structural, optical and electrical properties were investigated. The filmsmore » crystallized only in anatase phase, as evidenced by X-ray diffraction and selected area electron diffraction analyses. High resolution transmission electron microscopy revealed nanosized crystallites with amorphous boundaries. Current-voltage measurements on metal-TiO{sub 2}–Si structures showed the formation of n{sup +}–n heterojunction at the TiO{sub 2}–Si interface with a rectification ratio of 10{sup 4}. The effective donor density varies between 10{sup 16} and 10{sup 17} cm{sup −3}, depending on film thickness. The sheet energy densities under forward and reverse bias are in the order of 10{sup 12} and 10{sup 10} cm{sup −2} eV{sup −1}, respectively. These values and the high specific resistivity (10{sup 4} Ω cm) support the existence of compensating acceptor levels in these films. It was established that the conduction mechanism is based on space charge limited current via deep levels with different energy positions in the band gap.« less

  7. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    NASA Astrophysics Data System (ADS)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  8. Polypyrrole-based bilayer nitrate amperometric biosensor with an integrated permselective poly-ortho-phenylenediamine layer for exclusion of inorganic interferences.

    PubMed

    Adeloju, Samuel B; Sohail, Manzar

    2011-07-15

    A bilayer amperometric nitrate biosensor with an integrated permselective layer has been developed for exclusion of inorganic anion and cation interferences. The inner PPy(polypyrrole)-NaR-NADH layer of the biosensor is formed by galvanostatic polymerization of pyrrole (Py) in presence of nitrate reductase (NaR) and nicotinamide adenine dinucleotide (NADH), followed by formation of the outer permselective poly-ortho-phenylenediamine (P-o-PDA) layer by potentiodynamic polymerization of ortho-phenylenediamine (o-PDA). The exclusion efficiency (E(eff)) of the outer layer in rejecting inorganic cation and anion interferences is evaluated by a new proposed relationship. 73-87% and 47-84% of anion and cation interferences, respectively, were efficiently rejected with the permselective layer. Further improvement in the exclusion efficiency for cations was accomplished by combining the use of the outer layer with the addition of 1mM EDTA into the measurement solution. The addition of EDTA improved the E(eff) achieved for cation rejection by 10-40% to give net E(eff) of 89-94%. The inclusion of the outer layer also aided the retention of NaR and NADH in the inner PPy-NaR-NADH layer and, hence, enabled improved amperometric detection of nitrate, achieving a detection limit of 0.20 μM and a linear concentration range of 10-500 μM with a 3.4%rsd (n=10). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease.

    PubMed

    Mittal, Ravinder K

    2016-09-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states.

  10. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease

    PubMed Central

    2016-01-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states. PMID:27445346

  11. Adaptation technology between IP layer and optical layer in optical Internet

    NASA Astrophysics Data System (ADS)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  12. Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.

    PubMed

    Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing

    2017-08-01

    The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.

  13. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    NASA Astrophysics Data System (ADS)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  14. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q

  15. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    PubMed

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  16. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness

    PubMed Central

    2018-01-01

    Objectives To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. Materials and Methods B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness (n = 10). All increments were light-cured to 16 J/cm2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test (p = 0.05). Results Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. Conclusions The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues. PMID:29765902

  17. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0522 TITLE: Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0522 5c...bioprinting process using stem cells for retinal tissue regeneration. The LBL nature of the bioprinting process matches nicely with the native

  18. Cooperating systems: Layered MAS

    NASA Technical Reports Server (NTRS)

    Rochowiak, Daniel

    1990-01-01

    Distributed intelligent systems can be distinguished by the models that they use. The model developed focuses on layered multiagent system conceived of as a bureaucracy in which a distributed data base serves as a central means of communication. The various generic bureaus of such a system is described and a basic vocabulary for such systems is presented. In presenting the bureaus and vocabularies, special attention is given to the sorts of reasonings that are appropriate. A bureaucratic model has a hierarchy of master system and work group that organizes E agents and B agents. The master system provides the administrative services and support facilities for the work groups.

  19. Thermally Induced Lateral Motion of α-Zirconium Phosphate Layers Intercalated with Hexadecylamines

    NASA Astrophysics Data System (ADS)

    Char, Kookheon

    2005-03-01

    Well-defined intercalated structure, either interdigitated layers or bilayers, of hexadecylamines (HDAs) in a confined space of a highly-functionalized layered material, α- zirconium phosphate (α-ZrP), was prepared and these two distinct intercalated structures can serve as model systems to investigate the interaction of the two monolayers whose amphiphilic tails are adjacent to each other. Acidic functional groups (-POH) on the α-ZrP are in well-ordered array and the number of functional group is quite high (i.e., cationic exchange capacity (CEC) = 664 mmole/100 g, area per one charge site = 0.24 nm^2) enough to realize the bilayers (i.e., discrete two monolayers) of HDAs within the α-ZrP interlayer. We employed the two-step intercalation mechanism for the preparation of well- ordered interdigitated layers as well as the bilayers of alkyl chains attached to both sides of the α-ZrP intergallery. An intriguing lateral motion of the α-ZrP sheets was observed with in-situ SAXS measurements for the interdigitated layer during heating and cooling cycle and verified with TEM. This lateral motion is believed to be due to the transition from the tilted to the untilted conformation of the interdigitated HDA chains and this transition is found to be thermally reversible.

  20. Modeling Electrothermal Plasma with Boundary Layer Effects

    NASA Astrophysics Data System (ADS)

    AlMousa, Nouf Mousa A.

    Electrothermal plasma sources produce high-density (1023-10 28 /m3) and high temperature (1-5 eV) plasmas that are of interest for a variety of applications such as hypervelocity launch devices, fusion reactor pellet injectors, and pulsed thrusters for small satellites. Also, the high heat flux (up to 100 GW/m2) and high pressure (100s MPa) of electrothermal (ET) plasmas allow for the use of such facilities as a source of high heat flux to simulate off-normal events in Tokamak fusion reactors. Off-normal events like disruptions, thermal and current quenches, are the perfect recipes for damage of plasma facing components (PFC). Successful operation of a fusion reactor requires comprehensive understanding of material erosion behavior. The extremely high heat fluxes deposited in PFCs melt and evaporate or directly sublime the exposed surfaces, which results in a thick vapor/melt boundary layer adjacent to the solid wall structure. The accumulating boundary layers provide a self-protecting nature by attenuating the radiant energy transport to the PFCs. The ultimate goal of this study is to develop a reliable tool to adequately simulate the effect of the boundary layers on the formation and flow of the energetic ET plasma and its impact on exposed surfaces erosion under disruption like conditions. This dissertation is a series of published journals/conferences papers. The first paper verified the existence of the vapor shield that evolved at the boundary layer under the typical operational conditions of the NC State University ET plasma facilities PIPE and SIRENS. Upon the verification of the vapor shield, the second paper proposed novel model to simulate the evolution of the boundary layer and its effectiveness in providing a self-protecting nature for the exposed plasma facing surfaces. The developed models simulate the radiant heat flux attenuation through an optically thick boundary layer. The models were validated by comparing the simulation results to experimental

  1. Mantle reservoirs (EM-1, OIB, E-MORB and N-MORB), long duration and polystages history for PGE-bearing paleoproterozoic layered intrusions in the N-E part of Fennoscandian Shield.

    NASA Astrophysics Data System (ADS)

    Bayanova, Tamara; Nerovich, Ludmila; Serov, Pavel; Kunakkuzin, Evgeniy; Elizarov, Dmitriy

    2015-04-01

    Paleoproterozoic layered PGE -bearing intrusions located in the N-E part of the Fennoscandian Shield and have a total are about 2000 km2. Long multidisciplinary studies using isotope Nd-Sr, U-Pb and 3He/4He systematics permit create a big bank of geochemistry data for different part of the intrusions: barren and main Cu-Ni-Cr-Ti-V and PGE phases, dykes complexes and host rocks. Based on U-Pb isotope data (on baddeleyite and zircon) and Sm-Nd mineral isochrones (on rock-forming and sulphides minerals) there is distinguished long magmatic duration from 2.53 to 2.40 Ga. Using precise U-Pb and Sm-Nd data for different part of the intrusions there are established four main impulses: 2.53, 2.50, 2.45, and 2.40 Ga of magmatic (LIP) activities for gabbronorite, anothosite et.set. rocks. The primary reservoir for all precious and multimetal massifs are considered as enriched mantle EM-1 using ɛNd- ISr system with negative ɛNd values and low ISr data for whole rocks of the intrusions. Dyke complexes are presented as three groups: high Ti-ferrodolerites, low Ti and low Fe-gabbronorites. Complex isotope (U-Pb, Sm-Nd) and geochemistry (REE, ɛNd, ISr) data investigations reflect OIB, E-MORB and N-MORB reservoirs for its origin (Nerovich et all., 2014). Isotope 3He/4He and 3He concentrations for accessory minerals ( ilmenite, magnetite et. set ) from the layered paleoproterozoic intrusions reflect significant lower mantle component and upper mantle contribution. According to the model of binary mixing (Jahn et all, 2000) there were calculated mantle and core component into plume magmatic reservoir connected with the origin of the PGE paleoproterozoic intrusions. The mantle contributions lie in the interval from 85 to 93% and core component are very less. All investigations are devoted to memory of academician RAS, professor F.Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogenesis of ore deposits. The studies are

  2. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.

    PubMed

    Murray, Preston R; Thomson, Scott L

    2011-12-02

    been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration). In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.

  3. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity-Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer.

    PubMed

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-10-05

    Dual-layered composite nanofibrous membrane equipped with electrical conduction, magnetism and photoluminescence trifunctionality is constructed via electrospinning. The composite membrane consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticles (NPs)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional nanofibrous layer at one side and a Eu(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent nanofibrous layer at the other side, and the two layers are tightly combined face-to-face together into the novel dual-layered composite membrane with trifunctionality. The electric conductivity and magnetism of electrical-magnetic bifunctionality can be respectively tunable via modulating the respective PANI and Fe 3 O 4 NPs contents, and the highest electric conductivity approaches the order of 1 × 10 -2 S cm -1 . Predominant red emission at 615 nm can be obviously observed in the photoluminescent layer under 366 nm excitation. Moreover, the luminescent intensity of photoluminescent layer is almost unaffected by the electrical-magnetic bifunctional layer because of the fact that the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. The novel dual-layered composite nanofibrous membrane with trifunctionality has potentials in many fields. Furthermore, the design philosophy and fabrication method for the dual-layered multifunctional membrane provide a new and facile strategy toward other membranes with multifunctionality.

  4. Application of Layered Perforation Profile Control Technique to Low Permeable Reservoir

    NASA Astrophysics Data System (ADS)

    Wei, Sun

    2018-01-01

    it is difficult to satisfy the demand of profile control of complex well section and multi-layer reservoir by adopting the conventional profile control technology, therefore, a research is conducted on adjusting the injection production profile with layered perforating parameters optimization. i.e. in the case of coproduction for multi-layer, water absorption of each layer is adjusted by adjusting the perforating parameters, thus to balance the injection production profile of the whole well section, and ultimately enhance the oil displacement efficiency of water flooding. By applying the relationship between oil-water phase percolation theory/perforating damage and capacity, a mathematic model of adjusting the injection production profile with layered perforating parameters optimization, besides, perforating parameters optimization software is programmed. Different types of optimization design work are carried out according to different geological conditions and construction purposes by using the perforating optimization design software; furthermore, an application test is done for low permeable reservoir, and the water injection profile tends to be balanced significantly after perforation with optimized parameters, thereby getting a good application effect on site.

  5. Multifunctional Self-Adhesive Fibrous Layered Matrix (FiLM) for Tissue Glues and Therapeutic Carriers.

    PubMed

    Yoon, Ye-Eun; Im, Byung Gee; Kim, Jung-Suk; Jang, Jae-Hyung

    2017-01-09

    Tissue adhesives, which inherently serve as wound sealants or as hemostatic agents, can be further augmented to acquire crucial functions as scaffolds, thereby accelerating wound healing or elevating the efficacy of tissue regeneration. Herein, multifunctional adherent fibrous matrices, acting as self-adhesive scaffolds capable of cell/gene delivery, were devised by coaxially electrospinning poly(caprolactone) (PCL) and poly(vinylpyrrolidone) (PVP). Wrapping the building block PCL fibers with the adherent PVP layers formed film-like fibrous matrices that could rapidly adhere to wet biological surfaces, referred to as fibrous layered matrix (FiLM) adhesives. The inclusion of ionic salts (i.e., dopamine hydrochloride) in the sheath layers generated spontaneously multilayered fibrous adhesives, whose partial layers could be manually peeled off, termed derivative FiLM (d-FiLM). In the context of scaffolds/tissue adhesives, both FiLM and d-FiLM demonstrated almost identical characteristics (i.e., sticky, mechanical, and performances as cell/gene carriers). Importantly, the single FiLM-process can yield multiple sets of d-FiLM by investing the same processing time, materials, and labor required to form a single conventional adhesive fibrous mat, thereby highlighting the economic aspects of the process. The FiLM/d-FiLM offer highly impacting contributions to many biomedical applications, especially in fields that require urgent aids (e.g., endoscopic surgeries, implantation in wet environments, severe wounds).

  6. Investigation of the Photocurrent in Hot-Wall-Epitaxy-Grown BaIn2S4 Layers

    NASA Astrophysics Data System (ADS)

    You, S. H.; Hong, K. J.; Jeong, T. S.; Youn, C. J.

    2015-12-01

    The photocurrent (PC) of hot-wall-epitaxy-grown BaIn2S4 layers was studied at different temperatures and for different photoresponse intensities. With increasing temperature, the position of the PC spectra tended to shift toward longer wavelength. These PC peaks corresponded to band-to-band transitions caused by intrinsic transitions from the valence band states to the conduction band states. Also, the bandgap variations were well matched by the equation E g( T) = E g(0) - 3.79 × 10-3 T 2/( T + 499), where E g(0) was estimated to be 3.0597 eV, 3.2301 eV, and 3.2606 eV for transitions corresponding to the valence band states Γ 4(z), Γ 5(x), and Γ 5(y), respectively. By use of the selection rule and results from the PC spectroscopy, the crystal field and the spin-orbit splitting were found to be 0.1703 and 0.0306 eV, respectively. Thus, the PC intensity gradually decreased with decreasing temperature. The decrease of PC intensity was caused by the presence of trapping centers associated with native defects in the BaIn2S4 layers. The trap level was found to be a shallow donor-level type of 20.4 meV, 1.6 meV below the conduction band. Consequently, these trap levels, which are related to native defects in BaIn2S4 layers, are believed to limit PC intensity with decreasing temperature.

  7. Prediction of weak and strong topological insulators in layered semiconductors.

    NASA Astrophysics Data System (ADS)

    Felser, Claudia

    2013-03-01

    We investigate a new class of ternary materials such as LiAuSe and KHgSb with a honeycomb structure in Au-Se and Hg-Sb layers. We demonstrate the band inversion in these materials similar to HgTe, which is a strong precondition for existence of the topological surface states. In contrast with graphene, these materials exhibit strong spin-orbit coupling and a small direct band gap at the point. Since these materials are centrosymmetric, it is straightforward to determine the parity of their wave functions, and hence their topological character. Surprisingly, the compound with strong spin-orbit coupling (KHgSb) is trivial, whereas LiAuSe is found to be a topological insulator. However KHgSb is a weak topological insulators in case of an odd number of layers in the primitive unit cell. Here, the single-layered KHgSb shows a large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors. In collaboration with Binghai Yan, Lukas Müchler, Hai-Jun Zhang, Shou-Cheng Zhang and Jürgen Kübler.

  8. Simultaneous observations of F2 layer stratification and spread F at postmidnight over a northern equatorial anomaly region

    NASA Astrophysics Data System (ADS)

    Jiang, Chunhua; Yang, Guobin; Deng, Chi; Zhou, Chen; Zhu, Peng; Yokoyama, Tatsuhiro; Song, Huan; Lan, Ting; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong

    2015-12-01

    Simultaneous observations of F2 layer stratification and spread F at postmidnight (00:00 LT to 05:00 LT) were carried out on 22, 23, and 28 November 2013, using ionosondes distributed over a northern equatorial anomaly region at three specific locations, i.e., Puer (PUR, 22.7°N, 101.05°E, dip latitude 12.9°N), Chiang Mai (CMU, 18.8°N, 98.9°E, dip latitude 9.04°N), and Chumphon (CPN, 10.7°N, 99.4°E, dip latitude 0.93°N). The results show that both the PUR and CMU stations observed the F2 layer stratification at postmidnight in the Northern Hemisphere, frequently accompanied with gravity waves (the periods~30-100 min). It is reported that F2 layer stratification at postmidnight can be observed in the Northern Hemisphere for the first time. It is suggested that the thermospheric neutral wind triggered by gravity waves strongly contribute to the altitude dependence of the combined vertical plasma velocity, which consequently poses significant impacts on the occurrence of the low-latitude F2 layer stratification at postmidnight. In addition, the spread F other than F2 layer stratification was observed at the CPN station located at the geomagnetic equator, suggesting that smaller geomagnetic inclination tend to inhibit the postmidnight F2 layer stratification in the equatorial region. Furthermore, on 23 November 2013 a good correlation was identified between the F2 layer stratification at PUR and the spread F at both CMU and CPN, possibly due to that the large-scale gravity waves originating at middle latitudes contribute to the nighttime spread F observed in the low-latitude and equatorial regions.

  9. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Tang, Jing; Ding, Bing; Malgras, Victor; Chang, Zhi; Hao, Xiaodong; Wang, Ya; Dou, Hui; Zhang, Xiaogang; Yamauchi, Yusuke

    2017-06-01

    Although various two-dimensional (2D) nanomaterials have been explored as promising capacitive materials due to their unique layered structure, their natural restacking tendency impedes electrolyte transport and significantly restricts their practical applications. Herein, we synthesize all-carbon layer-by-layer motif architectures by introducing 2D ordered mesoporous carbons (OMC) within the interlayer space of 2D nanomaterials. As a proof of concept, MXenes are selected as 2D hosts to design 2D-2D heterostructures. Further removing the metal elements from MXenes leads to the formation of all-carbon 2D-2D heterostructures consisting of alternating layers of MXene-derived carbon (MDC) and OMC. The OMC layers intercalated with the MDC layers not only prevent restacking but also facilitate ion diffusion and electron transfer. The performance of the obtained hybrid carbons as supercapacitor electrodes demonstrates their potential for upcoming electronic devices. This method allows to overcome the restacking and blocking of 2D nanomaterials by constructing ion-accessible OMC within the 2D host material.

  10. Fabrication of contacts for silicon solar cells including printing burn through layers

    DOEpatents

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  11. Evidence of a Transition Layer between the Free Surface and the Bulk.

    PubMed

    Ogieglo, Wojciech; Tempelman, Kristianne; Napolitano, Simone; Benes, Nieck E

    2018-03-15

    The free surface, a very thin layer at the interface between polymer and air, is considered the main source of the perturbations in the properties of ultrathin polymer films, i.e., nanoconfinement effects. The structural relaxation of such a layer is decoupled from the molecular dynamics of the bulk. The free surface is, in fact, able to stay liquid even below the temperature where the polymer resides in the glassy state. Importantly, this surface layer is expected to have a very sharp interface with the underlying bulk. Here, by analyzing the penetration of n-hexane into polystyrene films, we report on the existence of a transition region, not observed by previous investigations, extending for 12 nm below the free surface. The presence of such a layer permits reconciling the behavior of interfacial layers with current models and has profound implications on the performance of ultrathin membranes. We show that the expected increase in the flux of the permeating species is actually overruled by nanoconfinement.

  12. Unsteady turbulent boundary layers in swimming rainbow trout.

    PubMed

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  13. Atomic and molecular layer deposition for surface modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi; Sievänen, Jenni; Salo, Erkki

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjetmore » printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.« less

  14. Formation and dynamics of a chemically stratified layer below the Earth's CMB

    NASA Astrophysics Data System (ADS)

    Bouffard, M.; Labrosse, S.; Choblet, G.; Aubert, J.; Fournier, A.

    2017-12-01

    Seismological and magnetic observations are compatible with the presence of a stratified layer below the Earth's CMB (Lay and Young, 1990; Tanaka, 2007; Gubbins, 2007; Helffrich and Kaneshima, 2010; Lesur et al., 2015) and the existence of such a layer has also been predicted by several theoretical arguments listed below. The proposed thickness varies from 60 km to several hundreds of kilometers across the literature, but is usually close to 100 km. The layer may be thermally stratified if the CMB heat flow is subadiabatic (Gubbins et al., 1982; Labrosse et al., 1997; Lister and Buffett, 1998; Labrosse, 2015) but the possibility of a stratification of chemical origin has also been evoked. Various mechanisms have been proposed for the formation of a chemically stratified layer and include barodiffusion i.e. diffusion of light elements against the pressure gradient (Fearn and Loper, 1981; Braginsky, 2006; Gubbins and Davies, 2013), chemical plumes and blobs that would be able to reach the CMB where they would accumulate (Loper, 1989; Braginsky, 1994; Moffatt and Loper, 1994; Loper, 2007) or ascending droplets in a Fe-S system kept from mixing by surface tension (Franck, 1982). Layering may also be present if immiscible liquids evolve as the composition changes due to inner core growth (Helffrich and Kaneshima, 2004). To finish, Buffett and Seagle (2010) also studied the possibility that light elements be dissolved from the mantle into the core, forming a lighter layer that could grow by diffusion over long time scales. So far, no numerical simulation of core dynamics has been able to validate any of these potential mechanisms and produce a chemically stratified layer in a self-consistent manner. Using a particle-in-cell method newly implemented in the code PARODY (E. Dormy, J. Aubert) allowing to perform simulations of thermochemical convection in the infinite Lewis number limit (neglecting the compositional diffusivity), I will show that a chemically stratified

  15. Photonic layered media

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  16. The Design of Cooling Ducts with Special Reference to the Boundary Layer at the Inlet

    DTIC Science & Technology

    1940-12-01

    reference to the problems presented by the boundary layer on the fuselage skin. It was found that good flow can be obtained in such ducts by (1) malslng... ia front of e. fuselage-duct inlet is li=lted by the fact. that the bouadary layer will breQc awr.~ fron the skis If it is subjected to too large an...expe.nslo~ and radiatcr losses, which are rou&2l:- proportlonnl to the cquare of t%e vslocity, in- cre=se ia the lower eectloa end decrease In the

  17. Shock-like structures in the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  18. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  19. Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.

    PubMed

    Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia

    2012-01-01

    Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.

  20. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  1. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, A.O.

    1992-04-21

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO[sub 3], YCrO[sub 3] or LaMnO[sub 3] particles, on a portion of a porous ceramic substrate, (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure between the doped particles, (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles as a contact. 7 figs.

  2. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    horizontal branches of organised structures. This mechanism (Zilitinkevich et al., 2006), was overlooked in conventional local theories, such as the Monin-Obukhov similarity theory, and convective heat/mass transfer law: Nu~Ra1/3, where Nu and Ra are the Nusselt number and Raleigh numbers. References Hellsten A., Zilitinkevich S., 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol. 149, 323-353. Zilitinkevich, S.S., 1973: Shear convection. Boundary-Layer Meteorol. 3, 416-423. Zilitinkevich, S.S., 1991: Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp. Zilitinkevich S.S., 2012: The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development - Chapter 13 in 'National Security and Human Health Implications of Climate Change', edited by H.J.S. Fernando, Z. Klaić, J.L. McKulley, NATO Science for Peace and Security Series - C: Environmental Security (ISBN 978-94-007-2429-7), Springer, 147-161. Zilitinkevich S.S., 2013: Atmospheric Turbulence and Planetary Boundary Layers. Fizmatlit, Moscow, 248 pp. Zilitinkevich, S.S., Hunt, J.C.R., Grachev, A.A., Esau, I.N., Lalas, D.P., Akylas, E., Tombrou, M., Fairall, C.W., Fernando, H.J.S., Baklanov, and A., Joffre, S.M., 2006: The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Met. Soc. 132, 1423-1456. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu. I., Mareev E., 2012: Theoretical models of the height of the atmospheric planetary boundary layer and turbulent entrainment at its upper boundary. Izvestija RAN, FAO, 48, No.1, 150-160 Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.N., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.

  3. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  4. When is one layer complete? Using simultaneous in-situ RHEED and x-ray reflectivity to map layer-by-layer thin-film oxide growth

    NASA Astrophysics Data System (ADS)

    Sullivan, M. C.; Ward, M. J.; Joress, H.; Gutierrez-Llorente, A.; White, A. E.; Woll, A.; Brock, J. D.

    2014-03-01

    The most popular tool for characterizing in situ layer-by-layer growth is Reflection High-Energy Electron Diffraction (RHEED). X-ray reflectivity can also be used to study layer-by-layer growth, as long as the incident angle of the x-rays is far from a Bragg peak. During layer-by-layer homoepitaxial growth, both the RHEED intensity and the reflected x-ray intensity will oscillate, and each complete oscillation indicates the addition of one layer of material. However, it is well documented, but not well understood, that the maxima in the RHEED intensity oscillations do not necessarily occur at the completion of a layer. In contrast, the maxima in the x-ray intensity oscillations do occur at the completion of a layer, thus the RHEED and x-ray oscillations are rarely in phase. We present our results on simultaneous in situ x-ray reflectivity and RHEED during layer-by-layer growth of SrTiO3 and discuss how to determine the completion of a layer for RHEED oscillations independent of the phase of the RHEED oscillation. Supported by DOE Office of Basic Energy Sciences Award DE-SC0001086, CHESS is supported by the NSF & NIH/NIGMS via NSF award DMR-0936384.

  5. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material.

    PubMed

    Lu, S B; Miao, L L; Guo, Z N; Qi, X; Zhao, C J; Zhang, H; Wen, S C; Tang, D Y; Fan, D Y

    2015-05-04

    Black phosphorous (BP), the most thermodynamically stable allotrope of phosphorus, is a high-mobility layered semiconductor with direct band-gap determined by the number of layers from 0.3 eV (bulk) to 2.0 eV (single layer). Therefore, BP is considered as a natural candidate for broadband optical applications, particularly in the infrared (IR) and mid-IR part of the spectrum. The strong light-matter interaction, narrow direct band-gap, and wide range of tunable optical response make BP as a promising nonlinear optical material, particularly with great potentials for infrared and mid-infrared opto-electronics. Herein, we experimentally verified its broadband and enhanced saturable absorption of multi-layer BP (with a thickness of ~10 nm) by wide-band Z-scan measurement technique, and anticipated that multi-layer BPs could be developed as another new type of two-dimensional saturable absorber with operation bandwidth ranging from the visible (400 nm) towards mid-IR (at least 1930 nm). Our results might suggest that ultra-thin multi-layer BP films could be potentially developed as broadband ultra-fast photonics devices, such as passive Q-switcher, mode-locker, optical switcher etc.

  6. Fluorescent solute-partitioning characterization of layered soft contact lenses.

    PubMed

    Dursch, T J; Liu, D E; Oh, Y; Radke, C J

    2015-03-01

    Partitioning of aqueous packaging, wetting, and care-solution agents into and out of soft contact lenses (SCLs) is important for improving wear comfort and also for characterizing lens physico-chemical properties. We illustrate both features of partitioning by application of fluorescent-solute partitioning into DAILIES TOTAL1® (delefilcon A) water-gradient SCLs, which exhibit a layered structure of a silicone-hydrogel (SiHy) core sandwiched between thin surface-gel layers. Two-photon fluorescence confocal laser-scanning microscopy and attenuated total-reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterize the lens and assess uptake profiles of six prototypical fluorescent solutes. Comparison of solute uptake in a SiHy-core prototype lens (i.e., O2OPTIX(TM)) validates the core SiHy structure of DAILIESTOTAL1®. To establish surface-layer charge, partition coefficients and water contents are obtained for aqueous pH values of 4 and 7.4. Solute fluorescence-intensity profiles clearly confirm a layered structure for the DAILIES TOTAL1® lenses. In all cases, aqueous solute partition coefficients are greater in the surface layers than in the SiHy core, signifying higher water in the surface gels. ATR-FTIR confirms surface-layer mass water contents of 82±3%. Water uptake and hydrophilic-solute uptake at pH 4 compared with that at pH 7.4 reveal that the surface-gel layers are anionic at physiologic pH 7.4, whereas both the SiHy core and O2OPTIX™ (lotrafilcon B) are nonionic. We successfully confirm the layered structure of DAILIES TOTAL1®, consisting of an 80-μm-thick SiHy core surrounded by 10-μm-thick polyelectrolyte surface-gel layers of significantly greater water content and aqueous solute uptake compared with the core. Accordingly, fluorescent-solute partitioning in SCLs provides information on gel structure and composition, in addition to quantifying uptake and release amounts and rates. Copyright © 2014 Acta Materialia Inc. Published by

  7. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  8. CMUT Fabrication Based On A Thick Buried Oxide Layer.

    PubMed

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O; Khuri-Yakub, Butrus T

    2010-10-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.

  9. CMUT Fabrication Based On A Thick Buried Oxide Layer

    PubMed Central

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O.; Khuri-Yakub, Butrus T.

    2010-01-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required – in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate. PMID:22685377

  10. Combining Airborne and Lidar Measurements for Attribution of Aerosol Layers

    NASA Astrophysics Data System (ADS)

    Nikandrova, A.; Väänänen, R.; Tabakova, K.; Kerminen, V. M.; O'Connor, E.

    2016-12-01

    The aim of this work was to identify discrete aerosol layers and diagnose their origin, investigate the strength of mixing within the free-troposphere and with the boundary layer (BL), and understand the impact that mixing has on local and long-range transport of aerosol. For these purposes we combined airborne in-situ aerosol measurements with data obtained by a High Spectral Resolution Lidar (HSRL). The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) Mobile Facility during the BAECC (Biogenic Aerosols - Effects on Cloud and Climate) Campaign. Two airborne campaigns took place in April and August 2014 during the BAECC campaign. The vertical profile of backscatter coefficient from the HSRL was used to diagnose the location and depth of significant aerosol layers in the atmosphere. Frequently, in addition to the BL, one or two tropospheric layers were identified. In-situ measurements of the aerosol size distribution in these layers were obtained from a Scanning Mobility Particle Sizer (SMPS) and Optical Particle Sizer (OPS), that were installed on board the aircraft; these measurements were combined to cover sizes ranging from 10 nm to 10 µm. As expected, the highest number concentration of aerosol particles at all size ranges was found predominantly in the BL. Many upper layers had size distributions with a similar shape to that in the BL but with overall lower concentrations attributed to dilution of particles into a large volume of air. Hence, these layers were likely of very similar origin to the air in the BL and presumably were the result of lofted residual layers. Intervening layers however, could contain markedly different distribution shapes, which could be attributed to both different air mass origins, and different ambient relative humidity. Potential for mixing between two discreet elevated layers was often seen as a thin interface layer, which exhibited a

  11. Quantifying three dimensional reconnection in fragmented current layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F., E-mail: peter.f.wyper@nasa.gov; Hesse, M., E-mail: michael.hesse-1@nasa.gov

    There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions, the associated magnetic flux transfer and energy release occur simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. Itmore » is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of E{sub ||} through all of the non-ideal regions. Two simple analytical models are presented which demonstrate how each should be applied and what they quantify.« less

  12. Natural convection in a fluid layer periodically heated from above.

    PubMed

    Hossain, M Z; Floryan, J M

    2014-08-01

    Natural convection in a horizontal layer subject to periodic heating from above has been studied. It is shown that the primary convection leads to the cooling of the bulk of the fluid below the mean temperature of the upper wall. The secondary convection may lead either to longitudinal rolls, transverse rolls, or oblique rolls. The global flow properties (e.g., the average Nusselt number for the primary convection and the critical conditions for the secondary convection) are identical to those of the layer heated from below. However, the flow and temperature patterns exhibit phase shifts in the horizontal directions.

  13. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites

    USGS Publications Warehouse

    Christidis, G.E.; Blum, A.E.; Eberl, D.D.

    2006-01-01

    The influence of layer charge and charge distribution of dioctahedral smectites on the rheological and swelling properties of bentonites is examined. Layer charge and charge distribution were determined by XRD using the LayerCharge program [Christidis, G.E., Eberl, D.D., 2003. Determination of layer charge characteristics of smectites. Clays Clay Miner. 51, 644-655.]. The rheological properties were determined, after sodium exchange using the optimum amount of Na2CO3, from free swelling tests. Rheological properties were determined using 6.42% suspensions according to industrial practice. In smectites with layer charges of - 0.425 to - 0.470 per half formula unit (phfu), layer charge is inversely correlated with free swelling, viscosity, gel strength, yield strength and thixotropic behaviour. In these smectites, the rheological properties are directly associated with the proportion of low charge layers. By contrast, in low charge and high charge smectites there is no systematic relation between layer charge or the proportion of low charge layers and rheological properties. However, low charge smectites yield more viscous suspensions and swell more than high charge smectites. The rheological properties of bentonites also are affected by the proportion of tetrahedral charge (i.e. beidellitic charge), by the existence of fine-grained minerals having clay size, such as opal-CT and to a lesser degree by the ionic strength and the pH of the suspension. A new method for classification of smectites according to the layer charge based on the XRD characteristics of smecites is proposed, that also is consistent with variations in rheological properties. In this classification scheme the term smectites with intermediate layer charge is proposed. ?? 2006 Elsevier B.V. All rights reserved.

  14. Selective layer disordering in III-nitrides with a capping layer

    DOEpatents

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  15. Analysis of Nanoporosity in Moisture Permeation Barrier Layers by Electrochemical Impedance Spectroscopy.

    PubMed

    Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana

    2015-07-29

    Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.

  16. Laboratory layered latte.

    PubMed

    Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A

    2017-12-12

    Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.

  17. Wet oxidation of GeSi strained layers by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.

    1990-07-01

    A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.

  18. The Morning NO x maximum in the forest atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Alaghmand, M.; Shepson, P. B.; Starn, T. K.; Jobson, B. T.; Wallace, H. W.; Carroll, M. A.; Bertman, S. B.; Lamb, B.; Edburg, S. L.; Zhou, X.; Apel, E.; Riemer, D.; Stevens, P.; Keutsch, F.

    2011-10-01

    During the 1998, 2000, 2001, 2008, and 2009 summer intensives of the Program for Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), ambient measurement of nitrogen oxides (NO + NO2 = NOx) were conducted. NO and NOx mole fractions displayed a diurnal pattern with NOx frequently highest in early morning. This pattern has often been observed in other rural areas. In this paper, we discuss the potential sources and contributing factors of the frequently observed morning pulse of NOx. Of the possible potential contributing factors to the observed morning pulse of NO and NOx, we find that surface-layer transport and slow upward mixing from soil emissions, related to the thermodynamic stability in the nocturnal boundary layer (NBL) before its morning breakup are the largest contributors. The morning NOx peak can significantly impact boundary layer chemistry, e.g. through production of HONO on surfaces, and by increasing the importance of NO3 chemistry in the morning boundary layer.

  19. Surface-layer (S-layer) of human and animal Clostridium difficile strains and their behaviour in adherence to epithelial cells and intestinal colonization.

    PubMed

    Spigaglia, Patrizia; Barketi-Klai, Amira; Collignon, Anne; Mastrantonio, Paola; Barbanti, Fabrizio; Rupnik, Maja; Janezic, Sandra; Kansau, Imad

    2013-09-01

    Clostridium difficile is a frequent cause of severe, recurrent post-antibiotic diarrhoea and pseudomembranous colitis. The surface layer (S-layer) is the predominant outer surface component of C. difficile which is involved in pathogen-host interactions critical to pathogenesis. In this study, we characterized the S-layer protein A (SlpA) of animal and human strains belonging to different PCR-ribotypes (PR) and compared the in vitro adherence and in vivo colonization properties of strains showing different SlpA variants. Since each SlpA variant has been recently associated with an S-layer cassette, we were able to deduce the cassette for each of our strains. In this study, an identity of 99-100 % was found among the SlpA of isolates belonging to PR 012, 014/020, 045 and 078. One exception was the SlpA of a poultry isolate, PR 014/020, which showed 99 % identity with that of strain 0160, another PR 014/020 which contains an S-layer cassette 6. Interestingly, this cassette has also been found in a PR 018 strain, an emerging virulent type currently predominant in Italy. Five other SlpA variants (v014/020a-e) were identified in strains PR 014/020. In vitro adherence assays and in vivo colonization experiments were performed on five PR 014/020 strains: human 1064 (v014/020e), human 4684/08 (v014/020b), human IT1106 (v078a), poultry P30 (v014/020d) and poultry PB90 (v014/020b) strains. Adhesion assays indicate that C. difficile strains vary in their capacity to adhere to cells in culture and that adhesion seems to be independent of the SlpA variant. Colonization properties were assessed in vivo using a dixenic mouse model of colonization. The kinetics of faecal shedding and caecal colonization were similar when human 4684/08 (v014/020b) strain was compared with human 1064 (v014/020e) and poultry PB90 (v014/020b) strain. In contrast, poultry P30 (v014/020d) strain outcompeted both human 4684/08 (v014/020b) and IT1106 (v078a) strains and its adherence to caeca at day 7 was

  20. Production and crosslinking of multi-layer tubes (PE & metal) by E-beam

    NASA Astrophysics Data System (ADS)

    Zyball, Alfred

    2000-03-01

    Irradiation crosslinking of PE-tubes has been used for heating floors for about 25 years. Such tubes are also used today for drinking water supply. A further development has been the coating of such tubes with Ethylene-Vinyl-Alcohol-Copolymers (EVAL), in order to prevent oxygen diffusion into the water through the PE tube. For about 15 years composite tubes made of PE and aluminum have been available. These tubes are crosslinked with electron beams. The energy of the accelerated electrons must be adjusted for the particular tube configuration, so that the inner PE-layer will be crosslinked. This paper will concern itself with the manufacture and the crosslinking of composite tubes.

  1. Laboratory Layered Latte

    NASA Astrophysics Data System (ADS)

    Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard

    2017-11-01

    Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.

  2. Depletion layer recombination effects on the radiation damage hardness of gallium arsenide cells

    NASA Technical Reports Server (NTRS)

    Garlick, G. F. J.

    1985-01-01

    The significant effect of junction depletion layer recombination on the efficiency of windowed GaAs cells was demonstrated. The effect becomes more pronounced as radiation damage occurs. The depletion is considered for 1 MeV electron fluences up to 10 to the 16th power e/sq m. The cell modeling separates damage in emitter and base or buffer layers using different damage coefficients is reported. The lower coefficient for the emitter predicts less loss of performance at fluences greater than 10 to the 15th power e/sq cm. A method for obtaining information on junction recombination effects as damage proceeds is described; this enables a more complete diagnosis of damage to be made.

  3. Layer-by-layer-assembled healable antifouling films.

    PubMed

    Chen, Dongdong; Wu, Mingda; Li, Bochao; Ren, Kefeng; Cheng, Zhongkai; Ji, Jian; Li, Yang; Sun, Junqi

    2015-10-21

    Healable antifouling films are fabricated by the exponential layer-by-layer assembly of PEGylated branched poly(ethylenimine) and hyaluronic acid followed by post-crosslinking. The antifouling function originates from the grafted PEG and the extremely soft nature of the films. The rapid and multiple healing of damaged antifouling functions caused by cuts and scratches can be readily achieved by immersing the films in normal saline solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A two-layer multiple-time-scale turbulence model and grid independence study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.

  5. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  6. Opposed-flow flame spread and extinction in mixed-convection boundary layers

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Wedha-Nayagam, M.

    1989-01-01

    Experimental data for flame spread down thin fuel samples in an opposing, mixed-convection, boundary-layer flow are analyzed to determine the gas-phase velocity that characterizes how the flame reacts as it spreads toward the leading edge of the fuel sample into a thinning boundary layer. In the forced-flow limit where the cube of the Reynolds number divided by the Grashof number, Re exp 3/Gr, is large, L(q)/L(e), where L(q) is a theoretical flame standoff distance at extinction and L(e) is the measured distance from the leading edge of the sample where extinction occurs, is found to be proportional to Re exp n with n = -0.874 and Re based on L(e). The value of n is established by the character of the flow field near the leading edge of the flame. The Re dependence is used, along with a correction for the mixed-convection situation where Re exp 3/Gr is not large, to construct a Damkohler number with which the measured spread rates correlate for all values of Re exp 3/Gr.

  7. Flexural strength and failure modes of layered ceramic structures.

    PubMed

    Borba, Márcia; de Araújo, Maico D; de Lima, Erick; Yoshimura, Humberto N; Cesar, Paulo F; Griggs, Jason A; Della Bona, Alvaro

    2011-12-01

    To evaluate the effect of the specimen design on the flexural strength (σ(f)) and failure mode of ceramic structures, testing the hypothesis that the ceramic material under tension controls the mechanical performance of the structure. Three ceramics used as framework materials for fixed partial dentures (YZ--Vita In-Ceram YZ; IZ--Vita In-Ceram Zirconia; AL--Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs (n=10): monolithic, two layers (porcelain-framework) and three layers (TRI) (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. For bi-layered design, the specimens were tested in both conditions: with porcelain (PT) or framework ceramic (FT) layer under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy (SEM). Young's modulus (E) and Poisson's ratio (ν) were determined using ultrasonic pulse-echo method. Results were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests. Except for VM7 and VM9, significant differences were observed for E values among the materials. YZ showed the highest ν value followed by IZ and AL. YZ presented the highest σ(f). There was no statistical difference in the σ(f) value between IZ and IZ-FT and between AL and AL-FT. σ(f) values for YZ-PT, IZ-PT, IZ-TRI, AL-PT, AL-TRI were similar to the results obtained for VM7 and VM9. Two types of fracture mode were identified: total and partial failure. The mechanical performance of the specimens was determined by the material under tension during testing, confirming the study hypothesis. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. The role of nonlinear critical layers in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Goldstein, M.E.

    1995-01-01

    Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.

  9. Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition

    DOE PAGES

    Benson, David M.; Tsang, Chu F.; Sugar, Joshua Daniel; ...

    2017-04-28

    One method for the formation of nanofilms of materials, is Electrochemical atomic layer deposition (E-ALD), one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. Previously, we performed it on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flowmore » cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Furthermore, cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.« less

  10. Efficient double-emitting layer inverted organic light-emitting devices with different spacer layers

    NASA Astrophysics Data System (ADS)

    Nie, Qu-yang; Zhang, Fang-hui

    2017-09-01

    Double-emitting layer inverted organic light-emitting devices (IOLEDs) with different spacer layers were investigated, where 2,20,7,70-tetrakis(carbazol-9-yl)-9,9-spirobifluorene (CBP), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and 4,40,400-tris(N-carbazolyl)-triphenylamine (TCTA) were used as spacer layers, respectively, and GIr1 and R-4b were used as green and red guest phosphorescent materials, respectively. The results show that the device with BCP spacer layer has the best performance. The maximum current efficiency of the BCP spacer layer device reaches up to 24.15 cd·A-1 when the current density is 3.99 mA·cm-2, which is 1.23 times bigger than that of the CBP spacer layer device. The performance is better than that of corresponding conventional device observably. The color coordinate of the device with BCP spacer layer only changes from (0.625 1, 0.368 0) to (0.599 5, 0.392 8) when the driving voltage increases from 6 V to 10 V, so it shows good stability in color coordinate, which is due to the adoption of the co-doping evaporation method for cladding luminous layer and the effective restriction of spacer layer to carriers in emitting layer.

  11. Unified Description of the Optical Phonon Modes inN-Layer MoTe2

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane

    2015-10-01

    $N$-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three dimensional) and monolayer (quasi two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the $\\Gamma$-point optical phonons in $N$-layer $2H$-molybdenum ditelluride (MoTe$_2$). We observe a series of $N$-dependent low-frequency interlayer shear and breathing modes (below $40~\\rm cm^{-1}$, denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range $100-200~\\rm cm^{-1}$, denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range $200-300~\\rm cm^{-1}$, denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in $N$-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the $E_{2u}/E_{1g}$ and $B_{1u}/A_{1g}$ modes, respectively, and provide a measurement of the frequencies of the bulk silent $E_{2u}$ and $B_{1u}$ optical phonon modes. Our analysis could readily be generalized to other layered crystals.

  12. Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.

    PubMed

    Briggs, F; Callaway, E M

    2001-05-15

    Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.

  13. Choroidal Haller's and Sattler's Layers Thickness in Normal Indian Eyes.

    PubMed

    Roy, Rupak; Saurabh, Kumar; Vyas, Chinmayi; Deshmukh, Kaustubh; Sharma, Preeti; Chandrasekharan, Dhileesh P; Bansal, Aditya

    2018-01-01

    This study aims to study normative choroidal thickness (CT) and Haller's and Sattler's layers thickness in normal Indian eyes. The choroidal imaging of 73 eyes of 43 healthy Indian individuals was done using enhanced depth imaging feature of spectralis optical coherence tomography. Rraster scan protocol centered at fovea was used for imaging separately by two observers. CT was defined as the length of the perpendicular line drown from the outer border of hypereflective RPE-Bruch's complex to inner margin of choroidoscleral junction. Choroidal vessel layer thickness was measured after defining a largest choroidal vessel lumen within 750 μ on either side of the subfoveal CT vector. A perpendicular line was drawn to the innermost border of this lumen, and the distance between the perpendicular line and innermost border of choroidoscleral junction gave large choroidal vessel layer thickness (LCVLT, Haller's layer). Medium choroidal vessel layer thickness (MCVLT, Sattler's layer) was measured as the distance between same perpendicular line and outer border of hypereflective RPE-Bruch's complex. The mean age of individuals was 28.23 ± 15.29 years (range 14-59 years). Overall, the mean subfoveal CT was 331.6 ± 63.9 μ. Mean LCVLT was 227.08 ± 51.24 μ and the mean MCVLT was 95.65 ± 23.62 μ. CT was maximum subfoveally with gradual reduction in the thickness as the distance from the fovea increased. This is the first study describing the choroidal sublayer thickness, i.e., Haller's and Sattler's layer thickness along with CT in healthy Indian population.

  14. Choroidal Haller's and Sattler's Layers Thickness in Normal Indian Eyes

    PubMed Central

    Roy, Rupak; Saurabh, Kumar; Vyas, Chinmayi; Deshmukh, Kaustubh; Sharma, Preeti; Chandrasekharan, Dhileesh P.; Bansal, Aditya

    2018-01-01

    AIM: This study aims to study normative choroidal thickness (CT) and Haller's and Sattler's layers thickness in normal Indian eyes. MATERIALS AND METHODS: The choroidal imaging of 73 eyes of 43 healthy Indian individuals was done using enhanced depth imaging feature of spectralis optical coherence tomography. Rraster scan protocol centered at fovea was used for imaging separately by two observers. CT was defined as the length of the perpendicular line drown from the outer border of hypereflective RPE-Bruch's complex to inner margin of choroidoscleral junction. Choroidal vessel layer thickness was measured after defining a largest choroidal vessel lumen within 750 μ on either side of the subfoveal CT vector. A perpendicular line was drawn to the innermost border of this lumen, and the distance between the perpendicular line and innermost border of choroidoscleral junction gave large choroidal vessel layer thickness (LCVLT, Haller's layer). Medium choroidal vessel layer thickness (MCVLT, Sattler's layer) was measured as the distance between same perpendicular line and outer border of hypereflective RPE-Bruch's complex. RESULTS: The mean age of individuals was 28.23 ± 15.29 years (range 14–59 years). Overall, the mean subfoveal CT was 331.6 ± 63.9 μ. Mean LCVLT was 227.08 ± 51.24 μ and the mean MCVLT was 95.65 ± 23.62 μ. CT was maximum subfoveally with gradual reduction in the thickness as the distance from the fovea increased. CONCLUSION: This is the first study describing the choroidal sublayer thickness, i.e., Haller's and Sattler's layer thickness along with CT in healthy Indian population. PMID:29899646

  15. Neurons of the Dentate Molecular Layer in the Rabbit Hippocampus

    PubMed Central

    Sancho-Bielsa, Francisco J.; Navarro-López, Juan D.; Alonso-Llosa, Gregori; Molowny, Asunción; Ponsoda, Xavier; Yajeya, Javier; López-García, Carlos

    2012-01-01

    The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals’ life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections), eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population. PMID:23144890

  16. Neurons of the dentate molecular layer in the rabbit hippocampus.

    PubMed

    Sancho-Bielsa, Francisco J; Navarro-López, Juan D; Alonso-Llosa, Gregori; Molowny, Asunción; Ponsoda, Xavier; Yajeya, Javier; López-García, Carlos

    2012-01-01

    The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals' life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections), eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population.

  17. Layer and doping tunable ferromagnetic order in two-dimensional Cr S2 layers

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Zhou, Xieyu; Pan, Yuhao; Qiao, Jingsi; Kong, Xianghua; Kaun, Chao-Cheng; Ji, Wei

    2018-06-01

    Interlayer coupling is of vital importance for manipulating physical properties, e.g., electronic band gap, in two-dimensional materials. However, tuning magnetic properties in these materials is yet to be addressed. Here, we found the in-plane magnetic orders of Cr S2 mono and few layers are tunable between striped antiferromagnetic (sAFM) and ferromagnetic (FM) orders by manipulating charge transfer between Cr t2 g and eg orbitals. Such charge transfer is realizable through interlayer coupling, direct charge doping, or substituting S with Cl atoms. In particular, the transferred charge effectively reduces a portion of Cr4 + to Cr3 +, which, together with delocalized S p orbitals and their resulting direct S-S interlayer hopping, enhances the double-exchange mechanism favoring the FM rather than sAFM order. An exceptional interlayer spin-exchange parameter was revealed over -10 meV , an order of magnitude stronger than available results of interlayer magnetic coupling. It addition, the charge doping could tune Cr S2 between p - and n -doped magnetic semiconductors. Given these results, several prototype devices were proposed for manipulating magnetic orders using external electric fields or mechanical motion. These results manifest the role of interlayer coupling in modifying magnetic properties of layered materials and shed considerable light on manipulating magnetism in these materials.

  18. Two dimensional disorder in black phosphorus and layered monochalcogenides

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Mehboudi, Mehrshad; Kumar, Pradeep; Harriss, Edmund O.; Churchill, Hugh O. H.; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Pacheco Sanjuan, Alejandro A.

    The degeneracies of the structural ground state of materials with a layered orthorhombic structure such as black phosphorus and layered monochalcogenides GeS, GeSe, SnS, and SnSe, lead to an order/disorder transition in two dimensions at finite temperature. This transition has consequences on applications based on these materials requiring a crystalline two-dimensional structure. Details including a Potts model that explains the two-dimensional transition, among other results, will be given in this talk. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.

  19. Analysis of the pressure-induced potential arising through composite membranes with selective surface layers.

    PubMed

    Szymczyk, Anthony; Sbaï, Mohammed; Fievet, Patrick

    2005-03-01

    When a pressure gradient is applied through a charged selective membrane, the transmembrane electrical potential difference, called the filtration potential, results from both the applied pressure and induced concentration difference across the membrane. In this work we investigate the electrokinetic properties relative to both active and support layers of a composite ceramic membrane close to the nanofiltration range. First, the volume charge density of the active layer is obtained by fitting a transport model to experimental rejection rates (which are controlled by the active layer only). Next, the value of the volume charge density is used to compute the theoretical filtration potential through the active layer. For sufficiently high permeate volume fluxes, the concentration difference across the active layer becomes constant, which allows assessing the membrane potential of the active layer. Experimental measurements of the overall filtration potential arising through the whole membrane are performed. The contribution of the support layer to this overall filtration potential is put in evidence. That implies that the membrane potential of the active layer cannot be deduced directly from the overall filtration potential measurements. Finally, the contribution of the support layer is singled out by subtracting the theoretical filtration potential of the active layer from the experimental filtration potential measured across the whole membrane (i.e., support + active layers). The amphoteric behavior of both layers is put in evidence, which is confirmed by electrophoretic measurements carried out with the powdered support layer and by recently reported tangential streaming potential measurements.

  20. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  1. How many molecular layers of polar solvent molecules control chemistry? The concept of compensating dipoles.

    PubMed

    Langhals, Heinz; Braun, Patricia; Dietl, Christian; Mayer, Peter

    2013-09-27

    The extension of the solvent influence of the shell into the volume of a polar medium was examined by means of anti-collinear dipoles on the basis of the E(T)(30) solvent polarity scale (i.e., the molar energy of excitation of a pyridinium-N-phenolatebetaine dye; generally: E(T) =28,591 nm kcal mol(-1)/λmax) where no compensation effects were found. As a consequence, solvent polarity effects are concentrated to a very thin layer of a few thousand picometres around the solute where extensions into the bulk solvent become unimportant. A parallelism to the thin surface layer of water to the gas phase is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarpi, B.; Daineche, R.; Girardeaux, C.

    Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicidemore » interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.« less

  3. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigatedmore » through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.« less

  4. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  5. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.

    PubMed

    Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko

    2018-04-24

    Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.

  6. High genetic diversity among extraintestinal Escherichia coli isolates in pullets and layers revealed by a longitudinal study.

    PubMed

    Paudel, Surya; Stessl, Beatrix; Hess, Claudia; Zloch, Angelika; Hess, Michael

    2016-10-07

    Various information about the genetic diversity of Escherichia coli isolates from chickens are available but a detailed epidemiological investigation based upon isolates obtained from interrelated pullet and layer flocks is still missing. Therefore, in the course of a longitudinal epidemiological study on pullets and layers, 144 E. coli isolates from chickens with or without pathological lesions of the reproductive tract were serotyped and genotyped with pulsed-field gel electrophoresis (PFGE). These isolates were collected during rearing, peak and at the end of production. The actual study is the first of its kind so as to elucidate genetic relatedness among extraintestinal E. coli isolated from chickens with varying pathological conditions in interrelated layer farms/flocks at different stages of rearing. Serotyping revealed that 63.19 % of the isolates could not be assigned to any of the three serotypes tested whereas 30.55 % of the isolates belonged to serotype O1:K1, 4.86 % to O2:K1 and 1.38 % to O78:K80. After macrorestriction digest with XbaI, 91.66 % of the isolates were typeable resulting in 96 distinct PFGE profiles. Among them, five PFGE types included isolates collected from diseased chickens as well as from birds without pathological lesions. This finding shows that pathogenicity of E. coli in layers seems to be largely influenced by concurrent susceptibility factors. Furthermore, in six out of eight cases where two isolates were collected from each of eight birds, different PFGE types were found in the same or different organs of the same bird. The existence of predominant or persistent E. coli genotypes was only observed in two cases. It is concluded that extraintestinal E. coli genotypes and serotypes in pullets and layers are heterogenous and also do not maintain a single clonality within the same bird. The facts that E. coli strains did not show any definite clonal population structure based on geographical region, age of the host and

  7. Experimenter's data package for the descending layers rocket

    NASA Technical Reports Server (NTRS)

    Earle, Greg; Herrero, Fred; Foster, John; Buonsanto, Mike; Satya-Narayana, P.

    1992-01-01

    In response to a proposal from Science Applications International Corporation (SAIC), NASA Headquarters has approved a sounding rocket mission designed to study the physics of intermediate layers in the Earth's ionosphere at middle latitudes. The experiment will be carried out by a team of scientists and engineers from the NASA Wallops Flight Facility, SAIC, the NASA Goddard Space Flight Center, and the Millstone Hill radar observatory. The mission will involve the launch of an instrumented sounding rocket from the Wallops Island rocket range in the summer of 1994, with the objective of penetrating a descending ionized layer in the E-region between altitudes of 115 and 140 km. Instrumentation aboard the rocket will measure the ion and neutral composition of the layer, its plasma density, driving wind and electric field forces, the thermal ion distribution function, and electron temperature. Depending on payload weight constraints and subject to availability, a particle detector to measure energetic ion and/or electron fluxes near the layer may also be included. This document was prepared as a reference for the NASA payload development and experiment teams, for distribution at the Project Initiation Conference (PIC). The design specifications discussed herein are therefore of a preliminary nature; the intent is to promote open discussions between experimenters and NASA engineers that will lead to a final design capable of achieving the experiment objectives.

  8. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, Arnold O.

    1992-01-01

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.

  9. Boosting water oxidation layer-by-layer.

    PubMed

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-07

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

  10. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus.

    PubMed

    Zurita, Hector; Rock, Crystal; Perkins, Jessica; Apicella, Alfonso Junior

    2017-07-05

    In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Layer-by-layer assembly of nanostructured composites: Mechanics and applications

    NASA Astrophysics Data System (ADS)

    Podsiadlo, Paul

    The development of efficient methods for preparation of nanometer-sized materials and our evolving ability to manipulate the nanoscale objects have brought about a scientific and technological revolution called: nanotechnology. This revolution has been especially driven by discovery of unique nanoscale properties of the nanomaterials which are governed by their inherent size. Today, the total societal impact of nanotechnology is expected to be greater than the combined influences that the silicon integrated circuit, medical imaging, computer-aided engineering, and man-made polymers have had in the last century. Many nanomaterials were also found to possess exceptional mechanical properties. This led to tremendous interest into developing composite materials by exploiting the mechanical properties of these building blocks. In spite of a tremendous volume of work done in the field, preparation of such nanocomposites (NCs) has proven to be elusive due to inability of traditional "top-down" fabrication approaches to effectively harness properties of the nano-scale building blocks. This thesis focuses on preparation of organic/inorganic and solely organic NCs via a bottom-up nano-manufacturing approach called the layer-by-layer (LBL) assembly. Two natural and inexpensive nanoscale building blocks are explored: nanosheets of Na+-montmorillonite clay (MTM) and rod-shaped nanocrystals of cellulose (CNRs). In the first part of the thesis, we present results from systematic study of mechanics of MTM-based NCs. Different compositions are explored with a goal of understanding the nanoscale mechanics. Ultimately, development of a transparent composite with record-high strength and stiffness is presented. In the second part, we present results from LBL assembly of the CNRs. We demonstrate feasibility of assembly and mechanical properties of the resulting films. We also demonstrate preparation of LBL films with anti- reflective properties from tunicate (a sea animal) CNRs. In the

  12. Nanomanufacturing : nano-structured materials made layer-by-layer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with thesemore » processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.« less

  13. The dynamics of layered and non-layered oscillatory double-diffusive convection

    NASA Astrophysics Data System (ADS)

    Moll, Ryan D.

    Oscillatory double diffusive convection (ODDC) is a double diffusive instability that occurs in fluids that are unstably stratified in temperature and stably stratified in chemical composition. Regions unstable to ODDC are common in the interiors of stars and giant planets, and knowing thermal and compositional transport through these regions is important for stellar and planetary evolution models. Using 3D direct numerical simulations, Rosenblum et al. 2011 first showed that ODDC can either lead to the spontaneous formation of convective layers, or remain in a state dominated by large scale gravity waves. Subsequent studies focused on identifying the conditions for layer formation (Mirouh et al. 2012), and quantifying transport through layered systems (Wood et al. 2013). This document includes 3 works that build on the results of these earlier studies. The subject of the first is transport through non-layered ODDC and shows that in the absence of layered convection, ODDC is dominated by large scale gravity waves that grow to the size of the domain. We find that while these gravity waves induce small amounts of turbulent mixing, turbulent transport through non-layered systems is not significant for the purposes of astrophysical modeling (unlike in layered convection). The second study pertains to ODDC in the presence of Coriolis forces, and shows that rotating systems can be categorized depending on the strength of the rotation. We find that in the slowly rotating regime, the presence of rotation does not significantly affect qualitative behavior, but leads to modest reductions in thermal and compositional transport, while in the fast rotation regime qualitative behaviors are radically different, and systems are dominated by vortices that affect thermal and compositional transport in complex ways. In the final work we study simulations of ODDC at non-layered parameters that are forced into a layered configuration by initial conditions. Our results show that

  14. Antifuse with a single silicon-rich silicon nitride insulating layer

    DOEpatents

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0layer. The SiN.sub.X layer thickness can also be made sufficiently large so that Poole-Frenkel emission will be the primary electrical conduction mechanism in the antifuse. Different types of electrodes are disclosed including electrodes formed of titanium silicide, aluminum and silicon. Arrays of antifuses can also be formed.

  15. Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading.

    PubMed

    Lee, Wei Li; Guo, Wei Mei; Ho, Vincent H B; Saha, Amitaksha; Chong, Han Chung; Tan, Nguan Soon; Tan, Ern Yu; Loo, Say Chye Joachim

    2015-11-01

    Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles. PCTX-loaded double-layered microparticles with denser shells retarded the initial release of PCTX, as compared with dual-drug-loaded microparticles. The DOX release from both DOX-loaded and dual-drug-loaded microparticles were observed to be similar with an initial burst. Through specific tailoring of layer thicknesses, a suppressed initial burst of DOX and a sustained co-delivery of two drugs can be achieved over 2months. Viability studies using spheroids of MCF-7 cells showed that controlled co-delivery of PCTX and DOX from dual-drug-loaded double-layered microparticles were better in reducing spheroid growth rate. This study provides mechanistic insights into how by tuning the layer thickness of double-layered microparticles the release kinetics of two drugs can be controlled, and how co-delivery can potentially achieve better anticancer effects. While the release of multiple drugs has been reported to achieve successful apoptosis and minimize drug resistance, most conventional particulate systems can only deliver a single drug at a time. Recently, although a number of formulations (e.g. micellar nanoparticles, liposomes) have been successful in delivering two or more anticancer agents, sustained co-delivery of these agents remains inadequate due to the complex agent loading processes and rapid release of hydrophilic agents. Therefore, the present work reports the multilayered particulate system that simultaneously hosts different drugs, while

  16. Candor Chasma - Massive (non-layered) material expos

    NASA Technical Reports Server (NTRS)

    1998-01-01

    One of the most striking discoveries of the Mars Global Surveyor mission has been the identification of thousands of meters/feet of layers within the wall rock of the enormous martian canyon system, Valles Marineris.

    Valles Marineris was first observed in 1972 by the Mariner 9 spacecraft, from which the troughs get their name: Valles--valleys, Marineris--Mariner.

    Some hints of layering in both the canyon walls and within some deposits on the canyon floors were seen in Mariner 9 and Viking orbiter images from the 1970s. The Mars Orbiter Camera on board Mars Global Surveyor has been examining these layers at much higher resolution than was available previously.

    MOC images led to the realization that there are layers in the walls that go down to great depths. An example of the wall rock layers can be seen in MOC image 8403, shown above (C).

    MOC images also reveal amazing layered outcrops on the floors of some of the Valles Marineris canyons. Particularly noteworthy is MOC image 23304 (D, above), which shows extensive, horizontally-bedded layers exposed in buttes and mesas on the floor of western Candor Chasma. These layered rocks might be the same material as is exposed in the chasm walls (as in 8403--C, above), or they might be rocks that formed by deposition (from water, wind, and/or volcanism) long after Candor Chasma opened up.

    In addition to layered materials in the walls and on the floors of the Valles Marineris system, MOC images are helping to refine our classification of geologic features that occur within the canyons. For example, MOC image 25205 (E, above), shows the southern tip of a massive, tongue-shaped massif (a mountainous ridge) that was previously identified as a layered deposit. However, this MOC image does not show layering. The material has been sculpted by wind and mass-wasting--downslope movement of debris--but no obvious layers were exposed by these processes.

    Valles Marineris a fascinating region on Mars that holds much

  17. Effect of Mo-doping concentration on the physical behaviour of sprayed ZnO layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, T. Sreenivasulu; Reddy, M. Vasudeva; Reddy, K. T. Ramakrishna, E-mail: ktrkreddy@gmail.com

    2015-06-24

    Mo-doped zinc oxide layers (MZO) have been prepared on cleaned glass substrates by chemical spray pyrolysis technique by varying Mo-doping concentration in the range, 0 – 5 at. %. The X-ray diffraction studies revealed that all the as prepared layers were polycrystalline in nature and exhibited wurtzite structure. The layers prepared with lower Mo-doping concentration (<2 at. %) were preferably oriented along the (100) plane, whereas in the case of higher Mo-doping concentration (>2 at. %), the films showed the (002) plane as the dominant peak. The optical analysis indicated that all the layers had an average optical transmittance ofmore » 80% in the visible region and the evaluated band gap varied in the range, 3.28 - 3.50 eV.« less

  18. Hybrid window layer for photovoltaic cells

    DOEpatents

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  19. Hybrid window layer for photovoltaic cells

    DOEpatents

    Deng, Xunming [Syvania, OH; Liao, Xianbo [Toledo, OH; Du, Wenhui [Toledo, OH

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  20. Hybrid window layer for photovoltaic cells

    DOEpatents

    Deng, Xunming [Sylvania, OH; Liao, Xianbo [Toledo, OH; Du, Wenhui [Toledo, OH

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  1. Compliant Interfacial Layers in Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A. (Inventor); Li, Billy Chun-Yip (Inventor); Ravi, Vilupanur A. (Inventor); Fleurial, Jean-Pierre (Inventor); Caillat, Thierry (Inventor); Anjunyan, Harut (Inventor)

    2017-01-01

    A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.

  2. Anomalous acceleration of ions in a plasma accelerator with an anodic layer

    NASA Astrophysics Data System (ADS)

    V, M. BARDAKOV; S, D. IVANOV; A, V. KAZANTSEV; N, A. STROKIN; A, N. STUPIN; Binhao, JIANG; Zhenyu, WANG

    2018-03-01

    In a plasma accelerator with an anodic layer (PAAL), we discovered experimentally the effect of ‘super-acceleration’ of the bulk of the ions to energies W exceeding the energy equivalent to the discharge voltage V d. The E × B discharge was ignited in an environment of atomic argon and helium and molecular nitrogen. Singly charged argon ions were accelerated most effectively in the case of the largest discharge currents and pressure P of the working gas. Helium ions with W > eV d (e being the electron charge) were only recorded at maximum pressures. Molecular nitrogen was not accelerated to energies W > eV d. Anomalous acceleration is realized in the range of radial magnetic fields on the anode 2.8 × 10 -2 ≤ B rA ≤ 4 × 10 -2 T. It was also found analytically that the cathode of the accelerator can receive anomalously accelerated ions. In this case, the value of the potential in the anodic layer becomes higher than the anode potential, and the anode current exceeds some critical value. Numerical modeling in terms of the developed theory showed qualitative agreement between modeling data and measurements.

  3. Probing nonlinear rheology layer-by-layer in interfacial hydration water.

    PubMed

    Kim, Bongsu; Kwon, Soyoung; Lee, Manhee; Kim, Q Hwan; An, Sangmin; Jhe, Wonho

    2015-12-22

    Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water.

  4. Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.

    2016-12-01

    The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.

  5. Material parameter computation for multi-layered vocal fold models.

    PubMed

    Schmidt, Bastian; Stingl, Michael; Leugering, Günter; Berry, David A; Döllinger, Michael

    2011-04-01

    Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one's livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations.

  6. The connections of layer 4 subdivisions in the primary visual cortex (V1) of the owl monkey.

    PubMed

    Boyd, J D; Mavity-Hudson, J A; Casagrande, V A

    2000-07-01

    The primary visual cortex (V1) of primates receives signals from parallel lateral geniculate nucleus (LGN) channels. These signals are utilized by the laminar and compartmental [i.e. cytochrome oxidase (CO) blob and interblob] circuitry of V1 to synthesize new output pathways appropriate for the next steps of analysis. Within this framework, this study had two objectives: (i) to analyze the con- nections between primary input and output layers and compartments of V1; and (ii) to determine differences in connection patterns that might be related to species differences in physiological properties in an effort to link specific pathways to visual functions. In this study we examined the intrinsic interlaminar connections of V1 in the owl monkey, a nocturnal New World monkey, with a special emphasis on the projections from layer 4 to layer 3. Interlaminar connections were labeled via small iontophoretic or pressure injections of tracers [horseradish peroxidase, biocytin, biotinylated dextrine amine (BDA) or cholera toxin subunit B conjugated to colloidal gold particles]. Our most significant finding was that layer 4 (4C of Brodmann) can be divided into three tiers based upon projections to the superficial layers. Specifically, we find that 4alpha (4Calpha), 4beta (4Cbeta) and 4ctr send primary projections to layers 3C (4B), 3Bbeta (4A) and 3Balpha (3B), respectively. Examination of laminar structure with Nissl staining supports a tripartite organization of layer 4. The cortical output layer above layer 3Balpha (3B) (e.g. layer 3A) does not appear to receive any direct connections from layer 4 but receives heavy input from layers 3Balpha (3B) and 3C (4B). Some connectional differences also were observed between the subdivisions of layer 3 and the infragranular layers. No consistent differences in connections were observed that distinguished CO blobs from interblobs or that could be correlated with differences in visual lifestyle (nocturnal versus diurnal) when compared

  7. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures

    NASA Astrophysics Data System (ADS)

    Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A.; Park, Jiwoong

    2017-10-01

    High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides--which represent one- and three-atom-thick two-dimensional building blocks, respectively--have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.

  8. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.

    PubMed

    Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A; Park, Jiwoong

    2017-10-12

    High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three-atom-thick two-dimensional building blocks, respectively-have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.

  9. Layering, interface and edge effects in multi-layered composite medium

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Shah, A. H.; Karunesena, W.

    1990-01-01

    Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.

  10. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  11. 19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER TRIANGULATED CHANNELS AND OUT THE RAISED DUCTS TO FILTRATION PLANT. MOVEABLE BOARDS ON BOTTOM ASSIST IN REMOVING SLUDGE. VIEW LOOKING NORTHEAST. FILTER CONTROL BUILDING AT REAR. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  12. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  13. Synchronism of nonlinear internal waves in a three-layer fluid

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Kurkina, Oxana; Terletska, Katerina; Rouvinskaya, Ekaterina

    2017-04-01

    In a three layer fluid with arbitrary layer widths and densities the existence of long internal solitons and breathers is proven theoretically and numerically, see for example (Pelinovsky et al., 2007; Lamb et al., 2007). The existence of breather-like waves of the intermediate length is also shown in numerical simulations (Terletska et al., 2016). For such waves conditions of synchronism are valid when a breather of the first mode and a soliton of the second mode move together with the same speed and form an asymmetric solitary wave of the second mode. The process of strong interaction of long nonlinear internal waves in the framework of three-layer Camassa-Choi model demonstrates the same effect (Jo&Choi, 2014; Barros, 2016). We analyze possible synchronism conditions for steady-state internal waves in a three-layer fluid analytically the framework of the Gardner equation, which is valid for long weakly nonlinear internal waves. The equations for synchronism conditions are derived and considered in terms of wave amplitudes, layer widths and density jumps. The configurations of three-layer fluid are found for which such a synchronism is possible. References: Barros R. Large amplitude internal waves in three-layer flows. The forth international conference "Nonlinear Waves - Theory and Applications", MS7, Beijing, China, June 25 - 28, 2016 Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book "Solitary Waves in Fluids". WIT Press. Southampton, Boston. 2007. P. 85 - 110. K. Terletska., K. T. Jung, T. Talipova, V. Maderich, I. Brovchenko and R. Grimshaw Internal breather-like wave generation by the second mode solitary wave interaction with a step// Physics of Fluids, 2016, accepted

  14. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less

  15. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  16. Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials.

    PubMed

    Weber, Theresa; Bechthold, Maren; Winkler, Tobias; Dauselt, John; Terfort, Andreas

    2013-11-01

    Direct grafting of hyperbranched polyglycerol (PG) layers onto the oxide surfaces of steel, aluminum, and silicon has been achieved through surface-initiated polymerization of 2-hydroxymethyloxirane (glycidol). Optimization of the deposition conditions led to a protocol that employed N-methyl-2-pyrrolidone (NMP) as the solvent and temperatures of 100 and 140 °C, depending on the substrate material. In all cases, a linear growth of the PG layers could be attained, which allows for control of film thickness by altering the reaction time. At layer thicknesses >5 nm, the PG layers completely suppressed the adhesion of albumin, fibrinogen, and globulin. These layers were also at least 90% bio-repulsive for two bacteria strains, E. coli and Acinetobacter baylyi, with further improvement being observed when the PG film thickness was increased to 17 nm (up to 99.9% bio-repulsivity on silicon). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide.

    PubMed

    Samanta, Aniruddha; Podder, Soumik; Ghosh, Chandan Kumar; Bhattacharya, Manjima; Ghosh, Jiten; Mallik, Awadesh Kumar; Dey, Arjun; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work provides the first ever report on extraordinarily high antibacterial efficacy of phase pure micro-layered calcium hydroxide nanoparticles (LCHNPs) even under dark condition. The LCHNPs synthesized especially in aqueous medium by a simple, inexpensive method show adequate mechanical properties along with the presence of a unique strain tolerant behaviour. The LCHNPs are characterized by FTIR, Raman spectroscopy, XRD, Rietveld analysis, FE-SEM, TEM, TG-DTA, surface area, particle size distribution, zeta potential analysis and nanoindentation techniques. The LCHNPs have 98.1% phase pure hexagonal Ca(OH) 2 as the major phase having micro-layered architecture made up of about ~100-200nm thick individual nano-layers. The nanomechanical properties e.g., nanohardness (H) and Young's modulus (E) of the LCHNPs are found to have a unique load independent behavior. The dielectric responses (e.g., dielectric constant and dielectric loss) and antibacterial properties are evaluated for such LCHNPs. Further, the LCHNPs show much better antibacterial potency against both gram-positive e.g., Staphylococcus aureus (S. aureus) and gram-negative e.g., Pseudomonas putida (P. putida) bacteria even in dark especially, with the lowest ever reported MIC value (e.g., 1 μg ml -1 ) against the P. putida bacterial strain and exhibit ROS mediated antibacterial proficiency. Finally, such LCHNPs has almost ~8-16% inhibition efficacy towards the development of biofilm of these microorganisms quantified by colorimetric detection process. So, such LCHNPs may find potential applications in the areas of healthcare industry and environmental engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. NDAS Hardware Translation Layer Development

    NASA Technical Reports Server (NTRS)

    Nazaretian, Ryan N.; Holladay, Wendy T.

    2011-01-01

    The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software for NASA s Rocket Testing Facilities. There must be a software-hardware translation layer so the software can properly talk to the hardware. Since the hardware from each test stand varies, drivers for each stand have to be made. These drivers will act more like plugins for the software. If the software is being used in E3, then the software should point to the E3 driver package. If the software is being used at B2, then the software should point to the B2 driver package. The driver packages should also be filled with hardware drivers that are universal to the DAS system. For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the driver for those three stands should be the same and updated collectively.

  19. Holistic sustainable development: Floor-layers and micro-enterprises.

    PubMed

    Lortie, Monique; Nadeau, Sylvie; Vezeau, Steve

    2016-11-01

    Attracting and retaining workers is important to ensuring the sustainability of floor laying businesses, which are for the most part micro-enterprises (MiE). The aim of this paper is to shed light on the challenges MiE face in OHS implementation in the context of sustainable development. Participative ergonomics and user-centred design approaches were used. The material collected was reviewed to better understand the floor layers' viewpoints on sustainability. The solutions that were retained and the challenges encountered to make material handling and physical work easier and to develop training and a website are presented. The importance of OHS as a sustainability factor, its structuring effect, what distinguishes MiE from small businesses and possible strategies for workings with them are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin‐1E

    PubMed Central

    Hönigsperger, Christoph; Nigro, Maximiliano J.

    2016-01-01

    Key points Kv2 channels underlie delayed‐rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia.Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space‐representing grid cells. We used the new Kv2 blocker Guangxitoxin‐1E (GTx) to study Kv2 functions in these neurons.Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed‐rectifier K+ current but not transient A‐type current.In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after‐depolarizations; (iii) reducing the fast and medium after‐hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering.GTx is a useful tool for studying Kv2 channels and their functions in neurons. Abstract The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin‐1E (GTx; 10–100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond –30 mV but not transient A‐type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after‐depolarization (ADP); (iii) reduced fast and medium after

  1. The Transient Intermediate Plexiform Layer, a Plexiform Layer-like Structure Temporarily Existing in the Inner Nuclear Layer in Developing Rat Retina.

    PubMed

    Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom

    2018-02-01

    The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.

  2. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  3. Thermoelectric properties of single-layered SnSe sheet.

    PubMed

    Wang, Fancy Qian; Zhang, Shunhong; Yu, Jiabing; Wang, Qian

    2015-10-14

    Motivated by the recent study of inspiring thermoelectric properties in bulk SnSe [Zhao et al., Nature, 2014, 508, 373] and the experimental synthesis of SnSe sheets [Chen et al., J. Am. Chem. Soc., 2013, 135, 1213], we have carried out systematic calculations for a single-layered SnSe sheet focusing on its stability, electronic structure and thermoelectric properties by using density functional theory combined with Boltzmann transport theory. We have found that the sheet is dynamically and thermally stable with a band gap of 1.28 eV, and the figure of merit (ZT) reaches 3.27 (2.76) along the armchair (zigzag) direction with optimal n-type carrier concentration, which is enhanced nearly 7 times compared to its bulk counterpart at 700 K due to quantum confinement effect. Furthermore, we designed four types of thermoelectric couples by assembling single-layered SnSe sheets with different transport directions and doping types, and found that their efficiencies are all above 13%, which are higher than those of thermoelectric couples made of commercial bulk Bi2Te3 (7%-8%), suggesting the great potential of single-layered SnSe sheets for heat-electricity conversion.

  4. Bacteria Responsible for Mucilage-Layer Decomposition in Kona Coffee Cherries1

    PubMed Central

    Frank, Hilmer A.; Lum, Norma A.; Cruz, Amy S. Dela

    1965-01-01

    The predominant microbial flora present during decomposition of the mucilage layer of Kona coffee cherries were gram-negative bacteria which fermented lactose rapidly. Cultures isolated from coffee cherries under-going fermentation included species of Erwinia, Paracolobactrum, and Escherichia. Unblemished cherry surfaces and coffee plantation soil also had a microflora containing a high proportion of bacteria belonging to these three genera. Of 168 isolates tested, the 44 strains capable of demucilaging depulped coffee cherries were all members of Erwinia dissolvens. Supernatant growth medium liquids, after removal of E. dissolvens cells, actively decomposed the mucilage layer of depulped cherries. PMID:14325879

  5. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  6. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  7. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE PAGES

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.; ...

    2017-08-30

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  8. Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices.

    PubMed

    Chandran, Hrisheekesh Thachoth; Ng, Tsz-Wai; Foo, Yishu; Li, Ho-Wa; Qing, Jian; Liu, Xiao-Ke; Chan, Chiu-Yee; Wong, Fu-Lung; Zapien, Juan Antonio; Tsang, Sai-Wing; Lo, Ming-Fai; Lee, Chun-Sing

    2017-06-01

    High performance organic photovoltaic devices typically rely on type-II P/N junctions for assisting exciton dissociation. Heremans and co-workers recently reported a high efficiency device with a third organic layer which is spatially separated from the active P/N junction; but still contributes to the carrier generation by passing its energy to the P/N junction via a long-range exciton energy transfer mechanism. In this study the authors show that there is an additional mechanism contributing to the high efficiency. Some bipolar materials (e.g., subnaphthalocyanine chloride (SubNc) and subphthalocyanine chloride (SubPc)) are observed to generate free carriers much more effectively than typical organic semiconductors upon photoexcitation. Single-layer devices with SubNc or SubPc sandwiched between two electrodes can give power conversion efficiencies 30 times higher than those of reported single-layer devices. In addition, internal quantum efficiencies (IQEs) of bilayer devices with opposite stacking sequences (i.e., SubNc/SubPc vs SubPc/SubNc) are found to be the sum of IQEs of single layer devices. These results confirm that SubNc and SubPc can directly generate free carriers upon photoexcitation without assistance from a P/N junction. These allow them to be stacked onto each other with reversible sequence or simply stacking onto another P/N junction and contribute to the photocarrier generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    PubMed Central

    Yoriya, Sorachon; Chumphu, Angkana; Pookmanee, Pusit; Laithong, Wreerat; Thepa, Sirichai; Songprakorp, Roongrojana

    2016-01-01

    Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times. PMID:28773930

  10. Characterization of triple layers

    NASA Astrophysics Data System (ADS)

    Otero, Toribio F.; Cortes, M. Teresa

    2001-07-01

    We reported the characterization of a macroscopic electrochemomechanical actuator like triple layer (3x1 cm) formed by polypyrrole)/double- sided, non-conducting and flexible tape/ polypyrrole that works in liquid electrolytes under electrochemical control. This triple layer has characteristics of artificial muscle. The influence of variables that control the volume change in the polymer as electrolyte concentration, or temperature has been studied. Variations of time, energy and charge under different conditions are described. We have found that the triple layer acts, at the same time, as sensor and actuator. Therefore, physical magnitudes like the electrolyte concentration or the temperature in the cell can be obtained from electrical energy consumed by a muscle. We have evaluated the influence of variables as area of the triple layer or the trailing weight, which don't participate in the electrochemical reaction. We propose an explication to the results, which show a correlation between the trailed mass and the consumed charge required to move a constant angle those masses by the triple layer. When different surface areas of the triple layer has been evaluated we found that the consumed electrical charge is proportional to area (the mass) of the triple layer. The triple layer can make macroscopical movements in short times, their position is absolutely controlled with the electrical charge, and it has capacity to lift masses. These characteristics allow their use in the design of tools. So, we present a macroscopic tool constituted by two triple layers, which allows catch and translate objects in liquid medium (nipper).

  11. Effective Passivation and Tunneling Hybrid a-SiOx(In) Layer in ITO/n-Si Heterojunction Photovoltaic Device.

    PubMed

    Gao, Ming; Wan, Yazhou; Li, Yong; Han, Baichao; Song, Wenlei; Xu, Fei; Zhao, Lei; Ma, Zhongquan

    2017-05-24

    In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO x (In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO x /In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiO x (In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiO x (In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at E v + 4.60 eV in the ternary hybrid a-SiO x (In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (V bi = 0.66 V) and optimally controlled ternary hybrid a-SiO x (In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm 2 , a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device

  12. Western Candor Chasma - Layers exposed near the middle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    One of the most striking discoveries of the Mars Global Surveyor mission has been the identification of thousands of meters/feet of layers within the wall rock of the enormous martian canyon system, Valles Marineris.

    Valles Marineris was first observed in 1972 by the Mariner 9 spacecraft, from which the troughs get their name: Valles--valleys, Marineris--Mariner.

    Some hints of layering in both the canyon walls and within some deposits on the canyon floors were seen in Mariner 9 and Viking orbiter images from the 1970s. The Mars Orbiter Camera on board Mars Global Surveyor has been examining these layers at much higher resolution than was available previously.

    MOC images led to the realization that there are layers in the walls that go down to great depths. An example of the wall rock layers can be seen in MOC image 8403, shown above (C).

    MOC images also reveal amazing layered outcrops on the floors of some of the Valles Marineris canyons. Particularly noteworthy is MOC image 23304 (D, above), which shows extensive, horizontally-bedded layers exposed in buttes and mesas on the floor of western Candor Chasma. These layered rocks might be the same material as is exposed in the chasm walls (as in 8403--C, above), or they might be rocks that formed by deposition (from water, wind, and/or volcanism) long after Candor Chasma opened up.

    In addition to layered materials in the walls and on the floors of the Valles Marineris system, MOC images are helping to refine our classification of geologic features that occur within the canyons. For example, MOC image 25205 (E, above), shows the southern tip of a massive, tongue-shaped massif (a mountainous ridge) that was previously identified as a layered deposit. However, this MOC image does not show layering. The material has been sculpted by wind and mass-wasting--downslope movement of debris--but no obvious layers were exposed by these processes.

    Valles Marineris a fascinating region on Mars that holds much

  13. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    PubMed Central

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  14. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  15. Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties.

    PubMed

    Ho, Thao T T; Zimmermann, Tanja; Ohr, Steffen; Caseri, Walter R

    2012-09-26

    Composites of trimethylammonium-modified nanofibrillated cellulose and layered silicates (TMA-NFC/LS) were prepared by high-shear homogenization followed by pressure filtration and vacuum hot-pressing, which gave rise to particularly homogeneous dispersion of the silicate particles. Thirteen different clays and micas were employed. Water vapor barrier and mechanical properties (tensile strength, E-modulus, strain at break) of the composite films were investigated, considering the effects of layered silicate types and their concentration (in the range of 0 to 85 wt %). Good interactions between TMA-NFC and LS were obtained due to electrostatic attraction between cationic fibrils and anionic silicate layers, and even favored by high-shear homogenization process. Furthermore, oriented TMA-NFC/LS composite structure was achieved. Layered silicates exerted a pronounced influence on the water vapor barrier and mechanical properties; however, there was no common trend reflecting their types. The transport of water molecules through TMA-NFC/LS composites was studied considering both diffusion and adsorption mechanisms. As a result, diffusion pathways were proposed based on two new and one well-known models: the "native network", "covered fiber composite", and "fiber-brick composite" models. Importantly, it was found that the insertion of layered silicate particles did not improve automatically the barrier properties as indicated by the commonly used "fiber-brick composite" model. Mica R120 at a 50 wt % loading in composites with TMA-NFC matrix showed 30-fold improved water vapor permeability and 5-fold higher E-modulus compared to commercially used base paper.

  16. The generation of post noon F3 layers over the dip equatorial location of Thiruvananthapuram- A new perspective

    NASA Astrophysics Data System (ADS)

    Mridula, N.; Pant, Tarun Kumar

    2018-05-01

    In the present paper, occurrence of post noon F3 layers over Thiruvananthapuram (8.5°N; 77°E; dip latitude ∼ 1.5 °N), a dip equatorial station in India have been investigated. F3 layers that occur beyond 13 IST and as observed using ground based ionosonde, for the years 2004-2008 have been studied. Our analysis shows that post noon F3 layers occur mostly on CEJ days around 16 IST to 18 IST. It is found that the time of the ionospheric E-region electric field reversal as inferred from collocated ground based magnetometer observations plays a crucial role in the generation of post noon F3 layers. In fact an early reversal of electric field emerged to be the necessary condition for the formation of post noon F3 layers. A time delay of three to 4 h is observed between the electric field reversal and the formation of F3 layer. It is proposed that this early reversal causes enhanced ionization over dip equatorial region, providing an additional ion drag to the flow of thermospheric zonal wind. This leads to accumulation of more ionization and neutrals culminating in the generation of post noon F3 layers as in the case of pre noon F3 layers. These results reveal that the generation of post noon F3 layers over the dip equatorial region is a natural consequence of the variability associated with the spatio-temporal evolution of EIA and prevailing thermospheric and ionospheric dynamics, and adds a new perspective to the present understanding.

  17. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  18. Method of adhesion between an oxide layer and a metal layer

    DOEpatents

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  19. Investigation of sacrificial layer and building block for layered nanofabrication (LNF)

    NASA Astrophysics Data System (ADS)

    Shih, Ting-Yu

    Layered Nanoscale Fabrication (LNF) is a "bottom-up" procedure that uses multiple layers to build 3-dimensional nanoscale structures. Here, in this dissertation, several candidates for sacrificial layers were explored, The thermal stability of gold nanoparticles and simple patterns are also reported. In order to obtain information on layer thickness and film quality; the samples were characterized using atomic force microscopy (AFM) and ellipsometry. Octadecyltrichlorosilane (OTS) was first investigated for use as a sacrificial layer and we studied filth growth by targeted self-replication of silane multilayers with and without the presence of thiolated gold nanoparticles on silicon oxide substrates. The particles adhered to the substrate during layer grafting. The film grew selectively on the substrate, without covering the particles. AFM was used to investigate the growth mechanism and the process of embedding the nanoparticles. OTS multilayer films up to 9 layers were grown in a linear, bilayer-by bilayer mode, free of islands and defects. We also report on studies of monolayer and multilayer formation of Methyl-11-dimethylmonochlorosilyl-undecanoate films. Flat multilayers up to 3-layers thick were grown. AFM was used to measure the height of an observable "edge" of the multilayer film and this provides and independent determination of the MOSUD layer height of 1.5 nm: However, the particles detached from the surface when we attempted to grow multilayer. One strategy of linking the particles to form 2D arrays, thermal activation in ambient air, was investigated. The morphological properties of flaked nanoparticles and structures on silicon oxide substrates before and after heating were characterized by using AFM. For widely separated 5 nm gold nanoparticles height decreased over 50% at 600 °C. Further heating to 630 °C caused most particles to completely disappear, with small amount of particle residue left on the surface. Particles positioned near to other

  20. Electrostatic interactions between diffuse soft multi-layered (bio)particles: beyond Debye-Hückel approximation and Deryagin formulation.

    PubMed

    Duval, Jérôme F L; Merlin, Jenny; Narayana, Puranam A L

    2011-01-21

    We report a steady-state theory for the evaluation of electrostatic interactions between identical or dissimilar spherical soft multi-layered (bio)particles, e.g. microgels or microorganisms. These generally consist of a rigid core surrounded by concentric ion-permeable layers that may differ in thickness, soft material density, chemical composition and degree of dissociation for the ionogenic groups. The formalism allows the account of diffuse interphases where distributions of ionogenic groups from one layer to the other are position-dependent. The model is valid for any number of ion-permeable layers around the core of the interacting soft particles and covers all limiting situations in terms of nature of interacting particles, i.e. homo- and hetero-interactions between hard, soft or entirely porous colloids. The theory is based on a rigorous numerical solution of the non-linearized Poisson-Boltzmann equation including radial and angular distortions of the electric field distribution within and outside the interacting soft particles in approach. The Gibbs energy of electrostatic interaction is obtained from a general expression derived following the method by Verwey and Overbeek based on appropriate electric double layer charging mechanisms. Original analytical solutions are provided here for cases where interaction takes place between soft multi-layered particles whose size and charge density are in line with Deryagin treatment and Debye-Hückel approximation. These situations include interactions between hard and soft particles, hard plate and soft particle or soft plate and soft particle. The flexibility of the formalism is highlighted by the discussion of few situations which clearly illustrate that electrostatic interaction between multi-layered particles may be partly or predominantly governed by potential distribution within the most internal layers. A major consequence is that both amplitude and sign of Gibbs electrostatic interaction energy may

  1. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    PubMed Central

    Sundberg, Pia

    2014-01-01

    Summary The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845

  2. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    PubMed

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.

  3. Effects of melting layer on Ku-band signal depolarization

    NASA Astrophysics Data System (ADS)

    Sarkar, Thumree; Das, Saurabh; Maitra, Animesh

    2014-09-01

    Propagation effects on Ku-band over an earth-space path is carried out at Kolkata, India, a tropical location, by receiving a Ku-band signal with horizontal plane polarization transmitted from the geostationary satellite NSS-6 (at 95°E). The amplitude of co-polar attenuation has been monitored along with the measurements of rain rate, rain drop size distribution and height profile of rain rate. The cross-polar enhancement of the signal is also monitored by receiving the same signal in orthogonal direction with another identical receiver. The experimental observations are used to study the effect of melting layer on both co-polar attenuation and cross-polar enhancement for the rain events observed during 2012-2013. Melting layer is indicated by the bright band signature in vertical profile of rain rate. The ground based drop size measurements indicate that the stratiform rain has more number of small drops whereas convective rain composed of large rain drops. The results indicate that the depolarization due to melting layer is more dominant compared to that due to the drop deformation mechanism at low rain rates.

  4. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II-VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  5. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  6. Hydrogen-induced structural transition in single layer ReS2

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Bacaksiz, C.; Senger, R. T.; Sahin, H.

    2017-09-01

    By performing density functional theory-based calculations, we investigate how structural, electronic and mechanical properties of single layer ReS2 can be tuned upon hydrogenation of its surfaces. It is found that a stable, fully hydrogenated structure can be obtained by formation of strong S-H bonds. The optimized atomic structure of ReS2H2 is considerably different than that of the monolayer ReS2 which has a distorted-1T phase. By performing phonon dispersion calculations, we also predict that the Re2-dimerized 1T structure (called 1T {{}\\text{R{{\\text{e}}2}}} ) of the ReS2H2 is dynamically stable. Unlike the bare ReS2 the 1T {{}\\text{R{{\\text{e}}2}}} -ReS2H2 structure which is formed by breaking the Re4 clusters into separated Re2 dimers, is an indirect-gap semiconductor. Furthermore, mechanical properties of the 1T {{}\\text{R{{\\text{e}}2}}} phase in terms of elastic constants, in-plane stiffness (C) and Poisson ratio (ν) are investigated. It is found that full hydrogenation not only enhances the flexibility of the single layer ReS2 crystal but also increases anisotropy of the elastic constants.

  7. Aqueous proton transfer across single-layer graphene

    DOE PAGES

    Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...

    2015-03-17

    Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused ​silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while ​pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and ​hydrogen transfer indicate the process is selective for aqueous protons.« less

  8. F layer positive response to a geomagnetic storm - June 1972

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Grebowsky, J. M.; Mayr, H. G.; Harris, I.; Tulunay, Y. K.

    1979-01-01

    A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside midlatitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17-18, 1972. It is inferred that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F-layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in the apparent response to magnetospheric E x B drifts. A summer F-layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F-layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics.

  9. System and method of designing a load bearing layer of an inflatable vessel

    NASA Technical Reports Server (NTRS)

    Spexarth, Gary R. (Inventor)

    2007-01-01

    A computer-implemented method is provided for designing a restraint layer of an inflatable vessel. The restraint layer is inflatable from an initial uninflated configuration to an inflated configuration and is constructed from a plurality of interfacing longitudinal straps and hoop straps. The method involves providing computer processing means (e.g., to receive user inputs, perform calculations, and output results) and utilizing this computer processing means to implement a plurality of subsequent design steps. The computer processing means is utilized to input the load requirements of the inflated restraint layer and to specify an inflated configuration of the restraint layer. This includes specifying a desired design gap between pairs of adjacent longitudinal or hoop straps, whereby the adjacent straps interface with a plurality of transversely extending hoop or longitudinal straps at a plurality of intersections. Furthermore, an initial uninflated configuration of the restraint layer that is inflatable to achieve the specified inflated configuration is determined. This includes calculating a manufacturing gap between pairs of adjacent longitudinal or hoop straps that correspond to the specified desired gap in the inflated configuration of the restraint layer.

  10. Laboratory observation of multiple double layer resembling space plasma double layer

    NASA Astrophysics Data System (ADS)

    Alex, Prince; Arumugam, Saravanan; Sinha, Suraj

    2017-10-01

    Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.

  11. X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov,A.

    The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less

  12. First liquid-layer implosion experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex

    2017-10-01

    Replacing the standard ice layer in an ignition design with a liquid layer allows fielding the target with a higher central vapor pressure, leading to reduced implosion convergence ratio (CR). At lower CR, the implosions are expected to be more robust to instabilities and asymmetries than standard ice-layer designs, and are also unique in that the hot spot can be primarily formed from material originating in the central fuel vapor. The first liquid-layer implosions on the National Ignition Facility (NIF) have been performed by wicking the liquid fuel into a supporting foam that lines the inside surface of the capsule. A series of shots has been conducted between CR of 12 and 20 using a HDC ablator driven by a 3-shock pulse in a near-vacuum Au hohlraum. At the lowest CR the implosion performance is well predicted by 2-D radiation-hydrodynamics calculations. However, as the CR is increased the nominal simulations do not capture the experimentally observed trends. Data-based models suggest that the hot spot formation is unexpectedly suppressed at higher convergence. The data could be explained by reduced hydrodynamic coupling efficiency, or an anomalously enhanced thermal conductivity in the mixed DT/foam material. We show that the latter hypothesis can explain observed trends in several experimental metrics, including the yield, ion temperature, and burn duration. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.

  13. In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers

    PubMed Central

    Breitwieser, Andreas; Iturri, Jagoba; Toca-Herrera, Jose-Luis; Sleytr, Uwe B.; Pum, Dietmar

    2017-01-01

    The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers. PMID:28216572

  14. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.

    PubMed

    Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol

    2014-01-22

    Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina.

  15. Dielectric constant estimation of the uppermost Basal Unit layer in the martian Boreales Scopuli region

    NASA Astrophysics Data System (ADS)

    Lauro, Sebastian E.; Mattei, Elisabetta; Soldovieri, Francesco; Pettinelli, Elena; Orosei, Roberto; Vannaroni, Giuliano

    2012-05-01

    An electromagnetic inversion model has been applied to echoes from the subsurface sounding Shallow Radar (SHARAD) to retrieve the dielectric properties of the uppermost Basal Unit (BU) beneath the North Polar Layered Deposits of Mars. SHARAD data have been carefully selected to satisfy the assumption of the inversion model which requires a stratigraphy consisting of mostly plane parallel layers. The resulting values of the dielectric constant have been interpreted in terms of a variable percentage of dust in an ice-dust mixture through the use of a mixing model for dielectric properties. The resulting dust content exceeds 65%, reaching perhaps 95%, depending on the permittivity values assumed for the dust. Such a concentration is higher than that obtained by Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003). This discrepancy could be justified considering that our observations refer to the uppermost BU layer, whereas Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003) probed the BU full thickness. Moreover, if the BU is considered spatially inhomogeneous, with very different dust content and thickness (Tanaka, K.L., Skinner, J.A., Fortezzo, C.M., Herkenhoff, K.E., Rodriguez, J.A.P., Bourke, M.C., Kolb, E.J., Okubo, C.H. [2008]. Icarus, 196, 318-358), the discrepancy could be furtherly reconciled.

  16. Meteoric ion layers in the Martian atmosphere.

    PubMed

    Whalley, Charlotte L; Plane, John M C

    2010-01-01

    Low-lying plasma layers have been observed sporadically in the Martian atmosphere by radio occultation measurements from spacecraft such as the Mars Express Orbiter and the Mars Global Surveyor. These layers are just a few km wide, and tend to occur around 90 km. It has been proposed that the layers consist of metallic ions, for two reasons: they occur in the aerobraking region of the planet where meteoroids ablate; and they resemble sporadic E layers in the terrestrial atmosphere which are known to be composed principally of Fe+ and Mg+ ions. This paper addresses the problem of how metallic ions can persist in a CO2-rich atmosphere, where the ions should be neutralized rapidly by formation of metal-CO2 cluster ions followed by dissociative electron recombination. Laboratory studies using the pulsed laser photolysis/laser induced fluorescence and flow tube/mass spectrometer techniques were used to measure the following rate coefficients: k (Mg+ + CO2 (+ CO2) --> Mg+ x CO2, 190-403 K) = (5.3 +/- 0.7) x 10(-29) (T/300 K)(-1.86 +/- 0.03) cm6 molecule --> 2 s(-1); k(Mg+ x CO2 + O2 --> MgO2(+) + CO2, 297 K) = (2.2 +/- 0.8) x 10(-11) cm3 molecule(-1) s(-1); k(MgO2(+) + O --> MgO(+) + O2, 297 K) = (6.5 +/- 1.8) x 10(-10) cm3 molecule(-1) s(-1); and k(MgO(+) + O --> Mg(+) + O2, 297 K) = (5.9 +/- 2.4) x 10(-10) cm3 molecule(-1) s(-1). A model of magnesium and iron chemistry in the Martian atmosphere was then constructed, which includes meteoric differential ablation rates calculated with the Leeds CABMOD model, photo-ionization, and gas-phase ion-molecule and neutral chemistry. The model shows that nearly all the metallic ions between 70 and 110 km should be Mg+, because the reactions of MgO2+ and MgO+ with atomic O are fast enough to prevent these molecular ions undergoing dissociative electron recombination (unlike the analogous Fe species). There are enough Mg+ ions to form sporadic layers of the observed plasma density, and the layers can have a lifetime against

  17. Atomic layer deposition of two dimensional MoS{sub 2} on 150 mm substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, Arturo; Conley, John F., E-mail: jconley@eecs.oregonstate.edu; Tweet, Douglas J.

    2016-03-15

    Low temperature atomic layer deposition (ALD) of monolayer to few layer MoS{sub 2} uniformly across 150 mm diameter SiO{sub 2}/Si and quartz substrates is demonstrated. Purge separated cycles of MoCl{sub 5} and H{sub 2}S precursors are used at reactor temperatures of up to 475 °C. Raman scattering studies show clearly the in-plane (E{sup 1}{sub 2g}) and out-of-plane (A{sub 1g}) modes of MoS{sub 2}. The separation of the E{sup 1}{sub 2g} and A{sub 1g} peaks is a function of the number of ALD cycles, shifting closer together with fewer layers. X-ray photoelectron spectroscopy indicates that stoichiometry is improved by postdeposition annealing in amore » sulfur ambient. High resolution transmission electron microscopy confirms the atomic spacing of monolayer MoS{sub 2} thin films.« less

  18. Felt and Enacted Stigma Among HIV/HCV-Coinfected Adults: The Impact of Stigma Layering

    PubMed Central

    Lekas, Helen-Maria; Siegel, Karolynn; Leider, Jason

    2015-01-01

    The realization that many persons with HIV/AIDS are subjected to multiple layers of stigmatization because they belong to socially deviant and disenfranchised groups (e.g., injection drug users, racial/ethnic and sexual minorities) accounts for an increasing interest in the phenomenon of stigma layering. The stigma associated with HCV has also been conceptualized as layered. However, researchers have overlooked the fact that HCV adds a layer to the HIV stigma and vice versa. Qualitative interviews with 132 HIV/HCV coinfected patients were analyzed to explore how they experience the two layers of stigma. Most participants hierarchically ordered the stigmas associated with each disease and regarded HIV as the more stigmatizing of the two. A small number perceived HIV and HCV as equally stigmatizing. The impact of the hierarchical and non-hierarchical ordering of the two stigmas on coinfected patients’ felt and enacted stigmatization is explored and implications for interventions are discussed. PMID:21498828

  19. Determination of layer-dependent exciton binding energies in few-layer black phosphorus

    PubMed Central

    Zhang, Guowei; Chaves, Andrey; Huang, Shenyang; Wang, Fanjie; Xing, Qiaoxia; Low, Tony; Yan, Hugen

    2018-01-01

    The attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental investigation of exciton physics has been rather limited. We report the first systematic measurement of exciton binding energies in ultrahigh-quality few-layer BP by infrared absorption spectroscopy, with layer (L) thickness ranging from 2 to 6 layers. Our experiments allow us to determine the exciton binding energy, decreasing from 213 meV (2L) to 106 meV (6L). The scaling behavior with layer numbers can be well described by an analytical model, which takes into account the nonlocal screening effect. Extrapolation to free-standing monolayer yields a large binding energy of ~800 meV. Our study provides insights into 2D excitons and their crossover from 2D to 3D, and demonstrates that few-layer BP is a promising high-quality optoelectronic material for potential infrared applications. PMID:29556530

  20. 13-fold resolution gain through turbid layer via translated unknown speckle illumination

    PubMed Central

    Guo, Kaikai; Zhang, Zibang; Jiang, Shaowei; Liao, Jun; Zhong, Jingang; Eldar, Yonina C.; Zheng, Guoan

    2017-01-01

    Fluorescence imaging through a turbid layer holds great promise for various biophotonics applications. Conventional wavefront shaping techniques aim to create and scan a focus spot through the turbid layer. Finding the correct input wavefront without direct access to the target plane remains a critical challenge. In this paper, we explore a new strategy for imaging through turbid layer with a large field of view. In our setup, a fluorescence sample is sandwiched between two turbid layers. Instead of generating one focus spot via wavefront shaping, we use an unshaped beam to illuminate the turbid layer and generate an unknown speckle pattern at the target plane over a wide field of view. By tilting the input wavefront, we raster scan the unknown speckle pattern via the memory effect and capture the corresponding low-resolution fluorescence images through the turbid layer. Different from the wavefront-shaping-based single-spot scanning, the proposed approach employs many spots (i.e., speckles) in parallel for extending the field of view. Based on all captured images, we jointly recover the fluorescence object, the unknown optical transfer function of the turbid layer, the translated step size, and the unknown speckle pattern. Without direct access to the object plane or knowledge of the turbid layer, we demonstrate a 13-fold resolution gain through the turbid layer using the reported strategy. We also demonstrate the use of this technique to improve the resolution of a low numerical aperture objective lens allowing to obtain both large field of view and high resolution at the same time. The reported method provides insight for developing new fluorescence imaging platforms and may find applications in deep-tissue imaging. PMID:29359102

  1. Seasonal patterns of cytokinins and microclimate and the mediation of gas exchange among canopy layers of mature Acer saccharum trees.

    PubMed

    Reeves, Ian; Emery, R J Neil

    2007-11-01

    Seasonal patterns of cytokinins (CKs) and microclimate were examined in the upper, middle and lower canopy layers of mature Acer saccharum Marsh. (sugar maple) trees to elucidate the potential role of CKs in the mediation of gas exchange. The upper canopy showed a distinctly dissimilar microclimate from the middle and lower canopy layers with higher photosynthetically active radiation and wind speed, but showed no corresponding differences in transpiration (E) or stomatal conductance (g(s)). Although E and g(s) tended to be higher in the upper canopy than in the middle and lower canopies, the differences were not significant, indicating regulation beyond the passive response to changes in microclimate. The upper canopy accumulated significantly higher concentrations of CKs, predominantly as ribosides, and all canopy layers showed distinct seasonal patterns in CK profiles. Multiple regression models showed significant relationships between both g(s) and E and foliar CK concentration, although these relationships varied among canopy layers. The relationships were strongest in the middle and lower canopy layers where there was less fluctuation in leaf water status and less variability in abiotic variables. The relationships between gas exchange parameters and leaf CK concentration began to decouple near the end of the growing season as foliar phytohormone concentrations changed with the approach of dormancy.

  2. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    NASA Astrophysics Data System (ADS)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  3. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  4. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  5. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    PubMed

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  6. The evolution of an unsteady translating nonlinear rossby-wave critical layer

    NASA Astrophysics Data System (ADS)

    Haynes, Peter H.; Cowley, Stephen J.

    When a monochromatic Rossby wave is forced on a flow which is slowly varying in time, the location of the critical line, where the phase speed of the wave is equal to that of the flow, also slowly changes. It is shown that this translation can play an important role in the vorticity balance near the critical line. The behavior of the translating critical layer is analyzed for various values of y, a parameter which measures the relative importance of nonlinear advection and translation. First, the vorticity equation in the critical layer is solved numerically in an important special case, where the velocity field in the critical layer is independent of the vorticity distribution and constant in time. The solutions reveal a number of new aspects of the behavior which are introduced by the translation, including the formation of a wake behind the critical layer, and the possibility of "trapping" of fluid particles in the critical layer if y exceeds a threshold value. Viewed in a frame of reference moving with the critical line the vorticity distribution may tend to a steady state, except in a "vorticity front" far downstream in the wake. If streamlines in the critical layer are open this steady state may be a predominantly inviscid one; if they are closed a steady state is possible only with non-zero dissipation. For both the unsteady and steady flows the translation allows the "logarithmic phase jump" across the critical layer, 4, to be non-zero and negative. Hence, even when the viscosity is vanishingly small, the critical layer can act as a strong "absorber" of Eliassen-Palm wave activity. Second, steady-state solutions are obtained numerically for a case when the velocity field in the critical layer is not independent of the vorticity distribution there. The interaction restricts the formation of closed streamlines, and an asymptotic open-streamline solution for large y can be found. The critical layer again acts an absorber of wave activity, but with decreasing e

  7. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  8. Small-signal amplifier based on single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Radisavljevic, Branimir; Whitwick, Michael B.; Kis, Andras

    2012-07-01

    In this letter we demonstrate the operation of an analog small-signal amplifier based on single-layer MoS2, a semiconducting analogue of graphene. Our device consists of two transistors integrated on the same piece of single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based amplifiers to operate with a room temperature gain of 4. The amplifier operation is demonstrated for the frequencies of input signal up to 2 kHz preserving the gain higher than 1. Our work shows that MoS2 can effectively amplify signals and that it could be used for advanced analog circuits based on two-dimensional materials.

  9. Emplacement of Widespread Fe/Mg Phyllosilicate Layer in West Margaritifer Terra, Mars

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Maxwell, R. E.; Seelos, F. P.; Buczkowski, D.; Viviano-Beck, C. E.

    2017-12-01

    West Margaritifer Terra is located at the eastern end of Valles Marineris at the complex intersection of chaos terrains, cratered highlands, and multiple generations of outflow channels. Adjacent regions host layered phyllosilicates thought to indicate early Mars pedogenic and/or ground water-based alteration (e.g., Le Deit et al., 2012), and indeed, hydrologic modeling supports prolonged aqueous activity in the Noachian and Hesperian eras (Andrews-Hanna and Lewis, 2011). The remnant high-standing plateaus in West Margaritifer (0-15°S, 325-345°E) host numerous phyllosilicate-bearing outcrops as well and are the focus of this study. Here, we performed a systematic mapping and characterization of mineralogy and morphology of these deposits in order to assess similarity to other layered phyllosilicates and evaluate potential formation mechanisms. Utilizing multiple remote sensing datasets, we identified three types of phyllosilicate exposures distributed throughout the region: 1) along upper chaos fracture walls, 2) in erosional windows on the plains, and 3) in crater walls and ejecta. Outcrops are spectrally indicative of Fe/Mg smectite (most similar to saponite) and only rare, isolated occurrences of Al-phyllosilicate were observed. Morphologically, the layer is a few to 10 m thick, light-toned, polygonally fractured at decameter scales, and vertical subparallel banding is evident in places. These characteristics were used along with spatial distribution, elevation, and geologic context to evaluate 4 potential formation mechanisms: fluvio-lacustrine, pedogenesis, diagenesis, and hydrothermal alteration. We find that the widespread distribution and spectral homogeneity of the layer favors formation via groundwater alteration and/or pedogenic weathering. This is consistent with interpretations of similar layered phyllosilicates in NW Noachis Terra and the Valles Marineris plains to the west, and significantly extends the area over which these aqueous processes

  10. Dependence of Magnetic Properties of Co/Pt Multilayers on Deposition Temperature of Pt Buffer Layers

    NASA Astrophysics Data System (ADS)

    Shiomi, Shigeru; Nishimura, Tomotaka; Kobayashi, Tadashi; Masuda, Morio

    1993-04-01

    A 15-nm-thick Pt buffer layer was deposited on a glass slide at temperature Ts(Ptbuf) ranging from 30 to 300°C by e-gun evaporation. Following the cooling in vacuum to ambient temperature, Co and Pt layers have been alternately deposited on it. Very large perpendicular anisotropy and coercivity have been obtained at Ts(Ptbuf) higher than 200°C. The (111) preferred orientation of the Co/Pt multilayer as well as the Pt buffer layer became more pronounced with elevating Ts(Ptbuf), to which the enhancement of perpendicular anisotropy with elevating Ts(Ptbuf) might be ascribable.

  11. Layer-by-layer growth of vertex graph of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-09-01

    The growth form for the vertex graph of Penrose tiling is found to be a regular decagon. The lower and upper bounds for this form, coinciding with it, are strictly proven. A fractal character of layer-by-layer growth is revealed for some subgraphs of the vertex graph of Penrose tiling.

  12. Polarity determination of polar and semipolar (112¯2) InN and GaN layers by valence band photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.

    2013-11-01

    We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.

  13. Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    LaGraff, John E. (Editor)

    2007-01-01

    This volume contains materials presented at the Minnowbrook I-1993 Workshop on End-Stage Boundary Layer Transition, held at the Syracuse University Minnowbrook Conference Center, New York, from August 15 to 18, 1993. This volume was previously published as a Syracuse University report edited by John E. LaGraff. The workshop organizers were John E. LaGraff (Syracuse University), Terry V. Jones (Oxford University), and J. Paul Gostelow (University of Technology, Sydney). The workshop focused on physical understanding of the late stages of transition from laminar to turbulent flows, with the specific goal of contributing to improving engineering design of turbomachinery and wing airfoils. The workshop participants included academic researchers from the United States and abroad, and representatives from the gas-turbine industry and U.S. government laboratories. To improve interaction and discussions among the participants, no formal papers were required. The physical mechanisms discussed were related to natural and bypass transition, wake-induced transition, effects of freestream turbulence, turbulent spots, hairpin vortices, nonlinear instabilities and breakdown, instability wave interactions, intermittency, turbulence, numerical simulation and modeling of transition, heat transfer in boundary-layer transition, transition in separated flows, laminarization, transition in turbomachinery compressors and turbines, hypersonic boundary-layer transition, and other related topics. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The workshop summary and the plenary discussion transcript clearly outline future research needs.

  14. Working with layers: The governance and regulation of healthcare quality in an institutionally layered system.

    PubMed

    van de Bovenkamp, Hester M; Stoopendaal, Annemiek; Bal, Roland

    2017-01-01

    Institutional arrangements used to steer public policies have increasingly become layered. Inspired by the literature on institutional layering and institutional work, this paper aims to make a contribution to our understanding of institutional layering. We do so by studying an interesting case of layering: the Dutch hospital sector. We focus on the actors responsible for the internal governance (Board of Directors and Supervisory Boards) and the external regulation (the Healthcare Inspectorate) of hospitals. In the paper, we explore the institutional work of these actors, more specifically how institutional work results from and is influenced by institutional layering and how this in turn influences the institutional makeup of both healthcare organizations and their institutional context. Our approach allowed us to see that layering changes the activities of actors in the public sector, can be used to strengthen one's position but also presents actors with new struggles, which they in turn can try to overcome by relating and using the institutionally layered context. Layering and institutional work are therefore in continuous interaction. Combining institutional layering with a focus on the lived experiences of actors and their institutional work makes it possible to move into the layered arrangement and better understand its consequences.

  15. Working with layers: The governance and regulation of healthcare quality in an institutionally layered system

    PubMed Central

    Stoopendaal, Annemiek; Bal, Roland

    2016-01-01

    Institutional arrangements used to steer public policies have increasingly become layered. Inspired by the literature on institutional layering and institutional work, this paper aims to make a contribution to our understanding of institutional layering. We do so by studying an interesting case of layering: the Dutch hospital sector. We focus on the actors responsible for the internal governance (Board of Directors and Supervisory Boards) and the external regulation (the Healthcare Inspectorate) of hospitals. In the paper, we explore the institutional work of these actors, more specifically how institutional work results from and is influenced by institutional layering and how this in turn influences the institutional makeup of both healthcare organizations and their institutional context. Our approach allowed us to see that layering changes the activities of actors in the public sector, can be used to strengthen one’s position but also presents actors with new struggles, which they in turn can try to overcome by relating and using the institutionally layered context. Layering and institutional work are therefore in continuous interaction. Combining institutional layering with a focus on the lived experiences of actors and their institutional work makes it possible to move into the layered arrangement and better understand its consequences. PMID:28596640

  16. Sporadic and thermospheric enhanced sodium layers observed by a lidar chain over China

    NASA Astrophysics Data System (ADS)

    Dou, X. K.; Qiu, S. C.; Xue, X. H.; Chen, T. D.; Ning, B. Q.

    2013-10-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2°N, 116.2°E), Hefei (31.8°N, 117.3°E), Wuhan (30.5°N, 114.4°E), and Haikou (19.5°N, 109.1°E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 h per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4 MHz). The coobservations of SSLs at three lidar site pairs, i.e., Hefei-Beijing, Hefei-Wuhan, and Hefei-Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei-Wuhan and Hefei-Haikou pairs than the Hefei-Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  17. Sporadic and Thermospheric Enhanced Sodium Layers Observed by a Lidar Chain over China

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2013-12-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2N,116.2E), Hefei (31.8N, 117.3E), Wuhan (30.5N, 114.4E), and Haikou (19.5N, 109.1E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 hr per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4MHz). The co-observations of SSLs at three lidar site pairs, i.e., Hefei -- Beijing, Hefei -- Wuhan and Hefei -- Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei -- Wuhan and Hefei -- Haikou pairs than the Hefei -- Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  18. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  19. Layer-by-Layer Templated Assembly of Silica at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinestrosa, Juan Pablo; Sutton, Jonathan E.; Allison, David P.

    2013-01-29

    Bioinspired bottom-up assembly and layer-by-layer (LbL) construction of inorganic materials from lithographically defined organic templates enables the fabrication of nanostructured systems under mild temperature and pH conditions. Such processes open the door to low-impact manufacturing and facile recycling of hybrid materials for energy, biology, and information technologies. Here, templated LbL assembly of silica was achieved using a combination of electron beam lithography, chemical lift-off, and aqueous solution chemistry. Nanopatterns of lines, honeycomb-lattices, and dot arrays were defined in polymer resist using electron beam lithography. Following development, exposed areas of silicon were functionalized with a vapor deposited amine-silane monolayer. Silicic acidmore » solutions of varying pH and salt content were reacted with the patterned organic amine-functional templates. Vapor treatment and solution reaction could be repeated, allowing LbL deposition. Conditions for the silicic acid deposition had a strong effect on thickness of each layer, and the morphology of the amorphous silica formed. Defects in the arrays of silica nanostructures were minor and do not affect the overall organization of the layers. In conclusion, the bioinspired method described here facilitates the bottom-up assembly of inorganic nanostructures defined in three dimensions and provides a path, via LbL processing, for the construction of layered hybrid materials under mild conditions.« less

  20. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a mixture. The mixture of compounds is absorbed onto a stationary phase or thin layer of inert material (e.g., cellulose, alumina, etc.) and eluted off by a moving solvent (moving phase) until equilibrium occurs between the two phases. (b) Classification. Class I (general controls). The device is...